diff options
author | Karl Berry <karl@freefriends.org> | 2013-11-24 00:00:29 +0000 |
---|---|---|
committer | Karl Berry <karl@freefriends.org> | 2013-11-24 00:00:29 +0000 |
commit | c9f8bd8bf029f005f02efea2a67dade996df2515 (patch) | |
tree | 671b749f2efa72f532d714a47ea4d3d79be5b4ce | |
parent | 42b82c7597e89fadde85939a364fa8d8aa24f2fa (diff) |
xint (23nov13)
git-svn-id: svn://tug.org/texlive/trunk@32224 c570f23f-e606-0410-a88d-b1316a301751
-rw-r--r-- | Master/texmf-dist/doc/generic/xint/README | 74 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/xint/xint.pdf | bin | 984824 -> 1034453 bytes | |||
-rw-r--r-- | Master/texmf-dist/source/generic/xint/xint.dtx | 2981 | ||||
-rw-r--r-- | Master/texmf-dist/source/generic/xint/xint.ins | 8 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/xint/xint.sty | 1062 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/xint/xintbinhex.sty | 4 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/xint/xintcfrac.sty | 4 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/xint/xintexpr.sty | 4 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/xint/xintfrac.sty | 22 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/xint/xintgcd.sty | 48 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/xint/xintseries.sty | 4 | ||||
-rw-r--r-- | Master/texmf-dist/tex/generic/xint/xinttools.sty | 1043 |
12 files changed, 3083 insertions, 2171 deletions
diff --git a/Master/texmf-dist/doc/generic/xint/README b/Master/texmf-dist/doc/generic/xint/README index 40f49d70254..22cd79a8f0f 100644 --- a/Master/texmf-dist/doc/generic/xint/README +++ b/Master/texmf-dist/doc/generic/xint/README @@ -1,12 +1,13 @@ The xint bundle -Release 1.09f (2013/11/04). +Release 1.09g (2013/11/22). author: Jean-Francois Burnol License: LPPL 1.3c or later. This README: *Abstract*, *Installation*, *License*. Style files which will self-extract from xint.dtx: -(base) xint.sty Expandable operations on long numbers + xinttools.sty Expandable and non-expandable utilities + xint.sty Expandable operations on long numbers xintfrac.sty Expandable operations on fractions xintexpr.sty Expandable expression parser xintbinhex.sty Expandable binary and hexadecimal conversions @@ -14,54 +15,67 @@ Style files which will self-extract from xint.dtx: xintseries.sty Expandable partial sums with xint package xintcfrac.sty Expandable continued fractions with xint package +All these files should go into TDS:tex/generic/xint/ +(see detailed installation instructions below) + May be used with Plain TeX (\input) or as LaTeX packages (\usepackage) Abstract ======== - The xint package implements with expandable TeX macros the basic - arithmetic operations of addition, subtraction, multiplication and - division, applied to arbitrarily long numbers. The xintfrac package - extends the scope of xint to fractional numbers with arbitrarily - long numerators and denominators. +xinttools is loaded by xint (hence by all other packages of the +bundle, too): it provides utilities of independent interest such as +expandable and non-expandable loops. + +xint implements with expandable TEX macros additions, subtractions, +multiplications, divisions and powers with arbitrarily long numbers. + +xintfrac extends the scope of xint to decimal numbers, to numbers in +scientific notation and also to fractions with arbitrarily long such +numerators and denominators separated by a forward slash. + +xintexpr extends xintfrac with an expandable parser + \xintexpr . . . \relax +of expressions involving arithmetic operations in infix notation on +decimal numbers, fractions, numbers in scientific notation, with +parentheses, factorial symbol, function names, comparison operators, +logic operators, twofold and threefold way conditionals, +sub-expressions, macros expanding to the previous items. + +Further modules: + +xintbinhex is for conversions to and from binary and hexadecimal +bases. - xintexpr provides an expandable parser \xintexpr . . . \relax of - expressions involving arithmetic operations in infix notation on - decimal numbers, fractions, numbers in scientific notation, with - parentheses, factorial symbol, function names, comparison operators, - logic operators, twofold and threefold way conditionals, - sub-expressions, macros expanding to the previous items. +xintseries provides some basic functionality for computing in an +expandable manner partial sums of series and power series with +fractional coefficients. - The xintbinhex package is for conversions to and from binary and - hexadecimal bases, xintseries provides some basic functionality for - computing in an expandable manner partial sums of series and power - series with fractional coefficients, xintgcd implements the - Euclidean algorithm and its typesetting, and xintcfrac deals with - the computation of continued fractions. +xintgcd implements the Euclidean algorithm and its typesetting. - Most macros, and all of those doing computations, work purely by - expansion without assignments, and may thus be used almost - everywhere in TeX. +xintcfrac deals with the computation of continued fractions. - The packages may be used with any flavor of TeX supporting the eTeX - extensions. LaTeX users will use \usepackage and others \input to - load the package components. +Most macros, and all of those doing computations, work purely by +expansion without assignments, and may thus be used almost everywhere +in TEX. The packages may be used with any flavor of TEX supporting the +ε-TEX extensions. LATEX users will use \usepackage and others \input +to load the package components. Installation and Usage: ======================= -Run tex or latex on xint.dtx. +If xint.ins is available "tex xint.ins". -This will extract the style files xint.sty, xintfrac.sty, xintexpr.sty, -xintbinhex.sty, xintgcd.sty, xintseries.sty, xintcfrac.sty (and xint.ins). +Else "tex xint.dtx" or "latex xint.dtx". This will generate the style +files and the xint.ins file. -Files with the same names and in the same repertory will be overwritten. The tex (not latex) run will stop with the complaint that it does not understand \NeedsTeXFormat, but the style files will already have been extracted by that time. -Alternatively, run tex or latex on xint.ins if available. +Files with the same names and in the same repertory will be +overwritten. To get xint.pdf run pdflatex thrice on xint.dtx diff --git a/Master/texmf-dist/doc/generic/xint/xint.pdf b/Master/texmf-dist/doc/generic/xint/xint.pdf Binary files differindex f4f65f33826..57731003289 100644 --- a/Master/texmf-dist/doc/generic/xint/xint.pdf +++ b/Master/texmf-dist/doc/generic/xint/xint.pdf diff --git a/Master/texmf-dist/source/generic/xint/xint.dtx b/Master/texmf-dist/source/generic/xint/xint.dtx index 2f7cd536ac0..65c15c30343 100644 --- a/Master/texmf-dist/source/generic/xint/xint.dtx +++ b/Master/texmf-dist/source/generic/xint/xint.dtx @@ -1,13 +1,14 @@ % -*- coding: iso-latin-1; -*- %<*doc> -\def\lasttimestamp{Time-stamp <04-11-2013 13:50:22 CET *>} +\def\lasttimestamp{Time-stamp <23-11-2013 12:26:51 CET *>} %</doc> -% xint.dtx, 1.09f (2013/11/04) +% xint.dtx, 1.09g (2013/11/22) % % Copyright (C) 2013 by Jean-François Burnol % % Style files which will self-extract from xint.dtx: -% (base) xint.sty Expandable operations on long numbers +% xinttools.sty Expandable and non expandable utilities +% xint.sty Expandable operations on long numbers % xintfrac.sty Expandable operations on fractions % xintexpr.sty Expandable expression parser % xintbinhex.sty Expandable binary and hexadecimal conversions @@ -20,9 +21,9 @@ % ======= % % This work consists of the source file xint.dtx and of its derived files: -% xint.sty, xintfrac.sty, xintexpr.sty, xintbinhex.sty, xintgcd.sty, -% xintseries.sty, xintcfrac.sty, as well as xint.ins and the documentation -% xint.pdf (or xint.dvi). +% xinttools.sty xint.sty, xintfrac.sty, xintexpr.sty, xintbinhex.sty, +% xintgcd.sty, xintseries.sty, xintcfrac.sty, as well as xint.ins and the +% documentation xint.pdf (or xint.dvi). % % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either @@ -54,10 +55,11 @@ % % To get xint.pdf run pdflatex thrice on xint.dtx % +% xinttools.sty | % xint.sty | % xintfrac.sty | -% xintexpr.sty | -% xintbinhex.sty | --> TDS:tex/generic/xint/ +% xintexpr.sty | --> TDS:tex/generic/xint/ +% xintbinhex.sty | % xintgcd.sty | % xintseries.sty | % xintcfrac.sty | @@ -67,7 +69,8 @@ % It may be necessary to then refresh the TeX installation filename % database. % -% Usage with LaTeX: \usepackage{xint} +% Usage with LaTeX: \usepackage{xinttools} +% \usepackage{xint} % (loads xinttools) % \usepackage{xintfrac} % (loads xint) % \usepackage{xintexpr} % (loads xintfrac) % @@ -76,7 +79,8 @@ % \usepackage{xintseries} % (loads xintfrac) % \usepackage{xintcfrac} % (loads xintfrac) % -% Usage with TeX: \input xint.sty\relax +% Usage with TeX: \input xinttools.sty\relax +% \input xint.sty\relax % (loads xinttools) % \input xintfrac.sty\relax % (loads xint) % \input xintexpr.sty\relax % (loads xintfrac) % @@ -87,7 +91,8 @@ % %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) +%<xinttools>%% xinttools: Expandable and non-expandable utilities %<xint>%% xint: Expandable operations on long numbers %<xintfrac>%% xintfrac: Expandable operations on fractions %<xintexpr>%% xintexpr: Expandable expression parser @@ -99,8 +104,8 @@ %%---------------------------------------------------------------- %% %<*doc> -\def\pkgversion{1.09f} -\def\pkgdate{2013/11/04} +\def\pkgversion{1.09g} +\def\pkgdate{2013/11/22} \def\striptimestamp #1 <#2 #3 #4 #5>{#2 at #3 #4} \def\getdocdate #1 <#2-#3-#4 #5>{#4/#3/#2} \edef\docdate{\expandafter\getdocdate\lasttimestamp} @@ -111,6 +116,7 @@ \generate{\nopreamble \file{xint.ins}{\from{xint.dtx}{ins}} \usepreamble\defaultpreamble +\file{xinttools.sty}{\from{xint.dtx}{xinttools}} \file{xint.sty}{\from{xint.dtx}{xint}} \file{xintbinhex.sty}{\from{xint.dtx}{xintbinhex}} \file{xintgcd.sty}{\from{xint.dtx}{xintgcd}} @@ -125,8 +131,9 @@ %----------- to .ins file ---------------------------------------- %% %% This is a generated file. Run tex or latex on this file to -%% extract xint.sty, xintfrac.sty, xintexpr.sty, xintbinhex.sty, -%% xintgcd.sty, xintseries.sty and xintcfrac.sty from xint.dtx +%% extract xinttools.sty, xint.sty, xintfrac.sty, xintexpr.sty, +%% xintbinhex.sty, xintgcd.sty, xintseries.sty and xintcfrac.sty +%% from xint.dtx %% %% See xint.dtx for the copyright and the conditions for %% distribution and/or modification of this work. @@ -134,6 +141,7 @@ \input docstrip.tex \askforoverwritefalse \generate{\usepreamble\defaultpreamble +\file{xinttools.sty}{\from{xint.dtx}{xinttools}} \file{xint.sty}{\from{xint.dtx}{xint}} \file{xintbinhex.sty}{\from{xint.dtx}{xintbinhex}} \file{xintgcd.sty}{\from{xint.dtx}{xintgcd}} @@ -185,11 +193,12 @@ \def\sectioncouleur{{cyan}} -% attention à ce 22 hard codé. 23 maintenant,... +% attention à ce 22 hard codé. 23 maintenant,... 24; et 31 non 32... \etocsetstyle{section}{} {} - {\ifnum\etocthenumber=23 \gdef\sectioncouleur{{joli}}\fi + {\ifnum\etocthenumber=24 \gdef\sectioncouleur{{joli}}\fi + \ifnum\etocthenumber=32 \gdef\sectioncouleur{[named]{RoyalPurple}}\fi \savedsectionline{\numberline{\expandafter\textcolor\sectioncouleur {\etocnumber}}\etocname} {{\mdseries\etocpage}}% @@ -490,12 +499,22 @@ pdfpagemode=UseOutlines} \newcommand\csbh[1]{\texorpdfstring{\csbnolk{#1}}{\textbackslash #1}} % emploi de \xintFor à partir de 1.09c -\xintFor #1 in {xint,xintbinhex,xintgcd,xintfrac,xintseries,xintcfrac,xintexpr} +\xintForpair #1#2 in +{(xinttools,tools),(xint,xint),(xintbinhex,binhex),(xintgcd,gcd),% + (xintfrac,frac),(xintseries,series),(xintcfrac,cfrac),(xintexpr,expr)} \do {% \expandafter\def\csname #1name\endcsname {\texorpdfstring - {{\color{joli}\ttfamily\hyphenchar\font45 \bfseries #1}} + {\hyperref[sec:#2]% + {\color{joli}\bfseries\ttfamily\hyphenchar\font45 #1}} + {#1}% + \xspace }% + \expandafter\def\csname #1nameimp\endcsname + {\texorpdfstring + {\hyperref[sec:#2imp]% + {\color[named]{RoyalPurple}% + \bfseries\ttfamily\hyphenchar\font45 #1}} {#1}% \xspace }% }% @@ -557,32 +576,57 @@ pdfpagemode=UseOutlines} {\centering \textsc{Jean-François Burnol}\par \footnotesize \ttfamily - jfbu (at) free (dot) fr\\ - Package version: \pkgversion\ (\pkgdate)\\ - Documentation generated from the source file\\ - with timestamp ``\dtxtimestamp''\par + jfbu (at) free (dot) fr\par + Package version: \pkgversion\ (\pkgdate)% + \let\thefootnote\empty + \footnote{Documentation generated from the + source file with timestamp ``\dtxtimestamp''.}\par } +\setcounter{footnote}{0} + +\bigskip +\begin{addmargin}{1cm}\footnotesize +\makeatletter +\renewenvironment{description} + {\list{}{\topsep\z@ \parsep\z@ \labelwidth\z@ \itemindent-\leftmargin + \let\makelabel\descriptionlabel}} + {\endlist} +\makeatother +\begin{description} +\item[\xinttoolsname] is loaded by \xintname (hence by all other packages of the + bundle, too): it provides utilities of independent interest such as expandable + and non-expandable loops. + +\item[\xintname] implements with expandable \TeX{} macros additions, + subtractions, multiplications, divisions and powers with arbitrarily long + numbers. + +\item[\xintfracname] extends the scope of \xintname to decimal numbers, to + numbers in scientific notation and also to fractions with arbitrarily + long such numerators and denominators separated by a forward slash. + +\item[\xintexprname] extends \xintfracname with an expandable parser |\xintexpr + . . . \relax| of expressions involving arithmetic operations in infix notation + on decimal numbers, fractions, numbers in scientific notation, with + parentheses, factorial symbol, function names, comparison operators, logic + operators, twofold and threefold way conditionals, sub-expressions, macros + expanding to the previous items. +\end{description} + +\noindent Further modules: +% +\begin{description} +\item[\xintbinhexname] is for conversions to and from binary and + hexadecimal bases. -\begin{abstract} -The \xintname package implements with expandable \TeX{} macros the basic - arithmetic operations of addition, subtraction, multiplication and division, - applied to arbitrarily long numbers. The \xintfracname package extends the - scope of \xintname to fractional numbers with arbitrarily long numerators and - denominators. - - \xintexprname provides an expandable parser |\xintexpr . . . \relax| - of expressions involving arithmetic operations in infix notation on - decimal numbers, fractions, numbers in scientific notation, with - parentheses, factorial symbol, function names, comparison operators, - logic operators, twofold and threefold way conditionals, - sub-expressions, macros expanding to the previous items. - - The \xintbinhexname package is for conversions to and from binary and - hexadecimal bases, \xintseriesname provides some basic functionality for - computing in an expandable manner partial sums of series and power series with - fractional coefficients, \xintgcdname implements the Euclidean algorithm and - its typesetting, and \xintcfracname deals with the computation of continued - fractions. +\item[\xintseriesname] provides some basic functionality for computing in an + expandable manner partial sums of series and power series with fractional + coefficients. + +\item[\xintgcdname] implements the Euclidean algorithm and its typesetting. + +\item[\xintcfracname] deals with the computation of continued fractions. +\end{description} Most macros, and all of those doing computations, work purely by expansion without assignments, and may thus be used almost everywhere in \TeX{}. @@ -590,8 +634,9 @@ The \xintname package implements with expandable \TeX{} macros the basic The packages may be used with any flavor of \TeX{} supporting the \eTeX{} extensions. \LaTeX{} users will use |\usepackage| and others |\input| to load the package components. -\end{abstract} +\end{addmargin} +\bigskip % 18 octobre 2013, je remets la TOC ici. % je ne veux pas non plus que la main toc se liste elle-même donc je passe pour @@ -599,6 +644,9 @@ The \xintname package implements with expandable \TeX{} macros the basic \etocsetlevel{toctobookmark}{6} % 9 octobre 2013, je fais des petits tricks. +% 18 novembre 2013, je n'inclus plus la TOC détaillée de +% xintexpr. Je reconfigure la TOC + \etocsettocdepth {subsection} \renewcommand*{\etocbelowtocskip}{0pt} @@ -609,41 +657,24 @@ The \xintname package implements with expandable \TeX{} macros the basic \phantomsection\section* {Contents} \etoctoccontentsline*{toctobookmark}{Contents}{1}% } + \etocsettagdepth {description}{section} - \etocsettagdepth {commandsA} {section} - \etocsettagdepth {xintexpr} {none} - \etocsettagdepth {commandsB} {none} - \etocsettagdepth {implementation}{none} -\tableofcontents - \etocsettagdepth {description}{none} \etocsettagdepth {commandsA} {none} - \etocsettagdepth {xintexpr} {subsection} + \etocsettagdepth {xintexpr} {none} \etocsettagdepth {commandsB} {none} \etocsettagdepth {implementation}{none} -\etocsettocstyle {}{} \tableofcontents +\etocmulticolstyle [2]{\raggedcolumns}{} \etocsettagdepth {description}{none} - \etocsettagdepth {commandsA} {none} - \etocsettagdepth {xintexpr} {none} + \etocsettagdepth {commandsA} {section} + \etocsettagdepth {xintexpr} {section} \etocsettagdepth {commandsB} {section} - \etocsettagdepth {implementation}{none} -\etocmulticolstyle [2]{}{} -\tableofcontents - \etocsettagdepth {description}{none} - \etocsettagdepth {commandsA} {none} - \etocsettagdepth {xintexpr} {none} - \etocsettagdepth {commandsB} {none} \etocsettagdepth {implementation}{section} - \etocsettocstyle {}{} -\def\sectioncouleur{[named]{RoyalPurple}} -\begin{addmargin}{3cm} - \tableofcontents -\end{addmargin} +\tableofcontents \medskip % pour la suite: \etocignoredepthtags - \etocmulticolstyle [1]{% \phantomsection\section* {Contents} \etoctoccontentsline*{toctobookmark}{Contents}{2}% @@ -654,23 +685,34 @@ The \xintname package implements with expandable \TeX{} macros the basic \section{Quick introduction}\label{sec:quickintro} -The \xintname bundle consists of three principal components \xintname, +The \xintname bundle consists of the three principal components \xintname, \xintfracname (which loads \xintname), and \xintexprname (which loads -\xintfracname), and four additional modules. They may be used with Plain \TeX{}, -\LaTeX{} or any other format based on \TeX{}. The package requires the -\eTeX{} extensions which in modern distributions are made available by default, -except if you invoke \TeX{} under the name |tex| in command line. +\xintfracname), and four additional modules. Release |1.09g| has moved the +macros of \xintname not dealing with the manipulation of big numbers to a +separate package \xinttoolsname (which is automatically loaded by \xintname), of +independent interest. + +All components may be used as regular packages with \LaTeX{} or loaded directly +via \string\input{} (e.g. |\input xint.sty\relax|) in any other format based on +\TeX. Each of them automatically loads those not alreadly loaded it depends +on. + +The \eTeX{} extensions must be enabled; this is the case in modern distributions +by default, except if you invoke \TeX{} under the name |tex| in command line +(|etex| should be used then, or |pdftex| in |DVI| output mode). The goal is too compute \emph{exactly}, purely by expansion, without count registers nor assignments nor definitions, with arbitrarily big -numbers and fractions. As will be commented upon more later, this works -fine when the data has dozens of digits, but multiplying out two @1000@ -digits numbers under this constraint of expandability is expensive; so -in many situations the package will be used for fixed point (rounding or -truncating each intermediate result) or floating point computations. The -``floating point'' macros work with a given arbitrary precision (default -is @16@ digits; from the remark made above, beyond @100@ digits things -will start becoming too slow if hundreds of computations are needed). The only +numbers and fractions. +% As will be commented upon more later, this works +% fine when the data has dozens of digits, but multiplying out two @1000@ +% digits numbers under this constraint of expandability is expensive; so +% in many situations the package will be used for fixed point (rounding or +% truncating each intermediate result) or floating point computations. The +% ``floating point'' macros work with a given arbitrary precision (default +% is @16@ digits; from the remark made above, beyond @100@ digits things +% will start becoming too slow if hundreds of computations are needed). +The only non-algebraic operation which is currently implemented is the extraction of square roots. @@ -678,12 +720,12 @@ The package macros expand their arguments\footnote{see in \autoref{sec:expansions} the related explanations.}; as they are themselves completely expandable, this means that one may nest them arbitrarily deep to construct complicated (and still completely expandable) formulas. - But one will presumably prefer to use the (expandable!) \csbxint{expr}| ... \relax| parser as it allows infix notations, function names (corresponding to some of the package macros), comparison operators, boolean operators, 2way and 3way conditionals. +\footnotesize When producing very long numbers there is the question of printing them on the page, without going beyond the page limits. In this document, I have most of the time made use of these macros (not provided by the package:) @@ -693,8 +735,7 @@ When producing very long numbers there is the question of printing them on \def\allowsplits #1% {\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax\expandafter\allowsplits\fi}% \def\printnumber #1{\expandafter\expandafter\expandafter\allowsplits #1\relax }% -%% expands twice before printing (all macros from the xint bundle expand in two steps -%% to their final output).|\par\endgroup +%% (all macros from the xint bundle expand in two steps to their final output).|\par\endgroup An alternative (\autoref{fn:np}) is to suitably configure the thousand separator with the \href{http://ctan.org/pkg/numprint}{numprint} package (does not work in math mode; I also tried \href{http://ctan.org/pkg/siunitx}{siunitx} but even in @@ -705,23 +746,35 @@ package\footnote{\url{http://ctan.org/pkg/seqsplit}} which can be used to achieve this splitting accross lines, and does work in inline math mode. -The package \xintname also provides utilities (\autoref{sec:utilsxint}), some -completely expandable, others not, of independent interest. Their use is +\normalsize +The utilities provided by \xinttoolsname (\autoref{sec:tools}), some +completely expandable, others not, are of independent interest. Their use is illustrated through various examples: among those, it is shown in \autoref{ssec:quicksort} how to implement in a completely expandable way the quick sort algorithm and also how to illustrate it graphically. Other examples -include some dynamically constructed alignments with cells giving the prime -numbers (\autoref{ssec:primesI}, \autoref{ssec:primesII}). +include some dynamically constructed alignments with automatically computed +prime number cells (\autoref{ssec:primesI}, \autoref{ssec:primesII}). -Some other traditional computational examples are \hyperref[ssec:Machin]{the - computations of $\pi$ and $\log 2$} and the computation of the -\hyperlink{e-convergents}{convergents of $e$} with the help of the +Some other computational examples are \hyperref[ssec:Machin]{the + computations of $\pi$ and $\log 2$} using \xintname and the computation of the +\hyperlink{e-convergents}{convergents of $e$} with the further help of the \xintcfracname package. \section{Recent changes} \footnotesize + +\noindent Release |1.09g| (|[2013/11/22]|): +\begin{itemize} +\item package \xinttoolsname is detached from \xintname, to make tools such as + \csbxint{For}, \csbxint{ApplyUnbraced}, and \csbxint{iloop} available without + the \xintname overhead. +\item new expandable nestable loops \csbxint{loop} and \csbxint{iloop}. +\item bugfix: \csbxint{For} and \csbxint{For*} do not modify anymore the value + of |\count 255|. +\end{itemize} + \noindent Release |1.09f| (|[2013/11/04]|): \begin{itemize} \item new \csbxint{ZapFirstSpaces}, \csbxint{ZapLastSpaces}, @@ -748,6 +801,8 @@ Some other traditional computational examples are \hyperref[ssec:Machin]{the % changing outputs) to some inner macros. \end{itemize} +\clearpage + \noindent Release |1.09e| (|[2013/10/29]|): \begin{itemize} \item new \csbxint{integers}, \csbxint{dimensions}, \csbxint{rationals} for @@ -880,7 +935,7 @@ version \fexpan ds the un-braced list items. After \item Extraction of square roots, for floating point numbers (\csbxint{FloatSqrt}), and also in a version adapted to integers (\csbxint{iSqrt}). -\item New package \xintbinhexname providing \hyperref[sec:combinhex]{conversion +\item New package \xintbinhexname providing \hyperref[sec:binhex]{conversion routines} to and from binary and hexadecimal bases. \end{itemize} @@ -910,7 +965,7 @@ will replace pointwise |D|; this argument may exceed the |32767| bound. \item To write the |\xintexpr| parser I benefited from the commented source of the \LaTeX3 parser; the |\xintexpr| parser has its own features and peculiarities. -See \hyperref[sec:comexpr]{its documentation}. +See \hyperref[sec:expr]{its documentation}. \end{itemize} % The |\xintexpr..\relax| and |\xintfloatexpr..\relax| are usable as @@ -1084,7 +1139,7 @@ with @8@ digits after the decimal mark, and printed. with the inherent difficulty of keeping up with braces and everything... \item if such a formula is used thousands of times in a document (for plots?), this could impact some parts of the \TeX{} program memory (for technical - reasons explained in \autoref{sec:comexpr}). So, a utility \csbxint{NewExpr} + reasons explained in \autoref{sec:expr}). So, a utility \csbxint{NewExpr} is provided to do the work of translating an |\xintexpr|-ession with parameters into a chain of macro evaluations.\footnote{As its makes some macro definitions, it is not an expandable command. It does not need protection @@ -1999,7 +2054,7 @@ where spaces could break havoc. So the best is to avoid them entirely. This is entirely otherwise inside an |\xintexpr|-ession, where spaces are expected to, as a general rule (with possible exceptions related to the allowed use of braces, see the -\hyperref[sec:comexpr]{documentation}) be completely +\hyperref[sec:expr]{documentation}) be completely harmless, and even recommended for making the source more legible. Syntax such as |\xintMul\A\B| is accepted and equivalent\footnote{see however @@ -2329,13 +2384,16 @@ for typesetting: this is just an example of one way to do it. \section{Utilities for expandable manipulations} -The package now has more utilities to deal -expandably with `lists of things', which were treated un-expandably in the -previous section with \csa{xintAssign} and \csa{xintAssignArray}: -\csbxint{ReverseOrder} and \csbxint{Length} since the first -release, \csbxint{Apply} and \csbxint{ListWithSep} since |1.04|, -\csbxint{RevWithBraces}, \csbxint{CSVtoList}, \csbxint{NthElt} since |1.06|, and -\csbxint{ApplyUnbraced}, since |1.06b|. +The package now has more utilities to deal expandably with `lists of things', +which were treated un-expandably in the previous section with \csa{xintAssign} +and \csa{xintAssignArray}: \csbxint{ReverseOrder} and \csbxint{Length} since the +first release, \csbxint{Apply} and \csbxint{ListWithSep} since |1.04|, +\csbxint{RevWithBraces}, \csbxint{CSVtoList}, \csbxint{NthElt} since |1.06|, +\csbxint{ApplyUnbraced}, since |1.06b|, \csbxint{loop} and \csbxint{iloop} since +|1.09g|.\footnote{All these utilities, as well as \csbxint{Assign}, + \csbxint{AssignArray} and the \csbxint{For} loops are now available from the + \xinttoolsname package, independently of the big integers facilities of + \xintname.} \edef\z{\xintiPow {2}{100}} @@ -2370,10 +2428,16 @@ Expandably computing primes is done in \autoref{xintSeq}. \section{A new kind of for loop} -As part of the \hyperref[sec:utilsxint]{utilities} coming with the \xintname +As part of the \hyperref[sec:tools]{utilities} coming with the \xinttoolsname package, there is a new kind of for loop, \csbxint{For}. Check it out (\autoref{xintFor}). +\section{A new kind of expandable loop} + +Also included in \xinttoolsname, \csbxint{iloop} is an expandable loop giving +access to an iteration index, without using count registers. Check it out +(\autoref{xintiloop}). + \section{Exceptions (error messages)} In situations such as division by zero, the package will insert in the @@ -2525,6 +2589,7 @@ Lastly, the macros \csa{xintRelaxArray} (of \xintname) and compatible. \csa{xintTypesetBezoutAlgorithm} also uses the \csa{endgraf} macro. +\enlargethispage{\baselineskip} \section{Installation} @@ -2557,753 +2622,20 @@ It may be necessary to then refresh the TeX installation filename database. + -\etocdepthtag.toc {commandsA} - -\section{Commands of the \xintname package}\label{sec:comxint} - -\def\n{\string{N\string}} -\def\m{\string{M\string}} -\def\x{\string{x\string}} - -In the description of the macros \texttt{\n} (or also \texttt{\m}) stands -(except if mentioned otherwise) for a (long) number within braces or for a -control sequence possibly within braces and \hyperref[sec:expansions]{\fexpan - ding} to such a number -(without the braces!), or for material within braces which \fexpan ds to such -a number, as is acceptable on input by the \csbxint{Num} macro: a sequence of -plus and minus signs, followed by some string of zeros, followed by digits. - -The letter \texttt{x} stands for something which will be inserted in-between a -|\numexpr| and a |\relax|. It will thus be completely expanded and must give an -integer obeying the \TeX{} bounds. Thus, it may be for example a count register, -or itself a \csa{numexpr} expression, or just a number written explicitely with -digits or something like |4*\count 255 + 17|, etc... - -For the rules regarding direct use of count registers or \csa{numexpr} -expression, in the argument to the package macros, see the -\hyperlink{useofcount}{use of count section} in \autoref{sec:inputs}. - -Some of these macros are extended by \xintfracname to accept fractions on input, -and, generally, to output a fraction. But this means that additions, -subtractions, multiplications output fractions and not integers; to guarantee -the integer format on output when the inputs are integers, the original -integer-only macros \csa{xintAdd}, \csa{xintSub}, \csa{xintMul} remain available -under the names \csa{xintiAdd}, \csa{xintiSub}, \csa{xintiMul}. Even the -original integer-only macros may now accept fractions on input as long as they -are integers in disguise; they still produce on output integers without any -forward slash mark nor trailing |[n]|. On the other hand macros such as -|\xintAdd| will output fractions |A/B[n]|, with |B| present even if its value is -one. To remove this unit denominator and convert the |[n]| part into explicit -zeros, one has \csbxint{Num} (if one is certain to deal with an integer; see -also \csbxint{PRaw}). This is mandatory when the computation result is fetched -into a context where \TeX{} expects a number (assuming it does not exceed -@2^31@). See the also the \xintfracname \hyperref[sec:comfrac]{documentation} -for more information on how macros of \xintname are modified after loading -\xintfracname (or \xintexprname). - - -Package \xintname also provides some general macro programming or token -manipulation utilities (expandable as well as non-expandable), which are -described in the next section (\autoref{sec:utilsxint}). - -\localtableofcontents - -\subsection{\csbh{xintRev}} \label{xintRev} - -\csa{xintRev\n} will revert the order of the digits of the number, -keeping the optional sign. Leading zeros -resulting from the operation are not removed (see the -\csa{xintNum} macro for this). This macro and all other -macros dealing with numbers first expand `fully' their arguments. -\centeredline{|\xintRev{-123000}|\digitstt{=\xintRev{-123000}}} -\centeredline{|\xintNum{\xintRev{-123000}}|% - \digitstt{=\xintNum{\xintRev{-123000}}}} - - -\subsection{\csbh{xintLen}}\label{xintiLen} - -\csa{xintLen\n} returns the length of the number, not counting the sign. -\centeredline{|\xintLen{-12345678901234567890123456789}|\digitstt - {=\xintLen{-12345678901234567890123456789}}} Extended by \xintfracname to -fractions: the length of |A/B[n]| is the length of |A| plus the length of |B| -plus the absolute value of |n| and minus one (an integer input as |N| is -internally represented in a form equivalent to |N/1[0]| so the minus one means -that the extended \csa{xintLen} -behaves the same as the original for integers). -\centeredline{|\xintLen{-1e3/5.425}|\digitstt - {=\xintLen{-1e3/5.425}}} -The length is computed on the |A/B[n]| which would have been returned by -\csbxint{Raw}: |\xintRaw {-1e3/5.425}|\digitstt{=\xintRaw {-1e3/5.425}}. - -Let's point out that the whole thing should sum up to -less than circa @2^{31}@, but this is a bit theoretical. - -|\xintLen| is only for numbers or fractions. See \csbxint{Length} for counting -tokens (or rather braced groups), more generally. - -\subsection{\csbh{xintDigitsOf}}\label{xintDigitsOf} - -This is a synonym for \csbxint{AssignArray}, to be used to define -an array giving all the digits of a given (positive, else the minus sign will -be treated as first item) number. -\begingroup\xintDigitsOf\xintiPow {7}{500}\to\digits -\centeredline{|\xintDigitsOf\xintiPow {7}{500}\to\digits|} -\noindent @7^500@ has |\digits{0}=|\digits{0} digits, and the 123rd among them -(starting from the most significant) is -|\digits{123}=|\digits{123}. -\endgroup - -\subsection{\csbh{xintNum}}\label{xintiNum} - -\csa{xintNum\n} removes chains of plus or minus signs, followed by zeros. -\centeredline{|\xintNum{+---++----+--000000000367941789479}|\digitstt - {=\xintNum{+---++----+--000000000367941789479}}} Extended by \xintfracname to -accept also a fraction on input, as long as it reduces to an integer after -division of the numerator by the denominator. -\centeredline{|\xintNum{123.48/-0.03}|\digitstt{=\xintNum{123.48/-0.03}}} - - -\subsection{\csbh{xintSgn}}\label{xintiSgn} - -\csa{xintSgn\n} returns 1 if the number is positive, 0 if it is -zero and -1 if it is negative. Extended by \xintfracname to fractions. - -\subsection{\csbh{xintOpp}}\label{xintiOpp} - -\csa{xintOpp\n} returns the opposite |-N| of the number |N|. -Extended by \xintfracname to fractions. - - -\subsection{\csbh{xintAbs}}\label{xintiAbs} - -\csa{xintAbs\n} returns the absolute value of the number. Extended -by \xintfracname to fractions. - -\subsection{\csbh{xintAdd}}\label{xintiAdd} - -\csa{xintAdd\n\m} returns the sum of the two numbers. Extended by -\xintfracname to fractions. - -\subsection{\csbh{xintSub}}\label{xintiSub} - -\csa{xintSub\n\m} returns the difference |N-M|. Extended by -\xintfracname to fractions. - -\subsection{\csbh{xintCmp}}\label{xintiCmp} - -\csa{xintCmp\n\m} returns 1 if |N>M|, 0 if |N=M|, and -1 if |N<M|. -Extended by \xintfracname to fractions. - -\subsection{\csbh{xintEq}}\label{xintEq} -{\small New with release |1.09a|.\par} - -\csa{xintEq\n\m} returns 1 if |N=M|, 0 otherwise. -Extended by \xintfracname to fractions. - -\subsection{\csbh{xintGt}}\label{xintGt} -{\small New with release |1.09a|.\par} - -% attention dans la doc du 9 octobre j'avais écrit \geq au lieu de > - -\csa{xintGt\n\m} returns 1 if |N|$>$|M|, 0 otherwise. -Extended by \xintfracname to fractions. - -\subsection{\csbh{xintLt}}\label{xintLt} -{\small New with release |1.09a|.\par} - -% attention dans la doc du 9 octobre j'avais écrit \leq au lieu de < - -\csa{xintLt\n\m} returns 1 if |N|$<$|M|, 0 otherwise. -Extended by \xintfracname to fractions. - -\subsection{\csbh{xintIsZero}}\label{xintIsZero} -{\small New with release |1.09a|.\par} - -\csa{xintIsZero\n} returns 1 if |N=0|, 0 otherwise. -Extended by \xintfracname to fractions. - -\subsection{\csbh{xintNot}}\label{xintNot} -{\small New with release |1.09c|.\par} - -\csa{xintNot} is a synonym for \csa{xintIsZero}. - -\subsection{\csbh{xintIsNotZero}}\label{xintIsNotZero} -{\small New with release |1.09a|.\par} - -\csa{xintIsNotZero\n} returns 1 if |N<>0|, 0 otherwise. -Extended by \xintfracname to fractions. - -\subsection{\csbh{xintIsOne}}\label{xintIsOne} -{\small New with release |1.09a|.\par} - -\csa{xintIsOne\n} returns 1 if |N=1|, 0 otherwise. -Extended by \xintfracname to fractions. - -\subsection{\csbh{xintAND}}\label{xintAND} -{\small New with release |1.09a|.\par} - -\csa{xintAND\n\m} returns 1 if |N<>0| and |M<>0| and zero otherwise. - Extended by \xintfracname to fractions. +%\clearpage -\subsection{\csbh{xintOR}}\label{xintOR} -{\small New with release |1.09a|.\par} - -\csa{xintOR\n\m} returns 1 if |N<>0| or |M<>0| and zero otherwise. - Extended by \xintfracname to fractions. - - -\subsection{\csbh{xintXOR}}\label{xintXOR} -{\small New with release |1.09a|.\par} - -\csa{xintXOR\n\m} returns 1 if exactly one of |N| or |M| is true (i.e. -non-zero). - Extended by \xintfracname to fractions. - -\subsection{\csbh{xintANDof}}\label{xintANDof} -{\small New with release |1.09a|.\par} - -\csa{xintANDof}|{{a}{b}{c}...}| returns 1 if all are true (i.e. non -zero) and zero otherwise. The list argument -may be a macro, it (or rather its first token) is \fexpan ded first (each -item also is \fexpan ded). Extended by \xintfracname to fractions. - - -\subsection{\csbh{xintORof}}\label{xintORof} -{\small New with release |1.09a|.\par} - -\csa{xintORof}|{{a}{b}{c}...}| returns 1 if at least one is true -(i.e. does not vanish). The list argument -may be a macro, it is \fexpan ded first. Extended by \xintfracname to fractions. - - -\subsection{\csbh{xintXORof}}\label{xintXORof} -{\small New with release |1.09a|.\par} - -\csa{xintXORof}|{{a}{b}{c}...}| returns 1 if an odd number of them are -true (i.e. does not vanish). The list argument may be a macro, it is -\fexpan ded first. Extended by \xintfracname to fractions. - - -\subsection{\csbh{xintGeq}}\label{xintiGeq} - -\csa{xintGeq\n\m} returns 1 if the \emph{absolute value} of the first number is -at least equal to the absolute value of the second number. If \verb+|N|<|M|+ it -returns 0. Extended by \xintfracname to fractions (starting with release -|1.07|). Please note that the macro compares \emph{absolute values}. - -\subsection{\csbh{xintMax}}\label{xintiMax} - -\csa{xintMax\n\m} returns the largest of the two in the sense of the order -structure on the relative integers (\emph{i.e.} the right-most number if they -are put on a line with positive numbers on the right): |\xintiMax -{-5}{-6}|\digitstt{=\xintiMax{-5}{-6}}. Extended by \xintfracname to fractions. - -\subsection{\csbh{xintMaxof}}\label{xintMaxof} -{\small New with release |1.09a|.\par} - -\csa{xintMaxof}|{{a}{b}{c}...}| returns the maximum. The list argument -may be a macro, it is \fexpan ded first. Extended by \xintfracname to -fractions. - - -\subsection{\csbh{xintMin}}\label{xintiMin} - -\csa{xintMin\n\m} returns the smallest of the two in the sense of the order -structure on the relative integers (\emph{i.e.} the left-most number if they are -put on a line with positive numbers on the right): |\xintiMin -{-5}{-6}|\digitstt{=\xintiMin{-5}{-6}}. Extended by \xintfracname to fractions. - -\subsection{\csbh{xintMinof}}\label{xintMinof} -{\small New with release |1.09a|.\par} - -\csa{xintMinof}|{{a}{b}{c}...}| returns the minimum. The list argument -may be a macro, it is \fexpan ded first. Extended by \xintfracname to -fractions. - -\subsection{\csbh{xintSum}}\label{xintiSum} - -\csa{xintSum}\marg{braced things} after expanding its argument -expects to find a sequence of tokens (or braced material). -Each is expanded (with the usual meaning), and the sum of all these numbers is -returned. -\centeredline{% - \csa{xintiSum}|{{123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}}|% - \digitstt{=\xintiSum{{123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}}}} -\centeredline{\csa{xintiSum}|{1234567890}|\digitstt{=\xintiSum{1234567890}}} -An empty sum is no error and returns zero: |\xintiSum -{}|\digitstt{=\xintiSum {}}. A sum with only one -term returns that number: |\xintiSum {{-1234}}|\digitstt{=\xintiSum - {{-1234}}}. Attention that |\xintiSum {-1234}| is not legal input -and will make the \TeX{} run fail. On the other hand |\xintiSum -{1234}|\digitstt{=\xintiSum{1234}}. Extended by \xintfracname -to fractions. - -% retiré de la doc le 22 octobre 2013 - -% \subsection{\csbh{xintSumExpr}}\label{xintiSumExpr} - -% \csa{xintSumExpr}\meta{braced things}\csa{relax} is to what \csa{xintSum} -% expands. The argument is then expanded (with the usual meaning) and should give -% a list of braced quantities or macros, each one will be expanded in turn. -% \centeredline{% -% \csa{xintiSumExpr}| {123}{-98763450}|% -% |{\xintFac{7}}{\xintiMul{3347}{591}}\relax|\digitstt{=% -% \xintiSumExpr {123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}\relax}} - -% Note: I am not so happy with the name which seems to suggest that the -% |+| sign should be used instead of braces. Perhaps this will change -% in the future. - -% Extended by \xintfracname to fractions. - -\subsection{\csbh{xintMul}}\label{xintiMul} -{\small Modified in release |1.03|.\par} - -\csa{xintMul\n\m} returns the product of the two numbers. Starting -with release |1.03| of \xintname, the macro checks the lengths of -the two numbers and then activates its algorithm with the best (or -at least, hoped-so) choice of which one to put first. This makes -the macro a bit slower for numbers up to 50 digits, but may give -substantial speed gain when one of the number has 100 digits or more. -Extended by \xintfracname to fractions. - -\subsection{\csbh{xintSqr}}\label{xintiSqr} - -\csa{xintSqr\n} returns the square. Extended by \xintfracname to fractions. - -\subsection{\csbh{xintPrd}}\label{xintiPrd} - -\csa{xintPrd}\marg{braced things} after expanding its argument expects to find a -sequence of tokens (or braced material). Each is expanded (with the usual -meaning), and the product of all these numbers is returned. -\centeredline{% - \csa{xintiPrd}|{{-9876}{\xintFac{7}}{\xintiMul{3347}{591}}}|% - \digitstt{=% - \xintiPrd{{-9876}{\xintFac{7}}{\xintiMul{3347}{591}}}}} -\centeredline{\csa{xintiPrd}|{123456789123456789}|\digitstt{=% - \xintiPrd{123456789123456789}}} An empty product is no error and returns 1: -|\xintiPrd {}|\digitstt{=\xintiPrd {}}. A product reduced to a single term returns -this number: |\xintiPrd {{-1234}}|\digitstt{=\xintiPrd {{-1234}}}. Attention that -|\xintiPrd {-1234}| is not legal input and will make the \TeX{} compilation -fail. On the other hand |\xintiPrd {1234}|\digitstt{=\xintiPrd {1234}}. -\centeredline{$\displaystyle 2^{200}3^{100}7^{100}$} \centeredline{|=\xintiPrd - {{\xintiPow {2}{200}}{\xintiPow {3}{100}}{\xintiPow {7}{100}}}|} -\digitstt{=\printnumber{\xintNum {\xinttheexpr 2^200*3^100*7^100\relax }}} - -Extended by \xintfracname to fractions. - -With \xintexprname, the above would be coded simply as \centeredline -{|\xintthenumexpr 2^200*3^100*7^100\relax |} - -% I temporarily remove mention of \xintPrdExpr from the documentation; I -% really dislike the name now. - -% \subsection{\csbh{xintPrdExpr}}\label{xintiPrdExpr} - -% {\small Name change in |1.06a|! I apologize, but I suddenly decided that -% \csa{xintProductExpr} was a bad choice; so I just replaced it by the current -% name. \par} - -% \csa{xintPrdExpr}\marg{argument}\csa{relax} is to what \csa{xintPrd} expands -% ; its argument is expanded (with the usual meaning) and should give a list of -% braced numbers or macros. Each will be expanded when it is its turn. -% \centeredline{\csa{xintiPrdExpr}| 123456789123456789\relax|\digitstt{=% -% \xintiPrdExpr 123456789123456789\relax}} - -% Note: I am not so happy with the name which seems to suggest that the -% |*| sign should be used instead of braces. Perhaps this will change -% in the future. - -% Extended by \xintfracname to fractions. - -\subsection{\csbh{xintPow}}\label{xintiPow} - -\csa{xintPow\n\x} returns |N^x|. When |x| is zero, this is 1. If |N| is zero and -|x<0|, if \verb+|N|>1+ and |x<0| negative, or if \verb+|N|>1+ and |x>999999999|, -then an error is raised. |2^999999999| has \np{301029996} digits; each exact -multiplication of two one thousand digits numbers already takes a few seconds, -so needless to say this bound is completely irrealistic. Already |2^9999| has -\np{3010} digits,\footnote{on my laptop |\string\xintiPow \{2\}\{9999\}| - obtains all |3010| digits in about ten or eleven seconds. In contrast, the - float versions for - |8|, |16|, |24|, or even more significant figures, do their jobs in circa one - hundredth of a second (|1.08b|). This is done without |log|/|exp| which are - not (yet?) implemented in \xintfracname. The \LaTeX3 - \href{http://www.ctan.org/tex-archive/macros/latex/contrib/l3kernel}{l3fp} - does this with |log|/|exp| and is ten times faster (|16| figures only).} so I -should perhaps lower the bound to |99999|. - -Extended by \xintfracname to fractions (\csbxint{Pow}) and also to floats -(\csbxint{FloatPow}). Negative -exponents do not then cause errors anymore. The float version is able to deal -with things such as -|2^999999999| without any problem. For example -|\xintFloatPow[4]{2}{9999}|\digitstt{=\xintFloatPow[4]{2}{9999}} and -|\xintFloatPow[4]{2}{999999999}| -\digitstt{=\xintFloatPow[4]{2}{999999999}}. - -\subsection{\csbh{xintSgnFork}}\label{xintSgnFork} -{\small New with release |1.07|. See also \csbxint{ifSgn}.\par} - -\csa{xintSgnFork}\verb+{-1|0|1}+\marg{A}\marg{B}\marg{C} expandably -chooses to execute either the \meta{A}, \meta{B} or \meta{C} code, -depending on its first argument. This first argument should be anything -expanding to either |-1|, |0| or |1| (a count register should be -prefixed by |\the| and a |\numexpr...\relax| also should be prefixed by -|\the|). This utility is provided to help construct expandable macros -choosing depending on a condition which one of the package macros to -use, or which values to confer to their arguments. - -\subsection{\csbh{xintifSgn}}\label{xintifSgn} -{\small New with release |1.09a|.\par} - -Similar to \csa{xintSgnFork} except that the first argument may expand to a -(big) integer (or a fraction if \xintfracname is loaded), and it is its sign -which decides which of the three branches is taken. Furthermore this first -argument may be a count register, with no |\the| or |\number| prefix. - -\subsection{\csbh{xintifZero}}\label{xintifZero} -{\small New with release |1.09a|.\par} - -\csa{xintifZero}\marg{N}\marg{IsZero}\marg{IsNotZero} expandably checks -if the first mandatory argument |N| (a number, possibly a fraction if -\xintfracname is loaded, or a macro expanding to one such) is zero or -not. It then either executes the first or the second branch. - -\subsection{\csbh{xintifNotZero}}\label{xintifNotZero} -{\small New with release |1.09a|.\par} - -\csa{xintifNotZero}\marg{N}\marg{IsNotZero}\marg{IsZero} expandably checks -if the first mandatory argument |N| (a number, possibly a fraction if -\xintfracname is loaded, or a macro expanding to one such) is not zero or -is zero. It then either executes the first or the second branch. - -\subsection{\csbh{xintifTrueFalse}}\label{xintifTrueFalse} -{\small New with release |1.09c|, renamed in |1.09e|.\par} - -\csa{xintifTrueFalse}\marg{N}\marg{true branch}\marg{false branch} is a synonym -for \csbxint{ifNotZero}. It is also available as \csa{xintifTrue} but this later -name is a bit misleading as the macro must always have a |false| branch, -possibly an empty brace pair |{}|. - -\subsection{\csbh{xintifCmp}}\label{xintifCmp} -{\small New with release |1.09e|.\par} - -\csa{xintifCmp}\marg{A}\marg{B}\marg{if A<B}\marg{if A=B}\marg{if A>B} compares -its arguments and chooses accordingly the correct branch. - -\subsection{\csbh{xintifEq}}\label{xintifEq} -{\small New with release |1.09a|.\par} - -\csa{xintifEq}\marg{A}\marg{B}\marg{YES}\marg{NO} checks equality of its -two first arguments (numbers, or fractions if \xintfracname is loaded) and does the |YES| or the |NO| branch. - -\subsection{\csbh{xintifGt}}\label{xintifGt} -{\small New with release |1.09a|.\par} - -% attention dans la doc du 9 octobre j'avais écrit \geq au lieu de < -\csa{xintifGt}\marg{A}\marg{B}\marg{YES}\marg{NO} checks if $A>B$ and in that -case executes the |YES| branch. Extended to fractions (in particular decimal -numbers) by \xintfracname. - -\subsection{\csbh{xintifLt}}\label{xintifLt} -{\small New with release |1.09a|.\par} - -% attention dans la doc du 9 octobre j'avais écrit \leq au lieu de < -\csa{xintifLt}\marg{A}\marg{B}\marg{YES}\marg{NO} checks if $A<B$ and in that -case executes the |YES| branch. Extended to fractions (in particular decimal -numbers) by \xintfracname. - -\begin{framed} - The macros described next are all integer-only on input. With \xintfracname - loaded their argument is first given to \csbxint{Num} and may thus be - a fraction, as long as it is in fact an integer in disguise. -\end{framed} - -\subsection{\csbh{xintifOdd}}\label{xintifOdd} -{\small New with release |1.09e|.\par} - -\csa{xintifOdd}\marg{A}\marg{YES}\marg{NO} checks if $A$ is and odd integer -and in that case executes the |YES| branch. - - -\subsection{\csbh{xintFac}}\label{xintiFac} - -\csa{xintFac\x} returns the factorial. It is an error if the -argument is negative or at least @10^6@. It is not recommended to -launch the computation of things such as @100000!@, if you need -your computer for other tasks. Note that the argument is of the |x| type, it -must obey the \TeX{} bounds, but on the other hand may involve count registers -and even arithmetic operations as it will be completely expanded inside a -|\numexpr|. - -With \xintfracname loaded, the macro also -accepts a fraction as argument, as long as this fraction turns out to be an -integer: |\xintFac {66/3}|\digitstt{=\xintFac {66/3}}. - -% the construct |\xintFac{\xintAdd {2}{3}}| will fail, -% use either |\xintFac{\xintiAdd {2}{3}}| or |\xintFac{\xintNum{\xintAdd -% {2}{3}}}|. - -% temps obsolètes, mettre à jour -% On my laptop @1000!@ (2568 digits) -% is computed in a little less than ten seconds, @2000!@ (5736 -% digits) is computed in a little less than one hundred seconds, and -% @3000!@ (which has 9131 digits) needs close to seven minutes\dots -% I have no idea how much time @10000!@ would need (do rather -% @9999!@ if you can, the algorithm has some overhead at the -% transition from @N=9999@ to @10000@ and higher; @10000!@ has 35660 -% digits). Not to mention @100000!@ which, from the Stirling formula, -% should have 456574 digits. - -\subsection{\csbh{xintDivision}}\label{xintDivision} - -\csa{xintDivision\n\m} returns |{quotient Q}{remainder R}|. This -is euclidean division: |N = QM + R|, |0|${}\leq{}$\verb+R < |M|+. So the -remainder is always non-negative and the formula |N = QM + R| -always holds independently of the signs of |N| or |M|. Division by -zero is an error (even if |N| vanishes) and returns |{0}{0}|. - -This macro is integer only (with \xintfracname loaded it accepts -fractions on input, but they must be integers in disguise) and not to be -confused with the \xintfracname macro \csbxint{Div} which divides one -fraction by another. - -\subsection{\csbh{xintQuo}}\label{xintQuo} - -\csa{xintQuo\n\m} returns the quotient from the euclidean division. When -both |N| and |M| are positive one has \csa{xintQuo\n\m}|=\xintiTrunc -{0}{N/M}| (using package \xintfracname). With \xintfracname loaded it -accepts fractions on input, but they must be integers in disguise. - -\subsection{\csbh{xintRem}}\label{xintRem} - -\csa{xintRem\n\m} returns the remainder from the euclidean division. -With \xintfracname loaded it accepts fractions on input, but they must -be integers in disguise. - - - -\subsection{\csbh{xintFDg}}\label{xintFDg} - -\csa{xintFDg\n} returns the first digit (most significant) of the -decimal expansion. - -\subsection{\csbh{xintLDg}}\label{xintLDg} - -\csa{xintLDg\n} returns the least significant digit. When the -number is positive, this is the same as the remainder in the -euclidean division by ten. - -\subsection{\csbh{xintMON}, \csbh{xintMMON}}\label{xintMON}\label{xintMMON} -{\small New in version |1.03|.\par} - -\csa{xintMON\n} returns |(-1)^N| and \csa{xintMMON\n} returns -|(-1)^{N-1}|. \centeredline{|\xintMON {-280914019374101929}|\digitstt{=\xintMON - {280914019374101929}}, |\xintMMON -{-280914019374101929}|\digitstt{=\xintMMON {280914019374101929}}} - -\subsection{\csbh{xintOdd}}\label{xintOdd} - -\csa{xintOdd\n} is 1 if the number is odd and 0 otherwise. - - -\subsection{\csbh{xintiSqrt}, \csbh{xintiSquareRoot}}\label{xintiSqrt} -\label{xintiSquareRoot} -{\small New with |1.08|.\par} -\xintAssign\xintiSquareRoot {17000000000000000000000000}\to\A\B - -\noindent\csa{xintiSqrt\n} returns the largest integer whose square is -at most equal to |N|. -\centeredline{|\xintiSqrt {2000000000000000000000000000000000000}=|% -\digitstt{\xintiSqrt{2000000000000000000000000000000000000}}} -\centeredline{|\xintiSqrt {3000000000000000000000000000000000000}=|% -\digitstt{\xintiSqrt{3000000000000000000000000000000000000}}} -\centeredline{|\xintiSqrt {\xintDSH {-120}{2}}=|}% -\centeredline{\digitstt{\xintiSqrt {\xintDSH {-120}{2}}}} -\csa{xintiSquareRoot\n} returns |{M}{d}| with |d>0|, |M^2-d=N| and |M| -smallest (hence |=1+|\csa{xint\-iSqrt}|{N}|). -\centeredline{|\xintAssign\xintiSquareRoot - {17000000000000000000000000}\to\A\B|}% -\centeredline{|\xintiSub{\xintiSqr\A}\B=\A^2-\B|}% -\centeredline{\digitstt{\xintiSub{\xintiSqr\A}\B=\A\string^2-\B}} -A rational approximation to -$\sqrt{|N|}$ is $|M|-\frac{|d|}{|2M|}$ (this is a majorant and the error is at -most |1/2M|; if |N| is a perfect square |k^2| then |M=k+1| and this gives -|k+1/(2k+2)|, not |k|). - -Package \xintfracname has \csbxint{FloatSqrt} for square -roots of floating point numbers. - - -\begin{framed} - The macros described next are strictly for integer-only arguments. These - arguments are \emph{not} filtered via \csbxint{Num}. -\end{framed} - -\subsection{\csbh{xintInc}, \csbh{xintDec}} -\label{xintInc} -\label{xintDec} -{\small New with |1.08|.\par} - -\csa{xintInc\n} is |N+1| and \csa{xintDec\n} is |N-1|. These macros remain -integer-only, even with \xintfracname loaded. - -\subsection{\csbh{xintDouble}, \csbh{xintHalf}} -\label{xintDouble} -\label{xintHalf} -{\small New with |1.08|.\par} - -\csa{xintDouble\n} returns |2N| and \csa{xintHalf\n} is |N/2| rounded -towards zero. These macros remain integer-only, even with \xintfracname loaded. - -\subsection{\csbh{xintDSL}}\label{xintDSL} - -\csa{xintDSL\n} is decimal shift left, \emph{i.e.} multiplication -by ten. - -\subsection{\csbh{xintDSR}}\label{xintDSR} - -\csa{xintDSR\n} is decimal shift right, \emph{i.e.} it removes the last digit -(keeping the sign), equivalently it is the closest integer to |N/10| when -starting at zero. - -\subsection{\csbh{xintDSH}}\label{xintDSH} - -\csa{xintDSH\x\n} is parametrized decimal shift. When |x| is -negative, it is like iterating \csa{xintDSL} \verb+|x|+ times -(\emph{i.e.} multiplication by @10^{-@|x|@}@). When |x| positive, -it is like iterating \csa{DSR} |x| times (and is more efficient), and for a -non-negative |N| this is thus the same as the -quotient from the euclidean division by |10^x|. - -\subsection{\csbh{xintDSHr}, \csbh{xintDSx}}\label{xintDSHr}\label{xintDSx} -{\small New in release |1.01|.\par} - -\csa{xintDSHr\x\n} expects |x| to be zero or positive and it returns -then a value |R| which is correlated to the value |Q| returned by -\csa{xintDSH\x\n} in the following manner: -\begin{itemize} -\item if |N| is - positive or zero, |Q| and |R| are the quotient and remainder in - the euclidean division by |10^x| (obtained in a more efficient - manner than using \csa{xintDivision}), -\item if |N| is negative let - |Q1| and |R1| be the quotient and remainder in the euclidean - division by |10^x| of the absolute value of |N|. If |Q1| - does not vanish, then |Q=-Q1| and |R=R1|. If |Q1| vanishes, then - |Q=0| and |R=-R1|. -\item for |x=0|, |Q=N| and |R=0|. -\end{itemize} -So one has |N = 10^x Q + R| if |Q| turns out to be zero or -positive, and |N = 10^x Q - R| if |Q| turns out to be negative, -which is exactly the case when |N| is at most |-10^x|. - - -\csa{xintDSx\x\n} for |x| negative is exactly as -\csa{xintDSH\x\n}, \emph{i.e.} multiplication by @10^{-@|x|@}@. -For |x| zero or positive it returns the two numbers |{Q}{R}| -described above, each one within braces. So |Q| is -\csa{xintDSH\x\n}, and |R| is \csa{xintDSHr\x\n}, but computed -simultaneously. - -\begin{flushleft} - \xintAssign\xintDSx {-1}{-123456789}\to\M - \noindent{|\xintAssign\xintDSx {-1}{-123456789}\to\M|}\\ - |\meaning\M: |\digitstt{\meaning\M}.\\ - \xintAssign\xintDSx {-20}{1234567689}\to\M - {|\xintAssign\xintDSx {-20}{123456789}\to\M|}\\ - |\meaning\M: |\digitstt{\meaning\M}.\\ - \xintAssign\xintDSx{0}{-123004321}\to\Q\R - {|\xintAssign\xintDSx {0}{-123004321}\to\Q\R|}\\ - \noindent|\meaning\Q: |\digitstt{\meaning\Q}, |\meaning\R: - |\digitstt{\meaning\R.}\\ - |\xintDSH {0}{-123004321}|\digitstt{=\xintDSH {0}{-123004321}}, - |\xintDSHr {0}{-123004321}|\digitstt{=\xintDSHr {0}{-123004321}}\\ - \xintAssign\xintDSx {6}{-123004321}\to\Q\R - {|\xintAssign\xintDSx {6}{-123004321}\to\Q\R|}\\ - |\meaning\Q: |\digitstt{\meaning\Q}, - |\meaning\R: |\digitstt{\meaning\R.}\\ - |\xintDSH {6}{-123004321}|\digitstt{=\xintDSH {6}{-123004321}}, - |\xintDSHr {6}{-123004321}|\digitstt{=\xintDSHr {6}{-123004321}}\\ - \xintAssign\xintDSx {8}{-123004321}\to\Q\R - {|\xintAssign\xintDSx {8}{-123004321}\to\Q\R|}\\ - |\meaning\Q: |\digitstt{\meaning\Q}, - |\meaning\R: |\digitstt{\meaning\R.} \\ - |\xintDSH {8}{-123004321}|\digitstt{=\xintDSH {8}{-123004321}}, - |\xintDSHr {8}{-123004321}|\digitstt{=\xintDSHr {8}{-123004321}}\\ - \xintAssign\xintDSx {9}{-123004321}\to\Q\R - {|\xintAssign\xintDSx {9}{-123004321}\to\Q\R|}\\ - |\meaning\Q: |\digitstt{\meaning\Q}, - |\meaning\R: |\digitstt{\meaning\R.}\\ - |\xintDSH {9}{-123004321}|\digitstt{=\xintDSH {9}{-123004321}}, - |\xintDSHr {9}{-123004321}|\digitstt{=\xintDSHr {9}{-123004321}}\\ -\end{flushleft} - -\subsection{\csbh{xintDecSplit}}\label{xintDecSplit} - -{\small This has been modified in release |1.01|.\par} - -\csa{xintDecSplit\x\n} cuts the number into two pieces (each one within a -pair of enclosing braces). First the sign if present is \emph{removed}. -Then, for |x| positive or null, the second piece contains the |x| least -significant digits (\emph{empty} if |x=0|) and the first piece the remaining -digits (\emph{empty} when |x| equals or exceeds the length of |N|). -Leading zeros in the second piece are not removed. When |x| is negative -the first piece contains the \verb+|x|+ most significant digits and the -second piece the remaining digits (\emph{empty} if @|x|@ equals or exceeds -the length of |N|). Leading zeros in this second piece are not removed. -So the absolute value of the original number is always the concatenation -of the first and second piece. - -{\footnotesize This macro's behavior for |N| non-negative is final and will not - change. I am still hesitant about what to do with the sign of a - negative |N|.\par} - - -\xintAssign\xintDecSplit {0}{-123004321}\to\L\R -\centeredline{|\xintAssign\xintDecSplit {0}{-123004321}\to\L\R|} -\noindent|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} -\xintAssign\xintDecSplit {5}{-123004321}\to\L\R -\centeredline{|\xintAssign\xintDecSplit {5}{-123004321}\to\L\R|} -|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} -\xintAssign\xintDecSplit {9}{-123004321}\to\L\R -\centeredline{|\xintAssign\xintDecSplit {9}{-123004321}\to\L\R|} -|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} -\xintAssign\xintDecSplit {10}{-123004321}\to\L\R -\centeredline{|\xintAssign\xintDecSplit {10}{-123004321}\to\L\R|} -|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} -\xintAssign\xintDecSplit {-5}{-12300004321}\to\L\R -\centeredline{|\xintAssign\xintDecSplit {-5}{-12300004321}\to\L\R|} -|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} -\xintAssign\xintDecSplit {-11}{-12300004321}\to\L\R -\centeredline{|\xintAssign\xintDecSplit {-11}{-12300004321}\to\L\R|} -|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} -\xintAssign\xintDecSplit {-15}{-12300004321}\to\L\R -\centeredline{|\xintAssign\xintDecSplit {-15}{-12300004321}\to\L\R|} -|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} - -\subsection{\csbh{xintDecSplitL}}\label{xintDecSplitL} - -\csa{xintDecSplitL\x\n} returns the first piece after the action -of \csa{xintDecSplit}. - -\subsection{\csbh{xintDecSplitR}}\label{xintDecSplitR} - -\csa{xintDecSplitR\x\n} returns the second piece after the action -of \csa{xintDecSplit}. +\etocdepthtag.toc {commandsA} +\section{Commands of the \xinttoolsname package} +\label{sec:tools} -\section{Commands (utilities) of the \xintname package} -\label{sec:utilsxint} +These utilities used to be provided within the \xintname package; since |1.09g| +they have been moved to an independently usable package \xinttoolsname, which +has none of the \xintname facilities regarding big numbers. -The completely expandable utilities come first, up to and including -\csbxint{Seq} (which is listed here because it generates sequences of short -integers using |\numexpr|, thus does not make use of the big integers macros of -\xintname). +The first listed are the completely expandable utilities up to \csbxint{iloop}. -This section contains various concrete examples of use of these utilities (such -as \csbxint{ApplyUnbraced}, \csbxint{ApplyInline} and \csbxint{For*}), and ends with a +This section contains various concrete examples and ends with a \hyperref[ssec:quicksort]{completely expandable implementation of the Quick Sort algorithm} together with a graphical illustration of its action. @@ -3377,7 +2709,7 @@ anyway apart from stripping away all \emph{leading} spaces. This macro will be mostly of interest to programmers who will know what I will now be talking about. \emph{The essential points, naturally, are the complete - expandability and the fact that no brace removal or any other alteration is + expandability and the fact that no brace removal nor any other alteration is done to the input.} \TeX's input scanner already converts consecutive blanks into single space @@ -3845,7 +3177,7 @@ many ways, we use again |\xintApplyUnbraced| but with a macro which gobbles its argument and replaces it with a tabulation character. The \csbxint{For*} macro would be more elegant here. % -\dverb?@ +\dverb?@ \newcounter{primecount} \newcounter{cellcount} \newcommand{\NbOfColumns}{13} @@ -3916,6 +3248,493 @@ empty sequence when the row turns out to already have all its cells. \centeredline{There are \arabic{primecount} prime numbers up to 1000.} \end{figure*} +\subsection{\csbh{xintloop}, \csbh{xintbreakloop}, \csbh{xintbreakloopanddo}, \csbh{xintloopskiptonext}} +\label{xintloop} +\label{xintbreakloop} +\label{xintbreakloopanddo} +\label{xintloopskiptonext} +{\small New with release |1.09g|.\par} + +|\xintloop|\meta{stuff}|\iftest ... \repeat| is an expandable loop compatible +with nesting. If a sub-loop is to be used all the material from the start and up +to the complete subloop inclusive should be braced; these braces will be removed +and do not create a group. + +As this loop and \csbxint{iloop} will primarily be of interest to experienced +\TeX{} macro programmers, my description will assume that the user is +knowledgeable enough. The loop and its various constituents are declared short, +they can not handle |\par| tokens or empty lines. + +One can abort the loop with \csbxint{breakloop}; this should not be used in the +final test, and one should expand the |\fi| from the corresponding test before. +One has also \csbxint{breakloopanddo} whose first argument will be inserted in +the token stream after the loop; one may need a macro such as |\xint_afterfi| to +move the whole thing after the |\fi|, as a simple |\expandafter| will not be +enough. + +One will usually employ some count registers to manage the exit test from the +loop; this breaks expandability, see \csbxint{iloop} for an expandable integer +indexed loop. Use in alignments will be complicated by the fact that cells +create groups, and also from the fact that any encountered unexpandable material +will cause the \TeX{} input scanner to insert |\endtemplate| on each encountered +|&| or |\cr|; thus |\xintbreakloop| may not work as expected, but the situation +can be resolved via |\xint_firstofone{&}| or use of |\TAB| with |\def\TAB{&}|. +It is thus simpler for alignments to use rather than \csbxint{loop} either the +expandable \csbxint{ApplyUnbraced} or the non-expandable but alignment +compatible \csbxint{ApplyInline}, \csbxint{For} or \csbxint{For*}. + +As an example, let us suppose we have two macros |\A|\marg{i}\marg{j} and +|\B|\marg{i}\marg{j} behaving like (small) integer valued matrix entries, and we +want to define a macro |\C|\marg{i}\marg{j} giving the matrix product (|i| and +|j| may be count registers). We will assume that |\A[I]| expands to the number +of rows, |\A[J]| to the number of columns and want the produced |\C| to act in +the same manner. The code is very dispendious in use of |\count| registers, not +optimized in any way, not made very robust (the defined macro can not have the +same name as the first two matrices for example), we just wanted to quickly +illustrate use of the nesting capabilities of |\xintloop|.\footnote{for a more sophisticated implementation of matrix multiplication, inclusive of determinants, inverses, and display utilities, with entries big integers or decimal numbers or even fractions see \url{http://tex.stackexchange.com/a/143035/4686} from November 11, 2013.} +\begingroup +\makeatother +\begin{verbatim} +\newcount\rowmax \newcount\colmax \newcount\summax +\newcount\rowindex \newcount\colindex \newcount\sumindex +\newcount\tmpcount +\makeatletter +\def\MatrixMultiplication #1#2#3{% + \rowmax #1[I]\relax + \colmax #2[J]\relax + \summax #1[J]\relax + \rowindex 1 + \xintloop % loop over row index i + {\colindex 1 + \xintloop % loop over col index k + {\tmpcount 0 + \sumindex 1 + \xintloop % loop over intermediate index j + \advance\tmpcount \numexpr #1\rowindex\sumindex*#2\sumindex\colindex\relax + \ifnum\sumindex<\summax + \advance\sumindex 1 + \repeat }% + \expandafter\edef\csname\string#3{\the\rowindex.\the\colindex}\endcsname + {\the\tmpcount}% + \ifnum\colindex<\colmax + \advance\colindex 1 + \repeat }% + \ifnum\rowindex<\rowmax + \advance\rowindex 1 + \repeat + \expandafter\edef\csname\string#3{I}\endcsname{\the\rowmax}% + \expandafter\edef\csname\string#3{J}\endcsname{\the\colmax}% + \def #3##1{\ifx[##1\expandafter\Matrix@helper@size + \else\expandafter\Matrix@helper@entry\fi #3{##1}}% +}% +\def\Matrix@helper@size #1#2#3]{\csname\string#1{#3}\endcsname }% +\def\Matrix@helper@entry #1#2#3% + {\csname\string#1{\the\numexpr#2.\the\numexpr#3}\endcsname }% +\def\A #1{\ifx[#1\expandafter\A@size + \else\expandafter\A@entry\fi {#1}}% +\def\A@size #1#2]{\ifx I#23\else4\fi}% 3rows, 4columns +\def\A@entry #1#2{\the\numexpr #1+#2-1\relax}% not pre-computed... +\def\B #1{\ifx[#1\expandafter\B@size + \else\expandafter\B@entry\fi {#1}}% +\def\B@size #1#2]{\ifx I#24\else3\fi}% 4rows, 3columns +\def\B@entry #1#2{\the\numexpr #1-#2\relax}% not pre-computed... +\makeatother +\MatrixMultiplication\A\B\C \MatrixMultiplication\C\C\D % etc... +\[\begin{pmatrix} + \A11&\A12&\A13&\A14\\ + \A21&\A22&\A23&\A24\\ + \A31&\A32&\A33&\A34 + \end{pmatrix} +\times + \begin{pmatrix} + \B11&\B12&\B13\\ + \B21&\B22&\B23\\ + \B31&\B32&\B33\\ + \B41&\B42&\B43 + \end{pmatrix} += +\begin{pmatrix} + \C11&\C12&\C13\\ + \C21&\C22&\C23\\ + \C31&\C32&\C33 +\end{pmatrix}\] +\[\begin{pmatrix} + \C11&\C12&\C13\\ + \C21&\C22&\C23\\ + \C31&\C32&\C33 +\end{pmatrix}^2 = \begin{pmatrix} + \D11&\D12&\D13\\ + \D21&\D22&\D23\\ + \D31&\D32&\D33 +\end{pmatrix}\] +\end{verbatim} +\newcount\rowmax \newcount\colmax \newcount\summax +\newcount\rowindex \newcount\colindex \newcount\sumindex +\newcount\tmpcount +\makeatletter +\def\MatrixMultiplication #1#2#3{% + \rowmax #1[I]\relax + \colmax #2[J]\relax + \summax #1[J]\relax + \rowindex 1 + \xintloop % loop over row index i + {\colindex 1 + \xintloop % loop over col index k + {\tmpcount 0 + \sumindex 1 + \xintloop % loop over intermediate index j + \advance\tmpcount \numexpr #1\rowindex\sumindex*#2\sumindex\colindex\relax + \ifnum\sumindex<\summax + \advance\sumindex 1 + \repeat }% + \expandafter\edef\csname\string#3{\the\rowindex.\the\colindex}\endcsname + {\the\tmpcount}% + \ifnum\colindex<\colmax + \advance\colindex 1 + \repeat }% + \ifnum\rowindex<\rowmax + \advance\rowindex 1 + \repeat + \expandafter\edef\csname\string#3{I}\endcsname{\the\rowmax}% + \expandafter\edef\csname\string#3{J}\endcsname{\the\colmax}% + \def #3##1{\ifx[##1\expandafter\Matrix@helper@size + \else\expandafter\Matrix@helper@entry\fi #3{##1}}% +}% +\def\Matrix@helper@size #1#2#3]{\csname\string#1{#3}\endcsname }% +\def\Matrix@helper@entry #1#2#3% + {\csname\string#1{\the\numexpr#2.\the\numexpr#3}\endcsname }% +\def\A #1{\ifx[#1\expandafter\A@size + \else\expandafter\A@entry\fi {#1}}% +\def\A@size #1#2]{\ifx I#23\else4\fi}% 3rows, 4columns +\def\A@entry #1#2{\the\numexpr #1+#2-1\relax}% not pre-computed... +\def\B #1{\ifx[#1\expandafter\B@size + \else\expandafter\B@entry\fi {#1}}% +\def\B@size #1#2]{\ifx I#24\else3\fi}% 4rows, 3columns +\def\B@entry #1#2{\the\numexpr #1-#2\relax}% not pre-computed... +\makeatother +\MatrixMultiplication\A\B\C \MatrixMultiplication\C\C\D +\setlength{\unitlength}{1cm} +% le picture de LaTeX est tout de même assez génial! +\begin{picture}(0,0) +\put(6,10){\vtop{\hsize8cm +\[\begin{pmatrix} + \A11&\A12&\A13&\A14\\ + \A21&\A22&\A23&\A24\\ + \A31&\A32&\A33&\A34 + \end{pmatrix} +\times + \begin{pmatrix} + \B11&\B12&\B13\\ + \B21&\B22&\B23\\ + \B31&\B32&\B33\\ + \B41&\B42&\B43 + \end{pmatrix} += +\begin{pmatrix} + \C11&\C12&\C13\\ + \C21&\C22&\C23\\ + \C31&\C32&\C33 +\end{pmatrix}\] +\[\begin{pmatrix} + \C11&\C12&\C13\\ + \C21&\C22&\C23\\ + \C31&\C32&\C33 +\end{pmatrix}^2 = \begin{pmatrix} + \D11&\D12&\D13\\ + \D21&\D22&\D23\\ + \D31&\D32&\D33 +\end{pmatrix}\]\MatrixMultiplication\C\D\E +\[\begin{pmatrix} + \C11&\C12&\C13\\ + \C21&\C22&\C23\\ + \C31&\C32&\C33 +\end{pmatrix}^3 = \begin{pmatrix} + \E11&\E12&\E13\\ + \E21&\E22&\E23\\ + \E31&\E32&\E33 +\end{pmatrix}\]\MatrixMultiplication\C\E\F +\[\begin{pmatrix} + \C11&\C12&\C13\\ + \C21&\C22&\C23\\ + \C31&\C32&\C33 +\end{pmatrix}^4 = \begin{pmatrix} + \F11&\F12&\F13\\ + \F21&\F22&\F23\\ + \F31&\F32&\F33 +\end{pmatrix}\]}} +\end{picture} +\endgroup + +\vskip-\baselineskip + +\subsection{\csbh{xintiloop}, \csbh{xintiloopindex}, \csbh{xintouteriloopindex}, + \csbh{xintbreakiloop}, \csbh{xintbreakiloopanddo}, \csbh{xintiloopskiptonext}, +\csbh{xintiloopskipandredo}} +\label{xintiloop} +\label{xintbreakiloop} +\label{xintbreakiloopanddo} +\label{xintiloopskiptonext} +\label{xintiloopskipandredo} +\label{xintiloopindex} +\label{xintouteriloopindex} +{\small New with release |1.09g|.\par} + +\csa{xintiloop}|[start+delta]|\meta{stuff}|\iftest ... \repeat| is a completely +expandable nestable loop having access via \csbxint{iloopindex} to the integer +index of the iteration, with starting value |start| (which may be a |\count|) +and increment |delta| (\emph{id.}). Currently |[start+delta]| is a +\emph{mandatory argument}, it is an error to omit it; perhaps a future release +will make it optional with default |1+1|. A space after the closing square +bracket is not significant, it will be ignored. Spaces inside the square +brackets will also be ignored as the two arguments are first given to a +|\numexpr...\relax|. + +As with \csbxint{loop}, this tool will mostly be of interest to advanced users. +As is the case for its variant, it is declared short and can not handle directly +|\par| tokens or empty lines. For nesting, one puts inside braces all the +material from the start (immediately after |[start+delta]|) and up to and +inclusive of the inner loop, these braces will be removed and do not create a +loop. In case of nesting, \csbxint{outeriloopindex} gives access to the index of +the outer loop. If needed one could write on its model a macro giving access to +the index of the outer outer loop (or even to the |nth| outer loop). + + +The \csa{xintiloopindex} and \csa{xintouteriloopindex} can not be used inside +braces, and generally speaking this means they should be expanded first when +given as argument to a macro, and that this macro receives them as delimited +arguments, not braced ones. Or, but naturally this will break expandability, one +can assign the value of \csa{xintiloopindex} to some |\count|. Both +\csa{xintiloopindex} and \csa{xintouteriloopindex} extend to the litteral +representation of the index, thus in |\ifnum| tests, if it comes last one has to +correctly end the macro with a |\space|, or encapsulate it in a +|\numexpr..\relax|. + +When the repeat-test of the loop is, for example, |\ifnum\xintiloopindex<10 +\repeat|, this means that the last iteration will be with |\xintiloopindex=10| +(assuming |delta=1|). There is also |\ifnum\xintiloopindex=10 \else\repeat| to +get the last iteration to be the one with |\xintiloopindex=10|. + +One has \csbxint{breakiloop} and \csbxint{breakiloopanddo} to abort the +loop, \csbxint{iloopskiptonext} to abort the current iteration and skip to the +next, \hyperref[xintiloopskipandredo]{\ttfamily\hyphenchar\font45 \char92 + xintiloopskip\-and\-redo} to skip to the end of the current iteration and redo +it with the same value of the index (something else will have to change for this +not to become an eternal loop\dots ). + +Inside alignments, if the looped-over text contains a |&| or a |\cr|, any +un-expandable material before a \csbxint{iloopindex} will make it fail because +of |\endtemplate|; in such cases one can always either replace |&| by a macro +expanding to it or replace it by a suitable |\firstofone{&}|, and similarly for +|\cr|. + +As an example, let us construct an |\edef\z{...}| which will define |\z| to be a +list of prime numbers: +\dverb|@ +\edef\z +{\xintiloop [10001+2]% + {\xintiloop [3+2]% + \ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax + \xintouteriloopindex, + \expandafter\xintbreakiloop + \fi + \ifnum\xintouteriloopindex=\numexpr + (\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax + \else + \repeat + }% no space here + \ifnum \xintiloopindex < 10999 \repeat }% +\meaning\z| +\begingroup%\ttfamily +\edef\z +{\xintiloop [10001+2]% + {\xintiloop [3+2]% + \ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax + \xintouteriloopindex, + \expandafter\xintbreakiloop + \fi + \ifnum\xintouteriloopindex=\numexpr + (\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax + \else + \repeat + }% no space here + \ifnum \xintiloopindex < 10999 \repeat }% +\meaning\z and we should have taken some steps to not have a trailing comma, but +the point was to show that one can do that in an |\edef|\,! +\endgroup + +Let us create an alignment where each row will contain all divisors of its +first entry. +\dverb|@ +\tabskip1ex +\halign{&\hfil#\hfil\cr + \xintiloop [1+1] + {\expandafter\bfseries\xintiloopindex & + \xintiloop [1+1] + \ifnum\xintouteriloopindex=\numexpr + (\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax + \xintiloopindex&\fi + \ifnum\xintiloopindex<\xintouteriloopindex\space % \space is CRUCIAL + \repeat \cr }% + \ifnum\xintiloopindex<30 + \repeat }| + +% +\noindent We wanted this first entry in bold face, but |\bfseries| leads to +unexpandable tokens, so the |\expandafter| was necessary for |\xintiloopindex| +and |\xintouteriloopindex| not to be confronted with a hard to digest +|\endtemplate|. An alternative way of coding is: +% +\dverb|@ \tabskip1ex +\def\firstofone #1{#1}% +\halign{&\hfil#\hfil\cr + \xintiloop [1+1] + {\bfseries\xintiloopindex\firstofone{&}% + \xintiloop [1+1] \ifnum\xintouteriloopindex=\numexpr + (\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax + \xintiloopindex\firstofone{&}\fi + \ifnum\xintiloopindex<\xintouteriloopindex\space % \space is CRUCIAL + \repeat \firstofone{\cr}}% + \ifnum\xintiloopindex<30 \repeat }| + +\noindent +Here is the output, thus obtained without any count register: +\begingroup\catcode`_ 11 +\begin{multicols}2 +\tabskip1ex +\halign{&\hfil#\hfil\cr + \xintiloop [1+1] + {\expandafter\bfseries\xintiloopindex & + \xintiloop [1+1] + \ifnum\xintouteriloopindex=\numexpr + (\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax + \xintiloopindex&\fi + \ifnum\xintiloopindex<\xintouteriloopindex\space % CRUCIAL \space HERE + \repeat \cr }% + \ifnum\xintiloopindex<30 + \repeat +} +\end{multicols} +\endgroup + +\subsection{A table of factorizations} + +As one more example with \csbxint{iloop} let us use an alignment to display the +factorization of some numbers. The loop will actually only play a minor r\^ole +here, just handling the row index, the row contents being almost entirely +produced via a macro |\factorize|. The factorizing macro does not use +|\xintiloop| as it didn't appear to be the convenient tool. As |\factorize| will +have to be used on |\xintiloopindex|, it has been defined as a delimited macro. + +To spare some fractions of a second in the compilation time of this document +(which has many many other things to do), \number"7FFFFFED{} and +\number"7FFFFFFF, which turn out to be prime numbers, are not given to +|factorize| but just typeset directly; this illustrates use of +\csbxint{iloopskiptonext}. + +\begingroup +\def\MacroFont{\ttfamily\baselineskip12pt\relax \catcode`\" 12 } +\dverb|@ +\tabskip1ex +\halign {&\hfil\strut#\hfil\cr\noalign{\hrule} + \xintiloop ["7FFFFFE0+1] + \expandafter\bf\xintiloopindex & + \ifnum\xintiloopindex="7FFFFFED + \number"7FFFFFED\cr\noalign{\hrule} + \expandafter\xintiloopskiptonext + \fi + \expandafter\factorize\xintiloopindex.\cr\noalign{\hrule} + \ifnum\xintiloopindex<"7FFFFFFE + \repeat + \bf \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule} +}|\par\smallskip +\endgroup + +The \hyperref[floatfactorize]{table} has been made into a float which appears +\vpageref{floatfactorize}. Here is now the code for factorization; the +conditionals use +the package provided |\xint_firstoftwo| and |\xint_secondoftwo|, one could have +employed rather \LaTeX{}'s own \texttt{\char92\string@firstoftwo} and +\texttt{\char92\string@secondoftwo}, or, simpler still in \LaTeX{} context, the +|\ifnumequal|, |\ifnumless| \dots, utilities from the package |etoolbox| which +do exactly that under the hood. Only \TeX{} acceptable numbers are treated here, +but it would be easy to make a translation and use the \xintname macros, thus +extending the scope to big numbers; naturally up to a cost in speed. + +The reason for some strange looking expressions is to avoid arithmetic overflow. + +\begingroup +\def\MacroFont{\ttfamily\baselineskip12pt\relax \catcode`\" 12 } +\dverb|@ +\catcode`_ 11 +\def\abortfactorize #1\xint_secondoftwo\fi #2#3{\fi} + +\def\factorize #1.{\ifnum#1=1 \abortfactorize\fi + % avoid overflow if #1="7FFFFFFF + \ifnum\numexpr #1-2=\numexpr ((#1/2)-1)*2\relax + \expandafter\xint_firstoftwo + \else\expandafter\xint_secondoftwo + \fi + {2&\expandafter\factorize\the\numexpr#1/2.}% + {\factorize_b #1.3.}}% + +\def\factorize_b #1.#2.{\ifnum#1=1 \abortfactorize\fi + % this will avoid overflow which could result from #2*#2 + \ifnum\numexpr #1-(#2-1)*#2<#2 + #1\abortfactorize % this #1 is prime + \fi + % again, avoiding overflow as \numexpr integer division + % rounds rather than truncates. + \ifnum \numexpr #1-#2=\numexpr ((#1/#2)-1)*#2\relax + \expandafter\xint_firstoftwo + \else\expandafter\xint_secondoftwo + \fi + {#2&\expandafter\factorize_b\the\numexpr#1/#2.#2.}% + {\expandafter\factorize_b\the\numexpr #1\expandafter.% + \the\numexpr #2+2.}}% +\catcode`_ 8| +\endgroup + +\catcode`_ 11 +\def\abortfactorize #1\xint_secondoftwo\fi #2#3{\fi} + +\def\factorize #1.{\ifnum#1=1 \abortfactorize\fi + \ifnum\numexpr #1-2=\numexpr ((#1/2)-1)*2\relax + \expandafter\xint_firstoftwo + \else\expandafter\xint_secondoftwo + \fi + {2&\expandafter\factorize\the\numexpr#1/2.}% + {\factorize_b #1.3.}}% + +\def\factorize_b #1.#2.{\ifnum#1=1 \abortfactorize\fi + \ifnum\numexpr #1-(#2-1)*#2<#2 + #1\abortfactorize + \fi + \ifnum \numexpr #1-#2=\numexpr ((#1/#2)-1)*#2\relax + \expandafter\xint_firstoftwo + \else\expandafter\xint_secondoftwo + \fi + {#2&\expandafter\factorize_b\the\numexpr#1/#2.#2.}% + {\expandafter\factorize_b\the\numexpr #1\expandafter.% + \the\numexpr #2+2.}}% +\catcode`_ 8 +\begin{figure*}[ht!] +\centering\phantomsection\label{floatfactorize} +\tabskip1ex +\centeredline{\vbox{\halign {&\hfil\strut#\hfil\cr\noalign{\hrule} + \xintiloop ["7FFFFFE0+1] + \expandafter\bf\xintiloopindex & + \ifnum\xintiloopindex="7FFFFFED + \number"7FFFFFED\cr\noalign{\hrule} + \expandafter\xintiloopskiptonext + \fi + \expandafter\factorize\xintiloopindex.\cr\noalign{\hrule} + \ifnum\xintiloopindex<"7FFFFFFE + \repeat + \bf \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule} +}}} +\centeredline{A table of factorizations} +\end{figure*} + \begin{framed} The next utilities are not compatible with expansion-only context. @@ -4056,9 +3875,13 @@ where it was reasonable to stop. \begin{framed} A macro |\macro| whose definition uses internally an \csbxint{For} loop may be used inside another \csbxint{For} loop even if the two loops both use the same - macro parameter. By the way the loop definition inside |\macro| must double + macro parameter. Note: the loop definition inside |\macro| must double the character |#| as is the general rule in \TeX{} with definitions done inside macros. + + The macros \csa{xintFor} and \csa{xintFor*} are not expandable, one can not + use them inside an |\edef|. But they may be used inside alignments (such as a + \LaTeX{} |tabular|), as will be shown in examples. \end{framed} The spaces between the various declarative elements are all optional; @@ -4093,7 +3916,7 @@ which encapsulate the item in a macro expanding to that item. replacement text, just the token |\x|). Input such as |<stuff>,,<stuff>| creates an empty |#1|, the iteration is not skipped. An empty list does lead to the use of the replacement text, once, with an empty |#1| (or |#n|). Except - if the entire list is represented as a single macro (with no parameters), + if the entire list is represented as a single macro with no parameters, \fbox{it must be braced.} \end{framed} @@ -4108,24 +3931,9 @@ which encapsulate the item in a macro expanding to that item. \makeatletter\hbox {\@textsuperscript {\normalfont \thefootnote }}\makeatother. Spaces at the start, end, or in-between items are gobbled (but naturally not the spaces which may be inside \emph{braced} items). Except - if the list argument is a single macro (with no parameters), \fbox{it must be + if the list argument is a single macro with no parameters, \fbox{it must be braced.} Each item which is not braced will be fully expanded (as the |\x| and |\y| in the example above). An empty list leads to an empty result. - - The macro \csbxint{Seq} which generates arithmetic sequences may only be used - with \csbxint{For*} (numbers from output of |\xintSeq| are braced, not - separated by commas). \centeredline{|\xintFor* #1 in {\xintSeq - [+2]{-7}{+2}}\do {stuff with #1}|} will have |#1=-7,-5,-3,-1, and 1|. The - |#1| as issued from the list produced by \csbxint{Seq} is the litteral - representation as would be produced by |\arabic| on a \LaTeX{} counter, it is - not a count register. When used in |\ifnum| tests or other contexts where - \TeX{} looks for a number it is recommended to use - |#1\space|\stepcounter{footnote}% - \makeatletter\hbox {\@textsuperscript {\normalfont \thefootnote - }}\makeatother, or |#1\relax| if expandability of the process is not an - issue (for example if the iterated commands do an |\edef| using such a test, - |\relax| is not a good choice as it will be kept in the complete expansion if - it is in the true branch of the conditional, whereas |\space| will disappear). \end{framed} \begingroup\makeatletter \def\@footnotetext #1{\insert\footins {\reset@font \footnotesize \interlinepenalty \interfootnotelinepenalty \splittopskip \footnotesep \splitmaxdepth \dp \strutbox \floatingpenalty \@MM \hsize \columnwidth \@parboxrestore \color@begingroup \@makefntext {\rule \z@ \footnotesep \ignorespaces #1\@finalstrut \strutbox }\color@endgroup }} @@ -4133,14 +3941,53 @@ which encapsulate the item in a macro expanding to that item. \edef\@thefnmark {\thefootnote} \@footnotetext{braces around single token items are optional so this is the same as \texttt{\{123456\}}.} -\stepcounter{footnote} -\edef\@thefnmark {\thefootnote} -\@footnotetext{the \csa{space} will stop the \TeX{} scanning of a number and be - gobbled in the process; the \csa{relax} stops the scanning but is not - gobbled. Or one may do \csa{numexpr}\texttt{\#1}\csa{relax}, and then the - \csa{relax} is gobbled.} +% \stepcounter{footnote} +% \edef\@thefnmark {\thefootnote} +% \@footnotetext{the \csa{space} will stop the \TeX{} scanning of a number and be +% gobbled in the process; the \csa{relax} stops the scanning but is not +% gobbled. Or one may do \csa{numexpr}\texttt{\#1}\csa{relax}, and then the +% \csa{relax} is gobbled.} \endgroup -\addtocounter{Hfootnote}{2} +%\addtocounter{Hfootnote}{2} +\addtocounter{Hfootnote}{1} + +The macro \csbxint{Seq} which generates arithmetic sequences may only be used +with \csbxint{For*} (numbers from output of |\xintSeq| are braced, not separated +by commas). \centeredline{|\xintFor* #1 in {\xintSeq [+2]{-7}{+2}}\do {stuff + with #1}|} will have |#1=-7,-5,-3,-1, and 1|. The |#1| as issued from the +list produced by \csbxint{Seq} is the litteral representation as would be +produced by |\arabic| on a \LaTeX{} counter, it is not a count register. When +used in |\ifnum| tests or other contexts where \TeX{} looks for a number it is +recommended to use |#1\space|\footnote{the \csa{space} will stop the \TeX{} + scanning of a number and be gobbled in the process; the \csa{relax} stops the + scanning but is not gobbled. Or one may do + \csa{numexpr}\texttt{\#1}\csa{relax}, and then the \csa{relax} is gobbled.}, +or |#1\relax| if expandability of the process is not an issue (for example if +the iterated commands do an |\edef| using such a test, |\relax| is not a good +choice as it will be kept in the complete expansion if it is in the true branch +of the conditional, whereas |\space| will disappear). + +When nesting \csa{xintFor*} loops, using \csa{xintSeq} in the inner loops is +inefficient, as the arithmetic sequence will be re-created each time. A more +efficient style is: +% +\dverb|@ + \edef\innersequence {\xintSeq[+2]{-50}{50}}% + \xintFor* #1 in {\xintSeq {13}{27}} \do + {\xintFor* #2 in \innersequence \do {stuff with #1 and #2}% + .. some other macros .. }| + +This is a general remark applying for any nesting of loops, one should avoid +recreating the inner lists of arguments at each iteration of the outer loop. +However, in the example above, if the |.. some other macros ..| part +closes a group which was opened before the |\edef\innersequence|, then +this definition will be lost. An alternative to |\edef|, also efficient, +exists when dealing with arithmetic sequences: it is to use the +\csbxint{integers} keyword (described later) which simulates infinite +arithmetic sequences; the loops will then be terminated via a test |#1| +(or |#2| etc\dots) and subsequent use of \csbxint{BreakFor}. + + The \csbxint{For} loops are not completely expandable; but they may be nested and used inside alignments or other contexts where the replacement text closes @@ -4219,6 +4066,11 @@ Designed to work as expected under nesting. Don't forget an empty brace pair |{}| if a branch is to do nothing. May be used multiple times in the replacement text of the loop. +There is no such thing as an iteration counter provided by the \csa{xintFor} +loops; the user is invited to define if needed his own count register or +\LaTeX{} counter, for example with a suitable |\stepcounter| inside the +replacement text of the loop to update it. + \subsection{ \csbh{xintBreakFor}, \csbh{xintBreakForAndDo}} \label{xintBreakFor}\label{xintBreakForAndDo} {\small New in |1.09e|.\par} @@ -4248,22 +4100,22 @@ in the next section which is devoted to ``forever'' loops. \label{xintdimensions}\label{xintrationals} {\small New in |1.09e|.\par} -If the list argument to \csbxint{For} (or \csbxint{For*}, the two are here -completely equivalent) is \csbxint{integers} (equivalently \csbxint{egers}) or -more generally \csbxint{integers}|[||start|\allowbreak|+|\allowbreak|delta||]| +If the list argument to \csbxint{For} (or \csbxint{For*}, both are equivalent in +this context) is \csbxint{integers} (equivalently \csbxint{egers}) or more +generally \csbxint{integers}|[||start|\allowbreak|+|\allowbreak|delta||]| (\emph{the whole within braces}!)\footnote{the |start+delta| optional specification may have extra spaces around the plus sign of near the square brackets, such spaces are removed. The same applies with \csa{xintdimensions} - and \csa{xintrationals}.}, then \csbxint{For} does an infinite -iteration where |#1| (or |#2|, \dots, |#9|) will run through the arithmetic -sequence of (short) integers with initial value |start| and increment |delta| -(default values: |start=1|, |delta=1|; if the optional argument is present it -must contains both of them, and they may be explicit integers, or macros or -count registers. The |#1| (or |#2|, \dots, |#9|) will stand for |\numexpr <opt -sign><digits>\relax|, and the litteral representation as a string of digits can -thus be obtained as \fbox{\csa{the\#1}} or |\number#1|. Such a |#1| can be used -in an |\ifnum| test with no need to be postfixed with a space or a |\relax| and -one should \emph{not} add them. + and \csa{xintrationals}.}, then \csbxint{For} does an infinite iteration where +|#1| (or |#2|, \dots, |#9|) will run through the arithmetic sequence of (short) +integers with initial value |start| and increment |delta| (default values: +|start=1|, |delta=1|; if the optional argument is present it must contains both +of them, and they may be explicit integers, or macros or count registers. The +|#1| (or |#2|, \dots, |#9|) will stand for |\numexpr <opt sign><digits>\relax|, +and the litteral representation as a string of digits can thus be obtained as +\fbox{\csa{the\#1}} or |\number#1|. Such a |#1| can be used in an |\ifnum| test +with no need to be postfixed with a space or a |\relax| and one should +\emph{not} add them. If the list argument is \csbxint{dimensions} or more generally \csbxint{dimensions}|[||start|\allowbreak|+|\allowbreak|delta||]| (\emph{within @@ -4591,11 +4443,11 @@ commas. Spaces around commas and parentheses are ignored. \end{tabular}$\Biggr)$&}\\\noalign{\vskip1\jot}}% \end{tabular}} -\smallskip Only |#1#2|, |#2#3|, \dots, |#8#9| are valid (no error check is -done on the input syntax\dots). One can nest with -\csbxint{For}, for disjoint sets of macro parameters. There is also -\csa{xintForthree} (from |#1#2#3| to |#7#8#9|) and \csa{xintForfour} -(from |#1#2#3#4| to |#6#7#8#9|). +\smallskip Only |#1#2|, |#2#3|, |#3#4|, \dots, |#8#9| are valid (no error check +is done on the input syntax, |#1#3| or similar all end up in errors). +One can nest with \csbxint{For}, for disjoint sets of macro parameters. There is +also \csa{xintForthree} (from |#1#2#3| to |#7#8#9|) and \csa{xintForfour} (from +|#1#2#3#4| to |#6#7#8#9|). % These three macros |\xintForpair|, |\xintForthree| and |\xintForfour| are to % be considered in experimental status, and may be removed, replaced or @@ -4998,7 +4850,745 @@ then one should use the following variants: It is possible to modify this code to let it do \csa{QSonestep} repeatedly and stop automatically when the sort is finished. -\section{Commands of the \xintfracname package}\label{sec:comfrac} +\section{Commands of the \xintname package} +\label{sec:xint} + +\def\n{\string{N\string}} +\def\m{\string{M\string}} +\def\x{\string{x\string}} + +In the description of the macros \texttt{\n} (or also \texttt{\m}) stands +(except if mentioned otherwise) for a (long) number within braces or for a +control sequence possibly within braces and \hyperref[sec:expansions]{\fexpan + ding} to such a number +(without the braces!), or for material within braces which \fexpan ds to such +a number, as is acceptable on input by the \csbxint{Num} macro: a sequence of +plus and minus signs, followed by some string of zeros, followed by digits. + +The letter \texttt{x} stands for something which will be inserted in-between a +|\numexpr| and a |\relax|. It will thus be completely expanded and must give an +integer obeying the \TeX{} bounds. Thus, it may be for example a count register, +or itself a \csa{numexpr} expression, or just a number written explicitely with +digits or something like |4*\count 255 + 17|, etc... + +For the rules regarding direct use of count registers or \csa{numexpr} +expression, in the argument to the package macros, see the +\hyperlink{useofcount}{use of count section} in \autoref{sec:inputs}. + +Some of these macros are extended by \xintfracname to accept fractions on input, +and, generally, to output a fraction. But this means that additions, +subtractions, multiplications output fractions and not integers; to guarantee +the integer format on output when the inputs are integers, the original +integer-only macros \csa{xintAdd}, \csa{xintSub}, \csa{xintMul} remain available +under the names \csa{xintiAdd}, \csa{xintiSub}, \csa{xintiMul}. Even the +original integer-only macros may now accept fractions on input as long as they +are integers in disguise; they still produce on output integers without any +forward slash mark nor trailing |[n]|. On the other hand macros such as +|\xintAdd| will output fractions |A/B[n]|, with |B| present even if its value is +one. To remove this unit denominator and convert the |[n]| part into explicit +zeros, one has \csbxint{Num} (if one is certain to deal with an integer; see +also \csbxint{PRaw}). This is mandatory when the computation result is fetched +into a context where \TeX{} expects a number (assuming it does not exceed +@2^31@). See the also the \xintfracname \hyperref[sec:frac]{documentation} +for more information on how macros of \xintname are modified after loading +\xintfracname (or \xintexprname). + + +% Package \xintname also provides some general macro programming or token +% manipulation utilities (expandable as well as non-expandable), which are +% described in the next section (\autoref{sec:tools}). + +\localtableofcontents + +\subsection{\csbh{xintRev}} \label{xintRev} + +\csa{xintRev\n} will revert the order of the digits of the number, +keeping the optional sign. Leading zeros +resulting from the operation are not removed (see the +\csa{xintNum} macro for this). This macro and all other +macros dealing with numbers first expand `fully' their arguments. +\centeredline{|\xintRev{-123000}|\digitstt{=\xintRev{-123000}}} +\centeredline{|\xintNum{\xintRev{-123000}}|% + \digitstt{=\xintNum{\xintRev{-123000}}}} + + +\subsection{\csbh{xintLen}}\label{xintiLen} + +\csa{xintLen\n} returns the length of the number, not counting the sign. +\centeredline{|\xintLen{-12345678901234567890123456789}|\digitstt + {=\xintLen{-12345678901234567890123456789}}} Extended by \xintfracname to +fractions: the length of |A/B[n]| is the length of |A| plus the length of |B| +plus the absolute value of |n| and minus one (an integer input as |N| is +internally represented in a form equivalent to |N/1[0]| so the minus one means +that the extended \csa{xintLen} +behaves the same as the original for integers). +\centeredline{|\xintLen{-1e3/5.425}|\digitstt + {=\xintLen{-1e3/5.425}}} +The length is computed on the |A/B[n]| which would have been returned by +\csbxint{Raw}: |\xintRaw {-1e3/5.425}|\digitstt{=\xintRaw {-1e3/5.425}}. + +Let's point out that the whole thing should sum up to +less than circa @2^{31}@, but this is a bit theoretical. + +|\xintLen| is only for numbers or fractions. See \csbxint{Length} for counting +tokens (or rather braced groups), more generally. + +\subsection{\csbh{xintDigitsOf}}\label{xintDigitsOf} + +This is a synonym for \csbxint{AssignArray}, to be used to define +an array giving all the digits of a given (positive, else the minus sign will +be treated as first item) number. +\begingroup\xintDigitsOf\xintiPow {7}{500}\to\digits +\centeredline{|\xintDigitsOf\xintiPow {7}{500}\to\digits|} +\noindent @7^500@ has |\digits{0}=|\digits{0} digits, and the 123rd among them +(starting from the most significant) is +|\digits{123}=|\digits{123}. +\endgroup + +\subsection{\csbh{xintNum}}\label{xintiNum} + +\csa{xintNum\n} removes chains of plus or minus signs, followed by zeros. +\centeredline{|\xintNum{+---++----+--000000000367941789479}|\digitstt + {=\xintNum{+---++----+--000000000367941789479}}} Extended by \xintfracname to +accept also a fraction on input, as long as it reduces to an integer after +division of the numerator by the denominator. +\centeredline{|\xintNum{123.48/-0.03}|\digitstt{=\xintNum{123.48/-0.03}}} + + +\subsection{\csbh{xintSgn}}\label{xintiSgn} + +\csa{xintSgn\n} returns 1 if the number is positive, 0 if it is +zero and -1 if it is negative. Extended by \xintfracname to fractions. + +\subsection{\csbh{xintOpp}}\label{xintiOpp} + +\csa{xintOpp\n} returns the opposite |-N| of the number |N|. +Extended by \xintfracname to fractions. + + +\subsection{\csbh{xintAbs}}\label{xintiAbs} + +\csa{xintAbs\n} returns the absolute value of the number. Extended +by \xintfracname to fractions. + +\subsection{\csbh{xintAdd}}\label{xintiAdd} + +\csa{xintAdd\n\m} returns the sum of the two numbers. Extended by +\xintfracname to fractions. + +\subsection{\csbh{xintSub}}\label{xintiSub} + +\csa{xintSub\n\m} returns the difference |N-M|. Extended by +\xintfracname to fractions. + +\subsection{\csbh{xintCmp}}\label{xintiCmp} + +\csa{xintCmp\n\m} returns 1 if |N>M|, 0 if |N=M|, and -1 if |N<M|. +Extended by \xintfracname to fractions. + +\subsection{\csbh{xintEq}}\label{xintEq} +{\small New with release |1.09a|.\par} + +\csa{xintEq\n\m} returns 1 if |N=M|, 0 otherwise. +Extended by \xintfracname to fractions. + +\subsection{\csbh{xintGt}}\label{xintGt} +{\small New with release |1.09a|.\par} + +% attention dans la doc du 9 octobre j'avais écrit \geq au lieu de > + +\csa{xintGt\n\m} returns 1 if |N|$>$|M|, 0 otherwise. +Extended by \xintfracname to fractions. + +\subsection{\csbh{xintLt}}\label{xintLt} +{\small New with release |1.09a|.\par} + +% attention dans la doc du 9 octobre j'avais écrit \leq au lieu de < + +\csa{xintLt\n\m} returns 1 if |N|$<$|M|, 0 otherwise. +Extended by \xintfracname to fractions. + +\subsection{\csbh{xintIsZero}}\label{xintIsZero} +{\small New with release |1.09a|.\par} + +\csa{xintIsZero\n} returns 1 if |N=0|, 0 otherwise. +Extended by \xintfracname to fractions. + +\subsection{\csbh{xintNot}}\label{xintNot} +{\small New with release |1.09c|.\par} + +\csa{xintNot} is a synonym for \csa{xintIsZero}. + +\subsection{\csbh{xintIsNotZero}}\label{xintIsNotZero} +{\small New with release |1.09a|.\par} + +\csa{xintIsNotZero\n} returns 1 if |N<>0|, 0 otherwise. +Extended by \xintfracname to fractions. + +\subsection{\csbh{xintIsOne}}\label{xintIsOne} +{\small New with release |1.09a|.\par} + +\csa{xintIsOne\n} returns 1 if |N=1|, 0 otherwise. +Extended by \xintfracname to fractions. + +\subsection{\csbh{xintAND}}\label{xintAND} +{\small New with release |1.09a|.\par} + +\csa{xintAND\n\m} returns 1 if |N<>0| and |M<>0| and zero otherwise. + Extended by \xintfracname to fractions. + +\subsection{\csbh{xintOR}}\label{xintOR} +{\small New with release |1.09a|.\par} + +\csa{xintOR\n\m} returns 1 if |N<>0| or |M<>0| and zero otherwise. + Extended by \xintfracname to fractions. + + +\subsection{\csbh{xintXOR}}\label{xintXOR} +{\small New with release |1.09a|.\par} + +\csa{xintXOR\n\m} returns 1 if exactly one of |N| or |M| is true (i.e. +non-zero). + Extended by \xintfracname to fractions. + +\subsection{\csbh{xintANDof}}\label{xintANDof} +{\small New with release |1.09a|.\par} + +\csa{xintANDof}|{{a}{b}{c}...}| returns 1 if all are true (i.e. non +zero) and zero otherwise. The list argument +may be a macro, it (or rather its first token) is \fexpan ded first (each +item also is \fexpan ded). Extended by \xintfracname to fractions. + + +\subsection{\csbh{xintORof}}\label{xintORof} +{\small New with release |1.09a|.\par} + +\csa{xintORof}|{{a}{b}{c}...}| returns 1 if at least one is true +(i.e. does not vanish). The list argument +may be a macro, it is \fexpan ded first. Extended by \xintfracname to fractions. + + +\subsection{\csbh{xintXORof}}\label{xintXORof} +{\small New with release |1.09a|.\par} + +\csa{xintXORof}|{{a}{b}{c}...}| returns 1 if an odd number of them are +true (i.e. does not vanish). The list argument may be a macro, it is +\fexpan ded first. Extended by \xintfracname to fractions. + + +\subsection{\csbh{xintGeq}}\label{xintiGeq} + +\csa{xintGeq\n\m} returns 1 if the \emph{absolute value} of the first number is +at least equal to the absolute value of the second number. If \verb+|N|<|M|+ it +returns 0. Extended by \xintfracname to fractions (starting with release +|1.07|). Please note that the macro compares \emph{absolute values}. + +\subsection{\csbh{xintMax}}\label{xintiMax} + +\csa{xintMax\n\m} returns the largest of the two in the sense of the order +structure on the relative integers (\emph{i.e.} the right-most number if they +are put on a line with positive numbers on the right): |\xintiMax +{-5}{-6}|\digitstt{=\xintiMax{-5}{-6}}. Extended by \xintfracname to fractions. + +\subsection{\csbh{xintMaxof}}\label{xintMaxof} +{\small New with release |1.09a|.\par} + +\csa{xintMaxof}|{{a}{b}{c}...}| returns the maximum. The list argument +may be a macro, it is \fexpan ded first. Extended by \xintfracname to +fractions. + + +\subsection{\csbh{xintMin}}\label{xintiMin} + +\csa{xintMin\n\m} returns the smallest of the two in the sense of the order +structure on the relative integers (\emph{i.e.} the left-most number if they are +put on a line with positive numbers on the right): |\xintiMin +{-5}{-6}|\digitstt{=\xintiMin{-5}{-6}}. Extended by \xintfracname to fractions. + +\subsection{\csbh{xintMinof}}\label{xintMinof} +{\small New with release |1.09a|.\par} + +\csa{xintMinof}|{{a}{b}{c}...}| returns the minimum. The list argument +may be a macro, it is \fexpan ded first. Extended by \xintfracname to +fractions. + +\subsection{\csbh{xintSum}}\label{xintiSum} + +\csa{xintSum}\marg{braced things} after expanding its argument +expects to find a sequence of tokens (or braced material). +Each is expanded (with the usual meaning), and the sum of all these numbers is +returned. +\centeredline{% + \csa{xintiSum}|{{123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}}|% + \digitstt{=\xintiSum{{123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}}}} +\centeredline{\csa{xintiSum}|{1234567890}|\digitstt{=\xintiSum{1234567890}}} +An empty sum is no error and returns zero: |\xintiSum +{}|\digitstt{=\xintiSum {}}. A sum with only one +term returns that number: |\xintiSum {{-1234}}|\digitstt{=\xintiSum + {{-1234}}}. Attention that |\xintiSum {-1234}| is not legal input +and will make the \TeX{} run fail. On the other hand |\xintiSum +{1234}|\digitstt{=\xintiSum{1234}}. Extended by \xintfracname +to fractions. + +% retiré de la doc le 22 octobre 2013 + +% \subsection{\csbh{xintSumExpr}}\label{xintiSumExpr} + +% \csa{xintSumExpr}\meta{braced things}\csa{relax} is to what \csa{xintSum} +% expands. The argument is then expanded (with the usual meaning) and should give +% a list of braced quantities or macros, each one will be expanded in turn. +% \centeredline{% +% \csa{xintiSumExpr}| {123}{-98763450}|% +% |{\xintFac{7}}{\xintiMul{3347}{591}}\relax|\digitstt{=% +% \xintiSumExpr {123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}\relax}} + +% Note: I am not so happy with the name which seems to suggest that the +% |+| sign should be used instead of braces. Perhaps this will change +% in the future. + +% Extended by \xintfracname to fractions. + +\subsection{\csbh{xintMul}}\label{xintiMul} +{\small Modified in release |1.03|.\par} + +\csa{xintMul\n\m} returns the product of the two numbers. Starting +with release |1.03| of \xintname, the macro checks the lengths of +the two numbers and then activates its algorithm with the best (or +at least, hoped-so) choice of which one to put first. This makes +the macro a bit slower for numbers up to 50 digits, but may give +substantial speed gain when one of the number has 100 digits or more. +Extended by \xintfracname to fractions. + +\subsection{\csbh{xintSqr}}\label{xintiSqr} + +\csa{xintSqr\n} returns the square. Extended by \xintfracname to fractions. + +\subsection{\csbh{xintPrd}}\label{xintiPrd} + +\csa{xintPrd}\marg{braced things} after expanding its argument expects to find a +sequence of tokens (or braced material). Each is expanded (with the usual +meaning), and the product of all these numbers is returned. +\centeredline{% + \csa{xintiPrd}|{{-9876}{\xintFac{7}}{\xintiMul{3347}{591}}}|% + \digitstt{=% + \xintiPrd{{-9876}{\xintFac{7}}{\xintiMul{3347}{591}}}}} +\centeredline{\csa{xintiPrd}|{123456789123456789}|\digitstt{=% + \xintiPrd{123456789123456789}}} An empty product is no error and returns 1: +|\xintiPrd {}|\digitstt{=\xintiPrd {}}. A product reduced to a single term returns +this number: |\xintiPrd {{-1234}}|\digitstt{=\xintiPrd {{-1234}}}. Attention that +|\xintiPrd {-1234}| is not legal input and will make the \TeX{} compilation +fail. On the other hand |\xintiPrd {1234}|\digitstt{=\xintiPrd {1234}}. +\centeredline{$\displaystyle 2^{200}3^{100}7^{100}$} \centeredline{|=\xintiPrd + {{\xintiPow {2}{200}}{\xintiPow {3}{100}}{\xintiPow {7}{100}}}|} +\digitstt{=\printnumber{\xintNum {\xinttheexpr 2^200*3^100*7^100\relax }}} + +Extended by \xintfracname to fractions. + +With \xintexprname, the above would be coded simply as \centeredline +{|\xintthenumexpr 2^200*3^100*7^100\relax |} + +% I temporarily remove mention of \xintPrdExpr from the documentation; I +% really dislike the name now. + +% \subsection{\csbh{xintPrdExpr}}\label{xintiPrdExpr} + +% {\small Name change in |1.06a|! I apologize, but I suddenly decided that +% \csa{xintProductExpr} was a bad choice; so I just replaced it by the current +% name. \par} + +% \csa{xintPrdExpr}\marg{argument}\csa{relax} is to what \csa{xintPrd} expands +% ; its argument is expanded (with the usual meaning) and should give a list of +% braced numbers or macros. Each will be expanded when it is its turn. +% \centeredline{\csa{xintiPrdExpr}| 123456789123456789\relax|\digitstt{=% +% \xintiPrdExpr 123456789123456789\relax}} + +% Note: I am not so happy with the name which seems to suggest that the +% |*| sign should be used instead of braces. Perhaps this will change +% in the future. + +% Extended by \xintfracname to fractions. + +\subsection{\csbh{xintPow}}\label{xintiPow} + +\csa{xintPow\n\x} returns |N^x|. When |x| is zero, this is 1. If |N| is zero and +|x<0|, if \verb+|N|>1+ and |x<0| negative, or if \verb+|N|>1+ and |x>999999999|, +then an error is raised. |2^999999999| has \np{301029996} digits; each exact +multiplication of two one thousand digits numbers already takes a few seconds, +so needless to say this bound is completely irrealistic. Already |2^9999| has +\np{3010} digits,\footnote{on my laptop |\string\xintiPow \{2\}\{9999\}| + obtains all |3010| digits in about ten or eleven seconds. In contrast, the + float versions for + |8|, |16|, |24|, or even more significant figures, do their jobs in circa one + hundredth of a second (|1.08b|). This is done without |log|/|exp| which are + not (yet?) implemented in \xintfracname. The \LaTeX3 + \href{http://www.ctan.org/tex-archive/macros/latex/contrib/l3kernel}{l3fp} + does this with |log|/|exp| and is ten times faster (|16| figures only).} so I +should perhaps lower the bound to |99999|. + +Extended by \xintfracname to fractions (\csbxint{Pow}) and also to floats +(\csbxint{FloatPow}). Negative +exponents do not then cause errors anymore. The float version is able to deal +with things such as +|2^999999999| without any problem. For example +|\xintFloatPow[4]{2}{9999}|\digitstt{=\xintFloatPow[4]{2}{9999}} and +|\xintFloatPow[4]{2}{999999999}| +\digitstt{=\xintFloatPow[4]{2}{999999999}}. + +\subsection{\csbh{xintSgnFork}}\label{xintSgnFork} +{\small New with release |1.07|. See also \csbxint{ifSgn}.\par} + +\csa{xintSgnFork}\verb+{-1|0|1}+\marg{A}\marg{B}\marg{C} expandably +chooses to execute either the \meta{A}, \meta{B} or \meta{C} code, +depending on its first argument. This first argument should be anything +expanding to either |-1|, |0| or |1| (a count register should be +prefixed by |\the| and a |\numexpr...\relax| also should be prefixed by +|\the|). This utility is provided to help construct expandable macros +choosing depending on a condition which one of the package macros to +use, or which values to confer to their arguments. + +\subsection{\csbh{xintifSgn}}\label{xintifSgn} +{\small New with release |1.09a|.\par} + +Similar to \csa{xintSgnFork} except that the first argument may expand to a +(big) integer (or a fraction if \xintfracname is loaded), and it is its sign +which decides which of the three branches is taken. Furthermore this first +argument may be a count register, with no |\the| or |\number| prefix. + +\subsection{\csbh{xintifZero}}\label{xintifZero} +{\small New with release |1.09a|.\par} + +\csa{xintifZero}\marg{N}\marg{IsZero}\marg{IsNotZero} expandably checks +if the first mandatory argument |N| (a number, possibly a fraction if +\xintfracname is loaded, or a macro expanding to one such) is zero or +not. It then either executes the first or the second branch. + +\subsection{\csbh{xintifNotZero}}\label{xintifNotZero} +{\small New with release |1.09a|.\par} + +\csa{xintifNotZero}\marg{N}\marg{IsNotZero}\marg{IsZero} expandably checks +if the first mandatory argument |N| (a number, possibly a fraction if +\xintfracname is loaded, or a macro expanding to one such) is not zero or +is zero. It then either executes the first or the second branch. + +\subsection{\csbh{xintifTrueFalse}}\label{xintifTrueFalse} +{\small New with release |1.09c|, renamed in |1.09e|.\par} + +\csa{xintifTrueFalse}\marg{N}\marg{true branch}\marg{false branch} is a synonym +for \csbxint{ifNotZero}. It is also available as \csa{xintifTrue} but this later +name is a bit misleading as the macro must always have a |false| branch, +possibly an empty brace pair |{}|. + +\subsection{\csbh{xintifCmp}}\label{xintifCmp} +{\small New with release |1.09e|.\par} + +\csa{xintifCmp}\marg{A}\marg{B}\marg{if A<B}\marg{if A=B}\marg{if A>B} compares +its arguments and chooses accordingly the correct branch. + +\subsection{\csbh{xintifEq}}\label{xintifEq} +{\small New with release |1.09a|.\par} + +\csa{xintifEq}\marg{A}\marg{B}\marg{YES}\marg{NO} checks equality of its +two first arguments (numbers, or fractions if \xintfracname is loaded) and does the |YES| or the |NO| branch. + +\subsection{\csbh{xintifGt}}\label{xintifGt} +{\small New with release |1.09a|.\par} + +% attention dans la doc du 9 octobre j'avais écrit \geq au lieu de < +\csa{xintifGt}\marg{A}\marg{B}\marg{YES}\marg{NO} checks if $A>B$ and in that +case executes the |YES| branch. Extended to fractions (in particular decimal +numbers) by \xintfracname. + +\subsection{\csbh{xintifLt}}\label{xintifLt} +{\small New with release |1.09a|.\par} + +% attention dans la doc du 9 octobre j'avais écrit \leq au lieu de < +\csa{xintifLt}\marg{A}\marg{B}\marg{YES}\marg{NO} checks if $A<B$ and in that +case executes the |YES| branch. Extended to fractions (in particular decimal +numbers) by \xintfracname. + +\begin{framed} + The macros described next are all integer-only on input. With \xintfracname + loaded their argument is first given to \csbxint{Num} and may thus be + a fraction, as long as it is in fact an integer in disguise. +\end{framed} + +\subsection{\csbh{xintifOdd}}\label{xintifOdd} +{\small New with release |1.09e|.\par} + +\csa{xintifOdd}\marg{A}\marg{YES}\marg{NO} checks if $A$ is and odd integer +and in that case executes the |YES| branch. + + +\subsection{\csbh{xintFac}}\label{xintiFac} + +\csa{xintFac\x} returns the factorial. It is an error if the +argument is negative or at least @10^6@. It is not recommended to +launch the computation of things such as @100000!@, if you need +your computer for other tasks. Note that the argument is of the |x| type, it +must obey the \TeX{} bounds, but on the other hand may involve count registers +and even arithmetic operations as it will be completely expanded inside a +|\numexpr|. + +With \xintfracname loaded, the macro also +accepts a fraction as argument, as long as this fraction turns out to be an +integer: |\xintFac {66/3}|\digitstt{=\xintFac {66/3}}. + +% the construct |\xintFac{\xintAdd {2}{3}}| will fail, +% use either |\xintFac{\xintiAdd {2}{3}}| or |\xintFac{\xintNum{\xintAdd +% {2}{3}}}|. + +% temps obsolètes, mettre à jour +% On my laptop @1000!@ (2568 digits) +% is computed in a little less than ten seconds, @2000!@ (5736 +% digits) is computed in a little less than one hundred seconds, and +% @3000!@ (which has 9131 digits) needs close to seven minutes\dots +% I have no idea how much time @10000!@ would need (do rather +% @9999!@ if you can, the algorithm has some overhead at the +% transition from @N=9999@ to @10000@ and higher; @10000!@ has 35660 +% digits). Not to mention @100000!@ which, from the Stirling formula, +% should have 456574 digits. + +\subsection{\csbh{xintDivision}}\label{xintDivision} + +\csa{xintDivision\n\m} returns |{quotient Q}{remainder R}|. This +is euclidean division: |N = QM + R|, |0|${}\leq{}$\verb+R < |M|+. So the +remainder is always non-negative and the formula |N = QM + R| +always holds independently of the signs of |N| or |M|. Division by +zero is an error (even if |N| vanishes) and returns |{0}{0}|. + +This macro is integer only (with \xintfracname loaded it accepts +fractions on input, but they must be integers in disguise) and not to be +confused with the \xintfracname macro \csbxint{Div} which divides one +fraction by another. + +\subsection{\csbh{xintQuo}}\label{xintQuo} + +\csa{xintQuo\n\m} returns the quotient from the euclidean division. When +both |N| and |M| are positive one has \csa{xintQuo\n\m}|=\xintiTrunc +{0}{N/M}| (using package \xintfracname). With \xintfracname loaded it +accepts fractions on input, but they must be integers in disguise. + +\subsection{\csbh{xintRem}}\label{xintRem} + +\csa{xintRem\n\m} returns the remainder from the euclidean division. +With \xintfracname loaded it accepts fractions on input, but they must +be integers in disguise. + + + +\subsection{\csbh{xintFDg}}\label{xintFDg} + +\csa{xintFDg\n} returns the first digit (most significant) of the +decimal expansion. + +\subsection{\csbh{xintLDg}}\label{xintLDg} + +\csa{xintLDg\n} returns the least significant digit. When the +number is positive, this is the same as the remainder in the +euclidean division by ten. + +\subsection{\csbh{xintMON}, \csbh{xintMMON}}\label{xintMON}\label{xintMMON} +{\small New in version |1.03|.\par} + +\csa{xintMON\n} returns |(-1)^N| and \csa{xintMMON\n} returns +|(-1)^{N-1}|. \centeredline{|\xintMON {-280914019374101929}|\digitstt{=\xintMON + {280914019374101929}}, |\xintMMON +{-280914019374101929}|\digitstt{=\xintMMON {280914019374101929}}} + +\subsection{\csbh{xintOdd}}\label{xintOdd} + +\csa{xintOdd\n} is 1 if the number is odd and 0 otherwise. + + +\subsection{\csbh{xintiSqrt}, \csbh{xintiSquareRoot}}\label{xintiSqrt} +\label{xintiSquareRoot} +{\small New with |1.08|.\par} +\xintAssign\xintiSquareRoot {17000000000000000000000000}\to\A\B + +\noindent\csa{xintiSqrt\n} returns the largest integer whose square is +at most equal to |N|. +\centeredline{|\xintiSqrt {2000000000000000000000000000000000000}=|% +\digitstt{\xintiSqrt{2000000000000000000000000000000000000}}} +\centeredline{|\xintiSqrt {3000000000000000000000000000000000000}=|% +\digitstt{\xintiSqrt{3000000000000000000000000000000000000}}} +\centeredline{|\xintiSqrt {\xintDSH {-120}{2}}=|}% +\centeredline{\digitstt{\xintiSqrt {\xintDSH {-120}{2}}}} +\csa{xintiSquareRoot\n} returns |{M}{d}| with |d>0|, |M^2-d=N| and |M| +smallest (hence |=1+|\csa{xint\-iSqrt}|{N}|). +\centeredline{|\xintAssign\xintiSquareRoot + {17000000000000000000000000}\to\A\B|}% +\centeredline{|\xintiSub{\xintiSqr\A}\B=\A^2-\B|}% +\centeredline{\digitstt{\xintiSub{\xintiSqr\A}\B=\A\string^2-\B}} +A rational approximation to +$\sqrt{|N|}$ is $|M|-\frac{|d|}{|2M|}$ (this is a majorant and the error is at +most |1/2M|; if |N| is a perfect square |k^2| then |M=k+1| and this gives +|k+1/(2k+2)|, not |k|). + +Package \xintfracname has \csbxint{FloatSqrt} for square +roots of floating point numbers. + + +\begin{framed} + The macros described next are strictly for integer-only arguments. These + arguments are \emph{not} filtered via \csbxint{Num}. +\end{framed} + +\subsection{\csbh{xintInc}, \csbh{xintDec}} +\label{xintInc} +\label{xintDec} +{\small New with |1.08|.\par} + +\csa{xintInc\n} is |N+1| and \csa{xintDec\n} is |N-1|. These macros remain +integer-only, even with \xintfracname loaded. + +\subsection{\csbh{xintDouble}, \csbh{xintHalf}} +\label{xintDouble} +\label{xintHalf} +{\small New with |1.08|.\par} + +\csa{xintDouble\n} returns |2N| and \csa{xintHalf\n} is |N/2| rounded +towards zero. These macros remain integer-only, even with \xintfracname loaded. + +\subsection{\csbh{xintDSL}}\label{xintDSL} + +\csa{xintDSL\n} is decimal shift left, \emph{i.e.} multiplication +by ten. + +\subsection{\csbh{xintDSR}}\label{xintDSR} + +\csa{xintDSR\n} is decimal shift right, \emph{i.e.} it removes the last digit +(keeping the sign), equivalently it is the closest integer to |N/10| when +starting at zero. + +\subsection{\csbh{xintDSH}}\label{xintDSH} + +\csa{xintDSH\x\n} is parametrized decimal shift. When |x| is +negative, it is like iterating \csa{xintDSL} \verb+|x|+ times +(\emph{i.e.} multiplication by @10^{-@|x|@}@). When |x| positive, +it is like iterating \csa{DSR} |x| times (and is more efficient), and for a +non-negative |N| this is thus the same as the +quotient from the euclidean division by |10^x|. + +\subsection{\csbh{xintDSHr}, \csbh{xintDSx}}\label{xintDSHr}\label{xintDSx} +{\small New in release |1.01|.\par} + +\csa{xintDSHr\x\n} expects |x| to be zero or positive and it returns +then a value |R| which is correlated to the value |Q| returned by +\csa{xintDSH\x\n} in the following manner: +\begin{itemize} +\item if |N| is + positive or zero, |Q| and |R| are the quotient and remainder in + the euclidean division by |10^x| (obtained in a more efficient + manner than using \csa{xintDivision}), +\item if |N| is negative let + |Q1| and |R1| be the quotient and remainder in the euclidean + division by |10^x| of the absolute value of |N|. If |Q1| + does not vanish, then |Q=-Q1| and |R=R1|. If |Q1| vanishes, then + |Q=0| and |R=-R1|. +\item for |x=0|, |Q=N| and |R=0|. +\end{itemize} +So one has |N = 10^x Q + R| if |Q| turns out to be zero or +positive, and |N = 10^x Q - R| if |Q| turns out to be negative, +which is exactly the case when |N| is at most |-10^x|. + + +\csa{xintDSx\x\n} for |x| negative is exactly as +\csa{xintDSH\x\n}, \emph{i.e.} multiplication by @10^{-@|x|@}@. +For |x| zero or positive it returns the two numbers |{Q}{R}| +described above, each one within braces. So |Q| is +\csa{xintDSH\x\n}, and |R| is \csa{xintDSHr\x\n}, but computed +simultaneously. + +\begin{flushleft} + \xintAssign\xintDSx {-1}{-123456789}\to\M + \noindent{|\xintAssign\xintDSx {-1}{-123456789}\to\M|}\\ + |\meaning\M: |\digitstt{\meaning\M}.\\ + \xintAssign\xintDSx {-20}{1234567689}\to\M + {|\xintAssign\xintDSx {-20}{123456789}\to\M|}\\ + |\meaning\M: |\digitstt{\meaning\M}.\\ + \xintAssign\xintDSx{0}{-123004321}\to\Q\R + {|\xintAssign\xintDSx {0}{-123004321}\to\Q\R|}\\ + \noindent|\meaning\Q: |\digitstt{\meaning\Q}, |\meaning\R: + |\digitstt{\meaning\R.}\\ + |\xintDSH {0}{-123004321}|\digitstt{=\xintDSH {0}{-123004321}}, + |\xintDSHr {0}{-123004321}|\digitstt{=\xintDSHr {0}{-123004321}}\\ + \xintAssign\xintDSx {6}{-123004321}\to\Q\R + {|\xintAssign\xintDSx {6}{-123004321}\to\Q\R|}\\ + |\meaning\Q: |\digitstt{\meaning\Q}, + |\meaning\R: |\digitstt{\meaning\R.}\\ + |\xintDSH {6}{-123004321}|\digitstt{=\xintDSH {6}{-123004321}}, + |\xintDSHr {6}{-123004321}|\digitstt{=\xintDSHr {6}{-123004321}}\\ + \xintAssign\xintDSx {8}{-123004321}\to\Q\R + {|\xintAssign\xintDSx {8}{-123004321}\to\Q\R|}\\ + |\meaning\Q: |\digitstt{\meaning\Q}, + |\meaning\R: |\digitstt{\meaning\R.} \\ + |\xintDSH {8}{-123004321}|\digitstt{=\xintDSH {8}{-123004321}}, + |\xintDSHr {8}{-123004321}|\digitstt{=\xintDSHr {8}{-123004321}}\\ + \xintAssign\xintDSx {9}{-123004321}\to\Q\R + {|\xintAssign\xintDSx {9}{-123004321}\to\Q\R|}\\ + |\meaning\Q: |\digitstt{\meaning\Q}, + |\meaning\R: |\digitstt{\meaning\R.}\\ + |\xintDSH {9}{-123004321}|\digitstt{=\xintDSH {9}{-123004321}}, + |\xintDSHr {9}{-123004321}|\digitstt{=\xintDSHr {9}{-123004321}}\\ +\end{flushleft} + +\subsection{\csbh{xintDecSplit}}\label{xintDecSplit} + +{\small This has been modified in release |1.01|.\par} + +\csa{xintDecSplit\x\n} cuts the number into two pieces (each one within a +pair of enclosing braces). First the sign if present is \emph{removed}. +Then, for |x| positive or null, the second piece contains the |x| least +significant digits (\emph{empty} if |x=0|) and the first piece the remaining +digits (\emph{empty} when |x| equals or exceeds the length of |N|). +Leading zeros in the second piece are not removed. When |x| is negative +the first piece contains the \verb+|x|+ most significant digits and the +second piece the remaining digits (\emph{empty} if @|x|@ equals or exceeds +the length of |N|). Leading zeros in this second piece are not removed. +So the absolute value of the original number is always the concatenation +of the first and second piece. + +{\footnotesize This macro's behavior for |N| non-negative is final and will not + change. I am still hesitant about what to do with the sign of a + negative |N|.\par} + + +\xintAssign\xintDecSplit {0}{-123004321}\to\L\R +\centeredline{|\xintAssign\xintDecSplit {0}{-123004321}\to\L\R|} +\noindent|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} +\xintAssign\xintDecSplit {5}{-123004321}\to\L\R +\centeredline{|\xintAssign\xintDecSplit {5}{-123004321}\to\L\R|} +|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} +\xintAssign\xintDecSplit {9}{-123004321}\to\L\R +\centeredline{|\xintAssign\xintDecSplit {9}{-123004321}\to\L\R|} +|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} +\xintAssign\xintDecSplit {10}{-123004321}\to\L\R +\centeredline{|\xintAssign\xintDecSplit {10}{-123004321}\to\L\R|} +|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} +\xintAssign\xintDecSplit {-5}{-12300004321}\to\L\R +\centeredline{|\xintAssign\xintDecSplit {-5}{-12300004321}\to\L\R|} +|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} +\xintAssign\xintDecSplit {-11}{-12300004321}\to\L\R +\centeredline{|\xintAssign\xintDecSplit {-11}{-12300004321}\to\L\R|} +|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} +\xintAssign\xintDecSplit {-15}{-12300004321}\to\L\R +\centeredline{|\xintAssign\xintDecSplit {-15}{-12300004321}\to\L\R|} +|\meaning\L: |\digitstt{\meaning\L}, |\meaning\R: |\digitstt{\meaning\R.} + +\subsection{\csbh{xintDecSplitL}}\label{xintDecSplitL} + +\csa{xintDecSplitL\x\n} returns the first piece after the action +of \csa{xintDecSplit}. + +\subsection{\csbh{xintDecSplitR}}\label{xintDecSplitR} + +\csa{xintDecSplitR\x\n} returns the second piece after the action +of \csa{xintDecSplit}. + + + +\section{Commands of the \xintfracname package} +\label{sec:frac} \def\x{\string{x\string}} @@ -5014,7 +5604,7 @@ registers and even expressions with infix arithmetic operators, under some rules which are explained in the previous \hyperlink{useofcount}{Use of count registers} section. -As in the \hyperref[sec:comxint]{xint.sty} documentation, |x| +As in the \hyperref[sec:xint]{xint.sty} documentation, |x| stands for something which will internally be embedded in a \csa{numexpr}. It may thus be a count register or something like |4*\count 255 + 17|, etc..., but @@ -5675,7 +6265,7 @@ with (big) integers. \etocdepthtag.toc {xintexpr} \section{Expandable expressions with the \xintexprname package}% -\label{sec:comexpr} +\label{sec:expr} @@ -6325,7 +6915,8 @@ principles are necessarily different due to the aim of achieving expandability. \etocdepthtag.toc {commandsB} -\section{Commands of the \xintbinhexname package}\label{sec:combinhex} +\section{Commands of the \xintbinhexname package} +\label{sec:binhex} This package was first included in the |1.08| release of \xintname. It provides expandable conversions of arbitrarily long numbers @@ -6403,7 +6994,7 @@ one hundred hexadecimal digits. \section{Commands of the \xintgcdname package} - +\label{sec:gcd} This package was included in the original release |1.0| of the \xintname bundle. @@ -6549,7 +7140,8 @@ and modify it to what is needed. \xintTypesetBezoutAlgorithm {10000}{1113} -\section{Commands of the \xintseriesname package}\label{sec:series} +\section{Commands of the \xintseriesname package} +\label{sec:series} Some arguments to the package commands are macros which are expanded only later, when given their parameters. The arguments serving as indices are systematically @@ -7694,7 +8286,8 @@ always do it on a value computed with |D+1| truncation. % \clearpage -\section{Commands of the \xintcfracname package} +\section{Commands of the \xintcfracname package} +\label{sec:cfrac} This package was first included in release |1.04| of the \xintname bundle. @@ -8299,7 +8892,8 @@ first place. \StopEventually{\end{document}\endinput} \def\storedlinecounts {} -\def\StoreCodelineNo #1{\edef\storedlinecounts{\storedlinecounts +\def\StoreCodelineNo #1{\edef\storedlinecounts{% + \unexpanded\expandafter{\storedlinecounts}% {{#1}{\the\c@CodelineNo}}}\c@CodelineNo\z@ } \makeatother @@ -8323,45 +8917,40 @@ first place. % % \catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 % \let</doc>\relax -% \def<*xint>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } -% +% \def<*xinttools>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } %</doc> -%<*xint> -% \section {Package \xintname implementation} -% -% With release |1.09a| all macros doing arithmetic operations and a few more -% apply systematically |\xintnum| to their arguments; this adds a little -% overhead but this is more convenient for using count registers even with infix -% notation; also this is what |xintfrac.sty| did all along. Simplifies the -% discussion in the documentation too. +%<*xinttools> % \def\MARGEPAGENO{2.5em} +% \section {Package \xinttoolsnameimp implementation} +% \label{sec:toolsimp} +% +% Release |1.09g| splits off |xinttools.sty| from |xint.sty| % % \localtableofcontents +% % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The method for package identification and reload detection is copied verbatim % from the packages by \textsc{Heiko Oberdiek} (with some modifications starting -% with -% release |1.09b|). +% with release |1.09b|). % % The method for catcodes was also inspired by these packages, we proceed -% slightly differently. +% slightly differently. % % Starting with version |1.06| of the package, also |`| must be -% catcode-protected, -% because we replace everywhere in the code the twice-expansion done with -% |\expandafter| by the systematic use of |\romannumeral-`0|. +% catcode-protected, because we replace everywhere in the code the +% twice-expansion done with |\expandafter| by the systematic use of +% |\romannumeral-`0|. % % Starting with version |1.06b| I decide that I suffer from an indigestion of @ % signs, so I replace them all with underscores |_|, \`a la \LaTeX 3. % % Release |1.09b| is more economical: some macros are defined already in -% |xint.sty| and re-used in other modules. All catcode changes have been unified -% and \csa{XINT_storecatcodes} will be used by each module -% to redefine |\XINT_restorecatcodes_endinput| in case catcodes have changed -% in-between the loading of |xint.sty| and the module (not very probable -% anyhow...). -% +% |xint.sty| (now |xinttools.sty|) and re-used in other modules. All catcode +% changes have been unified and \csa{XINT_storecatcodes} will be used by each +% module to redefine |\XINT_restorecatcodes_endinput| in case catcodes have +% changed in-between the loading of |xint.sty| (now |xinttools.sty|) and the +% module (not very probable but...). % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M @@ -8384,7 +8973,7 @@ first place. \fi \expandafter \ifx\csname numexpr\endcsname\relax - \y{xint}{\numexpr not available, aborting input}% + \y{xinttools}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading @@ -8393,7 +8982,7 @@ first place. \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \else - \y{xint}{I was already loaded, aborting input}% + \y{xinttools}{I was already loaded, aborting input}% \aftergroup\endinput \fi \fi @@ -8488,7 +9077,7 @@ first place. % escaping me (compatibility with LaTeX 2.09 or other things ??) seems to set % extra precautions. % -% |1.09c| uses e-\TeX{} |\ifdefined|. No |firstoftwo| etc.. yet here. +% |1.09c| uses e-\TeX{} |\ifdefined|. % \begin{macrocode} \ifdefined\ProvidesPackage \let\XINT_providespackage\relax @@ -8498,8 +9087,8 @@ first place. \expandafter\xdef\csname ver@#2.sty\endcsname{#3}}% \fi \XINT_providespackage -\ProvidesPackage {xint}% - [2013/11/04 v1.09f Expandable operations on long numbers (jfB)]% +\ProvidesPackage {xinttools}% + [2013/11/22 v1.09g Expandable and non-expandable utilities (jfB)]% % \end{macrocode} % \subsection{Token management, constants} % \lverb|In 1.09e \xint_undef replaced everywhere by \xint_bye.| @@ -8513,75 +9102,31 @@ first place. \def\xint_gobble_vi #1#2#3#4#5#6{}% \def\xint_gobble_vii #1#2#3#4#5#6#7{}% \def\xint_gobble_viii #1#2#3#4#5#6#7#8{}% -\long\def\xint_firstofone #1{#1}% becomes long in 1.09f, 2013/11/01 +\long\def\xint_firstofone #1{#1}% long since 1.09f, 2013/11/01 \xint_firstofone{\let\XINT_sptoken= } % 1.09d, 2013/10/22 -\long\def\xint_firstoftwo #1#2{#1}% made long in 1.09e, 2013/10/28 -\long\def\xint_secondoftwo #1#2{#2}% +\long\def\xint_firstoftwo #1#2{#1}% long since 1.09e, 2013/10/28 +\long\def\xint_secondoftwo #1#2{#2}% idem \def\xint_firstoftwo_andstop #1#2{ #1}% \def\xint_secondoftwo_andstop #1#2{ #2}% -\def\xint_exchangetwo_keepbraces_andstop #1#2{ {#2}{#1}}% -\def\xint_firstofthree #1#2#3{#1}% -\def\xint_secondofthree #1#2#3{#2}% -\def\xint_thirdofthree #1#2#3{#3}% \def\xint_minus_andstop { -}% -\long\def\xint_bye #1\xint_bye {}% becomes long in 1.09f \def\xint_gob_til_R #1\R {}% \def\xint_gob_til_W #1\W {}% \def\xint_gob_til_Z #1\Z {}% -\def\xint_gob_til_zero #10{}% -\def\xint_gob_til_one #11{}% -\def\xint_gob_til_G #1G{}% -\def\xint_gob_til_minus #1-{}% -\def\xint_gob_til_zeros_iii #1000{}% -\def\xint_gob_til_zeros_iv #10000{}% +\long\def\xint_bye #1\xint_bye {}% long since 1.09f \let\xint_relax\relax \def\xint_brelax {\xint_relax }% -\def\xint_gob_til_relax #1\relax {}% -\long\def\xint_gob_til_xint_relax #1\xint_relax {}% becomes long in 1.09f -\def\xint_UDzerofork #10\dummy #2#3\krof {#2}% -\def\xint_UDsignfork #1-\dummy #2#3\krof {#2}% -\def\xint_UDwfork #1\W\dummy #2#3\krof {#2}% -\def\xint_UDzerosfork #100\dummy #2#3\krof {#2}% -\def\xint_UDonezerofork #110\dummy #2#3\krof {#2}% -\def\xint_UDzerominusfork #10-\dummy #2#3\krof {#2}% -\def\xint_UDsignsfork #1--\dummy #2#3\krof {#2}% +\long\def\xint_gob_til_xint_relax #1\xint_relax {}% long since 1.09f \def\xint_afterfi #1#2\fi {\fi #1}% \chardef\xint_c_ 0 -\chardef\xint_c_i 1 -\chardef\xint_c_ii 2 -\chardef\xint_c_iii 3 -\chardef\xint_c_iv 4 -\chardef\xint_c_v 5 \chardef\xint_c_viii 8 -\chardef\xint_c_ix 9 -\chardef\xint_c_x 10 -\newcount\xint_c_x^viii \xint_c_x^viii 100000000 \newtoks\XINT_toks +\newcount\XINT_count % 1.09g: \xintFor from 1.09f modified \count 255 :-( % \end{macrocode} -% \subsection{\csh{xintRev}, \csh{xintReverseOrder}} -% \lverb|& -% \xintRev: fait l'expansion avec \romannumeral-`0, vérifie le signe.$\ -% \xintReverseOrder: ne fait PAS l'expansion, ne regarde PAS le signe.| +% \subsection{ \csh{xintReverseOrder}} +% \lverb|\xintReverseOrder: does NOT expand its argument| % \begin{macrocode} -\def\xintRev {\romannumeral0\xintrev }% -\def\xintrev #1% -{% - \expandafter\XINT_rev_fork - \romannumeral-`0#1\xint_relax % empty #1 ok, \xint_relax stops expansion - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_relax -}% -\def\XINT_rev_fork #1% -{% - \xint_UDsignfork - #1\dummy {\expandafter\xint_minus_andstop\romannumeral0\XINT_rord_main {}}% - -\dummy {\XINT_rord_main {}#1}% - \krof -}% -\def\XINT_Rev {\romannumeral0\XINT_rev }% -\def\xintReverseOrder {\romannumeral0\XINT_rev }% -\def\XINT_rev #1% +\def\xintReverseOrder {\romannumeral0\xintreverseorder }% +\def\xintreverseorder #1% {% \XINT_rord_main {}#1% \xint_relax @@ -8601,8 +9146,7 @@ first place. % \end{macrocode} % \subsection{\csh{xintRevWithBraces}} % \lverb|New with 1.06. Makes the expansion of its argument and then reverses -% the -% resulting tokens or braced tokens, adding a pair of braces to each (thus, +% the resulting tokens or braced tokens, adding a pair of braces to each (thus, % maintaining it when it was already there. % % As in some other places, 1.09e replaces \Z by \xint_bye, although here it is @@ -8652,44 +9196,22 @@ first place. \csname xint_gobble_\romannumeral #1\endcsname }% % \end{macrocode} -% \subsection{\csh{xintLen}, \csh{xintLength}} -% \lverb|& -% \xintLen -> fait l'expansion, ne compte PAS le signe.$\ -% \xintLength -> ne fait PAS l'expansion, compte le signe.$\ +% \subsection{\csh{xintLength}} +% \lverb|\xintLength does NOT expand its argument.$\ +% 1.09g adds the missing \xintlength, which was previously called \XINT_length, +% and suppresses \XINT_Length$\ % 1.06: improved code is roughly 20$% faster than the one from earlier % versions. 1.09a, \xintnum inserted. 1.09e: \Z->\xint_bye as this is called % from \xintNthElt, and there it was necessary not to use \Z. Later use of \Z % and \W perfectly safe here.| % \begin{macrocode} -\def\xintLen {\romannumeral0\xintlen }% -\def\xintlen #1% -{% - \expandafter\XINT_length_fork - \romannumeral0\xintnum{#1}\xint_relax\xint_relax\xint_relax\xint_relax - \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye -}% -\def\XINT_Len #1% -{% - \romannumeral0\XINT_length_fork - #1\xint_relax\xint_relax\xint_relax\xint_relax - \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye -}% -\def\XINT_length_fork #1% -{% - \expandafter\XINT_length_loop - \xint_UDsignfork - #1\dummy {{0}}% - -\dummy {{0}#1}% - \krof -}% -\def\XINT_Length {\romannumeral0\XINT_length }% -\def\XINT_length #1% +\def\xintLength {\romannumeral0\xintlength }% +\def\xintlength #1% {% \XINT_length_loop {0}#1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% -\let\xintLength\XINT_Length \def\XINT_length_loop #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_xint_relax #9\XINT_length_finish_a\xint_relax @@ -9245,6 +9767,43 @@ first place. }% \def\XINT_seqo_nd #1#2#3#4{\XINT_seqo_nb {#1}{#2}{#3}{#4{#1}}}% % \end{macrocode} +%\subsection{\csh{xintloop}, \csh{xintbreakloop}, \csh{xintbreakloopanddo}, +% \csh{xintloopskiptonext}} +% \lverb|1.09g [2013/11/22]| +% \begin{macrocode} +\def\xintloop #1#2\repeat {#1#2\xintloop_again\fi\xint_gobble_i {#1#2}}% +\def\xintloop_again\fi\xint_gobble_i #1{\fi + #1\xintloop_again\fi\xint_gobble_i {#1}}% +\def\xintbreakloop #1\xintloop_again\fi\xint_gobble_i #2{}% +\def\xintbreakloopanddo #1#2\xintloop_again\fi\xint_gobble_i #3{#1}% +\def\xintloopskiptonext #1\xintloop_again\fi\xint_gobble_i #2{% + #2\xintloop_again\fi\xint_gobble_i {#2}}% +% \end{macrocode} +% \subsection{\csh{xintiloop}, \csh{xintiloopindex}, \csh{xintouteriloopindex}, +% \csh{xintbreakiloop}, \csh{xintbreakiloopanddo}, \csh{xintiloopskiptonext}, +% \csh{xintiloopskipandredo}} +% \lverb|1.09g [2013/11/22]| +% \begin{macrocode} +\def\xintiloop [#1+#2]{% + \expandafter\xintiloop_a\the\numexpr #1\expandafter.\the\numexpr #2.}% +\def\xintiloop_a #1.#2.#3#4\repeat{% + #3#4\xintiloop_again\fi\xint_gobble_iii {#1}{#2}{#3#4}}% +\def\xintiloop_again\fi\xint_gobble_iii #1#2{% + \fi\expandafter\xintiloop_again_b\the\numexpr#1+#2.#2.}% +\def\xintiloop_again_b #1.#2.#3{% + #3\xintiloop_again\fi\xint_gobble_iii {#1}{#2}{#3}}% +\def\xintbreakiloop #1\xintiloop_again\fi\xint_gobble_iii #2#3#4{}% +\def\xintbreakiloopanddo #1.#2\xintiloop_again\fi\xint_gobble_iii #3#4#5{#1}% +\def\xintiloopindex #1\xintiloop_again\fi\xint_gobble_iii #2% + {#2#1\xintiloop_again\fi\xint_gobble_iii {#2}}% +\def\xintouteriloopindex #1\xintiloop_again + #2\xintiloop_again\fi\xint_gobble_iii #3% + {#3#1\xintiloop_again #2\xintiloop_again\fi\xint_gobble_iii {#3}}% +\def\xintiloopskiptonext #1\xintiloop_again\fi\xint_gobble_iii #2#3{% + \expandafter\xintiloop_again_b \the\numexpr#2+#3.#3.}% +\def\xintiloopskipandredo #1\xintiloop_again\fi\xint_gobble_iii #2#3#4{% + #4\xintiloop_again\fi\xint_gobble_iii {#2}{#3}{#4}}% +% \end{macrocode} % \subsection{\csh{XINT\_xflet}} % \lverb|1.09e [2013/10/29]: we expand fully unbraced tokens and swallow arising % space tokens until the dust settles. For treating cases @@ -9314,14 +9873,15 @@ first place. % expand unbraced item elements and this is in fact convenient to simulate % insertion of lists in others. % -% 1.09e: the applied macro is allowed to be long, with items containing -% explicit \par's. +% 1.09e: the applied macro is allowed to be long, with items (or the first fixed +% arguments of he macro, passed together with it as #1 to \xintApplyInline) +% containing explicit \par's. (1.09g: some missing \long's added) % -% 1.09f: terminator used to be z, now Z (still catcode 3). +% 1.09f: terminator used to be z, now Z (still catcode 3). %| % \begin{macrocode} -\catcode`Z 3% -\def\xintApplyInline #1#2% +\catcode`Z 3 +\long\def\xintApplyInline #1#2% {% \long\expandafter\def\expandafter\XINT_inline_macro \expandafter ##\expandafter 1\expandafter {#1{##1}}% @@ -9330,24 +9890,22 @@ first place. \def\XINT_inline_b {% \ifx\XINT_token Z\expandafter\xint_gobble_i - \else\expandafter\XINT_inline_d - \fi + \else\expandafter\XINT_inline_d\fi }% -\def\XINT_inline_d #1% +\long\def\XINT_inline_d #1% {% - \def\XINT_item{{#1}}\XINT_xflet\XINT_inline_e + \long\def\XINT_item{{#1}}\XINT_xflet\XINT_inline_e }% \def\XINT_inline_e {% \ifx\XINT_token Z\expandafter\XINT_inline_w - \else\expandafter\XINT_inline_f - \fi + \else\expandafter\XINT_inline_f\fi }% \def\XINT_inline_f {% \expandafter\XINT_inline_g\expandafter{\XINT_inline_macro {##1}}% }% -\def\XINT_inline_g #1% +\long\def\XINT_inline_g #1% {% \expandafter\XINT_inline_macro\XINT_item \long\def\XINT_inline_macro ##1{#1}\XINT_inline_d @@ -9401,8 +9959,11 @@ first place. % If the \XINT_forever branch is taken, the added space will not be a problem % there. % -% [2013/11/03]: 1.09f rewrites the code to allow all macro parameters from #1 to -% #9 in \xintFor, \xintFor*, and \XINT_forever. | +% 1.09f rewrites (2013/11/03) the code which now allows all macro parameters +% from #1 to #9 in \xintFor, \xintFor*, and \XINT_forever. +% +% 1.09g \xintFor and \xintFor* modified the value of \count 255, now uses +% \XINT_count. | % \begin{macrocode} \def\XINT_tmpa #1#2{\ifnum #2<#1 \xint_afterfi {{#########2}}\fi}% \def\XINT_tmpb #1#2{\ifnum #1<#2 \xint_afterfi {{#########2}}\fi}% @@ -9440,9 +10001,9 @@ first place. }% \long\def\XINT_for #1#2in#3#4#5% {% - \count 255 #2\relax + \XINT_count #2\relax \expandafter\XINT_toks\expandafter - {\expandafter\XINT_for_d\the\count 255{#5}}% + {\expandafter\XINT_for_d\the\XINT_count{#5}}% \def\XINT_flet_macro {\expandafter\XINT_for_forever?\space}% \expandafter\XINT_flet_zapsp #3Z% }% @@ -9456,9 +10017,9 @@ first place. \def\XINT_to_forever\fi #1\xintcsvtolist #2{\fi \XINT_forever #2}% \long\def\XINT_forx *#1#2in#3#4#5% {% - \count 255 #2\relax + \XINT_count #2\relax \expandafter\XINT_toks\expandafter - {\expandafter\XINT_forx_d\the\count 255{#5}}% + {\expandafter\XINT_forx_d\the\XINT_count{#5}}% \XINT_xflet\XINT_forx_forever? #3Z% }% \def\XINT_forx_forever? @@ -9725,12 +10286,12 @@ first place. \XINT_restoreescapechar \expandafter\let\expandafter\xint_temp \csname\xint_arrayname 0\endcsname - \count 255 0 + \XINT_count 0 \loop \global\expandafter\let - \csname\xint_arrayname\the\count255\endcsname\relax - \ifnum \count 255 < \xint_temp - \advance\count 255 1 + \csname\xint_arrayname\the\XINT_count\endcsname\relax + \ifnum \XINT_count < \xint_temp + \advance\XINT_count 1 \repeat \global\expandafter\let\csname\xint_arrayname 00\endcsname\relax \global\let #1\relax @@ -9741,7 +10302,7 @@ first place. \escapechar -1 \edef\xint_arrayname {\string #2}% \XINT_restoreescapechar - \count 255 0 + \XINT_count 0 \expandafter\XINT_assignarray_loop \romannumeral-`0#1\xint_relax \csname\xint_arrayname 00\endcsname \csname\xint_arrayname 0\endcsname @@ -9752,12 +10313,12 @@ first place. {% \def\xint_temp {#1}% \ifx\xint_brelax\xint_temp - \expandafter\edef\csname\xint_arrayname 0\endcsname{\the\count 255 }% + \expandafter\edef\csname\xint_arrayname 0\endcsname{\the\XINT_count }% \expandafter\expandafter\expandafter\XINT_assignarray_end_a \else - \advance\count 255 1 + \advance\XINT_count 1 \expandafter\edef - \csname\xint_arrayname\the\count 255\endcsname{\xint_temp }% + \csname\xint_arrayname\the\XINT_count\endcsname{\xint_temp }% \expandafter\XINT_assignarray_loop \fi }% @@ -9793,6 +10354,205 @@ first place. }% }% \let\xintDigitsOf\xintAssignArray +\XINT_restorecatcodes_endinput% +% \end{macrocode} +%\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 +%\let</xinttools>\relax +%\def<*xint>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } +%</xinttools> +%<*xint> +% +% \StoreCodelineNo {xinttools} +% +% \section{Package \xintnameimp implementation} +% \label{sec:xintimp} +% +% With release |1.09a| all macros doing arithmetic operations and a few more +% apply systematically |\xintnum| to their arguments; this adds a little +% overhead but this is more convenient for using count registers even with infix +% notation; also this is what |xintfrac.sty| did all along. Simplifies the +% discussion in the documentation too. +% +% \localtableofcontents +% +% \subsection{Catcodes, \protect\eTeX{} and reload detection} +% +% The code for reload detection is copied from \textsc{Heiko +% Oberdiek}'s packages, and adapted here to check for previous +% loading of the master \xintname package. +% +% The method for catcodes is slightly different, but still +% directly inspired by these packages. +% +% \begin{macrocode} +\begingroup\catcode61\catcode48\catcode32=10\relax% + \catcode13=5 % ^^M + \endlinechar=13 % + \catcode123=1 % { + \catcode125=2 % } + \catcode64=11 % @ + \catcode35=6 % # + \catcode44=12 % , + \catcode45=12 % - + \catcode46=12 % . + \catcode58=12 % : + \def\space { }% + \let\z\endgroup + \expandafter\let\expandafter\x\csname ver@xint.sty\endcsname + \expandafter\let\expandafter\w\csname ver@xinttools.sty\endcsname + \expandafter + \ifx\csname PackageInfo\endcsname\relax + \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% + \else + \def\y#1#2{\PackageInfo{#1}{#2}}% + \fi + \expandafter + \ifx\csname numexpr\endcsname\relax + \y{xint}{\numexpr not available, aborting input}% + \aftergroup\endinput + \else + \ifx\x\relax % plain-TeX, first loading of xint.sty + \ifx\w\relax % but xinttools.sty not yet loaded. + \y{xint}{Package xinttools is required}% + \y{xint}{Will try \string\input\space xinttools.sty}% + \def\z{\endgroup\input xinttools.sty\relax}% + \fi + \else + \def\empty {}% + \ifx\x\empty % LaTeX, first loading, + % variable is initialized, but \ProvidesPackage not yet seen + \ifx\w\relax % xinttools.sty not yet loaded. + \y{xint}{Package xinttools is required}% + \y{xint}{Will try \string\RequirePackage{xinttools}}% + \def\z{\endgroup\RequirePackage{xinttools}}% + \fi + \else + \y{xint}{I was already loaded, aborting input}% + \aftergroup\endinput + \fi + \fi + \fi +\z% +% \end{macrocode} +% \subsection{Confirmation of \xinttoolsname loading} +% \begin{macrocode} +\begingroup\catcode61\catcode48\catcode32=10\relax% + \catcode13=5 % ^^M + \endlinechar=13 % + \catcode123=1 % { + \catcode125=2 % } + \catcode64=11 % @ + \catcode35=6 % # + \catcode44=12 % , + \catcode45=12 % - + \catcode46=12 % . + \catcode58=12 % : + \ifdefined\PackageInfo + \def\y#1#2{\PackageInfo{#1}{#2}}% + \else + \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% + \fi + \def\empty {}% + \expandafter\let\expandafter\w\csname ver@xinttools.sty\endcsname + \ifx\w\relax % Plain TeX, user gave a file name at the prompt + \y{xint}{Loading of package xinttools failed, aborting input}% + \aftergroup\endinput + \fi + \ifx\w\empty % LaTeX, user gave a file name at the prompt + \y{xint}{Loading of package xinttools failed, aborting input}% + \aftergroup\endinput + \fi +\endgroup% +% \end{macrocode} +% \subsection{Catcodes} +% \begin{macrocode} +\XINTsetupcatcodes% +% \end{macrocode} +% \subsection{Package identification} +% \begin{macrocode} +\XINT_providespackage +\ProvidesPackage{xint}% + [2013/11/22 v1.09g Expandable operations on long numbers (jfB)]% +% \end{macrocode} +% \subsection{Token management, constants} +% \begin{macrocode} +\def\xint_firstofthree #1#2#3{#1}% +\def\xint_secondofthree #1#2#3{#2}% +\def\xint_thirdofthree #1#2#3{#3}% +\def\xint_gob_til_zero #10{}% +\def\xint_gob_til_zeros_iii #1000{}% +\def\xint_gob_til_zeros_iv #10000{}% +\def\xint_gob_til_one #11{}% +\def\xint_gob_til_G #1G{}% +\def\xint_gob_til_minus #1-{}% +\def\xint_gob_til_relax #1\relax {}% +\def\xint_exchangetwo_keepbraces_andstop #1#2{ {#2}{#1}}% +\def\xint_UDzerofork #10\dummy #2#3\krof {#2}% +\def\xint_UDsignfork #1-\dummy #2#3\krof {#2}% +\def\xint_UDwfork #1\W\dummy #2#3\krof {#2}% +\def\xint_UDzerosfork #100\dummy #2#3\krof {#2}% +\def\xint_UDonezerofork #110\dummy #2#3\krof {#2}% +\def\xint_UDzerominusfork #10-\dummy #2#3\krof {#2}% +\def\xint_UDsignsfork #1--\dummy #2#3\krof {#2}% +\chardef\xint_c_i 1 % 0 and 8 in xinttools +\chardef\xint_c_ii 2 +\chardef\xint_c_iii 3 +\chardef\xint_c_iv 4 +\chardef\xint_c_v 5 +\chardef\xint_c_ix 9 +\chardef\xint_c_x 10 +\newcount\xint_c_x^viii \xint_c_x^viii 100000000 +% \end{macrocode} +% \subsection{\csh{xintRev}} +% \lverb|& +% \xintRev: expands fully its argument \romannumeral-`0, and checks the sign. +% However this last aspect does not appear like a very useful thing. And despite +% the fact that a special check is made for a sign, actually the input is not +% given to \xintnum, contrarily to \xintLen. This is all a bit incoherent. +% Should be fixed.| +% \begin{macrocode} +\def\xintRev {\romannumeral0\xintrev }% +\def\xintrev #1% +{% + \expandafter\XINT_rev_fork + \romannumeral-`0#1\xint_relax % empty #1 ok, \xint_relax stops expansion + \xint_bye\xint_bye\xint_bye\xint_bye + \xint_bye\xint_bye\xint_bye\xint_bye + \xint_relax +}% +\def\XINT_rev_fork #1% +{% + \xint_UDsignfork + #1\dummy {\expandafter\xint_minus_andstop\romannumeral0\XINT_rord_main {}}% + -\dummy {\XINT_rord_main {}#1}% + \krof +}% +% \end{macrocode} +% \subsection{\csh{xintLen}} +% \lverb|\xintLen is ONLY for (possibly long) integers. Gets extended to +% fractions by xintfrac.sty| +% \begin{macrocode} +\def\xintLen {\romannumeral0\xintlen }% +\def\xintlen #1% +{% + \expandafter\XINT_len_fork + \romannumeral0\xintnum{#1}\xint_relax\xint_relax\xint_relax\xint_relax + \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye +}% +\def\XINT_Len #1% variant which does not expand via \xintnum. +{% + \romannumeral0\XINT_len_fork + #1\xint_relax\xint_relax\xint_relax\xint_relax + \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye +}% +\def\XINT_len_fork #1% +{% + \expandafter\XINT_length_loop + \xint_UDsignfork + #1\dummy {{0}}% + -\dummy {{0}#1}% + \krof +}% % \end{macrocode} % \subsection{\csh{XINT\_RQ}} % \lverb|& @@ -11640,28 +12400,28 @@ first place. \def\XINT_mul_minusminus #1#2% {% \expandafter\XINT_mul_choice_a - \expandafter{\romannumeral0\XINT_length {#2}}% - {\romannumeral0\XINT_length {#1}}{#1}{#2}% + \expandafter{\romannumeral0\xintlength {#2}}% + {\romannumeral0\xintlength {#1}}{#1}{#2}% }% \def\XINT_mul_minusplus #1#2#3% {% \expandafter\xint_minus_andstop\romannumeral0\expandafter \XINT_mul_choice_a - \expandafter{\romannumeral0\XINT_length {#1#3}}% - {\romannumeral0\XINT_length {#2}}{#2}{#1#3}% + \expandafter{\romannumeral0\xintlength {#1#3}}% + {\romannumeral0\xintlength {#2}}{#2}{#1#3}% }% \def\XINT_mul_plusminus #1#2#3% {% \expandafter\xint_minus_andstop\romannumeral0\expandafter \XINT_mul_choice_a - \expandafter{\romannumeral0\XINT_length {#3}}% - {\romannumeral0\XINT_length {#1#2}}{#1#2}{#3}% + \expandafter{\romannumeral0\xintlength {#3}}% + {\romannumeral0\xintlength {#1#2}}{#1#2}{#3}% }% \def\XINT_mul_plusplus #1#2#3#4% {% \expandafter\XINT_mul_choice_a - \expandafter{\romannumeral0\XINT_length {#2#4}}% - {\romannumeral0\XINT_length {#1#3}}{#1#3}{#2#4}% + \expandafter{\romannumeral0\xintlength {#2#4}}% + {\romannumeral0\xintlength {#1#3}}{#1#3}{#2#4}% }% \def\XINT_mul_choice_a #1#2% {% @@ -11826,7 +12586,7 @@ first place. \def\XINT_mul_M_zero #1\Z\Z\Z\Z { 0}% \def\XINT_mul_M_one #1#2#3#4\Z\Z\Z\Z {% - \expandafter\xint_cleanupzeros_andstop\romannumeral0\XINT_rev{#4}% + \expandafter\xint_cleanupzeros_andstop\romannumeral0\xintreverseorder{#4}% }% \def\XINT_mul_N #1#2#3#4#5#6#7% {% @@ -11958,7 +12718,7 @@ first place. }% \def\XINT_mul_finish_c #1\XINT_mul_finish_ciii \W\W\W\W #2#3\Z\Z\Z\Z {% - \expandafter\xint_cleanupzeros_andstop\romannumeral0\XINT_rev{#2}% + \expandafter\xint_cleanupzeros_andstop\romannumeral0\xintreverseorder{#2}% }% % \end{macrocode} % \lverb|& @@ -12122,8 +12882,8 @@ first place. % Modified with 1.02 and again in 1.03 for greater efficiency. I am % tempted, % here and elsewhere, to use \ifcase\XINT_Geq {#1}{1000000000} rather than -% \ifnum\XINT_Length {#1}>9 but for the time being I leave things as they stand. -% With release 1.05, rather than using \XINT_Length I opt finally for direct use +% \ifnum\xintLength {#1}>9 but for the time being I leave things as they stand. +% With release 1.05, rather than using \xintLength I opt finally for direct use % of \numexpr (which will throw a suitable number too big message), and to raise % the \xintError:$\ FactorialOfTooBigNumber for argument larger than 1000000 % (rather than 1000000000). With 1.09a, \xintFac uses \xintnum.| @@ -12402,7 +13162,7 @@ first place. \def\XINT_pow_pprod_end\relax\XINT_pow_pprod_compute #1\Z #2% {% \expandafter\xint_cleanupzeros_andstop - \romannumeral0\XINT_rev {#2}% + \romannumeral0\xintreverseorder {#2}% }% % \end{macrocode} % \subsection{\csh{xintDivision}, \csh{xintQuo}, \csh{xintRem}} @@ -12546,7 +13306,7 @@ first place. \def\XINT_div_prepare #1% {% \expandafter \XINT_div_prepareB_aa \expandafter - {\romannumeral0\XINT_length {#1}}{#1}% B > 0 ici + {\romannumeral0\xintlength {#1}}{#1}% B > 0 ici }% \def\XINT_div_prepareB_aa #1% {% @@ -12607,7 +13367,7 @@ first place. \def\XINT_div_prepareB_f #1#2#3#4#5\Z {% \expandafter \XINT_div_prepareB_g \expandafter - {\romannumeral0\XINT_rev {#1#2#3#4#5}}{#1#2#3#4}% + {\romannumeral0\xintreverseorder {#1#2#3#4#5}}{#1#2#3#4}% }% % \end{macrocode} % \lverb|& @@ -12627,7 +13387,7 @@ first place. \def\XINT_div_prepareA_a #1% {% \expandafter \XINT_div_prepareA_b \expandafter - {\romannumeral0\XINT_length {#1}}{#1}% A >0 ici + {\romannumeral0\xintlength {#1}}{#1}% A >0 ici }% % \end{macrocode} % \lverb|& @@ -12907,7 +13667,7 @@ first place. {% \expandafter \XINT_div_body_l \expandafter {\romannumeral0\XINT_div_sub_xpxp - {\romannumeral0\XINT_mul_Mr {#1}#4\Z\Z\Z\Z }{\XINT_Rev{#2}}}% + {\romannumeral0\XINT_mul_Mr {#1}#4\Z\Z\Z\Z }{\xintReverseOrder{#2}}}% {#3+#1}% }% % \end{macrocode} @@ -13144,7 +13904,7 @@ first place. \def\XINT_LDg #1{\romannumeral0\XINT_ldg {#1}}% \def\XINT_ldg #1% {% - \expandafter\XINT_ldg_\romannumeral0\XINT_rev {#1}\Z + \expandafter\XINT_ldg_\romannumeral0\xintreverseorder {#1}\Z }% \def\XINT_ldg_ #1#2\Z{ #1}% % \end{macrocode} @@ -13246,16 +14006,16 @@ first place. \def\XINT_DSR #1{\romannumeral0\XINT_dsr_a {#1}\W\Z }% \def\XINT_dsr_a {% - \expandafter\XINT_dsr_b\romannumeral0\XINT_rev + \expandafter\XINT_dsr_b\romannumeral0\xintreverseorder }% \def\XINT_dsr_b #1#2#3\Z {% \xint_gob_til_W #2\xint_dsr_onedigit\W \xint_gob_til_minus #2\xint_dsr_onedigit-% \expandafter\XINT_dsr_removew - \romannumeral0\XINT_rev {#2#3}% + \romannumeral0\xintreverseorder {#2#3}% }% -\def\xint_dsr_onedigit #1\XINT_rev #2{ 0}% +\def\xint_dsr_onedigit #1\xintreverseorder #2{ 0}% \def\XINT_dsr_removew #1\W { }% % \end{macrocode} % \subsection{\csh{xintDSH}, \csh{xintDSHr}} @@ -13583,7 +14343,7 @@ first place. \def\XINT_split_fromright #1\Z #2% {% \expandafter \XINT_split_fromright_a \expandafter - {\romannumeral0\XINT_rev {#2}}{#1}{#2}% + {\romannumeral0\xintreverseorder {#2}}{#1}{#2}% }% \def\XINT_split_fromright_a #1#2% {% @@ -13611,7 +14371,7 @@ first place. }% \def\XINT_split_fromright_endsplit_ #1#2\W #3\Z #4% {% - \expandafter\space\expandafter {\romannumeral0\XINT_rev{#2}}{#1}% + \expandafter\space\expandafter {\romannumeral0\xintreverseorder {#2}}{#1}% }% \def\XINT_split_fromright_endsplit_i #1#2% {\XINT_split_fromright_checkiftoofar #2{#2#1}}% @@ -13853,7 +14613,7 @@ first place. \def\XINT_sqrt #1\Z {% \expandafter\XINT_sqrt_start\expandafter - {\romannumeral0\XINT_length {#1}}{#1}% + {\romannumeral0\xintlength {#1}}{#1}% }% \def\XINT_sqrt_start #1% {% @@ -14040,7 +14800,8 @@ first place. % % \StoreCodelineNo {xint} % -% \section{Package \xintbinhexname implementation} +% \section{Package \xintbinhexnameimp implementation} +% \label{sec:binheximp} % % The commenting is currently (\docdate) very sparse. % @@ -14135,11 +14896,6 @@ first place. \endgroup% % \end{macrocode} % \subsection{Catcodes} -% -% Perhaps catcodes have changed after the loading of \xintname -% and prior to the current loading of \xintbinhexname, so we redefine -% the |\XINT_restorecatcodes_endinput| in this style file. -% % \begin{macrocode} \XINTsetupcatcodes% % \end{macrocode} @@ -14147,7 +14903,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintbinhex}% - [2013/11/04 v1.09f Expandable binary and hexadecimal conversions (jfB)]% + [2013/11/22 v1.09g Expandable binary and hexadecimal conversions (jfB)]% % \end{macrocode} % \subsection{Constants, etc...} % \lverb!v1.08! @@ -14748,7 +15504,8 @@ first place. % % \StoreCodelineNo {xintbinhex} % -% \section{Package \xintgcdname implementation} +% \section{Package \xintgcdnameimp implementation} +% \label{sec:gcdimp} % % The commenting is currently (\docdate) very sparse. % @@ -14850,7 +15607,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintgcd}% - [2013/11/04 v1.09f Euclide algorithm with xint package (jfB)]% + [2013/11/22 v1.09g Euclide algorithm with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintGCD}} % The macros of |1.09a| benefits from the |\xintnum| which has been inserted @@ -15396,15 +16153,15 @@ first place. \edef\A{\U2}\edef\B{\U4}\edef\N{\U1}% \setbox 0 \vbox{\halign {$##$\cr \A\cr \B \cr}}% \noindent - \count 255 1 + \XINT_count 1 \loop - \hbox to \wd 0 {\hfil$\U{\numexpr 2*\count 255\relax}$}% - ${} = \U{\numexpr 2*\count 255 + 3\relax} - \times \U{\numexpr 2*\count 255 + 2\relax} - + \U{\numexpr 2*\count 255 + 4\relax}$% - \ifnum \count 255 < \N + \hbox to \wd 0 {\hfil$\U{\numexpr 2*\XINT_count\relax}$}% + ${} = \U{\numexpr 2*\XINT_count + 3\relax} + \times \U{\numexpr 2*\XINT_count + 2\relax} + + \U{\numexpr 2*\XINT_count + 4\relax}$% + \ifnum \XINT_count < \N \hfill\break - \advance \count 255 1 + \advance \XINT_count 1 \repeat \par \endgroup @@ -15429,24 +16186,24 @@ first place. \xintAssignArray\xintBezoutAlgorithm {#1}{#2}\to\BEZ \edef\A{\BEZ2}\edef\B{\BEZ6}\edef\N{\BEZ1}% A = |#1|, B = |#2| \setbox 0 \vbox{\halign {$##$\cr \A\cr \B \cr}}% - \count 255 1 + \XINT_count 1 \loop \noindent - \hbox to \wd 0 {\hfil$\BEZ{4*\count 255 - 2}$}% - ${} = \BEZ{4*\count 255 + 5} - \times \BEZ{4*\count 255 + 2} - + \BEZ{4*\count 255 + 6}$\hfill\break - \hbox to \wd 0 {\hfil$\BEZ{4*\count 255 +7}$}% - ${} = \BEZ{4*\count 255 + 5} - \times \BEZ{4*\count 255 + 3} - + \BEZ{4*\count 255 - 1}$\hfill\break - \hbox to \wd 0 {\hfil$\BEZ{4*\count 255 +8}$}% - ${} = \BEZ{4*\count 255 + 5} - \times \BEZ{4*\count 255 + 4} - + \BEZ{4*\count 255 }$ + \hbox to \wd 0 {\hfil$\BEZ{4*\XINT_count - 2}$}% + ${} = \BEZ{4*\XINT_count + 5} + \times \BEZ{4*\XINT_count + 2} + + \BEZ{4*\XINT_count + 6}$\hfill\break + \hbox to \wd 0 {\hfil$\BEZ{4*\XINT_count +7}$}% + ${} = \BEZ{4*\XINT_count + 5} + \times \BEZ{4*\XINT_count + 3} + + \BEZ{4*\XINT_count - 1}$\hfill\break + \hbox to \wd 0 {\hfil$\BEZ{4*\XINT_count +8}$}% + ${} = \BEZ{4*\XINT_count + 5} + \times \BEZ{4*\XINT_count + 4} + + \BEZ{4*\XINT_count }$ \endgraf - \ifnum \count 255 < \N - \advance \count 255 1 + \ifnum \XINT_count < \N + \advance \XINT_count 1 \repeat \par \edef\U{\BEZ{4*\N + 4}}% @@ -15470,7 +16227,8 @@ first place. % % \StoreCodelineNo {xintgcd} % -% \section{Package \xintfracname implementation} +% \section{Package \xintfracnameimp implementation} +% \label{sec:fracimp} % % The commenting is currently (\docdate) very sparse. % @@ -15572,7 +16330,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintfrac}% - [2013/11/04 v1.09f Expandable operations on fractions (jfB)]% + [2013/11/22 v1.09g Expandable operations on fractions (jfB)]% \chardef\xint_c_vi 6 \chardef\xint_c_vii 7 \chardef\xint_c_xviii 18 @@ -15733,7 +16491,7 @@ first place. \def\XINT_frac_Bb #1.\W\Z #2\Z {% \expandafter \XINT_frac_T \expandafter - {\romannumeral0\XINT_length {#1}}{#2#1}% + {\romannumeral0\xintlength {#1}}{#2#1}% }% \def\XINT_frac_A e\W\Z {\XINT_frac_T {0}{1}{0}}% \def\XINT_frac_T #1#2#3#4e#5#6\Z @@ -15758,7 +16516,7 @@ first place. \def\XINT_frac_Cb #1.\W\Z #2\Z {% \expandafter\XINT_frac_D\expandafter - {\romannumeral0\XINT_length {#1}}{#2#1}% + {\romannumeral0\xintlength {#1}}{#2#1}% }% \def\XINT_frac_D #1#2#3#4#5#6% {% @@ -16440,7 +17198,7 @@ first place. {% \xint_gob_til_zero #2\XINT_trunc_zero 0% \expandafter\XINT_trunc_H\expandafter - {\the\numexpr\romannumeral0\XINT_length {#1}-#3}{#3}{#1}#2% + {\the\numexpr\romannumeral0\xintlength {#1}-#3}{#3}{#1}#2% }% \def\XINT_trunc_zero 0#10{ 0}% \def\XINT_trunc_H #1#2% @@ -16634,7 +17392,7 @@ first place. \def\XINT_float_Mc #1#2#3#4#5#6% {% \expandafter\XINT_float_N\expandafter - {\romannumeral0\XINT_length{#6}}{#2}{#5}{#6}{#1}{#3}{#4}% + {\romannumeral0\xintlength{#6}}{#2}{#5}{#6}{#1}{#3}{#4}% }% long de B, P+2, n, B, |A|, A, P \def\XINT_float_N #1#2% {% @@ -17733,12 +18491,12 @@ first place. \def\XINT_flpow_checkB_b #1#2\Z #3% {% \expandafter\XINT_flpow_checkB_c \expandafter - {\romannumeral0\XINT_length{#2}}{#3}{#2}#1% + {\romannumeral0\xintlength{#2}}{#3}{#2}#1% }% \def\XINT_flpow_checkB_c #1#2% {% \expandafter\XINT_flpow_checkB_d \expandafter - {\the\numexpr \expandafter\XINT_Length\expandafter + {\the\numexpr \expandafter\xintLength\expandafter {\the\numexpr #1*20/3}+#1+#2+1}% }% \def\XINT_flpow_checkB_d #1#2#3#4% @@ -17876,12 +18634,12 @@ first place. \def\XINT_flpower_checkB_b #1#2\Z #3% {% \expandafter\XINT_flpower_checkB_c \expandafter - {\romannumeral0\XINT_length{#2}}{#3}{#2}#1% + {\romannumeral0\xintlength{#2}}{#3}{#2}#1% }% \def\XINT_flpower_checkB_c #1#2% {% \expandafter\XINT_flpower_checkB_d \expandafter - {\the\numexpr \expandafter\XINT_Length\expandafter + {\the\numexpr \expandafter\xintLength\expandafter {\the\numexpr #1*20/3}+#1+#2+1}% }% \def\XINT_flpower_checkB_d #1#2#3#4% @@ -18000,7 +18758,7 @@ first place. \def\XINT_flsqrt #1#2% {% \expandafter\XINT_sqrt_a - \expandafter{\romannumeral0\XINT_length {#2}}\XINT_flsqrt_big_d {#2}{#1}% + \expandafter{\romannumeral0\xintlength {#2}}\XINT_flsqrt_big_d {#2}{#1}% }% \def\XINT_flsqrt_big_d #1\or #2\fi #3% {% @@ -18131,7 +18889,8 @@ first place. % % \StoreCodelineNo {xintfrac} % -% \section{Package \xintseriesname implementation} +% \section{Package \xintseriesnameimp implementation} +% \label{sec:seriesimp} % % The commenting is currently (\docdate) very sparse. % @@ -18233,7 +18992,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintseries}% - [2013/11/04 v1.09f Expandable partial sums with xint package (jfB)]% + [2013/11/22 v1.09g Expandable partial sums with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintSeries}} % \lverb|& @@ -18667,7 +19426,8 @@ first place. % % \StoreCodelineNo {xintseries} % -% \section{Package \xintcfracname implementation} +% \section{Package \xintcfracnameimp implementation} +% \label{sec:cfracimp} % % The commenting is currently (\docdate) very sparse. % @@ -18769,7 +19529,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintcfrac}% - [2013/11/04 v1.09f Expandable continued fractions with xint package (jfB)]% + [2013/11/22 v1.09g Expandable continued fractions with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintCFrac}} % \begin{macrocode} @@ -19733,7 +20493,8 @@ first place. % % \StoreCodelineNo {xintcfrac} % -% \section{Package \xintexprname implementation} +% \section{Package \xintexprnameimp implementation} +% \label{sec:exprimp} % % The first version was released in June 2013. I was greatly helped in % this task of writing an expandable parser of infix operations by the @@ -19921,7 +20682,7 @@ first place. % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintexpr}% - [2013/11/04 v1.09f Expandable expression parser (jfB)]% + [2013/11/22 v1.09g Expandable expression parser (jfB)]% % \end{macrocode} % \subsection{Helper macros} % \begin{macrocode} @@ -20921,11 +21682,11 @@ first place. \xintApplyInline\mymacro\storedlinecounts \end{tabular} \def\mymacroaux #1#2{#2}% +% \parbox[t]{10cm}{Total number of code lines: \digitstt{\xintiSum{\xintApply\mymacro\storedlinecounts}}. Each package starts - with circa \digitstt{80} lines dealing - with catcodes, package identification and reloading management, also for Plain - \TeX\strut. Version + with circa \digitstt{80} lines dealing with catcodes, package identification + and reloading management, also for Plain \TeX\strut. Version \texttt{\pkgversion} of \texttt{\pkgdate}.\par} @@ -20944,7 +21705,7 @@ first place. Right bracket \] Circumflex \^ Underscore \_ Grave accent \` Left brace \{ Vertical bar \| Right brace \} Tilde \~} -\CheckSum {19898} +\CheckSum {20159} \makeatletter\check@checksum\makeatother \Finale %% diff --git a/Master/texmf-dist/source/generic/xint/xint.ins b/Master/texmf-dist/source/generic/xint/xint.ins index 9d8b5299c2f..717d1ac7adb 100644 --- a/Master/texmf-dist/source/generic/xint/xint.ins +++ b/Master/texmf-dist/source/generic/xint/xint.ins @@ -1,13 +1,14 @@ %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) %% Copyright (C) 2013 by Jean-Francois Burnol %%---------------------------------------------------------------- %% %% %% This is a generated file. Run tex or latex on this file to -%% extract xint.sty, xintfrac.sty, xintexpr.sty, xintbinhex.sty, -%% xintgcd.sty, xintseries.sty and xintcfrac.sty from xint.dtx +%% extract xinttools.sty, xint.sty, xintfrac.sty, xintexpr.sty, +%% xintbinhex.sty, xintgcd.sty, xintseries.sty and xintcfrac.sty +%% from xint.dtx %% %% See xint.dtx for the copyright and the conditions for %% distribution and/or modification of this work. @@ -15,6 +16,7 @@ \input docstrip.tex \askforoverwritefalse \generate{\usepreamble\defaultpreamble +\file{xinttools.sty}{\from{xint.dtx}{xinttools}} \file{xint.sty}{\from{xint.dtx}{xint}} \file{xintbinhex.sty}{\from{xint.dtx}{xintbinhex}} \file{xintgcd.sty}{\from{xint.dtx}{xintgcd}} diff --git a/Master/texmf-dist/tex/generic/xint/xint.sty b/Master/texmf-dist/tex/generic/xint/xint.sty index 26e616d946e..da74f7916af 100644 --- a/Master/texmf-dist/tex/generic/xint/xint.sty +++ b/Master/texmf-dist/tex/generic/xint/xint.sty @@ -22,7 +22,7 @@ %% in the same archive or directory.) %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) %% xint: Expandable operations on long numbers %% Copyright (C) 2013 by Jean-Francois Burnol %%---------------------------------------------------------------- @@ -33,13 +33,15 @@ \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ - \catcode95=11 % _ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : + \def\space { }% + \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xint.sty\endcsname + \expandafter\let\expandafter\w\csname ver@xinttools.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% @@ -51,142 +53,70 @@ \y{xint}{\numexpr not available, aborting input}% \aftergroup\endinput \else - \ifx\x\relax % plain-TeX, first loading + \ifx\x\relax % plain-TeX, first loading of xint.sty + \ifx\w\relax % but xinttools.sty not yet loaded. + \y{xint}{Package xinttools is required}% + \y{xint}{Will try \string\input\space xinttools.sty}% + \def\z{\endgroup\input xinttools.sty\relax}% + \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen + \ifx\w\relax % xinttools.sty not yet loaded. + \y{xint}{Package xinttools is required}% + \y{xint}{Will try \string\RequirePackage{xinttools}}% + \def\z{\endgroup\RequirePackage{xinttools}}% + \fi \else \y{xint}{I was already loaded, aborting input}% \aftergroup\endinput \fi \fi \fi - \def\ChangeCatcodesIfInputNotAborted - {% - \endgroup - \def\XINT_storecatcodes - {% takes care of all, to allow more economical code in modules - \catcode63=\the\catcode63 % ? xintexpr - \catcode124=\the\catcode124 % | xintexpr - \catcode38=\the\catcode38 % & xintexpr - \catcode64=\the\catcode64 % @ xintexpr - \catcode33=\the\catcode33 % ! xintexpr - \catcode93=\the\catcode93 % ] -, xintfrac, xintseries, xintcfrac - \catcode91=\the\catcode91 % [ -, xintfrac, xintseries, xintcfrac - \catcode36=\the\catcode36 % $ xintgcd only - \catcode94=\the\catcode94 % ^ - \catcode96=\the\catcode96 % ` - \catcode47=\the\catcode47 % / - \catcode41=\the\catcode41 % ) - \catcode40=\the\catcode40 % ( - \catcode42=\the\catcode42 % * - \catcode43=\the\catcode43 % + - \catcode62=\the\catcode62 % > - \catcode60=\the\catcode60 % < - \catcode58=\the\catcode58 % : - \catcode46=\the\catcode46 % . - \catcode45=\the\catcode45 % - - \catcode44=\the\catcode44 % , - \catcode35=\the\catcode35 % # - \catcode95=\the\catcode95 % _ - \catcode125=\the\catcode125 % } - \catcode123=\the\catcode123 % { - \endlinechar=\the\endlinechar - \catcode13=\the\catcode13 % ^^M - \catcode32=\the\catcode32 % - \catcode61=\the\catcode61\relax % = - }% - \edef\XINT_restorecatcodes_endinput - {% - \XINT_storecatcodes\noexpand\endinput % - }% - \def\XINT_setcatcodes - {% - \catcode61=12 % = - \catcode32=10 % space - \catcode13=5 % ^^M - \endlinechar=13 % - \catcode123=1 % { - \catcode125=2 % } - \catcode95=11 % _ (replaces @ everywhere, starting with 1.06b) - \catcode35=6 % # - \catcode44=12 % , - \catcode45=12 % - - \catcode46=12 % . - \catcode58=11 % : (made letter for error cs) - \catcode60=12 % < - \catcode62=12 % > - \catcode43=12 % + - \catcode42=12 % * - \catcode40=12 % ( - \catcode41=12 % ) - \catcode47=12 % / - \catcode96=12 % ` - \catcode94=11 % ^ - \catcode36=3 % $ - \catcode91=12 % [ - \catcode93=12 % ] - \catcode33=11 % ! - \catcode64=11 % @ - \catcode38=12 % & - \catcode124=12 % | - \catcode63=11 % ? - }% - \XINT_setcatcodes - }% -\ChangeCatcodesIfInputNotAborted -\def\XINTsetupcatcodes {% for use by other modules - \edef\XINT_restorecatcodes_endinput - {% - \XINT_storecatcodes\noexpand\endinput % - }% - \XINT_setcatcodes -}% -\ifdefined\ProvidesPackage - \let\XINT_providespackage\relax -\else - \def\XINT_providespackage #1#2[#3]% - {\immediate\write-1{Package: #2 #3}% - \expandafter\xdef\csname ver@#2.sty\endcsname{#3}}% -\fi +\z% +\begingroup\catcode61\catcode48\catcode32=10\relax% + \catcode13=5 % ^^M + \endlinechar=13 % + \catcode123=1 % { + \catcode125=2 % } + \catcode64=11 % @ + \catcode35=6 % # + \catcode44=12 % , + \catcode45=12 % - + \catcode46=12 % . + \catcode58=12 % : + \ifdefined\PackageInfo + \def\y#1#2{\PackageInfo{#1}{#2}}% + \else + \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% + \fi + \def\empty {}% + \expandafter\let\expandafter\w\csname ver@xinttools.sty\endcsname + \ifx\w\relax % Plain TeX, user gave a file name at the prompt + \y{xint}{Loading of package xinttools failed, aborting input}% + \aftergroup\endinput + \fi + \ifx\w\empty % LaTeX, user gave a file name at the prompt + \y{xint}{Loading of package xinttools failed, aborting input}% + \aftergroup\endinput + \fi +\endgroup% +\XINTsetupcatcodes% \XINT_providespackage -\ProvidesPackage {xint}% - [2013/11/04 v1.09f Expandable operations on long numbers (jfB)]% -\def\xint_gobble_ {}% -\def\xint_gobble_i #1{}% -\def\xint_gobble_ii #1#2{}% -\def\xint_gobble_iii #1#2#3{}% -\def\xint_gobble_iv #1#2#3#4{}% -\def\xint_gobble_v #1#2#3#4#5{}% -\def\xint_gobble_vi #1#2#3#4#5#6{}% -\def\xint_gobble_vii #1#2#3#4#5#6#7{}% -\def\xint_gobble_viii #1#2#3#4#5#6#7#8{}% -\long\def\xint_firstofone #1{#1}% becomes long in 1.09f, 2013/11/01 -\xint_firstofone{\let\XINT_sptoken= } % 1.09d, 2013/10/22 -\long\def\xint_firstoftwo #1#2{#1}% made long in 1.09e, 2013/10/28 -\long\def\xint_secondoftwo #1#2{#2}% -\def\xint_firstoftwo_andstop #1#2{ #1}% -\def\xint_secondoftwo_andstop #1#2{ #2}% -\def\xint_exchangetwo_keepbraces_andstop #1#2{ {#2}{#1}}% +\ProvidesPackage{xint}% + [2013/11/22 v1.09g Expandable operations on long numbers (jfB)]% \def\xint_firstofthree #1#2#3{#1}% \def\xint_secondofthree #1#2#3{#2}% \def\xint_thirdofthree #1#2#3{#3}% -\def\xint_minus_andstop { -}% -\long\def\xint_bye #1\xint_bye {}% becomes long in 1.09f -\def\xint_gob_til_R #1\R {}% -\def\xint_gob_til_W #1\W {}% -\def\xint_gob_til_Z #1\Z {}% \def\xint_gob_til_zero #10{}% +\def\xint_gob_til_zeros_iii #1000{}% +\def\xint_gob_til_zeros_iv #10000{}% \def\xint_gob_til_one #11{}% \def\xint_gob_til_G #1G{}% \def\xint_gob_til_minus #1-{}% -\def\xint_gob_til_zeros_iii #1000{}% -\def\xint_gob_til_zeros_iv #10000{}% -\let\xint_relax\relax -\def\xint_brelax {\xint_relax }% -\def\xint_gob_til_relax #1\relax {}% -\long\def\xint_gob_til_xint_relax #1\xint_relax {}% becomes long in 1.09f +\def\xint_gob_til_relax #1\relax {}% +\def\xint_exchangetwo_keepbraces_andstop #1#2{ {#2}{#1}}% \def\xint_UDzerofork #10\dummy #2#3\krof {#2}% \def\xint_UDsignfork #1-\dummy #2#3\krof {#2}% \def\xint_UDwfork #1\W\dummy #2#3\krof {#2}% @@ -194,18 +124,14 @@ \def\xint_UDonezerofork #110\dummy #2#3\krof {#2}% \def\xint_UDzerominusfork #10-\dummy #2#3\krof {#2}% \def\xint_UDsignsfork #1--\dummy #2#3\krof {#2}% -\def\xint_afterfi #1#2\fi {\fi #1}% -\chardef\xint_c_ 0 -\chardef\xint_c_i 1 +\chardef\xint_c_i 1 % 0 and 8 in xinttools \chardef\xint_c_ii 2 \chardef\xint_c_iii 3 \chardef\xint_c_iv 4 \chardef\xint_c_v 5 -\chardef\xint_c_viii 8 \chardef\xint_c_ix 9 \chardef\xint_c_x 10 \newcount\xint_c_x^viii \xint_c_x^viii 100000000 -\newtoks\XINT_toks \def\xintRev {\romannumeral0\xintrev }% \def\xintrev #1% {% @@ -222,80 +148,20 @@ -\dummy {\XINT_rord_main {}#1}% \krof }% -\def\XINT_Rev {\romannumeral0\XINT_rev }% -\def\xintReverseOrder {\romannumeral0\XINT_rev }% -\def\XINT_rev #1% -{% - \XINT_rord_main {}#1% - \xint_relax - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_bye\xint_bye\xint_bye\xint_bye - \xint_relax -}% -\def\XINT_rord_main #1#2#3#4#5#6#7#8#9% -{% - \xint_bye #9\XINT_rord_cleanup\xint_bye - \XINT_rord_main {#9#8#7#6#5#4#3#2#1}% -}% -\def\XINT_rord_cleanup\xint_bye\XINT_rord_main #1#2\xint_relax -{% - \expandafter\space\xint_gob_til_xint_relax #1% -}% -\def\xintRevWithBraces {\romannumeral0\xintrevwithbraces }% -\def\xintRevWithBracesNoExpand {\romannumeral0\xintrevwithbracesnoexpand }% -\def\xintrevwithbraces #1% -{% - \expandafter\XINT_revwbr_loop\expandafter{\expandafter}% - \romannumeral-`0#1\xint_relax\xint_relax\xint_relax\xint_relax - \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye -}% -\def\xintrevwithbracesnoexpand #1% -{% - \XINT_revwbr_loop {}% - #1\xint_relax\xint_relax\xint_relax\xint_relax - \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye -}% -\def\XINT_revwbr_loop #1#2#3#4#5#6#7#8#9% -{% - \xint_gob_til_xint_relax #9\XINT_revwbr_finish_a\xint_relax - \XINT_revwbr_loop {{#9}{#8}{#7}{#6}{#5}{#4}{#3}{#2}#1}% -}% -\def\XINT_revwbr_finish_a\xint_relax\XINT_revwbr_loop #1#2\xint_bye -{% - \XINT_revwbr_finish_b #2\R\R\R\R\R\R\R\Z #1% -}% -\def\XINT_revwbr_finish_b #1#2#3#4#5#6#7#8\Z -{% - \xint_gob_til_R - #1\XINT_revwbr_finish_c 8% - #2\XINT_revwbr_finish_c 7% - #3\XINT_revwbr_finish_c 6% - #4\XINT_revwbr_finish_c 5% - #5\XINT_revwbr_finish_c 4% - #6\XINT_revwbr_finish_c 3% - #7\XINT_revwbr_finish_c 2% - \R\XINT_revwbr_finish_c 1\Z -}% -\def\XINT_revwbr_finish_c #1#2\Z -{% - \expandafter\expandafter\expandafter - \space - \csname xint_gobble_\romannumeral #1\endcsname -}% \def\xintLen {\romannumeral0\xintlen }% \def\xintlen #1% {% - \expandafter\XINT_length_fork + \expandafter\XINT_len_fork \romannumeral0\xintnum{#1}\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% -\def\XINT_Len #1% +\def\XINT_Len #1% variant which does not expand via \xintnum. {% - \romannumeral0\XINT_length_fork + \romannumeral0\XINT_len_fork #1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% -\def\XINT_length_fork #1% +\def\XINT_len_fork #1% {% \expandafter\XINT_length_loop \xint_UDsignfork @@ -303,780 +169,6 @@ -\dummy {{0}#1}% \krof }% -\def\XINT_Length {\romannumeral0\XINT_length }% -\def\XINT_length #1% -{% - \XINT_length_loop - {0}#1\xint_relax\xint_relax\xint_relax\xint_relax - \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye -}% -\let\xintLength\XINT_Length -\def\XINT_length_loop #1#2#3#4#5#6#7#8#9% -{% - \xint_gob_til_xint_relax #9\XINT_length_finish_a\xint_relax - \expandafter\XINT_length_loop\expandafter {\the\numexpr #1+8\relax}% -}% -\def\XINT_length_finish_a\xint_relax - \expandafter\XINT_length_loop\expandafter #1#2\xint_bye -{% - \XINT_length_finish_b #2\W\W\W\W\W\W\W\Z {#1}% -}% -\def\XINT_length_finish_b #1#2#3#4#5#6#7#8\Z -{% - \xint_gob_til_W - #1\XINT_length_finish_c 8% - #2\XINT_length_finish_c 7% - #3\XINT_length_finish_c 6% - #4\XINT_length_finish_c 5% - #5\XINT_length_finish_c 4% - #6\XINT_length_finish_c 3% - #7\XINT_length_finish_c 2% - \W\XINT_length_finish_c 1\Z -}% -\def\XINT_length_finish_c #1#2\Z #3{\expandafter\space\the\numexpr #3-#1\relax}% -\def\xintZapFirstSpaces {\romannumeral0\xintzapfirstspaces }% -\edef\xintzapfirstspaces #1% - {\noexpand\XINT_zapbsp_a \space #1\space\space\noexpand\xint_bye\xint_relax }% -\xint_firstofone {\def\XINT_zapbsp_a #1 } %<- space token here -{% - \XINT_zapbsp_again? #1\xint_bye\XINT_zapbsp_b {#1}% -}% -\def\XINT_zapbsp_again? #1{\xint_bye #1\XINT_zapbsp_again }% -\edef\XINT_zapbsp_again\XINT_zapbsp_b #1{\noexpand\XINT_zapbsp_a\space }% -\def\XINT_zapbsp_b #1#2\xint_relax - {\XINT_zapbsp_end? #2\XINT_zapbsp_e\empty #2{#1}}% -\def\XINT_zapbsp_end? #1{\xint_bye #1\XINT_zapbsp_end }% -\def\XINT_zapbsp_end\XINT_zapbsp_e\empty #1\xint_bye #2{#2#1}% -\xint_firstofone{\def\XINT_zapbsp_e #1 } \xint_bye - {\expandafter\XINT_zapbsp_f \expandafter{#1}}% -\edef\XINT_zapbsp_f #1#2{#2\space\space #1}% -\def\xintZapLastSpaces {\romannumeral0\xintzaplastspaces }% -\edef\xintzaplastspaces #1{\noexpand\XINT_zapesp_a {\space}\noexpand\empty - #1\space\space\noexpand\xint_bye \xint_relax}% -\xint_firstofone {\def\XINT_zapesp_a #1#2 } %<- second space here - {\expandafter\XINT_zapesp_b\expandafter{#2}{#1}}% -\def\XINT_zapesp_b #1#2#3\xint_relax - {\XINT_zapesp_end? #3\XINT_zapesp_e {#2#1}\empty #3\xint_relax }% -\def\XINT_zapesp_end? #1{\xint_bye #1\XINT_zapesp_end }% -\def\XINT_zapesp_end\XINT_zapesp_e #1#2\xint_relax {#1}% -\edef\XINT_zapesp_e #1{\noexpand \XINT_zapesp_a {#1\space\space}}% -\def\xintZapSpaces {\romannumeral0\xintzapspaces }% -\edef\xintzapspaces #1% - {\noexpand\XINT_zapsp_a \space #1\space\space\noexpand\xint_bye\xint_relax}% -\xint_firstofone {\def\XINT_zapsp_a #1 } %<- space token here -{% - \XINT_zapsp_again? #1\xint_bye\XINT_zapesp_b {#1}{}% -}% -\def\XINT_zapsp_again? #1{\xint_bye #1\XINT_zapsp_again }% -\edef\XINT_zapsp_again\XINT_zapesp_b #1#2{\noexpand\XINT_zapsp_a\space }% -\def\xintZapSpacesB {\romannumeral0\xintzapspacesb }% -\def\xintzapspacesb #1{\XINT_zapspb_one? #1\xint_relax\xint_relax - \xint_bye\xintzapspaces {#1}}% -\def\XINT_zapspb_one? #1#2% - {\xint_gob_til_xint_relax #1\XINT_zapspb_onlyspaces\xint_relax - \xint_gob_til_xint_relax #2\XINT_zapspb_bracedorone\xint_relax - \xint_bye {#1}}% -\def\XINT_zapspb_onlyspaces\xint_relax - \xint_gob_til_xint_relax\xint_relax\XINT_zapspb_bracedorone\xint_relax - \xint_bye #1\xint_bye\xintzapspaces #2{ }% -\def\XINT_zapspb_bracedorone\xint_relax - \xint_bye #1\xint_relax\xint_bye\xintzapspaces #2{ #1}% -\def\xintCSVtoList {\romannumeral0\xintcsvtolist }% -\def\xintcsvtolist #1{\expandafter\xintApply\expandafter\xintzapspacesb - \expandafter{\romannumeral0\xintcsvtolistnonstripped{#1}}}% -\def\xintCSVtoListNoExpand {\romannumeral0\xintcsvtolistnoexpand }% -\def\xintcsvtolistnoexpand #1{\expandafter\xintApply\expandafter\xintzapspacesb - \expandafter{\romannumeral0\xintcsvtolistnonstrippednoexpand{#1}}}% -\def\xintCSVtoListNonStripped {\romannumeral0\xintcsvtolistnonstripped }% -\def\xintCSVtoListNonStrippedNoExpand - {\romannumeral0\xintcsvtolistnonstrippednoexpand }% -\def\xintcsvtolistnonstripped #1% -{% - \expandafter\XINT_csvtol_loop_a\expandafter - {\expandafter}\romannumeral-`0#1% - ,\xint_bye,\xint_bye,\xint_bye,\xint_bye - ,\xint_bye,\xint_bye,\xint_bye,\xint_bye,\Z -}% -\def\xintcsvtolistnonstrippednoexpand #1% -{% - \XINT_csvtol_loop_a - {}#1,\xint_bye,\xint_bye,\xint_bye,\xint_bye - ,\xint_bye,\xint_bye,\xint_bye,\xint_bye,\Z -}% -\def\XINT_csvtol_loop_a #1#2,#3,#4,#5,#6,#7,#8,#9,% -{% - \xint_bye #9\XINT_csvtol_finish_a\xint_bye - \XINT_csvtol_loop_b {#1}{{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}}% -}% -\def\XINT_csvtol_loop_b #1#2{\XINT_csvtol_loop_a {#1#2}}% -\def\XINT_csvtol_finish_a\xint_bye\XINT_csvtol_loop_b #1#2#3\Z -{% - \XINT_csvtol_finish_b #3\R,\R,\R,\R,\R,\R,\R,\Z #2{#1}% -}% -\def\XINT_csvtol_finish_b #1,#2,#3,#4,#5,#6,#7,#8\Z -{% - \xint_gob_til_R - #1\XINT_csvtol_finish_c 8% - #2\XINT_csvtol_finish_c 7% - #3\XINT_csvtol_finish_c 6% - #4\XINT_csvtol_finish_c 5% - #5\XINT_csvtol_finish_c 4% - #6\XINT_csvtol_finish_c 3% - #7\XINT_csvtol_finish_c 2% - \R\XINT_csvtol_finish_c 1\Z -}% -\def\XINT_csvtol_finish_c #1#2\Z -{% - \csname XINT_csvtol_finish_d\romannumeral #1\endcsname -}% -\def\XINT_csvtol_finish_dviii #1#2#3#4#5#6#7#8#9{ #9}% -\def\XINT_csvtol_finish_dvii #1#2#3#4#5#6#7#8#9{ #9{#1}}% -\def\XINT_csvtol_finish_dvi #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}}% -\def\XINT_csvtol_finish_dv #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}}% -\def\XINT_csvtol_finish_div #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}}% -\def\XINT_csvtol_finish_diii #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}{#5}}% -\def\XINT_csvtol_finish_dii #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}{#5}{#6}}% -\def\XINT_csvtol_finish_di #1#2#3#4#5#6#7#8#9% - { #9{#1}{#2}{#3}{#4}{#5}{#6}{#7}}% -\def\xintListWithSep {\romannumeral0\xintlistwithsep }% -\def\xintListWithSepNoExpand {\romannumeral0\xintlistwithsepnoexpand }% -\long\def\xintlistwithsep #1#2% - {\expandafter\XINT_lws\expandafter {\romannumeral-`0#2}{#1}}% -\long\def\XINT_lws #1#2{\XINT_lws_start {#2}#1\xint_bye }% -\long\def\xintlistwithsepnoexpand #1#2{\XINT_lws_start {#1}#2\xint_bye }% -\long\def\XINT_lws_start #1#2% -{% - \xint_bye #2\XINT_lws_dont\xint_bye - \XINT_lws_loop_a {#2}{#1}% -}% -\long\def\XINT_lws_dont\xint_bye\XINT_lws_loop_a #1#2{ }% -\long\def\XINT_lws_loop_a #1#2#3% -{% - \xint_bye #3\XINT_lws_end\xint_bye - \XINT_lws_loop_b {#1}{#2#3}{#2}% -}% -\long\def\XINT_lws_loop_b #1#2{\XINT_lws_loop_a {#1#2}}% -\long\def\XINT_lws_end\xint_bye\XINT_lws_loop_b #1#2#3{ #1}% -\def\xintNthElt {\romannumeral0\xintnthelt }% -\def\xintNthEltNoExpand {\romannumeral0\xintntheltnoexpand }% -\def\xintnthelt #1% -{% - \expandafter\XINT_nthelt_a\expandafter {\the\numexpr #1}% -}% -\def\xintntheltnoexpand #1% -{% - \expandafter\XINT_ntheltnoexpand_a\expandafter {\the\numexpr #1}% -}% -\def\XINT_nthelt_a #1#2% -{% - \ifnum #1<0 - \xint_afterfi{\expandafter\XINT_nthelt_c\expandafter - {\romannumeral0\xintrevwithbraces {#2}}{-#1}}% - \else - \xint_afterfi{\expandafter\XINT_nthelt_c\expandafter - {\romannumeral-`0#2}{#1}}% - \fi -}% -\def\XINT_ntheltnoexpand_a #1#2% -{% - \ifnum #1<0 - \xint_afterfi{\expandafter\XINT_nthelt_c\expandafter - {\romannumeral0\xintrevwithbracesnoexpand {#2}}{-#1}}% - \else - \xint_afterfi{\expandafter\XINT_nthelt_c\expandafter - {#2}{#1}}% - \fi -}% -\def\XINT_nthelt_c #1#2% -{% - \ifnum #2>\xint_c_ - \expandafter\XINT_nthelt_loop_a - \else - \expandafter\XINT_length_loop - \fi {#2}#1\xint_relax\xint_relax\xint_relax\xint_relax - \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye -}% -\def\XINT_nthelt_loop_a #1% -{% - \ifnum #1>\xint_c_viii - \expandafter\XINT_nthelt_loop_b - \else - \expandafter\XINT_nthelt_getit - \fi - {#1}% -}% -\def\XINT_nthelt_loop_b #1#2#3#4#5#6#7#8#9% -{% - \xint_gob_til_xint_relax #9\XINT_nthelt_silentend\xint_relax - \expandafter\XINT_nthelt_loop_a\expandafter{\the\numexpr #1-8}% -}% -\def\XINT_nthelt_silentend #1\xint_bye { }% -\def\XINT_nthelt_getit #1% -{% - \expandafter\expandafter\expandafter\XINT_nthelt_finish - \csname xint_gobble_\romannumeral\numexpr#1-1\endcsname -}% -\def\XINT_nthelt_finish #1#2\xint_bye - {\xint_gob_til_xint_relax #1\expandafter\space - \xint_gobble_iii\xint_relax\space #1}% -\def\xintApply {\romannumeral0\xintapply }% -\def\xintApplyNoExpand {\romannumeral0\xintapplynoexpand }% -\def\xintapply #1#2% -{% - \expandafter\XINT_apply\expandafter {\romannumeral-`0#2}% - {#1}% -}% -\def\XINT_apply #1#2{\XINT_apply_loop_a {}{#2}#1\xint_bye }% -\def\xintapplynoexpand #1#2{\XINT_apply_loop_a {}{#1}#2\xint_bye }% -\def\XINT_apply_loop_a #1#2#3% -{% - \xint_bye #3\XINT_apply_end\xint_bye - \expandafter - \XINT_apply_loop_b - \expandafter {\romannumeral-`0#2{#3}}{#1}{#2}% -}% -\def\XINT_apply_loop_b #1#2{\XINT_apply_loop_a {#2{#1}}}% -\def\XINT_apply_end\xint_bye\expandafter\XINT_apply_loop_b - \expandafter #1#2#3{ #2}% -\def\xintApplyUnbraced {\romannumeral0\xintapplyunbraced }% -\def\xintApplyUnbracedNoExpand {\romannumeral0\xintapplyunbracednoexpand }% -\def\xintapplyunbraced #1#2% -{% - \expandafter\XINT_applyunbr\expandafter {\romannumeral-`0#2}% - {#1}% -}% -\def\XINT_applyunbr #1#2{\XINT_applyunbr_loop_a {}{#2}#1\xint_bye }% -\def\xintapplyunbracednoexpand #1#2% - {\XINT_applyunbr_loop_a {}{#1}#2\xint_bye }% -\def\XINT_applyunbr_loop_a #1#2#3% -{% - \xint_bye #3\XINT_applyunbr_end\xint_bye - \expandafter\XINT_applyunbr_loop_b - \expandafter {\romannumeral-`0#2{#3}}{#1}{#2}% -}% -\def\XINT_applyunbr_loop_b #1#2{\XINT_applyunbr_loop_a {#2#1}}% -\def\XINT_applyunbr_end\xint_bye\expandafter\XINT_applyunbr_loop_b - \expandafter #1#2#3{ #2}% -\def\xintSeq {\romannumeral0\xintseq }% -\def\xintseq #1{\XINT_seq_chkopt #1\xint_bye }% -\def\XINT_seq_chkopt #1% -{% - \ifx [#1\expandafter\XINT_seq_opt - \else\expandafter\XINT_seq_noopt - \fi #1% -}% -\def\XINT_seq_noopt #1\xint_bye #2% -{% - \expandafter\XINT_seq\expandafter - {\the\numexpr#1\expandafter}\expandafter{\the\numexpr #2}% -}% -\def\XINT_seq #1#2% -{% - \ifcase\xintiiSgn{\the\numexpr #2-#1\relax} - \expandafter\xint_firstoftwo_andstop - \or - \expandafter\XINT_seq_p - \else - \expandafter\XINT_seq_n - \fi - {#2}{#1}% -}% -\def\XINT_seq_p #1#2% -{% - \ifnum #1>#2 - \xint_afterfi{\expandafter\XINT_seq_p}% - \else - \expandafter\XINT_seq_e - \fi - \expandafter{\the\numexpr #1-1}{#2}{#1}% -}% -\def\XINT_seq_n #1#2% -{% - \ifnum #1<#2 - \xint_afterfi{\expandafter\XINT_seq_n}% - \else - \expandafter\XINT_seq_e - \fi - \expandafter{\the\numexpr #1+1}{#2}{#1}% -}% -\def\XINT_seq_e #1#2#3{ }% -\def\XINT_seq_opt [\xint_bye #1]#2#3% -{% - \expandafter\XINT_seqo\expandafter - {\the\numexpr #2\expandafter}\expandafter - {\the\numexpr #3\expandafter}\expandafter - {\the\numexpr #1}% -}% -\def\XINT_seqo #1#2% -{% - \ifcase\xintiiSgn{\the\numexpr #2-#1\relax} - \expandafter\XINT_seqo_a - \or - \expandafter\XINT_seqo_pa - \else - \expandafter\XINT_seqo_na - \fi - {#1}{#2}% -}% -\def\XINT_seqo_a #1#2#3{ {#1}}% -\def\XINT_seqo_o #1#2#3#4{ #4}% -\def\XINT_seqo_pa #1#2#3% -{% - \ifcase\XINT_Sgn {#3} - \expandafter\XINT_seqo_o - \or - \expandafter\XINT_seqo_pb - \else - \xint_afterfi{\expandafter\space\xint_gobble_iv}% - \fi - {#1}{#2}{#3}{{#1}}% -}% -\def\XINT_seqo_pb #1#2#3% -{% - \expandafter\XINT_seqo_pc\expandafter{\the\numexpr #1+#3}{#2}{#3}% -}% -\def\XINT_seqo_pc #1#2% -{% - \ifnum#1>#2 - \expandafter\XINT_seqo_o - \else - \expandafter\XINT_seqo_pd - \fi - {#1}{#2}% -}% -\def\XINT_seqo_pd #1#2#3#4{\XINT_seqo_pb {#1}{#2}{#3}{#4{#1}}}% -\def\XINT_seqo_na #1#2#3% -{% - \ifcase\XINT_Sgn {#3} - \expandafter\XINT_seqo_o - \or - \xint_afterfi{\expandafter\space\xint_gobble_iv}% - \else - \expandafter\XINT_seqo_nb - \fi - {#1}{#2}{#3}{{#1}}% -}% -\def\XINT_seqo_nb #1#2#3% -{% - \expandafter\XINT_seqo_nc\expandafter{\the\numexpr #1+#3}{#2}{#3}% -}% -\def\XINT_seqo_nc #1#2% -{% - \ifnum#1<#2 - \expandafter\XINT_seqo_o - \else - \expandafter\XINT_seqo_nd - \fi - {#1}{#2}% -}% -\def\XINT_seqo_nd #1#2#3#4{\XINT_seqo_nb {#1}{#2}{#3}{#4{#1}}}% -\def\XINT_xflet #1% -{% - \def\XINT_xflet_macro {#1}\XINT_xflet_zapsp -}% -\def\XINT_xflet_zapsp -{% - \expandafter\futurelet\expandafter\XINT_token - \expandafter\XINT_xflet_sp?\romannumeral-`0% -}% -\def\XINT_xflet_sp? -{% - \ifx\XINT_token\XINT_sptoken - \expandafter\XINT_xflet_zapsp - \else\expandafter\XINT_xflet_zapspB - \fi -}% -\def\XINT_xflet_zapspB -{% - \expandafter\futurelet\expandafter\XINT_tokenB - \expandafter\XINT_xflet_spB?\romannumeral-`0% -}% -\def\XINT_xflet_spB? -{% - \ifx\XINT_tokenB\XINT_sptoken - \expandafter\XINT_xflet_zapspB - \else\expandafter\XINT_xflet_eq? - \fi -}% -\def\XINT_xflet_eq? -{% - \ifx\XINT_token\XINT_tokenB - \expandafter\XINT_xflet_macro - \else\expandafter\XINT_xflet_zapsp - \fi -}% -\catcode`Z 3% -\def\xintApplyInline #1#2% -{% - \long\expandafter\def\expandafter\XINT_inline_macro - \expandafter ##\expandafter 1\expandafter {#1{##1}}% - \XINT_xflet\XINT_inline_b #2Z% this Z has catcode 3 -}% -\def\XINT_inline_b -{% - \ifx\XINT_token Z\expandafter\xint_gobble_i - \else\expandafter\XINT_inline_d - \fi -}% -\def\XINT_inline_d #1% -{% - \def\XINT_item{{#1}}\XINT_xflet\XINT_inline_e -}% -\def\XINT_inline_e -{% - \ifx\XINT_token Z\expandafter\XINT_inline_w - \else\expandafter\XINT_inline_f - \fi -}% -\def\XINT_inline_f -{% - \expandafter\XINT_inline_g\expandafter{\XINT_inline_macro {##1}}% -}% -\def\XINT_inline_g #1% -{% - \expandafter\XINT_inline_macro\XINT_item - \long\def\XINT_inline_macro ##1{#1}\XINT_inline_d -}% -\def\XINT_inline_w #1% -{% - \expandafter\XINT_inline_macro\XINT_item -}% -\def\XINT_tmpa #1#2{\ifnum #2<#1 \xint_afterfi {{#########2}}\fi}% -\def\XINT_tmpb #1#2{\ifnum #1<#2 \xint_afterfi {{#########2}}\fi}% -\def\XINT_tmpc #1% -{% - \expandafter\edef \csname XINT_for_left#1\endcsname - {\xintApplyUnbraced {\XINT_tmpa #1}{123456789}}% - \expandafter\edef \csname XINT_for_right#1\endcsname - {\xintApplyUnbraced {\XINT_tmpb #1}{123456789}}% -}% -\xintApplyInline \XINT_tmpc {123456789}% -\long\def\xintBreakFor #1Z{}% -\long\def\xintBreakForAndDo #1#2Z{#1}% -\def\xintFor {\let\xintifForFirst\xint_firstoftwo - \futurelet\XINT_token\XINT_for_ifstar }% -\def\XINT_for_ifstar {\ifx\XINT_token*\expandafter\XINT_forx - \else\expandafter\XINT_for \fi }% -\catcode`U 3 % with numexpr -\catcode`V 3 % with xintfrac.sty (xint.sty not enough) -\catcode`D 3 % with dimexpr -\def\XINT_flet_zapsp -{% - \futurelet\XINT_token\XINT_flet_sp? -}% -\def\XINT_flet_sp? -{% - \ifx\XINT_token\XINT_sptoken - \xint_afterfi{\expandafter\XINT_flet_zapsp\romannumeral0}% - \else\expandafter\XINT_flet_macro - \fi -}% -\long\def\XINT_for #1#2in#3#4#5% -{% - \count 255 #2\relax - \expandafter\XINT_toks\expandafter - {\expandafter\XINT_for_d\the\count 255{#5}}% - \def\XINT_flet_macro {\expandafter\XINT_for_forever?\space}% - \expandafter\XINT_flet_zapsp #3Z% -}% -\def\XINT_for_forever? #1Z% -{% - \ifx\XINT_token U\XINT_to_forever\fi - \ifx\XINT_token V\XINT_to_forever\fi - \ifx\XINT_token D\XINT_to_forever\fi - \expandafter\the\expandafter\XINT_toks\romannumeral0\xintcsvtolist {#1}Z% -}% -\def\XINT_to_forever\fi #1\xintcsvtolist #2{\fi \XINT_forever #2}% -\long\def\XINT_forx *#1#2in#3#4#5% -{% - \count 255 #2\relax - \expandafter\XINT_toks\expandafter - {\expandafter\XINT_forx_d\the\count 255{#5}}% - \XINT_xflet\XINT_forx_forever? #3Z% -}% -\def\XINT_forx_forever? -{% - \ifx\XINT_token U\XINT_to_forxever\fi - \ifx\XINT_token V\XINT_to_forxever\fi - \ifx\XINT_token D\XINT_to_forxever\fi - \XINT_forx_empty? -}% -\def\XINT_to_forxever\fi #1\XINT_forx_empty? {\fi \XINT_forever }% -\catcode`U 11 -\catcode`D 11 -\catcode`V 11 -\def\XINT_forx_empty? -{% - \ifx\XINT_token Z\expandafter\xintBreakFor\fi - \the\XINT_toks -}% -\long\def\XINT_for_d #1#2#3% -{% - \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% - \XINT_toks {{#3}}% - \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname - \the\XINT_toks \csname XINT_for_right#1\endcsname }% - \XINT_toks {\XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_for_d #1{#2}}% - \futurelet\XINT_token\XINT_for_last? -}% -\long\def\XINT_forx_d #1#2#3% -{% - \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% - \XINT_toks {{#3}}% - \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname - \the\XINT_toks \csname XINT_for_right#1\endcsname }% - \XINT_toks {\XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forx_d #1{#2}}% - \XINT_xflet\XINT_for_last? -}% -\def\XINT_for_last? -{% - \let\xintifForLast\xint_secondoftwo - \ifx\XINT_token Z\let\xintifForLast\xint_firstoftwo - \xint_afterfi{\xintBreakForAndDo\XINT_x}\fi - \the\XINT_toks -}% -\catcode`U 3 -\catcode`D 3 -\catcode`V 3 -\let\xintegers U% -\let\xintintegers U% -\let\xintdimensions D% -\let\xintrationals V% -\def\XINT_forever #1% -{% - \expandafter\XINT_forever_a - \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi a\expandafter\endcsname - \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi i\expandafter\endcsname - \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi \endcsname -}% -\catcode`U 11 -\catcode`D 11 -\catcode`V 11 -\def\XINT_?expr_Ua #1#2% - {\expandafter{\expandafter\numexpr\the\numexpr #1\expandafter\relax - \expandafter\relax\expandafter}% - \expandafter{\the\numexpr #2}}% -\def\XINT_?expr_Da #1#2% - {\expandafter{\expandafter\dimexpr\number\dimexpr #1\expandafter\relax - \expandafter s\expandafter p\expandafter\relax\expandafter}% - \expandafter{\number\dimexpr #2}}% -\catcode`Z 11 -\def\XINT_?expr_Va #1#2% -{% - \expandafter\XINT_?expr_Vb\expandafter - {\romannumeral-`0\xintrawwithzeros{\xintZapSpacesB{#2}}}% - {\romannumeral-`0\xintrawwithzeros{\xintZapSpacesB{#1}}}% -}% -\catcode`Z 3 -\def\XINT_?expr_Vb #1#2{\expandafter\XINT_?expr_Vc #2.#1.}% -\def\XINT_?expr_Vc #1/#2.#3/#4.% -{% - \xintifEq {#2}{#4}% - {\XINT_?expr_Vf {#3}{#1}{#2}}% - {\expandafter\XINT_?expr_Vd\expandafter - {\romannumeral0\xintiimul {#2}{#4}}% - {\romannumeral0\xintiimul {#1}{#4}}% - {\romannumeral0\xintiimul {#2}{#3}}% - }% -}% -\def\XINT_?expr_Vd #1#2#3{\expandafter\XINT_?expr_Ve\expandafter {#2}{#3}{#1}}% -\def\XINT_?expr_Ve #1#2{\expandafter\XINT_?expr_Vf\expandafter {#2}{#1}}% -\def\XINT_?expr_Vf #1#2#3{{#2/#3}{{0}{#1}{#2}{#3}}}% -\def\XINT_?expr_Ui {{\numexpr 1\relax}{1}}% -\def\XINT_?expr_Di {{\dimexpr 0pt\relax}{65536}}% -\def\XINT_?expr_Vi {{1/1}{0111}}% -\def\XINT_?expr_U #1#2% - {\expandafter{\expandafter\numexpr\the\numexpr #1+#2\relax\relax}{#2}}% -\def\XINT_?expr_D #1#2% - {\expandafter{\expandafter\dimexpr\the\numexpr #1+#2\relax sp\relax}{#2}}% -\def\XINT_?expr_V #1#2{\XINT_?expr_Vx #2}% -\def\XINT_?expr_Vx #1#2% -{% - \expandafter\XINT_?expr_Vy\expandafter - {\romannumeral0\xintiiadd {#1}{#2}}{#2}% -}% -\def\XINT_?expr_Vy #1#2#3#4% -{% - \expandafter{\romannumeral0\xintiiadd {#3}{#1}/#4}{{#1}{#2}{#3}{#4}}% -}% -\def\XINT_forever_a #1#2#3#4% -{% - \ifx #4[\expandafter\XINT_forever_opt_a - \else\expandafter\XINT_forever_b - \fi #1#2#3#4% -}% -\def\XINT_forever_b #1#2#3Z{\expandafter\XINT_forever_c\the\XINT_toks #2#3}% -\long\def\XINT_forever_c #1#2#3#4#5% - {\expandafter\XINT_forever_d\expandafter #2#4#5{#3}Z}% -\def\XINT_forever_opt_a #1#2#3[#4+#5]#6Z% -{% - \expandafter\expandafter\expandafter - \XINT_forever_opt_c\expandafter\the\expandafter\XINT_toks - \romannumeral-`0#1{#4}{#5}#3% -}% -\long\def\XINT_forever_opt_c #1#2#3#4#5#6{\XINT_forever_d #2{#4}{#5}#6{#3}Z}% -\long\def\XINT_forever_d #1#2#3#4#5% -{% - \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#5}% - \XINT_toks {{#2}}% - \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname - \the\XINT_toks \csname XINT_for_right#1\endcsname }% - \XINT_x - \let\xintifForFirst\xint_secondoftwo - \expandafter\XINT_forever_d\expandafter #1\romannumeral-`0#4{#2}{#3}#4{#5}% -}% -\catcode`j 3 -\long\def\xintForpair #1#2#3in#4#5#6% -{% - \let\xintifForFirst\xint_firstoftwo - \XINT_toks {\XINT_forpair_d #2{#6}}% - \expandafter\the\expandafter\XINT_toks #4jZ% -}% -\long\def\XINT_forpair_d #1#2#3(#4)#5% -{% - \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% - \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% - \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname - \the\XINT_toks \csname XINT_for_right\the\numexpr#1+1\endcsname}% - \let\xintifForLast\xint_secondoftwo - \ifx #5j\let\xintifForLast\xint_firstoftwo\expandafter\xintBreakForAndDo\fi - \XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forpair_d #1{#2}% -}% -\long\def\xintForthree #1#2#3in#4#5#6% -{% - \let\xintifForFirst\xint_firstoftwo - \XINT_toks {\XINT_forthree_d #2{#6}}% - \expandafter\the\expandafter\XINT_toks #4jZ% -}% -\long\def\XINT_forthree_d #1#2#3(#4)#5% -{% - \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% - \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% - \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname - \the\XINT_toks \csname XINT_for_right\the\numexpr#1+2\endcsname}% - \let\xintifForLast\xint_secondoftwo - \ifx #5j\let\xintifForLast\xint_firstoftwo\expandafter\xintBreakForAndDo\fi - \XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forthree_d #1{#2}% -}% -\long\def\xintForfour #1#2#3in#4#5#6% -{% - \let\xintifForFirst\xint_firstoftwo - \XINT_toks {\XINT_forfour_d #2{#6}}% - \expandafter\the\expandafter\XINT_toks #4jZ% -}% -\long\def\XINT_forfour_d #1#2#3(#4)#5% -{% - \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% - \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% - \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname - \the\XINT_toks \csname XINT_for_right\the\numexpr#1+3\endcsname}% - \let\xintifForLast\xint_secondoftwo - \ifx #5j\let\xintifForLast\xint_firstoftwo\expandafter\xintBreakForAndDo\fi - \XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forfour_d #1{#2}% -}% -\catcode`Z 11 -\catcode`j 11 -\def\xintAssign #1\to -{% - \expandafter\XINT_assign_a\romannumeral-`0#1{}\to -}% -\def\XINT_assign_a #1% attention to the # at the beginning of next line -#{% - \def\xint_temp {#1}% - \ifx\empty\xint_temp - \expandafter\XINT_assign_b - \else - \expandafter\XINT_assign_B - \fi -}% -\def\XINT_assign_b #1#2\to #3% -{% - \edef #3{#1}\def\xint_temp {#2}% - \ifx\empty\xint_temp - \else - \xint_afterfi{\XINT_assign_a #2\to }% - \fi -}% -\def\XINT_assign_B #1\to #2% -{% - \edef #2{\xint_temp}% -}% -\def\xintRelaxArray #1% -{% - \edef\XINT_restoreescapechar {\escapechar\the\escapechar\relax}% - \escapechar -1 - \edef\xint_arrayname {\string #1}% - \XINT_restoreescapechar - \expandafter\let\expandafter\xint_temp - \csname\xint_arrayname 0\endcsname - \count 255 0 - \loop - \global\expandafter\let - \csname\xint_arrayname\the\count255\endcsname\relax - \ifnum \count 255 < \xint_temp - \advance\count 255 1 - \repeat - \global\expandafter\let\csname\xint_arrayname 00\endcsname\relax - \global\let #1\relax -}% -\def\xintAssignArray #1\to #2% 1.06b: #1 may now be empty -{% - \edef\XINT_restoreescapechar {\escapechar\the\escapechar\relax }% - \escapechar -1 - \edef\xint_arrayname {\string #2}% - \XINT_restoreescapechar - \count 255 0 - \expandafter\XINT_assignarray_loop \romannumeral-`0#1\xint_relax - \csname\xint_arrayname 00\endcsname - \csname\xint_arrayname 0\endcsname - {\xint_arrayname}% - #2% -}% -\def\XINT_assignarray_loop #1% -{% - \def\xint_temp {#1}% - \ifx\xint_brelax\xint_temp - \expandafter\edef\csname\xint_arrayname 0\endcsname{\the\count 255 }% - \expandafter\expandafter\expandafter\XINT_assignarray_end_a - \else - \advance\count 255 1 - \expandafter\edef - \csname\xint_arrayname\the\count 255\endcsname{\xint_temp }% - \expandafter\XINT_assignarray_loop - \fi -}% -\def\XINT_assignarray_end_a #1% -{% - \expandafter\XINT_assignarray_end_b\expandafter #1% -}% -\def\XINT_assignarray_end_b #1#2#3% -{% - \expandafter\XINT_assignarray_end_c - \expandafter #1\expandafter #2\expandafter {#3}% -}% -\def\XINT_assignarray_end_c #1#2#3#4% -{% - \def #4##1% - {% - \romannumeral0\expandafter #1\expandafter{\the\numexpr ##1}% - }% - \def #1##1% - {% - \ifnum ##1< 0 - \xint_afterfi {\xintError:ArrayIndexIsNegative\space 0}% - \else - \xint_afterfi {% - \ifnum ##1>#2 - \xint_afterfi {\xintError:ArrayIndexBeyondLimit\space 0}% - \else - \xint_afterfi - {\expandafter\expandafter\expandafter - \space\csname #3##1\endcsname}% - \fi}% - \fi - }% -}% -\let\xintDigitsOf\xintAssignArray \def\XINT_RQ #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_R #9\XINT_RQ_end_a\R\XINT_RQ {#9#8#7#6#5#4#3#2#1}% @@ -2519,28 +1611,28 @@ \def\XINT_mul_minusminus #1#2% {% \expandafter\XINT_mul_choice_a - \expandafter{\romannumeral0\XINT_length {#2}}% - {\romannumeral0\XINT_length {#1}}{#1}{#2}% + \expandafter{\romannumeral0\xintlength {#2}}% + {\romannumeral0\xintlength {#1}}{#1}{#2}% }% \def\XINT_mul_minusplus #1#2#3% {% \expandafter\xint_minus_andstop\romannumeral0\expandafter \XINT_mul_choice_a - \expandafter{\romannumeral0\XINT_length {#1#3}}% - {\romannumeral0\XINT_length {#2}}{#2}{#1#3}% + \expandafter{\romannumeral0\xintlength {#1#3}}% + {\romannumeral0\xintlength {#2}}{#2}{#1#3}% }% \def\XINT_mul_plusminus #1#2#3% {% \expandafter\xint_minus_andstop\romannumeral0\expandafter \XINT_mul_choice_a - \expandafter{\romannumeral0\XINT_length {#3}}% - {\romannumeral0\XINT_length {#1#2}}{#1#2}{#3}% + \expandafter{\romannumeral0\xintlength {#3}}% + {\romannumeral0\xintlength {#1#2}}{#1#2}{#3}% }% \def\XINT_mul_plusplus #1#2#3#4% {% \expandafter\XINT_mul_choice_a - \expandafter{\romannumeral0\XINT_length {#2#4}}% - {\romannumeral0\XINT_length {#1#3}}{#1#3}{#2#4}% + \expandafter{\romannumeral0\xintlength {#2#4}}% + {\romannumeral0\xintlength {#1#3}}{#1#3}{#2#4}% }% \def\XINT_mul_choice_a #1#2% {% @@ -2681,7 +1773,7 @@ \def\XINT_mul_M_zero #1\Z\Z\Z\Z { 0}% \def\XINT_mul_M_one #1#2#3#4\Z\Z\Z\Z {% - \expandafter\xint_cleanupzeros_andstop\romannumeral0\XINT_rev{#4}% + \expandafter\xint_cleanupzeros_andstop\romannumeral0\xintreverseorder{#4}% }% \def\XINT_mul_N #1#2#3#4#5#6#7% {% @@ -2780,7 +1872,7 @@ }% \def\XINT_mul_finish_c #1\XINT_mul_finish_ciii \W\W\W\W #2#3\Z\Z\Z\Z {% - \expandafter\xint_cleanupzeros_andstop\romannumeral0\XINT_rev{#2}% + \expandafter\xint_cleanupzeros_andstop\romannumeral0\xintreverseorder{#2}% }% \def\XINT_mulr_enter #1\Z\Z\Z\Z #2#3#4#5% {% @@ -3131,7 +2223,7 @@ \def\XINT_pow_pprod_end\relax\XINT_pow_pprod_compute #1\Z #2% {% \expandafter\xint_cleanupzeros_andstop - \romannumeral0\XINT_rev {#2}% + \romannumeral0\xintreverseorder {#2}% }% \def\xintiiQuo {\romannumeral0\xintiiquo }% \def\xintiiRem {\romannumeral0\xintiirem }% @@ -3223,7 +2315,7 @@ \def\XINT_div_prepare #1% {% \expandafter \XINT_div_prepareB_aa \expandafter - {\romannumeral0\XINT_length {#1}}{#1}% B > 0 ici + {\romannumeral0\xintlength {#1}}{#1}% B > 0 ici }% \def\XINT_div_prepareB_aa #1% {% @@ -3271,7 +2363,7 @@ \def\XINT_div_prepareB_f #1#2#3#4#5\Z {% \expandafter \XINT_div_prepareB_g \expandafter - {\romannumeral0\XINT_rev {#1#2#3#4#5}}{#1#2#3#4}% + {\romannumeral0\xintreverseorder {#1#2#3#4#5}}{#1#2#3#4}% }% \def\XINT_div_prepareB_g #1#2#3#4#5#6% {% @@ -3280,7 +2372,7 @@ \def\XINT_div_prepareA_a #1% {% \expandafter \XINT_div_prepareA_b \expandafter - {\romannumeral0\XINT_length {#1}}{#1}% A >0 ici + {\romannumeral0\xintlength {#1}}{#1}% A >0 ici }% \def\XINT_div_prepareA_b #1% {% @@ -3496,7 +2588,7 @@ {% \expandafter \XINT_div_body_l \expandafter {\romannumeral0\XINT_div_sub_xpxp - {\romannumeral0\XINT_mul_Mr {#1}#4\Z\Z\Z\Z }{\XINT_Rev{#2}}}% + {\romannumeral0\XINT_mul_Mr {#1}#4\Z\Z\Z\Z }{\xintReverseOrder{#2}}}% {#3+#1}% }% \def\XINT_div_body_l #1#2#3#4#5#6#7% @@ -3664,7 +2756,7 @@ \def\XINT_LDg #1{\romannumeral0\XINT_ldg {#1}}% \def\XINT_ldg #1% {% - \expandafter\XINT_ldg_\romannumeral0\XINT_rev {#1}\Z + \expandafter\XINT_ldg_\romannumeral0\xintreverseorder {#1}\Z }% \def\XINT_ldg_ #1#2\Z{ #1}% \def\xintiiMON {\romannumeral0\xintiimon }% @@ -3741,16 +2833,16 @@ \def\XINT_DSR #1{\romannumeral0\XINT_dsr_a {#1}\W\Z }% \def\XINT_dsr_a {% - \expandafter\XINT_dsr_b\romannumeral0\XINT_rev + \expandafter\XINT_dsr_b\romannumeral0\xintreverseorder }% \def\XINT_dsr_b #1#2#3\Z {% \xint_gob_til_W #2\xint_dsr_onedigit\W \xint_gob_til_minus #2\xint_dsr_onedigit-% \expandafter\XINT_dsr_removew - \romannumeral0\XINT_rev {#2#3}% + \romannumeral0\xintreverseorder {#2#3}% }% -\def\xint_dsr_onedigit #1\XINT_rev #2{ 0}% +\def\xint_dsr_onedigit #1\xintreverseorder #2{ 0}% \def\XINT_dsr_removew #1\W { }% \def\xintDSHr {\romannumeral0\xintdshr }% \def\xintdshr #1% @@ -4006,7 +3098,7 @@ \def\XINT_split_fromright #1\Z #2% {% \expandafter \XINT_split_fromright_a \expandafter - {\romannumeral0\XINT_rev {#2}}{#1}{#2}% + {\romannumeral0\xintreverseorder {#2}}{#1}{#2}% }% \def\XINT_split_fromright_a #1#2% {% @@ -4034,7 +3126,7 @@ }% \def\XINT_split_fromright_endsplit_ #1#2\W #3\Z #4% {% - \expandafter\space\expandafter {\romannumeral0\XINT_rev{#2}}{#1}% + \expandafter\space\expandafter {\romannumeral0\xintreverseorder {#2}}{#1}% }% \def\XINT_split_fromright_endsplit_i #1#2% {\XINT_split_fromright_checkiftoofar #2{#2#1}}% @@ -4251,7 +3343,7 @@ \def\XINT_sqrt #1\Z {% \expandafter\XINT_sqrt_start\expandafter - {\romannumeral0\XINT_length {#1}}{#1}% + {\romannumeral0\xintlength {#1}}{#1}% }% \def\XINT_sqrt_start #1% {% diff --git a/Master/texmf-dist/tex/generic/xint/xintbinhex.sty b/Master/texmf-dist/tex/generic/xint/xintbinhex.sty index 560aa435799..398a240f692 100644 --- a/Master/texmf-dist/tex/generic/xint/xintbinhex.sty +++ b/Master/texmf-dist/tex/generic/xint/xintbinhex.sty @@ -22,7 +22,7 @@ %% in the same archive or directory.) %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) %% xintbinhex: Expandable binary and hexadecimal conversions %% Copyright (C) 2013 by Jean-Francois Burnol %%---------------------------------------------------------------- @@ -105,7 +105,7 @@ \XINTsetupcatcodes% \XINT_providespackage \ProvidesPackage{xintbinhex}% - [2013/11/04 v1.09f Expandable binary and hexadecimal conversions (jfB)]% + [2013/11/22 v1.09g Expandable binary and hexadecimal conversions (jfB)]% \chardef\xint_c_xvi 16 \chardef\xint_c_ii^v 32 \chardef\xint_c_ii^vi 64 diff --git a/Master/texmf-dist/tex/generic/xint/xintcfrac.sty b/Master/texmf-dist/tex/generic/xint/xintcfrac.sty index 594b27495d7..23fcc93cdc4 100644 --- a/Master/texmf-dist/tex/generic/xint/xintcfrac.sty +++ b/Master/texmf-dist/tex/generic/xint/xintcfrac.sty @@ -22,7 +22,7 @@ %% in the same archive or directory.) %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) %% xintcfrac: Expandable continued fractions with xint package %% Copyright (C) 2013 by Jean-Francois Burnol %%---------------------------------------------------------------- @@ -105,7 +105,7 @@ \XINTsetupcatcodes% \XINT_providespackage \ProvidesPackage{xintcfrac}% - [2013/11/04 v1.09f Expandable continued fractions with xint package (jfB)]% + [2013/11/22 v1.09g Expandable continued fractions with xint package (jfB)]% \def\xintCFrac {\romannumeral0\xintcfrac }% \def\xintcfrac #1% {% diff --git a/Master/texmf-dist/tex/generic/xint/xintexpr.sty b/Master/texmf-dist/tex/generic/xint/xintexpr.sty index ee73aaaf58f..b8ec31f6495 100644 --- a/Master/texmf-dist/tex/generic/xint/xintexpr.sty +++ b/Master/texmf-dist/tex/generic/xint/xintexpr.sty @@ -22,7 +22,7 @@ %% in the same archive or directory.) %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) %% xintexpr: Expandable expression parser %% Copyright (C) 2013 by Jean-Francois Burnol %%---------------------------------------------------------------- @@ -105,7 +105,7 @@ \XINTsetupcatcodes% \XINT_providespackage \ProvidesPackage{xintexpr}% - [2013/11/04 v1.09f Expandable expression parser (jfB)]% + [2013/11/22 v1.09g Expandable expression parser (jfB)]% \def\xint_gob_til_dot #1.{}% \def\xint_gob_til_dot_andstop #1.{ }% \def\xint_gob_til_! #1!{}% nota bene: ! is of catcode 11 diff --git a/Master/texmf-dist/tex/generic/xint/xintfrac.sty b/Master/texmf-dist/tex/generic/xint/xintfrac.sty index d1d68aa2e96..0dbbf609461 100644 --- a/Master/texmf-dist/tex/generic/xint/xintfrac.sty +++ b/Master/texmf-dist/tex/generic/xint/xintfrac.sty @@ -22,7 +22,7 @@ %% in the same archive or directory.) %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) %% xintfrac: Expandable operations on fractions %% Copyright (C) 2013 by Jean-Francois Burnol %%---------------------------------------------------------------- @@ -105,7 +105,7 @@ \XINTsetupcatcodes% \XINT_providespackage \ProvidesPackage{xintfrac}% - [2013/11/04 v1.09f Expandable operations on fractions (jfB)]% + [2013/11/22 v1.09g Expandable operations on fractions (jfB)]% \chardef\xint_c_vi 6 \chardef\xint_c_vii 7 \chardef\xint_c_xviii 18 @@ -241,7 +241,7 @@ \def\XINT_frac_Bb #1.\W\Z #2\Z {% \expandafter \XINT_frac_T \expandafter - {\romannumeral0\XINT_length {#1}}{#2#1}% + {\romannumeral0\xintlength {#1}}{#2#1}% }% \def\XINT_frac_A e\W\Z {\XINT_frac_T {0}{1}{0}}% \def\XINT_frac_T #1#2#3#4e#5#6\Z @@ -266,7 +266,7 @@ \def\XINT_frac_Cb #1.\W\Z #2\Z {% \expandafter\XINT_frac_D\expandafter - {\romannumeral0\XINT_length {#1}}{#2#1}% + {\romannumeral0\xintlength {#1}}{#2#1}% }% \def\XINT_frac_D #1#2#3#4#5#6% {% @@ -854,7 +854,7 @@ {% \xint_gob_til_zero #2\XINT_trunc_zero 0% \expandafter\XINT_trunc_H\expandafter - {\the\numexpr\romannumeral0\XINT_length {#1}-#3}{#3}{#1}#2% + {\the\numexpr\romannumeral0\xintlength {#1}-#3}{#3}{#1}#2% }% \def\XINT_trunc_zero 0#10{ 0}% \def\XINT_trunc_H #1#2% @@ -1023,7 +1023,7 @@ \def\XINT_float_Mc #1#2#3#4#5#6% {% \expandafter\XINT_float_N\expandafter - {\romannumeral0\XINT_length{#6}}{#2}{#5}{#6}{#1}{#3}{#4}% + {\romannumeral0\xintlength{#6}}{#2}{#5}{#6}{#1}{#3}{#4}% }% long de B, P+2, n, B, |A|, A, P \def\XINT_float_N #1#2% {% @@ -1937,12 +1937,12 @@ \def\XINT_flpow_checkB_b #1#2\Z #3% {% \expandafter\XINT_flpow_checkB_c \expandafter - {\romannumeral0\XINT_length{#2}}{#3}{#2}#1% + {\romannumeral0\xintlength{#2}}{#3}{#2}#1% }% \def\XINT_flpow_checkB_c #1#2% {% \expandafter\XINT_flpow_checkB_d \expandafter - {\the\numexpr \expandafter\XINT_Length\expandafter + {\the\numexpr \expandafter\xintLength\expandafter {\the\numexpr #1*20/3}+#1+#2+1}% }% \def\XINT_flpow_checkB_d #1#2#3#4% @@ -2076,12 +2076,12 @@ \def\XINT_flpower_checkB_b #1#2\Z #3% {% \expandafter\XINT_flpower_checkB_c \expandafter - {\romannumeral0\XINT_length{#2}}{#3}{#2}#1% + {\romannumeral0\xintlength{#2}}{#3}{#2}#1% }% \def\XINT_flpower_checkB_c #1#2% {% \expandafter\XINT_flpower_checkB_d \expandafter - {\the\numexpr \expandafter\XINT_Length\expandafter + {\the\numexpr \expandafter\xintLength\expandafter {\the\numexpr #1*20/3}+#1+#2+1}% }% \def\XINT_flpower_checkB_d #1#2#3#4% @@ -2196,7 +2196,7 @@ \def\XINT_flsqrt #1#2% {% \expandafter\XINT_sqrt_a - \expandafter{\romannumeral0\XINT_length {#2}}\XINT_flsqrt_big_d {#2}{#1}% + \expandafter{\romannumeral0\xintlength {#2}}\XINT_flsqrt_big_d {#2}{#1}% }% \def\XINT_flsqrt_big_d #1\or #2\fi #3% {% diff --git a/Master/texmf-dist/tex/generic/xint/xintgcd.sty b/Master/texmf-dist/tex/generic/xint/xintgcd.sty index 288daeae9d5..a6e141b3084 100644 --- a/Master/texmf-dist/tex/generic/xint/xintgcd.sty +++ b/Master/texmf-dist/tex/generic/xint/xintgcd.sty @@ -22,7 +22,7 @@ %% in the same archive or directory.) %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) %% xintgcd: Euclidean algorithm with xint package %% Copyright (C) 2013 by Jean-Francois Burnol %%---------------------------------------------------------------- @@ -105,7 +105,7 @@ \XINTsetupcatcodes% \XINT_providespackage \ProvidesPackage{xintgcd}% - [2013/11/04 v1.09f Euclide algorithm with xint package (jfB)]% + [2013/11/22 v1.09g Euclide algorithm with xint package (jfB)]% \def\xintGCD {\romannumeral0\xintgcd }% \def\xintgcd #1% {% @@ -447,15 +447,15 @@ \edef\A{\U2}\edef\B{\U4}\edef\N{\U1}% \setbox 0 \vbox{\halign {$##$\cr \A\cr \B \cr}}% \noindent - \count 255 1 + \XINT_count 1 \loop - \hbox to \wd 0 {\hfil$\U{\numexpr 2*\count 255\relax}$}% - ${} = \U{\numexpr 2*\count 255 + 3\relax} - \times \U{\numexpr 2*\count 255 + 2\relax} - + \U{\numexpr 2*\count 255 + 4\relax}$% - \ifnum \count 255 < \N + \hbox to \wd 0 {\hfil$\U{\numexpr 2*\XINT_count\relax}$}% + ${} = \U{\numexpr 2*\XINT_count + 3\relax} + \times \U{\numexpr 2*\XINT_count + 2\relax} + + \U{\numexpr 2*\XINT_count + 4\relax}$% + \ifnum \XINT_count < \N \hfill\break - \advance \count 255 1 + \advance \XINT_count 1 \repeat \par \endgroup @@ -468,24 +468,24 @@ \xintAssignArray\xintBezoutAlgorithm {#1}{#2}\to\BEZ \edef\A{\BEZ2}\edef\B{\BEZ6}\edef\N{\BEZ1}% A = |#1|, B = |#2| \setbox 0 \vbox{\halign {$##$\cr \A\cr \B \cr}}% - \count 255 1 + \XINT_count 1 \loop \noindent - \hbox to \wd 0 {\hfil$\BEZ{4*\count 255 - 2}$}% - ${} = \BEZ{4*\count 255 + 5} - \times \BEZ{4*\count 255 + 2} - + \BEZ{4*\count 255 + 6}$\hfill\break - \hbox to \wd 0 {\hfil$\BEZ{4*\count 255 +7}$}% - ${} = \BEZ{4*\count 255 + 5} - \times \BEZ{4*\count 255 + 3} - + \BEZ{4*\count 255 - 1}$\hfill\break - \hbox to \wd 0 {\hfil$\BEZ{4*\count 255 +8}$}% - ${} = \BEZ{4*\count 255 + 5} - \times \BEZ{4*\count 255 + 4} - + \BEZ{4*\count 255 }$ + \hbox to \wd 0 {\hfil$\BEZ{4*\XINT_count - 2}$}% + ${} = \BEZ{4*\XINT_count + 5} + \times \BEZ{4*\XINT_count + 2} + + \BEZ{4*\XINT_count + 6}$\hfill\break + \hbox to \wd 0 {\hfil$\BEZ{4*\XINT_count +7}$}% + ${} = \BEZ{4*\XINT_count + 5} + \times \BEZ{4*\XINT_count + 3} + + \BEZ{4*\XINT_count - 1}$\hfill\break + \hbox to \wd 0 {\hfil$\BEZ{4*\XINT_count +8}$}% + ${} = \BEZ{4*\XINT_count + 5} + \times \BEZ{4*\XINT_count + 4} + + \BEZ{4*\XINT_count }$ \endgraf - \ifnum \count 255 < \N - \advance \count 255 1 + \ifnum \XINT_count < \N + \advance \XINT_count 1 \repeat \par \edef\U{\BEZ{4*\N + 4}}% diff --git a/Master/texmf-dist/tex/generic/xint/xintseries.sty b/Master/texmf-dist/tex/generic/xint/xintseries.sty index 80c41fae9b7..0cd0f52fa8a 100644 --- a/Master/texmf-dist/tex/generic/xint/xintseries.sty +++ b/Master/texmf-dist/tex/generic/xint/xintseries.sty @@ -22,7 +22,7 @@ %% in the same archive or directory.) %% %%---------------------------------------------------------------- -%% The xint bundle (version 1.09f of November 4, 2013) +%% The xint bundle (version 1.09g of November 22, 2013) %% xintseries: Expandable partial sums with xint package %% Copyright (C) 2013 by Jean-Francois Burnol %%---------------------------------------------------------------- @@ -105,7 +105,7 @@ \XINTsetupcatcodes% \XINT_providespackage \ProvidesPackage{xintseries}% - [2013/11/04 v1.09f Expandable partial sums with xint package (jfB)]% + [2013/11/22 v1.09g Expandable partial sums with xint package (jfB)]% \def\xintSeries {\romannumeral0\xintseries }% \def\xintseries #1#2% {% diff --git a/Master/texmf-dist/tex/generic/xint/xinttools.sty b/Master/texmf-dist/tex/generic/xint/xinttools.sty new file mode 100644 index 00000000000..9e2fad8b5d6 --- /dev/null +++ b/Master/texmf-dist/tex/generic/xint/xinttools.sty @@ -0,0 +1,1043 @@ +%% +%% This is file `xinttools.sty', +%% generated with the docstrip utility. +%% +%% The original source files were: +%% +%% xint.dtx (with options: `xinttools') +%% +%% IMPORTANT NOTICE: +%% +%% For the copyright see the source file. +%% +%% Any modified versions of this file must be renamed +%% with new filenames distinct from xinttools.sty. +%% +%% For distribution of the original source see the terms +%% for copying and modification in the file xint.dtx. +%% +%% This generated file may be distributed as long as the +%% original source files, as listed above, are part of the +%% same distribution. (The sources need not necessarily be +%% in the same archive or directory.) +%% +%%---------------------------------------------------------------- +%% The xint bundle (version 1.09g of November 22, 2013) +%% xinttools: Expandable and non-expandable utilities +%% Copyright (C) 2013 by Jean-Francois Burnol +%%---------------------------------------------------------------- +%% +\begingroup\catcode61\catcode48\catcode32=10\relax% + \catcode13=5 % ^^M + \endlinechar=13 % + \catcode123=1 % { + \catcode125=2 % } + \catcode64=11 % @ + \catcode95=11 % _ + \catcode35=6 % # + \catcode44=12 % , + \catcode45=12 % - + \catcode46=12 % . + \catcode58=12 % : + \expandafter\let\expandafter\x\csname ver@xint.sty\endcsname + \expandafter + \ifx\csname PackageInfo\endcsname\relax + \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% + \else + \def\y#1#2{\PackageInfo{#1}{#2}}% + \fi + \expandafter + \ifx\csname numexpr\endcsname\relax + \y{xinttools}{\numexpr not available, aborting input}% + \aftergroup\endinput + \else + \ifx\x\relax % plain-TeX, first loading + \else + \def\empty {}% + \ifx\x\empty % LaTeX, first loading, + % variable is initialized, but \ProvidesPackage not yet seen + \else + \y{xinttools}{I was already loaded, aborting input}% + \aftergroup\endinput + \fi + \fi + \fi + \def\ChangeCatcodesIfInputNotAborted + {% + \endgroup + \def\XINT_storecatcodes + {% takes care of all, to allow more economical code in modules + \catcode63=\the\catcode63 % ? xintexpr + \catcode124=\the\catcode124 % | xintexpr + \catcode38=\the\catcode38 % & xintexpr + \catcode64=\the\catcode64 % @ xintexpr + \catcode33=\the\catcode33 % ! xintexpr + \catcode93=\the\catcode93 % ] -, xintfrac, xintseries, xintcfrac + \catcode91=\the\catcode91 % [ -, xintfrac, xintseries, xintcfrac + \catcode36=\the\catcode36 % $ xintgcd only + \catcode94=\the\catcode94 % ^ + \catcode96=\the\catcode96 % ` + \catcode47=\the\catcode47 % / + \catcode41=\the\catcode41 % ) + \catcode40=\the\catcode40 % ( + \catcode42=\the\catcode42 % * + \catcode43=\the\catcode43 % + + \catcode62=\the\catcode62 % > + \catcode60=\the\catcode60 % < + \catcode58=\the\catcode58 % : + \catcode46=\the\catcode46 % . + \catcode45=\the\catcode45 % - + \catcode44=\the\catcode44 % , + \catcode35=\the\catcode35 % # + \catcode95=\the\catcode95 % _ + \catcode125=\the\catcode125 % } + \catcode123=\the\catcode123 % { + \endlinechar=\the\endlinechar + \catcode13=\the\catcode13 % ^^M + \catcode32=\the\catcode32 % + \catcode61=\the\catcode61\relax % = + }% + \edef\XINT_restorecatcodes_endinput + {% + \XINT_storecatcodes\noexpand\endinput % + }% + \def\XINT_setcatcodes + {% + \catcode61=12 % = + \catcode32=10 % space + \catcode13=5 % ^^M + \endlinechar=13 % + \catcode123=1 % { + \catcode125=2 % } + \catcode95=11 % _ (replaces @ everywhere, starting with 1.06b) + \catcode35=6 % # + \catcode44=12 % , + \catcode45=12 % - + \catcode46=12 % . + \catcode58=11 % : (made letter for error cs) + \catcode60=12 % < + \catcode62=12 % > + \catcode43=12 % + + \catcode42=12 % * + \catcode40=12 % ( + \catcode41=12 % ) + \catcode47=12 % / + \catcode96=12 % ` + \catcode94=11 % ^ + \catcode36=3 % $ + \catcode91=12 % [ + \catcode93=12 % ] + \catcode33=11 % ! + \catcode64=11 % @ + \catcode38=12 % & + \catcode124=12 % | + \catcode63=11 % ? + }% + \XINT_setcatcodes + }% +\ChangeCatcodesIfInputNotAborted +\def\XINTsetupcatcodes {% for use by other modules + \edef\XINT_restorecatcodes_endinput + {% + \XINT_storecatcodes\noexpand\endinput % + }% + \XINT_setcatcodes +}% +\ifdefined\ProvidesPackage + \let\XINT_providespackage\relax +\else + \def\XINT_providespackage #1#2[#3]% + {\immediate\write-1{Package: #2 #3}% + \expandafter\xdef\csname ver@#2.sty\endcsname{#3}}% +\fi +\XINT_providespackage +\ProvidesPackage {xinttools}% + [2013/11/22 v1.09g Expandable and non-expandable utilities (jfB)]% +\def\xint_gobble_ {}% +\def\xint_gobble_i #1{}% +\def\xint_gobble_ii #1#2{}% +\def\xint_gobble_iii #1#2#3{}% +\def\xint_gobble_iv #1#2#3#4{}% +\def\xint_gobble_v #1#2#3#4#5{}% +\def\xint_gobble_vi #1#2#3#4#5#6{}% +\def\xint_gobble_vii #1#2#3#4#5#6#7{}% +\def\xint_gobble_viii #1#2#3#4#5#6#7#8{}% +\long\def\xint_firstofone #1{#1}% long since 1.09f, 2013/11/01 +\xint_firstofone{\let\XINT_sptoken= } % 1.09d, 2013/10/22 +\long\def\xint_firstoftwo #1#2{#1}% long since 1.09e, 2013/10/28 +\long\def\xint_secondoftwo #1#2{#2}% idem +\def\xint_firstoftwo_andstop #1#2{ #1}% +\def\xint_secondoftwo_andstop #1#2{ #2}% +\def\xint_minus_andstop { -}% +\def\xint_gob_til_R #1\R {}% +\def\xint_gob_til_W #1\W {}% +\def\xint_gob_til_Z #1\Z {}% +\long\def\xint_bye #1\xint_bye {}% long since 1.09f +\let\xint_relax\relax +\def\xint_brelax {\xint_relax }% +\long\def\xint_gob_til_xint_relax #1\xint_relax {}% long since 1.09f +\def\xint_afterfi #1#2\fi {\fi #1}% +\chardef\xint_c_ 0 +\chardef\xint_c_viii 8 +\newtoks\XINT_toks +\newcount\XINT_count % 1.09g: \xintFor from 1.09f modified \count 255 :-( +\def\xintReverseOrder {\romannumeral0\xintreverseorder }% +\def\xintreverseorder #1% +{% + \XINT_rord_main {}#1% + \xint_relax + \xint_bye\xint_bye\xint_bye\xint_bye + \xint_bye\xint_bye\xint_bye\xint_bye + \xint_relax +}% +\def\XINT_rord_main #1#2#3#4#5#6#7#8#9% +{% + \xint_bye #9\XINT_rord_cleanup\xint_bye + \XINT_rord_main {#9#8#7#6#5#4#3#2#1}% +}% +\def\XINT_rord_cleanup\xint_bye\XINT_rord_main #1#2\xint_relax +{% + \expandafter\space\xint_gob_til_xint_relax #1% +}% +\def\xintRevWithBraces {\romannumeral0\xintrevwithbraces }% +\def\xintRevWithBracesNoExpand {\romannumeral0\xintrevwithbracesnoexpand }% +\def\xintrevwithbraces #1% +{% + \expandafter\XINT_revwbr_loop\expandafter{\expandafter}% + \romannumeral-`0#1\xint_relax\xint_relax\xint_relax\xint_relax + \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye +}% +\def\xintrevwithbracesnoexpand #1% +{% + \XINT_revwbr_loop {}% + #1\xint_relax\xint_relax\xint_relax\xint_relax + \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye +}% +\def\XINT_revwbr_loop #1#2#3#4#5#6#7#8#9% +{% + \xint_gob_til_xint_relax #9\XINT_revwbr_finish_a\xint_relax + \XINT_revwbr_loop {{#9}{#8}{#7}{#6}{#5}{#4}{#3}{#2}#1}% +}% +\def\XINT_revwbr_finish_a\xint_relax\XINT_revwbr_loop #1#2\xint_bye +{% + \XINT_revwbr_finish_b #2\R\R\R\R\R\R\R\Z #1% +}% +\def\XINT_revwbr_finish_b #1#2#3#4#5#6#7#8\Z +{% + \xint_gob_til_R + #1\XINT_revwbr_finish_c 8% + #2\XINT_revwbr_finish_c 7% + #3\XINT_revwbr_finish_c 6% + #4\XINT_revwbr_finish_c 5% + #5\XINT_revwbr_finish_c 4% + #6\XINT_revwbr_finish_c 3% + #7\XINT_revwbr_finish_c 2% + \R\XINT_revwbr_finish_c 1\Z +}% +\def\XINT_revwbr_finish_c #1#2\Z +{% + \expandafter\expandafter\expandafter + \space + \csname xint_gobble_\romannumeral #1\endcsname +}% +\def\xintLength {\romannumeral0\xintlength }% +\def\xintlength #1% +{% + \XINT_length_loop + {0}#1\xint_relax\xint_relax\xint_relax\xint_relax + \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye +}% +\def\XINT_length_loop #1#2#3#4#5#6#7#8#9% +{% + \xint_gob_til_xint_relax #9\XINT_length_finish_a\xint_relax + \expandafter\XINT_length_loop\expandafter {\the\numexpr #1+8\relax}% +}% +\def\XINT_length_finish_a\xint_relax + \expandafter\XINT_length_loop\expandafter #1#2\xint_bye +{% + \XINT_length_finish_b #2\W\W\W\W\W\W\W\Z {#1}% +}% +\def\XINT_length_finish_b #1#2#3#4#5#6#7#8\Z +{% + \xint_gob_til_W + #1\XINT_length_finish_c 8% + #2\XINT_length_finish_c 7% + #3\XINT_length_finish_c 6% + #4\XINT_length_finish_c 5% + #5\XINT_length_finish_c 4% + #6\XINT_length_finish_c 3% + #7\XINT_length_finish_c 2% + \W\XINT_length_finish_c 1\Z +}% +\def\XINT_length_finish_c #1#2\Z #3{\expandafter\space\the\numexpr #3-#1\relax}% +\def\xintZapFirstSpaces {\romannumeral0\xintzapfirstspaces }% +\edef\xintzapfirstspaces #1% + {\noexpand\XINT_zapbsp_a \space #1\space\space\noexpand\xint_bye\xint_relax }% +\xint_firstofone {\def\XINT_zapbsp_a #1 } %<- space token here +{% + \XINT_zapbsp_again? #1\xint_bye\XINT_zapbsp_b {#1}% +}% +\def\XINT_zapbsp_again? #1{\xint_bye #1\XINT_zapbsp_again }% +\edef\XINT_zapbsp_again\XINT_zapbsp_b #1{\noexpand\XINT_zapbsp_a\space }% +\def\XINT_zapbsp_b #1#2\xint_relax + {\XINT_zapbsp_end? #2\XINT_zapbsp_e\empty #2{#1}}% +\def\XINT_zapbsp_end? #1{\xint_bye #1\XINT_zapbsp_end }% +\def\XINT_zapbsp_end\XINT_zapbsp_e\empty #1\xint_bye #2{#2#1}% +\xint_firstofone{\def\XINT_zapbsp_e #1 } \xint_bye + {\expandafter\XINT_zapbsp_f \expandafter{#1}}% +\edef\XINT_zapbsp_f #1#2{#2\space\space #1}% +\def\xintZapLastSpaces {\romannumeral0\xintzaplastspaces }% +\edef\xintzaplastspaces #1{\noexpand\XINT_zapesp_a {\space}\noexpand\empty + #1\space\space\noexpand\xint_bye \xint_relax}% +\xint_firstofone {\def\XINT_zapesp_a #1#2 } %<- second space here + {\expandafter\XINT_zapesp_b\expandafter{#2}{#1}}% +\def\XINT_zapesp_b #1#2#3\xint_relax + {\XINT_zapesp_end? #3\XINT_zapesp_e {#2#1}\empty #3\xint_relax }% +\def\XINT_zapesp_end? #1{\xint_bye #1\XINT_zapesp_end }% +\def\XINT_zapesp_end\XINT_zapesp_e #1#2\xint_relax {#1}% +\edef\XINT_zapesp_e #1{\noexpand \XINT_zapesp_a {#1\space\space}}% +\def\xintZapSpaces {\romannumeral0\xintzapspaces }% +\edef\xintzapspaces #1% + {\noexpand\XINT_zapsp_a \space #1\space\space\noexpand\xint_bye\xint_relax}% +\xint_firstofone {\def\XINT_zapsp_a #1 } %<- space token here +{% + \XINT_zapsp_again? #1\xint_bye\XINT_zapesp_b {#1}{}% +}% +\def\XINT_zapsp_again? #1{\xint_bye #1\XINT_zapsp_again }% +\edef\XINT_zapsp_again\XINT_zapesp_b #1#2{\noexpand\XINT_zapsp_a\space }% +\def\xintZapSpacesB {\romannumeral0\xintzapspacesb }% +\def\xintzapspacesb #1{\XINT_zapspb_one? #1\xint_relax\xint_relax + \xint_bye\xintzapspaces {#1}}% +\def\XINT_zapspb_one? #1#2% + {\xint_gob_til_xint_relax #1\XINT_zapspb_onlyspaces\xint_relax + \xint_gob_til_xint_relax #2\XINT_zapspb_bracedorone\xint_relax + \xint_bye {#1}}% +\def\XINT_zapspb_onlyspaces\xint_relax + \xint_gob_til_xint_relax\xint_relax\XINT_zapspb_bracedorone\xint_relax + \xint_bye #1\xint_bye\xintzapspaces #2{ }% +\def\XINT_zapspb_bracedorone\xint_relax + \xint_bye #1\xint_relax\xint_bye\xintzapspaces #2{ #1}% +\def\xintCSVtoList {\romannumeral0\xintcsvtolist }% +\def\xintcsvtolist #1{\expandafter\xintApply\expandafter\xintzapspacesb + \expandafter{\romannumeral0\xintcsvtolistnonstripped{#1}}}% +\def\xintCSVtoListNoExpand {\romannumeral0\xintcsvtolistnoexpand }% +\def\xintcsvtolistnoexpand #1{\expandafter\xintApply\expandafter\xintzapspacesb + \expandafter{\romannumeral0\xintcsvtolistnonstrippednoexpand{#1}}}% +\def\xintCSVtoListNonStripped {\romannumeral0\xintcsvtolistnonstripped }% +\def\xintCSVtoListNonStrippedNoExpand + {\romannumeral0\xintcsvtolistnonstrippednoexpand }% +\def\xintcsvtolistnonstripped #1% +{% + \expandafter\XINT_csvtol_loop_a\expandafter + {\expandafter}\romannumeral-`0#1% + ,\xint_bye,\xint_bye,\xint_bye,\xint_bye + ,\xint_bye,\xint_bye,\xint_bye,\xint_bye,\Z +}% +\def\xintcsvtolistnonstrippednoexpand #1% +{% + \XINT_csvtol_loop_a + {}#1,\xint_bye,\xint_bye,\xint_bye,\xint_bye + ,\xint_bye,\xint_bye,\xint_bye,\xint_bye,\Z +}% +\def\XINT_csvtol_loop_a #1#2,#3,#4,#5,#6,#7,#8,#9,% +{% + \xint_bye #9\XINT_csvtol_finish_a\xint_bye + \XINT_csvtol_loop_b {#1}{{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}}% +}% +\def\XINT_csvtol_loop_b #1#2{\XINT_csvtol_loop_a {#1#2}}% +\def\XINT_csvtol_finish_a\xint_bye\XINT_csvtol_loop_b #1#2#3\Z +{% + \XINT_csvtol_finish_b #3\R,\R,\R,\R,\R,\R,\R,\Z #2{#1}% +}% +\def\XINT_csvtol_finish_b #1,#2,#3,#4,#5,#6,#7,#8\Z +{% + \xint_gob_til_R + #1\XINT_csvtol_finish_c 8% + #2\XINT_csvtol_finish_c 7% + #3\XINT_csvtol_finish_c 6% + #4\XINT_csvtol_finish_c 5% + #5\XINT_csvtol_finish_c 4% + #6\XINT_csvtol_finish_c 3% + #7\XINT_csvtol_finish_c 2% + \R\XINT_csvtol_finish_c 1\Z +}% +\def\XINT_csvtol_finish_c #1#2\Z +{% + \csname XINT_csvtol_finish_d\romannumeral #1\endcsname +}% +\def\XINT_csvtol_finish_dviii #1#2#3#4#5#6#7#8#9{ #9}% +\def\XINT_csvtol_finish_dvii #1#2#3#4#5#6#7#8#9{ #9{#1}}% +\def\XINT_csvtol_finish_dvi #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}}% +\def\XINT_csvtol_finish_dv #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}}% +\def\XINT_csvtol_finish_div #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}}% +\def\XINT_csvtol_finish_diii #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}{#5}}% +\def\XINT_csvtol_finish_dii #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}{#5}{#6}}% +\def\XINT_csvtol_finish_di #1#2#3#4#5#6#7#8#9% + { #9{#1}{#2}{#3}{#4}{#5}{#6}{#7}}% +\def\xintListWithSep {\romannumeral0\xintlistwithsep }% +\def\xintListWithSepNoExpand {\romannumeral0\xintlistwithsepnoexpand }% +\long\def\xintlistwithsep #1#2% + {\expandafter\XINT_lws\expandafter {\romannumeral-`0#2}{#1}}% +\long\def\XINT_lws #1#2{\XINT_lws_start {#2}#1\xint_bye }% +\long\def\xintlistwithsepnoexpand #1#2{\XINT_lws_start {#1}#2\xint_bye }% +\long\def\XINT_lws_start #1#2% +{% + \xint_bye #2\XINT_lws_dont\xint_bye + \XINT_lws_loop_a {#2}{#1}% +}% +\long\def\XINT_lws_dont\xint_bye\XINT_lws_loop_a #1#2{ }% +\long\def\XINT_lws_loop_a #1#2#3% +{% + \xint_bye #3\XINT_lws_end\xint_bye + \XINT_lws_loop_b {#1}{#2#3}{#2}% +}% +\long\def\XINT_lws_loop_b #1#2{\XINT_lws_loop_a {#1#2}}% +\long\def\XINT_lws_end\xint_bye\XINT_lws_loop_b #1#2#3{ #1}% +\def\xintNthElt {\romannumeral0\xintnthelt }% +\def\xintNthEltNoExpand {\romannumeral0\xintntheltnoexpand }% +\def\xintnthelt #1% +{% + \expandafter\XINT_nthelt_a\expandafter {\the\numexpr #1}% +}% +\def\xintntheltnoexpand #1% +{% + \expandafter\XINT_ntheltnoexpand_a\expandafter {\the\numexpr #1}% +}% +\def\XINT_nthelt_a #1#2% +{% + \ifnum #1<0 + \xint_afterfi{\expandafter\XINT_nthelt_c\expandafter + {\romannumeral0\xintrevwithbraces {#2}}{-#1}}% + \else + \xint_afterfi{\expandafter\XINT_nthelt_c\expandafter + {\romannumeral-`0#2}{#1}}% + \fi +}% +\def\XINT_ntheltnoexpand_a #1#2% +{% + \ifnum #1<0 + \xint_afterfi{\expandafter\XINT_nthelt_c\expandafter + {\romannumeral0\xintrevwithbracesnoexpand {#2}}{-#1}}% + \else + \xint_afterfi{\expandafter\XINT_nthelt_c\expandafter + {#2}{#1}}% + \fi +}% +\def\XINT_nthelt_c #1#2% +{% + \ifnum #2>\xint_c_ + \expandafter\XINT_nthelt_loop_a + \else + \expandafter\XINT_length_loop + \fi {#2}#1\xint_relax\xint_relax\xint_relax\xint_relax + \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye +}% +\def\XINT_nthelt_loop_a #1% +{% + \ifnum #1>\xint_c_viii + \expandafter\XINT_nthelt_loop_b + \else + \expandafter\XINT_nthelt_getit + \fi + {#1}% +}% +\def\XINT_nthelt_loop_b #1#2#3#4#5#6#7#8#9% +{% + \xint_gob_til_xint_relax #9\XINT_nthelt_silentend\xint_relax + \expandafter\XINT_nthelt_loop_a\expandafter{\the\numexpr #1-8}% +}% +\def\XINT_nthelt_silentend #1\xint_bye { }% +\def\XINT_nthelt_getit #1% +{% + \expandafter\expandafter\expandafter\XINT_nthelt_finish + \csname xint_gobble_\romannumeral\numexpr#1-1\endcsname +}% +\def\XINT_nthelt_finish #1#2\xint_bye + {\xint_gob_til_xint_relax #1\expandafter\space + \xint_gobble_iii\xint_relax\space #1}% +\def\xintApply {\romannumeral0\xintapply }% +\def\xintApplyNoExpand {\romannumeral0\xintapplynoexpand }% +\def\xintapply #1#2% +{% + \expandafter\XINT_apply\expandafter {\romannumeral-`0#2}% + {#1}% +}% +\def\XINT_apply #1#2{\XINT_apply_loop_a {}{#2}#1\xint_bye }% +\def\xintapplynoexpand #1#2{\XINT_apply_loop_a {}{#1}#2\xint_bye }% +\def\XINT_apply_loop_a #1#2#3% +{% + \xint_bye #3\XINT_apply_end\xint_bye + \expandafter + \XINT_apply_loop_b + \expandafter {\romannumeral-`0#2{#3}}{#1}{#2}% +}% +\def\XINT_apply_loop_b #1#2{\XINT_apply_loop_a {#2{#1}}}% +\def\XINT_apply_end\xint_bye\expandafter\XINT_apply_loop_b + \expandafter #1#2#3{ #2}% +\def\xintApplyUnbraced {\romannumeral0\xintapplyunbraced }% +\def\xintApplyUnbracedNoExpand {\romannumeral0\xintapplyunbracednoexpand }% +\def\xintapplyunbraced #1#2% +{% + \expandafter\XINT_applyunbr\expandafter {\romannumeral-`0#2}% + {#1}% +}% +\def\XINT_applyunbr #1#2{\XINT_applyunbr_loop_a {}{#2}#1\xint_bye }% +\def\xintapplyunbracednoexpand #1#2% + {\XINT_applyunbr_loop_a {}{#1}#2\xint_bye }% +\def\XINT_applyunbr_loop_a #1#2#3% +{% + \xint_bye #3\XINT_applyunbr_end\xint_bye + \expandafter\XINT_applyunbr_loop_b + \expandafter {\romannumeral-`0#2{#3}}{#1}{#2}% +}% +\def\XINT_applyunbr_loop_b #1#2{\XINT_applyunbr_loop_a {#2#1}}% +\def\XINT_applyunbr_end\xint_bye\expandafter\XINT_applyunbr_loop_b + \expandafter #1#2#3{ #2}% +\def\xintSeq {\romannumeral0\xintseq }% +\def\xintseq #1{\XINT_seq_chkopt #1\xint_bye }% +\def\XINT_seq_chkopt #1% +{% + \ifx [#1\expandafter\XINT_seq_opt + \else\expandafter\XINT_seq_noopt + \fi #1% +}% +\def\XINT_seq_noopt #1\xint_bye #2% +{% + \expandafter\XINT_seq\expandafter + {\the\numexpr#1\expandafter}\expandafter{\the\numexpr #2}% +}% +\def\XINT_seq #1#2% +{% + \ifcase\xintiiSgn{\the\numexpr #2-#1\relax} + \expandafter\xint_firstoftwo_andstop + \or + \expandafter\XINT_seq_p + \else + \expandafter\XINT_seq_n + \fi + {#2}{#1}% +}% +\def\XINT_seq_p #1#2% +{% + \ifnum #1>#2 + \xint_afterfi{\expandafter\XINT_seq_p}% + \else + \expandafter\XINT_seq_e + \fi + \expandafter{\the\numexpr #1-1}{#2}{#1}% +}% +\def\XINT_seq_n #1#2% +{% + \ifnum #1<#2 + \xint_afterfi{\expandafter\XINT_seq_n}% + \else + \expandafter\XINT_seq_e + \fi + \expandafter{\the\numexpr #1+1}{#2}{#1}% +}% +\def\XINT_seq_e #1#2#3{ }% +\def\XINT_seq_opt [\xint_bye #1]#2#3% +{% + \expandafter\XINT_seqo\expandafter + {\the\numexpr #2\expandafter}\expandafter + {\the\numexpr #3\expandafter}\expandafter + {\the\numexpr #1}% +}% +\def\XINT_seqo #1#2% +{% + \ifcase\xintiiSgn{\the\numexpr #2-#1\relax} + \expandafter\XINT_seqo_a + \or + \expandafter\XINT_seqo_pa + \else + \expandafter\XINT_seqo_na + \fi + {#1}{#2}% +}% +\def\XINT_seqo_a #1#2#3{ {#1}}% +\def\XINT_seqo_o #1#2#3#4{ #4}% +\def\XINT_seqo_pa #1#2#3% +{% + \ifcase\XINT_Sgn {#3} + \expandafter\XINT_seqo_o + \or + \expandafter\XINT_seqo_pb + \else + \xint_afterfi{\expandafter\space\xint_gobble_iv}% + \fi + {#1}{#2}{#3}{{#1}}% +}% +\def\XINT_seqo_pb #1#2#3% +{% + \expandafter\XINT_seqo_pc\expandafter{\the\numexpr #1+#3}{#2}{#3}% +}% +\def\XINT_seqo_pc #1#2% +{% + \ifnum#1>#2 + \expandafter\XINT_seqo_o + \else + \expandafter\XINT_seqo_pd + \fi + {#1}{#2}% +}% +\def\XINT_seqo_pd #1#2#3#4{\XINT_seqo_pb {#1}{#2}{#3}{#4{#1}}}% +\def\XINT_seqo_na #1#2#3% +{% + \ifcase\XINT_Sgn {#3} + \expandafter\XINT_seqo_o + \or + \xint_afterfi{\expandafter\space\xint_gobble_iv}% + \else + \expandafter\XINT_seqo_nb + \fi + {#1}{#2}{#3}{{#1}}% +}% +\def\XINT_seqo_nb #1#2#3% +{% + \expandafter\XINT_seqo_nc\expandafter{\the\numexpr #1+#3}{#2}{#3}% +}% +\def\XINT_seqo_nc #1#2% +{% + \ifnum#1<#2 + \expandafter\XINT_seqo_o + \else + \expandafter\XINT_seqo_nd + \fi + {#1}{#2}% +}% +\def\XINT_seqo_nd #1#2#3#4{\XINT_seqo_nb {#1}{#2}{#3}{#4{#1}}}% +\def\xintloop #1#2\repeat {#1#2\xintloop_again\fi\xint_gobble_i {#1#2}}% +\def\xintloop_again\fi\xint_gobble_i #1{\fi + #1\xintloop_again\fi\xint_gobble_i {#1}}% +\def\xintbreakloop #1\xintloop_again\fi\xint_gobble_i #2{}% +\def\xintbreakloopanddo #1#2\xintloop_again\fi\xint_gobble_i #3{#1}% +\def\xintloopskiptonext #1\xintloop_again\fi\xint_gobble_i #2{% + #2\xintloop_again\fi\xint_gobble_i {#2}}% +\def\xintiloop [#1+#2]{% + \expandafter\xintiloop_a\the\numexpr #1\expandafter.\the\numexpr #2.}% +\def\xintiloop_a #1.#2.#3#4\repeat{% + #3#4\xintiloop_again\fi\xint_gobble_iii {#1}{#2}{#3#4}}% +\def\xintiloop_again\fi\xint_gobble_iii #1#2{% + \fi\expandafter\xintiloop_again_b\the\numexpr#1+#2.#2.}% +\def\xintiloop_again_b #1.#2.#3{% + #3\xintiloop_again\fi\xint_gobble_iii {#1}{#2}{#3}}% +\def\xintbreakiloop #1\xintiloop_again\fi\xint_gobble_iii #2#3#4{}% +\def\xintbreakiloopanddo #1.#2\xintiloop_again\fi\xint_gobble_iii #3#4#5{#1}% +\def\xintiloopindex #1\xintiloop_again\fi\xint_gobble_iii #2% + {#2#1\xintiloop_again\fi\xint_gobble_iii {#2}}% +\def\xintouteriloopindex #1\xintiloop_again + #2\xintiloop_again\fi\xint_gobble_iii #3% + {#3#1\xintiloop_again #2\xintiloop_again\fi\xint_gobble_iii {#3}}% +\def\xintiloopskiptonext #1\xintiloop_again\fi\xint_gobble_iii #2#3{% + \expandafter\xintiloop_again_b \the\numexpr#2+#3.#3.}% +\def\xintiloopskipandredo #1\xintiloop_again\fi\xint_gobble_iii #2#3#4{% + #4\xintiloop_again\fi\xint_gobble_iii {#2}{#3}{#4}}% +\def\XINT_xflet #1% +{% + \def\XINT_xflet_macro {#1}\XINT_xflet_zapsp +}% +\def\XINT_xflet_zapsp +{% + \expandafter\futurelet\expandafter\XINT_token + \expandafter\XINT_xflet_sp?\romannumeral-`0% +}% +\def\XINT_xflet_sp? +{% + \ifx\XINT_token\XINT_sptoken + \expandafter\XINT_xflet_zapsp + \else\expandafter\XINT_xflet_zapspB + \fi +}% +\def\XINT_xflet_zapspB +{% + \expandafter\futurelet\expandafter\XINT_tokenB + \expandafter\XINT_xflet_spB?\romannumeral-`0% +}% +\def\XINT_xflet_spB? +{% + \ifx\XINT_tokenB\XINT_sptoken + \expandafter\XINT_xflet_zapspB + \else\expandafter\XINT_xflet_eq? + \fi +}% +\def\XINT_xflet_eq? +{% + \ifx\XINT_token\XINT_tokenB + \expandafter\XINT_xflet_macro + \else\expandafter\XINT_xflet_zapsp + \fi +}% +\catcode`Z 3 +\long\def\xintApplyInline #1#2% +{% + \long\expandafter\def\expandafter\XINT_inline_macro + \expandafter ##\expandafter 1\expandafter {#1{##1}}% + \XINT_xflet\XINT_inline_b #2Z% this Z has catcode 3 +}% +\def\XINT_inline_b +{% + \ifx\XINT_token Z\expandafter\xint_gobble_i + \else\expandafter\XINT_inline_d\fi +}% +\long\def\XINT_inline_d #1% +{% + \long\def\XINT_item{{#1}}\XINT_xflet\XINT_inline_e +}% +\def\XINT_inline_e +{% + \ifx\XINT_token Z\expandafter\XINT_inline_w + \else\expandafter\XINT_inline_f\fi +}% +\def\XINT_inline_f +{% + \expandafter\XINT_inline_g\expandafter{\XINT_inline_macro {##1}}% +}% +\long\def\XINT_inline_g #1% +{% + \expandafter\XINT_inline_macro\XINT_item + \long\def\XINT_inline_macro ##1{#1}\XINT_inline_d +}% +\def\XINT_inline_w #1% +{% + \expandafter\XINT_inline_macro\XINT_item +}% +\def\XINT_tmpa #1#2{\ifnum #2<#1 \xint_afterfi {{#########2}}\fi}% +\def\XINT_tmpb #1#2{\ifnum #1<#2 \xint_afterfi {{#########2}}\fi}% +\def\XINT_tmpc #1% +{% + \expandafter\edef \csname XINT_for_left#1\endcsname + {\xintApplyUnbraced {\XINT_tmpa #1}{123456789}}% + \expandafter\edef \csname XINT_for_right#1\endcsname + {\xintApplyUnbraced {\XINT_tmpb #1}{123456789}}% +}% +\xintApplyInline \XINT_tmpc {123456789}% +\long\def\xintBreakFor #1Z{}% +\long\def\xintBreakForAndDo #1#2Z{#1}% +\def\xintFor {\let\xintifForFirst\xint_firstoftwo + \futurelet\XINT_token\XINT_for_ifstar }% +\def\XINT_for_ifstar {\ifx\XINT_token*\expandafter\XINT_forx + \else\expandafter\XINT_for \fi }% +\catcode`U 3 % with numexpr +\catcode`V 3 % with xintfrac.sty (xint.sty not enough) +\catcode`D 3 % with dimexpr +\def\XINT_flet_zapsp +{% + \futurelet\XINT_token\XINT_flet_sp? +}% +\def\XINT_flet_sp? +{% + \ifx\XINT_token\XINT_sptoken + \xint_afterfi{\expandafter\XINT_flet_zapsp\romannumeral0}% + \else\expandafter\XINT_flet_macro + \fi +}% +\long\def\XINT_for #1#2in#3#4#5% +{% + \XINT_count #2\relax + \expandafter\XINT_toks\expandafter + {\expandafter\XINT_for_d\the\XINT_count{#5}}% + \def\XINT_flet_macro {\expandafter\XINT_for_forever?\space}% + \expandafter\XINT_flet_zapsp #3Z% +}% +\def\XINT_for_forever? #1Z% +{% + \ifx\XINT_token U\XINT_to_forever\fi + \ifx\XINT_token V\XINT_to_forever\fi + \ifx\XINT_token D\XINT_to_forever\fi + \expandafter\the\expandafter\XINT_toks\romannumeral0\xintcsvtolist {#1}Z% +}% +\def\XINT_to_forever\fi #1\xintcsvtolist #2{\fi \XINT_forever #2}% +\long\def\XINT_forx *#1#2in#3#4#5% +{% + \XINT_count #2\relax + \expandafter\XINT_toks\expandafter + {\expandafter\XINT_forx_d\the\XINT_count{#5}}% + \XINT_xflet\XINT_forx_forever? #3Z% +}% +\def\XINT_forx_forever? +{% + \ifx\XINT_token U\XINT_to_forxever\fi + \ifx\XINT_token V\XINT_to_forxever\fi + \ifx\XINT_token D\XINT_to_forxever\fi + \XINT_forx_empty? +}% +\def\XINT_to_forxever\fi #1\XINT_forx_empty? {\fi \XINT_forever }% +\catcode`U 11 +\catcode`D 11 +\catcode`V 11 +\def\XINT_forx_empty? +{% + \ifx\XINT_token Z\expandafter\xintBreakFor\fi + \the\XINT_toks +}% +\long\def\XINT_for_d #1#2#3% +{% + \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% + \XINT_toks {{#3}}% + \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname + \the\XINT_toks \csname XINT_for_right#1\endcsname }% + \XINT_toks {\XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_for_d #1{#2}}% + \futurelet\XINT_token\XINT_for_last? +}% +\long\def\XINT_forx_d #1#2#3% +{% + \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% + \XINT_toks {{#3}}% + \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname + \the\XINT_toks \csname XINT_for_right#1\endcsname }% + \XINT_toks {\XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forx_d #1{#2}}% + \XINT_xflet\XINT_for_last? +}% +\def\XINT_for_last? +{% + \let\xintifForLast\xint_secondoftwo + \ifx\XINT_token Z\let\xintifForLast\xint_firstoftwo + \xint_afterfi{\xintBreakForAndDo\XINT_x}\fi + \the\XINT_toks +}% +\catcode`U 3 +\catcode`D 3 +\catcode`V 3 +\let\xintegers U% +\let\xintintegers U% +\let\xintdimensions D% +\let\xintrationals V% +\def\XINT_forever #1% +{% + \expandafter\XINT_forever_a + \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi a\expandafter\endcsname + \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi i\expandafter\endcsname + \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi \endcsname +}% +\catcode`U 11 +\catcode`D 11 +\catcode`V 11 +\def\XINT_?expr_Ua #1#2% + {\expandafter{\expandafter\numexpr\the\numexpr #1\expandafter\relax + \expandafter\relax\expandafter}% + \expandafter{\the\numexpr #2}}% +\def\XINT_?expr_Da #1#2% + {\expandafter{\expandafter\dimexpr\number\dimexpr #1\expandafter\relax + \expandafter s\expandafter p\expandafter\relax\expandafter}% + \expandafter{\number\dimexpr #2}}% +\catcode`Z 11 +\def\XINT_?expr_Va #1#2% +{% + \expandafter\XINT_?expr_Vb\expandafter + {\romannumeral-`0\xintrawwithzeros{\xintZapSpacesB{#2}}}% + {\romannumeral-`0\xintrawwithzeros{\xintZapSpacesB{#1}}}% +}% +\catcode`Z 3 +\def\XINT_?expr_Vb #1#2{\expandafter\XINT_?expr_Vc #2.#1.}% +\def\XINT_?expr_Vc #1/#2.#3/#4.% +{% + \xintifEq {#2}{#4}% + {\XINT_?expr_Vf {#3}{#1}{#2}}% + {\expandafter\XINT_?expr_Vd\expandafter + {\romannumeral0\xintiimul {#2}{#4}}% + {\romannumeral0\xintiimul {#1}{#4}}% + {\romannumeral0\xintiimul {#2}{#3}}% + }% +}% +\def\XINT_?expr_Vd #1#2#3{\expandafter\XINT_?expr_Ve\expandafter {#2}{#3}{#1}}% +\def\XINT_?expr_Ve #1#2{\expandafter\XINT_?expr_Vf\expandafter {#2}{#1}}% +\def\XINT_?expr_Vf #1#2#3{{#2/#3}{{0}{#1}{#2}{#3}}}% +\def\XINT_?expr_Ui {{\numexpr 1\relax}{1}}% +\def\XINT_?expr_Di {{\dimexpr 0pt\relax}{65536}}% +\def\XINT_?expr_Vi {{1/1}{0111}}% +\def\XINT_?expr_U #1#2% + {\expandafter{\expandafter\numexpr\the\numexpr #1+#2\relax\relax}{#2}}% +\def\XINT_?expr_D #1#2% + {\expandafter{\expandafter\dimexpr\the\numexpr #1+#2\relax sp\relax}{#2}}% +\def\XINT_?expr_V #1#2{\XINT_?expr_Vx #2}% +\def\XINT_?expr_Vx #1#2% +{% + \expandafter\XINT_?expr_Vy\expandafter + {\romannumeral0\xintiiadd {#1}{#2}}{#2}% +}% +\def\XINT_?expr_Vy #1#2#3#4% +{% + \expandafter{\romannumeral0\xintiiadd {#3}{#1}/#4}{{#1}{#2}{#3}{#4}}% +}% +\def\XINT_forever_a #1#2#3#4% +{% + \ifx #4[\expandafter\XINT_forever_opt_a + \else\expandafter\XINT_forever_b + \fi #1#2#3#4% +}% +\def\XINT_forever_b #1#2#3Z{\expandafter\XINT_forever_c\the\XINT_toks #2#3}% +\long\def\XINT_forever_c #1#2#3#4#5% + {\expandafter\XINT_forever_d\expandafter #2#4#5{#3}Z}% +\def\XINT_forever_opt_a #1#2#3[#4+#5]#6Z% +{% + \expandafter\expandafter\expandafter + \XINT_forever_opt_c\expandafter\the\expandafter\XINT_toks + \romannumeral-`0#1{#4}{#5}#3% +}% +\long\def\XINT_forever_opt_c #1#2#3#4#5#6{\XINT_forever_d #2{#4}{#5}#6{#3}Z}% +\long\def\XINT_forever_d #1#2#3#4#5% +{% + \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#5}% + \XINT_toks {{#2}}% + \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname + \the\XINT_toks \csname XINT_for_right#1\endcsname }% + \XINT_x + \let\xintifForFirst\xint_secondoftwo + \expandafter\XINT_forever_d\expandafter #1\romannumeral-`0#4{#2}{#3}#4{#5}% +}% +\catcode`j 3 +\long\def\xintForpair #1#2#3in#4#5#6% +{% + \let\xintifForFirst\xint_firstoftwo + \XINT_toks {\XINT_forpair_d #2{#6}}% + \expandafter\the\expandafter\XINT_toks #4jZ% +}% +\long\def\XINT_forpair_d #1#2#3(#4)#5% +{% + \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% + \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% + \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname + \the\XINT_toks \csname XINT_for_right\the\numexpr#1+1\endcsname}% + \let\xintifForLast\xint_secondoftwo + \ifx #5j\let\xintifForLast\xint_firstoftwo\expandafter\xintBreakForAndDo\fi + \XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forpair_d #1{#2}% +}% +\long\def\xintForthree #1#2#3in#4#5#6% +{% + \let\xintifForFirst\xint_firstoftwo + \XINT_toks {\XINT_forthree_d #2{#6}}% + \expandafter\the\expandafter\XINT_toks #4jZ% +}% +\long\def\XINT_forthree_d #1#2#3(#4)#5% +{% + \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% + \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% + \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname + \the\XINT_toks \csname XINT_for_right\the\numexpr#1+2\endcsname}% + \let\xintifForLast\xint_secondoftwo + \ifx #5j\let\xintifForLast\xint_firstoftwo\expandafter\xintBreakForAndDo\fi + \XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forthree_d #1{#2}% +}% +\long\def\xintForfour #1#2#3in#4#5#6% +{% + \let\xintifForFirst\xint_firstoftwo + \XINT_toks {\XINT_forfour_d #2{#6}}% + \expandafter\the\expandafter\XINT_toks #4jZ% +}% +\long\def\XINT_forfour_d #1#2#3(#4)#5% +{% + \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% + \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% + \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname + \the\XINT_toks \csname XINT_for_right\the\numexpr#1+3\endcsname}% + \let\xintifForLast\xint_secondoftwo + \ifx #5j\let\xintifForLast\xint_firstoftwo\expandafter\xintBreakForAndDo\fi + \XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forfour_d #1{#2}% +}% +\catcode`Z 11 +\catcode`j 11 +\def\xintAssign #1\to +{% + \expandafter\XINT_assign_a\romannumeral-`0#1{}\to +}% +\def\XINT_assign_a #1% attention to the # at the beginning of next line +#{% + \def\xint_temp {#1}% + \ifx\empty\xint_temp + \expandafter\XINT_assign_b + \else + \expandafter\XINT_assign_B + \fi +}% +\def\XINT_assign_b #1#2\to #3% +{% + \edef #3{#1}\def\xint_temp {#2}% + \ifx\empty\xint_temp + \else + \xint_afterfi{\XINT_assign_a #2\to }% + \fi +}% +\def\XINT_assign_B #1\to #2% +{% + \edef #2{\xint_temp}% +}% +\def\xintRelaxArray #1% +{% + \edef\XINT_restoreescapechar {\escapechar\the\escapechar\relax}% + \escapechar -1 + \edef\xint_arrayname {\string #1}% + \XINT_restoreescapechar + \expandafter\let\expandafter\xint_temp + \csname\xint_arrayname 0\endcsname + \XINT_count 0 + \loop + \global\expandafter\let + \csname\xint_arrayname\the\XINT_count\endcsname\relax + \ifnum \XINT_count < \xint_temp + \advance\XINT_count 1 + \repeat + \global\expandafter\let\csname\xint_arrayname 00\endcsname\relax + \global\let #1\relax +}% +\def\xintAssignArray #1\to #2% 1.06b: #1 may now be empty +{% + \edef\XINT_restoreescapechar {\escapechar\the\escapechar\relax }% + \escapechar -1 + \edef\xint_arrayname {\string #2}% + \XINT_restoreescapechar + \XINT_count 0 + \expandafter\XINT_assignarray_loop \romannumeral-`0#1\xint_relax + \csname\xint_arrayname 00\endcsname + \csname\xint_arrayname 0\endcsname + {\xint_arrayname}% + #2% +}% +\def\XINT_assignarray_loop #1% +{% + \def\xint_temp {#1}% + \ifx\xint_brelax\xint_temp + \expandafter\edef\csname\xint_arrayname 0\endcsname{\the\XINT_count }% + \expandafter\expandafter\expandafter\XINT_assignarray_end_a + \else + \advance\XINT_count 1 + \expandafter\edef + \csname\xint_arrayname\the\XINT_count\endcsname{\xint_temp }% + \expandafter\XINT_assignarray_loop + \fi +}% +\def\XINT_assignarray_end_a #1% +{% + \expandafter\XINT_assignarray_end_b\expandafter #1% +}% +\def\XINT_assignarray_end_b #1#2#3% +{% + \expandafter\XINT_assignarray_end_c + \expandafter #1\expandafter #2\expandafter {#3}% +}% +\def\XINT_assignarray_end_c #1#2#3#4% +{% + \def #4##1% + {% + \romannumeral0\expandafter #1\expandafter{\the\numexpr ##1}% + }% + \def #1##1% + {% + \ifnum ##1< 0 + \xint_afterfi {\xintError:ArrayIndexIsNegative\space 0}% + \else + \xint_afterfi {% + \ifnum ##1>#2 + \xint_afterfi {\xintError:ArrayIndexBeyondLimit\space 0}% + \else + \xint_afterfi + {\expandafter\expandafter\expandafter + \space\csname #3##1\endcsname}% + \fi}% + \fi + }% +}% +\let\xintDigitsOf\xintAssignArray +\XINT_restorecatcodes_endinput% +\endinput +%% +%% End of file `xinttools.sty'. |