summaryrefslogtreecommitdiff
path: root/obsolete/macros
diff options
context:
space:
mode:
Diffstat (limited to 'obsolete/macros')
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/README68
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/README7
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/article_post.pdfbin0 -> 794330 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/doc_aq-screen.pdfbin0 -> 322096 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/180px-Gustave_Moreau_007.jpgbin0 -> 12450 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/240px-Mort_du_fossoyeur.jpgbin0 -> 22368 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/The_Wounded_Angel_-_Hugo_Simberg.jpgbin0 -> 43567 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/aq.ist6
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/article_post.tex806
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-def.tex251
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-excomp.tex270
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-globales.tex726
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-installation.tex60
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-locales.tex136
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-mc.tex213
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-points.tex44
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-problem.tex23
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/doc/latex/doc_aq-main.tex164
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/AntillesESjuin2006.tex80
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/alea.tex31
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/annexe.tex25
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/correct.tex27
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/example_1.tex23
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/example_2.tex45
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/example_3.tex64
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/language.tex39
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/points.tex23
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/sep.tex31
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/transparent-final.tex40
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/transparent-init.tex41
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/latex/verb.tex150
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/AntillesESjuin2006.pdfbin0 -> 129519 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/alea.pdfbin0 -> 39127 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/annexe.pdfbin0 -> 25546 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/correct.pdfbin0 -> 48285 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/doc_aq.pdfbin0 -> 380622 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_1.pdfbin0 -> 28126 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_2.pdfbin0 -> 78026 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_3.pdfbin0 -> 24562 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/language.pdfbin0 -> 28676 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/points.pdfbin0 -> 34448 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/sep.pdfbin0 -> 39134 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/transparent-final.pdfbin0 -> 44103 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/transparent-init.pdfbin0 -> 80766 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/examples/pdf/verb.pdfbin0 -> 89087 bytes
-rw-r--r--obsolete/macros/latex/contrib/alterqcm/latex/alterqcm.sty575
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/README38
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/doc/TeX_box.pngbin0 -> 103779 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/doc/baseline.pngbin0 -> 15326 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.pdfbin0 -> 2871702 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.pngbin0 -> 369314 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.tex2200
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/doc/tikzrput.pdfbin0 -> 776180 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/doc/tikzrput.tex581
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/am/am1.pgf10
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/am/am2.pgf64
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian1.pgf27
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian10.pgf160
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian100.pgf42
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian101.pgf134
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian102.pgf318
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian103.pgf280
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian104.pgf237
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian105.pgf332
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian106.pgf229
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian107.pgf305
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian108.pgf261
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian109.pgf301
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian11.pgf87
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian110.pgf122
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian111.pgf181
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian112.pgf187
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian113.pgf204
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian114.pgf84
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian115.pgf190
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian116.pgf122
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian117.pgf183
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian118.pgf163
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian119.pgf178
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian12.pgf112
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian120.pgf145
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian121.pgf238
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian122.pgf132
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian123.pgf435
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian124.pgf917
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian125.pgf375
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian126.pgf405
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian127.pgf220
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian128.pgf173
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian129.pgf99
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian13.pgf81
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian130.pgf53
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian131.pgf234
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian132.pgf234
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian133.pgf38
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian134.pgf111
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian135.pgf31
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian136.pgf287
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian137.pgf401
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian138.pgf24
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian139.pgf291
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian14.pgf87
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian140.pgf32
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian141.pgf32
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian142.pgf190
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian143.pgf260
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian144.pgf289
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian145.pgf260
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian146.pgf283
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian147.pgf104
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian148.pgf83
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian149.pgf94
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian15.pgf212
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian150.pgf60
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian151.pgf48
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian152.pgf109
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian153.pgf108
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian154.pgf108
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian155.pgf106
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian156.pgf191
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian157.pgf271
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian158.pgf344
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian159.pgf182
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian16.pgf212
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian160.pgf394
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian161.pgf231
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian162.pgf215
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian163.pgf107
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian164.pgf133
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian165.pgf91
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian166.pgf93
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian167.pgf48
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian168.pgf157
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian169.pgf103
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian17.pgf62
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian170.pgf30
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian171.pgf57
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian172.pgf46
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian173.pgf107
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian174.pgf45
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian175.pgf69
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian176.pgf105
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian177.pgf70
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian178.pgf109
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian179.pgf81
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian18.pgf68
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian180.pgf72
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian181.pgf107
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian182.pgf67
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian183.pgf92
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian184.pgf128
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian185.pgf140
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian186.pgf65
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian187.pgf87
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian188.pgf71
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian189.pgf207
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian19.pgf146
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian190.pgf154
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian191.pgf407
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian192.pgf103
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian193.pgf77
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian194.pgf404
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian195.pgf417
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian196.pgf441
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian2.pgf29
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian20.pgf125
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian21.pgf38
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian22.pgf58
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian23.pgf38
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian24.pgf50
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian25.pgf104
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian26.pgf67
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian27.pgf189
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian28.pgf151
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian29.pgf88
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian3.pgf44
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian30.pgf87
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian31.pgf45
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian32.pgf39
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian33.pgf127
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian34.pgf127
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian35.pgf139
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian36.pgf139
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian37.pgf129
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian38.pgf129
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian39.pgf178
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian4.pgf163
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian40.pgf178
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian41.pgf154
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian42.pgf154
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian43.pgf99
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian44.pgf99
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian45.pgf275
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian46.pgf240
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian47.pgf40
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian48.pgf40
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian49.pgf101
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian5.pgf38
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian50.pgf288
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian51.pgf288
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian52.pgf503
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian53.pgf278
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian54.pgf278
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian55.pgf290
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian56.pgf290
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian57.pgf255
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian58.pgf475
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian59.pgf538
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian6.pgf60
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian60.pgf1611
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian61.pgf341
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian62.pgf341
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian63.pgf655
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian64.pgf655
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian65.pgf298
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian66.pgf461
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian67.pgf235
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian68.pgf1911
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian69.pgf376
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian7.pgf174
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian70.pgf173
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian71.pgf931
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian72.pgf63
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian73.pgf63
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian74.pgf73
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian75.pgf108
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian76.pgf73
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian77.pgf153
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian78.pgf293
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian79.pgf296
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian8.pgf876
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian80.pgf32
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian81.pgf137
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian82.pgf51
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian83.pgf97
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian84.pgf362
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian85.pgf95
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian86.pgf119
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian87.pgf513
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian88.pgf100
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian89.pgf219
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian9.pgf183
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian90.pgf223
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian91.pgf201
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian92.pgf80
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian93.pgf172
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian94.pgf118
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian95.pgf56
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian96.pgf28
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian97.pgf56
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian98.pgf56
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian99.pgf90
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgflibraryam.code.tex29
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgflibraryvectorian.code.tex208
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgfornament.sty171
-rw-r--r--obsolete/macros/latex/contrib/tkz/pgfornament/latex/tikzrput.sty112
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/README33
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/NamedGraphs.pdfbin0 -> 558988 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Andrasfai.tex63
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Balaban.tex91
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Bipartite.tex134
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Bull.tex24
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Cage.tex43
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Chvatal.tex73
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Cocktail_Party.tex50
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Coxeter.tex122
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Crown.tex55
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-CubicSymmetric.tex44
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Desargues.tex88
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Doyle.tex85
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Dyck.tex39
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Folkman.tex118
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Foster.tex39
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Franklin.tex71
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Gray.tex32
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Groetzsch.tex88
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Harries.tex48
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Heawood.tex47
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Hypercube.tex41
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Koenisberg.tex61
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Levi.tex79
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-McGee.tex59
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Moebius.tex167
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Nauru.tex37
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Pappus.tex61
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Petersen.tex175
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Platonic.tex338
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Robertson.tex243
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Tutte.tex44
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Wong.tex32
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-couverture.tex28
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-main.tex172
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/namedg.ist6
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-1-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-2-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-3-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-10-1-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-10-2-0.tex24
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-1-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-2-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-3-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-4-0.tex24
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-1-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-2-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-3-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-4-0.tex27
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-1-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-2-0.tex28
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-3-0.tex30
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-4-0.tex28
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-14-1-0.tex19
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-1-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-2-0.tex21
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-3-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-16-0-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-1-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-2-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-3-0.tex24
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-18-1-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-18-2-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-19-1-0.tex26
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-1-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-2-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-3-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-4-0.tex25
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-20-1-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-20-2-0.tex33
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-0-0.tex11
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-1-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-2-0.tex19
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-1-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-2-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-3-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-1-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-2-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-3-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-4-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-5-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-6-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-7-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-1-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-2-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-3-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-1-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-2-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-3-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-4-0.tex21
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-5-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-6-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-7-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-8-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-9-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-1-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-10-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-11-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-12-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-13-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-14-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-2-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-3-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-4-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-5-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-6-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-7-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-8-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-9-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-1-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-2-0.tex54
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-3-0.tex41
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-4-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-28-1-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-29-1-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-1-0.tex19
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-2-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-3-0.tex39
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-4-0-0.tex22
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-6-1-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-6-2-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-1-0.tex22
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-2-0.tex23
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-3-0.tex23
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-4-0.tex20
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-5-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-1-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-2-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-3-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-9-1-0.tex23
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-9-2-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/tkzpreamblenamed.ltx6
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/readme-namedgraph.txt33
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-classic.tex643
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-installation.tex150
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-macros-e.tex459
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-macros.tex327
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-main.tex246
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-style.tex59
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-gr-installation.tex91
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/berge.ist6
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/doc/tkz-berge-screen.pdfbin0 -> 326834 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/Grid.pdfbin0 -> 21283 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-Circulant.pdfbin0 -> 13458 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-Complet-16.pdfbin0 -> 4523 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-edgeingraphmodloop.pdfbin0 -> 14540 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grCLadder.pdfbin0 -> 14436 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grDoubleMod.pdfbin0 -> 17435 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grExtraChords.pdfbin0 -> 33641 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grLadder.pdfbin0 -> 14486 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grSQCycle.pdfbin0 -> 17508 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grStar.pdfbin0 -> 16613 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grWheel.pdfbin0 -> 14875 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercube.pdfbin0 -> 18541 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercube_simple.pdfbin0 -> 2440 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercubed.pdfbin0 -> 2440 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/Grid.tex21
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-Circulant.tex51
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-Complet-16.tex28
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-edgeingraphmodloop.tex26
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grCLadder.tex39
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grDoubleMod.tex23
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grExtraChords.tex64
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grLadder.tex27
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grSQCycle.tex34
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grStar.tex37
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grWheel.tex28
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/hypercube_simple.tex32
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/hypercubed.tex38
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/latex/tkz-arith.sty32
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/latex/tkz-berge.sty1810
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-berge/readme-tkz-berge.txt87
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/README80
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/TKZdoc-fct.pdfbin0 -> 742770 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-VDW.tex149
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-area.tex218
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-asymptote.tex159
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-bac.tex200
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-compilation.tex243
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-example.tex122
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-faq.tex265
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-fonctions.tex172
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-fppgf.tex58
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-installation.tex8
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-interpolation.tex97
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-label.tex36
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-liste.tex41
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-main.tex163
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-param.tex179
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-point.tex165
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-polar.tex135
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-riemann.tex86
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-symbol.tex42
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-tangent.tex236
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-why.tex41
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/preamble-standalone.ltx6
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-01-0-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-03-3-0.tex12
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-03-4-0.tex13
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-2-0.tex13
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-3-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-4-0.tex13
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-5-0.tex13
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-6-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-7-0.tex19
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-8-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-1-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-2-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-3-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-4-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-5-0.tex19
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-6-0.tex26
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-06-1-0.tex18
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-10-2.tex13
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-2-0.tex20
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-3-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-4-0.tex24
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-5-0.tex18
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-6-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-7-0.tex18
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-8-0.tex18
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-9-1.tex18
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-10-0.tex19
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-11-0.tex24
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-2-0.tex27
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-3-0.tex18
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-4-0.tex20
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-7-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-8-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-9-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-1-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-2-0.tex13
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-3-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-4-0.tex13
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-2-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-3-0.tex12
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-4-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-5-0.tex12
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-6-0.tex16
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-7-0.tex12
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-8-0.tex22
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-1-0.tex12
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-2-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-3-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-4-0.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-5-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-6-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-7-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-1-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-2-0.tex14
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-3-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-4-0.tex11
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-5-0.tex12
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-6-0.tex11
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-13-0-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-1-0.tex20
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-2-0.tex24
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-3-0.tex19
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-4-0.tex26
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-5-0.tex25
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-6-1.tex37
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-1.tex22
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-2.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-3.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-4.tex17
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-8-1.tex25
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-8-2.tex22
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-15-0-1.tex20
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-15-0-2.tex20
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-16-1-0.tex18
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-16-2-0.tex15
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-fct/latex/tkz-fct.sty697
l---------obsolete/macros/latex/contrib/tkz/tkz-graph/README1
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-Dijkstra.tex153
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-Welsh.tex249
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-annales.tex1164
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-couverture.tex33
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-edge.tex120
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-installation.tex108
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-label.tex155
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-main.tex215
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-presentation.tex221
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-prob.tex151
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-style.tex852
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-vertex.tex251
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-vertices.tex183
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/graph.ist6
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/doc/tkz-graph-screen.pdfbin0 -> 284977 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/latex/tkz-graph.sty1028
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-graph/readme-tkz-graph.txt78
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/README5
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/TKZdoc-kiviat-main.pdfbin0 -> 153394 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/TKZdoc-kiviat-main.tex518
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/file.dat10
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/file2.dat7
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/file.dat10
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat1.tex41
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat2.tex23
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat3.tex25
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat4.tex28
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat5.tex36
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-kiviat/latex/tkz-kiviat.sty246
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/README61
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/latex/TKZdoc-linknodes-us.tex1611
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/latex/linknodes.ist6
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/tkz-linknodes-screen.pdfbin0 -> 241545 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/equation.pdfbin0 -> 27121 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/equation.tex40
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/quadratic.tex44
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/system.tex91
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/quadratic.pdfbin0 -> 36054 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/system.pdfbin0 -> 34198 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/latex/tkz-linknodes.sty267
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-linknodes/readme-linknodes.txt67
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/README63
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZ-doc-tab-faq.tex1
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-adapt.tex532
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-bac.tex206
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-examples.tex451
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-image.tex181
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-init.tex202
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-install.tex107
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-main.tex161
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-sign.tex312
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-slope.tex41
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-style.tex292
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-tangente.tex183
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-tv.tex87
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-valeurs.tex166
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-variation.tex854
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab.ist6
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/doc/tkz-tab-screen.pdfbin0 -> 426080 bytes
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/latex/tkz-tab.sty943
-rw-r--r--obsolete/macros/latex/contrib/tkz/tkz-tab/readme-us.txt73
591 files changed, 73321 insertions, 0 deletions
diff --git a/obsolete/macros/latex/contrib/alterqcm/README b/obsolete/macros/latex/contrib/alterqcm/README
new file mode 100644
index 0000000000..584504e733
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/README
@@ -0,0 +1,68 @@
+Contents of the README file (v 4.1)
+
+A. Purpose
+
+The 'alterqcm' package is a LaTeX2e package, for making Multiple Choices Questionnaires
+ in a table with two columns. The aim is to provide some useful macros to build
+ QCM in tables. These macros may be used by only LaTeX TeX users.
+ The documentation is in French.
+
+B. Features
+ -- A special environment allows you to define questions and possible answers;
+ -- You can specify which answers are correct and which are not.
+ -- works with utf8 and pdflatex and xelatex;
+ -- allows to use 'longtable';
+ -- makes automatically adjustment;
+ -- generates a 'grid' that the students will have to fill in;
+ -- generates a 'mask' with correct answers to print a slide.
+
+C. Licence
+
+You may freely use and distribute this package under the terms of lppl and/or gpl.
+
+Read file doc_aq.pdf in the doc directory, for the complete documentation.
+File article_post.pdf is a complete description of the package's functionality
+in Greek. NB. People who want to use the package in Greek language documents
+should also use the xgreek package.
+
+D. Contents of the folder (encoding utf8)
+
+ -- README (this file)
+ -- inputs: alterqcm.sty
+ -- doc: doc-aq.pdf,
+ example_1.tex,
+ example_1.pdf,
+ example_2.tex,
+ example_2.pdf,
+ etc...
+
+
+E. Installation
+
+If you need to install it by yourself, a TDS compliant zip archive is
+provided (aq.zip). Just download that file, and unpack it in
+your TDS directory (~/texmf for Unix-like systems). If you only need to use
+ 'alterqcm.sty' then you have to copy 'alterqcm.sty' into '~/texmf/tex/latex'.
+
+
+With MiKTeX, copy folder 'alterqcm.sty' into 'C:\texmf\tex\latex', then
+run 'MiKTeX Options'. In the 'File name database' section, click on
+'Refresh now'.
+
+F. History
+
+-- 4.1 A fix in the definition of \AQquestion
+
+-- 4.0 Added full linguistic support
+
+-- 3.7 Correction of bug
+ add the macro \AQpoints
+
+G. The original author of the 'alterqcm.sty' package is Alain Matthes. This
+ version was developed by Apostolos Syropoulos and Anastasios Dimou.
+--
+Alain Matthes, <al.ma@mac.com>
+Apostolos Syropoulos, <asyropoulos@yahoo.com>
+Anastastios Dimou, <ansdimou@tassosdimou.gr>
+June, 24th, 2019
+
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/README b/obsolete/macros/latex/contrib/alterqcm/doc/README
new file mode 100644
index 0000000000..33e1123bd6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/README
@@ -0,0 +1,7 @@
+How to compile the sources
+
+$ cd the_path_of_sources
+$ pdflatex doc_aq-main.tex
+$ makeindex -s aq.ist doc_aq-main.idx
+$ pdflatex doc_aq-main.tex
+$ xelatex article_post.tex
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/article_post.pdf b/obsolete/macros/latex/contrib/alterqcm/doc/article_post.pdf
new file mode 100644
index 0000000000..be3c103baa
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/article_post.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/doc_aq-screen.pdf b/obsolete/macros/latex/contrib/alterqcm/doc/doc_aq-screen.pdf
new file mode 100644
index 0000000000..d92bbf1c98
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/doc_aq-screen.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/180px-Gustave_Moreau_007.jpg b/obsolete/macros/latex/contrib/alterqcm/doc/latex/180px-Gustave_Moreau_007.jpg
new file mode 100644
index 0000000000..ab4d879cfe
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/180px-Gustave_Moreau_007.jpg
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/240px-Mort_du_fossoyeur.jpg b/obsolete/macros/latex/contrib/alterqcm/doc/latex/240px-Mort_du_fossoyeur.jpg
new file mode 100644
index 0000000000..70d5f0d0f5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/240px-Mort_du_fossoyeur.jpg
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/The_Wounded_Angel_-_Hugo_Simberg.jpg b/obsolete/macros/latex/contrib/alterqcm/doc/latex/The_Wounded_Angel_-_Hugo_Simberg.jpg
new file mode 100644
index 0000000000..0befd93b07
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/The_Wounded_Angel_-_Hugo_Simberg.jpg
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/aq.ist b/obsolete/macros/latex/contrib/alterqcm/doc/latex/aq.ist
new file mode 100644
index 0000000000..935392d700
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/aq.ist
@@ -0,0 +1,6 @@
+heading_prefix "{\\bfseries\\hfil "
+heading_suffix "\\hfil}\\nopagebreak\n"
+headings_flag 1
+delim_0 "\\dotfill"
+delim_1 "\\dotfill"
+delim_2 "\\dotfill"
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/article_post.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/article_post.tex
new file mode 100644
index 0000000000..6ebc2b9676
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/article_post.tex
@@ -0,0 +1,806 @@
+\documentclass[11pt]{article}
+\usepackage{xltxtra}
+\usepackage{xgreek}
+\usepackage{mathtools}
+\usepackage{amsthm}
+\usepackage{amssymb}
+\usepackage{unicode-math}
+\usepackage{xkeyval}
+\usepackage[%
+a4paper,%
+textwidth=16cm,
+top=2cm,%
+bottom=2cm,%
+headheight=25pt,%
+headsep=12pt,%
+footskip=25pt]{geometry}%
+\usepackage[greek]{alterqcm}
+\usepackage{tikz}
+\usepackage{tkz-tab}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\def\PP#1{\texttt{\char`\\#1}}
+\setmainfont[Mapping=tex-text]{Arno Pro}
+\setmathfont[Scale=MatchUppercase]{Asana Math}
+\setmonofont[Scale=MatchLowercase]{Consolas}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+
+\begin{document}
+ \title{Το πακέτο alterqcm. Δημιουργία καλαίσθητων διαγωνισμάτων με ερωτήσεις κλειστού τύπου.}
+ \author{Απόστολος Συρόπουλος-Τάσσος Δήμου}
+ \date{24 Ιουνίου 2019}
+ \maketitle
+\section{Εισαγωγή}
+Ο Alain Matthes μας έχει συνηθίσει σε ενδιαφέροντα πακέτα για το \LaTeX\ , που είναι μάλιστα πολύ σχετικά με τα δικά μας προγράμματα, το στυλ και το ύφος τους. Ένα τέτοιο παράδειγμα είναι και το \texttt{tkz-tab}, που παρουσιάστηκε πέρυσι στο \texttt{https://tassosdimou.gr/variation-table}.
+
+Το πακέτο \textsf{alterqcm} είναι ακόμη ένα πακέτο του Alain Matthes για το \LaTeX\, που θα μας βοηθήσει στη κατασκευή καλαίσθητων διαγωνισμάτων με ερωτήσεις πολλαπλής επιλογής και σωστού-λάθους.
+
+Το \textsf{alterqcm} τροποποιήθηκε από τους Απόστολο Συρόπουλο και Τάσσο Δήμου έτσι, ώστε να προσαρμοστεί στα δεδομένα του ελληνικού εκπαιδευτικού συστήματος.
+
+ Το άρθρο αναπτύσσει με λεπτομέρειες και πολλά παραδείγματα τις δυνατότητες του \textsf{alterqcm}. Δίνει οδηγίες για τη χρήση του και στο τέλος θα δοθούν μερικά παραδείγματα διαγωνισμάτων.
+
+\section{Εγκατάσταση του πακέτου}
+Θα υποδείξουμε έναν απλό τρόπο εγκατάστασης του πακέτου. Δημιουργούμε ένα φάκελο, στον οποίο θα αποθηκευτούν όλα τα αρχεία, που θα επεξεργαστούμε, μελετώντας το \textsf{alterqcm}. Με άλλα λόγια, στον φάκελο αυτόν αποθηκεύουμε τα αρχεία \texttt{.tex}, τις εικόνες που θα χρησιμοποιηθούν και το αρχείο \texttt{alterqcm.sty}, που θα κατεβάσουμε από τη διεύθυνση \texttt{https://ctan.org/pkg/alterqcm?lang=en}. Το πακέτο θα φορτωθεί με την επιλογή \texttt{greek}, δηλαδή θα δώσουμε την εντολή:
+\begin{verbatim}
+\usepackage[greek]{alterqcm}
+\end{verbatim}
+Όλα τα αρχεία θα έχουν την κλασσική δομή των αρχείων \texttt{.tex}.
+
+Στο πρώτο μέρος, το προοίμιο, θα τοποθετήσουμε τα:
+\begin{verbatim}
+\documentclass[11pt,a4paper]{article}
+\usepackage{xltxtra}
+\usepackage{xgreek}
+\usepackage{mathtools}
+\usepackage{amsthm}
+\usepackage{amssymb}
+\usepackage{unicode-math}
+\usepackage{xkeyval}
+\usepackage{multirow,longtable}
+\usepackage[greek]{alterqcm}
+\usepackage{tikz}
+\usepackage{tkz-tab}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\parindent=0pt
+\setmainfont[Mapping=tex-text,Ligatures=Common]{Minion Pro}
+\setmathfont[Scale=MatchUppercase]{Asana Math}
+\end{verbatim}
+Αν τo διαγώνισμα δεν περιέχει μαθηματικές εξισώσεις ή σύμβολα, τότε αφαιρούμε από το προοίμιο τα πακέτα\linebreak \texttt{mathtools,amsthm,amssymb}.
+Το κύριο σώμα του διαγωνίσματος περιέχεται ανάμεσα στα
+\begin{verbatim}
+\begin{document}
+................
+\end{document}
+\end{verbatim}
+
+\section{Το περιβάλλον \texttt{alterqcm} και η μακροεντολή \texttt{\PP AQquestion}}
+
+Το περιβάλλον \texttt{alterqcm} εισάγεται, όπως όλα τα περιβάλλοντα με:
+\begin{verbatim}
+\begin{alterqcm}
+...............
+\end{alterqcm}
+\end{verbatim}
+Φυσικά δέχεται διάφορες παραμέτρους, που θα αναλύσουμε διεξοδικά και θα εφαρμόσουμε στα επόμενα με πολλά παραδείγματα.
+
+Μέσα στο περιβάλλον εντάσσουμε και την μακροεντολή \verb|\AQquestion|, με την οποία εισάγουμε ερωτήσεις πολλαπλής επιλογής. Σημειωτέον ότι κι εδώ έχουμε διάφορες παραμέτρους, που θα δούμε στην πορεία.
+
+Ας προχωρήσουμε στο πρώτο μας παράδειγμα.
+
+\vspace{10pt}
+\includegraphics[scale=]{shadows_box.pdf}
+\begin{enumerate}
+ \item Ξεκινάμε ένα καινούργιο αρχείο, που το ονομάζουμε \texttt{doc1} και το σώζουμε στο φάκελο που δημιουργήσαμε, έστω τον \texttt{myfolder}. Έτσι θα έχουμε μέσα στο φάκελο \texttt{myfolder} το αρχείο \texttt{doc1.tex}.
+ \item Στο προοίμιο του αρχείου τυπώνουμε:
+ \begin{verbatim}
+ \documentclass[11pt,a4paper]{article}
+ \usepackage{xltxtra}
+ \usepackage{xgreek}
+ \usepackage{amsmath,amssymb}
+ \usepackage{xkeyval}
+ \usepackage{multirow,longtable}
+ \usepackage{alterqcm}
+ \setmainfont[Mapping=tex-text,Ligatures=Common]{Minion Pro}
+ \parindent=0pt
+ \end{verbatim}
+ \item Στο σώμα του αρχείου τυπώνουμε:
+ \begin{verbatim}
+\begin{alterqcm}
+\AQquestion{Ερώτηση}{%
+{Επιλογή 1},
+{Επιλογή 2},
+{Επιλογή 3}}
+\end{alterqcm}
+\end{document}
+\end{verbatim}
+ \item
+Ας αποκρυπτογραφήσουμε τώρα ό,τι τυπώσαμε στο κυρίως σώμα του εγγράφου μας. Ανοίξαμε αντιστοίχως κλείσαμε το περιβάλλον \texttt{alterqcm} με
+\begin{verbatim}
+\begin{alterqcm}
+...............
+\end{alterqcm}
+\end{verbatim}
+Μέσα σε αυτό προσθέσαμε την εντολή \verb|\AQquestion|, που συντάσσεται ως εξής:
+
+\verb|\AQquestion{η ερώτηση}{{επιλογή 1η},{επιλογή 2η},...,{επιλογή n}}|
+
+Εξάγουμε το εκτυπώσιμο pdf και θα πάρουμε:
+\end{enumerate}
+\begin{center}
+\includegraphics[scale=]{example_1.pdf}
+\end{center}
+
+Όσες ερωτήσεις έχουμε, τόσες φορές με τον ίδιο τρόπο θα προσθέσουμε την εντολή \verb|\AQquestion|.
+
+Στο παράδειγμά μας έγινε μια φορά.
+
+\subsection{Η παράμετρος \texttt{lq}}
+Η παράμετρος \texttt{lq} ορίζει το πλάτος του κελιού της ερώτησης. Άρα έμμεσα ρυθμίζει και το πλάτος του πίνακα. Φυσικά σε κάθε περίπτωση έχουμε, αν απαιτείται, αναδίπλωση του κειμένου.
+ Ας προχωρήσουμε σε ένα δεύτερο παράδειγμα.
+\begin{center}
+\includegraphics[scale=]{example_3.pdf}
+\end{center}
+Για να πάρουμε το παραπάνω εκτυπώσιμο pdf, πληκτρολογήσαμε στο κυρίως σώμα του εγγράφου μας:
+\begin{verbatim}
+\begin{alterqcm}[lq=5cm]
+\AQquestion{Μεταξύ των διπλανών προτάσεων ποια είναι αυτή που αποδεικνύει ότι η
+ ασύμπτωτη της εκθετικής συνάρτησης έχει εξίσωση $y = 0$;}
+{{$\displaystyle\lim_{x \to +\infty}\text{e}^x = + \infty$},
+{$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$},
+{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$}}
+\AQquestion[]{$e^{\ln x} = x$ για κάθε $x$ που ανήκει στο }
+{{$\mathbf{R}$},
+{$\big(0~;~+ \infty\big)$},
+{$\big[0~;~+\infty\big)$}
+}\end{alterqcm}
+\end{verbatim}
+Εννοείται ότι το προοίμιο του αρχείου, παραμένει το ίδιο. Σώζουμε το αρχείο μας με το όνομα \texttt{doc2.tex} στο φάκελο \texttt{myfolder}.
+
+\section{Εφαρμογή του περιβάλλοντος \texttt{minipage}}
+
+Ας δούμε το προηγούμενο παράδειγμα ενταγμένο σε περιβάλλον \texttt{minipage}.
+\begin{center}
+\begin{minipage}{0.4\textwidth}
+\begin{verbatim}
+\begin{alterqcm}[lq=5cm]
+\AQquestion{Μεταξύ των διπλανών
+προτάσεων ποια είναι αυτή που
+αποδεικνύει ότι η
+ασύμπτωτη της εκθετικής
+συνάρτησης έχει
+ εξίσωση $y = 0$;}
+{{$\displaystyle\lim_{x \to +\infty}
+\text{e}^x = + \infty$},
+{$\displaystyle\lim_{x \to -\infty}
+\text{e}^x = 0$},
+{$\displaystyle\lim_{x \to +\infty}
+\dfrac{\text{e}^x}{x} = +\infty$}}
+\AQquestion[]{$e^{\ln x} = x$ για
+κάθε $x$ που ανήκει στο }
+{{$\mathbf{R}$},
+{$\big(0~;~+ \infty\big)$},
+{$\big[0~;~+\infty\big)$}
+}\end{alterqcm}
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.5\textwidth}
+\includegraphics[scale=0.63]{multiple_choice.pdf}
+\end{minipage}
+\end{center}
+
+\subsection{Η παράμετρος \texttt{pq}}
+
+Η παράμετρος \texttt{pq} ρυθμίζει την κάθετη απόσταση του κειμένου της ερώτησης από το πάνω μέρος του κελιού. Αν θέλουμε να έχει καθολική ισχύ (global), τότε την γράφουμε ως επιλογή του περιβάλλοντος \texttt{alterqcm}. Αν θέλουμε να ρυθμίσουμε μόνο μια ερώτηση, την προσθέτουμε ως παράμετρο της ερώτησης. Δηλαδή:
+
+Για καθολική ισχύ (global): \verb|\begin{alterqcm}[lq=85mm,pq=2mm]|
+
+Για τοπική ισχύ (local): \verb|\AQquestion[pq=2mm]|
+\begin{center}
+\includegraphics[scale=]{pq_global.pdf}
+\end{center}
+Για να έχουμε το παραπάνω αποτέλεσμα πληκτρολογήσαμε:
+\begin{verbatim}
+\begin{alterqcm}[lq=50mm,pq=2mm]
+\AQquestion[pq=0mm]{Η ισότητα $\ln (x^2 - 1) = \ln (x - 1) + \ln (x+1)$ είναι αληθής}
+{{Για κάθε $x\in (- \infty,\,-1) \cup(1,\,+ \infty)$}, {Για κάθε $x\in\mathbf{R} - \{-1,\,1\}$.},
+{Για κάθε $x\in (1,\,+\infty)$}}
+\AQquestion{Για κάθε πραγματικό $x$, ο αριθμός \[\dfrac{\text{e}^x - 1}
+{\text{e}^x + 2}\hskip12pt \text{ισούται με:} \] }
+{{$-\dfrac{1}{2}$},
+{$\dfrac{\text{e}^{-x} - 1}{\text{e}^{-x} + 2}$},
+{$\dfrac{1 - \text{e}^{-x}}{1 + 2\text{e}^{-x}}$}}
+\AQquestion{Θέτουμε $I=\int_{\ln2}^{\ln3}\dfrac{1}{e^x-1}
+\text{d}x,~J=\int_{\ln2}^{\ln3}\dfrac{e^x}{e^x-1}
+\text{d}x$ τότε το $I-J$ ισούται με:}
+{{$\ln{\dfrac{2}{3}}$},
+{$\ln{\dfrac{3}{2}}$},
+{$\dfrac{3}{2}$}
+}
+\end{alterqcm}
+\end{verbatim}
+Παρατηρούμε ότι ορίσαμε ως καθολική τιμή το \verb|pq=2mm|, ενώ τοπικά στην πρώτη ερώτηση θέσαμε \verb|pq=0mm|
+
+\section{Ερωτήσεις Σωστού - Λάθους}
+
+Ερωτήσεις πολύ συνηθισμένες στα διαγωνίσματα και στις εξετάσεις στην Ελλάδα. Η εισαγωγή τους γίνεται με το γνωστό περιβάλλον:
+\verb|\begin{minipage}[VF]|. Το πακέτο είναι σε γαλλική γλώσσα και Vrai σημαίνει αλήθεια (σωστό) ενώ Faux σημαίνει λάθος. Για να δούμε τι συμβαίνει όταν προσθέσουμε την παράμετρο \verb|VF|.
+
+\begin{center}
+\includegraphics[scale=]{example_2.pdf}
+\end{center}
+Ο κώδικας για το παραπάνω εκτυπώσιμο pdf είναι:
+\begin{verbatim}
+\begin{alterqcm}[VF,lq=60mm]
+\AQquestion[]{Ισχύει ότι $(α+β)^2=α^2+β^2$}
+\AQquestion[]{Αν $α\cdot β\geq 0$, τότε $\sqrt{α\cdot β}=\sqrt{α}\cdot\sqrt{β}$ }
+\AQquestion[]{Είναι $|α|=α,\,\text{για κάθε}
+ x\in\mathbb{R}$}
+\end{alterqcm}
+\end{verbatim}
+\paragraph{Προσοχή}
+Σχετικά με τα ελληνικά σε \emph{μαθηματικό περιβάλλον}. Στο \LaTeX\ τα ελληνικά εισάγονται με εντολές, όπως \verb|\alpha, \beta,κ.λ.π. \Alpha..|, αντίστοιχα για πεζά και κεφαλαία. Στο \XeLaTeX\ γράφουμε κανονικά τα ελληνικά, δηλαδή από το πληκτρολόγιο, αρκεί στο προοίμιο να έχουμε φορτώσει, εκτός από τα πακέτα \verb|xltxtra, xgreek|, επιπλέον το πακέτο \verb|unicode-math| και τη γραμματοσειρά \verb|Asana Math|, που δημιουργήθηκε και υποστηρίζεται από τον Απόστολο Συρόπουλο. Απλά δίνουμε την εντολή:
+
+\verb|\setmathfont[Scale=MatchUppercase]{Asana Math}|.
+
+\subsubsection*{Ένα πιο σύνθετο παράδειγμα Σωστού-Λάθους}
+\begin{center}
+\includegraphics[scale=0.95]{example_3_a_croped.pdf}
+\end{center}
+Στο παράδειγμα αυτό, παρουσιάζονται, κατά κάποιο τρόπο, δύο τμήματα. Στο πρώτο τμήμα, γράφουμε σε περιβάλλον \texttt{minimage} την εκφώνηση και παράλληλα το σχήμα (δημιουργήθηκε με χρήση του πακέτου tikz). Το δεύτερο τμήμα δημιουργήθηκε με το περιβάλλον \texttt{alterqcm} και έχει κώδικα:
+\begin{verbatim}
+\begin{alterqcm}[VF,pre=true,lq=125mm]
+\AQquestion{Για κάθε $x \in (-\infty,\,2],
+\;f^{\prime}(x) \geqslant 0$.}
+\AQquestion{Η συνάρτηση $F$ παρουσιάζει
+ μέγιστο στο $2$}
+\AQquestion{$\displaystyle\int_{0}^2
+ f^{\prime}(x)\:\text{d}x = - 2$}
+\end{alterqcm}
+
+\end{verbatim}
+
+\subsection{Η παράμετρος \texttt{pre}}
+
+Η παράμετρος, αν πάρει τη τιμή \texttt{pre=true} προσθέτει αυτόματα το κείμενο << Να επιλέξετε Σ(ωστό)...την απάντησή σας>>. Αυτό γίνεται όταν λειτουργεί μαζί με την παράμετρο \texttt{VF} στο όρισμα του περιβάλλοντος. Αν στο περιβάλλον δεν υπάρχει η \texttt{VF}, τότε η \texttt{pre=true} παράγει το κείμενο <<Για την ερώτηση που σας δίνεται,...την επιλογή σας>>, που παρουσιάζεται στις ερωτήσεις πολλαπλής επιλογής. Μπορούμε βέβαια να την αγνοήσουμε και να γράφουμε την "εκφώνηση", όπως την επιθυμούμε.
+
+\subsection{Η παράμετρος \texttt{sep} }
+Προσθέτοντας την παράμετρο \verb|\text=true| στο περιβάλλον \verb|alterqcm|, δημιουργούνται οριζόντιες γραμμές ανάμεσα στις επιλογές.
+
+\vspace{15pt}
+\begin{minipage}{0.3\textwidth}
+\begin{verbatim}
+\nogreekalph
+\begin{alterqcm}
+[lq=6cm,sep=true]
+\AQquestion{Ερώτηση}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\end{alterqcm}
+\greekalph
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.6\textwidth}
+\includegraphics[scale=]{sep.pdf}
+\end{minipage}
+
+\subsection{Η παράμετρος \texttt{symb}}
+
+Με την παράμετρο \texttt{symb} καθορίζουμε τη μορφή των τετραγώνων, που σημειώνονται οι απαντήσεις στα ερωτήματα. Οι τιμές που μπορεί να πάρει είναι \verb|\altersquare|, \verb|\dingsquare|, \verb|\dingchecksquare|.
+
+Για παράδειγμα, γράφουμε τον κώδικα:
+\begin{verbatim}
+\begin{alterqcm}
+[VF,lq=125mm,pre=true, symb=\dingsquare]
+\AQquestion{Οι ανισώσεις $2-\dfrac{x}{2}\leq
+ x+\dfrac{1}{2}$ και $5x-5\geq 0$ έχουν
+ ίδιες λύσεις.}
+\AQquestion{Ο αριθμός -2 είναι λύση της
+ ανίσωσης $-2x+3<-5$.}
+\AQquestion{Η ανίσωση $5x>-2$ είναι αδύνατη.}
+\end{alterqcm}
+\end{verbatim}
+και θα πάρουμε σε εκτυπώσιμο pdf:
+\begin{center}
+\includegraphics[scale=0.95]{dingsquare_croped.pdf}
+\end{center}
+\subsection{Οι παράμετροι \texttt{num} και \texttt{numstyle}}
+
+\subsubsection*{Η παράμετρος \texttt{num}}
+Η παράμετρος \texttt{num} όταν παίρνει την τιμή \texttt{false}, δηλαδή \texttt{num=false} δεν εμφανίζει την αρίθμηση των ερωτήσεων. Αν \texttt{num=true}, τότε εμφανίζει την αρίθμηση. Για παράδειγμα:
+\begin{center}
+\begin{minipage}{0.4\textwidth}
+\begin{verbatim}
+\nogreekalph
+\begin{alterqcm}
+[lq=3cm,num=false]
+\AQquestion{Ερώτηση A}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\AQquestion{Ερώτηση Β}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\end{alterqcm}
+\greekalph
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.5\textwidth}
+\includegraphics[scale=0.95]{num_false_a.pdf}
+\end{minipage}
+\end{center}
+
+\subsection{Η παράμετρος \texttt{numstyle}}
+
+Αν η παράμετρος \texttt{numstyle} πάρει την τιμή \verb|\alph|, δηλαδή \verb|numstyle=\alph|, τότε τροποποιείται το στυλ αρίθμησης των ερωτήσεων και παίρνει τη μορφή (a., b., c.,...). Για παράδειγμα:
+\begin{center}
+\begin{minipage}{0.4\textwidth}
+\begin{verbatim}
+\begin{alterqcm}
+[lq=3cm,numstyle=\alph]
+\AQquestion{Ερώτηση A}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\AQquestion{Ερώτηση Β}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\end{alterqcm}
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.5\textwidth}
+\includegraphics[scale=0.95]{numstyle_croped.pdf}
+\end{minipage}
+\end{center}
+
+\subsection{Η παράμετροι \texttt{titre, tone, ttwo} }
+
+\subsubsection*{Η παράμετρος \texttt{titre} }
+Η παράμετρος \texttt{titre} αν πάρει την τιμή \texttt{false}, δηλαδή \texttt{titre=false}, τότε δεν εμφανίζονται οι τίτλοι των στηλών. Για παράδειγμα:
+\begin{center}
+ \begin{minipage}{0.4\textwidth}
+ \begin{verbatim}
+\begin{alterqcm}
+[lq=6cm,title=false]
+\AQquestion{Ερώτηση A}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\AQquestion{Ερώτηση Β}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\end{alterqcm}
+\end{verbatim}
+ \end{minipage}
+ \begin{minipage}{0.5\textwidth}
+ \includegraphics[scale=0.95]{title_a_croped.pdf}
+ \end{minipage}
+\end{center}
+
+\subsubsection*{Οι παράμετροι \texttt{tone, ttwo} }
+
+Με τις παραμέτρους \texttt{tone} και \texttt{ttwo} ορίζουμε τους τίτλους της πρώτης στήλης \texttt{t(itle)one} και της δεύτερης \texttt{t(itle)two}. Συντάσσονται ως: <<\texttt{tone= τίτλος 1ης στήλης}>> και αντίστοιχα <<\texttt{ttwo= Τίτλος 2ης στήλης}>>. Για παράδειγμα αν γράψουμε:
+\begin{verbatim}
+\begin{alterqcm}[lq=6cm,tone= Ερωτήσεις πολλαπλής επιλογής,ttwo= Απαντήσεις]
+\AQquestion{Ερώτηση A}{{Πρόταση 1},{Πρόταση 2},{Πρόταση 3}}
+\AQquestion{Ερώτηση Β}{{Πρόταση 1},{Πρόταση 2},{Πρόταση 3}}
+\end{alterqcm}
+\end{verbatim}
+θα πάρουμε
+\begin{center}
+\includegraphics[scale=]{title_b_croped.pdf}
+\end{center}
+
+\subsection{Παράμετροι \texttt{nosquare, propstyle, alea}}
+\subsubsection{Η παράμετρος \texttt{nosquare}}
+Η παράμετρος \texttt{nosquare}, αν πάρει την τιμή \texttt{true} αφαιρεί τα τετράγωνα μπροστά από τις προτάσεις, που επιλέγονται. Για παράδειγμα:
+\begin{center}
+ \begin{minipage}{0.4\textwidth}
+ \begin{verbatim}
+\begin{alterqcm}
+[lq=3cm,nosquare=true]
+\AQquestion{Ερώτηση A}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\AQquestion{Ερώτηση Β}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\end{alterqcm}
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.5\textwidth}
+\includegraphics[scale=0.95]{nosquare_croped.pdf}
+\end{minipage}
+\end{center}
+
+\subsubsection{Η παράμετρος \texttt{propstyle}}
+Η παράμετρος \texttt{propstyle} ρυθμίζει τον τρόπο αρίθμησης των απαντήσεων. Εξ ορισμού παίρνει την τιμή\linebreak \verb|propstyle=\alph|. Αν θέσουμε \verb|propstyle=\Roman|, θα έχουμε ρωμαϊκή αρίθμηση.
+\begin{center}
+\begin{minipage}{0.4\textwidth}
+\begin{verbatim}
+\begin{alterqcm}
+[lq=3cm,numprop=true,
+propstyle=\Roman]
+% ή propstyle=\alph για a,b,c
+\AQquestion{Ερώτηση A}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\AQquestion{Ερώτηση Β}
+{{Πρόταση 1},
+{Πρόταση 2},
+{Πρόταση 3}}
+\end{alterqcm}
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.5\textwidth}
+\includegraphics[scale=0.95]{propstyle_croped.pdf}
+\end{minipage}
+\end{center}
+
+\subsubsection{Η παράμετρος \texttt{alea}}
+
+Η παράμετρος \texttt{alea} δημιουργεί μια τυχαία σειρά των προτάσεων της απάντησης. Κάθε φορά που εξάγουμε το εκτυπώσιμο pdf, έχουμε τις απαντήσεις σε διαφορετική σειρά. Για παράδειγμα:
+
+\begin{minipage}{0.4\textwidth}
+ \begin{verbatim}
+\begin{alterqcm}
+[lq=6cm,alea]
+\AQquestion[pq=1mm]
+{Αν μια συνάρτηση $f$
+είναι γνησίως φθίνουσα
+στο $\mathbb{R}$, τότε
+ η εξίσωση $f(x)=0$ δέχεται:}
+{{Τουλάχιστον μια ρίζα στο
+ $\mathbb{R}$},
+{Ακριβώς μια ρίζα στο $\mathbb{R}$},
+{Το πολύ μια ρίζα στο $\mathbb{R}$}}
+\end{alterqcm}
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.5\textwidth}
+\includegraphics[scale=0.7]{random_croped.pdf}
+\end{minipage}
+
+
+\subsection{Η παράμετρος \texttt{long}}
+Η παράμετρος \texttt{long} ενεργοποιεί το περιβάλλον \texttt{longtable} και μπορούμε να κατασκευάσουμε έναν πίνακα, που υπερβαίνει τη μια σελίδα. Για παράδειγμα αν τυπώσουμε:
+\begin{verbatim}
+\begin{alterqcm}[VF,lq=12cm,pre,long]
+\AQquestion{Το σύνολο τιμών μιας συνάρτησης $f$ είναι το σύνολο των τεταγμένων των σημείων
+ της γραφ. παράστασης.}
+......................................
+........................................
+\AQquestion{Αν $f:\mathbb{R}\to\mathbb{R}$ και $f(x^3)=x^6+x^3+1$ τότε $f(x)=x^2+x+1$}
+\end{alterqcm}
+\greekalph
+\end{verbatim}
+
+\noindent\includegraphics[scale=0.7]{long.pdf}
+
+\subsection{Οι παράμετροι \texttt{br} και \texttt{correction}}
+Μπορούμε να δημιουργήσουμε ένα φύλλο απαντήσεων, που θα διευκολύνει τη διόρθωση των ερωτήσεων του διαγωνίσματος. Για παράδειγμα αν γράψουμε:
+
+\vspace{10pt}
+\begin{verbatim}
+\begin{alterqcm}[VF,lq=8cm,correction,symb=\dingsquare,corsymb=\dingchecksquare]
+\AQquestion[br=2]{Ισχύει ότι $(α+β)^2=α^2+β^2$}
+\AQquestion[br=1]{Αν $α\cdot β\geq 0$, τότε $\sqrt{α\cdot β}=\sqrt{α}\cdot\sqrt{β}$}
+\AQquestion[br=2]{Είναι $|α|=α,\,\text{για κάθε}\, x\in\mathbb{R}$}
+\end{alterqcm}
+
+\vspace{10pt}
+\begin{alterqcm}[lq=5cm,correction,symb=\dingsquare,corsymb=\dingchecksquare]
+\AQquestion[br=3]{Αν μια συνάρτηση $f$ είναι γνησίως φθίνουσα στο $\mathbb{R}$, τότε
+ η εξίσωση $f(x)=0$ δέχεται:}
+{{Ακριβώς μια ρίζα στο $\mathbb{R}$},
+{Τουλάχιστον μια ρίζα στο $\mathbb{R}$ },
+{Το πολύ μια ρίζα στο $\mathbb{R}$}}
+\end{alterqcm}
+\end{verbatim}
+
+θα πάρουμε
+\begin{center}
+\includegraphics[scale=]{correction_croped.pdf}
+\end{center}
+
+\subsubsection*{Η παράμετρος \texttt{br}}
+
+Η παράμετρος \texttt{br} παίρνει καθορίζει ποιες από τις απαντήσεις είναι οι σωστές επιλογές. Έτσι, όταν γράφουμε \verb|br=2| εννοούμε ότι η απάντηση 2 είναι σωστή. Αν έχουμε περισσότερες από μια σωστές απαντήσεις τότε γράφουμε \verb|br={1,3}| που σημαίνει ότι οι απαντήσεις 1 και 3 είναι σωστές. Για παράδειγμα
+\begin{center}
+\begin{minipage}{0.4\textwidth}
+\begin{verbatim}
+\begin{alterqcm}
+[lq=2cm,correction]
+\AQquestion[br={1,3}]
+{Ερώτηση}
+{{Απάντηση 1},
+{Απάντηση 2 },
+{Απάντηση 3}}
+\end{alterqcm}
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.5\textwidth}
+\includegraphics[scale=]{correction_a_croped.pdf}
+\end{minipage}
+\end{center}
+
+\subsection{Η παράμετρος \texttt{transparent}}
+
+Η παράμετρος \texttt{transparent} επιτρέπει να τυπωθεί το τεστ, χωρίς τις ερωτήσεις και τις προτάσεις, αλλά να εμφανίζονται μόνο οι σωστές απαντήσεις. Για παράδειγμα:
+
+Πληκτρολογώντας τον κώδικα:
+
+\begin{verbatim}
+\begin{alterqcm}[transparent,pq=-3mm,correction,lq=8cm]
+\AQquestion[br=3,pq=3mm]
+{Ποιες από τις διπλανές προτάσεις δείχνουν ότι η
+εκθετική συνάρτηση δέχεται ως ασύμπτωτη την ευθεία
+ $y = 0$ ?}
+{{$\displaystyle\lim_{x \to +\infty}\dfrac{\text{e}^x}{x} = + \infty$},
+{$\displaystyle\lim_{x \to +\infty}\text{e}^x = + \infty$},
+{$\displaystyle\lim_{x \to -\infty}\text{e}^x = 0$}}
+\AQquestion[br=2]{$e^{\ln x} = x$ για κάθε $x$ που ανήκει στο }
+{{$\mathbf{R}$},{$\big(0,\,+\infty\big)$},{$\big[0,\,+\infty\big)$}}
+\AQquestion[br=3]{Αν μια συνάρτηση $f$ είναι γνησίως φθίνουσα στο
+$\mathbb{R}$, τότε η εξίσωση $f(x)=0$ δέχεται:}
+{{Ακριβώς μια ρίζα στο $\mathbb{R}$}, {Τουλάχιστον μια ρίζα στο $\mathbb{R}$ },
+{Το πολύ μια ρίζα στο $\mathbb{R}$}}
+\end{alterqcm}
+\end{verbatim}
+θα πάρουμε:
+\begin{center}
+\includegraphics[scale=0.95]{transparent_croped.pdf}
+\end{center}
+
+\subsection{Η εντολή \PP AQpoints}
+Με την εντολή αυτή μπορεί να γραφούν δίπλα από την άσκηση τα αντίστοιχα μόρια. Για παράδειγμα, αν γράψουμε:
+\begin{verbatim}
+
+\AQpoints{10}
+\begin{alterqcm}[symb = \dingsquare, lq=7cm]
+\AQquestion{Αν $3{,}24$ είναι η στρογγυλοποίηση του $x$ σε εκατοστά, είμαστε σίγουροι ότι:}
+{{\begin{minipage}[t]{\linewidth-1cm}$3{,}235\leqslant x <3{,}245$\\
+\end{minipage}} ,
+{\begin{minipage}[t]{\linewidth-1cm} $3{,}24\leqslant x <3{,}25$\\
+\end{minipage}} ,
+{\begin{minipage}[t]{\linewidth-1cm}
+Το $x$ είναι πιο κοντά στο $3{,}24$ από ό,τι στο $3{,}25$
+\end{minipage}}}
+\end{alterqcm}
+
+\end{verbatim}
+τότε θα πάρουμε:
+
+\vspace{10pt}
+\noindent\includegraphics[scale=0.9]{example_10_croped.pdf}
+
+
+\section{Πιο σύνθετες περιπτώσεις}
+
+\subsection{Η μακροεντολή \PP{AQmessage}}
+Η εντολή \verb|\AQmessage}| μας επιτρέπει να εισάγουμε, σε έναν πίνακα δύο στηλών, την εκφώνηση ή ένα σχόλιο ή μια διευκρίνηση, η οποία δίνει πιο πολλές πληροφορίες στο μαθητή, για καλύτερη κατανόηση της ερώτησης. Ας δούμε μια εφαρμογή της δανεισμένη από την τεκμηρίωση του πακέτου. Γράφουμε τον κώδικα:
+\begin{verbatim}
+\begin{alterqcm}[lq=8cm]
+\AQmessage{ Έστω μια συνάρτηση $f$ ορισμένη και παραγωγίσιμη στο διάστημα
+$(-5,\,+\infty)$, της οποίας ο πίνακας μεταβολών δίνεται παρακάτω:
+\begin{center}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2]{$x$/1,$f(x)$/3} {$-5$,$-1$,$0$,$2$,$+\infty$}
+\tkzTabVar{-/$-\infty$ ,+/$-3$,-/$-5$,+/$4$,-/${4,5}$}%
+\end{tikzpicture}
+\end{center}
+Αν $C_f$ είναι η γραφική παράσταση της $f$.}
+\AQquestion{Η εξίσωση $f(x) = -2$ δέχεται στο διάστημα $(-5,\,+\infty)$}
+{{μια μόνο λύση}, {δύο λύσεις}, {τέσσερις λύσεις}}
+\end{alterqcm}
+\end{verbatim}
+και θα πάρουμε
+\begin{center}
+\includegraphics[scale=]{test2.pdf}
+\end{center}
+
+
+
+\subsubsection{Περιβάλλον \texttt{array}}
+
+Ο πίνακας των ερωτήσεων-απαντήσεων δέχεται και μαθηματικές εκφράσεις με περιβάλλον \texttt{array}. Ας δούμε το επόμενο παράδειγμα:\\
+\begin{minipage}{0.4\linewidth}
+\begin{verbatim}
+\begin{alterqcm}[lq=5cm,symb=$\Box$]
+\AQquestion{Το $(x,\,y)=(1,\,-1)$
+είναι λύση του συστήματος: }
+{{$ \left\lbrace
+\begin{array}{ll}
+2x + 3y &= 5 \\
+x + y &=0
+\end{array}\right.$},
+{$ \left\{
+\begin{array}{ll}
+x + 4y &=-3 \\
+2x + 3y &=-1
+\end{array}\right.$},
+{$ \left\lbrace
+\begin{array}{ll}
+\dfrac{x}{2}+\dfrac{y}{2} &=1\\
+x - 2y &=3
+\end{array}\right.$}
+}
+\end{alterqcm}
+\end{verbatim}
+\end{minipage}
+\begin{minipage}{0.6\linewidth}
+\includegraphics[scale=0.7]{array.pdf}
+\end{minipage}
+
+\subsection{Ερωτήσεις πολλαπλής επιλογής με εικόνες}
+Το πακέτο μας δίνει τη δυνατότητα να τοποθετήσουμε ως προτάσεις επιλογής, εικόνες. Για παράδειγμα με τον παρακάτω κώδικα και τις αντίστοιχες εικόνες κατασκευάζουμε το επόμενο τεστ.
+
+\begin{minipage}{0.4\linewidth}
+ \begin{verbatim}
+ \begin{alterqcm}[lq=6cm,sep]
+ \AQquestion[pq=2 cm]{Ποιον από
+ τους τρεις πίνακες ζωγράφισε ο
+ \textbf{Paul Gaugin}\vfill}%
+ {{\hfil\includegraphics[scale=0.10]
+ {paint_4.jpg}\hfil},
+ {\hfil\includegraphics[scale=0.10]
+ {paint_1.jpg}\hfil},
+ {\hfil\includegraphics[scale=0.10]
+ {paint_3.jpg}\hfil}}
+ \AQquestion[pq=0.5cm]{Ποιος από
+ τους τρεις ζωγράφισε τον πίνακα;\\
+ \hfil\includegraphics[height=2.5in]
+ {paint_2.jpg}\hfil}%
+ {{Van Gogh},{Pierre Renoir},
+ {Paul C\'ezanne}}
+ \end{alterqcm}
+ \end{verbatim}
+\end{minipage}
+\begin{minipage}{0.6\linewidth}
+ \includegraphics[scale=0.7]{paint.pdf}
+\end{minipage}
+
+\subsubsection{Test με ερωτήσεις Γεωμετρίας}
+Ο πίνακας των ερωτήσεων - απαντήσεων δέχεται και γεωμετρικά σχήματα, είτε ως εικόνες με το geogebra ή άλλο πρόγραμμα, όπως δείξαμε παραπάνω είτε με απευθείας εισαγωγή με χρήση του πακέτου \textsf{tikz}. Ένα κλασσικό παράδειγμα βλέπουμε, τυπώνοντας τον παρακάτω κώδικα:
+\begin{verbatim}
+\begin{alterqcm}[lq=8cm,numprop=true,sep]
+\AQquestion{Ανάμεσα στα διπλανά σχήματα ποιος είναι ο ρόμβος :}
+{{\hspace{1cm} \begin{minipage}{5cm} \begin{tikzpicture}
+\draw (0,0)--(1.5,0)--(2,1)--(.5,1)--cycle;
+\end{tikzpicture} \end{minipage}},
+{\hspace{1cm} \begin{minipage}{5cm} \begin{tikzpicture}
+\draw[rotate=30] (0,0) rectangle (1.5,1); \end{tikzpicture} \end{minipage}},
+{\hspace{1cm} \begin{minipage}{5cm} \begin{tikzpicture}
+\draw (0,0) rectangle (1,1); \end{tikzpicture} \end{minipage} }}
+\end{alterqcm}
+\nogreekalph
+\end{verbatim}
+θα πάρουμε τον πίνακα 1
+\begin{table}[h]
+\includegraphics[scale=]{geometry.pdf}
+\caption{}
+\end{table}
+
+\subsubsection{Πίνακας μεταβολών της $f$ και εξίσωση $f(x)=0$}
+Γράφοντας τον κώδικα:
+\begin{verbatim}
+\begin{alterqcm}[lq=95mm,pre=false]
+\AQmessage{ Έστω η συνάρτηση $f(x)=\sqrt{x(x-1)^2}$ ορισμένη στο διάστημα $[0,\,4]$ και
+παραγωγίσιμη στο διάστημα $(0,\,1)\cup(1,4]$ της οποίας ο πίνακας μεταβολών δίνεται
+παρακάτω:
+\begin{center}
+\begin{tikzpicture}
+\tkzTabInit[lgt=3]%
+{$x$/1,%
+Πρόσημο\\ της $f^{\prime}(x)$ /1,%
+Μεταβολές\\ της\\ $\sqrt {x(x-1)^2}$ /4}%
+{$0$ , $\dfrac{1}{3}$ , $1$ , $4$}%
+\tkzTabLine{d ,+, 0 ,-, d ,+, }
+\tkzTabSlope{1//+\infty,3/-1 /+1}
+\tkzTabVar{-/$0$,+/$\dfrac{2\sqrt3}{9}$,-/$0$,+/$6$}
+\end{tikzpicture}
+\end{center}
+Αν $C_f$ είναι η γραφική παράσταση της $f$.}
+\AQquestion{Η εξίσωση $f(x) =1$ δέχεται στο διάστημα $(0,\,4)$}
+{{μια μόνο λύση},
+{δύο λύσεις},
+{τρεις λύσεις},
+{καμμία λύση}}
+\end{alterqcm}
+\end{verbatim}
+θα πάρουμε
+\begin{center}
+\includegraphics[scale=]{variationtable.pdf}
+\end{center}
+
+Για τις ασκήσεις με πίνακες μεταβολών καλό είναι να συμβουλευτείτε την ανάπτυξη του πακέτου στη διεύθυνση \texttt{https://tassosdimou.gr/variation-table}
+
+\subsubsection{Ερωτήσεις πολλαπλής επιλογής και Σ-Λ στη Λογοτεχνία}
+Ας δούμε ένα παράδειγμα με ερωτήσεις πολλαπλής επιλογής και σωστού-λάθους από τη Λογοτεχνία.
+
+Γράφουμε τον κώδικα:
+\begin{verbatim}
+\begin{enumerate}
+\item \begin{alterqcm}[lq=95mm,pre]
+\AQquestion{Οι στίχοι:
+\begin{verse}
+<<Ο έρωτας\\
+Το καράβι του\\
+Κι η αμεριμνησία των μελτεμιών του\\
+Κι ο φλόκος της ελπίδας του\\
+Στον πιο ελαφρό κυματισμό του ένα νησί λικνίζει\\
+Τον ερχομό.>>
+\end{verse} γράφηκαν από τον:}
+{{Σεφέρη},{Ελύτη},{Ρίτσο}}
+\end{alterqcm}
+\item \begin{alterqcm}[VF,lq=95mm,pre, title=false]
+\AQquestion{Ο Οδυσσέας Ελύτης έγραψε τη
+ <<Ρωμιοσύνη>>}
+\AQquestion{ Ο Ηλίας Βενέζης έγραψε τη
+ <<Γαλήνη>>}
+\AQquestion{Ο Νίκος Καζαντζάκης έγραψε το
+ <<Το αμάρτημα της μητρός μου>>}
+\end{alterqcm}
+\end{enumerate}
+\end{verbatim}
+και θα πάρουμε:
+\begin{center}
+\includegraphics[scale=0.8]{example_11_croped.pdf}
+\end{center}
+
+\subsubsection{Το \texttt{alterqcm} και η Φυσική}
+Παρακάτω βλέπουμε την εφαρμογή του περιβάλλοντος \texttt{alterqcm} σε ένα τεστ Σωστού-Λάθους Φυσικής:
+Ο κώδικας για το παρακάτω τεστ είναι:
+\begin{verbatim}
+\begin{alterqcm}[VF,lq=100mm,pre,long]
+\AQquestion{Η συνισταμένη δυο δυνάμεων που ασκούνται σε
+ένα σώμα είναι μηδέν ότα οι δυνάμεις έχουν το ίδιο μέτρο και αντίθετη φορά.}
+\AQquestion{ Η δύναμη είναι μονόμετρο μέγεθος και στο S.I έχει μονάδα το 1N.}
+.................................................
+\AQquestion{Η δράση είναι μικρότερη από την αντίδραση.}
+\AQquestion{Ο τρίτος νόμος του Νεύτωνα ισχύει σε όλες
+τις περιπτώσεις.}
+\end{alterqcm}
+\end{verbatim}
+\begin{table}[!htp]
+\includegraphics[scale=]{long1.pdf}
+\caption{}
+\end{table}
+
+Ας δούμε ένα τεστ με ερωτήσεις πολλαπλής επιλογής. Θα πληκτρολογήσουμε:
+\begin{verbatim}
+\begin{alterqcm}[pre,lq=7cm]
+\AQquestion{Στο παρακάτω διάγραμμα ταχύτητας-χρόνου (u-t)
+\begin{center}
+\includegraphics[scale=0.7]{sxhma_1.png}
+\end{center}}
+{{Η κλίση της ευθείας ισούται με την αλγεβρική τιμή της επιτάχυνσης},
+{Το εμβαδόν ισούται αριθμητικά με τη μετατόπιση},
+{Η ευθεία δεν ξεκινά από την αρχή των αξόνων}}
+...........................................
+\AQquestion{Η καμπύλη του σχήματος αντιστοιχεί
+ σε κίνηση:
+\begin{center}\includegraphics[scale=0.8]{sxhma_2.png}
+\end{center}}{{ευθύγραμμη και ομαλή.},{ευθύγραμμη ομαλά
+επιβραδυνόμενη.},{ ευθύγραμμη ομαλά
+επιταχυνόμενη.},{ με σταθερή ταχύτητα.}
+}
+\end{alterqcm}
+\end{verbatim}
+ και θα πάρουμε
+\begin{center}
+\includegraphics[scale=]{physics.pdf}
+\end{center}
+
+
+
+
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-def.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-def.tex
new file mode 100644
index 0000000000..6f7848bb6c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-def.tex
@@ -0,0 +1,251 @@
+%!TEX root = /Users/ego/Boulot/Alterqcm/doc/doc_aq-main.tex
+\section{Les outils : L' environnement \tkzname{alterqcm} et la macro \tkzcname{AQquestion}}
+\subsection{L' environnement \tkzname{alterqcm}}
+
+
+\bigskip
+\begin{NewEnvBox}{alterqcm}
+
+\noindent Voici la liste des \tkzname{options} disponibles classées par catégories.
+
+\medskip
+\begin{tabular}{@{}Il Il Il@{}}
+ \toprule
+ \thead
+Options &Défaut & Définition \\ \midrule
+\tbody
+\multicolumn{2}{c}{\emph{\texttt{Dimensions}}} \\ \cmidrule(r){1-2}
+\TOenvline{lq} {100mm} {largeur de la colonne question }
+\TOenvline{pq} {0pt} {déplacement vertical de la question } \cmidrule(r){1-2}
+\multicolumn{2}{c}{\emph{\texttt{Nombres}}} \\ \cmidrule(r){1-2}
+\TOenvline{bonus} {{0,5}} {points attribués à une bonne réponse }
+\TOenvline{malus} {{0,25}} {points attribués à une mauvaise réponse }
+\TOenvline{numbreak} {0} {pour reprendre un tableau scindé }
+\TOenvline{points} {empty}{ points attribués au qcm dans la marge} \cmidrule(r){1-2}
+\multicolumn{2}{c}{\emph{\texttt{Macros}}} \\ \cmidrule(r){1-2}
+\TOenvline{symb} {\$\BS square\$} {symbole devant la proposition }
+\TOenvline{corsymb}{\$\BS blacksquare\$}{symbole devant la proposition }
+\TOenvline{numstyle} {\BS arabic} {style de la numérotation des questions }
+\TOenvline{propstyle} {\BS alph} {style de la numérotation des propositions }
+\TOenvline{size} {\BS normalsize} {taille de la fonte }
+\TOenvline{afterpreskip}{\BS medskip} {skip après la présentation }
+\cmidrule(r){1-2}
+\multicolumn{2}{c}{\emph{\texttt{Booléens}}} \\ \cmidrule(r){1-2}
+\TOenvline{long} {true} {longtable à la place de tabular }
+\TOenvline{sep} {true} {filet de séparation entre les propositions}
+\TOenvline{pre} {false} {présentation du QCM }
+\TOenvline{VF} {false} {QCM sous la forme Vrai ou Faux }
+\TOenvline{numprop} {false} {numérotation des propositions }
+\TOenvline{num} {true} {style de la numérotation des questions }
+\TOenvline{nosquare} {false} {suppression du carré des propositions }
+\TOenvline{title} {false} {suppression des titres }
+\TOenvline{correction}{false} {permet de créer un corrigé }
+\TOenvline{alea} {false} {placer des propositions aléatoirement } \cmidrule(r){1-2}
+\multicolumn{2}{c}{\emph{\texttt{Textes}}} \\ \cmidrule(r){1-2}
+\TOenvline{tone} {Questions} {titre colonne 1 }
+\TOenvline{ttwo} {R\'eponses} {titre colonne 2 }
+\TOenvline{language} {french} {french, english ou german }
+ \bottomrule
+\end{tabular}
+
+\medskip
+
+\emph{Il suffit donc pour créer un \textcolor{red}{\texttt{QCM}} d'utiliser un environnement \textcolor{red}{\texttt{alterqcm}} ainsi que la macro \textcolor{red}{ \addbs{AQquestion}} définie dans la section suivante.}
+\end{NewEnvBox}
+
+\newpage
+\subsection{La commande \tkzcname{AQquestion}}
+\Imacro{AQquestion}
+
+\begin{NewMacroBox}{AQquestion}{\oarg{local options}{\var{quest}}\{{\var{$\mathrm{prop}_1$}},\ldots,{\var{$\mathrm{prop}_n$}}\}}
+Cette macro utilise deux arguments, le premier définit la question, le second est une liste qui définit les propositions.
+
+\medskip
+\begin{tabular}{@{}Il Il Il@{}} \toprule \thead
+arguments & défaut & définition \\
+\midrule
+\tbody
+\TAline{quest} {} {définition de la question}
+\TAline{$\mathrm{prop}_i$} {} {i\ieme\ proposition} \bottomrule
+\end{tabular}
+
+\medskip
+Voici la liste des options liées à cette macro.
+
+\medskip
+\begin{tabular}{@{}Il Il Il@{}} \toprule \thead
+options & défaut & définition \\ \midrule
+\tbody
+\TOline{pq} {0pt} {ajustement de la position de la question}
+\TOline{br} {1 } {liste de rangs des bonnes réponses } \bottomrule
+\end{tabular}
+
+\medskip
+
+\end{NewMacroBox}
+
+\subsection{Utilisation : premier exemple}
+
+Il suffit d'utiliser un environnement \tkzname{alterqcm} et la macro \tkzcname{AQquestion}, voici un exemple :
+
+
+ \noindent
+\begin{minipage}[c][][t]{.40\linewidth}
+\begin{tkzexample}[code only,small]
+ \documentclass[12pt]{article}
+ \usepackage[utf8]{inputenc}
+ \usepackage[upright]{fourier}
+ %\usepackage[T1]{fontenc}
+ %\usepackage{lmodern}
+ \usepackage{alterqcm}
+ \usepackage{fullpage}
+ %\usepackage{longtable}
+ % nécessaire pour l'option "long"
+ \usepackage[frenchb]{babel}
+ \parindent0pt
+ \begin{document}
+ \begin{alterqcm}
+ \AQquestion{Question}{%
+ {Proposition 1},
+ {Proposition 2},
+ {Proposition 3}}
+ \end{alterqcm}
+ \end{document}\end{tkzexample}
+\end{minipage}\hfill \noindent
+\begin{minipage}[c][][b]{.50\linewidth}
+\textbf{alterqcm.sty} crée un nouvel environnement \textbf{alterqcm} qui permet l'obtention d'un tableau à deux colonnes. La colonne de gauche pour les questions, l'autre pour les différentes propositions. Les propositions sont données dans une liste :
+
+\tkzname{\{\{Proposition 1\},\\\{Proposition 2\},\\\{Proposition 3\}\}}.
+
+ Le nombre de propositions est compris entre \tkzname{2} et \tkzname{5}.
+\end{minipage}
+
+\medskip
+Ce qui donne comme résultat :
+
+\bigskip
+ \begin{alterqcm}
+ \AQquestion{Question}
+ {%
+ {Proposition 1},
+ {Proposition 2},
+ {Proposition 3}%
+ }
+ \end{alterqcm}
+
+\medskip
+ La largeur totale du tableau est égale à \tkzcname{textwidth}. Par défaut la colonne question a pour largeur \tkzname{100mm} plus quelques millimètres ... introduits par le tableau. La largeur des réponses est égale à \tkzcname{textwidth} diminuée de la largeur de la première colonne. \Imacro{textwidth}
+
+Le point important est que la hauteur des lignes des propositions soit calculée automatiquement afin, d'une part, que le texte des propositions soit placé correctement sans toucher les filets et d'autre part, que le texte de la question correspondante puisse être inclus dans sa case. Un positionnement précis est obtenu avec l'option \tkzname{pq}.
+
+\subsection{Packages chargés par \tkzname{alterqcm.sty}}
+La liste des packages chargés est la suivante :
+
+\begin{tkzexample}[code only]
+ \RequirePackage{xkeyval}[2005/11/25]
+ \RequirePackage{calc}
+ \RequirePackage{ifthen,forloop}
+ \RequirePackage{array}
+ \RequirePackage{multirow}
+ \RequirePackage{pifont}
+\end{tkzexample}
+\NamePack{xkeyval}\NamePack{calc}\NamePack{ifthen}\NamePack{forloop}\NamePack{array}\NamePack{multirow}
+\NamePack{pifont}
+
+Il vous sera nécessaire de charger \tkzname{longtable.sty} si vous souhaitez utiliser l'option \tkzname{long} pour un de vos tableaux. Vous avez besoin aussi de la macro \tkzcname{square}, elle est soit définie dans le package \tkzname{fourier}, soit dans le package \tkzname{amsmath}.\NamePack{amsmath}\NamePack{fourier}.
+
+
+ \subsection{Utilisation de l'environnement \tkzname{minipage} pour modifier la largeur du tableau}
+\Ienv{minipage}
+
+\begin{minipage}[c][][t]{.3\linewidth}
+\begin{tkzltxexample}[small]
+
+ \begin{center}
+ \begin{minipage}{9cm}
+ \begin{alterqcm}[lq=5cm]
+ ...
+ \end{alterqcm}
+ \end{minipage}
+ \end{center}
+\end{tkzltxexample}
+\end{minipage}\hfill
+\begin{minipage}[c][][t]{.6\linewidth}
+\begin{alterqcm}[lq=5cm]
+\AQquestion{Parmi les propositions suivantes, quelle est celle qui permet%
+ d'affirmer que la fonction exponentielle admet pour asymptote la droite%
+ d'équation $y = 0$ ?}
+{%
+{$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},%
+{$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$},%
+{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$}%
+}
+
+\AQquestion[]{exp$(\ln x) = x$ pour tout $x$ appartenant à }
+{%
+{$\mathbf{R}$},%
+{$\big]0~;~+ \infty\big[$},%
+{$\big[0~;~+\infty\big[$}%
+}\end{alterqcm}
+\end{minipage}
+%
+
+
+\subsection{Modification temporaire de \tkzcname{textwidth}}
+\Imacro{textwidth}
+ Il est possible d'utiliser des tableaux ainsi que d'autres structures dans le code de la question ou encore des propositions. Voici un exemple :
+\newlength{\oldtextwidth}
+
+\begin{tkzltxexample}[small]
+ \newlength{\oldtextwidth}
+\end{tkzltxexample}
+
+\medskip
+ \setlength{\oldtextwidth}{\textwidth}
+ \setlength{\textwidth}{14cm}
+\begin{alterqcm}[lq=88mm,symb=$\Box$]
+ \AQquestion{la matrice%
+ \( M=\begin{pmatrix}
+ 0 & 1 \\
+ 1 & 1 \\
+\end{pmatrix} \) a pour carré}%
+{%
+{\(\begin{pmatrix}
+ 0 & 1 \\
+ 1 & 4 \\
+\end{pmatrix}\)},%
+{\(\begin{pmatrix}
+ 1 & 2 \\
+ 2 & 5 \\
+ \end{pmatrix}\)}
+}
+\end{alterqcm}
+\setlength{\textwidth}{\oldtextwidth}
+
+\medskip
+\begin{tkzltxexample}[small]
+ \setlength{\oldtextwidth}{\textwidth}
+ \setlength{\textwidth}{14cm}
+ \begin{alterqcm}[lq=88mm,symb=$\Box$]
+ \AQquestion{la matrice%
+ \( M=\begin{pmatrix}
+ 0 & 1 \\
+ 1 & 1 \\
+ \end{pmatrix} \) a pour carré}%
+ {%
+ {\(\begin{pmatrix}
+ 0 & 1 \\
+ 1 & 4 \\
+ \end{pmatrix}\)},%
+ {\(\begin{pmatrix}
+ 1 & 2 \\
+ 2 & 5 \\
+ \end{pmatrix}\)}
+ }
+ \end{alterqcm}
+ \setlength{\textwidth}{\oldtextwidth}
+\end{tkzltxexample}
+
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-excomp.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-excomp.tex
new file mode 100644
index 0000000000..3509d19dab
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-excomp.tex
@@ -0,0 +1,270 @@
+%!TEX root = /Users/ego/Boulot/Alterqcm/doc/doc_aq-main.tex
+
+\section{Exemples complémentaires}
+\subsection{Les symbolistes : usage de la macro \tkzcname{includegraphics}}
+\Imacro{includegraphics}
+
+\begin{alterqcm}[lq=8cm,numprop=true,sep]
+\AQquestion[pq=2 cm]{Parmi les trois tableaux ci-contre, quel est celui peint par \textbf{Gustave Moreau}\vfill}%
+{{%
+\hfil\includegraphics[scale=.20]{The_Wounded_Angel_-_Hugo_Simberg.jpg}\hfil
+},{%
+\hfil\includegraphics[scale=.4]{180px-Gustave_Moreau_007.jpg}\hfil
+},{%
+\hfil\includegraphics[scale=.4]{240px-Mort_du_fossoyeur.jpg}\hfil}}%
+ \AQquestion[pq=1 cm]{Le tableau suivant a été peint par lequel de ces trois peintres ?\\
+\hfil\includegraphics[height=3in]{240px-Mort_du_fossoyeur.jpg}\hfil}%
+{{Gustav Klimt},{Carlos Schwabe},{Odilon Redon}}
+\end{alterqcm}
+
+\begin{tkzltxexample}[small]
+ \begin{alterqcm}[lq=8cm,numprop=true,sep]
+ \AQquestion[pq=2 cm]{Parmi les trois tableaux, quel est celui peint par \textbf{Gustave Moreau}\vfill}%
+ {{%
+ \hfil\includegraphics[scale=.25]{The_Wounded_Angel_-_Hugo_Simberg.jpg}\hfil
+ },{%
+ \hfil\includegraphics[scale=.5]{180px-Gustave_Moreau_007.jpg}\hfil
+ },{%
+ \hfil\includegraphics[scale=.4]{240px-Mort_du_fossoyeur.jpg}\hfil}}
+ \AQquestion[pq=1 cm]{Le tableaux suivant, a été peint par lequel de ces trois peintres ?\\
+ \hfil\includegraphics[height=3in]{240px-Mort_du_fossoyeur.jpg}\hfil}%
+ {{Gustav Klimt},{Carlos Schwabe},{Odilon Redon}}
+ \end{alterqcm}
+\end{tkzltxexample}
+
+\subsection{Emploi d'un environnement \tkzname{tikzpicture} dans une question}
+\Ienv{tikzpicture}
+
+\medskip
+
+\begin{alterqcm}[lq=120mm,pre=true,pq=3mm]
+ \AQmessage{\begin{minipage}{15cm}
+\vspace*{6pt}
+Les trois arbres donnés ci-dessous représentent des situations probabilistes. %
+ Les nombres indiqués sur les différentes flèches sont des probabilités, et,%
+ en deuxième niveau, des probabilités conditionnelles. Ainsi pour l'arbre donné %
+ dans la question 1 : $0,35 = P(A)$ et $0,1 = P_{\text{A}}(E)$.
+\vspace*{6pt}
+\end{minipage}
+}
+\AQquestion{La probabilité de l'événement E est égale à : \\
+\begin{tikzpicture}[yscale=1.2]
+[parent anchor=east,child anchor=west,grow=east]
+\tikzstyle{every node}=[text=Maroon,fill=fondpaille,font=\small]
+\tikzstyle{every child}=[level distance=25mm]
+\tikzstyle{edge from parent}=[draw,->,thin]
+\tikzstyle{level 2}=[sibling distance=12mm]
+\node {}
+[grow=right]
+child {node {B}
+ child { node {F}
+ edge from parent node {$0,5$}}
+ child { node {E}
+ edge from parent node {$0,5$}
+ }
+ edge from parent node {$0,65$}
+ }
+child {node {A}
+ child { node {F}
+ edge from parentnode {$0,9$}}
+ child { node {E}
+ edge from parent node {$0,1$}}
+ edge from parent node {$0,35$}
+ };
+\end{tikzpicture}}
+{{$0,5$},%
+{$0,1$},%
+{$0,6$},%
+{$0,36$}}
+\end{alterqcm}
+
+\begin{tkzltxexample}[small]
+ \begin{alterqcm}[lq=120mm,pre=true,pq=3mm]
+ \AQmessage{Les trois arbres donnés ci-dessous représentent des situations probabilistes.
+ Les nombres indiqués sur les différentes flèches sont des probabilités, et,
+ en deuxième niveau, des probabilités conditionnelles. Ainsi pour l'arbre donné
+ dans la question 1 : $0,35 = P(A)$ et $0,1 = P_{\text{A}}(E)$.}
+ \AQquestion{La probabilité de l'événement E est égale à : \\
+ \begin{tikzpicture}
+ ...
+ \end{tikzpicture}}
+ {{$0,5$},%
+ {$0,1$},%
+ {$0,6$},%
+ {$0,36$}}
+ \end{alterqcm}
+\end{tkzltxexample}
+
+\subsection{Emploi d'un environnement \tkzname{array} dans les propositions}
+\Ienv{array}
+
+Il est possible d'utiliser des tableaux ainsi que d'autres structures dans le code de la question ou encore des propositions. Voici un exemple :
+
+\medskip
+
+
+\begin{tkzexample}[vbox]
+\begin{alterqcm}[lq=88mm,symb=$\Box$]
+\AQquestion{Le couple $(1~;~-1)$ est solution de }
+{%
+{$ \left\lbrace
+\begin{array}{ll}
+ 0,75a + 0,5b &= 0,25 \\
+ 0,25a + 0,5b &=-0,25
+\end{array}\right.$},
+{$ \left\{
+\begin{array}{ll}
+ a &= 0,75a +0,5b \\
+ b &= 0,25a +0,5b
+\end{array}\right.$},
+{$ \left\lbrace
+\begin{array}{ll}
+ 0,75a - 0,5b &= 0,25 \\
+ 0,5a + 0,25b &=-0,25
+\end{array}\right.$}
+}
+\end{alterqcm}\end{tkzexample}
+
+\subsection{Emploi d'un environnement \tkzname{tikzpicture} dans une question}
+\Ienv{tikzpicture}
+
+\begin{tkzexample}[vbox]
+\begin{alterqcm}[lq=8cm,numprop=true,sep]
+\AQquestion{Parmi les figures ci-contre, indiquer celle qui est un losange :}
+{{\hspace{1cm} \begin{minipage}{5cm} \begin{tikzpicture}
+ \draw (0,0)--(1.5,0)--(2,1)--(.5,1)--cycle;
+\end{tikzpicture} \end{minipage}},
+{\hspace{1cm} \begin{minipage}{5cm} \begin{tikzpicture}
+ \draw[rotate=30] (0,0) rectangle (1.5,1); \end{tikzpicture} \end{minipage}},
+{\hspace{1cm} \begin{minipage}{5cm} \begin{tikzpicture}
+ \draw (0,0) rectangle (1,1); \end{tikzpicture} \end{minipage} }}
+\end{alterqcm}
+\end{tkzexample}
+
+\subsection{Emploi de code \tkzname{verbatim} dans les questions et les propositions}
+\Ienv{verbatim}
+
+Voici un exemple de Pascal Bertolino. Il est préférable d'utiliser comme Pascal l'a fait la macro \tkzcname{texttt}, autrement d'éviter l'usage du mode
+|verbatim|. Nous verrons à la page suivante comment procéder si ce mode est réellement nécessaire.
+
+\begin{alterqcm}[lq=80mm,title=false,long]
+
+%--------------------------------------------------------------
+\AQquestion{Quel était le langage précurseur du langage C ?}
+{{le Fortran},
+ {le langage B},
+ {le Basic}}
+
+%--------------------------------------------------------------
+\verbdef\argprop|int a = 3 ^ 4 ;|
+\AQquestion{\argprop}
+{{élève 3 à la puissance 4},
+ {fait un OU exclusif entre 3 et 4},
+ {n'est pas une instruction C}}
+
+%--------------------------------------------------------------
+\AQquestion{Quelle est la bonne syntaxe pour décaler de 8 bits à gauche l'entier \texttt{a} ?}
+{{\texttt{b = lshift(a, 8) ;}},
+ {\texttt{b = 8 << a ;}},
+ {\texttt{b = a << 8 ;}}}
+%--------------------------------------------------------------
+\verbdef\argprop|{ printf ("bonjour") ; return 0 ; \}|
+\AQquestion{Le programme complet : \\
+\texttt{int main() \\
+~~\argprop}}
+{{affiche \texttt{bonjour}},
+ {donne une erreur à la compilation},
+ {donne une erreur à l'exécution}}
+%--------------------------------------------------------------
+\verbdef\arg|float tab[10]|
+\verbdef\propa|*tab|\global\let\propa\propa
+\verbdef\propb|&tab|\global\let\propb\propb
+\verbdef\propc|tab|\global\let\propc\propc
+\AQquestion{Soit la déclaration \arg ; \\Le premier réel du tableau est \ldots}
+{{\propa},
+ {\propb},
+ {\propc}}
+
+%--------------------------------------------------------------
+\AQquestion{La ligne \texttt{printf("\%c", argv[2][0]) ;} du \texttt{main} de \texttt{monProg} exécuté ainsi :
+\texttt{monProg parametre }}
+{{affiche \texttt{p}},
+ {n'affiche rien},
+ {peut provoquer un plantage}}
+%--------------------------------------------------------------
+\AQquestion{Quelle est la taille en mémoire d'un \texttt{long int} ?}
+{{4 octets},
+ {8 octets},
+ {ça dépend \ldots}}
+%--------------------------------------------------------------
+\AQquestion{Suite à la déclaration \texttt{int * i} ;}
+{{\texttt{*i} est une adresse},
+ {\texttt{*i} est un entier},
+ {\texttt{*i} est un pointeur}}
+%--------------------------------------------------------------
+\AQquestion{Un des choix suivants n'est pas une bibliothèque standard du C}
+{{\texttt{stdlib}},
+ {\texttt{stdin}},
+ {\texttt{math}}}
+
+\end{alterqcm}
+
+\medskip
+Voyons le code source
+
+le plus simple est souvent d'utiliser la commande \tkzcname{texttt}
+
+\medskip
+\begin{tkzexample}[code only]
+ \AQquestion{Suite à la déclaration \texttt{int * i} ;}
+ {{\texttt{*i} est une adresse},
+ {\texttt{*i} est un entier},
+ {\texttt{*i} est un pointeur}}
+\end{tkzexample}
+
+\medskip
+\begin{tkzexample}[code only]
+\AQquestion{La ligne \texttt{printf("\%c", argv[2][0]) ;}
+ du \texttt{main} de \texttt{monProg} exécuté ainsi :
+\texttt{monProg parametre }}
+{{affiche \texttt{p}},
+ {n'affiche rien},
+ {peut provoquer un plantage}}
+\end{tkzexample}
+
+\medskip
+Sinon on peut charger le package \tkzname{verbdef} :
+\NamePack{verbdef}
+
+\medskip
+\tkzcname{usepackage\{verbdef\}}
+
+\medskip
+\begin{tkzexample}[code only]
+ \verbdef\argprop|int a = 3 ^ 4 ;|
+ \AQquestion{\argprop}
+ {{élève 3 à la puissance 4},
+ {fait un OU exclusif entre 3 et 4},
+ {n'est pas une instruction C}}
+\end{tkzexample}
+
+\medskip
+Il est possible que plusieurs variables soient nécessaires :
+
+\medskip
+
+\begin{tkzexample}[code only]
+ \verbdef\arg|float tab[10]|
+ \verbdef\propa|*tab|\global\let\propa\propa
+ \verbdef\propb|&tab|\global\let\propb\propb
+ \verbdef\propc|tab|\global\let\propc\propc
+ \AQquestion{Soit la déclaration \arg ; \\
+ Le premier réel du tableau est \ldots}
+ {{\propa},
+ {\propb},
+ {\propc}}
+\end{tkzexample}
+
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-globales.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-globales.tex
new file mode 100644
index 0000000000..f528e6ab05
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-globales.tex
@@ -0,0 +1,726 @@
+%!TEX root = /Users/ego/Boulot/Alterqcm/doc/doc_aq-main.tex
+\section{Options globales de l'environnement \tkzname{alterqcm}}
+
+\subsection{\tkzname{lq} : modification de la largeur de la première colonne }
+\IoptEnv{alterqcm}{lq}
+
+\begin{alterqcm}[long,lq=110mm]
+\AQquestion{Parmi les propositions suivantes, quelle est celle qui permet %
+ d'affirmer que la fonction exponentielle admet pour asymptote %
+ la droite d'équation $y = 0$ ?}
+{{$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
+{$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$},
+{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$}}
+
+\AQquestion{exp$(\ln x) = x$ pour tout $x$ appartenant à }
+{{$\mathbb{R}$},
+{$\big]0~;~+ \infty\big[$},
+{$\big[0~;~+\infty\big[$}
+}
+\end{alterqcm}
+
+\medskip
+Voyons le code nécessaire pour obtenir ce tableau. Il faut placer
+\tkzcname{usepackage\{alterqcm\}} dans le préambule. Il faut remarquer que seule la largeur de la colonne des questions est fournie |lq=100mm| et que cela est optionnel. Le nombre des propositions est ici \textbf{3} mais il peut varier d'une question à l'autre.
+
+\begin{tkzexample}[code only,small]
+ \begin{alterqcm}[long,lq=110mm]
+ \AQquestion{Parmi les propositions suivantes, quelle est celle qui permet %
+ d'affirmer que la fonction exponentielle admet pour asymptote %
+ la droite d'équation $y = 0$ ?}
+ {{$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
+ {$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$},
+ {$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$}}
+
+ \AQquestion[]{exp$(\ln x) = x$ pour tout $x$ appartenant à }
+ {{$\mathbb{R}$},
+ {$\big]0~;~+ \infty\big[$},
+ {$\big[0~;~+\infty\big[$}
+ }
+ \end{alterqcm}\end{tkzexample}
+
+
+
+\subsection{\tkzname{pq} : utilisation globale }
+ \IoptEnv{alterqcm}{pq}
+
+Cette fois, il est nécessaire de déplacer plusieurs questions, j'ai placé un |pq=2mm| globalement c'est à dire comme ceci :\tkzcname{begin\{alterqcm\}[lq=85mm,pq=2mm]}. \textbf{Toutes} les questions sont affectées par cette option mais certaines questions étaient bien placées et doivent le rester, aussi localement je leur redonne un |pq=0mm|.
+
+\medskip
+\begin{alterqcm}[lq=85mm,pq=2mm]
+\AQquestion{Soit une série statistique à deux variables. Les valeurs de $x$ sont 1, 2, 5, 7, 11, 13 et une équation de la droite de régression de $y$ en $x$ par la moindres carrés est $y = 1,35x +22,8$. Les coordonnées du point moyen sont :}
+{{$(6,5;30,575)$},
+{$(32,575 ; 6,5)$},
+{$(6,5 ; 31,575)$}}
+
+\AQquestion{Pour tout réel $x$, le nombre \[\dfrac{\text{e}^x - 1}{\text{e}^x + 2}\hskip12pt \text{égal à :} \] }
+{{$-\dfrac{1}{2}$},
+{$\dfrac{\text{e}^{-x} - 1}{\text{e}^{-x} + 2}$},
+{$\dfrac{1 - \text{e}^{-x}}{1 + 2\text{e}^{-x}}$}
+}
+\AQquestion{On pose I $= \displaystyle\int_{\ln 2}^{\ln 3} \dfrac{1}{\text{e}^x - 1}\,\text{d}x$ et J $ = \displaystyle\int_{\ln 2}^{\ln 3} \dfrac{\text{e}^x}{\text{e}^x - 1}\,\text{d}x$ \\ alors le nombre I $-$ J est égal à}
+{{$\ln \dfrac{2}{3}$},
+{$\ln \dfrac{3}{2}$},
+{$\dfrac{3}{2}$}
+}
+\end{alterqcm}
+
+\begin{tkzexample}[code only,small]
+ \begin{alterqcm}[lq=85mm,pq=2mm]
+ \AQquestion{Pour tout réel $x$, le nombre \[\dfrac{\text{e}^x - 1}
+ {\text{e}^x + 2}\hskip12pt \text{égal à :} \] }
+ {{$-\dfrac{1}{2}$},
+ {$\dfrac{\text{e}^{-x} - 1}{\text{e}^{-x} + 2}$},
+ {$\dfrac{1 - \text{e}^{-x}}{1 + 2\text{e}^{-x}}$}}
+ \end{alterqcm}
+\end{tkzexample}
+
+
+\subsection{\tkzname{VF} : Vrai ou Faux}
+\IoptEnv{alterqcm}{VF}
+Les propositions ne sont que deux et le candidat doit choisir entre \textbf{Vrai} ou \textbf{Faux}. Cette fois, la syntaxe est allégée. Il n'est plus nécessaire d'écrire la liste des propositions et il suffit de positionner \tkzname{VF} en plaçant dans les options \tkzname{$VF$}.
+
+
+\begin{minipage}[t][][b]{.45\linewidth}
+Soit $f$ une fonction définie et dérivable sur l'intervalle $\big[-3~;~+\infty\big[$, croissante sur les intervalles $\big[-3~;~-1\big]$ et $\big[2~;~+\infty\big[$ et décroissante sur l'intervalle $\big[-1~;~2\big]$.
+
+ On note $f'$ sa fonction dérivée sur l'intervalle $[-3~;~+\infty[$.
+
+La courbe $\Gamma$ représentative de la fonction $f$ est tracée ci-dessous dans un repère orthogonal $\big(O,~\vec{\imath},~\vec{\jmath}\big)$.
+
+Elle passe par le point A$(-3~;~0)$ et admet pour asymptote la droite $\Delta$ d'équation $y = 2x -5$.
+\end{minipage}
+\hfill
+\begin{minipage}[t][][b]{.45\linewidth}
+\null
+\begin{tikzpicture}[scale=0.5,>=latex]
+ \draw[very thin,color=gray] (-3,-2) grid (10,8);
+ \draw[->] (-3,0) -- (10,0) node[above left] {\small $x$};
+ \foreach \x in {-3,-2,-1,1,2,...,9}
+ \draw[shift={(\x,0)}] (0pt,1pt) -- (0pt,-1pt)node[below] { $\x$};
+ \draw[->] (0,-2) -- (0,8) node[below right] {\small $y$};
+ \foreach \y/\ytext in {-2,-1,1,2,...,7}
+ \draw[shift={(0,\y)}] (1pt,0pt) -- (-1pt,0pt) node[left] { $\y$};
+ \draw (2,-1) -- (6,7);
+ \node[above right] at (-3,0) {\textbf{A}};
+ \node[above right] at (0,0) {\textbf{O}};
+ \node[below right] at (4,3) {$\mathbf{\Delta}$};
+ \node[above right] at (4,5) {$\mathbf{\Gamma}$};
+ \draw plot[smooth] coordinates{%
+ (-3,0)(-2,4.5)(-1,6.5)(0,5.5)(1,3.5)(2,3)(3,3.4)(4,4.5)(5,6)(6,7.75)};
+\end{tikzpicture}
+\end{minipage}
+
+
+\begin{alterqcm}[VF,lq=125mm]
+ \AQquestion{Pour tout $x \in ]-3~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion{La fonction $F$ présente un maximum en $2$}
+ \AQquestion{$\displaystyle\int_{0}^2 f'(x)\,\text{d}x = - 2$}
+\end{alterqcm}
+
+\begin{tkzexample}[code only, small]
+ \begin{minipage}[t][][b]{.45\linewidth}
+ Soit $f$ une fonction définie et dérivable sur l'intervalle $\big[-3~;~+\infty\big[$,
+ croissante sur les intervalles $\big[-3~;~-1\big]$ et $\big[2~;~+\infty\big[$
+ et décroissante sur l'intervalle $\big[-1~;~2\big]$.
+
+ On note $f'$ sa fonction dérivée sur l'intervalle $[-3~;~+\infty[$.
+
+ La courbe $\Gamma$ représentative de la fonction $f$ est tracée ci-dessous
+ dans un repère orthogonal $\big(O,~\vec{\imath},~\vec{\jmath}\big)$.
+
+ Elle passe par le point A$(-3~;~0)$ et admet pour asymptote la droite
+ $\Delta$ d'équation $y = 2x -5$.
+ \end{minipage}
+ \begin{minipage}[t][][b]{.45\linewidth}
+ \null
+\begin{tikzpicture}[scale=0.5,>=latex]
+ \draw[very thin,color=gray] (-3,-2) grid (10,8);
+ \draw[->] (-3,0) -- (10,0) node[above left] {\small $x$};
+ \foreach \x in {-3,-2,-1,1,2,...,9}
+ \draw[shift={(\x,0)}] (0pt,1pt) -- (0pt,-1pt)node[below] { $\x$};
+ \draw[->] (0,-2) -- (0,8) node[below right] {\small $y$};
+ \foreach \y/\ytext in {-2,-1,1,2,...,8}
+ \draw[shift={(0,\y)}] (1pt,0pt) -- (-1pt,0pt) node[left] { $\y$};
+ \draw (-0.5,-2) -- (10,8);
+ \node[above right] at (-3,0) {\textbf{A}};
+ \node[above right] at (0,0) {\textbf{O}};
+ \node[below right] at (4,3) {$\mathbf{\Delta}$};
+ \node[above right] at (4,5) {$\mathbf{\Gamma}$};
+ \draw plot[smooth] coordinates{%
+ (-3,0)(-2,4.5)(-1,6.5)(0,5.5)(1,3.5)(2,3)(3,3.4)(4,4.5)(5,6)(6,7.75)};
+ \end{tikzpicture}
+ \end{minipage}
+ \begin{alterqcm}[VF,lq=125mm]
+ \AQquestion{Pour tout $x \in ]-\infty~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion{La fonction $F$ présente un maximum en $2$}
+ \AQquestion{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$}
+ \end{alterqcm}
+\end{tkzexample}
+
+\subsection{\tkzname{symb} : modification du symbole }
+\IoptEnv{alterqcm}{symb}
+
+ Si vos fontes ne possèdent pas le symbole |$\square$| ou encore |$\blacksquare$| vous pouvez utiliser celui fourni par le package ou bien en créer un vous même. \tkzcname{altersquare}, \tkzcname{dingsquare} et \tkzcname{dingchecksquare} sont fournies par alterqcm.
+ Voici comment sont définies ces macros.
+
+\begin{tkzexample}[code only,small]
+ \newcommand*{\altersquare}{\vbox{\hrule\hbox to 6pt%
+ {\vrule height 5.2pt \hfil\vrule}\hrule}}\end{tkzexample}
+
+\medskip on obtient \altersquare\ ou bien encore :
+
+\begin{tkzexample}[code only,small]
+ \newcommand*{\dingsquare}{\ding{114}} \end{tkzexample}
+
+\medskip ce qui donne \dingsquare\ et enfin pour remplacer |$\blacksquare$|
+
+\begin{tkzexample}[code only,small]
+ \newcommand*{\dingchecksquare}{\mbox{\ding{114}%
+ \hspace{-.7em}\raisebox{.2ex}[1ex]{\ding{51}}}} \end{tkzexample}
+
+\medskip Soit \dingchecksquare\ comme résultat.
+
+
+\begin{tkzexample}[code only,small]
+
+ \begin{alterqcm}[lq=90mm,symb=\altersquare]
+ ... \end{alterqcm}\end{tkzexample}
+
+\medskip
+Exemple complet :
+
+\medskip
+\begin{tkzexample}[vbox]
+ \begin{alterqcm}[VF,lq=125mm,symb = \dingsquare]
+ \AQquestion{Pour tout $x \in ]-3~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion{La fonction $F$ présente un maximum en $2$}
+ \AQquestion{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$}
+ \end{alterqcm}\end{tkzexample}
+
+
+\subsection{\tkzname{pre, bonus, malus} : présentation automatique }
+\IoptEnv{alterqcm}{pre}\IoptEnv{alterqcm}{bonus}\IoptEnv{alterqcm}{malus}
+Comme vous pouvez le constatez ci-dessous, une présentation est donnée de l'exercice avec le barème.
+
+\bigskip
+\begin{minipage}[c][][t]{.45\linewidth}
+\begin{tkzexample}[code only,small]
+ \begin{alterqcm}[lq=6cm,pre=true,%
+ bonus=1,malus={0,5}]
+ \AQquestion{Question}
+ {{Proposition 1},
+ {Proposition 2}}
+ \end{alterqcm}\end{tkzexample}
+\end{minipage}\hfill
+\begin{minipage}[c][][t]{.45\linewidth}
+ \begin{alterqcm}[lq=3cm,pre=true,
+ bonus=1,malus={0,5}]
+ \AQquestion{Question}
+ {{Proposition 1},
+ {Proposition 2}}
+ \end{alterqcm}
+\end{minipage}
+
+\vspace{1cm}
+
+\subsection{\tkzname{sep} : filet entre les propositions}
+\IoptEnv{alterqcm}{sep}
+
+\tkzname{sep=true} fait apparaître un filet entre les propositions.
+
+\begin{minipage}[c][][t]{.45\linewidth}
+\begin{tkzexample}[code only,small]
+ \begin{alterqcm}[lq=3cm,sep=true]
+ \AQquestion{Question}
+ etc..
+\end{alterqcm}\end{tkzexample}
+\end{minipage}\hfill
+\begin{minipage}[c][][t]{.45\linewidth}
+ \begin{alterqcm}[lq=3cm,sep=true]
+ \AQquestion{Question}
+ {{Proposition 1},
+ {Proposition 2}}
+ \end{alterqcm}
+\end{minipage}
+
+\subsection{\tkzname{num, numstyle} : suppression et style de la numérotation }
+\IoptEnv{alterqcm}{num}\IoptEnv{alterqcm}{numstyle}
+\subsubsection{\tkzname{num=false}}
+\tkzname{num=false} fait disparaître la numérotation des questions.
+
+\begin{minipage}[c][][t]{.45\linewidth}
+\begin{tkzexample}[code only, small]
+ \begin{alterqcm}[lq=3cm,num=false]
+ \AQquestion{Question}
+ etc...
+ \end{alterqcm}
+\end{tkzexample}
+\end{minipage}\hfill
+\begin{minipage}[c][][t]{.45\linewidth}
+ \begin{alterqcm}[lq=3cm,num=false]
+ \AQquestion{Question}
+ {%
+ {Proposition 1},
+ {Proposition 2}}
+ \end{alterqcm}
+\end{minipage}
+
+\subsubsection{\tkzname{numstyle}}
+
+\tkzname{numstyle}=\tkzcname{alph} modifie le style de la numérotation des questions. Les styles habituels sont ici valides.
+
+\begin{minipage}[c][][t]{.45\linewidth}
+\begin{tkzexample}[code only, small]
+ \begin{alterqcm}[lq=3cm,numstyle=\alph]
+ \AQquestion{Question}
+ etc...
+ \end{alterqcm}
+\end{tkzexample}
+\end{minipage}
+\hfill
+\begin{minipage}[c][][t]{.45\linewidth}
+ \begin{alterqcm}[lq=3cm,numstyle=\alph]
+ \AQquestion{Question}
+ {%
+ {Proposition 1},
+ {Proposition 2}}
+ \end{alterqcm}
+\end{minipage}
+
+\subsection{\tkzname{title, tone, ttwo} : suppression et modification de la ligne de titre }
+\IoptEnv{alterqcm}{title}\IoptEnv{alterqcm}{tone}\IoptEnv{alterqcm}{ttwo}
+
+\tkzname{title=false} supprime les titres des colonnes.
+
+\begin{minipage}[c][][t]{.45\linewidth}
+\begin{tkzexample}[code only,vbox]
+ \begin{alterqcm}%
+ [lq=3cm,title=false]
+ \AQquestion{Question}
+ etc...
+ \end{alterqcm}\end{tkzexample}
+\end{minipage}\hfill
+\begin{minipage}[c][][t]{.45\linewidth}
+ \begin{alterqcm}%
+ [lq=3cm,title=false]
+ \AQquestion{Question}
+ {%
+ {Proposition 1},
+ {Proposition 2}%
+ }
+ \end{alterqcm}
+\end{minipage}
+
+
+\medskip
+\tkzname{tone=titre n°1} et \tkzname{ttwo=titre n°2} modifient les entêtes du tableau
+
+\begin{minipage}[c][][t]{.45\linewidth}
+\begin{tkzexample}[code only]
+ \begin{alterqcm}%
+ [lq=3cm,tone=titre n°1,%
+ ttwo=titre n°2]
+ \AQquestion{Question}
+ etc...
+ \end{alterqcm}\end{tkzexample}
+\end{minipage}\hfill
+\begin{minipage}[c][][t]{.45\linewidth}
+ \begin{alterqcm}%
+ [lq = 3cm,
+ tone = titre n°1,
+ ttwo = titre n°2]
+ \AQquestion{Question}
+ {%
+ {Proposition 1},
+ {Proposition 2}
+ }
+ \end{alterqcm}
+\end{minipage}
+
+\subsection{\tkzname{noquare} : suppression du carré }
+\IoptEnv{alterqcm}{nosquare}
+
+\tkzname{nosquare=true} fait disparaître le carré ou encore la numérotation des propositions.
+
+\begin{minipage}[c][][t]{.45\linewidth}
+\begin{tkzexample}[code only,small]
+ \begin{alterqcm}
+ [lq=3cm,nosquare=true]
+ \AQquestion{Question}
+ etc...
+ \end{alterqcm}\end{tkzexample}
+\end{minipage}\hfill
+\begin{minipage}[c][][t]{.45\linewidth}
+ \begin{alterqcm}
+ [lq=3cm,nosquare=true]
+ \AQquestion{Question}
+ {%
+ {Proposition 1},
+ {Proposition 2}
+ }
+ \end{alterqcm}
+\end{minipage}
+
+\medskip
+\tkzname{numprop=true} numérote les propositions et \tkzname{propstyle= ...} modifie le style de la numérotation.
+
+Par défaut, \tkzname{propstyle=\textbackslash alph}
+
+\begin{minipage}[c][][t]{.45\linewidth}
+\begin{tkzexample}[code only,small]
+ \begin{alterqcm}%
+ [lq=3cm,
+ numprop = true,
+ propstyle = \Roman]
+ \AQquestion{Question}
+ etc...
+ \end{alterqcm}\end{tkzexample}
+\end{minipage}\hfill
+\begin{minipage}[c][][t]{.45\linewidth}
+ \begin{alterqcm}%
+ [lq=3cm,
+ numprop = true,
+ propstyle = \Roman]
+ \AQquestion{Question}
+ {%
+ {Proposition 1},
+ {Proposition 2}%
+ }
+ \end{alterqcm}
+\end{minipage}
+
+\subsection{\tkzname{alea} : positionnement aléatoire des propositions }
+\IoptEnv{alterqcm}{alea}
+
+Il est préférable entre deux compilations d'effacer les fichiers auxiliaires.
+
+\textcolor{red}{\lefthand} Attention, en mode aléatoire, il n'est pas possible d'obtenir un corrigé correspondant au devoir initial.
+
+\begin{tkzexample}[small]
+ \begin{alterqcm}[lq=55mm,alea]
+ \AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur %
+ $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+ {{Au moins une solution},%
+ {Au plus une solution},%
+ {Exactement une solution}}
+ \end{alterqcm}\end{tkzexample}
+
+\subsection{\tkzname{english} et \tkzname{german} : changement de langue }
+\IoptEnv{alterqcm}{english}\IoptEnv{alterqcm}{german}\IoptEnv{alterqcm}{french}
+
+Je n'ai pas encore traduit les textes de présentation d'un QCM en anglais et en allemand. Cette option ne modifie que les titres des colonnes.
+
+ \begin{tkzexample}[code only,small]
+ \begin{alterqcm}[language=english,lq=55mm,alea] \end{tkzexample}
+
+ \begin{alterqcm}[language=english,lq=55mm,alea]
+ \AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur %
+ $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+ {{Au moins une solution},%
+ {Au plus une solution},%
+ {Exactement une solution}}
+ \end{alterqcm}
+
+ \begin{tkzexample}[code only,small]
+ \begin{alterqcm}[language=german,lq=55mm,alea] \end{tkzexample}
+
+ \begin{alterqcm}[language=german,lq=55mm,alea]
+ \AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur %
+ $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+ {{Au moins une solution},%
+ {Au plus une solution},%
+ {Exactement une solution}}
+ \end{alterqcm}
+
+\subsection{\tkzname{long} : utilisation de longtable}
+\IoptEnv{alterqcm}{long}\Ienv{longtable}
+
+Un tableau peut arriver en fin de page et être coupé ou bien simplement être très long.
+Cette option permet d'utiliser à la place d'un environnement \tkzname{tabular} un environnement \tkzname{longtable}.
+
+
+Voici un exemple de Pascal Bertolino.
+
+\begin{alterqcm}[lq=80mm,long]
+
+%--------------------------------------------------------------
+\AQquestion{Quel était le langage précurseur du langage C ?}
+{{le Fortran},
+ {le langage B},
+ {le Basic}}
+
+%--------------------------------------------------------------
+\verbdef\argprop|int a = 3 ^ 4 ;|
+\AQquestion{\argprop}
+{{élève 3 à la puissance 4},
+ {fait un OU exclusif entre 3 et 4},
+ {n'est pas une instruction C}}
+
+%--------------------------------------------------------------
+\AQquestion{Quelle est la bonne syntaxe pour décaler de 8 bits à gauche l'entier \texttt{a} ?}
+{{\texttt{b = lshift(a, 8) ;}},
+ {\texttt{b = 8 << a ;}},
+ {\texttt{b = a << 8 ;}}}
+
+%--------------------------------------------------------------
+\verbdef\argprop|{ printf ("bonjour") ; return 0 ; \}|
+\AQquestion{Le programme complet : \\
+ \texttt{int main() \\
+ ~~\argprop}}
+{{affiche \texttt{bonjour}},
+ {donne une erreur à la compilation},
+ {donne une erreur à l'exécution}}
+
+%--------------------------------------------------------------
+\verbdef\arg|float tab[10]|
+\verbdef\propa|*tab|\global\let\propa\propa
+\verbdef\propb|&tab|\global\let\propb\propb
+\verbdef\propc|tab|\global\let\propc\propc
+\AQquestion{Soit la déclaration \arg ; \\Le premier réel du tableau est \ldots}
+{{\propa},
+ {\propb},
+ {\propc}}
+
+%--------------------------------------------------------------
+\AQquestion{La ligne \texttt{printf("\%c", argv[2][0]) ;} du \texttt{main} de \texttt{monProg} exécuté ainsi :
+\texttt{monProg parametre }}
+{{affiche \texttt{p}},
+ {n'affiche rien},
+ {peut provoquer un plantage}}
+%--------------------------------------------------------------
+\AQquestion{Quelle est la taille en mémoire d'un \texttt{long int} ?}
+{{4 octets},
+ {8 octets},
+ {ça dépend \ldots}}
+%--------------------------------------------------------------
+\AQquestion{Suite à la déclaration \texttt{int * i} ;}
+{{\texttt{*i} est une adresse},
+ {\texttt{*i} est un entier},
+ {\texttt{*i} est un pointeur}}
+%--------------------------------------------------------------
+\AQquestion{Un des choix suivants n'est pas une bibliothèque standard du C}
+{{\texttt{stdlib}},
+ {\texttt{stdin}},
+ {\texttt{math}}}
+ %--------------------------------------------------------------
+ \AQquestion{Quel était le langage précurseur du langage C ?}
+ {{le Fortran},
+ {le langage B},
+ {le Basic}}
+
+ %--------------------------------------------------------------
+ \verbdef\argprop|int a = 3 ^ 4 ;|
+ \AQquestion{\argprop}
+ {{élève 3 à la puissance 4},
+ {fait un OU exclusif entre 3 et 4},
+ {n'est pas une instruction C}}
+
+ %--------------------------------------------------------------
+ \AQquestion{Quelle est la bonne syntaxe pour décaler de 8 bits à gauche l'entier \texttt{a} ?}
+ {{\texttt{b = lshift(a, 8) ;}},
+ {\texttt{b = 8 << a ;}},
+ {\texttt{b = a << 8 ;}}}
+\end{alterqcm}
+
+Le début du code est simplement
+
+\begin{tkzltxexample}[small]
+ \begin{alterqcm}[lq=80mm,long]
+ \AQquestion{Quel était le langage précurseur du langage C ?}
+ {{le Fortran},
+ {le langage B},
+ {le Basic}}
+ \end{alterqcm}
+\end{tkzltxexample}
+
+\medskip
+Il est possible de modifier le texte qui est placé en fin de tableau. Il suffit de modifier la commande \tkzcname{aqfoottext}.
+
+\begin{tkzltxexample}[small]
+ \def\aqfoottext{suite sur la page suivante\ldots}
+\end{tkzltxexample}
+
+\subsection{\tkzname{numbreak} : scinder un qcm }
+Cette option permet soit de continuer la numérotation du tableau précédent.
+Cette option était nécessaire avant l'apparition de l'usage de l'option \tkzname{long}
+ pour les tableaux scindés par une coupure de page. Elle peut désormais être utilisée
+ pour une série de tableaux regroupés pour obtenir un seul QCM.
+
+\begin{alterqcm}[lq=80mm,title=false,num=false,long]
+\AQquestion{Quel était le langage précurseur du langage C ?}
+{{le Fortran},
+ {le langage B},
+ {le Basic}}
+
+\verbdef\argprop|int a = 3 ^ 4 ;|
+\AQquestion{\argprop}
+{{élève 3 à la puissance 4},
+ {fait un OU exclusif entre 3 et 4},
+ {n'est pas une instruction C}}
+\end{alterqcm}
+
+\begin{alterqcm}[lq=80mm,title=false,num=false,numbreak=2,long]
+\AQquestion{Suite à la déclaration \texttt{int * i} ;}
+{{\texttt{*i} est une adresse},
+ {\texttt{*i} est un entier},
+ {\texttt{*i} est un pointeur}}
+
+\AQquestion{Un des choix suivants n'est pas une bibliothèque standard du C}
+{{\texttt{stdlib}},
+ {\texttt{stdin}},
+ {\texttt{math}}}
+\end{alterqcm}
+
+le code pour le début est :
+
+\begin{tkzltxexample}[small]
+ \begin{alterqcm}[lq=80mm,title=false,num=false,long]
+ \AQquestion{Quel était le langage précurseur du langage C ?}
+ {{le Fortran},
+ {le langage B},
+ {le Basic}}
+
+ \verbdef\argprop|int a = 3 ^ 4 ;|
+ \AQquestion{\argprop}
+ {{élève 3 à la puissance 4},
+ {fait un OU exclusif entre 3 et 4},
+ {n'est pas une instruction C}}
+ \end{alterqcm}
+\end{tkzltxexample}
+
+Pour la seconde partie, on positionne \tkzname{numbreak} sur $2$ car le premier
+ tableau comportait $2$ questions. Une prochaine version permettra de ne plus avoir à compter
+ les questions.
+
+\begin{tkzltxexample}[small]
+ \begin{alterqcm}[lq=80mm,title=false,num=false,numbreak=2,long]
+ \AQquestion{Suite à la déclaration \texttt{int * i} ;}
+ {{\texttt{*i} est une adresse},
+ {\texttt{*i} est un entier},
+ {\texttt{*i} est un pointeur}}
+
+ \AQquestion{Un des choix suivants n'est pas une bibliothèque standard du C}
+ {{\texttt{stdlib}},
+ {\texttt{stdin}},
+ {\texttt{math}}}
+ \end{alterqcm}
+\end{tkzltxexample}
+
+\newpage
+\subsection{\tkzname{correction} : Corrigé d'un qcm}
+ \IoptEnv{alterqcm}{correction}
+
+ Il est possible de créer un corrigé en utilisant l'option \tkzname{correction} et en indiquant la bonne réponse ou les bonnes réponses à l'aide d'un paramètre local \tkzname{br}.
+ Voici un exemple :
+
+ \begin{alterqcm}[VF,lq=125mm,correction,
+ symb = \dingsquare,
+ corsymb = \dingchecksquare]
+ \AQquestion[br=1]{Pour tout $x \in ]-3~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion[br=2]{La fonction $F$ présente un maximum en $2$}
+ \AQquestion[br=2]{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$}
+ \end{alterqcm}
+
+ \begin{tkzltxexample}[]
+ \begin{alterqcm}[VF,lq=125mm,correction,
+ symb = \dingsquare,
+ corsymb = \dingchecksquare]
+ \AQquestion[br=1]{Pour tout $x \in ]-3~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion[br=2]{La fonction $F$ présente un maximum en $2$}
+ \AQquestion[br=2]{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$}
+ \end{alterqcm}
+\end{tkzltxexample}
+
+\subsection{Modification du symbole \tkzname{corsymb}}
+ \IoptEnv{alterqcm}{corsymb}
+
+\tkzcname{dingchecksquare} est fournie par alterqcm.
+ Voici comment est définie cette macro.
+
+\begin{tkzexample}[code only,small]
+ \newcommand*{\dingchecksquare}{\mbox{\ding{114}%
+ \hspace{-.7em}\raisebox{.2ex}[1ex]{\ding{51}}}} \end{tkzexample}
+
+\medskip Soit \dingchecksquare\ comme résultat.
+
+\begin{tkzexample}[code only,small]
+ \begin{alterqcm}[lq=90mm,symb=\altersquare,corsymb=\dingchecksquare]
+ ...
+ \end{alterqcm}
+\end{tkzexample}
+
+\medskip
+Exemple complet :
+
+\medskip
+ \begin{alterqcm}[VF,lq=125mm,correction,
+ symb = \dingsquare,
+ corsymb = \dingchecksquare]
+ \AQquestion[br=1]{Pour tout $x \in ]-3~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion[br=2]{La fonction $F$ présente un maximum en $2$}
+ \AQquestion[br=2]{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$}
+ \end{alterqcm}
+
+
+\begin{tkzexample}[code only]
+ \begin{alterqcm}[VF,lq=125mm,correction,
+ symb = \dingsquare,
+ corsymb = \dingchecksquare]
+ \AQquestion[br=1]{Pour tout $x \in ]-3~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion[br=2]{La fonction $F$ présente un maximum en $2$}
+ \AQquestion[br=2]{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$}
+ \end{alterqcm}
+\end{tkzexample}
+
+ \newpage
+\subsection{\tkzname{br=\{\ldots\}} : corrigé avec plusieurs bonnes réponses}
+\Iopt{AQquestion}{br}
+
+On donne une liste de réponses correctes
+\begin{tkzexample}[vbox,small]
+\begin{alterqcm}[correction]
+\AQquestion[br={1,3}]{Question}
+{%
+{Proposition 1},
+{Proposition 2},
+{Proposition 3}%
+}
+\end{alterqcm}
+\end{tkzexample}
+
+\subsection{\tkzname{transparent} : création d'un transparent indiquant les réponses.}
+ \IoptEnv{alterqcm}{transparent}
+
+ Cette macro permet de créer un document identique à l'original mais sans les questions et avec un cercle indiquant les bonnes propositions.
+
+ \begin{tkzexample}[vbox,small]
+ \begin{alterqcm}[transparent,correction,corsymb=\dingchecksquare,lq=100mm]
+ \AQquestion[br=2,pq=3mm]{Parmi les propositions suivantes, quelle est celle
+ qui permet d'affirmer que la fonction exponentielle admet pour asymptote la
+ droite d'équation $y = 0$ ?}
+ {{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$},
+ {$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
+ {$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$}
+ }
+
+ \AQquestion[br={1,3}]{exp$(\ln x) = x$ pour tout $x$ appartenant à }
+ {{$\mathbf{R}$},
+ {$\big]0~;~+ \infty\big[$},
+ {$\big[0~;~+\infty\big[$}
+ }
+
+ \AQquestion[br={1,2}]{exp$(\ln x) = x$ pour tout $x$ appartenant à }
+ {{$\mathbf{R}$},
+ {$\big]0~;~+ \infty\big[$},
+ {$\big[0~;~+\infty\big[$}
+ }\AQquestion[br=2,pq=3mm]{Parmi les propositions suivantes, quelle est celle
+ qui permet d'affirmer que la fonction exponentielle admet pour asymptote
+ la droite d'équation $y = 0$ ?}
+ {{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$},
+ {$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
+ {$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$}
+ }
+ \end{alterqcm}
+\end{tkzexample}
+\endinput
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-installation.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-installation.tex
new file mode 100644
index 0000000000..cda563b8ba
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-installation.tex
@@ -0,0 +1,60 @@
+%!TEX root = /Users/ego/Boulot/Alterqcm/doc/doc_aq-main.tex
+
+\section{Installation.}
+
+\subsection{Avec TeXlive sous Linux ou OS X}\NameDist{TeXLive}\NameSys{Linux}
+\NameDist{MacTeX}\NameSys{OS X}
+\tkzname{alterqcm} est présent sur les serveurs du \tkzname{CTAN} et fait partie de \tkzname{TeXLive} alors \tkzname{tlmgr} vous permettra de l'installer. Si \tkzname{alterqcm} ne fait pas encore partie de votre distribution, cette section vous montre comment l'installer, elle est aussi nécessaire si vous avez envie d'installer une version beta ou personnalisée de \tkzname{alterqcm}.
+
+Le plus simple est de créer un dossier \tikz[remember picture,baseline=(n1.base)]\node [fill=blue!30,draw] (n1) {prof};\footnote{ou bien un autre nom} avec comme chemin : \colorbox{blue!20}{ texmf/tex/latex/prof}. Voici les chemins de ce dossier sur mes deux ordinateurs:
+
+\medskip
+\begin{itemize}\setlength{\itemsep}{5pt}
+
+\item sous OS X \colorbox{blue!30}{\textbf{/Users/ego/Library/texmf}};
+
+\item sous Ubuntu \colorbox{blue!30}{\textbf{/home/ego/texmf}}.
+\end{itemize}
+
+Je suppose que si vous mettez vos packages ailleurs, vous savez pourquoi !
+
+L'installation que je propose n'est valable que pour un utilisateur.
+
+\medskip
+\begin{enumerate}
+\item Téléchargez le fichier \tikz[remember picture,baseline=(n2.base)]\node [fill=blue!20,draw] (n2) {alterqcm.sty}; sur l'un des serveurs du \tkzname{CTAN}.
+
+\item Placez le fichier \tikz[remember picture,baseline=(n2.base)]\node [fill=blue!20,draw] (n2) {alterqcm.sty}; dans le dossier \tkzname{latex} ou bien dans un dossier personnel \tikz[baseline=(tk.base)]\node [fill=blue!30,draw] (tk) {prof};.
+\begin{itemize}\setlength{\itemsep}{5pt}
+
+\item \colorbox{blue!30}{\textbf{\texttildelow/Library/texmf/latex}};
+
+\item \colorbox{blue!30}{\textbf{\texttildelow/Library/texmf/latex/prof}}.
+\end{itemize}
+
+
+\item Ouvrir un terminal, puis faire \colorbox{red!20}{|sudo texhash|} si nécessaire.
+
+\end{enumerate}
+
+
+\subsection{Avec MikTeX sous Windows XP}\NameDist{MikTeX}\NameSys{Windows XP}
+
+
+Je ne connais pas grand-chose à ce système, mais un utilisateur de mes packages \tkzimp{Wolfgang Buechel} a eu la gentillesse de me faire parvenir ce qui suit~:
+
+Pour ajouter \tkzname{alterqcm.sty} à MiKTeX\footnote{Essai réalisé avec la version \tkzname{2.7}}:
+
+\begin{itemize}\setlength{\itemsep}{10pt}
+ \item ajouter un dossier \tkzname{prof} dans le dossier
+ \textcolor{blue!60!black}{\texttt{[MiKTeX-dir]/tex/latex}}
+ \item copier le fichier \tkzname{alterqcm.sty} dans le dossier \tkzname{prof},
+ \item mettre à jour MiKTeX, pour cela dans shell DOS lancer la commande \textbf{\textcolor{red}{|mktexlsr -u|}}
+
+ ou bien encore, choisir \textcolor{red!50}{|Start/Programs/Miktex/Settings/General|}
+
+ puis appuyer sur le bouton \textbf{\textcolor{red}{|Refresh FNDB|}}.
+\end{itemize}
+
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-locales.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-locales.tex
new file mode 100644
index 0000000000..54afa9867e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-locales.tex
@@ -0,0 +1,136 @@
+%!TEX root = /Users/ego/Boulot/Alterqcm/doc/doc_aq-main.tex
+\section{Options locales de la macro \tkzcname{AQquestion}}
+
+\subsection{Utilisation locale de \tkzname{pq}}
+\Iopt{AQquestion}{pq}
+ Le tableau suivant est obtenu avec comme options |lq=85mm| et |size=\large|. Les questions sont mal positionnées. L'option locale \tkzname{pq} résout ce problème, le texte peut être déplacé de 1mm vers le haut avec \tkzcname{AQquestion[pq=1mm]}.
+ et de |6mm| pour la seconde.
+
+\medskip
+
+
+ \begin{alterqcm}[lq=55mm,size=\large]
+
+\AQquestion{Si la fonction $f$ est strictement croissante sur $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+{{Au moins une solution},
+{Au plus une solution},
+{Exactement une solution}
+}
+\AQquestion{Si la fonction $f$ est continue et positive sur $[a~ ;~ b]$ et $\mathcal{C}_{f}$ sa courbe représentative dans un repère orthogonal. En unités d'aire, l'aire $\mathcal{A}$ du domaine délimité par $\mathcal{C}_{f}$, l'axe des abscisses et les droites d'équations $x = a$ 5 et $x = b$ est donnée par la formule : }
+{%
+{$\mathcal{A}= \displaystyle \int_{b}^a f(x)\ \text{d}x$},
+{$\mathcal{A}= \displaystyle \int_{a}^b f(x)\ \text{d}x$},
+{$\mathcal{A} = f(b) - f(a)$}}
+\end{alterqcm}
+
+\medskip
+\tkzname{Voici la version corrigée}
+
+\begin{alterqcm}[lq=55mm,size=\large]
+\AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur
+$\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+{{Au moins une solution},
+{Au plus une solution},
+{Exactement une solution}
+}
+\AQquestion[pq=6mm]{Si la fonction $f$ est continue et positive sur $[a~ ;~ b]$
+ et $\mathcal{C}_{f}$ sa courbe représentative dans un repère orthogonal.
+ En unités d'aire, l'aire $\mathcal{A}$ du domaine délimité par $\mathcal{C}_{f}$,
+ l'axe des abscisses et les droites d'équations $x = a$ et $x = b$ est donnée
+ par la formule : }
+{{$\mathcal{A}= \displaystyle \int_{b}^a f(x)\ \text{d}x$},
+{$\mathcal{A}= \displaystyle \int_{a}^b f(x)\ \text{d}x$},
+{$\mathcal{A} = f(b) - f(a)$}
+}
+\end{alterqcm}
+
+\medskip
+\begin{tkzexample}[code only, small]
+ \begin{alterqcm}[lq=55mm,size=\large]
+ \AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur
+ $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+ {{Au moins une solution},
+ {Au plus une solution},
+ {Exactement une solution}}
+\end{tkzexample}
+
+\medskip
+\begin{tkzexample}[code only, small]
+ \AQquestion[pq=6mm]{Si la fonction $f$ est continue et positive sur $[a~ ;~ b]$
+ et $\mathcal{C}_{f}$ sa courbe représentative dans un repère orthogonal.
+ En unités d'aire, l'aire $\mathcal{A}$ du domaine délimité par $\mathcal{C}_{f}$,
+ l'axe des abscisses et les droites d'équations $x = a$ et $x = b$ est donnée
+ par la formule : }
+ {{$\mathcal{A}= \displaystyle \int_{b}^a f(x)\ \text{d}x$},
+ {$\mathcal{A}= \displaystyle \int_{a}^b f(x)\ \text{d}x$},
+ {$\mathcal{A} = f(b) - f(a)$}}
+ \end{alterqcm}
+\end{tkzexample}
+
+\subsection{Utilisation globale et locale de \tkzname{pq}}\
+ \Iopt{AQquestion}{pq} \IoptEnv{alterqcm}{pq}
+Cette fois, il est nécessaire de déplacer plusieurs questions, j'ai placé un |pq=2mm| globalement c'est à dire comme ceci :\tkzcname{begin\{alterqcm\}[lq=85mm,pq=2mm]}. \textbf{Toutes} les questions sont affectées par cette option mais certaines questions étaient bien placées et doivent le rester, aussi localement je leur redonne un |pq=0mm|.
+
+\medskip
+\begin{alterqcm}[lq=85mm,pq=2mm]
+\AQquestion{Soit une série statistique à deux variables. Les valeurs de $x$ sont 1, 2, 5, 7, 11, 13 et une équation de la droite de régression de $y$ en $x$ par la moindres carrés est $y = 1,35x +22,8$. Les coordonnées du point moyen sont :}
+{{$(6,5;30,575)$},
+{$(32,575 ; 6,5)$},
+{$(6,5 ; 31,575)$}}
+
+\AQquestion[pq=0mm]{$(u_{n})$ est une suite arithmétique de raison $-5$.\\ Laquelle de ces affirmations est exacte ? }
+{{Pour tout entier $n,~ u_{n+1} - u_{n} = 5$},
+{$u_{10}= u_{2}+ 40$},
+{$u_{3} = u_{7} + 20$}
+}
+\AQquestion[pq=0mm]{L'égalité $\ln (x^2 - 1) = \ln (x - 1) + \ln (x+1)$ est vraie}
+{{Pour tout $x$ de $]- \infty~;~-1[ \cup]1~;~+ \infty[$},
+{Pour tout $x$ de $\mathbf{R} - \{-1~ ;~ 1\}$.},
+{Pour tout $x$ de $]1~ ;~+\infty[$}
+}
+\AQquestion{Pour tout réel $x$, le nombre \[\dfrac{\text{e}^x - 1}{\text{e}^x + 2}\hskip12pt \text{égal à :} \] }
+{{$-\dfrac{1}{2}$},
+{$\dfrac{\text{e}^{-x} - 1}{\text{e}^{-x} + 2}$},
+{$\dfrac{1 - \text{e}^{-x}}{1 + 2\text{e}^{-x}}$}
+}
+\AQquestion{On pose I $= \displaystyle\int_{\ln 2}^{\ln 3} \dfrac{1}{\text{e}^x - 1}\,\text{d}x$ et J $ = \displaystyle\int_{\ln 2}^{\ln 3} \dfrac{\text{e}^x}{\text{e}^x - 1}\,\text{d}x$ \\ alors le nombre I $-$ J est égal à}
+{{$\ln \dfrac{2}{3}$},
+{$\ln \dfrac{3}{2}$},
+{$\dfrac{3}{2}$}
+}
+\end{alterqcm}
+
+\medskip
+\begin{tkzexample}[code only,vbox,small]
+ \begin{alterqcm}[lq=85mm,pq=2mm]
+ \AQquestion[pq=0mm]{L'égalité $\ln (x^2 - 1) = \ln (x - 1) + \ln (x+1)$
+ est vraie}
+ {{Pour tout $x$ de $]- \infty~;~-1[ \cup]1~;~+ \infty[$},
+ {Pour tout $x$ de $\mathbf{R} - \{-1~ ;~ 1\}$.},
+ {Pour tout $x$ de $]1~ ;~+\infty[$}}
+ \AQquestion{Pour tout réel $x$, le nombre \[\dfrac{\text{e}^x - 1}
+ {\text{e}^x + 2}\hskip12pt \text{égal à :} \] }
+ {{$-\dfrac{1}{2}$},
+ {$\dfrac{\text{e}^{-x} - 1}{\text{e}^{-x} + 2}$},
+ {$\dfrac{1 - \text{e}^{-x}}{1 + 2\text{e}^{-x}}$}}
+ \end{alterqcm}
+ \end{tkzexample}
+
+
+\subsection{\tkzname{correction} et \tkzname{br} : rang de la bonne réponse}
+\Iopt{AQquestion}{br} \Iopt{AQquestion}{correction}
+Tout d'abord, il est nécessaire de demander un corrigé. Pour cela, il suffit d'inclure l'option \tkzname{correction} qui est un booléen, ainsi positionné sur \tkzname{true}. Ensuite dans chaque question, il est nécessaire de donner la liste des bonnes réponses. Par exemple, avec \tkzname{br=1} ou bien encore \tkzname{br=\{1,3\}}.
+
+Voici le corrigé de l'exercice précédent :
+
+\medskip
+\begin{tkzexample}[vbox,small]
+\begin{alterqcm}[VF,correction,lq=125mm]
+ \AQquestion[br=1]{Pour tout $x \in ]-3~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion[br=2]{La fonction $F$ présente un maximum en $2$}
+ \AQquestion[br=2]{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$}
+\end{alterqcm}
+\end{tkzexample}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-mc.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-mc.tex
new file mode 100644
index 0000000000..4602d827bb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-mc.tex
@@ -0,0 +1,213 @@
+%!TEX root = /Users/ego/Boulot/Alterqcm/doc/doc_aq-main.tex
+
+\section{Macros complémentaires}
+
+\subsection{\tkzcname{AQmessage} : message sur les deux colonnes}
+
+Elle permet d'insérer dans le tableau sur les deux colonnes, des renseignements complémentaires pour le candidat.
+
+Dans le tableau suivant, il est nécessaire de donner des indications et des précisions sur l'énoncé. Ceci est fait à l'aide de la commande \tkzcname{AQmessage}. J'ai utilisé le package \tkzname{tkz-tab.sty} pour ce message ainsi que \emph{\texttt{l'environnement minipage}} pour certaines propositions, afin de faire tenir la proposition sur plusieurs lignes. cela est nécessaire si on ne veut pas sortir du tableau ou bien si on ne veut pas restreindre l'espace accordé aux questions.
+Cela montre que l'on peut utiliser de nombreux environnements à la fois dans les questions, les messages et les propositions
+
+\begin{NewMacroBox}{AQmessage}{{\var{texte}}}
+
+\begin{tabular}{@{}Il Il Il@{}} \toprule \thead
+argument & défaut & définition \\ \midrule
+\tbody
+\TAline{texte} {} {corps du message}
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{Cette macro n'utilise qu'un argument~: le texte du message. Celui-ci peut contenir toute sorte d'environnement à l'exception, malheureusement, d'un tableau conçu avec \tkzname{tablor}. Il est cependant possible d'importer un tableau conçu à l'aide de \tkzname{tablor} avec la macro \tkzcname{includegraphics}\footnotemark.}
+\end{NewMacroBox}\Imacro{includegraphics}
+
+\footnotetext{macro du package \tkzname{graphicx}}
+
+\begin{alterqcm}[lq=80mm,pre=false]
+\AQmessage{\begin{minipage}{15cm}
+\vspace*{6pt}
+ Soit $f$ une fonction définie et dérivable sur l'intervalle $]-5~;~+\infty[$ dont le tableau de variations est donné ci-dessous :
+\begin{center}\begin{tikzpicture}
+\def\tkzTabDefaultWritingColor{Maroon}
+\def\tkzTabDefaultBackgroundColor{fondpaille}
+\tkzTabInit{$x$/1,$f(x)$/3} {$-5$,$-1$,$0$,$2$,$+\infty$}
+\tkzTabVar{-/$-\infty$ /,+/$-3$/,-/$-5$/,+/4/,-/{4,5}/}
+\end{tikzpicture}\end{center}
+ On désigne par $\mathcal{C}$ la courbe représentative de $f$.
+ \vspace*{6pt}
+\end{minipage}
+}
+\AQquestion{Sur l'intervalle $]-5~;~+\infty[$, l'équation $f(x) = -2$ admet }
+{{une seule solution},
+{deux solutions},
+{quatre solutions}}
+\end{alterqcm}
+
+\begin{tkzexample}[code only]
+ \begin{alterqcm}[lq=95mm,pre=false]
+ \AQmessage{ Soit $f$ une fonction définie et dérivable sur l'intervalle%
+ $]-5~;~+\infty[$ dont le tableau de variations est donné ci-dessous :
+ \begin{center}\begin{tikzpicture}
+ \tkzTabInit{$x$/1,$f(x)$/3} {$-5$,$-1$,$0$,$2$,$+\infty$}
+ \tkzTabVar{-/$-\infty$ ,+/$-3$,-/$-5$,+/$4$,-/${4,5}$}%
+ \end{tikzpicture}\end{center}
+ On désigne par $\mathcal{C}$ la courbe représentative de $f$.}
+\AQquestion{Sur l'intervalle $]-5~;~+\infty[$,l'équation $f(x) = -2$ admet}
+ {{une seule solution},
+ {deux solutions},
+ {quatre solutions}}
+ \end{alterqcm}\end{tkzexample}
+
+
+\subsection{\tkzcname{AQms} : utilisation d'un trait invisible}
+
+\begin{NewMacroBox}{AQms}{(height,depth)}
+ \begin{tabular}{@{}Il Il Il@{}} \toprule \thead
+ argument & défaut & définition \\ \midrule
+ \tbody
+ \TAline{height} {} {hauteur du trait}
+ \TAline{depth} {} {profondeur du trait}
+ \bottomrule
+ \end{tabular}
+
+\medskip
+\emph{C'est un trait invisible\footnotemark, utile si il est nécessaire de faire un espace plus conséquent autour d'une proposition.}
+
+\textcolor{red}{\emph{\texttt{ Il faudrait éviter de l'utiliser!}}}
+
+\end{NewMacroBox}
+\footnotetext{ voir la macro \tkzcname{strut}}
+
+\begin{tkzexample}[code only,width=\textwidth-1pt]
+ \def\AQms(#1,#2){\vrule height #1pt depth #2pt width 0pt}
+ \end{tkzexample}
+
+\begin{tkzexample}[width=8cm]
+ \begin{minipage}[]{7.5cm}
+ \begin{alterqcm}%
+ [lq=4cm]
+ \AQquestion{Question}
+ {%
+ {Proposition 1},
+ {Proposition 2\AQms(16,14)},
+ {Proposition 3}}
+ \end{alterqcm}
+ \end{minipage}
+\end{tkzexample}
+
+\newpage
+\subsection{\tkzcname{InputQuestionList} : QCM à partir d'une liste de fichiers}
+
+\begin{NewMacroBox}{InputQuestionList}{\var{path}\var{prefix}\var{list of integers}}
+
+\begin{tabular}{@{}Il Il Il@{}} \toprule \thead
+ argument & défaut & définition \\ \midrule
+ \tbody
+\TAline{path} {} {chemin qui conduit au dossier contenant les fichiers} \TAline{prefix} {} {le nom des fichiers : <prefix><integer>.tex}
+\TAline{list of integers}{}{liste de nombres entiers correspondants aux fichiers}
+\bottomrule
+ \end{tabular}
+
+ \medskip
+\emph{Cette macro permet d'insérer dans un tableau des questions enregistrées dans des fichiers. Un fichier peut contenir une ou plusieurs questions avec les propositions correspondantes. \tkzname{path} est le chemin vers le dossier contenant les fichiers. \tkzname{prefix} permet de nommer les fichiers, un entier détermine de façon unique le fichier.}
+
+\end{NewMacroBox}
+
+Soit le fichier \tkzname{qcm-1.tex}
+
+\begin{tkzltxexample}[]
+ \AQquestion{Quel était le langage précurseur du langage C ?}
+ {{le Fortran},
+ {le langage B},
+ {le Basic}}
+\end{tkzltxexample}
+
+\medskip
+Soit le fichier \tkzname{qcm-2.tex}
+
+\begin{tkzltxexample}[]
+ \verbdef\arg|int a = 3 ^ 4 ;|
+ \AQquestion{\arg}
+ {{élève 3 à la puissance 4},
+ {fait un OU exclusif entre 3 et 4},
+ {n'est pas une instruction C}}
+\end{tkzltxexample}
+
+\bigskip
+Supposons créée une série de fichiers dans un dossier |iut| avec comme noms \newline
+ \tkzname{qcm-1.tex}, \tkzname{qcm-2.tex}, \ldots ,\tkzname{qcm-$n$.tex}. Le prefix pour nommer ces fichiers est donc \tkzname{qcm-}.
+
+Le chemin de ce dossier est par exemple |/Users/ego/Boulot/PROF/Alterqcm/Examples/iut/|.
+
+
+Le résultat est :
+
+\newcommand*{\listpath}{/Users/ego/Boulot/Alterqcm/doc/iut/}
+
+\begin{alterqcm}[lq=80mm]
+ \InputQuestionList{/Users/ego/Boulot/Alterqcm/doc/iut/}{qcm-}{2,1}
+\end{alterqcm}
+
+\begin{tkzexample}[code only]
+\newcommand*{\listpath}{/Users/ego/Boulot/Alterqcm/doc/iut/}
+\begin{alterqcm}[lq=80mm]
+ \InputQuestionList{\listpath}{qcm-}{2,1}
+\end{alterqcm}
+\end{tkzexample}
+
+\newpage
+\subsection{La commande \tkzcname{AQannexe}}
+
+
+\begin{NewMacroBox}{AQannexe}{\oarg{local options}\var{start}\var{end}\var{col}}
+\begin{tabular}{@{}Il Il Il@{}} \toprule \thead
+arguments & défaut & définition \\ \midrule
+\tbody
+\TAline{start} {} {numéro de la première rangée}
+\TAline{end} {} {numéro de la dernière rangée}
+\TAline{col} {} {nombre de propositions}
+ \bottomrule
+\end{tabular}
+
+\medskip
+\emph{Cette macro utilise trois arguments. Ce sont trois nombres entiers. \tkzname{start} est le rang de la première rangée, \tkzname{end} le rang final et \tkzname{col} le nombre de propositions.}
+
+\medskip
+\begin{tabular}{@{}Il Il Il@{}} \toprule \thead
+Options & défaut & définition \\ \midrule
+\tbody
+\TOline{VF} {false} { vrai ou faux; affiche V et F }
+\TOline{propstyle} {\BS arabic} { style de numérotation des propositions } \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{\tkzname{VF} permet d'afficher V et F pour identifier les propositions mais il est nécessaire que \tkzname{col} soit égal à deux}
+
+\medskip
+
+\end{NewMacroBox}
+
+\begin{tkzltxexample}[]
+ \documentclass{article}
+ \usepackage[utf8]{inputenc}
+ \usepackage[T1]{fontenc}
+ \usepackage{lmodern}
+ \usepackage{alterqcm,fullpage}
+ \thispagestyle{empty}
+
+ \begin{document}
+ NOM :
+
+ PRÉNOM :
+
+ \vspace{1cm}{ \Large
+ \AQannexe{1}{10}{2}\hspace{2cm}
+ \AQannexe[propstyle=\alph]{11}{20}{3}}
+ \end{document}
+\end{tkzltxexample}
+
+\AQannexe{1}{10}{2}\hspace{2cm}
+\AQannexe[propstyle=\alph]{11}{20}{3}
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-points.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-points.tex
new file mode 100644
index 0000000000..ae152e3544
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-points.tex
@@ -0,0 +1,44 @@
+\section{Points attibués à un QCM}
+
+Il est possible d'attribuer des points à un QCM à l'aide de la macro rudimentaire suivante \tkzcname{AQpoints}
+
+\begin{tkzltxexample}[small]
+ \newcommand\AQpoints[1]{%
+ \marginpar{\hspace*{1em}
+ \begin{tabular}{|c|}
+ \hline
+ \textbf{#1}\\
+ \hline\\
+ \hline
+ \end{tabular}}}
+\end{tkzltxexample}
+
+\subsection{Exemple}
+
+\begin{tkzltxexample}[]
+ \AQpoints{10}
+ \begin{alterqcm}[symb = \dingsquare, lq=7cm]
+ \AQquestion{Si \numprint{3,24} est la troncature de $x$ au centième, alors on est sûr que :}
+ {{\begin{minipage}[t]{\linewidth-1cm}$3,235\leqslant x <3,245$\\
+ \end{minipage}} ,
+ {\begin{minipage}[t]{\linewidth-1cm} $3,24\leqslant x <3,25$\\
+ \end{minipage}} ,
+ {\begin{minipage}[t]{\linewidth-1cm}
+ $x$ est plus près de \numprint{3,24} que de \numprint{3,25}
+ \end{minipage}}}
+ \end{alterqcm}
+\end{tkzltxexample}
+
+\medskip
+\AQpoints{10}
+ \begin{alterqcm}[symb = \dingsquare, lq=7cm]
+ \AQquestion{Si \numprint{3,24} est la troncature de $x$ au centième, alors on est sûr que :}
+ {{\begin{minipage}[t]{\linewidth-1cm}$3,235\leqslant x <3,245$\\
+ \end{minipage}} ,
+ {\begin{minipage}[t]{\linewidth-1cm} $3,24\leqslant x <3,25$\\
+ \end{minipage}} ,
+ {\begin{minipage}[t]{\linewidth-1cm}
+ $x$ est plus près de \numprint{3,24} que de \numprint{3,25}
+ \end{minipage}}}
+\end{alterqcm}
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-problem.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-problem.tex
new file mode 100644
index 0000000000..48ac05835d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc-aq-problem.tex
@@ -0,0 +1,23 @@
+\section{Problèmes connus et FAQ}
+
+\subsection{Incompatibilité avec \tkzname{colortbl.sty}}
+
+ Le problème provient du fait que \tkzname{colortbl.sty} est parfois incompatible avec la commande \tkzname{multicolumn}. Le texte utilisé dans la commande \tkzname{multicolumn} ne doit contenir qu'un seul paragraphe.
+ Il faut simplement ne pas utiliser la commande \tkzname{AQmessage}. Une solution est d'interrompre le QCM pour afficher ce que l'on souhaite puis reprendre le tableau.
+
+ \subsection{FAQ}
+ \subsubsection{Traduction des commandes}
+ Certaines commandes peuvent être traduites ou modifiées comme par exemple : \tkzcname{aq@pre} et \tkzcname{aq@preVF}, il suffit pour cela d'utiliser \tkzcname{renewcommand}
+
+\begin{tkzltxexample}[]
+ \renewcommand{\aq@pre}{Pour chacune des questions ci-dessous, une seule des
+ r\'eponses propos\'ees est exacte. Vous devez cocher la r\'eponse exacte
+ sans justification.
+ Une bonne r\'eponse rapporte \textbf{\cmdAQ@global@bonus\ point}. Une
+ mauvaise r\'eponse enl\`eve \textbf{\cmdAQ@global@malus\ point}. L'absence
+ de r\'eponse ne rapporte ni n'enl\`eve aucun point. Si le total des points
+ est n\'egatif, la note globale attribu\'ee \`a l'exercice est \textbf{0}.}%
+\end{tkzltxexample}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc_aq-main.tex b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc_aq-main.tex
new file mode 100644
index 0000000000..69b878c0c8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/doc/latex/doc_aq-main.tex
@@ -0,0 +1,164 @@
+% encoding : utf8
+% TKZdoc-aq.tex
+% Created by Alain Matthes on 2009-03-13.
+% Copyright (C) 2009 Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+% See http://www.latex-project.org/lppl.txt for details.
+%
+%
+% 'doc-aq' is the french doc of alterqcm.sty
+%
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% doc altermqcm.sty encodage : utf8 %
+% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% Créé par Alain Matthes le 20/04/2009 %
+% Copyright (c) 2009 __Collège Sévigné__ All rights reserved. %
+% version : 3.7 %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Fichier .tex de présentation du package alterqcm.sty
+% d'après le code de DTK.
+\documentclass[DIV=15,
+ fontsize=10,
+ headinclude=false,
+ index=totoc,
+ footinclude=false,
+ twoside,
+ headings=small]{tkz-doc}
+
+\usepackage{fancybox}
+\usepackage{stmaryrd}
+\usepackage{array,multirow,longtable,tkz-tab,tkz-base}
+\usepackage{alterqcm}
+
+\usepackage[pdftex,unicode,
+ colorlinks=true,
+ pdfpagelabels,
+ urlcolor=blue,
+ filecolor=pdffilecolor,
+ linkcolor=blue,
+ breaklinks =false,
+ hyperfootnotes=false,
+ bookmarks=false,
+ bookmarksopen=false,
+ linktocpage=true,
+ pdfsubject={qcm},
+ pdfauthor={Alain Matthes},
+ pdftitle={alterqcm},
+ pdfkeywords={qcm, mathematics, table},
+ pdfcreator={LaTeX}
+ ]{hyperref}
+\usepackage{url}
+\def\UrlFont{\small\ttfamily}
+\usepackage[protrusion = true,
+ expansion,
+ final,
+ verbose = false,
+ babel = true]{microtype}
+
+\DisableLigatures{encoding = T1, family = tt*}
+\usepackage[parfill]{parskip}
+
+\gdef\nameofpack{alterqcm}
+\gdef\versionofpack{3.7 c}
+\gdef\dateofpack{2011/06/01}
+\gdef\nameofdoc{doc-alterqcm}
+\gdef\versionofdoc{3.7 c}
+\gdef\dateofdoc{2011/06/01}
+\gdef\authorofpack{Alain Matthes}
+\gdef\adressofauthor{}
+\gdef\namecollection{AlterMundus}
+\gdef\urlauthor{http://altermundus.fr}
+\gdef\urlauthorcom{http://altermundus.com}
+
+\title{The package : alterqcm.sty}
+\author{Alain Matthes}
+\pdfcompresslevel=9
+\pdfinfo{
+ /Title (doc_alterqcm.pdf)
+ /Creator (TeX)
+ /Producer (pdfeTeX)
+ /Author (Alain Matthes)
+ /CreationDate (01 juin 2011)
+ /Subject (Documentation du package alterqcm v 3.7)
+ /Keywords (pdfeTeX, qcm, maths, pdflatex) }
+
+
+
+\renewcommand*{\Ienv}[1]{\index{Environnement_1@\texttt{Environnement}!\texttt{#1}}}
+\renewcommand*{\NameSys}[1]{\index{Système d'exploitation !#1@\texttt{#1}}}
+
+\usepackage{shortvrb,verbdef,fancyvrb}
+\usepackage{tkzexample}
+\usepackage[frenchb]{babel}
+\usepackage[autolanguage]{numprint}
+
+\makeatletter
+\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4em}}
+\makeatother
+\AtBeginDocument{\MakeShortVerb{\|}}
+
+\begin{document}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\title{\nameofpack}
+\date{\today}
+\clearpage
+\thispagestyle{empty}
+\maketitle
+\clearpage
+\definecolor{fondpaille}{cmyk}{0,0,0.1,0}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{codebackground}{brown!15}
+\colorlet{codeonlybackground}{brown!15}
+\pagecolor{fondpaille}
+\color{Maroon}
+
+\nameoffile{\nameofpack}
+\defoffile{\textbf{alterqcm.sty} est un package pour mettre en page le plus simplement possible des questionnaires à choix multiples sous forme de tableaux à deux colonnes.}
+
+\presentation
+
+\vspace*{12pt}
+
+\lefthand\ Je remercie \tkzimp{Michel Bovani} pour nous permettre d'utiliser \tkzname{fourier} et \tkzname{utopia} avec \LaTeX.
+
+\vspace*{12pt}
+\lefthand\ Je remercie également \tkzimp{Jean-Côme Charpentier}, \tkzimp{Manuel Pégourié-Gonnard}, \tkzimp{Franck Pastor}, \tkzimp{Ulrike Fischer} et \tkzimp{Josselin Noirel} pour les différentes idées et conseils qui m'ont permis de faire ce package.
+
+\vfill
+Vous pouvez envoyer vos remarques, et les rapports sur des erreurs que vous aurez constatées
+ à l'adresse suivante \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}
+
+
+This file can be redistributed and/or modified under the terms of the LATEX
+Project Public License Distributed from CTAN archives in directory \url{CTAN://
+macros/latex/base/lppl.txt}.
+
+\clearpage\newpage
+\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}
+
+\tableofcontents
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\include{doc-aq-installation}
+\include{doc-aq-def}
+\include{doc-aq-globales}
+\include{doc-aq-locales}
+\include{doc-aq-mc}
+\include{doc-aq-excomp}
+\include{doc-aq-points}
+\include{doc-aq-problem}
+
+\clearpage\newpage
+\makeatletter
+\printindex
+\end{document}
+
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/AntillesESjuin2006.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/AntillesESjuin2006.tex
new file mode 100644
index 0000000000..e3108f02b7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/AntillesESjuin2006.tex
@@ -0,0 +1,80 @@
+\documentclass[11pt]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{lmodern}
+\usepackage{xkeyval,array,multirow,amsmath,amssymb}
+\usepackage{fullpage,longtable}
+\usepackage[]{alterqcm}
+\usepackage[frenchb]{babel}
+
+\begin{document}
+\begin{alterqcm}[lq=90mm,pre=true,long]
+
+\AQquestion{Parmi les propositions suivantes, quelle est celle qui permet d'affirmer que la fonction exponentielle admet pour asymptote la droite d'équation $y = 0$ ?}
+{{$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
+{$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$},
+{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$}}
+
+\AQquestion{Parmi les propositions suivantes, quelle est celle qui permet d'affirmer que l'inéquation $\ln (2x + 1) \geqslant \ln (x + 3)$ admet l'intervalle $\big[2~;~+\infty\big[$ comme ensemble de solution ? }
+{{\begin{minipage}{5cm}la fonction ln est positive sur $\big[1~;~+\infty\big[$\end{minipage}},
+{$\displaystyle\lim_{x \to +\infty} \ln x = + \infty$},
+{\begin{minipage}{5cm}la fonction $\ln$ est croissante sur $\big]0~;~+\infty\big[$\end{minipage}}
+}
+
+\AQquestion{Parmi les propositions suivantes quelle est celle qui permet d'affirmer qu'une primitive de la fonction $f$ définie sur $\mathbb{R}$ par $x \mapsto (x + 1)\text{e}^x$ est la fonction $g~:~x~ \mapsto~ x~ \text{e}^x$~? }
+{{pour tout réel $x,~f'(x) = g(x)$},
+{pour tout réel $x,~g'(x) = f(x)$},
+{\begin{minipage}{5.5cm} pour tout réel $x,~g(x) = f'(x) + k$, $k$ réel quelconque \end{minipage}}}
+
+\AQquestion[pq=2mm]{ L'équation $2\text{e}^{2x} - 3\text{e}^x + 1 = 0$ admet pour ensemble solution}
+{{$\left\{\dfrac{1}{2}~;~1\right\}$},
+{$\left\{0~;~\ln \dfrac{1}{2}\right\}$},
+{$\big\{0~;~\ln 2\big\}$}
+}
+
+\AQquestion[pq=2mm]{Pour tout $n \in \mathbb{N}$ }
+{{$\displaystyle\lim_{x \to +\infty} \frac{\text{e}^x}{x^n} = 1$},
+{$\displaystyle\lim_{x \to +\infty} \frac{\text{e}^x}{x^n} = +\infty$},
+{$\displaystyle\lim_{x \to +\infty} \frac{\text{e}^x}{x^n} = 0$}}
+
+\AQquestion[pq=1pt]{Soit $f$ la fonction définie sur $\big]0~;~+\infty\big[$ par $f(x) = 2\ln x - 3x + 4$. Dans un repère, une équation de la tangente à la courbe représentative de $f$ au point d'abscisse 1 est :}
+{{$y = - x + 2$},
+{$y = x + 2$},
+{$y = - x - 2$}
+}
+
+\AQquestion[pq=2mm]{La valeur moyenne sur $\big[1 ; 3\big]$ de la fonction $f$ définie par : $f(x) = x^2 + 2x$ est :}
+{{$\dfrac{50}{3}$},
+{$\dfrac{25}{3}$},
+{$6$}
+}
+\AQquestion{ exp$(\ln x) = x$ pour tout $x$ appartenant à }
+{{$\mathbb{R}$},
+{$\big]0~;~+ \infty\big[$},
+{$\big[0~;~+\infty\big[$}
+}
+\AQquestion[pq=1pt]{Soit $f$ la fonction définie sur $\big]0~;~+\infty\big[$ par $f(x) = 2\ln x - 3x + 4$. Dans un repère, une équation de la tangente à la courbe représentative de $f$ au point d'abscisse 1 est :}
+{{$y = - x + 2$},
+{$y = x + 2$},
+{$y = - x - 2$}
+}
+
+\AQquestion[pq=2mm]{La valeur moyenne sur $\big[1 ; 3\big]$ de la fonction $f$ définie par : $f(x) = x^2 + 2x$ est :}
+{{$\dfrac{50}{3}$},
+{$\dfrac{25}{3}$},
+{$6$}
+}
+\AQquestion{ exp$(\ln x) = x$ pour tout $x$ appartenant à }
+{{$\mathbb{R}$},
+{$\big]0~;~+ \infty\big[$},
+{$\big[0~;~+\infty\big[$}
+}
+\end{alterqcm}
+\end{document}
+
+% AntillesESjuin2006
+
+% encoding : utf8
+% format : pdflatex
+% engine : pdfetex
+% author : Alain Matthes \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/alea.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/alea.tex
new file mode 100644
index 0000000000..d95b020685
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/alea.tex
@@ -0,0 +1,31 @@
+\documentclass{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{fourier}
+\usepackage{alterqcm}
+\usepackage{fullpage}
+\thispagestyle{empty}
+
+\begin{document}
+\begin{minipage}{12cm}
+ \begin{alterqcm}[lq=55mm,alea,sep]
+ \AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+ {{Au moins une solution},%
+ {Au plus une solution},%
+ {Exactement une solution}}
+ \end{alterqcm}
+
+ \vspace{1cm}
+ \begin{alterqcm}[lq=55mm,alea,sep=false]
+ \AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+ {{Au moins une solution},%
+ {Au plus une solution},%
+ {Exactement une solution}}
+ \end{alterqcm}
+\end{minipage}
+
+\end{document}
+
+% utf8
+% pdflatex
+% Alain Matthes \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/annexe.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/annexe.tex
new file mode 100644
index 0000000000..fd5fab6d10
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/annexe.tex
@@ -0,0 +1,25 @@
+\documentclass[a4paper]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{fourier}
+\usepackage{alterqcm}
+\usepackage{fullpage}
+\thispagestyle{empty}
+
+\begin{document}
+{\Large
+NOM :
+
+PRÉNOM :
+
+\bfseries
+\vspace{1cm}
+\AQannexe[propstyle=\bfseries\arabic]{1}{10}{4}%
+ \hspace{2cm}
+\AQannexe[propstyle=\bfseries\alph]{11}{20}{3}}
+\end{document}
+
+% encoding : utf8
+% format : pdflatex
+% engine : pdfetex
+% author : Alain Matthes
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/correct.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/correct.tex
new file mode 100644
index 0000000000..e017eacb4b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/correct.tex
@@ -0,0 +1,27 @@
+\documentclass[10pt]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[upright]{fourier}
+\usepackage{amsmath,amssymb,stmaryrd}
+\usepackage{fullpage}
+\usepackage{alterqcm}
+\usepackage[frenchb]{babel}
+\parindent=0pt
+\newlength{\oldtextwidth}
+\begin{document}
+ \setlength{\oldtextwidth}{\textwidth}
+ \setlength{\textwidth}{14cm}
+ \begin{alterqcm}[VF,
+ correction,
+ lq = 100mm,
+ symb = \dingsquare,
+ corsymb = \dingchecksquare]
+ \AQquestion[br={1}]{Pour tout $x \in ]-3~;~2],~f'(x) \geqslant 0$.}
+ \AQquestion[br={2}]{La fonction $F$ présente un maximum en $2$}
+ \AQquestion[br={2}]{$\displaystyle\int_{0}^2 f'(x)\:\text{d}x = - 2$}
+ \end{alterqcm}
+\setlength{\textwidth}{\oldtextwidth}
+\end{document}
+% encoding : utf8
+% format : pdflatex
+% engine : pdfetex
+% author : Alain Matthes \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_1.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_1.tex
new file mode 100644
index 0000000000..5a372d15ca
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_1.tex
@@ -0,0 +1,23 @@
+\documentclass[12pt]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[upright]{fourier}
+%\usepackage[T1]{fontenc}
+%\usepackage{lmodern}
+\usepackage{alterqcm}
+\usepackage{fullpage}%
+\usepackage[frenchb]{babel}
+\parindent0pt
+\begin{document}
+\begin{alterqcm}
+ \AQquestion{Question}{%
+ {Proposition 1},
+ {Proposition 2},
+ {Proposition 3}}
+\end{alterqcm}
+
+\end{document}
+
+% encoding : utf8
+% format : pdflatex
+% engine : pdfetex
+% author : Alain Matthes \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_2.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_2.tex
new file mode 100644
index 0000000000..a314cdb7fe
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_2.tex
@@ -0,0 +1,45 @@
+\documentclass[11pt]{article}
+\usepackage[utf8]{inputenc}% sauf si vous avez changé l'encodage
+%\usepackage[upright]{fourier}% je la préfère aux autres!
+% fourier charge textcomp ainsi que [T1]{fontenc}
+% et fournit l'essentiel des symboles de amssymb
+% en cas de changement, il ne faut pas oublier
+% de placer un \usepackage[T1]{fontenc} qui est fourni
+% automatiquement par fourier.
+\usepackage[T1]{fontenc}
+\usepackage{lmodern}
+\usepackage{amsmath,amssymb,stmaryrd,calc}%}% pour geqslant qui existe ds fourier
+\usepackage{xkeyval}
+\usepackage{multirow,longtable}
+\usepackage[%
+ a4paper,%
+ textwidth=16cm,
+ top=2cm,%
+ bottom=2cm,%
+ headheight=25pt,%
+ headsep=12pt,%
+ footskip=25pt]{geometry}%
+
+\usepackage{alterqcm}
+% on charge le package
+% longtable en cas de débordement du tableau
+% amsmath car les exemples sont des annales du bac en mathématiques.
+\usepackage[frenchb]{babel}
+\parindent=0pt
+\begin{document}
+
+
+
+\begin{alterqcm}[lq=80mm,long]
+\AQquestion{Parmi les propositions suivantes, quelle est celle qui permet d'affirmer que la fonction exponentielle admet pour asymptote la droite d'équation $y = 0$ ?}
+{{$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
+{$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$},
+{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$}}
+
+\AQquestion[]{exp$(\ln x) = x$ pour tout $x$ appartenant à }
+{{$\mathbf{R}$},
+{$\big]0~;~+ \infty\big[$},
+{$\big[0~;~+\infty\big[$}
+}\end{alterqcm}
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_3.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_3.tex
new file mode 100644
index 0000000000..79126645c3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/example_3.tex
@@ -0,0 +1,64 @@
+\documentclass[11pt]{article}
+\usepackage{xltxtra}
+\usepackage{xgreek}
+\usepackage{amsmath,amssymb,stmaryrd,calc}%}% pour geqslant qui existe ds fourier
+\usepackage{xkeyval}
+\usepackage{multirow,longtable}
+\usepackage[%
+ a4paper,%
+ textwidth=16cm,
+ top=2cm,%
+ bottom=2cm,%
+ headheight=25pt,%
+ headsep=12pt,%
+ footskip=25pt]{geometry}%
+\usepackage[greek]{alterqcm}
+\usepackage{tikz}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\parindent=0pt
+\begin{document}
+\setmainfont[Mapping=tex-text,Ligatures=Common]{Minion Pro}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%\nogreekalph
+\begin{minipage}[t][][b]{.45\linewidth}
+ Έστω $f$ ορισμένη και παραγωγίσιμη στο διάστημα $\big[-3,\,+\infty\big)$,
+ αύξουσα στα διαστήματα $\big[-3,\,-1\big]$ et $\big[2,\,+\infty\big)$
+ και φθίνουσα στο διάστημα $\big[-1,\,2\big]$.
+Έστω $f^{\prime}$ η παράγωγός της στο διάστημα $[-3,\,+\infty)$.
+ Η γραφική παράσταση $\Gamma$ της $f$ είναι σχεδιασμένη στο διπλανό σχήμα ως προς ένα ορθογώνιο σύστημα αξόνων $\big(O,~\vec{\imath},~\vec{\jmath}\big)$.
+ Διέρχεται από το σημείο A$(-3,\,0)$ και δέχεται ως ασύμπτωτη της ευθεία
+ $(\delta)$ με εξίσωση $y = 2x -5$.
+\end{minipage}
+\begin{minipage}[t][][b]{.45\linewidth}
+ \null
+ \begin{tikzpicture}[scale=0.5,>=latex]
+ \draw[very thin,color=gray] (-3,-2) grid (10,8);
+ \draw[->] (-3,0) -- (10,0) node[above left] {\small $x$};
+ \foreach \x in {-3,-2,-1,1,2,...,9}
+ \draw[shift={(\x,0)}] (0pt,1pt) -- (0pt,-1pt)node[below] { $\x$};
+ \draw[->] (0,-2) -- (0,8) node[below right] {\small $y$};
+ \foreach \y/\ytext in {-2,-1,1,2,...,8}
+ \draw[shift={(0,\y)}] (1pt,0pt) -- (-1pt,0pt) node[left] { $\y$};
+ \draw (-0.5,-2) -- (10,8);
+ \node[above right] at (-3,0) {\textbf{A}};
+ \node[above right] at (0,0) {\textbf{O}};
+ \node[below right] at (4,3) {$\mathbf{\Delta}$};
+ \node[above right] at (4,5) {$\mathbf{\Gamma}$};
+ \draw plot[smooth] coordinates{%
+ (-3,0)(-2,4.5)(-1,6.5)(0,5.5)(1,3.5)(2,3)(3,3.4)(4,4.5)(5,6)(6,7.75)};
+ \end{tikzpicture}
+\end{minipage}
+
+\vspace{20pt}
+\begin{alterqcm}[VF,pre=true,lq=125mm]
+ \AQquestion{Για κάθε $x \in (-\infty,\,2],\;f^{\prime}(x) \geqslant 0$.}
+ \AQquestion{Η συνάρτηση $F$ παρουσιάζει μέγιστο στο $2$}
+ \AQquestion{$\displaystyle\int_{0}^2 f’(x)\:\text{d}x = - 2$}
+\end{alterqcm}
+%\greekalph %%% <----------------------------------------------
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/language.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/language.tex
new file mode 100644
index 0000000000..f844a8a186
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/language.tex
@@ -0,0 +1,39 @@
+\documentclass[12pt]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[upright]{fourier}
+%\usepackage[T1]{fontenc}
+%\usepackage{lmodern}
+\usepackage[german]{alterqcm}
+\usepackage{fullpage}%
+\usepackage[frenchb]{babel}
+\parindent0pt
+
+\begin{document}
+
+ \begin{alterqcm} [language=english]
+ \AQquestion{Question}{%
+ {Proposition 1},
+ {Proposition 2},
+ {Proposition 3}}
+\end{alterqcm}
+
+\begin{alterqcm} [language=german]
+ \AQquestion{Question}{%
+ {Proposition 1},
+ {Proposition 2},
+ {Proposition 3}}
+\end{alterqcm}
+
+\begin{alterqcm}
+ \AQquestion{Question}{%
+ {Proposition 1},
+ {Proposition 2},
+ {Proposition 3}}
+\end{alterqcm}
+
+\end{document}
+
+% encoding : utf8
+% format : pdflatex
+% engine : pdfetex
+% author : Alain Matthes \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/points.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/points.tex
new file mode 100644
index 0000000000..49a3a2e958
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/points.tex
@@ -0,0 +1,23 @@
+\documentclass[a4paper,10 pt]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[upright]{fourier}
+\usepackage{alterqcm}
+\usepackage[np]{numprint}
+\usepackage[francais]{babel}
+
+\begin{document}
+\AQpoints[0.5 cm]{10}
+
+\begin{alterqcm}[symb = \dingsquare, lq=6cm]
+\AQquestion{Si \np{3,24} est la troncature de $x$ au centième, alors on est sûr que :}
+{{\begin{minipage}[t]{\linewidth-1cm}$3,235\leqslant x <3,245$\\
+ \end{minipage}} ,
+ {\begin{minipage}[t]{\linewidth-1cm} $3,24\leqslant x <3,25$\\
+ \end{minipage}} ,
+ {\begin{minipage}[t]{\linewidth-1cm}
+ $x$ est plus près de \np{3,24} que de \np{3,25}
+ \end{minipage}}}
+\end{alterqcm}
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/sep.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/sep.tex
new file mode 100644
index 0000000000..f4a24b335b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/sep.tex
@@ -0,0 +1,31 @@
+\documentclass{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{fourier}
+\usepackage{alterqcm}
+\usepackage{fullpage}
+\thispagestyle{empty}
+
+\begin{document}
+
+
+\begin{alterqcm}[lq=55mm,alea,sep]
+\AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+{{Au moins une solution},%
+{Au plus une solution},%
+{Exactement une solution}}
+\end{alterqcm}
+
+\vspace{1cm}
+\begin{alterqcm}[lq=55mm,alea,sep=false]
+\AQquestion[pq=1mm]{Si la fonction $f$ est strictement croissante sur $\mathbf{R}$ alors l'équation $f(x) = 0$ admet :}
+{{Au moins une solution},%
+{Au plus une solution},%
+{Exactement une solution}}
+\end{alterqcm}
+
+\end{document}
+
+% utf8
+% pdflatex
+% Alain Matthes \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/transparent-final.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/transparent-final.tex
new file mode 100644
index 0000000000..a982229672
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/transparent-final.tex
@@ -0,0 +1,40 @@
+\documentclass[11pt]{article}
+\usepackage[utf8]{inputenc}% sauf si vous avez changé l'encodage
+\usepackage[T1]{fontenc}
+\usepackage{lmodern}
+\usepackage{amsmath,amssymb,stmaryrd,calc}%}% pour geqslant qui existe ds fourier
+\usepackage{xkeyval}
+\usepackage{multirow,longtable}
+\usepackage[%
+ a4paper,%
+ textwidth=16cm,
+ top=2cm,%
+ bottom=2cm,%
+ headheight=25pt,%
+ headsep=12pt,%
+ footskip=25pt]{geometry}%
+
+\usepackage{alterqcm}
+% on charge le package
+% longtable en cas de débordement du tableau
+% amsmath car les exemples sont des annales du bac en mathématiques.
+\usepackage[frenchb]{babel}
+\parindent=0pt
+\begin{document}
+
+\begin{alterqcm}[transparent,correction,corsymb=\dingchecksquare,lq=100mm]
+ \AQquestion[br=3,pq=3mm]{Parmi les propositions suivantes, quelle est celle qui permet d'affirmer que la fonction exponentielle admet pour asymptote la droite d'équation $y = 0$ ?}
+ {{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$},
+ {$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
+ {$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$}
+ }
+
+ \AQquestion[br=2]{exp$(\ln x) = x$ pour tout $x$ appartenant à }
+ {{$\mathbf{R}$},
+ {$\big]0~;~+ \infty\big[$},
+ {$\big[0~;~+\infty\big[$}
+ }
+\end{alterqcm}
+
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/transparent-init.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/transparent-init.tex
new file mode 100644
index 0000000000..f3a6204d63
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/transparent-init.tex
@@ -0,0 +1,41 @@
+\documentclass[11pt]{article}
+\usepackage[utf8]{inputenc}% sauf si vous avez changé l'encodage
+\usepackage[T1]{fontenc}
+\usepackage{lmodern}
+\usepackage{amsmath,amssymb,stmaryrd,calc}%}% pour geqslant qui existe ds fourier
+\usepackage{xkeyval}
+\usepackage{multirow,longtable}
+\usepackage[%
+ a4paper,%
+ textwidth=16cm,
+ top=2cm,%
+ bottom=2cm,%
+ headheight=25pt,%
+ headsep=12pt,%
+ footskip=25pt]{geometry}%
+
+\usepackage{alterqcm}
+% on charge le package
+% longtable en cas de débordement du tableau
+% amsmath car les exemples sont des annales du bac en mathématiques.
+\usepackage[frenchb]{babel}
+\parindent=0pt
+\begin{document}
+
+\begin{alterqcm}[correction,corsymb=\dingchecksquare,lq=100mm]
+\AQquestion[br=3,pq=3mm]{Parmi les propositions suivantes, quelle est celle qui permet d'affirmer que la fonction exponentielle admet pour asymptote la droite d'équation $y = 0$ ?}
+{{$\displaystyle\lim_{x \to +\infty} \dfrac{\text{e}^x}{x} = + \infty$},
+{$\displaystyle\lim_{x \to +\infty} \text{e}^x = + \infty$},
+{$\displaystyle\lim_{x \to -\infty} \text{e}^x = 0$}
+}
+
+\AQquestion[br=2]{exp$(\ln x) = x$ pour tout $x$ appartenant à }
+{{$\mathbf{R}$},
+{$\big]0~;~+ \infty\big[$},
+{$\big[0~;~+\infty\big[$}
+}
+
+\end{alterqcm}
+
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/latex/verb.tex b/obsolete/macros/latex/contrib/alterqcm/examples/latex/verb.tex
new file mode 100644
index 0000000000..207f9ca694
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/latex/verb.tex
@@ -0,0 +1,150 @@
+
+\documentclass[10pt]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{fourier}
+\usepackage{alterqcm}
+\usepackage{fullpage}
+\usepackage{longtable}
+\usepackage{verbdef}
+\usepackage[frenchb]{babel}
+
+\pagestyle{empty}
+%--------------------------------------------------------------
+\begin{document}
+%--------------------------------------------------------------
+\parindent=0pt
+\begin{center}
+Contrôle de langage C \\
+
+\vspace{5mm}
+Nom : \hspace{5cm}
+Prénom : \\
+
+\vspace{5mm}
+{\small Pour chaque question, 3 réponses sont proposées. Une et une seule est correcte. A vous de la trouver et de \textbf{noircir la case correspondante}.
+Bonne réponse = +1 point. Pas de réponse = 0 point. Mauvaise réponse = -0.5 point.}
+\begin{alterqcm}[lq=90mm,title,num=true,alea,long]
+% rajouter ou enlever l'option correction pour voir ou non les corrections :-)
+%--------------------------------------------------------------
+
+\AQquestion{Quel était le langage précurseur du langage C ?}
+{{le Fortran},%
+ {le langage B},%
+ {le Basic},%
+ {X},%
+ {Y}}
+%--------------------------------------------------------------
+\verbdef\arg|int a = 3 ^ 4 ;|
+\AQquestion{\arg}
+{{élève 3 à la puissance 4},
+ {fait un OU exclusif entre 3 et 4},
+ {n'est pas une instruction C}}
+%--------------------------------------------------------------
+\AQquestion{Quelle est la bonne syntaxe pour décaler de 8 bits à gauche l'entier \texttt{a} ?}
+{{\texttt{b = lshift(a, 8) ;}},
+ {\texttt{b = 8 << a ;}},
+ {\texttt{b = a << 8 ;}}}
+%--------------------------------------------------------------
+\AQquestion{Le programme complet : \\
+\texttt{int main() \\
+~~\{ printf ("bonjour") ; return 0 ; \}}}
+{{affiche \texttt{bonjour}},
+ {donne une erreur à la compilation},
+ {donne une erreur à l'exécution}}
+%--------------------------------------------------------------
+\verbdef\arg|float tab[10]|
+\verbdef\propa|*tab|\global\let\propa\propa
+\verbdef\propb|&tab|\global\let\propb\propb
+\verbdef\propc|tab|\global\let\propc\propc
+\AQquestion{Soit la déclaration \arg ; \\Le premier réel du tableau est \ldots}
+{{\propa},
+ {\propb},
+ {\propc}}
+%--------------------------------------------------------------
+\AQquestion{La ligne \texttt{printf("\%c", argv[2][0]) ;} du \texttt{main} de \texttt{monProg} exécuté ainsi : \texttt{monProg parametre}}
+{{affiche \texttt{p}},
+ {n'affiche rien},
+ {peut provoquer un plantage}}
+%--------------------------------------------------------------
+\AQquestion{Quelle est la taille en mémoire d'un \texttt{long int} ?}
+{{4 octets},
+ {8 octets},
+ {ça dépend \ldots}}
+%--------------------------------------------------------------
+\AQquestion{Suite à la déclaration \texttt{int * i} ;}
+{{\texttt{*i} est une adresse},
+ {\texttt{*i} est un entier},
+ {\texttt{*i} est un pointeur}}
+%--------------------------------------------------------------
+\AQquestion{Suite à la déclaration \texttt{char tab[12]} ;}
+{{\texttt{\&tab} est l'adresse du tableau},
+ {\texttt{\&tab} est le pointeur sur le tableau},
+ {\texttt{\&tab} ne signifie rien}}
+
+%--------------------------------------------------------------
+\AQquestion{Un des choix suivants n'est pas une bibliothèque standard du C}
+{{\texttt{stdlib}},
+ {\texttt{stdin}},
+ {\texttt{math}}}
+%--------------------------------------------------------------
+\AQquestion{La syntaxe complète de la fonction \texttt{main} est \ldots}
+{{\texttt{int main(int argc, char* argv)}},
+ {\texttt{int main(int argc, char argv*[])}},
+ {\texttt{int main(int argc, char* argv[])}}}
+%--------------------------------------------------------------
+\AQquestion{Le programme complet :
+\texttt{int main()\\
+\{ char a[2]="x" ; char b[2]="y" ; \\
+~~return (a[0] == b[0]) ; \}
+}}
+{{comporte 0 erreur},
+ {comporte 1 erreur},
+ {comporte 2 erreurs}}
+
+%--------------------------------------------------------------
+\AQquestion{Pour libérer une zone mémoire allouée dynamiquement en C, on utilise la fonction \ldots}
+{{\texttt{delete}},
+ {\texttt{clear}},
+ {\texttt{free}}}
+
+%--------------------------------------------------------------
+\AQquestion{L'expression \texttt{val char[32] ; }}
+{{est syntaxiquement incorrecte},
+ {déclare une chaîne},
+ {déclare un tableau}}
+
+ %--------------------------------------------------------------
+\verbdef\arga|char s[10] ; int i ;|
+\verbdef\argb|scanf("%d, %s", \&i, s) ;|
+\AQquestion{On compte dans les lignes suivantes :\\
+\arga \\
+\argb}
+{{0 erreur de compilation},
+ {1 erreur de compilation},
+ {2 erreurs de compilation}}
+%--------------------------------------------------------------
+\AQquestion{Une variable globale est \ldots}
+{{\texttt{static}},
+ {stockée dans la pile},
+ {initialisée avec des zéros par défaut}}
+%--------------------------------------------------------------
+\AQquestion{La portée d'une variable locale est \ldots}
+{{la fonction},
+ {le module},
+ {le bloc}}
+%--------------------------------------------------------------
+\AQquestion{La ligne \texttt{int c = argv[1] + argv[2] ;}
+ du \texttt{main} de \texttt{monProg} exécuté ainsi :
+\verb!monProg 123 456!}
+{{affecte 579 à \texttt{c}},
+ {donne une erreur à la compilation},
+ {affecte une valeur indéterminée à \texttt{c}}}
+\end{alterqcm}
+\end{center}
+\end{document}
+
+% utf8
+% pdflatex
+% Pascal Bertolino Alain Matthes
+% \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/AntillesESjuin2006.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/AntillesESjuin2006.pdf
new file mode 100644
index 0000000000..2bccf8d494
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/AntillesESjuin2006.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/alea.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/alea.pdf
new file mode 100644
index 0000000000..35c705d0df
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/alea.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/annexe.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/annexe.pdf
new file mode 100644
index 0000000000..49b847440e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/annexe.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/correct.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/correct.pdf
new file mode 100644
index 0000000000..e5d64a9392
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/correct.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/doc_aq.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/doc_aq.pdf
new file mode 100644
index 0000000000..589f0e6360
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/doc_aq.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_1.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_1.pdf
new file mode 100644
index 0000000000..016f93b001
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_1.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_2.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_2.pdf
new file mode 100644
index 0000000000..452b4467ed
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_2.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_3.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_3.pdf
new file mode 100644
index 0000000000..17ca7f457f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/example_3.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/language.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/language.pdf
new file mode 100644
index 0000000000..5e24868efe
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/language.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/points.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/points.pdf
new file mode 100644
index 0000000000..ac0b0ee1de
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/points.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/sep.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/sep.pdf
new file mode 100644
index 0000000000..fe188dbad1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/sep.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/transparent-final.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/transparent-final.pdf
new file mode 100644
index 0000000000..5c28a132e4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/transparent-final.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/transparent-init.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/transparent-init.pdf
new file mode 100644
index 0000000000..5b3f6ffd9d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/transparent-init.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/examples/pdf/verb.pdf b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/verb.pdf
new file mode 100644
index 0000000000..5aa921d21c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/examples/pdf/verb.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/alterqcm/latex/alterqcm.sty b/obsolete/macros/latex/contrib/alterqcm/latex/alterqcm.sty
new file mode 100644
index 0000000000..80d2d9517b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/alterqcm/latex/alterqcm.sty
@@ -0,0 +1,575 @@
+% Copyright (C) 2019 Alain Matthes, Apostolos Syropoulos, and Anastasios Dimou
+% Copyright (C) 2009 Alain Matthes
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+% See http://www.latex-project.org/lppl.txt for details.
+%
+%
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % alterqcm.sty encodage : utf8 %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % Créé par Alain Matthes le 19-09-2006. %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%% Objet : Création de qcm
+%% Utilisation
+%% \AQquestion{question}
+%% {{proposition},
+%% {proposition}}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{alterqcm}[2019/06/24 v4.1]
+ \newcount\locall@ng% to set language specific strings:
+% % 0 stands for French, 1 for English, 2 for German, and 3 for Greek
+ \locall@ng=0%
+ \DeclareOption{french}{%
+ \def\aqlabelforquest{Questions}%
+ \def\aqlabelforrep{R\'eponses}%
+ \def\aqfoottext{suite sur la page suivante\ldots}}%
+ \DeclareOption{english}{%
+ \locall@ng=1%
+ \def\aqlabelforquest{Questions}
+ \def\aqlabelforrep{Answers}
+ \def\aqfoottext{Continued on the next page\ldots}}%
+ \DeclareOption{german}{%
+ \locall@ng=2%
+ \def\aqlabelforquest{Fragen}%
+ \def\aqlabelforrep{Antworten}%
+ \def\aqfoottext{Fortsetzung nächste Seite\ldots}}%
+ \DeclareOption{greek}{%
+ \locall@ng=3%
+ \def\aqlabelforquest{Ερωτήσεις}
+ \def\aqlabelforrep{Απαντήσεις}
+ \def\aqfoottext{Συνεχίζεται στην επόμενη σελίδα\ldots}}%
+\ExecuteOptions{french}
+\ProcessOptions\relax
+\RequirePackage{xkeyval}[2005/11/25]
+\RequirePackage{calc}
+\RequirePackage{ifthen}
+\RequirePackage{array}
+\RequirePackage{multirow}
+\RequirePackage{pifont}%v v1.00
+%<--------------------------------------------------------------->
+% from RANDOM.TEX v.1 (Donald Arseneau)
+%<--------------------------------------------------------------->
+\newcount\aq@randomi % the random number seed (while executing)
+\newcounter{aq@identRow}
+\newcounter{aq@identCol}
+\newcount\aq@tmp
+\def\aqutil@empty{}
+\global\aq@randomi\catcode`\@ % scratch variable during definitions
+\catcode`\@=11
+
+\def\nextrandom{\begingroup
+ \ifnum\aq@randomi<\@ne % then initialize with time
+ \global\aq@randomi\time
+ \global\multiply\aq@randomi388 \global\advance\aq@randomi\year
+ \global\multiply\aq@randomi31 \global\advance\aq@randomi\day
+ \global\multiply\aq@randomi97 \global\advance\aq@randomi\month
+ \message{Randomizer initialized to \the\aq@randomi.}%
+ \nextrandom \nextrandom \nextrandom
+ \fi
+ \count@ii\aq@randomi
+ \divide\count@ii 127773 % modulus = multiplier * 127773 + 2836
+ \count@\count@ii
+ \multiply\count@ii 127773
+ \global\advance\aq@randomi-\count@ii % random mod 127773
+ \global\multiply\aq@randomi 16807
+ \multiply\count@ 2836
+ \global\advance\aq@randomi-\count@
+ \ifnum\aq@randomi<\z@ \global\advance\aq@randomi 2147483647\relax\fi
+ \endgroup
+}
+
+\countdef\count@ii=2 % use only in boxes!
+\ifx\@tempcnta\undefined \csname newcount\endcsname \@tempcnta \fi
+\ifx\@tempcntb\undefined \csname newcount\endcsname \@tempcntb \fi
+
+\def\setrannum#1#2#3{% count register, minimum, maximum
+ \@tempcnta#3\advance\@tempcnta-#2\advance\@tempcnta\@ne
+ \@tempcntb 2147483645 % = m - 2 = 2^{31} - 3
+ \divide\@tempcntb\@tempcnta
+ \getr@nval
+ \advance\aq@ranval#2\relax
+ #1\aq@ranval
+}
+
+\def\getr@nval{% The values in \@tempcnta and \@tempcntb are parameters
+ \nextrandom
+ \aq@ranval\aq@randomi \advance\aq@ranval\m@ne \divide\aq@ranval\@tempcntb
+ \ifnum\aq@ranval<\@tempcnta\else \expandafter\getr@nval \fi
+}
+
+\catcode`\@=\aq@randomi
+\global\aq@randomi=0
+\newcount\aq@ranval
+%<--------------------------------------------------------------->
+\newtoks\aq@tdml@a
+\newtoks\aq@tdml@b
+\newcount\aq@alea
+\newcount\aq@n@arg
+\newbox\aq@tempbox
+\newdimen\aq@hauteurquest
+\newdimen\aq@hauteurprop
+\newdimen\aq@wdquest
+\newdimen\aq@wdprop
+\newdimen\aq@dimtmpa
+\newdimen\aq@dimtmpb
+\newdimen\aq@dimtmp
+\newcounter{AQ@numquestion}\setcounter{AQ@numquestion}{0}%
+\newcounter{aq@numb}
+\newcounter{AQ@numprop}\setcounter{AQ@numprop}{0}% v0.93
+\newcounter{alea@numfirst}
+\newcounter{alea@numlast}
+\newcommand\points[1]{%
+\marginpar{%
+\begin{tabular}{|c|}
+ \hline
+ \textbf{#1}\\
+ \hline\\
+ \hline
+\end{tabular}}}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Début Code QCM
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\ifcase\locall@ng
+\def\cmdAQ@global@tone{Questions}
+\def\cmdAQ@global@ttwo{R\'eponses}
+\def\aqfoottext{suite sur la page suivante\ldots}
+\or
+\def\cmdAQ@global@tone{Questions}
+\def\cmdAQ@global@ttwo{Answers}
+\def\aqfoottext{Continued on the next page\ldots}
+\or
+\def\cmdAQ@global@tone{Fragen}
+\def\cmdAQ@global@ttwo{Antworten}
+\def\aqfoottext{Fortsetzung nächste Seite\ldots}
+\or
+\def\cmdAQ@global@tone{Ερωτήσεις}
+\def\cmdAQ@global@ttwo{Απαντήσεις}
+\def\aqfoottext{Συνεχίζεται στην επόμενη σελίδα\ldots}
+\fi%
+\define@cmdkey [AQ] {global} {lq}{}
+\define@cmdkey [AQ] {global} {pq}{}
+\define@cmdkey [AQ] {global} {points}{}
+\define@cmdkey [AQ] {global} {symb}{}
+\define@cmdkey [AQ] {global} {corsymb}{}
+\define@cmdkey [AQ] {global} {bonus}{}
+\define@cmdkey [AQ] {global} {malus}{}
+\define@cmdkey [AQ] {global} {numstyle}{}
+\define@cmdkey [AQ] {global} {propstyle}{}
+\define@cmdkey [AQ] {global} {size}{}
+\define@cmdkey [AQ] {global} {tone}{}
+\define@cmdkey [AQ] {global} {ttwo}{}
+\define@cmdkey [AQ] {global} {numbreak}{}
+\define@cmdkey [AQ] {global} {afterpreskip}{}
+\define@boolkey [AQ] {global} {transparent}[true]{}
+\define@boolkey [AQ] {global} {VF} [true]{}
+\define@boolkey [AQ] {global} {sep} [true]{}
+\define@boolkey [AQ] {global} {pre} [true]{}
+\define@boolkey [AQ] {global} {title} [true]{}
+\define@boolkey [AQ] {global} {long} [true]{}
+\define@boolkey [AQ] {global} {num} [true]{}
+\define@boolkey [AQ] {global} {numprop} [false]{}
+\define@boolkey [AQ] {global} {nosquare} [false]{}
+\define@boolkey [AQ] {global} {correction} [true]{}
+\define@boolkey [AQ] {global} {alea} [true]{}
+\presetkeys [AQ] {global} {
+ lq = 100mm,
+ pq = 0pt,
+ points = {},
+ sep = false,
+ pre = false,
+ bonus = {0,5},
+ malus = {0,25},
+ VF = false,
+ long = false,
+ symb = $\square$,
+ corsymb = $\blacksquare$,
+ afterpreskip = \medskip,
+ num = true,
+ transparent = false,
+ nosquare = false,
+ correction = false,%v1.00
+ numstyle = \arabic,
+ propstyle = \alph,% v0.93
+ numprop = false,% v0.93
+ size = {}, %3.7 same size la fonte
+ title = true,
+ ttwo = \aqlabelforrep,
+ tone = \aqlabelforquest,
+ numbreak = 0,
+ alea = false}{}
+\define@cmdkey[AQ]{local}{pq}{}
+\define@cmdkey[AQ]{local}{br}{}
+\presetkeys[AQ]{local}{br=5,pq= \cmdAQ@global@pq}{}%
+%
+\ifcase\locall@ng
+\newcommand{\aq@pre}{Pour chacune des questions ci-dessous, une seule des r\'eponses propos\'ees est exacte. Vous devez cocher la r\'eponse exacte sans justification.
+Une bonne r\'eponse rapporte \textbf{\cmdAQ@global@bonus\ point}. Une mauvaise r\'eponse enl\`eve \textbf{\cmdAQ@global@malus\ point}. L'absence de r\'eponse ne rapporte ni n'enl\`eve aucun point. Si le total des points est n\'egatif, la note globale attribu\'ee \`a l'exercice est \textbf{0}.}%
+%
+\newcommand{\aq@preVF}{Pour chacune des affirmations ci-dessous, cocher la case V (l'affirmation est vraie) ou la case F (l'affirmation est fausse) sur l'ANNEXE, \`a rendre avec la copie. Les r\'eponses ne seront pas justifi\'ees.
+Une bonne r\'eponse rapporte \textbf{\cmdAQ@global@bonus\ point}. Une mauvaise r\'eponse enl\`eve \textbf{\cmdAQ@global@malus\ point}. L'absence de r\'eponse ne rapporte ni n'enl\`eve aucun point. Si le total des points est n\'egatif, la note globale attribu\'ee \`a l'exercice est \textbf{0}.}%
+\or
+\newcommand{\aq@pre}{For each of the questions below, only one of the proposed answers is true. You must choose the right answer without justification.}%
+\newcommand{\aq@preVF}{For each of the statements below, check the \textbf{T} box (the statement is true) or the \textbf{F} box (the statement is false).}%
+\or
+\newcommand{\aq@pre}{Für jede der unterstehenden Fragen ist nur eine der vorgeschlagenen Antworten richtig.
+Kreuzen Sie die richtige Antwort ohne Begründung an.}%
+\newcommand{\aq@preVF}{Für jede der unterstehenden Aussagen kreuzen Sie R (für die richtige Aussage) und F (für die falsche Aussage) an.}%
+\or
+\newcommand{\aq@pre}{Από τις επόμενες προτάσεις επιλέξετε αυτήν, που θεωρείτε σωστή.}%
+\newcommand{\aq@preVF}{Να επιλέξετε \textbf{Σ}(ωστό), αν θεωρείτε την πρόταση που δίνεται παρακάτω σωστή, ή \textbf{Λ}(άθος) αν την θεωρείτε λανθασμένη.}%
+\fi
+%
+\newcommand*{\AQms}{\aq@ms}%
+\def\aq@ms(#1,#2){\vrule height #1pt depth #2pt width 0pt}
+\newcommand*{\altersquare}{\vbox{\hrule\hbox to 6pt{\vrule height 5.2pt \hfil\vrule}\hrule}}%
+\newcommand*{\dingsquare}{\ding{114}}%
+\newcommand*{\dingchecksquare}{\mbox{\ding{114}\hspace{-.7em}\raisebox{.2ex}[1ex]{\ding{51}}}}
+\newcommand*{\aq@style@title}{\textbf}%
+\newcommand*{\aq@style@numquest}{\textbf}%
+\newcommand*{\aq@style@numrep}{\textbf}%
+\newcommand{\aq@title}{%
+\hline%
+ \hfil{\aq@style@title{\cmdAQ@global@tone}}\hfil%
+ & \hfil{\aq@style@title{\cmdAQ@global@ttwo}}\hfil\\ \hline%
+ \ifAQ@global@long \endfirsthead
+\hline
+ \hfil{\aq@style@title{\cmdAQ@global@tone}}\hfil%
+ & \hfil{\aq@style@title{\cmdAQ@global@ttwo}}\hfil\\ \hline%
+\endhead
+& \raisebox{-1em}\hfill{\emph{\aqfoottext}} \\ \hline
+\endfoot
+\endlastfoot\fi
+}%
+
+\newcommand{\AQmessage}[1]{%
+\multicolumn{2}{|l|}{%
+\begin{minipage}{\textwidth-\tabcolsep*2-\arrayrulewidth*2}%
+#1
+\end{minipage}}\\ \hline%
+}%
+
+\newcommand{\aq@melange}{%
+\setrannum{\aq@alea}{1}{\value{aq@numb}}%
+ \ifcase\aq@alea%
+ \or
+ \global\let\aq@tempfirst\aq@arga
+ \or
+ \global\let\aq@tempfirst\aq@argb
+ \or
+ \global\let\aq@tempfirst\aq@argc
+ \or
+ \global\let\aq@tempfirst\aq@argd
+ \or
+ \global\let\aq@tempfirst\aq@arge
+ \fi
+\setcounter{alea@numfirst}{\aq@alea}%
+\setrannum{\aq@alea}{1}{\value{aq@numb}}%
+ \ifcase\aq@alea%
+ \or
+ \global\let\aq@templast\aq@arga
+ \or
+ \global\let\aq@templast\aq@argb
+ \or
+ \global\let\aq@templast\aq@argc
+ \or
+ \global\let\aq@templast\aq@argd
+ \or
+ \global\let\aq@templast\aq@arge
+ \fi
+\setcounter{alea@numlast}{\aq@alea}%
+\global\let\aq@temp\aq@tempfirst%
+\global\let\aq@tempfirst\aq@templast%
+\global\let\aq@templast\aq@temp%
+\global\expandafter\let\csname aq@arg\alph{alea@numfirst}%
+\endcsname\aq@tempfirst%
+\global\expandafter\let\csname aq@arg\alph{alea@numlast}%
+\endcsname\aq@templast%
+}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\aq@hauteurbox}[1]{%
+\setbox\aq@tempbox=%
+\vbox{\parbox[t]{\textwidth-\tabcolsep*4-\arrayrulewidth*3-\cmdAQ@global@lq}%
+{\cmdAQ@global@symb\quad\mbox{#1}}}% \cmdAQ@global@symb remplace $\square$
+\aq@dimtmpa\ht\aq@tempbox\relax%
+\aq@dimtmpb\dp\aq@tempbox\relax%
+\advance\aq@dimtmpa by\aq@dimtmpb}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\aq@adjust}[1]{%
+\setbox\aq@tempbox=%
+\vbox{%
+\parbox[t]{\cmdAQ@global@lq}{\aq@style@numquest{\number\value{AQ@numquestion}.}\hspace{3pt}#1}}%
+\aq@dimtmpa\ht\aq@tempbox
+\aq@dimtmpb\dp\aq@tempbox
+\aq@wdquest\wd\aq@wdquest
+\advance\aq@dimtmpa by\aq@dimtmpb\relax%
+\aq@hauteurquest=\aq@dimtmpa
+\aq@hauteurbox{\aq@arga}%
+\aq@hauteurprop=\aq@dimtmpa
+\aq@hauteurbox{\aq@argb}%
+\advance\aq@hauteurprop by\aq@dimtmpa\relax%
+\ifnum\value{aq@numb}>2\relax
+\aq@hauteurbox{\aq@argc}%
+\advance\aq@hauteurprop by\aq@dimtmpa\relax\fi
+\ifnum\value{aq@numb}>3\relax
+\aq@hauteurbox{\aq@argd}%
+\advance\aq@hauteurprop by\aq@dimtmpa\relax\fi
+\ifnum\value{aq@numb}>4\relax
+\aq@hauteurbox{\aq@arge}%
+\advance\aq@hauteurprop by\aq@dimtmpa\relax\fi
+\ifdim\aq@hauteurquest<\aq@hauteurprop%
+\global\aq@dimtmp=0pt
+\aq@dimtmpa\ht\aq@tempbox
+\aq@dimtmpb\dp\aq@tempbox
+\advance\aq@dimtmpa by3pt
+\advance\aq@dimtmpb by2pt
+\vrule height\aq@dimtmpa depth\aq@dimtmpb width0pt
+\else
+\advance\aq@hauteurquest by-\aq@hauteurprop
+\divide\aq@hauteurquest by\theaq@numb\relax
+\divide\aq@hauteurquest by2\relax%
+\global\aq@dimtmp=\aq@hauteurquest\fi
+}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\aq@prop}[2]{%
+\setbox\aq@tempbox=\vbox{#1}%
+\aq@wdprop\wd\aq@tempbox
+\aq@dimtmpa\ht\aq@tempbox\advance\aq@dimtmpa by4pt\advance\aq@dimtmpa by\aq@dimtmp\relax
+\aq@dimtmpb\dp\aq@tempbox\advance\aq@dimtmpb by3pt\advance\aq@dimtmpb by\aq@dimtmp\relax
+\ifAQ@global@VF\hfil\fi
+\ifAQ@global@transparent\def\cmdAQ@global@corsymb{$\bigcirc$}%
+\def\cmdAQ@global@symb{}\fi
+\ifAQ@global@numprop\stepcounter{AQ@numprop}%
+{\aq@style@numrep{(\cmdAQ@global@propstyle{AQ@numprop})}}%
+\else
+ \ifAQ@global@nosquare
+ \else%
+ \ifAQ@global@correction
+ \def\@stop{1}
+ \@for\goodrep:=\cmdAQ@local@br\do{%
+ \ifnum\@stop<6 %
+ \global\let\mysymb\cmdAQ@global@symb
+ \ifthenelse{\equal{\goodrep}{#2}}{%
+ \global\let\mysymb\cmdAQ@global@corsymb \def\@stop{9}}{%
+ }%
+ \fi}%
+ \mysymb\hspace*{6pt}%
+ \else
+ \cmdAQ@global@symb\hspace*{6pt}%
+ \fi
+ \fi
+ \fi
+ \ifAQ@global@transparent
+ \vrule height0pt depth0pt width\aq@wdprop
+ \else
+ \ignorespaces#1%
+ \fi
+ \vrule height\aq@dimtmpa depth\aq@dimtmpb width0pt
+ \ifAQ@global@VF\hfil\fi}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\AQquestion}[3][]{%
+\setkeys[AQ]{local}{#1}%
+\stepcounter{AQ@numquestion}%
+\setcounter{AQ@numprop}{0} % v0.93
+\setcounter{aq@numb}{0}%
+\@for\liste:=#3\do{%
+\stepcounter{aq@numb}%
+{\ifnum\locall@ng=3\nogreekalph\fi
+\global\expandafter\let\csname aq@arg\alph{aq@numb}\endcsname\liste}%
+}
+\ifAQ@global@alea\ifAQ@global@VF
+\else
+\aq@n@arg=0 %
+\loop\ifnum\aq@n@arg<\value{aq@numb}\aq@melange\advance\aq@n@arg by1\repeat\fi
+\fi
+\aq@adjust{#2}%
+\multirow{1}{\cmdAQ@global@lq}[\cmdAQ@local@pq]{%
+\ifAQ@global@num\aq@style@numquest{\cmdAQ@global@numstyle{AQ@numquestion}.}%
+\hspace{3pt}\fi
+\ifAQ@global@transparent%
+\hrule height0pt depth0pt width\aq@wdquest%
+\else
+#2\vss
+\fi
+ }%
+&\setkeys[AQ]{local}{#1}%
+ \aq@prop{\aq@arga}{1}\\%
+ \ifAQ@global@sep\cline{2-2}\fi
+&\setkeys[AQ]{local}{#1}%
+ \aq@prop{\aq@argb}{2}\\
+ \ifAQ@global@sep\cline{2-2}\fi
+ \ifnum\value{aq@numb}=2\hline\else\ifAQ@global@sep\cline{2-2}\fi
+&\setkeys[AQ]{local}{#1}%
+ \aq@prop{\aq@argc}{3}\\
+ \ifnum\value{aq@numb}=3\hline\else\ifAQ@global@sep\cline{2-2}\fi
+&\setkeys[AQ]{local}{#1}%
+ \aq@prop{\aq@argd}{4}\\
+ \ifnum\value{aq@numb}=4\hline\else\ifAQ@global@sep\cline{2-2}\fi
+&\setkeys[AQ]{local}{#1}%
+ \aq@prop{\aq@arge}{5}\\
+\hline\fi\fi\fi}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\aq@questionVF}[2][]{%
+\setkeys[AQ]{local}{#1}
+\stepcounter{AQ@numquestion}%
+\setcounter{AQ@numprop}{0}% v0.93
+\ifcase\locall@ng
+\protected@xdef\aq@arga{\textbf{V}}
+\protected@xdef\aq@argb{\textbf{F}}
+\or
+\protected@xdef\aq@arga{\textbf{T}}
+\protected@xdef\aq@argb{\textbf{F}}
+\or
+\protected@xdef\aq@arga{\textbf{R}}
+\protected@xdef\aq@argb{\textbf{F}}
+\or
+\protected@xdef\aq@arga{\textbf{Σ}}
+\protected@xdef\aq@argb{\textbf{Λ}}
+\fi
+\setcounter{aq@numb}{2}%
+\aq@adjust{#2}%
+\multirow{3}{\cmdAQ@global@lq}[\cmdAQ@local@pq]{%
+\ifAQ@global@num\aq@style@numquest{\cmdAQ@global@numstyle{AQ@numquestion}.}\hspace{3pt}\fi
+#2\vss}%
+ &\setkeys[AQ]{local}{#1}\aq@prop{\aq@arga}{1}\\
+\ifAQ@global@sep \cline{2-2}\fi
+ &\setkeys[AQ]{local}{#1}\aq@prop{\aq@argb}{2}\\
+\hline}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newenvironment{alterqcm}[1][]{%
+\ifAQ@global@numprop \setkeys [AQ] {global} {nosquare = true}{}\fi
+\setkeys[AQ]{global}{#1}%
+\ifx\aqutil@empty\cmdAQ@global@points \else
+\points{\cmdAQ@global@points}
+\fi
+\setcounter{AQ@numquestion}{\cmdAQ@global@numbreak}%
+\ifAQ@global@VF\let\AQquestion\aq@questionVF\let\aq@pre\aq@preVF\fi
+\ifAQ@global@pre\aq@pre\par\cmdAQ@global@afterpreskip\fi
+\ifAQ@global@long%
+\setlength\LTleft{0pt}%
+\setlength\LTright\fill%
+\setlength{\LTpre}{\intextsep}%
+\setlength{\LTpost}{\intextsep}%
+\begin{longtable}[l]{%
+@{}|>{\cmdAQ@global@size}p{\cmdAQ@global@lq}!{\extracolsep{\fill}}%
+|>{\cmdAQ@global@size}p{\textwidth-\tabcolsep*4-\arrayrulewidth*3-\cmdAQ@global@lq}|@{}}%
+ \else
+ \begin{tabular}{%
+ @{}|>{\cmdAQ@global@size}p{\cmdAQ@global@lq}%
+ |>{\cmdAQ@global@size}p{%
+ \textwidth-\tabcolsep*4-\arrayrulewidth*3-\cmdAQ@global@lq}%
+ |@{}}%
+ \fi
+ \ifAQ@global@title\aq@title\else\hline\fi%
+}%
+{\ifAQ@global@long
+ \end{longtable}%
+ \else
+ \end{tabular}%
+ \fi
+}%
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% #1 chemin & #2 theme & #3 liste de numéros
+% code de JC Charpentier
+%----------------------------------------------------------%
+
+\newcommand\InputQuestionList[3]{%
+ \aq@tdml@a={}%
+ \aq@tdml@b={}%
+ \ifx\relax#3\relax\else
+ \tdml@#3,\@nil,\expandafter\tdml@clean\the\aq@tdml@a\@nil
+ \fi
+ \expandafter\gdef\expandafter\last@val\expandafter{\the\aq@tdml@b}%
+ \AQ@TA{#1}{#2}{\the\aq@tdml@a}%
+ \AQ@TB{#1}{#2}{\last@val}}
+%----------------------------------------------------------%
+\long\def\tdml@#1,{%
+ \ifx\@nil#1\relax
+ \else
+ \expandafter\addtotoks\the\aq@tdml@b,\to\aq@tdml@a
+ \aq@tdml@b={#1}%
+ \expandafter\tdml@
+ \fi
+}
+%----------------------------------------------------------%
+\long\def\addtotoks#1\to#2{%
+ #2=\expandafter{\the#2#1}%
+}%
+%----------------------------------------------------------%
+\long\def\tdml@clean,#1\@nil{%
+ \ifx\relax#1\relax
+ \aq@tdml@a{}%
+ \else
+ \tdml@@clean#1\@nil
+ \fi
+}
+%----------------------------------------------------------%
+\long\def\tdml@@clean#1,\@nil{%
+ \aq@tdml@a{#1}%
+}%
+%----------------------------------------------------------%
+%----------------------------------------------------------%
+\newcommand\AQ@TA[3]{\@for\nb:=#3\do{%
+\input #1#2\nb}%
+}%
+\newcommand\AQ@TB[3]{\input#1#2#3}%
+%----------------------------------------------------------%
+% from forloop.sty
+\newcommand{\aq@forLoop}[5][1]
+{%
+\setcounter{#4}{#2}%
+\ifthenelse{\value{#4}<#3}%
+{#5\addtocounter{#4}{#1}%
+\aq@forLoop[#1]{\value{#4}}{#3}{#4}{#5}%
+}%
+{\ifthenelse{\value{#4}=#3}%
+{#5}{}}}%
+
+%----------------------------------------------------------%
+\def\aq@tvi(#1,#2){\vrule height #1pt depth #2pt width 0pt}
+\define@cmdkey [AQ] {ann} {propstyle}[true]{}
+\define@boolkey[AQ] {ann} {VF}[true]{}
+\presetkeys [AQ] {ann} {propstyle = \arabic,
+ VF = false}{}
+\newcommand*{\AQannexe}[4][]{%
+\setkeys[AQ]{ann}{#1}%
+\aq@tmp=#4 %
+\advance\aq@tmp by 1 %
+\begin{tabular}{*{\number\aq@tmp}{|>{\hfill}c}|}\hline%
+ \ifAQ@ann@VF%
+N&V&F%
+ \else
+N\aq@forLoop{1}{#4}{aq@identCol}%
+ {& \cmdAQ@ann@propstyle{aq@identCol}}\fi
+\tabularnewline\hline%
+\aq@forLoop{#2}{#3}{aq@identRow}
+ {\number\value{aq@identRow}&%
+ \aq@forLoop{2}{\number\aq@tmp}{aq@identCol}%
+ {$\ $%
+ \ifthenelse{\equal{\value{aq@identCol}}{#4}}{}{&}%
+ }%
+\tabularnewline\hline}%
+\end{tabular}%
+}%
+%----------------------------------------------------------%
+\newcommand\AQpoints[1]{%
+\marginpar{%
+\begin{tabular}{|c|}
+ \hline
+ \textbf{#1}\\
+ \hline\\
+ \hline
+\end{tabular}}}
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/README b/obsolete/macros/latex/contrib/tkz/pgfornament/README
new file mode 100644
index 0000000000..687ffdeb5e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/README
@@ -0,0 +1,38 @@
+2016/03/05
+
+This package allows the drawing of Vectorian ornaments (196) with pgf/tikz.
+The documentation presents the syntax and parameters of the macro "pgfornament".
+
+This archive contains :
+
+-- this document;
+-- the documentation (0.21) of pgfornament (0.21);
+-- the documentation (0.2) of tikzrput (0.2);
+-- the package pgfornament.sty;
+-- the package tikzrput.sty;
+-- the folder vectorian; (with 196 elements);
+-- the folder am; (with 2 elements);
+-- the folder examples;
+-- thes files pgflibraryvectorian.code.tex pgflibraryam.code.tex.
+
+About tikzrput package :
+This package contains the rput macro that can be used to place objects. This macro does similar actions of the rput macro from pstricks. Here this macro needs tikz to work
+This archive contains :
+
+-- the documentation (0.2) of tikzrput (0.2) with the source;
+-- the package tikzrput.sty.
+
+This material is subject to the LaTeX Project Public License.
+See https://www.ctan.org/license/lppl1.3 for the details of that license.
+
+Corrections :
+Pgfornament.sty 0.21 Christian Feuersänger thank you for seeing this bug
+
+ ornament/at now replaces the key at (conflict with at from pgf)
+
+Documentation 0.21 Peter Zimmermann thank you for seeing these bugs
+page 5 example code the ornament had number "2" instead "1"
+page 23 some ornaments seem to be identic.
+
+New section Problem to describe some difficulties
+
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/doc/TeX_box.png b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/TeX_box.png
new file mode 100644
index 0000000000..8d47372b5a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/TeX_box.png
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/doc/baseline.png b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/baseline.png
new file mode 100644
index 0000000000..c424b8b4be
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/baseline.png
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.pdf b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.pdf
new file mode 100644
index 0000000000..82c0ed6b7c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.png b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.png
new file mode 100644
index 0000000000..fc831420c4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.png
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.tex b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.tex
new file mode 100644
index 0000000000..ed35826269
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/ornaments.tex
@@ -0,0 +1,2200 @@
+\documentclass[a4paper]{tufte-handout}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\PassOptionsToPackage{dvipsnames,svgnames}{xcolor}
+\usepackage{graphicx,rotating}
+\usepackage[object=vectorian]{pgfornament}
+\usepackage{tkzexample,tikzrput,pict2e,picture}
+\usetikzlibrary{shapes.geometric,calc}
+\usepackage{eso-pic,calc}
+\usepackage{fancyvrb}
+\fvset{fontsize=\normalsize}
+\hypersetup{%
+pdfauthor = {Alain Matthes},
+pdftitle = {pgfornament},
+pdfsubject = {Documentation de pgfornament},
+colorlinks=true,
+linkcolor=orange,
+urlcolor=orange}
+
+\renewenvironment{theindex}
+ {\renewcommand\item{\par\hangindent 40pt}
+ \renewcommand\subitem{\item\hspace*{20pt}}
+ \renewcommand\subsubitem{\item\hspace*{30pt}}
+ \renewcommand\indexspace{\par \vskip 10pt plus 5pt minus 3pt\relax}
+ \section{\indexname}
+ \begin{multicols}{2}%
+ \parindent=0pt
+ \small%
+ }
+ {\end{multicols}%
+ }
+
+\makeatletter
+\AddToShipoutPicture{%
+ \begingroup
+ \setlength{\@tempdima}{2mm}%
+ \setlength{\@tempdimb}{\paperwidth-\@tempdima-2cm}%
+ \setlength{\@tempdimc}{\paperheight-\@tempdima}%
+ \put(\LenToUnit{\@tempdima},\LenToUnit{\@tempdimc}){%
+ \pgfornament[color=Maroon,anchor=north west,width=2cm]{63}}
+ \put(\LenToUnit{\@tempdima},\LenToUnit{\@tempdima}){%
+ \pgfornament[color=Maroon,anchor=south west,width=2cm,symmetry=h]{63}}
+ \put(\LenToUnit{\@tempdimb},\LenToUnit{\@tempdimc}){%
+ \pgfornament[color=Maroon,anchor=north east,width=2cm,symmetry=v]{63}}
+ \put(\LenToUnit{\@tempdimb},\LenToUnit{\@tempdima}){%
+ \pgfornament[color=Maroon,anchor=south east,width=2cm,symmetry=c]{63}}
+ \endgroup
+}
+\let\strippt\strip@pt
+\makeatother
+\newcommand{\eachpageornament}{%
+\begin{picture}(0,0)
+\put(0,0){\pgfornament[width=1cm]{41}};
+\put(\strippt\textwidth,0){\pgfornament[width=1cm,symmetry=v]{41}};
+\put(0,-\strippt\textheight){\pgfornament[width=1cm,symmetry=h]{41}};
+\put(\strippt\textwidth,-\strippt\textheight){\pgfornament[width=1cm,symmetry=c]{41}}; %
+\end{picture}}
+\title{The Ornaments package \thanks{Inspired by P.Fradin (psvectorian)}}
+
+\author{Alain Matthes}
+
+\usepackage{fourier,lmodern}
+
+%\geometry{showframe} % display margins for debugging page layout
+
+\setkeys{Gin}{width=\linewidth,totalheight=\textheight,keepaspectratio}
+\graphicspath{{graphics/}} % set of paths to search for images
+
+\usepackage{amsmath,lipsum} % extended mathematics
+\usepackage{array,booktabs} % book-quality tables
+\usepackage{multicol} % multiple column layout facilities
+\usepackage[babel=true]{microtype}
+\usepackage[english]{babel}
+
+% Standardize command font styles and environments
+\newcommand{\docparen}[1]{\ensuremath{(#1)}}% optional command argument
+
+\definecolor{fondpaille}{cmyk}{0,0,0.1,0}
+\pagecolor{fondpaille}
+\color{Maroon}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{numbackground}{fondpaille}
+\colorlet{codebackground}{Periwinkle!10}
+\colorlet{codeonlybackground}{Periwinkle!10}
+\colorlet{textcodecolor}{MidnightBlue} % Maroon
+\colorlet{numcolor}{gray}
+\newcommand*{\tkzname}[1]{\textbf{\texttt{\textcolor{Maroon}{#1}}}}
+\newcommand*{\PGF}{\tkzname{PGF}}
+\newcommand*{\TIKZ}{\tkzname{Ti\emph{k}Z}}
+\newcommand*{\pdf}{\textsc{pdf}}
+\newcommand*{\pgfname}{\textsc{pgf}}
+\newcommand*{\tikzname}{Ti\emph{k}Z}
+\newcommand*{\pstricks}{\textsc{pstricks}} %
+\newcommand*{\tkzAttention}[3]{\ \\\llap{\textcolor{#3}{#1\hskip #2}}}
+\newcommand*{\tkzHand}{\ \\\llap{\textcolor{red}{\lefthand\hskip1em}}}
+\newcommand*{\tkzHandBomb}{\ \\\llap{\textcolor{red}{\lefthand\ \bomb\hskip1em}}}
+\newcommand*{\tkzBomb}{\ \\\llap{\textcolor{red}{\bomb\hskip1em}}}
+\newcommand*{\tkzTwoBomb}{\ \\\llap{\textcolor{red}{\bomb\ \bomb\hskip1em}}}
+\newcommand*{\tkzimp}[1]{\textbf{#1}}
+\newcommand*{\tkzcname}[1]{\textbf{\texttt{\textcolor{Maroon}{\textbackslash#1}}}}
+\newcommand*{\tkzhname}[1]{\textbf{\texttt{\textcolor{Maroon}{\textbackslash#1}}}}
+
+
+% Macros for typesetting the documentation
+\newcommand{\hlred}[1]{\textcolor{Maroon}{#1}}% prints in red
+\newcommand{\hangleft}[1]{\makebox[0pt][r]{#1}}
+\newcommand{\hairsp}{\hspace{1pt}}% hair space
+\newcommand{\hquad}{\hskip0.5em\relax}% half quad space
+\newcommand{\TODO}{\textcolor{red}{\bf TODO!}\xspace}
+
+\newcommand{\tuftebs}{\symbol{'134}}% a backslash in tt type in OT1/T1
+\newcommand{\doccmdnoindex}[2][]{\texttt{\tuftebs#2}}% command name -- adds backslash automatically (and doesn't add cmd to the index)
+\newcommand{\doccmddef}[2][]{%
+ \hlred{\texttt{\tuftebs#2}}\label{cmd:#2}%
+ \ifthenelse{\isempty{#1}}%
+ {% add the command to the index
+ \index{#2 command@\protect\hangleft{\texttt{\tuftebs}}\texttt{#2}}% command name
+ }%
+ {% add the command and package to the index
+ \index{#2 command@\protect\hangleft{\texttt{\tuftebs}}\texttt{#2} (\texttt{#1} package)}% command name
+ \index{#1 package@\texttt{#1} package}\index{packages!#1@\texttt{#1}}% package name
+ }%
+}% command name -- adds backslash automatically
+
+\newcommand{\doccmd}[2][]{%
+ \texttt{\tuftebs#2}%
+ \ifthenelse{\isempty{#1}}%
+ {% add the command to the index
+ \index{#2 command@\protect\hangleft{\texttt{\tuftebs}}\texttt{#2}}% command name
+ }%
+ {% add the command and package to the index
+ \index{#2 command@\protect\hangleft{\texttt{\tuftebs}}\texttt{#2} (\texttt{#1} package)}% command name
+ \index{#1 package@\texttt{#1} package}\index{packages!#1@\texttt{#1}}% package name
+ }%
+}% command name -- adds backslash automatically
+
+\newcommand{\docopt}[1]{\ensuremath{\protect\langle}\textrm{\textit{#1}}\ensuremath{\protect\rangle}}% optional command argument
+
+\newcommand{\docarg}[1]{\textrm{\textit{#1}}}% (required) command argument
+
+\newenvironment{docspec}{\begin{quotation}\ttfamily\parskip0pt\parindent0pt\ignorespaces}{\end{quotation}}% command specification environment
+
+\newcommand{\docdist}[1]{\texttt{#1}\index{#1 distribution@\texttt{#1} distribution}\index{distributions!#1@\texttt{#1}}}% environment name
+
+\newcommand{\docenv}[1]{\texttt{#1}\index{#1 environment@\texttt{#1} environment}\index{environments!#1@\texttt{#1}}}% environment name
+
+\newcommand{\docenvdef}[1]{\hlred{\texttt{#1}}\label{env:#1}\index{#1 environment@\texttt{#1} environment}\index{environments!#1@\texttt{#1}}}% environment name
+
+\newcommand{\docoption}[2]{\texttt{#1}\index{#1 option@\texttt{#1} option}\index{options(#2)!#1@\texttt{#1}}}% package name
+
+\newcommand{\docpkg}[1]{\texttt{#1}\index{#1 package@\texttt{#1} package}\index{packages!#1@\texttt{#1}}}% package name
+
+\newcommand{\doccls}[1]{\texttt{#1}}% document class name
+
+\newcommand{\docclsopt}[1]{\texttt{#1}\index{#1 class option@\texttt{#1} class option}\index{class options!#1@\texttt{#1}}}% document class option name
+
+\newcommand{\docclsoptdef}[1]{\hlred{\texttt{#1}}\label{clsopt:#1}\index{#1 class option@\texttt{#1} class option}\index{class options!#1@\texttt{#1}}}% document class option name defined
+
+\newcommand{\docmsg}[2]{\bigskip\begin{fullwidth}\noindent\ttfamily#1\end{fullwidth}\medskip\par\noindent#2}
+
+\newcommand{\docfilehook}[2]{\texttt{#1}\index{file hooks!#2}\index{#1@\texttt{#1}}}
+\newcommand{\doccounter}[1]{\texttt{#1}\index{#1 counter@\texttt{#1} counter}}
+
+\newcommand{\docStyle}[1]{\texttt{#1}\index{#1 style(\TIKZ)@\texttt{#1} style(\TIKZ)}\index{styles(\TIKZ)!#1@\texttt{#1}}}% package name
+
+\newcommand*{\Imacro}[1]{\index{#1_1@\texttt{\textbackslash#1}}}%n
+
+\newcommand{\docfamily}[1]{\texttt{#1}\index{#1 family@\texttt{#1} family}\index{families!#1@\texttt{#1}}}% package name
+
+\newcommand{\docvo}[1]{\texttt{#1}\index{#1 vector ornament@\texttt{#1} vector ornament}\index{vector ornaments!#1@\texttt{#1}}}% package name
+\usepackage{makeidx}
+\makeindex
+
+
+
+
+\begin{document}
+
+\maketitle
+
+\begin{abstract}
+\noindent\lefthand\ ((Version 0.21)
+
+This document describes the \LaTeX\ package \emph{\docpkg{pgfornament}} and presents the syntax and parameters of the macro "pgfornament".
+It also provides examples and comments on the package's use. Firstly, I would like to thank {Till \textsc{Tantau}} for the beautiful \LaTeX\ package, namely \TIKZ.
+I am grateful to Vincent \textsc{Le Moign} for allowing us to distribute the ornaments \sidenote{ \url{http://www.vectorian.net/} (free sample)} in the format Pstricks and \PGF/\TIKZ.
+I would like to thank also {Enrico \textsc{Gregorio}} for some great ideas used in this package. You will find at the end of this document the 196 symbols provided with the package.
+Next to the document you are reading, you will find documentation on the package \emph{\docpkg{tikzrput}}.
+\end{abstract}
+
+
+\vspace{1cm}
+\hfil \pgfornament[width=4cm]{84}\hfil
+%
+ \tableofcontents
+%
+ \vspace{1cm}
+\hfil \pgfornament[width=4cm]{84}\hfil
+
+\newpage
+
+\vspace{1cm}
+\hfil \pgfornament[width=4cm]{84}\hfil
+
+\listoffigures
+
+\vspace{1cm}
+\hfil \pgfornament[width=4cm]{84}\hfil
+\newpage
+\vspace{1cm}
+\hfil \pgfornament[width=4cm]{84}\hfil
+
+\listoftables
+
+\vspace{1cm}
+\hfil \pgfornament[width=4cm]{84}\hfil
+\newpage
+
+
+
+
+
+\section{How to install the package} % (fold)
+\label{sec:how_to_install}
+With \docdist{TeXLive}, if you need to install it by yourself, a TDS compliant zip archive is
+provided (pgfornament.zip). Just download that file, and unpack it in
+your TDS directory (~/texmf for Unix-like systems).
+\begin{itemize}
+ \item \docpkg{pgfornament} must to be in \texttt{~/texmf/tex/latex}
+ \item pgflibraryvectorian.code.tex must to be in \texttt{~/texmf/tex/latex}
+ \item pgflibraryam.code.tex must to be in \texttt{~/texmf/tex/latex}
+ \item the folder vectorian must to be in \texttt{~/texmf/tex/generic}
+ \item the folder am must to be in \texttt{~/texmf/tex/generic}
+\end{itemize}
+
+
+
+With \docdist{MiKTeX}, copy folder {\color{black}\texttt{pgfornament}} into \verb+C:\texmf\tex\latex+, then
+run {\color{red}\texttt{MiKTeX Options}} . In the {\color{black}\texttt{File name database}} section, click on {\color{red}\texttt{Refresh now}}.
+
+% section how_to_install (end)
+\section{How to use the package} % (fold)
+\label{sec:how_to_use}
+You only need to add \\
+{\color{black}\verb+\usepackage{ornament}+} \\ or \\{\color{black}\verb+\usepackage[object=vectorian]{ornament}+}\\
+ in your preamble. The pgfornament package loads \TIKZ.
+
+ Without any options, ornament package uses the \docfamily{vectorian} symbols. If you want to use other symbols, you give the name of the list of symbols like this : \\
+{\color{black}\verb+\usepackage[object=am]{ornament}+}.\\
+ I create \docfamily{am} to show you how to create new symbols and how to use it (see the section \ref{am1def}).
+ You can see below, the minimum code to get a vector ornament.
+ \colorlet{graphicbackground}{blue!10!white}%
+\colorlet{codebackground}{red!10}%
+
+\begin{figure}%
+{\begin{center}
+\begin{tkzexample}[code only,small]
+ \documentclass{scrartcl}
+ \usepackage{pgfornament}
+ \begin{document}
+ \pgfornament[width = 2cm,
+ color = red]{1}
+ \end{document}
+\end{tkzexample}
+\end{center}}
+\caption{Minimal code for vectorian ornaments}
+ \label{fig:marginfig}
+\end{figure}
+
+\begin{marginfigure}%
+\begin{center}
+ \pgfornament[width = 2cm,
+ color = red]{1}
+\end{center}
+\caption{Result of the minimal code}
+\end{marginfigure}
+
+% section how_to_use (end)
+
+\newpage
+\section{The main macro} % (fold)
+\label{sec:the_main_macro}
+
+
+The macro \doccmd{pgfornament} draws the object linked to the given number, with the vectorian family this number is between $1$ and now $196$. This macro can be used alone, or inside a picture. It's defined by an environment \emph{\docenv{tikzpicture}} placed at the current point.
+
+The objects displayed depend of the option used when \doccmd{pgfornament} is called.
+The specifications of the {\color{red}\Verb|\pgfornament|} command is:
+\begin{docspec}
+ \color{black} \doccmd{pgfornament[\docopt{options}]\{\docarg{number}\}}
+\end{docspec}
+
+The result is a picture defined by a \emph{\docenv{tikzpicture}} environment.
+
+\subsection{Number argument} % (fold)
+\label{sub:arg_number}
+The number designs an object of a list by a rank. With you get the figure \ref{fig:o1}
+\begin{tkzexample}[code only,width=5cm,small]
+ \usepackage{ornament}
+ ...
+ \pgfornament[width=2cm]{1}
+\end{tkzexample}
+
+
+\begin{marginfigure}
+ you get the figure \ref{fig:o2}
+
+ \begin{center}
+ \pgfornament[width=2cm]{1}
+\end{center}
+ \caption{Vectorian ornament n° 1}
+ \label{fig:o1}
+\end{marginfigure}
+
+\medskip
+ with
+\begin{tkzexample}[code only,width=5cm,small]
+ \usepackage{ornament}
+ ...
+ \pgfornament[width=2cm]{2}
+\end{tkzexample}
+
+
+\begin{marginfigure}
+ you get
+
+ \begin{center}
+ \pgfornament[width=2cm]{2}
+\end{center}
+ \caption{Vectorian ornament n° 2}
+ \label{fig:o2}
+\end{marginfigure}
+
+\medskip
+and with
+\begin{tkzexample}[code only,width=5cm,small]
+ \usepackage[object=am]{ornament}
+ ...
+ \pgfornament[width=4cm]{1}
+\end{tkzexample}
+
+\begin{marginfigure}
+ you get the figure \label{fig:o2}
+
+\begin{tikzpicture}
+\pgftransformscale{.3}
+\pgfpathmoveto{\pgfqpoint{0bp}{0bp}}
+\pgfpathcurveto{\pgfqpoint{50bp}{0bp}}{\pgfqpoint{150bp}{0bp}}{\pgfqpoint{200bp}{16bp}}
+\pgfpathcurveto{\pgfqpoint{250bp}{0bp}}{\pgfqpoint{350bp}{0bp}}{\pgfqpoint{400bp}{0bp}}
+\pgfpathlineto{\pgfqpoint{400bp}{1bp}}
+\pgfpathcurveto{\pgfqpoint{350bp}{0bp}}{\pgfqpoint{250bp}{0bp}}{\pgfqpoint{200bp}{22bp}}
+\pgfpathcurveto{\pgfqpoint{150bp}{0bp}}{\pgfqpoint{50bp}{0bp}}{\pgfqpoint{0bp}{1bp}}
+\pgfpathlineto{\pgfqpoint{0bp}{0bp}}
+\pgfusepath{fill,stroke}
+\end{tikzpicture}
+ \caption{am ornament n° 1}
+ \label{fig:o3}
+\end{marginfigure}
+% subsection Number_argument (end)
+
+\subsection{Argument and options} % (fold)
+\label{sub:the_options}
+The macro has six options. You have four possibilities for the last option \Verb+symmetry+.
+The next table describes these options.
+
+\begin{table}[h]\index{pgfornament!options}
+{ \small \begin{tabular}{lll}
+ \toprule
+ name & default & definition \\
+\midrule
+\docoption{scale}{pgfornament} & 1 & ratio of height to width is unchanged\\
+\docoption{width}{pgfornament} & \{\} & set the width, ratio unchanged \\
+\docoption{height}{pgfornament} & \{\} & set the height, ratio unchanged \\
+\docoption{color}{pgfornament} & black & color of the ornament \\
+\docoption{opacity}{pgfornament} & 1 & nb inf 1, opacity of the ornament \\
+\docoption{ydelta}{pgfornament} & 0 pt & value to adjust vertically the ornament \\
+\docoption{symmetry=v}{pgfornament} & none & vertical symmetry\\
+\docoption{symmetry=h}{pgfornament} & none & horizontal symmetry \\
+\docoption{symmetry=c}{pgfornament} & none & central symmetry \\
+\docoption{symmetry=none}{pgfornament} & none & no symmetry by default \\
+\bottomrule
+\end{tabular} }
+\caption{List of options for the pgfornament macro.}
+ \label{tab:pgfornament-options}
+\end{table}
+% subsection the_options (end)
+\newpage
+
+\subsection{Examples of the use of options } % (fold)
+\label{sub:examples}
+\begin{enumerate}\setlength{\itemsep}{30pt}
+\item Option \docoption{scale}{pgfornament}
+\begin{tkzexample}[code only,small]
+ \pgfornament[scale=0.25]{77}
+\end{tkzexample}
+\begin{marginfigure}
+ \pgfornament[scale=0.25]{77}
+\end{marginfigure}
+\item Option \docoption{width}{pgfornament}
+\begin{tkzexample}[code only,small]
+ \pgfornament[width=5cm]{77}
+\end{tkzexample}
+\begin{marginfigure}
+ \pgfornament[width=5cm]{77}
+\end{marginfigure}
+\item Option \docoption{height}{pgfornament}
+\begin{tkzexample}[code only,small]
+\pgfornament[height=1cm]{77}
+\end{tkzexample}
+\begin{marginfigure}
+ \pgfornament[height=1cm]{77}
+\end{marginfigure}
+\item Option \docoption{color}{pgfornament}
+\begin{tkzexample}[code only,small]
+\pgfornament[height=1cm,color=green!20!black]{77}
+\end{tkzexample}
+\begin{marginfigure}
+\pgfornament[height=1cm,color=green!20!black]{77}
+\end{marginfigure}
+\item Option \docoption{opacity}{pgfornament}
+\begin{tkzexample}[code only,small]
+\pgfornament[height=1cm,color=green!20!black,opacity=0.2]{77}
+\end{tkzexample}
+\begin{marginfigure}
+\pgfornament[height=1cm,color=green!20!black,opacity=0.2]{77}
+\end{marginfigure}
+\item Option \docoption{symmetry=h}{pgfornament}
+\begin{tkzexample}[code only,small]
+\pgfornament[height=1cm,symmetry=h]{77}
+\end{tkzexample}
+\begin{marginfigure}
+\pgfornament[height=1cm,symmetry=h]{77}
+\end{marginfigure}
+\item Option \docoption{symmetry=v}{pgfornament}
+\begin{tkzexample}[code only,small]
+\pgfornament[height=1cm,symmetry=v]{77}
+\end{tkzexample}
+\begin{marginfigure}
+\pgfornament[height=1cm,symmetry=v]{77}
+\end{marginfigure}
+\item Option \docoption{symmetry=c}{pgfornament}
+\begin{tkzexample}[code only,small]
+\pgfornament[height=1cm,symmetry=c]{77}
+\end{tkzexample}
+\begin{marginfigure}
+ \pgfornament[height=1cm,symmetry=c]{77}
+\end{marginfigure}
+\end{enumerate}
+% subsection examples (end)
+
+% section the_main_macro (end)
+%\newthought{The pgfornament package} defines a macro.
+
+
+\subsection{Examples of symmetry} % (fold)
+\label{sub:examples_of_symmetry}
+\setlength{\fboxsep}{0pt}
+\begin{enumerate}
+ \item Symmetry vertical axis
+\tikzset{pgfornamentstyle/.style={draw=green!20!black,
+ fill=orange,fill opacity=.5,thick}}%
+
+ \begin{figure}
+ \fbox{\pgfornament[width=5cm]{2}}%
+ \pgfornament[width=5cm,symmetry=v]{2}
+ \caption{Vertical symmetry}
+ \end{figure}
+
+
+ \item Symmetry horizontal axis
+\tikzset{pgfornamentstyle/.style={draw=green!20!black,
+ fill=orange,fill opacity=.5,thick}}%
+
+ \begin{figure}
+ \fbox{\pgfornament[width=5cm]{2}}%
+ \pgfornament[width=5cm,symmetry=h]{2}
+ \caption{Horizontal symmetry}
+ \end{figure}
+
+ \item Symmetry with respect to the origin
+\tikzset{pgfornamentstyle/.style={draw=green!20!black,
+ fill=orange,fill opacity=.5,thick}}%
+
+ \fbox{\pgfornament[width=5cm]{2}}%
+
+ \hspace*{5cm}
+ \begin{figure}
+ \pgfornament[width=5cm,symmetry=c]{2}%
+ \caption{Central symmetry}
+ \end{figure}
+\end{enumerate}
+% subsection examples_of_symmetry (end)
+
+\vspace{30pt}
+\subsection{Option \docoption{ydelta}{pgfornament}} % (fold)
+\label{sub:examples_with_other_options}
+
+
+\begin{tkzexample}[code only,small]
+ \pgfornament[color=MidnightBlue,width=2cm,ydelta=-10pt]{25}%
+ \pgfornament[color=PineGreen,width=2cm]{25}%
+ \pgfornament[color=Periwinkle,width=2cm,ydelta=+10pt]{25}%
+\end{tkzexample}
+
+
+
+\begin{marginfigure}%
+ \pgfornament[color=MidnightBlue,width=2cm,ydelta=-10pt]{25}%
+ \pgfornament[color=PineGreen,width=2cm]{25}%
+ \pgfornament[color=Periwinkle,width=2cm,ydelta=+10pt]{25}%
+ \caption{How to use tkzname{ydelta}}
+\end{marginfigure}
+
+% subsection examples_with_other_options (end)
+
+\vspace{5cm}
+\subsection{Option \docoption{color}{pgfornament}} % (fold)
+\label{sub:examples_with_color_option}
+
+
+\begin{tkzexample}[code only,small]
+ \pgfornament[color=MidnightBlue,width=2cm]{24}%
+\end{tkzexample}
+
+
+ \begin{marginfigure}
+ \pgfornament[color=MidnightBlue,width=4cm]{24}%
+ \caption{How to use tkzname{color}}
+ \end{marginfigure}
+
+\subsection{Style \docStyle{pgfornamentstyle}} % (fold)
+This style can modify some options like the color and also how to fill the symbol when it's possible.
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}
+ \tikzset{pgfornamentstyle/.style={
+ fill=SpringGreen,
+ fill opacity=.5,
+ line width=1pt}}%
+ \pgfornament[color=OliveGreen,scale=2,anchor=south]{24}%
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{marginfigure}%
+\begin{tikzpicture}
+ \tikzset{pgfornamentstyle/.style={
+ fill=SpringGreen,
+ fill opacity=.5,
+ line width=1pt}}%
+ \pgfornament[color=OliveGreen,scale=2,anchor=south]{24}%
+\end{tikzpicture}
+\caption{How to use the style \tkzname{pgfornamentstyle}}
+\end{marginfigure}
+
+\vspace{30pt}
+\subsection{Advanced options from \docpkg{\TIKZ} } % (fold)
+\label{sub:advanced_options}
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \tikzset{pgfornamentstyle/.style={draw=Periwinkle,
+ fill=SpringGreen}}%
+ \node[draw=Periwinkle,circle,anchor=center,
+ inner sep=0pt,fill=GreenYellow] at (0,0){%
+ \pgfornament[anchor=center,scale=2]{24}};
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{center}
+ \begin{figure}
+ \begin{tikzpicture}
+ \tikzset{pgfornamentstyle/.style={draw=Periwinkle,
+ fill=SpringGreen}}%
+ \node[draw=Periwinkle,circle,anchor=center,inner sep=0pt,fill=GreenYellow] at (0,0){%
+ \pgfornament[anchor=center,scale=2]{24}};
+ \end{tikzpicture}
+ \caption{How to add \TIKZ ' styles}
+ \end{figure}
+\end{center}
+
+
+%
+%
+\newpage
+\section{What is a (pgf)ornament?} % (fold)
+\label{sec:what_is_a_pgf_ornament}
+When you write in your document \Verb|\pgfornament{1}|, you get the first ornament of a family (by default \docfamily{vectorian}'s family). This ornament is a vector object defined by an environment \emph{\docenv{tikzpicture}}.
+
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}[%
+ baseline={([yshift=\pgfornamentydelta]%
+ current bounding box.\pgfornamentanchor)},
+ pgfornamentstyle]
+ \pgftransformscale{\pgfornamentscale}%
+ \pgf@@ornament{#2}%
+\end{tikzpicture}%
+\end{tkzexample}
+
+\medskip
+You can modify the aspect of the picture if you change \doccmd{pgfornamentscale}, or \docStyle{pgfornamentstyle}. With \doccmd{pgfornamentydelta}, or \doccmd{pgfornamentanchor} you can move the picture but this depends on the different environments. The next code gives the picture \ref{fig:minimum}. I chose this method so that the use is as simple as possible.
+
+\begin{tkzexample}[code only,small]
+ \documentclass{scrartcl}
+ \usepackage{pgfornament}
+ \begin{document}
+ \pgfornament{1}
+ \end{document}
+\end{tkzexample}
+
+\begin{marginfigure}
+ \pgfornament[anchor=center,scale=1]{1}
+ \caption{Minimal code to get an ornament}
+ \label{fig:minimum}
+\end{marginfigure}
+
+\medskip
+The ornament is placed in a rectangle\sidenote{You can find the dimensions of this shape in the file pgflibraryvectorian.code.tex. The name of this file depends of the name of the vector family By default actually it's \docfamily{vectorian}.}.
+
+\medskip
+\begin{tikzpicture}[every node/.style={inner sep=0pt}]
+ \tikzset{image/.style={circle,
+ fill=red,
+ minimum size = 4pt,
+ inner sep = 0pt,
+ outer sep = 1pt}
+ }
+
+\node[inner sep = 1cm] (wrapper){\tikz
+\node[draw](image) {\pgfsetfillopacity{0.2}\pgfornament{1}};};
+
+\foreach \ancre in {north,north east,east,south east,south,south west,west,north west,east}
+{%
+ \node [image] (i\ancre) at (image.\ancre) {};
+ \node [outer sep=2pt] (w\ancre) at (wrapper.\ancre) {\small\ancre};
+ \draw [red,->,>=stealth] (w\ancre)--(i\ancre);
+ }
+ \node[image,label=below:{\tiny center}] at (wrapper.center) {};
+\end{tikzpicture}
+
+On the last figure, I represent all the anchors \index{anchors} that you can use. Now you will see how to place this picture on a page, in the flow of text or inside a complex picture.
+% section what_is_a_pgf_ornament (end)
+\unitlength=1pt
+\newpage
+\noindent\eachpageornament
+%
+%
+%
+%
+%
+
+\section{Placing a vector ornament on a page} % (fold)
+\label{sec:placement_on_a_page}
+\subsection{On each page with the package \docpkg{eso-pic}} % (fold)
+\label{sub:with_the_package_eso_pic}
+
+You may have noticed the existence of an ornament placed at each corner of the pages. The next code explains how to do this. The only part of the code linked to \docpkg{pgfornament} is to use the macro \doccmd{pgfornament}. To put the object at the right place on the page, we need to consider its width.
+
+Perhaps you saw the ornaments in each corner of each page
+% section placement_on_a_page (end)
+I used the package \docpkg{eso-pic} and the next code. The macro \doccmd{put} places the ornament at a point but you need to change correctly the anchor.
+
+\begin{tkzexample}[code only,small]
+\usepackage{eso-pic}
+\makeatletter
+\AddToShipoutPicture{%
+\begingroup
+\setlength{\@tempdima}{2mm}%
+\setlength{\@tempdimb}{\paperwidth-\@tempdima-2cm}%
+\setlength{\@tempdimc}{\paperheight-\@tempdima}%
+\put(\LenToUnit{\@tempdima},\LenToUnit{\@tempdimc}){%
+ \pgfornament[anchor=north west,width=2cm]{63}}
+\put(\LenToUnit{\@tempdima},\LenToUnit{\@tempdima}){%
+ \pgfornament[anchor=south west,width=2cm,symmetry=h]{63}}
+\put(\LenToUnit{\@tempdimb},\LenToUnit{\@tempdimc}){%
+ \pgfornament[anchor=north east,width=2cm,symmetry=v]{63}}
+\put(\LenToUnit{\@tempdimb},\LenToUnit{\@tempdima}){%
+ \pgfornament[anchor=south east,width=2cm,symmetry=c]{63}}
+\endgroup
+}
+\makeatother
+\end{tkzexample} \Imacro{AddToShipoutPicture} \Imacro{LenToUnit} \Imacro{anchor}
+% subsection with_the_package_eso_pic (end)
+\subsection{On one page with the picture environment} % (fold)
+\label{sub:with_the_picture_environment}
+
+The next code is used to delimit the text area on the page defined by the tufte class.
+\sidenote{\tkzcname{strippt} is defined by \tkzcname{let}\doccmd{strippt}\doccmd{strip@pt}}
+\begin{tkzexample}[code only,small]
+\newcommand{\eachpageornament}{%
+\unitlength=1pt
+\begin{picture}(0,0)%
+\put(0,0){\pgfornament[width=1cm]{41}};%
+\put(\strippt\textwidth,0){%
+ \pgfornament[width=1cm,symmetry=v]{41}};%
+\put(0,-\strippt\textheight){%
+ \pgfornament[width=1cm,symmetry=h]{41}};%
+\put(\strippt\textwidth,-\strippt\textheight){%
+ \pgfornament[width=1cm,symmetry=c]{41}};%
+\end{picture}}%
+
+\eachpageornament
+\end{tkzexample}
+% subsection with_the_picture_environment (end)
+
+\subsection{With \docpkg{\TIKZ}, the options \tkzname{remember picture} and \tkzname{overlay}} % (fold)
+\label{sub:with_tikz_and_the_option_reme}
+
+% subsection with_tikz_and_the_option_reme (end)
+You can without \docpkg{eso-pic} but with \docpkg{\TIKZ}\ get the same result on one page with the next macro. \tkzname{remember picture} is obligatory, this option tells \TIKZ\ that it should attempt to remember the position of the current picture on the page, you need to compile twice if you use such code. The option \tkzname{overlay}\index{overlay}\ switches the computation of the bounding box so the pictures are not in the flow of the text and they don't modify the layout.
+
+\begin{tkzexample}[code only,small]
+ \newcommand{\eachpageornament}{%
+ \begin{tikzpicture}[remember picture, overlay]
+ \node[anchor=north west] at (current page.north west){%
+ \pgfornament[width=2cm]{63}};
+ \node[anchor=north east] at (current page.north east){%
+ \pgfornament[width=2cm,symmetry=v]{63}};
+ \node[anchor=south west] at (current page.south west){%
+ \pgfornament[width=2cm,symmetry=h]{63}};
+ \node[anchor=south east] at (current page.south east){%
+ \pgfornament[width=2cm,symmetry=c]{63}};
+ \end{tikzpicture}
+ }
+\end{tkzexample} \index{current page}
+
+\section{Placing a vector ornament in the flow}\label{sec:placing-ornament}
+\subsection{\protect\pgfornament[anchor=south,width=1cm]{78}\ Directly \ \protect\pgfornament[anchor=south,width=1cm,symmetry=v]{78}}
+ % (fold)
+\label{sub:directly}
+
+
+The next code show you the effect of different choice of anchor.
+\setlength{\fboxsep}{0pt}
+
+{\color{black}baseline
+\pgfsetfillopacity{0.2}%
+\fbox{\pgfornament[anchor=south,width=2cm]{69}}%
+\fbox{\pgfornament[width=2cm]{69}}%
+\fbox{\pgfornament[anchor=north,width=2cm]{69}}%
+\pgfsetfillopacity{1} baseline }
+
+\begin{tkzexample}[code only,small]
+{ \color{black}baseline \pgfsetfillopacity{0.2}%
+ \fbox{\pgfornament[anchor=south,width=2cm]{69}}%
+ \fbox{\pgfornament[width=2cm]{69}}%
+ \fbox{\pgfornament[anchor=north,width=2cm]{69}}%
+ \pgfsetfillopacity{1} baseline }
+\end{tkzexample}
+% subsection directly (end)
+
+\medskip
+\noindent Perhaps you are interesting by the code to modify the subsection?
+
+
+\begin{tkzexample}[code only,small]
+\subsection{\protect\pgfornament[anchor=south,width=1cm]{78}\
+ Directly \
+ \protect\pgfornament[anchor=south,width=1cm,symmetry=v]{78}}
+\end{tkzexample}
+
+\subsection{In the flow with \TIKZ} % (fold)
+\label{sub:in_the_flow_with_tikz}
+
+
+\medskip
+Generally, the best way is to place the ornament inside a node and the node inside an environment \emph{tikzpicture}. You can need to specify the position of the node inside the \emph{\docenv{tikzpicture}} and you can add an anchor to place exactly the ornament like you want.
+
+\begin{marginfigure}
+ \begin{center}
+ \begin{tikzpicture}
+ \foreach \a in {0,45,...,315}
+ \node[anchor=west,rotate=\a,inner sep=0pt,xshift=12pt] {%
+ \pgfornament[width=1cm]{88}};
+ \end{tikzpicture}
+ \end{center}
+ \caption{Assembling of ornaments version 2}
+\end{marginfigure}
+
+\begin{tkzexample}[code only,small]
+ \begin{tikzpicture}
+ \foreach \a in {0,45,...,315}
+ \node[anchor=west,rotate=\a,inner sep=0pt,xshift=12pt] {%
+ \pgfornament[width=1cm]{88}};
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{marginfigure}
+ \begin{center}
+ \begin{tikzpicture}
+ \foreach \a in {0,45,...,315}
+ \node[anchor=west,rotate=\a,inner sep=0pt] {%
+ \pgfornament[width=1cm]{88}};
+ \end{tikzpicture}
+ \end{center}
+ \caption{Assembling of ornaments version 1}
+\end{marginfigure}
+
+
+\begin{tkzexample}[code only,small]
+ \begin{tikzpicture}
+ \foreach \a in {0,45,...,315}
+ \node[anchor=west,rotate=\a,inner sep=0pt] {%
+ \pgfornament[width=1cm]{88}};
+\end{tikzpicture}
+\end{tkzexample}
+
+
+% subsection in_the_flow_with_tikz (end)
+
+\medskip
+\emph{Remark : It's difficult to get the same result with \emph{\doccmd{put}} and \emph{\doccmd{rotatebox}} but it's easy with the \emph{\docpkg{rotating}} package.}
+
+\begin{marginfigure}
+ \begin{center}
+\foreach \a in {0,45,...,315}{%
+ \turnbox{\a}{\pgfornament[width=1cm]{88}}}%
+ \end{center}
+\end{marginfigure}
+
+
+\begin{tkzexample}[code only,small]
+ \foreach \a in {0,45,...,315}{%
+ \turnbox{\a}{\pgfornament[width=1cm]{88}}}%
+\end{tkzexample}
+
+
+\newpage
+
+\section{Ornament inside a node} % (fold)
+
+This method is very useful and flexible because it's possible to use the options and styles with the command \doccmd{node}. You can modify the style \docoption{pgfornamentstyle}{pgfornament} \sidenote{I you want to rest the style you can use \doccmd{resetpgfornamentstyle}}.
+
+\begin{tkzexample}[code only,small]
+\tikzset{pgfornamentstyle/.style={%
+ draw=green!20!black,inner sep=0pt,fill=orange,
+ fill opacity=.5,scale=2,ultra thick}}%
+ \tikz\node {\fbox{\pgfornament{3}}};
+\end{tkzexample}
+
+\begin{figure}
+\tikzset{pgfornamentstyle/.style={draw=green!20!black,inner sep=0pt,
+ fill=orange,fill opacity=.5,scale=2,ultra thick}}%
+\tikz\node {\fbox{\pgfornament{3}}};
+\caption{Style with node}
+\end{figure}
+
+{\textcolor{red}{\lefthand\hskip1em}} If we use a tikzpicture inside the flow then it's very useful to know how to place the picture. The important part of the code is : \\
+
+\begin{tkzexample}[code only,small]
+ \tikz[baseline=(current bounding box.south)]
+\end{tkzexample} \index{current bounding box}
+
+ \medskip
+{\textcolor{red}{\lefthand\hskip1em}} Don't forget to use \tkzname{inner sep =0pt}\index{inner sep} because you can get undesirable space around the object.\\
+
+\begin{tkzexample}[code only,small]
+baseline\tikz[baseline]
+\node[inner sep=0pt]{\fbox{\pgfornament[width=2cm]{3}}};
+baseline
+\tikz[baseline=(current bounding box.south)]
+\node[inner sep=0pt]{\fbox{\pgfornament[width=2cm]{3}}};
+baseline
+\tikz[baseline=(current bounding box.north)]
+\node[inner sep=0pt]{\fbox{\pgfornament[width=2cm]{3}}};
+baseline
+\end{tkzexample} \index{baseline}
+
+\begin{figure}
+ baseline\tikz[baseline]\node[inner sep=0pt] {\fbox{\pgfornament[width=2cm]{3}}};%
+ baseline\tikz[baseline=(current bounding box.south)]\node[inner sep=0pt] {\fbox{\pgfornament[width=2cm]{3}}};%
+ baseline\tikz[baseline=(current bounding box.north)]\node[inner sep=0pt] {\fbox{\pgfornament[width=2cm]{3}}};baseline
+ \caption{Node in the flow}
+\end{figure}
+
+
+\newpage
+\section{One ornament between two nodes}
+I created an option for the \emph{\tkzname{to}} command\index{to}. You only need to call an ornament with \Verb+ornament=number+.
+
+\begin{docspec}
+ \color{black}\Verb+\draw+ (A) \Verb+to+ [\Verb+object+ = \docopt{number}] (B) ;
+\end{docspec}
+\resetpgfornamentstyle %\Imacro{resetpgfornamentstyle}
+
+\subsection{How to use \emph{\tkzname{to [ornament= ...]}}} % (fold)
+\label{sub:how_to_use_}
+
+This code shows how to place an ornament between to node. The width of the ornament is automatically calculate.
+
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}
+\node (A) at (0,0) {};
+\node (B) at (5,2) {};
+\draw [help lines,color=Maroon!60] (0,0) grid (5,2);
+\draw [fill=Maroon!30] (A) circle (2pt) (B) circle (2pt);
+\draw [orange] (A) to [ornament=88] (B);
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{marginfigure}[-3cm]
+\begin{tikzpicture}
+\node (A) at (0,0) {};
+\node (B) at (5,2) {};
+\draw [help lines,color=Maroon!60] (0,0) grid (5,2);
+\draw [fill=Maroon!30] (A) circle (2pt) (B) circle (2pt);
+\draw [orange] (A) to [ornament=88] (B);
+\end{tikzpicture}
+\caption{One ornament between two nodes}
+\end{marginfigure}
+% subsection how_to_use_ (end)
+
+\medskip
+The next code shows how to place two ornaments between two nodes.
+
+\begin{tkzexample}[code only,small]
+ \begin{tikzpicture}
+ \node (A) at (0,0) {};
+ \node (B) at (5,2) {};
+ \draw [help lines,color=Maroon!60] (0,0) grid (5,2);
+ \draw [fill=Maroon!30] (A) circle (2pt) (B) circle (2pt);
+ \path (A)--(B) coordinate[pos=.5] (c1);
+ \draw [orange] (A) to [ornament=84]
+ (c1) to [ornament=84] (B);
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\begin{marginfigure}[-3cm]
+\begin{tikzpicture}
+\node (A) at (0,0) {};
+\node (B) at (5,2) {};
+\draw [help lines,color=Maroon!60] (0,0) grid (5,2);
+\draw [fill=Maroon!30] (A) circle (2pt) (B) circle (2pt);
+\path (A)--(B) coordinate[pos=.5] (c1);
+\draw [orange] (A) to [ornament=84]
+ (c1) to [ornament=84] (B);
+\end{tikzpicture}
+\caption{Two ornaments between two nodes}
+\end{marginfigure}
+
+\medskip
+Example with a pentagon
+
+\begin{tkzexample}[code only,small]
+ \begin{tikzpicture}[every node={anchor=center,
+ inner sep=0pt}]
+ \node[regular polygon, regular polygon sides=5,
+ rotate=36,minimum size=6cm,inner sep=0pt](s) {};
+ \path (s.side 1) to [ornament=83] (s.side 2)
+ to [ornament=83] (s.side 3)
+ to [ornament=83] (s.side 4)
+ to [ornament=83] (s.side 5)
+ to [ornament=83] (s.side 1);
+ \end{tikzpicture}
+\end{tkzexample}
+
+\begin{marginfigure}
+ \begin{tikzpicture}[every node={anchor=center,
+ inner sep=0pt}]
+ \node[regular polygon, regular polygon sides=5,
+ rotate=36,minimum size=6cm,inner sep=0pt](s) {};
+ \path (s.side 1) to [ornament=83] (s.side 2)
+ to [ornament=83] (s.side 3)
+ to [ornament=83] (s.side 4)
+ to [ornament=83] (s.side 5)
+ to [ornament=83] (s.side 1);
+ \end{tikzpicture}
+\caption{A pentagon}
+\end{marginfigure}
+
+ \newpage
+\subsection{How to use the option \tkzname{ornament/at}} \index{ornament/at} % (fold)
+\label{sub:how_to_use_the_option_at}
+
+It's possible to move the ornament on the line AB. You only need to write \tkzname{at = number} where number is a percent like \tkzname{pos}.
+\begin{tkzexample}[code only,small]
+ \begin{tikzpicture}
+ \node (A) at (0,0) {};
+ \node (B) at (4,0) {};
+ \draw [help lines,color=Maroon!60] (0,-1) grid (4,1);
+ \path (A.center) to [ornament=84,ornament/at=0] (B.center);
+ \path (A.center) to [ornament=84,ornament/at=1] (B.center);
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\begin{figure}
+ \begin{tikzpicture}
+ \node (A) at (0,0) {};
+ \node (B) at (4,0) {};
+ \draw [help lines,color=Maroon!60] (0,-1) grid (4,1);
+ \path (A.center) to [ornament=84,ornament/at=0] (B.center);
+ \path (A.center) to [ornament=84,ornament/at=1] (B.center);
+ \end{tikzpicture}
+ \caption{at}
+\end{figure}
+
+
+
+% subsection how_to_use_the_option_at (end)
+
+\subsection{How to use the option \tkzname{options}} % (fold)
+\label{sub:how_to_use_the_option_options}
+
+If an ornament is misplaced we can move it up or down. Look at the code to see how to use \tkzname{options}. \index{options}
+
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}
+\node (A) at (0,0) {};
+\node (B) at (5,2) {};
+\draw [help lines,color=Maroon!40] (0,0) grid (5,2);
+\draw [fill=Maroon!20] (A) circle (2pt) (B) circle (2pt);
+\path (A.center) to [ornament=84,
+ options/.append style={yshift=1pt}] (B.center);
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{marginfigure}[-3cm]
+\begin{tikzpicture}
+\node (A) at (0,0) {};
+\node (B) at (5,2) {};
+\draw [help lines,color=Maroon!40] (0,0) grid (5,2);
+\draw [fill=Maroon!20] (A) circle (2pt) (B) circle (2pt);
+\path (A.center) to [ornament=84,
+ options/.append style={yshift=1pt}] (B.center);
+\end{tikzpicture}
+\caption{How options}
+\end{marginfigure}
+
+
+% section ornament_between_two_nodes (end)
+
+\newpage
+\section{Ornaments : Vector Symbols} % (fold)
+\label{sec:ornaments_symbols}
+Here a list of the first thirty elements
+
+\newcounter{compt}
+\subsection{Symbols part 1} % (fold)
+\label{sub:symbol1}
+\setcounter{compt}{1}%
+\begin{table}[h!]\index{ornament!symbols1}
+\loop
+\begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil\\
+\end{tabular}\par\medskip
+\ifnum\thecompt<29 \addtocounter{compt}{1}
+\repeat
+\caption{List of symbols (part 1).}
+\label{tab:ornaments : symbol1}
+\end{table}
+% subsection symbol1 (end)
+% section ornaments_symbols (end)
+
+\newpage
+\subsection{Symbols part 2} % (fold)
+\label{sub:symbol2}
+The next list is about symbols of decoration. The design is more sophisticated. Be careful indices range from sixty-five to seventy-nine.
+
+\setcounter{compt}{65}%
+\begin{table}[h!]\index{ornament!symbols2}
+\loop
+\begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil\\
+\end{tabular}\par\medskip
+\ifnum\thecompt<70 \addtocounter{compt}{1}%
+\repeat
+\addtocounter{compt}{1}
+\begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil& \\
+\end{tabular}%
+
+\addtocounter{compt}{1}
+\begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ & &\small{\thecompt)} \hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil\\
+\end{tabular}%
+
+\addtocounter{compt}{1}
+\loop
+\begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil\\
+\end{tabular}\par\medskip
+\ifnum\thecompt<78 \addtocounter{compt}{1}
+\repeat
+\addtocounter{compt}{1}
+\begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+\end{tabular}
+\caption{A list of symbols (part 2).}
+\label{tab:ornaments : symbol2}
+\end{table}
+% subsection symbol1 (end)
+
+
+\newpage
+\section{Ornaments : Vector Corners}
+\label{sec:corners}
+The next list of ornaments concerns objects to place in the corners of a figure. Half of them is not useful because it is obtained by symmetry of the other.
+
+
+\begin{table}[h]\index{ornament!lines}
+ \setcounter{compt}{31}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<41 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{61}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<63 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{97}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<97 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{131}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<131 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{194}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<194 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{140}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=2]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=2]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<140 \addtocounter{compt}{1}
+ \repeat
+\caption{A list of corners}
+\label{tab:ornaments : corners}
+\end{table}
+
+
+\newpage
+\section{Ornaments : Vector Lines}\label{sec:lines }
+The next list concerns symbols used to make a line.
+
+\setcounter{compt}{80}%
+\begin{table}[h]\index{ornament!lines}
+\loop
+\begin{tabular}{b{1cm}b{8cm}}
+\thecompt)&\hfil\hrule width 0pt depth 0pt height 0.75cm \pgfornament[anchor=south,width=6cm]{\thecompt}\hfil\\
+\end{tabular}\par
+\ifnum\thecompt<89 \addtocounter{compt}{1}
+\repeat
+ \caption{A list of lines.}
+ \label{tab:ornaments : lines}
+ \end{table}
+
+\newpage
+\section{Ornaments : Animals part 1}\label{sec:animal1 }
+The next list concerns symbols with animals.
+
+
+\begin{table}[h]\index{ornament!Animals part 1}
+
+ \setcounter{compt}{90}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<90 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{100}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<100 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{102}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil&
+ \addtocounter{compt}{2}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<102 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{106}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<113 \addtocounter{compt}{1}
+\repeat
+
+
+ \setcounter{compt}{158}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,scale=1.5]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<158 \addtocounter{compt}{1}
+ \repeat
+
+ \caption{A list of Animals.}
+ \label{tab:ornaments : animal1}
+ \end{table}
+
+\newpage
+\section{Ornaments : Animals part 2}\label{sec:animal2 }
+The nex list concerns symbols with animals.
+
+
+\begin{table}[h]\index{ornament!Animals part 2}
+ \setcounter{compt}{100}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<100 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{122}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<122 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{124}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{37}%
+ \hfil\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<124 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{133}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<135 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{156}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<158 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{190}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,width=2cm]{\thecompt}\hfil&
+ \addtocounter{compt}{3}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=3cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<190 \addtocounter{compt}{1}
+ \repeat
+
+ \setcounter{compt}{137}%
+ \loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,width=3cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfil\\
+ \end{tabular}\par\medskip
+ \ifnum\thecompt<137 \addtocounter{compt}{1}
+ \repeat
+ \caption{A list of Animals.}
+ \label{tab:ornaments : animal2}
+ \end{table}
+
+
+\newpage
+\section{Ornaments : Hands}\label{sec:hands }
+The next list concerns symbols used to make a line.
+
+\setcounter{compt}{152}%
+\begin{table}[h]\index{ornament!hands }
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,width=2cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=2cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<153 \addtocounter{compt}{1}
+\repeat
+ \caption{A list of hands .}
+ \label{tab:ornaments : hands }
+ \end{table}
+
+Remark : Ornaments 154 and 155 are identic but their sizes are smaller.
+
+\section{Ornaments : Humans}\label{sec:humans }
+The next list concerns symbols used to make a line.
+
+\setcounter{compt}{95}%
+\begin{table}[h]\index{ornament!Humans }
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=2cm]{\thecompt}\hfil&
+ \addtocounter{compt}{8}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=2cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<103 \addtocounter{compt}{1}
+\repeat
+
+\setcounter{compt}{105}%
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{20}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<125 \addtocounter{compt}{1}
+\repeat
+
+\setcounter{compt}{143}%
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,width=2cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=2cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<144 \addtocounter{compt}{1}
+\repeat
+
+\setcounter{compt}{160}%
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=2.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{4}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,height=2.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<160 \addtocounter{compt}{1}
+\repeat
+ \caption{A list of humans .}
+ \label{tab:ornaments : humans }
+ \end{table}
+
+Remark : Ornaments 143, 144 and 145, 146 are identic but their sizes are diffrent.
+
+\newpage
+\section{Ornaments : Objects part 1}\label{sec:objects1 }
+The next list concerns symbols used to make a line.
+
+\setcounter{compt}{114}%
+\begin{table}[h]\index{ornament!objects1 }
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<121 \addtocounter{compt}{1}
+\repeat
+
+\setcounter{compt}{126}%
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<130 \addtocounter{compt}{1}
+\repeat
+
+\setcounter{compt}{147}%
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1.5cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=1.5cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<147 \addtocounter{compt}{1}
+\repeat
+
+ \caption{A list of objects .}
+ \label{tab:ornaments : objects1 }
+ \end{table}
+
+\newpage
+\section{Ornaments : Objects part 2}\label{sec:objects2 }
+The next list concerns symbols used to make a line.
+
+\setcounter{compt}{162}%
+\begin{table}[h]\index{ornament!objects2 }
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=1cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<183 \addtocounter{compt}{1}
+\repeat
+ \caption{A list of objects .}
+ \label{tab:ornaments : objects }
+ \end{table}
+
+ \newpage
+\setcounter{compt}{184}%
+\begin{table}[h]
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=1cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<189 \addtocounter{compt}{1}
+\repeat
+
+\setcounter{compt}{191}%
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=1cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<192 \addtocounter{compt}{1}
+\repeat
+
+\setcounter{compt}{92}%
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=1cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<94 \addtocounter{compt}{1}
+\repeat
+
+\setcounter{compt}{149}%
+\loop
+ \begin{tabular}{b{.4cm}b{4cm}b{.4cm}b{4cm}}%
+ \small{\thecompt)}&\hfil\pgfornament[anchor=south,height=1cm]{\thecompt}\hfil&
+ \addtocounter{compt}{1}%
+ \hfill\small{\thecompt)}&\hfil\pgfornament[anchor=south,width=1cm]{\thecompt}\hfil\\
+ \end{tabular}\par\medskip
+\ifnum\thecompt<151 \addtocounter{compt}{1}
+\repeat
+ \label{tab:ornaments : objects }
+ \end{table}
+
+\newpage
+\section{Application : Creating a frame} % (fold)
+\label{sec:application_placement}
+Remark : Corners are the same dimensions ( widht = height )
+
+\begin{figure}[h!]
+ \begin{tikzpicture}[color=Maroon,every node/.style={inner sep=0pt}]
+ \draw[help lines] (-5,-5) grid (5,5);
+ \node[minimum size=10cm](vecbox){};
+ \node[anchor=north west] at (vecbox.north west){\pgfornament[width=4cm]{61}};
+ \node[anchor=north east] at (vecbox.north east){\pgfornament[width=4cm,symmetry=v]{61}};
+ \node[anchor=south west] at (vecbox.south west){\pgfornament[width=4cm,symmetry=h]{61}};
+ \node[anchor=south east] at (vecbox.south east){\pgfornament[width=4cm,symmetry=c]{61}};
+ \end{tikzpicture}
+ \caption{Creating a frame}
+\end{figure}
+
+
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}[color=Maroon,
+ every node/.style={inner sep=0pt}]
+ \draw[help lines] (-6,-6) grid (6,6);
+ \node[minimum size=12cm](vecbox){};
+ \node[anchor=north west] at (vecbox.north west)
+ {\pgfornament[width=5cm]{61}};
+ \node[anchor=north east] at (vecbox.north east)
+ {\pgfornament[width=5cm,symmetry=v]{61}};
+ \node[anchor=south west] at (vecbox.south west)
+ {\pgfornament[width=5cm,symmetry=h]{61}};
+ \node[anchor=south east] at (vecbox.south east)
+ {\pgfornament[width=5cm,symmetry=c]{61}};
+\end{tikzpicture}
+\end{tkzexample} \index{minimum size} \index{anchor}
+
+% section application_placement (end)
+
+\newpage
+\section{Application : Frame around a text} % (fold)
+I chose a poem to illustrate this theme.
+
+
+ \begin{center}
+ \begin{figure}[h!]
+ \begin{tikzpicture}
+ \node[text width=8cm,align=center](Text){%
+ In visions of the dark night\\
+ I have dreamed of joy departed-\\
+ But a waking dream of life and light\
+ Hath left me broken-hearted.\\
+
+ Ah! what is not a dream by day\\
+ To him whose eyes are cast \\
+ On things around him with a ray \\
+ Turned back upon the past? \\
+
+ That holy dream- that holy dream,\\
+ While all the world were chiding,\\
+ Hath cheered me as a lovely beam\\
+ A lonely spirit guiding.\\
+
+ What though that light, thro' storm and night,\\
+ So trembled from afar- \\
+ What could there be more purely bright \\
+ In Truth's day-star? \\
+ \vspace{24pt}
+ A Dream (1827) by Edgar Allan Poe
+ } ;
+
+ \node[inner sep=0pt,shift={(-.5cm,.5cm)},anchor=north west](CNW) at (Text.north west)
+ {\pgfornament[width=1.75cm]{61}};
+ \node[inner sep=0pt,shift={(.5cm,.5cm)},anchor=north east](CNE) at (Text.north east)
+ {\pgfornament[width=1.75cm,symmetry=v]{61}};
+ \node[inner sep=0pt,shift={(-.5cm,-.5cm)},anchor=south west](CSW) at (Text.south west)
+ {\pgfornament[width=1.75cm,symmetry=h]{61}};
+ \node[inner sep=0pt,shift={(.5cm,-.5cm)},anchor=south east](CSE) at (Text.south east)
+ {\pgfornament[width=1.75cm,symmetry=c]{61}};
+ \pgfornamenthline{CNW}{CNE}{north}{87}
+ \pgfornamenthline{CSW}{CSE}{south}{87}
+ \pgfornamentvline{CNW}{CSW}{west}{87}
+ \pgfornamentvline{CNE}{CSE}{east}{87}
+ \end{tikzpicture}
+ \caption{A poem}
+ \end{figure}
+ \end{center}
+
+The poem is placed in a node named \Verb+Text+.
+Then we can place the corners relatively to four anchors of the node \Verb+Text+.
+Finally with the macros \doccmd{gfornamenthline} and \doccmd{gfornamentvline} it's possible to finish the frame.
+
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}[every node/.style={inner sep=0pt}]
+\node[text width=8cm,align=center](Text){%
+ In visions of the dark night ...} ;
+\node[shift={(-1cm,1cm)},anchor=north west](CNW)
+at (Text.north west) {\pgfornament[width=1.75cm]{61}};
+\node[shift={(1cm,1cm)},anchor=north east](CNE)
+at (Text.north east) {\pgfornament[width=1.75cm,symmetry=v]{61}};
+\node[shift={(-1cm,-1cm)},anchor=south west](CSW)
+at (Text.south west) {\pgfornament[width=1.75cm,symmetry=h]{61}};
+\node[shift={(1cm,-1cm)},anchor=south east](CSE)
+at (Text.south east) {\pgfornament[width=1.75cm,symmetry=c]{61}};
+\pgfornamenthline{CNW}{CNE}{north}{87}
+\pgfornamenthline{CSW}{CSE}{south}{87}
+\pgfornamentvline{CNW}{CSW}{west}{87}
+\pgfornamentvline{CNE}{CSE}{east}{87}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\label{sec:application_poem}
+
+% section application_poem (end)
+
+\section{Application : text inside a frame} % (fold)
+\label{sec:application_cadre}
+Firstly we build the frame with the help of nodes and the we place the text in a node relatively to others nodes.
+
+\begin{figure}[h!]
+\begin{center}
+\newcommand{\framesize}{8 cm}
+\begin{tikzpicture}[color=Maroon,
+ transform shape,
+ every node/.style={inner sep=0pt}]
+\node[minimum size=\framesize,fill=Beige!20](vecbox){};
+\node[anchor=north west] at (vecbox.north west){%
+ \pgfornament[width=0.2*\framesize]{63}};
+\node[anchor=north east] at (vecbox.north east){%
+ \pgfornament[width=0.2*\framesize,symmetry=v]{63}};
+\node[anchor=south west] at (vecbox.south west){%
+ \pgfornament[width=0.2*\framesize,symmetry=h]{63}};
+\node[anchor=south east] at (vecbox.south east){%
+ \pgfornament[width=0.2*\framesize,symmetry=c]{63}};
+\node[anchor=north] at (vecbox.north){%
+ \pgfornament[width=0.6*\framesize,symmetry=h]{46}};
+\node[anchor=south] at (vecbox.south){%
+ \pgfornament[width=0.6*\framesize]{46}};
+\node[anchor=north,rotate=90] at (vecbox.west){%
+ \pgfornament[width=0.6*\framesize,symmetry=h]{46}};
+\node[anchor=north,rotate=-90] at (vecbox.east){%
+ \pgfornament[width=0.6*\framesize,symmetry=h]{46}};
+\node[inner sep=6pt] (text) at (vecbox.center){\Huge Ornaments};
+\node[anchor=north] at (text.south){%
+ \pgfornament[width=0.5*\framesize]{75}};
+\node[anchor=south] at (text.north){%
+ \pgfornament[width=0.5*\framesize,symmetry=h]{75}};
+\end{tikzpicture}
+\caption{Text inside a frame with a tikzpicture's environment}
+\label{fig:tikze2}
+ \end{center}
+\end{figure}
+
+\begin{tkzexample}[code only,small]
+\newcommand{\framesize}{8 cm}
+\begin{tikzpicture}[color=Maroon,
+ transform shape,
+ every node/.style={inner sep=0pt}]
+\node[minimum size=\framesize,fill=Beige!10](vecbox){};
+\node[anchor=north west] at (vecbox.north west){%
+ \pgfornament[width=0.2*\framesize]{63}};
+\node[anchor=north east] at (vecbox.north east){%
+ \pgfornament[width=0.2*\framesize,symmetry=v]{63}};
+\node[anchor=south west] at (vecbox.south west){%
+ \pgfornament[width=0.2*\framesize,symmetry=h]{63}};
+\node[anchor=south east] at (vecbox.south east){%
+ \pgfornament[width=0.2*\framesize,symmetry=c]{63}};
+\node[anchor=north] at (vecbox.north){%
+ \pgfornament[width=0.6*\framesize,symmetry=h]{46}};
+\node[anchor=south] at (vecbox.south){%
+ \pgfornament[width=0.6*\framesize]{46}};
+\node[anchor=north,rotate=90] at (vecbox.west){%
+ \pgfornament[width=0.6*\framesize,symmetry=h]{46}};
+\node[anchor=north,rotate=-90] at (vecbox.east){%
+ \pgfornament[width=0.6*\framesize,symmetry=h]{46}};
+\node[inner sep=6pt] (text) at (vecbox.center){\Huge Ornaments};
+\node[anchor=north] at (text.south){%
+ \pgfornament[width=0.5*\framesize]{75}};
+\node[anchor=south] at (text.north){%
+ \pgfornament[width=0.5*\framesize,symmetry=h]{75}};
+\end{tikzpicture}
+\end{tkzexample} \index{transform shape} \index{color} \index{every node }
+% section application_cadre (end)
+
+\section{Application : other way to get a pentagon} % (fold)
+\label{sec:application_other_way_to_get_a_pentagon}
+
+We can place ornaments manually but the last method can also be used .
+ \sidenote{\tkzcname{getornamentlength} is ...}
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}[every node={anchor=center,inner sep=0pt}]
+ \node[regular polygon,
+ regular polygon sides=5,
+ minimum size=5cm,
+ inner sep=0pt](s) {};
+ \getornamentlength{s}{corner 1}{s}{corner 2}
+ \node[rotate=216] at (s.side 1)
+ {\pgfornament[width=\ornamentlen]{88}};
+ \node[rotate=288] at (s.side 2)
+ {\pgfornament[width=\ornamentlen]{88}};
+ \node[rotate=0] at (s.side 3)
+ {\pgfornament[width=\ornamentlen]{88}};
+ \node[rotate=72] at (s.side 4)
+ {\pgfornament[width=\ornamentlen]{88}};
+ \node[rotate=144] at (s.side 5)
+ {\pgfornament[width=\ornamentlen]{88}};
+\end{tikzpicture}
+\end{tkzexample} \index{rotate} \index{regular polygon}
+
+
+ \begin{marginfigure}[-1cm]
+ \begin{tikzpicture}[every node={anchor=center,inner sep=0pt}]
+ \node[regular polygon, regular polygon sides=5, minimum size=5cm,inner sep=0pt](s) {};
+ \getornamentlength{s}{corner 1}{s}{corner 2}
+ \node[rotate=216] at (s.side 1){\pgfornament[width=\ornamentlen]{88}};
+ \node[rotate=288] at (s.side 2){\pgfornament[width=\ornamentlen]{88}};
+ \node[rotate=0] at (s.side 3){\pgfornament[width=\ornamentlen]{88}};
+ \node[rotate=72] at (s.side 4){\pgfornament[width=\ornamentlen]{88}};
+ \node[rotate=144] at (s.side 5){\pgfornament[width=\ornamentlen]{88}};
+ \end{tikzpicture}
+ \caption{A pentagon}
+ \end{marginfigure}
+
+% section application_other_way_to_get_a_pentagon (end)
+
+\vspace{60pt}
+\section{Package \docpkg{tikzrput}} % (fold)
+\label{sec:package_rput}
+
+Pstricks Users are accustomed to placing objects with \doccmd{rput}\index{rput}, so I created a package \tkzname{\docpkg{tikzrput}} with only one macro \tkzcname{rput}. This macro is used as that of Pstricks with the same argument and options. Next to the document you are reading, you will find documentation on this package. The display of an object at the point $(x,y)$ is realized with \verb|\rput| of \emph{pstricks} like this :\par\medskip
+
+\begin{docspec}
+ \color{black} \doccmd{rput}[\docopt{refpoint}]\{\docarg{angle}\}%
+\docparen{x,y}\{\doccmd{pgfornament[\docopt{options}]\{\docarg{number}\}}\}
+\end{docspec}
+
+\subsection{Example with \tkzcname{rput}} % (fold)
+\label{sub:example_with_rput}
+
+\begin{tkzexample}[code only,small]
+\foreach \a in {0,4,...,356}{%
+ \rput(\a;2){$\bullet$}%
+ }
+ \rput[B](0;0){Circle}%
+\end{tkzexample} \Imacro{foreach}
+
+\begin{marginfigure}[-3cm]
+\hspace*{2cm}
+ \foreach \a in {0,16,...,356}{%
+ \rput(\a;2){$\bullet$}%
+ }
+ \rput[B](0;0){Circle}%
+
+ \vspace*{3cm}
+ \caption{Example with \tkzcname{rput}}
+\end{marginfigure}
+
+\subsection{Ornament with \tkzcname{rput}} % (fold)
+\label{sub:ornament_with_}
+
+\setlength{\fboxsep}{0pt}
+
+\begin{tkzexample}[code only,small]
+\begin{picture}(5,4)
+ \rput(2,1){\pgfornament[width=2cm]{1}}
+ \rput(4,2){\pgfornament[width=2cm]{2}}
+\end{picture}
+\end{tkzexample} \Imacro{rput}
+
+\begin{marginfigure}
+ \begin{picture}(5,4)
+ \rput(2,1){\pgfornament[width=2cm]{1}}
+ \rput(4,2){\pgfornament[width=2cm]{2}}
+ \end{picture}
+ \caption{Placement with rput}
+\end{marginfigure}
+
+\medskip
+
+Pour rappel,
+\begin{tkzexample}[code only,small]
+ \begin{tikzpicture}
+ \draw[help lines] (0,0) grid (6,4);
+ \draw [use as bounding box] (0,0) rectangle (6,4);
+ \node[inner sep=0pt,] at (2,1){%
+ \pgfornament[width=2cm,color=CadetBlue]{3}};
+ \node[anchor=south,inner sep=0pt] at (4,2){%
+ \pgfornament[color=CadetBlue,width=2cm]{3}};
+ \end{tikzpicture}
+ \caption{Placement with nodes}
+\end{tkzexample} \index{south} \index{help lines}
+
+
+\begin{marginfigure}
+ \begin{tikzpicture}
+ \draw[help lines] (0,0) grid (6,4);
+ \draw [use as bounding box] (0,0) rectangle (6,4);
+ \node[inner sep=0pt,] at (2,1){%
+ \pgfornament[width=2cm,color=CadetBlue]{3}};
+ \node[anchor=south,inner sep=0pt] at (4,2){%
+ \pgfornament[color=CadetBlue,width=2cm]{3}};
+ \end{tikzpicture}
+ \caption{...}
+\end{marginfigure} \Imacro{use as bounding box}
+% subsection ornament_with_ (end)
+% section package_rput (end)
+
+\section{Examples from psvectorian} % (fold)
+\label{sec:psvectorian}
+
+\subsection{Large Title -- e01}
+
+This example is given here :
+
+\url{http://melusine.eu.org/syracuse/pstricks/vectorian/e01.tex} .
+I use the macro \Verb|rput| from my package tikzrput to get the figure with the same code.
+I only replace \doccmd{psvectorian} by \doccmd{pgfornament}.
+
+ \begin{figure}
+ \begin{center}
+ \rput[r](-3pt,3pt){\pgfornament[scale=.35]{72}}
+ \Large{Motifs d'ornements}%
+ \rput[l](3pt,3pt){\pgfornament[scale=.35]{73}}\\
+ \rput(0,0){\pgfornament[scale=.5]{85}}
+ \end{center}
+ \caption{Example named e01 in psvectorian}
+ \end{figure}
+
+
+\begin{tkzexample}[code only,small]
+ \rput[r](-3pt,3pt){\pgfornament[scale=.35]{72}}
+ \large{Motifs d'ornements}%
+ \rput[l](3pt,3pt){\pgfornament[scale=.35]{73}}\\
+ \rput(0,0){\pgfornament[scale=.5]{85}}
+\end{tkzexample}
+
+
+\subsection{Cover with frame -- e02}
+This example is given here
+
+{\small\url{http://melusine.eu.org/syracuse/pstricks/vectorian/e02.tex}}
+
+I need \docenv{tikzpicture} and \doccmd{draw} to replace \docenv{pspicture} and \doccmd{psframe}.
+
+\begin{tkzexample}[code only,small]
+ \begin{tikzpicture}[color=blue]
+ \draw[use as bounding box,thin] (-5,-5) rectangle (5,5);
+ \node {\rput[tl](-3,5){\pgfornament[width=6cm]{71}}
+ \rput[bl](-3,-5){\pgfornament[width=6cm,,symmetry=h]{71}}
+ %coins
+ \rput[tl](-5,5){\pgfornament[width=2cm]{63}}
+ \rput[tr](5,5){\pgfornament[width=2cm,,symmetry=v]{63}}
+ \rput[bl](-5,-5){\pgfornament[width=2cm,,symmetry=h]{63}}
+ \rput[br](5,-5){\pgfornament[width=2cm,,symmetry=c]{63}}
+ % côtés
+ \rput[bl]{-90}(-5,3){\pgfornament[width=6cm]{46}}
+ \rput[bl]{90}(5,-3){\pgfornament[width=6cm]{46}}
+ %texte+soulignement+chapeau
+ \rput(0,0){\Huge Ornaments}
+ \rput[t](0,-0.5){\pgfornament[width=5cm]{75}}
+ \rput[b](0,0.5){\pgfornament[width=5cm]{69}}
+ % oiseaux
+ \rput[tr]{-30}(-1,2.5){\pgfornament[width=2cm]{57}}
+ \rput[tl]{30}(1,2.5){\pgfornament[width=2cm,symmetry=v]{57}}};
+ \end{tikzpicture}
+\end{tkzexample}
+
+% subsection example_with_rput (end)
+\vspace{30pt}
+\subsection{Little Title -- e03}
+This example is given here
+
+{\small\url{http://melusine.eu.org/syracuse/pstricks/vectorian/e03.tex}}
+
+I corrected a little problem with blank space around the text.
+
+\begin{tkzexample}[code only,small]
+\begin{center}
+ \rput[r](-2pt,6pt){\pgfornament[,height=1cm]{21}}
+ {\Large Texte}%
+ \rput[l](2pt,6pt){\pgfornament[height=1cm]{23}}
+\end{center}
+\end{tkzexample}
+
+\begin{marginfigure}
+\begin{center}
+\rput[r](-2pt,6pt){\pgfornament[height=1cm]{21}}%
+{\Large Title}%
+\rput[l](2pt,6pt){\pgfornament[height=1cm]{23}}%
+\end{center}
+\caption{Example named e03}
+\end{marginfigure}
+
+\vspace{30pt}
+\section{Advanced usage} % (fold)
+\label{sec:advanced_usage}
+
+\subsection{Look at the code} % (fold)
+\label{sub:look_at_the_code}
+The package first define the name of the family of ornament \tkzcname{\OrnamentsFamily} by default it's \tkzname{vectorian}.
+
+\begin{tkzexample}[code only,small]
+ \begin{tikzpicture}[%
+ baseline={([yshift=\pgfornamentydelta]%
+ current bounding box.\pgfornamentanchor)},pgfornamentstyle]
+ \pgftransformscale{\pgfornamentscale}%
+ \pgf@@ornament{#2}%
+ \end{tikzpicture}%
+\end{tkzexample}
+
+\medskip
+Options for placement are \tkzname{yshift=}\doccmd{pgfornamentydelta} and \doccmd{pgfornamentanchor} . Options for aspect are \docStyle{pgfornamentstyle} and \doccmd{pgfornamentscale} .
+The object is called by \doccmd{pgf@@ornament}. This macro define locally other macros used for creating the symbols and it loads the symbol with \Verb|\@@input \OrnamentsFamily#1.pgf.|.
+The symbol with the rank \Verb|#1| in the family \doccmd{OrnamentsFamily} is loaded.
+
+\begin{tkzexample}[code only,small]
+ \def\pgf@@ornament#1{%
+ \begingroup
+ \def\i{\pgfusepath{clip}}%
+ \let\o\pgfpathclose
+ \let\s\pgfusepathqfillstroke
+ \def\p ##1##2{\pgfqpoint{##1bp}{##2bp}}%
+ \def\m ##1 ##2 {\pgfpathmoveto{\p{##1}{##2}}}%
+ \def\l ##1 ##2 {\pgfpathlineto{\p{##1}{##2}}}%
+ \def\r ##1 ##2 ##3 ##4 {\pgfpathrectangle{\p{##1}{##2}}{%
+ \p{##3}{##4}}}%
+ \def\c ##1 ##2 ##3 ##4 ##5 ##6 {%
+ \pgfpathcurveto{\p{##1}{##2}}{\p{##3}{##4}}{\p{##5}{##6}}}%
+ \@@input \OrnamentsFamily#1.pgf%
+ \endgroup}%
+\end{tkzexample}
+
+\medskip
+A symbol : the next code is used to define the first object of the family \tkzname{am}. For example I created two very simple vector ornaments am1.pgf \sidenote{The next code defines this ornament\label{am1def}} and am2.pgf . Actually the family \tkzname{am} is only composed by two elements.
+
+The real definition of an object uses a lot of bytes, with the mechanism\thanks{I received an useful help from \emph{Enrico Gregorio}} described above, I can save the object like this :
+
+\begin{tkzexample}[code only,small]
+ \m 0 0
+ \c 50 0 150 0 200 16
+ \c 250 0 350 0 400 0
+ \l 400 1
+ \c 350 0 250 0 200 22
+ \c 150 0 50 0 0 1
+ \l 0 0
+ \s
+ \endinput
+\end{tkzexample}
+
+\vspace{30pt}
+\subsection{How to use the code differently} % (fold)
+\label{sub:how_to_use_the_code_differently}
+ For example you can create a new macro to call an object of another family and you can modifiy the object.
+
+ \begin{tkzexample}[code only,small]
+ \makeatletter
+ \newcommand{\callornament}[1]{%
+ \begingroup
+ \def\i{\pgfusepath{clip}}%
+ \let\o\pgfpathclose
+ \let\s\pgfusepathqfillstroke
+ \def\p ##1##2{\pgfqpoint{##1bp}{##2bp}}%
+ \def\m ##1 ##2 {\pgfpathmoveto{\p{##1}{##2}}}%
+ \def\l ##1 ##2 {\pgfpathlineto{\p{##1}{##2}}}%
+ \def\r ##1 ##2 ##3 ##4 {\pgfpathrectangle{\p{##1}{##2}}{%
+ \p{##3}{##4}}}%
+ \def\c ##1 ##2 ##3 ##4 ##5 ##6 {%
+ \pgfpathcurveto{\p{##1}{##2}}{\p{##3}{##4}}{\p{##5}{##6}}}%
+ \@@input #1\relax
+ \m 0 0 \l 400 0 \o\s
+ \endgroup}
+ \makeatother
+ \end{tkzexample}
+ \Imacro{pgfusepath} \Imacro{pgfpathclose} \Imacro{pgfqpoint}
+ \Imacro{pgfpathmoveto} \Imacro{pgfpathlineto} \Imacro{pgfpathcurveto}
+
+ \makeatletter
+ \newcommand{\callornament}[1]{%
+ \begingroup
+ \def\i{\pgfusepath{clip}}%
+ \let\o\pgfpathclose
+ \let\s\pgfusepathqfillstroke
+ \def\p ##1##2{\pgfqpoint{##1bp}{##2bp}}%
+ \def\m ##1 ##2 {\pgfpathmoveto{\p{##1}{##2}}}%
+ \def\l ##1 ##2 {\pgfpathlineto{\p{##1}{##2}}}%
+ \def\r ##1 ##2 ##3 ##4 {\pgfpathrectangle{%
+ \p{##1}{##2}}{\p{##3}{##4}}}%
+ \def\c ##1 ##2 ##3 ##4 ##5 ##6 {%
+ \pgfpathcurveto{\p{##1}{##2}}{\p{##3}{##4}}{\p{##5}{##6}}}%
+ \@@input #1\relax
+ \m 0 0 \l 400 0 \o\s
+ \endgroup}
+ \makeatother
+
+\begin{tkzexample}[code only,small]
+ \tikz[scale=.5] \callornament{am1.pgf} ;
+\end{tkzexample}
+
+
+\begin{marginfigure}
+ \tikz[scale=.3] \callornament{am1.pgf} ;
+ \caption{Usage of another family}
+\end{marginfigure}
+
+\vspace{30pt}
+\subsection{Define a symbol with Inskape} % (fold)
+\label{sub:define_a_symbol_with_inskape}
+You can create a symbol with \tkzname{Inskape}\index{Inskape}, then you save the symbol with the format \tkzname{LaTeX with \docpkg{Pstricks}}.
+
+
+\begin{tkzexample}[code only,very small]
+ %LaTeX with PSTricks extensions
+ %%Creator: inkscape 0.48.2
+ %%Please note this file requires PSTricks extensions
+\psset{xunit=.5pt,yunit=.5pt,runit=.5pt}
+\begin{pspicture}(744.09448242,1052.36218262)
+ {
+ \newrgbcolor{curcolor}{0 0 0}
+ \pscustom[linewidth=1,linecolor=curcolor]
+ {
+ \newpath
+ \moveto(231.428,665.714)
+ \curveto(235.869,658.981)(224.543,656.406)(220.238,658.333)
+ \curveto(208.570,663.555)(209.816,679.616)(216.666,688.095)
+ \curveto(228.919,703.261)(252.107,700.575)(265.000,687.857)
+ \curveto(283.919,669.192)(279.643,638.050)(260.952,620.952)
+ \curveto(236.039,598.163)(196.704,604.097)(175.476,628.809)
+ \curveto(148.762,659.906)(156.386,707.535)(187.142,732.857)
+ \curveto(224.393,763.525)(280.367,754.197)(309.761,717.380)
+ \curveto(344.402,673.993)(333.361,609.645)(290.476,576.190)
+ \curveto(240.963,537.565)(168.220,550.325)(130.714,599.285)
+ \curveto(88.097,654.917)(102.579,736.068)(157.619,777.619)
+ \curveto(219.364,824.233)(308.932,808.026)(354.523,746.904)
+ \curveto(405.139,679.048)(387.205,581.057)(319.999,531.428)
+ \curveto(294.222,512.3928)(262.917,501.397)(230.928,499.848)
+ }
+ }
+\end{pspicture}
+\end{tkzexample}
+
+
+You modify the code like this : \sidenote{You can also modify all the coordinates if you don't want to use \tkzcname{pgftransformscale} }
+
+\begin{tkzexample}[code only,very small]
+ \begingroup
+ \def\i{\pgfusepath{clip}}%
+ \def\k{\pgfusepath{stroke}}%
+ \let\o\pgfpathclose
+ \let\s\pgfusepathqfillstroke
+ \def\p #1#2{\pgfqpoint{#1bp}{#2bp}}%
+ \def\m #1 #2 {\pgfpathmoveto{\p{#1}{#2}}}%
+ \def\r #1 #2 #3 #4 {\pgfpathrectangle{\p{#1}{#2}}{%
+ \p{#3}{#4}}}%
+ \def\l #1 #2 {\pgfpathlineto{\p{#1}{#2}}}%
+ \def\c #1 #2 #3 #4 #5 #6 {%
+ \pgfpathcurveto{\p{#1}{#2}}{\p{#3}{#4}}{\p{#5}{#6}}}%
+ \begin{tikzpicture}
+ \pgftransformscale{.4}
+ \m 231.428 665.714
+ \c 235.869 658.981 224.543 656.406 220.238 658.333
+ \c 208.570 663.555 209.816 679.616 216.666 688.095
+ \c 228.919 703.261 252.107 700.575 265.000 687.857
+ \c 283.919 669.192 279.643 638.050 260.952 620.952
+ \c 236.039 598.163 196.704 604.097 175.476 628.809
+ \c 148.762 659.906 156.386 707.535 187.142 732.857
+ \c 224.393 763.525 280.367 754.197 309.761 717.380
+ \c 344.402 673.993 333.361 609.645 290.476 576.190
+ \c 240.963 537.565 168.220 550.325 130.714 599.285
+ \c 88.097 654.917 102.579 736.068 157.619 777.619
+ \c 219.364 824.233 308.932 808.026 354.523 746.904
+ \c 405.139 679.048 387.205 581.057 319.999 531.428
+ \c 294.222 512.392 262.917 501.397 230.928 499.848
+ \k
+ \end{tikzpicture}
+ \endgroup
+\end{tkzexample}
+
+
+\begin{marginfigure}[-5cm]
+ \begingroup
+ \def\i{\pgfusepath{clip}}%
+ \def\k{\pgfusepath{stroke}}%
+ \let\o\pgfpathclose
+ \let\s\pgfusepathqfillstroke
+ \def\p #1#2{\pgfqpoint{#1bp}{#2bp}}%
+ \def\m #1 #2 {\pgfpathmoveto{\p{#1}{#2}}}%
+ \def\r #1 #2 #3 #4 {\pgfpathrectangle{\p{#1}{#2}}{%
+ \p{#3}{#4}}}%
+ \def\l #1 #2 {\pgfpathlineto{\p{#1}{#2}}}%
+ \def\c #1 #2 #3 #4 #5 #6 {%
+ \pgfpathcurveto{\p{#1}{#2}}{\p{#3}{#4}}{\p{#5}{#6}}}%
+ \begin{tikzpicture}
+ \pgftransformscale{.5}
+ \m 231.428 665.714
+ \c 235.869 658.981 224.543 656.406 220.238 658.333
+ \c 208.570 663.555 209.816 679.616 216.666 688.095
+ \c 228.919 703.261 252.107 700.575 265.000 687.857
+ \c 283.919 669.192 279.643 638.050 260.952 620.952
+ \c 236.039 598.163 196.704 604.097 175.476 628.809
+ \c 148.762 659.906 156.386 707.535 187.142 732.857
+ \c 224.393 763.525 280.367 754.197 309.761 717.380
+ \c 344.402 673.993 333.361 609.645 290.476 576.190
+ \c 240.963 537.565 168.220 550.325 130.714 599.285
+ \c 88.097 654.917 102.579 736.068 157.619 777.619
+ \c 219.364 824.233 308.932 808.026 354.523 746.904
+ \c 405.139 679.048 387.205 581.057 319.999 531.428
+ \c 294.222 512.392 262.917 501.397 230.928 499.848
+ \k
+ \end{tikzpicture}
+ \endgroup
+ \caption{Symbol from Inskape}
+\end{marginfigure}
+
+\vspace{30pt}
+\subsection{From .eps or .mps file} % (fold)
+\label{sub:from_eps_or_mps_file}
+ Another symbol : \sidenote{ You can create a new family name \tkzname{symb} and you save the new code in a file \tkzname{symb1.pgf}. It's the first vector object of the new family}.
+\begin{tkzexample}[code only,very small]
+ \begin{tikzpicture}
+ \pgftransformscale{.4}
+ \m 71.43 238.86
+ \l 310.29 238.86
+ \l 310.29 332.57
+ \l 428.57 214.29
+ \l 310.29 96.00
+ \l 310.29 189.71
+ \l 71.43 189.71
+ \l 71.43 238.86
+ \s
+ \m 453.14 381.71
+ \l 500.00 381.71
+ \l 500.00 46.86
+ \l 453.14 46.86
+ \l 453.14 381.71
+ \s
+ \end{tikzpicture}
+\end{tkzexample}
+
+\begin{marginfigure}[-5cm]
+ \begingroup
+ \def\i{\pgfusepath{clip}}%
+ \def\k{\pgfusepath{stroke}}%
+ \let\o\pgfpathclose
+ \let\s\pgfusepathqfillstroke
+ \def\p #1#2{\pgfqpoint{#1bp}{#2bp}}%
+ \def\m #1 #2 {\pgfpathmoveto{\p{#1}{#2}}}%
+ \def\r #1 #2 #3 #4 {\pgfpathrectangle{\p{#1}{#2}}{%
+ \p{#3}{#4}}}%
+ \def\l #1 #2 {\pgfpathlineto{\p{#1}{#2}}}%
+ \def\c #1 #2 #3 #4 #5 #6 {%
+ \pgfpathcurveto{\p{#1}{#2}}{\p{#3}{#4}}{\p{#5}{#6}}}%
+ \begin{tikzpicture}
+ \pgftransformscale{.3}
+ \m 71.43 238.86
+ \l 310.29 238.86
+ \l 310.29 332.57
+ \l 428.57 214.29
+ \l 310.29 96.00
+ \l 310.29 189.71
+ \l 71.43 189.71
+ \l 71.43 238.86
+ \s
+ \m 453.14 381.71
+ \l 500.00 381.71
+ \l 500.00 46.86
+ \l 453.14 46.86
+ \l 453.14 381.71
+ \s
+ \end{tikzpicture}
+\endgroup
+ \caption{Symbol from .eps file}
+\end{marginfigure}
+%
+% % subsection define_a_symbol_with_inskape (end)
+% % subsection from_eps_or_mps_file (end)
+% \newpage
+
+\section{Problem} % (fold)
+\label{sec:problem}
+If you got an error like "Package tikz Error: + or - expected.", perhaps there is a conflict with the babel package.
+It's possible to resolve this type of conflict with \Verb|\shorthandoff{!}| just before your tikzpicture. You can also write in your preamble
+
+\begin{tkzexample}[code only,small]
+\tikzset{every picture/.prefix style={%
+ execute at begin picture=\shorthandoff{!}}}
+\end{tkzexample} \index{shorthandoff}
+
+and finally you can use \Verb|\usetikzlibrary{babel}| only with pgf 3.0
+In french, you can get an error with ! : , and ;. Babel makes these characters activ
+
+If you got a problem with the option \Verb|at| replace \Verb|at| by \Verb|ornament/at|.
+% section problem (end)
+
+\printindex
+
+\end{document}
+
+% \bibliography{sample-handout}
+% \bibliographystyle{plainnat}
+
+
+
+
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/doc/tikzrput.pdf b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/tikzrput.pdf
new file mode 100644
index 0000000000..40dea3991b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/tikzrput.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/doc/tikzrput.tex b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/tikzrput.tex
new file mode 100644
index 0000000000..7af7a27317
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/doc/tikzrput.tex
@@ -0,0 +1,581 @@
+\documentclass[a4paper]{tufte-handout}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\PassOptionsToPackage{dvipsnames,svgnames}{xcolor}
+\usepackage{graphicx,rotating}
+\usepackage[object=vectorian]{pgfornament}
+\usepackage{tkzexample,tikzrput,pict2e,picture}
+\usetikzlibrary{calc}
+\usepackage{calc}
+\usepackage{fancyvrb}
+\fvset{fontsize=\normalsize}
+\hypersetup{%
+pdfauthor = {Alain Matthes},
+pdftitle = {tikzrput},
+pdfsubject = {Documentation de tikzrput},
+colorlinks = true,
+linkcolor = orange,
+urlcolor = blue}
+
+\renewenvironment{theindex}
+ {\renewcommand\item{\par\hangindent 40pt}
+ \renewcommand\subitem{\item\hspace*{20pt}}
+ \renewcommand\subsubitem{\item\hspace*{30pt}}
+ \renewcommand\indexspace{\par \vskip 10pt plus 5pt minus 3pt\relax}
+ \section{\indexname}
+ \begin{multicols}{2}%
+ \parindent=0pt
+ \small%
+ }
+ {\end{multicols}%
+ }
+
+%\usetikzlibrary{external}\tikzexternalize
+
+\makeatletter
+\let\strippt\strip@pt
+\makeatother
+
+\title{The tikzrput package \thanks{\url{http://altermundus.com/pages/tkz/tikzrput/}}}
+
+\author{Alain Matthes}
+
+\usepackage{fourier,lmodern}
+
+%\geometry{showframe} % display margins for debugging page layout
+
+\setkeys{Gin}{width=\linewidth,totalheight=\textheight,keepaspectratio}
+\graphicspath{{graphics/}} % set of paths to search for images
+\usepackage{amsmath,lipsum} % extended mathematics
+\usepackage{array,booktabs} % book-quality tables
+\usepackage{multicol} % multiple column layout facilities
+\usepackage[babel=true]{microtype}
+\usepackage[english]{babel}
+
+% Standardize command font styles and environments
+\newcommand{\docparen}[1]{\ensuremath{(#1)}}% optional command argument
+
+\definecolor{fondpaille}{cmyk}{0,0,0.1,0}
+\pagecolor{fondpaille}
+\color{Maroon}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{numbackground}{fondpaille}
+\colorlet{codebackground}{Periwinkle!10}
+\colorlet{codeonlybackground}{Periwinkle!10}
+\colorlet{textcodecolor}{MidnightBlue} % Maroon
+\colorlet{numcolor}{gray}
+\newcommand*{\tkzname}[1]{\textbf{\texttt{\textcolor{orange!50!Maroon}{#1}}}}
+\newcommand*{\PGF}{\tkzname{PGF}}
+\newcommand*{\TIKZ}{\tkzname{Ti\emph{k}Z}}
+\newcommand*{\pdf}{\textsc{pdf}}
+\newcommand*{\pgfname}{\textsc{pgf}}
+\newcommand*{\tikzname}{Ti\emph{k}Z}
+\newcommand*{\pstricks}{\textsc{pstricks}} %
+\newcommand*{\tkzAttention}[3]{\ \\\llap{\textcolor{#3}{#1\hskip #2}}}
+\newcommand*{\tkzHand}{\ \\\llap{\textcolor{red}{\lefthand\hskip1em}}}
+\newcommand*{\tkzHandBomb}{\ \\\llap{\textcolor{red}{\lefthand\ \bomb\hskip1em}}}
+\newcommand*{\tkzBomb}{\ \\\llap{\textcolor{red}{\bomb\hskip1em}}}
+\newcommand*{\tkzTwoBomb}{\ \\\llap{\textcolor{red}{\bomb\ \bomb\hskip1em}}}
+\newcommand*{\tkzimp}[1]{\textbf{#1}}
+\newcommand*{\tkzcname}[1]{\textbf{\texttt{\textcolor{Maroon}{\textbackslash#1}}}}
+\newcommand*{\tkzhname}[1]{\textbf{\texttt{\textcolor{Maroon}{\textbackslash#1}}}}
+\providecommand\LaTeX{L\kern-.36em\raise.3ex\hbox{\sc a}\kern-.15em\TeX}
+
+% Macros for typesetting the documentation
+\newcommand{\hlred}[1]{\textcolor{Maroon}{#1}}% prints in red
+\newcommand{\hangleft}[1]{\makebox[0pt][r]{#1}}
+\newcommand{\hairsp}{\hspace{1pt}}% hair space
+\newcommand{\hquad}{\hskip0.5em\relax}% half quad space
+\newcommand{\TODO}{\textcolor{red}{\bf TODO!}\xspace}
+
+\newcommand{\tuftebs}{\symbol{'134}}% a backslash in tt type in OT1/T1
+\newcommand{\doccmdnoindex}[2][]{\texttt{\tuftebs#2}}% command name -- adds backslash automatically (and doesn't add cmd to the index)
+\newcommand{\doccmddef}[2][]{%
+ \hlred{\texttt{\tuftebs#2}}\label{cmd:#2}%
+ \ifthenelse{\isempty{#1}}%
+ {% add the command to the index
+ \index{#2 command@\protect\hangleft{\texttt{\tuftebs}}\texttt{#2}}% command name
+ }%
+ {% add the command and package to the index
+ \index{#2 command@\protect\hangleft{\texttt{\tuftebs}}\texttt{#2} (\texttt{#1} package)}% command name
+ \index{#1 package@\texttt{#1} package}\index{packages!#1@\texttt{#1}}% package name
+ }%
+}% command name -- adds backslash automatically
+
+\newcommand{\doccmd}[2][]{%
+ \texttt{\tuftebs#2}%
+ \ifthenelse{\isempty{#1}}%
+ {% add the command to the index
+ \index{#2 command@\protect\hangleft{\texttt{\tuftebs}}\texttt{#2}}% command name
+ }%
+ {% add the command and package to the index
+ \index{#2 command@\protect\hangleft{\texttt{\tuftebs}}\texttt{#2} (\texttt{#1} package)}% command name
+ \index{#1 package@\texttt{#1} package}\index{packages!#1@\texttt{#1}}% package name
+ }%
+}% command name -- adds backslash automatically
+
+\newcommand{\docopt}[1]{\ensuremath{\protect\langle}\textrm{\textit{#1}}\ensuremath{\protect\rangle}}% optional command argument
+
+\newcommand{\docarg}[1]{\textrm{\textit{#1}}}% (required) command argument
+
+\newenvironment{docspec}{\begin{quotation}\ttfamily\parskip0pt\parindent0pt\ignorespaces}{\end{quotation}}% command specification environment
+
+\newcommand{\docdist}[1]{\texttt{#1}\index{#1 distribution@\texttt{#1} distribution}\index{distributions!#1@\texttt{#1}}}% environment name
+
+\newcommand{\docenv}[1]{\texttt{#1}\index{#1 environment@\texttt{#1} environment}\index{environments!#1@\texttt{#1}}}% environment name
+
+\newcommand{\docenvdef}[1]{\hlred{\texttt{#1}}\label{env:#1}\index{#1 environment@\texttt{#1} environment}\index{environments!#1@\texttt{#1}}}% environment name
+
+\newcommand{\docoption}[2]{\texttt{#1}\index{#1 option@\texttt{#1} option}\index{options(#2)!#1@\texttt{#1}}}% package name
+
+\newcommand{\docpkg}[1]{\texttt{#1}\index{#1 package@\texttt{#1} package}\index{packages!#1@\texttt{#1}}}% package name
+
+\newcommand{\doccls}[1]{\texttt{#1}}% document class name
+
+\newcommand{\docclsopt}[1]{\texttt{#1}\index{#1 class option@\texttt{#1} class option}\index{class options!#1@\texttt{#1}}}% document class option name
+
+\newcommand{\docclsoptdef}[1]{\hlred{\texttt{#1}}\label{clsopt:#1}\index{#1 class option@\texttt{#1} class option}\index{class options!#1@\texttt{#1}}}% document class option name defined
+
+\newcommand{\docmsg}[2]{\bigskip\begin{fullwidth}\noindent\ttfamily#1\end{fullwidth}\medskip\par\noindent#2}
+
+\newcommand{\docfilehook}[2]{\texttt{#1}\index{file hooks!#2}\index{#1@\texttt{#1}}}
+\newcommand{\doccounter}[1]{\texttt{#1}\index{#1 counter@\texttt{#1} counter}}
+
+\newcommand{\docStyle}[1]{\texttt{#1}\index{#1 style(\TIKZ)@\texttt{#1} style(\TIKZ)}\index{styles(\TIKZ)!#1@\texttt{#1}}}% package name
+
+\newcommand*{\Imacro}[1]{\index{#1_1@\texttt{\textbackslash#1}}}%n
+
+\newcommand{\docfamily}[1]{\texttt{#1}\index{#1 family@\texttt{#1} family}\index{families!#1@\texttt{#1}}}% package name
+
+\newcommand{\docvo}[1]{\texttt{#1}\index{#1 vector ornament@\texttt{#1} vector ornament}\index{vector ornaments!#1@\texttt{#1}}}% package name
+\usepackage{makeidx}
+\makeindex
+
+\begin{document}
+
+\maketitle
+
+\begin{abstract}
+\noindent\lefthand\ (Version 0.2)
+
+This document describes the \LaTeX\ package \emph{\docpkg{tikzrput}}.
+It also provides some examples and comments on the package's use. Firstly, I would like to thank a lot of contributors of the site tex.stackexchange \sidenote{ \url{ http://tex.stackexchange.com/ }}. The idea to create this package comes from a question on tex.stackexchange. I would like to thanks also \textbf{Till Tantau} for creating the wonderful tool \href{http://sourceforge.net/projects/pgf/}{Ti\emph{k}Z}.
+
+
+\end{abstract}
+
+
+
+\section{How to install the package} % (fold)
+\label{sec:how_to_install}
+With \docdist{TeXLive}, if you need to install it by yourself, just download the file \docpkg{tikzrput.sty}, and place it in your TDS directory (~/texmf/tex/latex for Unix-like systems).
+
+With \docdist{MiKTeX}, copy the file \docpkg{tikzrput.sty} into \verb+C:\texmf\tex\latex+, then
+run {\color{red}\texttt{MiKTeX Options}} . In the {\color{black}\texttt{File name database}} section, click on {\color{red}\texttt{Refresh now}}.
+% section how_to_install (end)
+
+
+\section{How to use the package} % (fold)
+\label{sec:how_to_use}
+You only need to add \\
+{\color{black}\verb+\usepackage{tikzrput}+} in your preamble. The tikzrput package loads \TIKZ. If \docpkg{pstricks}\index{pstricks} is already loaded, the macro \Imacro{rput} is unchanged. The macro \doccmd{rput} of this package is only active with {\color{red}\texttt{pdflatex}\index{pdflatex}}.
+
+
+\section{The macro} % (fold)
+\label{sec:the_main_macro}
+The \doccmd{rput} macro can be used to place objects.
+The simple form of the \doccmd{rput} macro used below works like the \Verb|\put| macro of the \LaTeX\ \docenv{picture} \index{picture} environment and gives you the ability to place and rotate whatever you want.
+
+Below you can see the common useage of this command. \Verb|\rput(x,y){text}| to print text at the ref point \Verb|(x,y)|.
+In the following example the usage of this command is shown practically.
+
+\begin{tkzexample}[code only]
+\documentclass{article}
+\usepackage{tikzrput}
+\begin{document}
+ ...
+ see code below
+ ...
+\end{document}
+\end{tkzexample}
+
+\begin{tkzexample}[latex=5cm]
+baseline->\rput(12,1){%
+\begin{tikzpicture}
+ \node[draw]{First Example};
+\end{tikzpicture}}
+\rput(12,0){\fbox{%
+ Second example}}
+\end{tkzexample}
+
+\vspace{12pt}
+
+
+"(x,y)" is the position where "stuff" will be placed."Refpoint" gives the reference point of stuff (text or picture and so on).
+
+\begin{tkzexample}[latex=5cm]
+baseline->
+\rput{45}(12,0){\fbox{Stuff}}
+\end{tkzexample}
+
+
+
+The specifications of the \Verb|\rput| command is:
+\begin{docspec}
+\large
+ \color{blue!50!black} \doccmd{rput[\docopt{options}]\{\docopt{rotation}\}(\docarg{refpoint})\{\docarg{stuff}\}}
+\end{docspec}
+
+The first mandatory argument (in parenthesis) is the coordinate pair of the point where the stuff is placed.\\
+The second mandatory argument (in curly braces) is the stuff to place.\\
+
+The first optional argument is given in brackets and it determines the position of the bounding box of the object to place with respect to the "refpoint" (in parenthesis). The admissible values are mc, t, tl, tr, b, bl, br and B, Br, Bl. The default is mc meaning middle – center , t is for top of the box, b for bottom and B for baseline; r and l are for right and left. We can call these points, the anchors.\\
+
+The second optional argument is given in curly braces. It is a number that stands for the rotation angle.
+
+
+What is the baseline ?
+
+As you probably know \TeX\ puts all its objects in boxes. A box has a baseline that determines height and depth.
+\begin{marginfigure}
+ \centering
+ \includegraphics[width=1\textwidth]{baseline.png}
+ \caption{The baseline}
+ \label{fig:baseline}
+\end{marginfigure}
+
+ \TeX\ uses the baselines for fixing together the boxes to others. A box has ten anchors:\\
+ - mc the middle-center, the center point,\\
+ - bl br tl tr are the 4 corners (for bottom left and bottom right top left and top right),\\
+ - two anchors Bl and Br (Baseline left and right),\\
+ - the vertical line through the middle-center defines three other points t, B and b on the top line, the baseline and the bottom line.
+
+\doccmd{rput} command will place the box defined by using the reference point and placing on this, one of the ten anchors box.
+\begin{marginfigure}
+ \centering
+ \includegraphics[width=1\textwidth]{TeX_box.png}
+ \caption{Anchors of a box}
+ \label{}
+\end{marginfigure}
+
+\newpage
+\subsection{Arguments and options} % (fold)
+\label{sub:the_options}
+
+Available anchors:
+
+\begin{table}[h]\index{tikzrput!options}
+{ \small \begin{tabular}{lll}
+ \toprule
+ name & default & definition \\
+\midrule
+\docoption{mc}{rput} & \{ \} & middle center mc or empty\\
+\docoption{B}{rput} & \{ \} & baseline center\\
+\docoption{Bl}{rput} & \{ \} & baseline left \\
+\docoption{Br}{rput} & \{ \} & baseline right \\
+\docoption{t}{rput} & \{ \} & top center \\
+\docoption{tl}{rput} & \{ \} & top left \\
+\docoption{tr}{rput} & \{ \} & top right\\
+\docoption{b}{rput} & \{ \} & bottom center \\
+\docoption{bl}{rput} & \{ \} & bottom left\\
+\docoption{br}{rput} & \{ \} & bottom right \\
+\midrule
+\docoption{rotation}{rput} & 0 & angle of rotation around ref point \\
+\bottomrule
+\end{tabular} }
+\caption{List of options for the pgfornament macro.}
+ \label{tab:pgfornament-options}
+\end{table}
+
+ The angle of \docopt{rotation} is expressed in degrees...\\
+ The \docarg{refpoint} is defined by two coordinates \Verb|(x,y)|.
+% subsection the_options (end)
+
+
+\newpage
+
+\section{Examples} % (fold)
+\label{sec:examples}
+\subsection{ex 1 Ornaments patterns} % (fold)
+\label{sub:ex_1}
+
+
+\begin{tkzexample}[code only,small]
+\hspace{1cm}%
+\rput[r](-3pt,3pt){\pgfornament[scale=.2]{72}}
+ {Ornaments patterns}%
+\rput[l](3pt,3pt){\large\pgfornament[scale=.2]{73}}
+\end{tkzexample}
+\begin{marginfigure}
+\hspace{1cm}\rput[r](-3pt,3pt)
+ {\pgfornament[scale=.2]{72}}
+ {Ornaments patterns}%
+ \rput[l](3pt,3pt)
+ {\large\pgfornament[scale=.2]{73}}
+\end{marginfigure}
+% subsection ex_1 (end)
+% section examples (end)
+
+\subsection{ex 2 Ornaments} % (fold)
+\label{sub:ex_2_ornaments}
+
+\begin{tkzexample}[code only,small]
+\documentclass{scrartcl}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[dvipsnames]{xcolor}
+\usepackage{tikzrput}
+\usepackage{pgfornament}
+\begin{document}
+\tikzset{pgfornamentstyle/.style={%
+ draw = Periwinkle,
+ fill = SpringGreen}}
+\unitlength=1cm
+\begin{picture}(10,10)%
+ \color{blue}%
+ \put(0,0){\framebox(10,10){%
+ \rput[tl](-3,5){\pgfornament[width=6cm]{71}}%
+ \rput[bl](-3,-5){\pgfornament[width=6cm,
+ symmetry=h]{71}}%
+ \rput[tl](-5,5){\pgfornament[width=2cm]{63}}%
+ \rput[tr](5,5){\pgfornament[width=2cm,
+ symmetry=v]{63}}%
+ \rput[bl](-5,-5){\pgfornament[width=2cm,
+ symmetry=h]{63}}%
+ \rput[br](5,-5){\pgfornament[width=2cm,
+ symmetry=c]{63}}%
+ \rput[bl]{-90}(-5,3){\pgfornament[width=6cm]{46}}%
+ \rput[bl]{90}(5,-3){\pgfornament[width=6cm]{46}}%
+ \rput(0,0){\Huge \color{MidnightBlue} Ornaments}%
+ \rput[t](0,-0.5){\pgfornament[width=5cm]{75}}%
+ \rput[b](0,0.5){\pgfornament[width=5cm]{69}}%
+ \rput[tr]{-30}(-1,2.5){\pgfornament[width=2cm]{57}}%
+ \rput[tl]{30}(1,2.5){\pgfornament[width=2cm,symmetry=v]{57}}}}%
+\end{picture}
+\end{document}
+\end{tkzexample}
+\begin{marginfigure}
+ \centering
+ \includegraphics[width=1\textwidth]{ornaments.png}
+ \caption{caption}
+ \label{fig:ornaments}
+\end{marginfigure}
+% subsection ex_2_blue_ornament (end)
+
+\subsection{ex3 Picture} % (fold)
+\label{sub:ex3_picture}
+\begin{tkzexample}[code only,small]
+\documentclass{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[dvipsnames]{xcolor}
+\usepackage{pict2e,tikzrput}
+\usepackage[calc]{picture}
+\usepackage[]{fourier}
+\begin{document}
+
+\setlength{\parindent}{0pt}
+\setlength{\unitlength}{1cm}
+ \begin{picture}(3,3)
+ \put(0,0){\framebox(3,3){}}%
+ \color{blue}%
+ \thicklines
+ \put(0,0){\line(1,1){3}}
+ \color{MidnightBlue}%
+ \rput[b]{45}(2,2){\large \textbf{line}}
+ \end{picture}%
+
+\end{document}
+\end{tkzexample}
+\begin{marginfigure}
+\centering
+ \setlength{\parindent}{0pt}
+ \setlength{\unitlength}{1cm}
+ \begin{picture}(3,3)
+ \put(0,0){\framebox(3,3){}}%
+ \color{blue}%
+ \thicklines
+ \put(0,0){\line(1,1){3}}
+ \color{MidnightBlue}%
+ \rput[b]{45}(2,2){\large \textbf{line}}
+ \end{picture}%
+ \caption{with picture}
+ \label{fig:picture}
+\end{marginfigure}
+% subsection ex3_picture (end)
+
+\subsection{ex 4 Tikzpicture} % (fold)
+\label{sub:ex_4_tikzpicture}
+\begin{tkzexample}[code only,small]
+\documentclass{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[dvipsnames]{xcolor}
+\usepackage{pict2e,tikzrput}
+\usepackage[calc]{picture}
+\usepackage{fourier}
+\begin{document}
+
+\hrule
+baseline%
+\begin{tikzpicture}[baseline=(current bounding box.south west)]
+ \draw[help lines] (0,0) grid (3,3) ;
+ \draw[use as bounding box,color=CadetBlue](0,0)rectangle(3,3);
+ \rput (2,2){Perfect}%
+\end{tikzpicture}%
+baseline%
+
+\end{document}
+\end{tkzexample}
+\begin{marginfigure}
+\hrule
+baseline%
+\begin{tikzpicture}[baseline=(current bounding box.south west)]
+ \draw[help lines] (0,0) grid (3,3) ;
+ \draw[use as bounding box,color=CadetBlue] (0,0) rectangle (3,3) ;
+ \rput (2,2){Perfect}%
+\end{tikzpicture}%
+baseline%
+ \caption{with tikzpicture}
+ \label{fig:tikzpicture}
+\end{marginfigure}
+% subsection ex_4_tikzpicture (end)
+\newpage
+\subsection{ex 5 From pstricks doc} % (fold)
+\label{sub:ex_5_from_pstricks_doc}
+\begin{marginfigure}
+ \begin{tikzpicture}[baseline=(current bounding box.north)]
+ \draw[help lines] (-1,0) grid (1,5) ;
+ \foreach \x/\y in {0/5,-1/3,1/2,0.5/1} {%
+ \rput(\x,\y ){\tikz\draw[fill=red] circle(2pt);};}
+ \rput(0,5){Center,Middle}
+ \rput[bl](-1,3){$\underbrace{\text{bottom,left}}_{\text{Really!}}$}
+ \rput[Br](1,2){$\underbrace{\text{Baseline,right}}_{\text{Really!}}$}
+ \rput[tr]{45}(0.5,1)
+ {\parbox{5cm}{\flushright Rotated\\
+ by $45^{\circ}$}}
+ \end{tikzpicture}
+ \caption{from pstricks}
+ \label{fig:from pstricks}
+\end{marginfigure}
+ As we have already seen, the \Verb+{\rput}+ macro can be used to place objects.
+ The second mandatory argument (in curly braces) is the stuff to place the first
+ mandatory argument (in parenthesis) is the coordinate pair of the point where
+ the stuff is placed.
+ Now we turn to the optional arguments of the \Verb+{\rput}+ macro.
+ The first one is given in brackets. It determines the justification of the
+ bounding box of the object to place with respect to the point given in paren-
+ thesis. The admissible values are the same as the values for the option origin
+ of the \verb+{\includegraphics}+ macro. For an instance \Verb+{[br]}+ for bottom-right.
+ The default is mc meaning middle - center.
+ The second optional argument is given in curly braces just before the left
+ parenthesis. It is a number that stands for the rotation angle as illustrated in
+ the last instance of the \Verb+{\rput}+ macro on the slide.
+ The two optional arguments make \Verb+{\rput}+ more
+ exible than the \Verb+{\put}+ macro
+ of the picture environment.
+ \rput[b](-2,0){%
+ \begin{tikzpicture}[%
+ every node/.style={inner sep=0pt}]
+ \tikzset{image/.style={circle,
+ fill=red,
+ minimum size = 4pt,
+ inner sep = 0pt,
+ outer sep = 1pt}
+ }
+ \node[inner sep = 1cm] (wrapper){\tikz
+ \node(image) {\pgfornament[scale=1.5,opacity=0.2]{1}};};
+ \end{tikzpicture}}
+
+\begin{tkzexample}[code only,small]
+ \rput[b](-2,0){%
+ \begin{tikzpicture}[%
+ every node/.style={inner sep=0pt}]
+ \tikzset{image/.style={circle,
+ fill=red,
+ minimum size = 4pt,
+ inner sep = 0pt,
+ outer sep = 1pt}
+ }
+ \node[inner sep = 1cm] (wrapper){\tikz
+ \node(image) {\pgfornament[scale=1.5,opacity=0.2]{1}};};
+ \end{tikzpicture}}
+\end{tkzexample}
+% subsection ex_5_from_pstricks_doc (end)
+
+\subsection{ex 6 From pstricks again} % (fold)
+\label{sub:ex_6_from_pstricks_again}
+\def\myEye{
+\begin{tikzpicture}
+ \filldraw (-0.4,1.5)--(0.7,1.8)--(0.2,2.2)--(-0.5,1.6)--cycle;
+ \draw [clip] (0,0) circle [x radius=.8cm, y radius=1.5cm];
+ \fill[MidnightBlue] (0,-1) circle [radius=1cm];
+\end{tikzpicture}
+}
+\begin{marginfigure}
+\rput{30}(2,-6){Tu as de beaux yeux !}
+\rput(3,-3){\myEye}
+\rput(1,-3){\reflectbox{\myEye}}
+ \caption{from pstricks again}
+ \label{fig:from pstricks again}
+\end{marginfigure}
+\begin{tkzexample}[code only,small]
+\documentclass{scrartcl}
+\PassOptionsToPackage{dvipsnames,svgnames}{xcolor}
+\usepackage{tikzrput}
+\begin{document}
+
+\rput{30}(7,-5){Tu as de beaux yeux !}
+\rput(8,-2){\myEye}
+\rput(6,-2){\reflectbox{\myEye}}
+ \end{document}
+\end{tkzexample}
+\def\myEye{
+\begin{tikzpicture}
+ \filldraw (-0.4,1.5)--(0.7,1.8)--(0.2,2.2)--(-0.5,1.6)--cycle;
+ \draw [clip] (0,0) circle [x radius=.8cm, y radius=1.5cm];
+ \fill[MidnightBlue] (0,-1) circle [radius=1cm];
+\end{tikzpicture}
+}
+
+
+% subsection ex_6_from_pstricks_again (end)
+
+\subsection{ex 7 Ancres} % (fold)
+\label{sub:ex_7_ancres}
+Utilisation des ancres
+
+\begin{tkzexample}[code only,small]
+\documentclass{scrartcl}
+\PassOptionsToPackage{dvipsnames,svgnames}{xcolor}
+\usepackage{tikzrput}
+\begin{document}
+-->\rput[] (5,0){\tikz \draw[blue] (0,0) rectangle +(1,2);}
+ \rput[tl] (5,0){\tikz \draw[red] (0,0) rectangle +(1,2);}
+ \rput[br] (5,0){\tikz \draw[green] (0,0) rectangle +(1,2);}
+ \rput[Bl] (5,0){\tikz \draw[orange](0,0) rectangle +(1,2);}
+\end{document}
+\end{tkzexample}
+\begin{marginfigure}
+-->\rput[] (5,0) {\tikz \draw[blue] (0,0) rectangle +(1,2);}
+ \rput[tl] (5,0){\tikz \draw[red] (0,0) rectangle +(1,2);}
+ \rput[br] (5,0){\tikz \draw[green] (0,0) rectangle +(1,2);}
+ \rput[Bl] (5,0){\tikz \draw[orange](0,0) rectangle +(1,2);}
+ \caption{ancres}
+ \label{fig:ancres}
+\end{marginfigure}
+
+% subsection ex_7_ancres (end)
+
+
+\newpage
+
+\printindex
+
+\end{document}
+
+
+
+
+
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/am/am1.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/am/am1.pgf
new file mode 100644
index 0000000000..3e93c85a52
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/am/am1.pgf
@@ -0,0 +1,10 @@
+\m 0 0
+\c 50 0 150 0 200 16
+\c 250 0 350 0 400 0
+\l 400 1
+\c 350 0 250 0 200 22
+\c 150 0 50 0 0 1
+\l 0 0
+\s
+\endinput
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/am/am2.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/am/am2.pgf
new file mode 100644
index 0000000000..eff23a3cb1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/am/am2.pgf
@@ -0,0 +1,64 @@
+\r 0 0 111 113
+\i
+\m 109.5757 110.0066
+\c 107.5994 110.3378 94.3775 111.5618 88.9032 105.7442
+\c 86.2525 107.3474 82.368 108.2338 77.204 107.4194
+\c 76.9306 107.3746 76.6752 107.309 76.4095 107.2562
+\c 74.0282 110.1474 69.1962 112.6466 63.5696 110.2754
+\c 56.2571 107.1906 57.0563 99.2498 60.9407 97.3666
+\c 61.1939 97.2434 61.4368 97.1842 61.6837 97.1074
+\c 59.8767 95.1714 57.9298 93.013 55.7149 90.6546
+\c 53.2946 91.0658 50.9103 91.8018 48.6024 92.7922
+\c 49.5274 94.069 50.2672 95.6338 50.6994 97.5922
+\c 52.2219 104.5234 46.3547 112.9042 37.8269 113.1314
+\c 34.04 113.2338 30.4837 111.9186 27.7211 109.6194
+\c 21.9798 114.3122 16.6579 113.269 14.2704 110.3874
+\c 11.3322 106.8418 12.6141 100.5634 12.6141 100.5634
+\c 12.6141 100.5634 6.4758 102.1074 3.1134 98.9554
+\c 0.6002 96.5954 -0.596 90.9234 4.5728 85.0834
+\c 1.5008 82.0738 -0.2483 77.8322 0.0282 73.3266
+\c 0.5485 64.8098 9.1206 59.237 15.9978 60.9938
+\c 18.5274 61.6434 20.4306 62.7602 21.7962 64.1714
+\c 22.7821 61.8482 23.5024 59.4466 23.8853 57.0082
+\c 21.6211 54.7122 19.5269 52.6818 17.643 50.8178
+\c 17.5698 51.381 17.4243 51.9682 17.1173 52.5666
+\c 15.1517 56.4098 7.1954 57.0418 4.2666 49.669
+\c 1.9883 43.9458 4.6603 39.1282 7.6314 36.8338
+\c 7.3899 35.981 7.2008 35.0978 7.0859 34.1698
+\c 6.4485 28.9778 7.4666 25.125 9.1618 22.5314
+\c 3.5352 16.8594 5.211 3.6914 5.6077 1.7282
+\c 6.068 -0.5438 8.5206 -0.9934 8.0829 2.957
+\c 7.6477 6.8482 5.9406 11.349 7.4915 17.357
+\c 8.0141 19.3874 8.8078 20.7938 9.6954 21.781
+\c 10.7494 20.429 11.9923 19.4946 13.2462 18.9842
+\c 15.7899 17.9506 18.272 19.0802 18.6509 21.4562
+\c 19.0261 23.8306 16.5149 25.957 12.3702 24.5938
+\c 11.7792 24.389 11.2338 24.125 10.7328 23.8162
+\c 9.3642 26.5282 8.7806 30.5778 9.947 35.5778
+\c 10.0181 35.557 10.0923 35.5266 10.161 35.509
+\c 16.1923 33.9778 27.7126 37.7634 25.6539 54.2338
+\c 25.5392 55.1522 25.3806 56.0434 25.2048 56.9218
+\c 28.3509 60.293 30.9048 64.0754 31.5509 69.6818
+\c 33.0571 82.7538 24.7742 89.4946 15.4752 89.4818
+\c 11.8634 89.4754 8.6549 88.3106 6.1008 86.4002
+\c 3.4338 90.1474 3.3438 94.3042 5.0022 96.1362
+\c 6.9002 98.2338 9.4024 99.0002 14.7189 98.7714
+\c 14.3758 104.085 15.0696 106.6194 17.1259 108.5634
+\c 18.8094 110.1538 22.5579 110.2114 26.1525 108.0946
+\c 23.6118 105.2754 22.0704 101.469 22.2126 97.1378
+\c 22.5165 87.8434 29.5392 79.797 42.5494 81.7506
+\c 48.6024 82.6594 52.44 85.7218 55.904 89.3554
+\c 57.0594 89.1218 58.2338 88.9218 59.4579 88.7954
+\c 75.9642 87.0818 79.5072 98.6786 77.8501 104.6786
+\c 77.8261 104.7666 77.7847 104.8562 77.7547 104.9442
+\c 81.8751 105.725 85.2696 105.2386 87.6767 104.1298
+\c 87.3837 103.6194 87.1392 103.0658 86.9539 102.469
+\c 85.7352 98.2786 87.9439 95.8418 90.3048 96.2978
+\c 92.665 96.7538 93.7103 99.277 92.5907 101.781
+\c 92.0376 103.0178 91.0603 104.229 89.672 105.2338
+\c 90.6306 106.1586 92.0048 106.997 94.0175 107.5906
+\c 99.9688 109.3458 104.5251 107.7938 108.4322 107.4946
+\c 112.3931 107.1874 111.8626 109.629 109.5757 110.0066
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian1.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian1.pgf
new file mode 100644
index 0000000000..aedc5cd5cc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian1.pgf
@@ -0,0 +1,27 @@
+\m 109.8516 58.404
+\c 102.7108 70.7583 88.4258 67.3824 82.4704 64.0235
+\c 76.5236 60.6518 72.9472 60.6518 69.3794 75.2496
+\c 65.7988 89.856 49.1309 90.9713 38.418 90.9713
+\c 27.7056 90.9713 32.4678 106.6973 32.4678 106.6973
+\c 9.8485 79.7409 25.3228 66.2628 38.418 62.8953
+\c 51.5219 59.5279 49.2228 58.0494 34.8502 49.4172
+\c 21.7545 41.5499 27.7056 31.4434 24.1335 19.0934
+\c 24.1335 19.0934 20.849 3.6794 -0.0127 19.4823
+\c 0. 19.4823 10.1403 -0.4017 36.0399 0
+\c 76.5275 0.6196 82.4704 29.1999 82.4704 32.5673
+\c 82.4704 35.939 82.4704 42.6781 87.2365 39.3107
+\c 91.9932 35.939 99.1383 30.3195 99.1383 30.3195
+\c 119.3743 21.3326 136.0503 48.2933 136.0503 48.2933
+\c 119.3867 44.9173 116.9958 46.0498 109.8516 58.404
+\o
+\s
+\m 105.0731 80.4119
+\c 118.7521 83.181 121.1397 92.873 121.1397 97.7318
+\c 121.1397 102.5778 119.1132 104.7401 115.9979 104.3085
+\c 112.8767 103.8726 113.4651 100.2873 113.4651 100.2873
+\c 115.0424 90.4457 110.6144 86.5698 98.2891 83.8947
+\c 85.9635 81.211 83.7516 74.3437 83.7516 74.3437
+\c 87.4827 79.2025 91.3928 77.6427 105.0731 80.4119
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian10.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian10.pgf
new file mode 100644
index 0000000000..134d695dcb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian10.pgf
@@ -0,0 +1,160 @@
+\m -0.903 0
+\l 80.4808 0
+\l 80.4808 99.326
+\l -0.903 99.326
+\o
+\i
+\m 39.7745 82.4854
+\c 44.0609 82.4854 47.5329 85.8134 47.5329 89.9174
+\c 47.5329 93.2566 45.2401 96.079 42.0769 97.0182
+\l 42.0769 99.327
+\c 42.0769 99.327 40.6961 98.1414 39.5761 99.327
+\c 38.2609 98.2086 36.8145 98.9318 36.8145 98.9318
+\l 36.8145 96.7894
+\c 33.9937 95.6742 32.0113 93.0198 32.0113 89.9174
+\c 32.0113 85.8134 35.4865 82.4854 39.7745 82.4854
+\o
+\s
+\m -0.903 0
+\l 80.4808 0
+\l 80.4808 99.326
+\l -0.903 99.326
+\o
+\i
+\m 46.5809 51.5862
+\c 46.6801 54.8422 45.1985 57.5014 46.7809 59.2822
+\c 47.9649 60.6134 49.7873 59.6278 50.2337 59.9222
+\c 51.0721 60.367 50.5281 61.7494 48.3585 61.7494
+\c 44.1153 61.503 42.9297 57.8022 42.7841 51.5862
+\c 42.6897 47.6822 41.4161 46.751 40.5713 46.5606
+\c 40.5681 46.679 40.5649 46.7958 40.5633 46.8982
+\c 40.4321 53.0806 40.7089 76.7462 40.7089 76.7462
+\c 42.3873 78.1302 41.2545 80.3238 41.9713 80.4726
+\c 42.6833 80.6198 43.1537 80.495 44.1873 78.4982
+\c 45.2257 76.4998 45.8673 74.799 46.2849 74.823
+\c 46.7057 74.847 46.7217 77.0102 46.2369 78.6214
+\c 45.6209 80.671 44.9793 80.8662 45.5457 81.2854
+\c 46.1137 81.7046 47.1217 81.6646 49.3201 80.2022
+\c 51.3201 78.8662 52.1569 78.0534 52.4273 78.2518
+\c 52.6993 78.4486 51.9329 80.4454 50.7521 81.5078
+\c 49.5665 82.567 48.9185 83.143 46.6801 83.143
+\c 44.4449 83.143 42.9297 81.1046 39.8385 81.1046
+\l 39.6769 81.1046
+\c 36.5857 81.1046 35.0689 83.143 32.8337 83.143
+\c 30.5969 83.143 29.9489 82.567 28.7649 81.5078
+\c 27.5809 80.4454 26.8145 78.4486 27.0865 78.2518
+\c 27.3585 78.0534 28.1953 78.8662 30.1953 80.2022
+\c 32.3905 81.6646 33.4017 81.7046 33.9681 81.2854
+\c 34.5361 80.8662 33.8945 80.671 33.2785 78.6214
+\c 32.7905 77.0102 32.8097 74.847 33.2273 74.823
+\c 33.6481 74.799 34.2913 76.4998 35.3217 78.4982
+\c 36.3617 80.495 36.8305 80.6198 37.5457 80.4726
+\c 38.2609 80.3238 37.1265 78.1302 38.8017 76.7462
+\c 38.8017 76.7462 39.0817 53.0806 38.9505 46.8982
+\c 38.9489 46.8038 38.9473 46.7014 38.9457 46.591
+\c 38.1041 46.8502 36.9489 47.8822 36.8641 51.5862
+\c 36.7169 57.8022 35.5297 61.503 31.2897 61.7494
+\c 29.1185 61.7494 28.5745 60.367 29.4145 59.9222
+\c 29.8561 59.6278 31.6833 60.6134 32.8673 59.2822
+\c 34.4497 57.5014 32.9649 54.8422 33.0641 51.5862
+\c 33.1569 48.5606 35.0801 44.9846 38.9137 44.7334
+\c 38.7777 34.719 38.5585 3.2422 38.5585 2.0358
+\c 38.5585 0.7206 39.2305 -0.001 39.7553 -0.001
+\c 40.2817 -0.001 40.9585 0.7206 40.9585 2.0358
+\c 40.9585 3.2422 40.7361 34.6982 40.5985 44.7206
+\c 44.5217 44.8998 46.4897 48.527 46.5809 51.5862
+\o
+\s
+\m 79.5665 12.759
+\c 79.3697 14.7318 77.6561 14.3398 77.7217 13.087
+\c 78.4497 6.3142 73.3169 3.2198 68.7121 3.287
+\c 64.1089 3.351 59.8961 8.8774 52.5297 8.8774
+\c 46.6529 8.8774 43.7105 5.6166 42.7601 4.2982
+\c 42.7841 7.3446 43.0017 12.775 44.0561 18.975
+\c 44.0769 18.975 44.9681 22.1318 49.3089 24.007
+\c 53.6497 25.8822 56.6097 25.6854 59.5713 28.2518
+\c 62.5281 30.8166 64.9969 34.367 69.8337 34.6646
+\c 71.4097 34.9606 71.2129 36.2422 69.3361 36.143
+\c 67.4641 36.0454 59.0769 35.0598 53.0561 30.9142
+\c 48.9425 28.0822 46.2161 24.8838 44.8369 22.951
+\c 45.4401 25.671 46.2161 28.4678 47.2145 31.223
+\c 51.8513 43.9894 58.5425 51.0246 61.2545 53.4966
+\c 62.2193 53.607 63.3985 53.599 63.5505 52.951
+\c 63.8145 51.8326 63.1201 50.879 61.5457 50.255
+\c 59.9649 49.6278 61.9713 48.8086 63.7809 49.5638
+\c 65.5873 50.3206 66.0497 49.2022 65.0641 47.4582
+\c 64.0769 45.7142 62.4305 44.5638 63.4833 44.3318
+\c 64.5377 44.103 66.8369 45.6502 67.8241 48.2166
+\c 68.8113 50.7814 68.2209 51.7366 67.2673 52.655
+\c 66.3137 53.5766 65.1281 54.3014 64.4369 55.319
+\c 63.1521 57.2182 64.3729 59.7926 61.2145 61.4358
+\c 58.0561 63.0822 54.2417 61.7654 54.2417 60.7782
+\c 54.2417 59.7926 59.8993 61.0438 60.3601 59.2982
+\c 60.4561 58.4774 60.0641 58.5414 58.0913 57.687
+\c 56.1185 56.8326 56.0497 55.615 56.2801 55.4182
+\c 56.5121 55.2198 57.5649 55.879 58.8145 56.1734
+\c 60.0641 56.471 61.0833 56.5046 60.8529 55.4182
+\c 60.7985 55.1654 60.7217 54.9158 60.6369 54.6822
+\c 57.9969 52.3014 50.8273 44.9846 45.7425 31.7878
+\c 40.2177 17.455 41.2081 1.7446 41.2209 1.5894
+\c 41.2497 1.1542 41.6241 0.8262 42.0593 0.855
+\c 42.4961 0.8854 42.8241 1.2614 42.7937 1.695
+\c 43.3857 3.9846 44.9393 5.8758 48.7137 5.327
+\c 52.5633 4.767 56.8705 0.3926 67.1329 0.7894
+\c 77.3937 1.183 79.7649 10.7862 79.5665 12.759
+\o
+\s
+\m 76.8145 53.3862
+\c 80.0273 55.8006 80.4817 60.6166 77.8289 64.1462
+\c 75.1777 67.6742 70.4241 68.5798 67.2113 66.1638
+\c 63.9985 63.751 63.5457 58.9318 66.1969 55.4038
+\c 68.8497 51.8774 73.6033 50.9734 76.8145 53.3862
+\o
+\s
+\m 18.9393 54.6822
+\c 18.8545 54.9158 18.7777 55.1654 18.7217 55.4182
+\c 18.4913 56.5046 19.5137 56.471 20.7617 56.1734
+\c 22.0113 55.879 23.0641 55.2198 23.2929 55.4182
+\c 23.5249 55.615 23.4561 56.8326 21.4865 57.687
+\c 19.5137 58.5414 19.1185 58.4774 19.2177 59.2982
+\c 19.6769 61.0438 25.3329 59.7926 25.3329 60.7782
+\c 25.3329 61.7654 21.5185 63.0822 18.3601 61.4358
+\c 15.2017 59.7926 16.4257 57.2182 15.1377 55.319
+\c 14.4497 54.3014 13.2625 53.5766 12.3105 52.655
+\c 11.3553 51.7366 10.7649 50.7814 11.7489 48.2166
+\c 12.7361 45.6502 15.0401 44.103 16.0913 44.3318
+\c 17.1457 44.5638 15.4993 45.7142 14.5137 47.4582
+\c 13.5249 49.2022 13.9857 50.3206 15.7953 49.5638
+\c 17.6049 48.8086 19.6097 49.6278 18.0321 50.255
+\c 16.4529 50.879 15.7617 51.8326 16.0241 52.951
+\c 16.1777 53.599 17.3553 53.607 18.3217 53.4966
+\c 21.0321 51.0246 27.7217 43.9894 32.3585 31.223
+\c 33.3585 28.4678 34.1345 25.671 34.7393 22.951
+\c 33.3601 24.8838 30.6321 28.0822 26.5169 30.9142
+\c 20.4993 35.0598 12.1121 36.0454 10.2385 36.143
+\c 8.3649 36.2422 8.1649 34.9606 9.7441 34.6646
+\c 14.5809 34.367 17.0465 30.8166 20.0065 28.2518
+\c 22.9649 25.6854 25.9249 25.8822 30.2673 24.007
+\c 34.6097 22.1318 35.4993 18.975 35.4993 18.975
+\c 36.5745 12.775 36.7905 7.3446 36.8145 4.2982
+\c 35.8641 5.6166 32.9217 8.8774 27.0449 8.8774
+\c 19.6769 8.8774 15.4673 3.351 10.8609 3.287
+\c 6.2561 3.2198 1.1265 6.3142 1.8513 13.087
+\c 1.9169 14.3398 0.2081 14.7318 0.0113 12.759
+\c -0.1887 10.7862 2.1809 1.183 12.4417 0.7894
+\c 22.7025 0.3926 27.0097 4.767 30.8561 5.327
+\c 34.6369 5.8758 36.1889 3.9846 36.7809 1.695
+\c 36.7489 1.2614 37.0801 0.8854 37.5153 0.855
+\c 37.9505 0.8262 38.3265 1.1542 38.3569 1.5894
+\c 38.3665 1.7446 39.3553 17.455 33.8305 31.7878
+\c 28.7473 44.9846 21.5777 52.3014 18.9393 54.6822
+\o
+\s
+\m 2.7601 53.3862
+\c 5.9745 50.9734 10.7265 51.8774 13.3777 55.4038
+\c 16.0305 58.9318 15.5777 63.751 12.3633 66.1638
+\c 9.1521 68.5798 4.3985 67.6742 1.7457 64.1462
+\c -0.9039 60.6166 -0.4511 55.8006 2.7601 53.3862
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian100.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian100.pgf
new file mode 100644
index 0000000000..2ff7f8dd16
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian100.pgf
@@ -0,0 +1,42 @@
+\m 0 0
+\l 29.024 0
+\l 29.024 30.0212
+\l 0 30.0212
+\o
+\i
+\m 10.2788 15.1284
+\c 10.2788 15.1284 13.4808 2.8342 1.1292 0.3685
+\c 1.1292 0.3685 7.305 3.5787 8.3336 9.8692
+\c 9.3636 16.1529 9.1348 21.0775 11.8224 24.677
+\c 14.5094 28.2764 17.8855 27.5388 18.1136 26.1045
+\c 18.3425 24.677 16.2272 23.591 16.2272 22.8465
+\c 16.2272 22.102 18.1703 21.3575 18.9148 23.6456
+\c 19.6573 25.9337 19.3144 27.8256 22.1742 29.1985
+\c 25.0339 30.5645 27.2052 28.3925 27.5495 27.1904
+\c 27.5495 27.1904 25.7757 29.3078 22.8599 27.7642
+\c 22.8599 27.7642 21.2794 26.9992 20.2091 24.4721
+\c 19.1389 21.9517 18.4114 20.8794 17.2708 20.053
+\c 17.2708 20.053 19.1389 20.1554 20.7965 22.4025
+\c 22.4562 24.6496 23.1119 25.4419 24.7027 25.6127
+\c 24.7027 25.6127 21.108 23.6798 19.4838 18.2908
+\c 17.8596 12.895 18.0324 4.0158 26.9136 0.5188
+\c 26.9136 0.5188 21.6605 0.5188 18.8609 4.3573
+\c 16.0619 8.1958 16.7531 12.9633 16.7531 12.9633
+\c 16.7531 12.9633 15.3707 7.9158 17.8937 4.1182
+\c 20.4161 0.3139 26.0851 -0.3077 29.0924 0.4163
+\c 29.0924 0.4163 22.8012 1.3179 20.5199 7.7109
+\c 18.2393 14.1039 19.6566 21.781 25.8781 26.2684
+\c 25.8781 26.2684 23.562 26.5143 21.9372 24.5404
+\c 20.3123 22.5733 20.4851 22.0542 18.7926 21.016
+\c 18.7926 21.016 19.4489 21.9176 20.8314 24.4379
+\c 22.2138 26.9651 25.428 29.622 28.1239 26.0976
+\c 28.1239 26.0976 28.1936 28.8297 25.428 29.7586
+\c 22.6646 30.6943 19.968 29.0346 19.0685 26.3367
+\c 18.1703 23.6456 17.962 22.5733 17.1335 22.8465
+\c 16.303 23.1265 17.4429 23.509 18.1355 24.957
+\c 18.8274 26.4118 18.1703 28.2081 15.1972 27.4773
+\c 12.2254 26.7533 10.2207 24.3354 8.8383 18.9806
+\c 7.4545 13.619 7.0065 3.7016 -0.0449 0.0407
+\c -0.0449 0.0407 4.034 -0.5536 8.1819 2.8
+\c 12.3299 6.1536 11.8224 12.0344 10.2788 15.1284
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian101.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian101.pgf
new file mode 100644
index 0000000000..8c7e9379df
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian101.pgf
@@ -0,0 +1,134 @@
+\m 53.1248 13.9799
+\c 54.0605 12.5319 56.9859 13.7955 56.9859 13.7955
+\c 53.6534 17.1901 52.1904 15.4211 53.1248 13.9799
+\m 53.3898 3.5093
+\c 53.3898 3.5093 54.5892 5.5447 54.6288 6.7809
+\c 54.6705 8.024 53.9588 8.9598 53.3495 7.4503
+\c 52.7403 5.9477 53.3898 3.5093 53.3898 3.5093
+\m 45.4436 8.2631
+\c 45.4436 8.2631 48.593 9.0964 49.4461 10.0936
+\c 50.2998 11.0908 49.0199 12.088 47.7809 11.1727
+\c 46.5399 10.2575 45.4436 8.2631 45.4436 8.2631
+\m 39.2234 12.6344
+\c 39.2234 12.6344 42.9226 13.0237 44.4881 14.137
+\c 46.0529 15.2571 44.8535 16.3568 43.0046 15.6874
+\c 41.1543 15.0181 39.4871 13.4267 39.2234 12.6344
+\m 32.4151 17.1696
+\c 32.4151 17.1696 36.1949 18.0438 36.7844 19.123
+\c 37.3745 20.1953 35.4224 20.5437 34.0817 19.7104
+\c 32.7396 18.8771 32.4151 17.1696 32.4151 17.1696
+\m 21.7034 20.5437
+\c 21.7034 20.5437 26.115 21.0286 27.3144 22.0668
+\c 28.5131 23.105 24.2845 24.2593 21.7034 20.5437
+\m 21.3387 20.5642
+\c 22.0975 22.1214 23.3761 22.7225 23.3761 22.7225
+\c 26.0139 24.1978 29.2904 23.3987 27.9325 22.0395
+\c 26.5726 20.6803 21.5778 20.1612 21.5778 20.1612
+\c 22.8577 15.5713 32.0081 17.0466 32.0081 17.0466
+\c 33.1651 21.7594 37.4421 20.8852 37.3219 19.403
+\c 37.2024 17.9277 32.4479 16.4866 32.4479 16.4866
+\c 34.0059 12.771 38.6804 12.6958 38.6804 12.6958
+\c 38.6804 12.6958 39.1196 14.2873 42.2772 15.8104
+\c 45.4334 17.3267 46.6314 15.0864 44.4334 13.693
+\c 42.2376 12.2929 38.9202 12.0538 38.9202 12.0538
+\c 38.0821 7.1771 44.9539 8.1401 44.9539 8.1401
+\c 47.5104 13.092 50.8278 12.4158 49.9884 10.3736
+\c 49.1497 8.3382 44.7531 7.2591 44.7531 7.2591
+\c 42.9554 3.7006 45.1533 0.7841 47.8711 0.7021
+\c 50.5874 0.627 53.2245 3.3386 53.2245 3.3386
+\c 52.5463 4.7387 52.7464 6.378 52.7464 6.378
+\c 52.9861 9.0144 54.6247 9.3354 54.943 7.5391
+\c 55.2633 5.7428 53.5845 3.1405 53.5845 3.1405
+\c 55.3425 1.4671 58.4598 3.3386 58.7398 6.8971
+\c 59.0185 10.4556 57.1006 13.6111 57.1006 13.6111
+\c 53.6241 11.1317 51.2281 15.1683 53.0251 15.9675
+\c 54.8234 16.7666 57.4606 14.0141 57.4606 14.0141
+\c 59.6578 15.8104 59.0185 19.2459 59.0185 19.2459
+\c 58.0193 23.7607 53.3837 26.281 53.3837 26.281
+\c 46.5112 29.9146 38.1204 28.3983 25.6533 25.7551
+\c 13.1863 23.1186 1.8387 28.2344 1.8387 28.2344
+\c 6.1143 22.2444 21.3387 20.5642 21.3387 20.5642
+\m 0 29.5526
+\c 10.1496 23.8426 21.7376 26.199 26.294 27.3601
+\c 30.8483 28.5144 33.4458 29.0335 33.4458 29.0335
+\c 45.4327 30.7957 55.4225 27.5582 58.3 21.8414
+\c 61.1768 16.1314 57.5794 13.734 57.5794 13.734
+\c 57.5794 13.734 61.377 8.4543 58.578 4.4997
+\c 55.7824 0.545 53.4649 2.8604 53.4649 2.8604
+\c 51.0662 0.142 47.8697 -1.0122 45.193 1.0641
+\c 42.5162 3.1405 44.2743 7.1361 44.2743 7.1361
+\c 37.5616 6.296 38.5602 11.9718 38.5602 11.9718
+\c 33.1268 11.7738 32.0689 16.3021 32.0689 16.3021
+\c 22.2471 13.7955 21.2875 20.1475 21.2875 20.1475
+\c 8.5295 19.1298 0 29.5526 0 29.5526
+\s
+\m 0 0
+\l 132.0381 0
+\l 132.0381 29.5526
+\l 0 29.5526
+\o
+\i
+\m 75.0939 13.7955
+\c 75.0939 13.7955 78.0213 12.5319 78.955 13.9799
+\c 79.89 15.4211 78.427 17.1901 75.0939 13.7955
+\m 78.7317 7.4503
+\c 78.1224 8.9598 77.4107 8.024 77.4524 6.7809
+\c 77.4927 5.5447 78.692 3.5093 78.692 3.5093
+\c 78.692 3.5093 79.3416 5.9477 78.7317 7.4503
+\m 84.3003 11.1727
+\c 83.0613 12.088 81.7799 11.0908 82.6344 10.0936
+\c 83.4888 9.0964 86.6382 8.2631 86.6382 8.2631
+\c 86.6382 8.2631 85.5406 10.2575 84.3003 11.1727
+\m 89.0773 15.6874
+\c 87.227 16.3568 86.0283 15.2571 87.5931 14.137
+\c 89.1579 13.0237 92.8564 12.6344 92.8564 12.6344
+\c 92.5934 13.4267 90.9262 15.0181 89.0773 15.6874
+\m 97.9988 19.7104
+\c 96.6587 20.5437 94.7067 20.1953 95.2968 19.123
+\c 95.8855 18.0438 99.6667 17.1696 99.6667 17.1696
+\c 99.6667 17.1696 99.3402 18.8771 97.9988 19.7104
+\m 104.7674 22.0668
+\c 105.9668 21.0286 110.3764 20.5437 110.3764 20.5437
+\c 107.7966 24.2593 103.5674 23.105 104.7674 22.0668
+\m 130.2425 28.2344
+\c 130.2425 28.2344 118.8935 23.1186 106.4265 25.7551
+\c 93.9601 28.3915 85.5686 29.9146 78.6961 26.281
+\c 78.6961 26.281 74.0619 23.7607 73.0626 19.2459
+\c 73.0626 19.2459 72.4233 15.8104 74.6213 14.0141
+\c 74.6213 14.0141 77.2584 16.7666 79.0561 15.9675
+\c 80.8538 15.1683 78.4564 11.1317 74.9805 13.6111
+\c 74.9805 13.6111 73.0626 10.4556 73.342 6.8971
+\c 73.6227 3.3386 76.7386 1.4671 78.4967 3.1405
+\c 78.4967 3.1405 76.8185 5.7428 77.1368 7.5391
+\c 77.4571 9.3354 79.095 9.0144 79.3354 6.378
+\c 79.3354 6.378 79.5349 4.7387 78.8553 3.3386
+\c 78.8553 3.3386 81.4924 0.627 84.2115 0.7021
+\c 86.9264 0.7841 89.1244 3.7006 87.3267 7.2591
+\c 87.3267 7.2591 82.9315 8.3382 82.0928 10.3736
+\c 81.254 12.409 84.5701 13.092 87.1273 8.1401
+\c 87.1273 8.1401 93.9991 7.1771 93.1617 12.0538
+\c 93.1617 12.0538 89.845 12.2929 87.647 13.693
+\c 85.4491 15.0864 86.6485 17.3267 89.804 15.8104
+\c 92.9609 14.2873 93.4007 12.689 93.4007 12.689
+\c 93.4007 12.689 98.0746 12.771 99.6339 16.4866
+\c 99.6339 16.4866 94.8781 17.9277 94.7586 19.403
+\c 94.639 20.8852 98.9154 21.7594 100.0731 17.0466
+\c 100.0731 17.0466 109.2234 15.5713 110.5034 20.1612
+\c 110.5034 20.1612 105.5071 20.6803 104.1486 22.0395
+\c 102.7908 23.3987 106.0665 24.1978 108.7043 22.7225
+\c 108.7043 22.7225 109.9829 22.1214 110.7418 20.5642
+\c 110.7418 20.5642 125.9661 22.2444 130.2425 28.2344
+\m 110.795 20.1475
+\c 110.795 20.1475 109.8334 13.7955 100.0109 16.3021
+\c 100.0109 16.3021 98.9557 11.7738 93.5203 11.9718
+\c 93.5203 11.9718 94.5195 6.296 87.8075 7.1361
+\c 87.8075 7.1361 89.5642 3.1405 86.8875 1.0641
+\c 84.2115 -1.0122 81.0143 0.142 78.6162 2.8604
+\c 78.6162 2.8604 76.2994 0.545 73.5025 4.4997
+\c 70.7049 8.4543 74.5018 13.734 74.5018 13.734
+\c 74.5018 13.734 70.9036 16.1314 73.7812 21.8414
+\c 76.6573 27.5582 86.6485 30.7957 98.636 29.0335
+\c 98.636 29.0335 101.2335 28.5144 105.7872 27.3601
+\c 110.3429 26.199 121.9302 23.8426 132.0805 29.5526
+\c 132.0805 29.5526 123.5524 19.1298 110.795 20.1475
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian102.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian102.pgf
new file mode 100644
index 0000000000..82c4020a86
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian102.pgf
@@ -0,0 +1,318 @@
+\m 12.2459 10.4965
+\c 12.2459 10.4965 13.4275 5.8677 8.061 5.8677
+\c 8.061 5.8677 12.2459 6.311 12.2459 10.4965
+\s
+\m 15.889 10.6181
+\c 15.889 10.6181 16.6151 8.5595 15.6671 7.2215
+\c 14.4124 5.4504 12.196 5.5966 10.8668 6.1136
+\c 10.8668 6.1136 14.2881 5.8179 15.2245 7.2215
+\c 16.1103 8.5506 15.889 10.6181 15.889 10.6181
+\s
+\m 20.0978 10.1024
+\c 20.0978 10.1024 20.4673 8.4031 19.0644 7.369
+\c 17.6608 6.3356 16.2579 6.8526 16.2579 6.8526
+\c 16.2579 6.8526 17.587 6.5576 19.1381 7.886
+\c 19.9004 8.5397 20.0978 10.1024 20.0978 10.1024
+\s
+\m 23.5695 9.8804
+\c 23.5695 9.8804 24.3086 7.9598 22.8305 6.9257
+\c 22.8305 6.9257 23.7908 8.7726 23.5695 9.8804
+\s
+\m 9.242 25.6109
+\c 6.1404 25.6847 5.1801 23.8385 5.1801 23.8385
+\c 5.1801 23.8385 7.6915 25.6109 10.2023 24.5768
+\c 12.7062 23.5462 12.9821 21.0921 13.0081 20.3579
+\c 13.0361 20.3565 13.0641 20.3544 13.0921 20.3531
+\c 13.7027 22.1269 12.2233 25.5399 9.242 25.6109
+\s
+\m 16.4799 25.2421
+\c 18.1785 22.4349 16.1848 20.0717 16.1848 20.0717
+\c 16.1848 20.0717 18.9906 22.3605 17.292 25.4627
+\c 15.5209 28.6975 10.9413 27.0131 10.9413 27.0131
+\c 10.9413 27.0131 14.7812 28.0479 16.4799 25.2421
+\s
+\m 21.2056 24.6499
+\c 21.7971 22.2867 20.6893 20.8845 20.6893 20.8845
+\c 20.6893 20.8845 22.5115 22.5018 21.8702 24.8719
+\c 21.1325 27.6053 16.9962 27.3827 16.9962 27.3827
+\c 16.9962 27.3827 20.6148 27.0131 21.2056 24.6499
+\s
+\m 24.9724 24.2066
+\c 25.1937 21.7703 23.2738 20.6618 23.2738 20.6618
+\c 23.2738 20.6618 26.3754 22.2136 25.7108 24.5024
+\c 25.0462 26.7918 22.3135 27.1607 22.3135 27.1607
+\c 22.3135 27.1607 24.7505 26.6436 24.9724 24.2066
+\s
+\m 38.3882 6.4585
+\c 35.2375 6.4585 30.0677 4.6369 27.8527 11.5299
+\l 28.6409 12.12
+\c 28.6409 12.12 29.231 8.5759 33.2676 8.3286
+\c 37.3056 8.0827 39.078 12.3666 36.4682 14.6813
+\c 36.4682 14.6813 37.7482 15.3698 39.0289 13.7449
+\c 40.3088 12.12 39.8656 9.3149 38.979 9.0676
+\c 38.0931 8.8218 36.025 7.5411 34.7949 7.3451
+\c 33.5641 7.147 32.0375 7.3943 32.0375 7.3943
+\c 32.0375 7.3943 32.5792 6.7536 34.2034 6.7536
+\c 35.8276 6.7536 36.764 7.0002 37.5515 7.2952
+\c 38.3397 7.5917 41.4413 8.97 42.7704 5.2769
+\c 42.7704 5.2769 41.5389 6.4585 38.3882 6.4585
+\m 25.9321 11.825
+\c 25.9321 11.825 27.212 14.4341 25.7354 18.0274
+\c 25.7354 18.0274 27.1636 18.4721 27.8029 16.7973
+\c 28.4428 15.1239 27.9019 13.8931 27.9019 13.8931
+\c 27.9019 13.8931 28.6894 15.2708 28.0986 16.994
+\c 27.5078 18.7179 26.1786 18.5697 25.637 18.2747
+\c 25.6268 18.2692 25.6152 18.2617 25.6056 18.2562
+\c 25.1418 19.0451 24.6801 19.5676 24.6125 19.6427
+\c 27.393 23.3092 30.0151 18.6524 29.871 16.0098
+\c 29.7235 13.3016 28.2461 11.1365 25.9321 11.825
+\m 25.5387 12.0709
+\c 25.5387 12.0709 24.7505 12.6617 24.6521 14.779
+\c 24.5538 16.8963 25.4895 17.6839 25.4895 17.6839
+\c 25.4895 17.6839 26.7203 13.9915 25.5387 12.0709
+\m 23.9629 10.545
+\c 22.7322 10.4965 21.5505 15.1724 24.4062 19.3572
+\c 24.426 19.3859 24.4445 19.4126 24.4643 19.4399
+\c 24.7129 19.1407 25.0592 18.5151 25.3017 18.052
+\c 24.7272 17.6026 23.9541 16.6327 23.9145 14.7298
+\c 23.8646 12.4158 25.5878 11.7758 25.5878 11.7758
+\c 25.5878 11.7758 25.1937 10.5942 23.9629 10.545
+\m 29.5261 25.8568
+\c 31.151 27.9735 33.1208 28.8593 35.484 28.6626
+\c 37.8472 28.4652 40.1114 27.2836 42.7704 27.9735
+\c 42.7704 27.9735 42.6721 26.5453 41.2439 26.3499
+\c 39.8164 26.1519 38.1915 26.6443 36.8125 27.1368
+\c 35.4342 27.6292 33.0709 28.0226 30.8559 25.3637
+\c 28.6409 22.7054 29.5261 20.5887 29.5261 20.5887
+\c 29.5261 20.5887 28.6409 20.0963 28.2461 20.933
+\c 28.2461 20.933 27.9019 23.7388 29.5261 25.8568
+\m 38.7823 24.1336
+\c 39.4223 21.8687 38.1915 20.1454 36.764 20.1454
+\c 36.764 20.1454 38.2407 21.6228 37.2066 23.788
+\c 36.1732 25.9558 33.2676 26.2502 31.2985 25.266
+\c 31.2985 25.266 32.0375 26.5453 33.7601 26.7925
+\c 35.484 27.0384 38.1423 26.3984 38.7823 24.1336
+\m 31.3231 21.3639
+\c 31.3231 21.3639 30.7699 19.5178 30.2159 18.8156
+\c 30.2159 18.8156 31.9884 19.0745 32.726 19.7766
+\c 32.726 19.7766 32.5423 18.5574 30.6585 17.4872
+\c 30.6585 17.4872 31.6557 17.0808 33.2799 17.1914
+\c 33.2799 17.1914 32.0614 16.0467 30.733 15.9736
+\c 30.733 15.9736 32.099 15.1608 32.6529 13.7941
+\c 32.6529 13.7941 31.3231 14.6445 30.1791 14.6813
+\c 30.1791 14.6813 30.8798 17.3021 29.145 19.9228
+\c 29.145 19.9228 30.9543 20.6263 31.3231 21.3639
+\m 31.6926 11.394
+\c 31.6926 11.394 31.1387 12.4656 29.4032 13.0182
+\c 29.4032 13.0182 29.8095 13.7203 29.994 14.1998
+\c 29.994 14.1998 31.5444 12.9075 31.6926 11.394
+\m 21.3907 14.3849
+\c 21.612 10.6919 19.6552 10.545 19.0644 11.3571
+\c 18.4189 12.2437 17.4764 15.8998 19.7651 18.9638
+\c 19.7651 18.9638 21.1687 18.078 21.3907 14.3849
+\m 17.07 14.2367
+\c 17.292 11.5791 16.5529 10.8032 15.6302 10.8407
+\c 14.7074 10.8769 14.1166 12.7976 14.4486 14.792
+\c 14.7812 16.785 15.482 18.373 15.482 18.373
+\c 15.482 18.373 16.8487 16.8963 17.07 14.2367
+\m 12.8237 13.9792
+\c 13.1563 11.6897 12.0485 11.284 11.4945 11.5046
+\c 10.9406 11.7266 9.7221 14.1998 10.5342 17.6709
+\c 10.5342 17.6709 12.4911 16.2687 12.8237 13.9792
+\m 8.9838 13.8685
+\c 9.7966 12.1699 9.759 10.9514 8.4667 11.1365
+\c 7.1738 11.3202 6.1404 13.8685 6.6943 16.0836
+\c 6.6943 16.0836 8.171 15.5665 8.9838 13.8685
+\m 6.2879 11.4678
+\c 7.5433 10.1024 7.4668 9.0294 6.8418 8.9577
+\c 5.8822 8.847 4.368 9.7698 3.6296 12.5756
+\c 3.6296 12.5756 5.0325 12.8345 6.2879 11.4678
+\m 3.7403 8.6619
+\c 4.9957 8.6619 5.5496 7.886 5.3283 7.4803
+\c 5.1063 7.0732 3.3715 6.2987 1.6352 7.9236
+\c 1.6352 7.9236 2.4842 8.6619 3.7403 8.6619
+\m 4.2198 4.932
+\c 4.8474 5.7448 5.7709 5.9654 6.0666 5.5228
+\c 6.3617 5.0795 5.8446 3.6022 3.5928 3.4553
+\c 3.5928 3.4553 3.7232 4.2886 4.2198 4.932
+\m 39.5213 8.9932
+\c 40.1852 9.4365 40.6285 12.1699 39.2256 14.0161
+\c 37.8227 15.8629 35.163 15.0502 35.163 15.0502
+\c 35.163 15.0502 37.0836 13.7941 36.9354 11.5046
+\c 36.7886 9.2159 34.3509 8.1818 31.9884 8.847
+\c 30.08 9.3832 29.0876 11.4104 28.7755 12.1719
+\c 29.0405 12.4397 29.1819 12.6617 29.1819 12.6617
+\c 31.3976 12.1699 31.8893 10.4965 31.8893 10.4965
+\c 31.8893 10.4965 32.6283 12.4643 30.511 14.2872
+\l 31.1018 14.0892
+\c 32.2342 13.6964 33.1693 13.0066 33.1693 13.0066
+\c 33.0709 14.9272 31.4952 15.7639 31.4952 15.7639
+\c 32.7759 16.0098 33.9076 17.5363 33.9076 17.5363
+\c 32.825 17.4872 31.3976 17.733 31.3976 17.733
+\c 33.1208 18.373 33.0709 20.6379 33.0709 20.6379
+\c 32.6768 19.7513 30.8559 19.3572 30.8559 19.3572
+\c 31.9884 20.9828 31.5943 22.4103 31.5943 22.4103
+\c 30.9543 20.933 29.7727 20.7362 29.7727 20.7362
+\c 29.0343 23.3467 31.5943 24.9204 33.5142 24.9204
+\c 35.4342 24.9204 36.7141 23.6411 36.764 22.0661
+\c 36.8125 20.4897 35.6309 19.8504 35.6309 19.8504
+\c 36.4682 19.2596 38.7331 19.9481 39.2747 22.0661
+\c 39.8164 24.1834 38.7331 25.365 38.7331 25.365
+\c 43.4104 24.6745 43.2629 28.6626 43.2629 28.6626
+\c 42.0812 27.9735 40.6531 27.8751 38.2407 28.5144
+\c 35.8276 29.1558 32.5792 29.5492 30.0677 27.0384
+\c 27.557 24.527 27.8029 21.1297 27.8029 21.1297
+\c 25.9321 22.2136 24.2088 20.0963 24.2088 20.0963
+\c 24.2088 20.0963 23.1263 20.7854 21.7964 20.7854
+\c 20.4673 20.7854 19.7289 19.6537 19.7289 19.6537
+\c 19.7289 19.6537 18.645 20.6379 17.3159 20.4897
+\c 15.9874 20.3422 15.3467 19.1605 15.3467 19.1605
+\c 15.3467 19.1605 14.482 20.2766 13.0914 20.3531
+\c 13.0668 20.2814 13.0395 20.2117 13.0081 20.1454
+\c 13.0081 20.1454 13.0122 20.2226 13.0074 20.3579
+\c 12.797 20.3613 12.5757 20.3435 12.3442 20.293
+\c 10.5219 19.8996 9.8826 18.2262 9.8826 18.2262
+\c 7.2237 19.1605 6.042 16.5514 6.042 16.5514
+\c 6.042 16.5514 4.5647 16.8458 3.5306 15.6157
+\c 2.4972 14.3849 2.7923 12.9574 2.7923 12.9574
+\c 2.7923 12.9574 0.8723 12.9075 0.2323 11.0375
+\c -0.4637 9.0034 0.6257 7.5917 0.6257 7.5917
+\c -0.7027 4.9819 0.5274 2.9137 2.7923 2.5688
+\c 5.0571 2.2245 6.4853 4.1445 6.583 5.0795
+\c 6.682 6.0159 6.042 6.5077 4.7621 5.8186
+\c 3.4814 5.1287 3.0873 3.4061 3.0873 3.4061
+\c -0.3585 3.8002 0.9707 7.246 0.9707 7.246
+\c 1.1674 6.9517 2.8414 5.5228 4.663 6.4585
+\c 6.4853 7.3943 5.6971 8.8218 3.9739 8.97
+\c 2.2513 9.1168 1.3156 8.1333 1.3156 8.1333
+\c 1.3156 8.1333 0.2815 8.6742 0.6257 10.545
+\c 0.9707 12.4158 2.7431 12.8092 2.7431 12.8092
+\c 2.9897 8.97 6.5345 7.6893 7.322 8.6244
+\c 8.1095 9.5608 7.1738 11.3318 5.8446 12.2676
+\c 4.5155 13.2033 3.5805 12.9574 3.5805 12.9574
+\c 3.5805 12.9574 3.1372 14.04 3.9247 15.1239
+\c 4.7129 16.2065 5.8446 16.2564 5.8446 16.2564
+\c 5.0073 12.2191 7.5187 10.6434 8.602 10.4965
+\c 9.6852 10.3483 10.276 11.185 9.4393 13.4997
+\c 8.602 15.8124 6.8296 16.3547 6.8296 16.3547
+\c 7.6669 18.6688 9.9311 17.9297 9.9311 17.9297
+\c 9.9311 17.9297 9.1928 16.6996 9.3895 14.5823
+\c 9.6811 11.4548 11.2111 10.8892 11.7534 10.8892
+\c 12.2943 10.8892 13.6242 11.9233 13.0327 14.4341
+\c 12.4426 16.9455 10.6695 17.8321 10.6695 17.8321
+\c 10.6695 17.8321 11.2384 19.6687 12.7376 19.8996
+\c 14.0176 20.0963 15.15 19.0629 15.15 19.0629
+\c 13.8701 17.634 13.2793 16.2564 13.4275 14.139
+\c 13.5743 12.0224 14.3625 10.4965 15.6425 10.446
+\c 16.9224 10.3975 17.6608 11.7758 17.2667 14.7298
+\c 16.8733 17.6839 15.5441 18.8156 15.5441 18.8156
+\c 15.5441 18.8156 16.43 20.0963 17.5133 20.0963
+\c 18.5965 20.0963 19.4332 19.4071 19.4332 19.4071
+\c 18.5965 18.9638 17.6116 17.2904 17.6608 14.9757
+\c 17.7106 12.6617 18.645 10.4965 19.8765 10.4965
+\c 21.1073 10.4965 21.8955 12.0709 21.7479 14.9272
+\c 21.599 17.7822 20.024 19.209 20.024 19.209
+\c 21.1073 21.1788 23.9629 19.8996 23.9629 19.8996
+\c 20.3191 15.1724 22.4371 10.1024 23.8646 10.0526
+\c 25.2928 10.0034 25.7845 11.4309 25.7845 11.4309
+\c 26.5174 11.159 27.1492 11.2219 27.6628 11.4213
+\c 28.365 7.9851 30.6155 6.3308 32.6529 6.0398
+\c 34.7204 5.7448 38.2653 6.1874 40.6285 5.8186
+\c 42.9917 5.4497 43.213 3.6766 43.213 3.6766
+\c 43.3605 8.847 39.5213 8.9932 39.5213 8.9932
+\s
+\m 16.6766 2.9137
+\c 16.6766 2.9137 16.0366 3.4068 15.8392 4.1445
+\c 15.6425 4.8835 15.889 5.4251 16.3808 4.9327
+\c 16.8733 4.4402 16.8733 3.6029 16.6766 2.9137
+\m 14.3133 1.3872
+\c 14.3133 1.3872 13.6242 1.7813 13.476 3.1111
+\c 13.3284 4.4402 14.5497 4.6888 14.6091 3.1596
+\c 14.6576 1.8803 14.3133 1.3872 14.3133 1.3872
+\m 11.5068 1.4862
+\c 11.5068 1.4862 10.9652 2.077 11.1619 3.2586
+\c 11.3593 4.4402 12.2459 4.9327 12.2943 3.7504
+\c 12.3442 2.5695 11.5068 1.4862 11.5068 1.4862
+\m 8.7495 1.1905
+\c 8.7495 1.1905 8.3554 2.1747 8.7987 3.3563
+\c 9.242 4.5379 9.9803 4.9327 10.0302 3.8986
+\c 10.0793 2.8645 9.1928 1.3387 8.7495 1.1905
+\m 6.583 1.5354
+\c 6.583 1.5354 6.1896 3.8986 7.3705 4.4894
+\c 8.5528 5.0802 7.2728 1.6836 6.583 1.5354
+\m 15.5564 4.6745
+\c 15.8153 2.6801 16.738 2.5319 16.738 2.5319
+\c 15.889 0.9077 14.7812 1.3134 14.7812 1.3134
+\c 15.6302 2.5695 15.0763 4.1943 14.7074 4.5632
+\c 14.3379 4.9327 13.4145 4.8951 13.267 3.3816
+\c 13.1194 1.868 14.0791 1.1665 14.0791 1.1665
+\c 14.0791 1.1665 13.8953 0.7608 13.1194 0.5757
+\c 12.3442 0.3906 11.8265 0.6864 11.8265 0.6864
+\c 11.8265 0.6864 12.6762 1.0559 12.935 2.2375
+\c 13.1932 3.4191 13.0819 4.7114 12.2329 4.8207
+\c 11.3832 4.9327 10.9413 3.8242 10.8668 2.8645
+\c 10.7931 1.9056 11.3094 1.2765 11.3094 1.2765
+\c 11.0513 0.7964 10.6449 0.4651 10.0179 0.4651
+\c 9.3902 0.4651 9.3157 0.7233 9.3157 0.7233
+\c 9.6852 0.9446 10.3874 1.868 10.6087 2.8645
+\c 10.83 3.8617 10.5718 4.8582 9.8696 4.8582
+\c 9.1689 4.8582 8.4667 3.8986 8.393 2.7539
+\c 8.3185 1.6091 8.5405 1.0183 8.5405 1.0183
+\c 8.5405 1.0183 8.2086 0.4275 7.6546 0.5013
+\c 7.1 0.5757 6.9894 0.9814 6.9894 0.9814
+\c 8.9462 3.0865 8.4299 4.9696 7.8759 5.1178
+\c 7.322 5.2653 6.583 4.3781 6.3248 3.3447
+\c 6.0666 2.3113 6.3617 1.3503 6.3617 1.3503
+\c 6.0297 0.3906 4.7744 0.3162 4.036 0.8332
+\c 3.2977 1.3503 3.0388 2.0886 3.0388 2.0886
+\c 3.6296 -1.1229 6.6574 0.6864 6.6574 0.6864
+\c 7.9866 -0.2002 8.7987 0.4651 8.7987 0.4651
+\c 10.3874 -0.6428 11.679 0.5757 11.679 0.5757
+\c 13.1194 -0.6059 14.6699 0.9446 14.6699 0.9446
+\c 16.2948 0.9077 17.2551 1.6091 17.2182 3.6397
+\c 17.1806 5.671 15.2982 6.6682 15.5564 4.6745
+\s
+\m 24.8488 4.7838
+\c 24.8488 4.7838 24.4069 5.3753 24.2587 5.9661
+\c 24.1112 6.5583 24.4554 6.9517 24.8987 6.8041
+\c 25.342 6.6559 25.5878 5.8186 24.8488 4.7838
+\m 22.5846 4.4402
+\c 22.5846 4.4402 22.043 4.9327 21.8955 5.8684
+\c 21.7473 6.8041 22.782 6.852 22.782 6.0644
+\c 22.782 5.2776 22.5846 4.4402 22.5846 4.4402
+\m 20.2706 4.1445
+\c 20.2706 4.1445 19.9263 4.5878 19.7788 5.5235
+\c 19.6299 6.4585 19.9748 6.6559 20.2706 6.6061
+\c 20.5663 6.5583 20.7139 5.4251 20.2706 4.1445
+\m 18.3506 3.6029
+\c 18.3506 3.6029 17.8575 3.997 17.7605 4.9327
+\c 17.6621 5.8684 17.9067 6.2611 18.3506 5.8684
+\c 18.7939 5.4736 18.548 3.997 18.3506 3.6029
+\m 28.7755 2.4212
+\c 28.7024 3.3071 27.9265 3.973 26.8186 4.1575
+\c 25.7108 4.3419 25.232 4.5632 25.232 4.5632
+\c 26.3754 6.2611 25.7108 7.0739 25.1193 7.2208
+\c 24.5299 7.3697 23.9015 7.0377 24.0497 6.003
+\c 24.1972 4.9696 24.8618 4.4894 24.8618 4.4894
+\c 24.2341 3.8617 23.0525 4.083 23.0525 4.083
+\c 23.8653 5.1178 23.4951 7.0739 22.8305 7.259
+\c 22.1659 7.4434 21.5383 6.5945 21.6496 5.671
+\c 21.7602 4.7476 22.4617 4.1575 22.4617 4.1575
+\c 22.0184 3.3816 20.6148 3.7142 20.6148 3.7142
+\c 21.1325 4.4894 21.317 6.0774 20.9106 6.852
+\c 20.5049 7.6279 19.3232 7.0377 19.4332 5.5973
+\c 19.5445 4.1575 20.1347 3.7497 20.1347 3.7497
+\c 19.6176 2.8283 18.7324 3.0496 18.7324 3.0496
+\c 19.6176 4.2319 19.0282 6.003 18.5111 6.2987
+\c 17.9934 6.5945 17.3288 6.41 17.4033 5.1547
+\c 17.4764 3.8986 18.1778 2.9765 18.1778 2.9765
+\c 17.9565 2.6432 17.2189 2.1631 17.2189 2.1631
+\c 17.8466 2.0893 18.5111 2.6794 18.5111 2.6794
+\c 19.9502 2.3482 20.468 3.5653 20.468 3.5653
+\c 21.7602 2.6794 22.683 3.6759 22.683 3.6759
+\c 24.1603 3.234 25.0086 4.305 25.0086 4.305
+\c 25.6746 3.8986 26.3385 4.0461 27.4832 3.5298
+\c 28.6279 3.0127 28.4435 2.1262 28.4435 2.1262
+\c 28.2953 2.1631 27.3357 2.0524 27.6676 1.4616
+\c 28.0002 0.8701 28.8499 1.5347 28.7755 2.4212
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian103.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian103.pgf
new file mode 100644
index 0000000000..0e1e9104a3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian103.pgf
@@ -0,0 +1,280 @@
+\m 11.8213 8.3857
+\c 11.8213 8.3857 8.7935 6.9821 6.0607 8.0893
+\c 3.328 9.1971 0.5071 12.5282 3.328 18.7983
+\c 5.987 24.707 15.4399 28.4725 20.1663 23.3027
+\c 20.1663 23.3027 18.467 25.1496 14.6278 25.2965
+\c 10.7872 25.4447 7.2423 23.5247 4.1408 18.7983
+\c 1.0385 14.0718 3.4762 9.2716 6.282 8.3857
+\c 9.0892 7.4992 11.8213 8.3857 11.8213 8.3857
+\s
+\m 12.1163 9.0496
+\c 12.1163 9.0496 10.2701 7.7942 7.0955 8.7546
+\c 3.9195 9.7142 2.2946 13.7023 5.1749 18.7252
+\c 8.0544 23.746 13.2249 25.2227 15.1448 24.485
+\c 15.1448 24.485 9.9013 24.4106 6.2083 19.094
+\c 2.5159 13.7761 4.8053 7.2041 12.1163 9.0496
+\s
+\m 11.9688 9.4936
+\c 11.9688 9.4936 8.8665 8.4581 7.0204 10.9696
+\c 5.1742 13.481 5.5177 17.1836 8.7197 20.8658
+\c 11.673 24.2631 16.769 24.4844 18.689 22.8602
+\c 18.689 22.8602 16.9165 24.1148 13.2242 23.229
+\c 9.5311 22.3431 6.9896 18.8393 6.504 15.0315
+\c 6.0607 11.5604 9.0148 9.1971 11.9688 9.4936
+\s
+\m 21.643 4.7664
+\c 21.643 4.7664 21.7168 4.1019 22.5289 3.5111
+\c 23.3416 2.9203 24.0062 2.4032 24.2282 1.7386
+\l 23.6367 1.7386
+\c 23.6367 1.7386 23.4892 2.6245 22.3813 3.1416
+\c 21.2735 3.6593 21.0522 4.7664 21.0522 4.7664
+\o
+\s
+\m 0 0
+\l 42.2788 0
+\l 42.2788 29.5803
+\l 0 29.5803
+\o
+\i
+\m 38.7764 20.0045
+\l 40.2046 20.0045
+\l 39.1206 21.5795
+\c 39.1206 21.5795 41.3855 20.0543 42.3704 19.8563
+\c 42.3704 19.8563 40.2039 19.2668 39.0721 18.1337
+\c 39.0721 18.1337 39.8105 19.3153 40.1055 19.6104
+\l 38.2354 19.6104
+\o
+\s
+\m 37.8407 20.3494
+\c 37.5449 20.0543 36.6099 20.0045 36.6099 20.0045
+\c 36.6099 20.0045 36.2165 20.2012 36.6597 20.3494
+\c 37.1023 20.4969 37.5948 20.6943 37.5948 20.6943
+\c 37.5948 20.6943 38.1364 20.6445 37.8407 20.3494
+\m 36.1181 16.8783
+\c 35.0103 14.9577 31.6867 13.4072 31.7612 10.8227
+\l 25.5573 17.9124
+\c 25.5573 17.9124 26.3694 18.9458 27.5511 19.1678
+\c 28.7327 19.3884 30.4313 19.094 30.4313 19.094
+\c 30.4313 19.094 30.8002 19.1678 31.4654 19.3884
+\c 32.13 19.6104 33.6804 19.9068 33.6804 19.9068
+\c 33.6804 19.9068 35.0103 19.5366 35.4528 19.5366
+\c 35.8961 19.5366 36.7089 19.3153 36.7089 19.3153
+\c 36.7089 19.3153 36.8858 18.2095 36.1181 16.8783
+\m 22.3813 16.7308
+\c 20.6089 16.362 19.7968 17.3954 18.3939 17.0265
+\c 18.3939 17.0265 19.3542 17.4691 19.6493 17.7649
+\c 19.945 18.0599 20.3138 18.2068 20.7571 18.2068
+\c 21.1997 18.2068 22.16 17.838 22.7508 17.9862
+\l 23.5629 18.7252
+\l 25.7049 18.8727
+\c 25.7049 18.8727 24.1538 17.0996 22.3813 16.7308
+\m 36.0689 21.3336
+\c 36.5115 21.5795 37.004 21.7284 37.004 21.7284
+\c 37.004 21.7284 37.7423 21.8752 37.644 21.531
+\l 37.1023 21.432
+\l 36.5115 21.1861
+\c 36.5115 21.1861 36.5607 20.891 36.1181 20.7435
+\c 35.6748 20.5946 35.625 21.0884 36.0689 21.3336
+\m 37.8407 21.2851
+\c 37.9397 21.1369 38.0872 20.8425 36.9056 20.7435
+\c 36.9056 20.7435 36.6597 20.891 37.0538 21.0884
+\c 37.4472 21.2851 37.7423 21.432 37.8407 21.2851
+\m 18.3194 8.607
+\c 17.9506 10.083 18.0982 11.1922 18.8365 11.1185
+\c 19.5755 11.044 21.126 9.1234 19.428 6.4658
+\c 19.428 6.4658 18.689 7.1304 18.3194 8.607
+\m 22.8984 7.2041
+\c 22.8984 7.2041 22.3076 8.09 21.643 9.2716
+\c 20.9784 10.4532 21.126 11.4128 21.8643 11.4128
+\c 22.6026 11.4128 23.4154 10.3794 22.8984 7.2041
+\m 15.2916 10.3794
+\c 15.4399 12.2256 16.991 12.0781 16.6952 10.3057
+\c 16.4002 8.5326 15.7349 7.7198 15.7349 7.7198
+\c 15.7349 7.7198 15.1448 8.5326 15.2916 10.3794
+\m 21.9381 23.3772
+\c 21.9381 23.3772 22.9721 23.6723 23.1197 23.3034
+\c 23.2679 22.9332 23.7105 22.4906 24.0062 22.4906
+\l 24.7446 22.3438
+\c 24.7446 22.3438 25.2691 22.212 25.4528 21.8875
+\c 25.0383 21.3452 24.0185 20.0379 23.7842 19.9799
+\c 23.4892 19.9068 22.2338 20.792 21.4955 20.792
+\c 21.4483 20.792 21.3964 20.7893 21.3404 20.7824
+\c 21.1915 21.3582 20.8254 22.0064 20.6328 22.3219
+\c 20.8773 22.4565 21.5248 22.8451 21.9381 23.3772
+\m 23.4154 27.1918
+\c 23.9079 27.2909 25.0403 27.2909 25.2862 27.1433
+\c 25.5328 26.9965 25.7295 26.2575 25.7295 26.2575
+\c 25.7295 26.2575 25.3845 26.3565 25.2862 26.1092
+\c 25.1885 25.864 25.5328 25.8149 25.5819 25.6168
+\c 25.6311 25.4208 25.877 24.9768 25.877 24.9768
+\c 25.877 24.9768 25.4337 24.5342 25.0895 24.5827
+\l 24.8436 24.386
+\l 25.4337 24.2392
+\c 25.4337 24.2392 25.6311 23.9919 25.3852 23.9919
+\c 25.1387 23.9919 24.6469 23.7952 24.597 23.5992
+\c 24.5478 23.4018 25.3354 23.1552 25.5819 23.2044
+\c 25.5819 23.2044 24.6954 22.6136 24.0554 23.2044
+\c 24.0554 23.2044 23.1197 23.3034 23.1197 24.0418
+\c 23.1197 24.0418 23.662 24.0916 23.7105 24.3368
+\c 23.7105 24.3368 22.5289 24.2883 22.3322 24.9768
+\c 22.1354 25.6667 22.923 27.0942 23.4154 27.1918
+\m 37.9643 20.8658
+\c 38.3331 21.014 38.0387 21.4572 38.0387 21.4572
+\c 38.1856 21.8998 37.3735 21.9736 37.3735 21.9736
+\c 37.3735 21.9736 36.2165 22.171 35.2315 20.792
+\c 35.2315 20.792 35.2315 20.4969 35.5273 20.4232
+\c 35.5273 20.4232 34.9365 20.3494 34.1975 20.57
+\c 33.4591 20.792 32.5726 20.4969 31.0959 19.9799
+\c 31.0959 19.9799 28.7327 20.0543 27.9943 20.0543
+\c 27.2553 20.0543 26.1475 19.7586 25.4098 19.2415
+\l 24.7446 19.2415
+\c 24.7446 19.2415 24.1538 19.094 23.7105 19.2415
+\c 23.7105 19.2415 23.2679 19.3884 22.9721 18.9458
+\c 22.6771 18.5025 22.6026 18.2812 22.0125 18.5025
+\c 21.421 18.7252 21.2742 19.094 20.1663 18.7983
+\c 19.0578 18.5025 17.4336 16.0655 13.815 16.8046
+\c 13.815 16.8046 12.9291 17.9862 13.815 18.8727
+\c 14.7008 19.7586 16.5477 20.57 16.991 20.8658
+\c 17.4336 21.1615 18.0982 22.4906 18.8365 22.4906
+\c 19.3126 22.4906 19.8781 22.3991 20.2223 22.3342
+\c 20.5468 21.9381 20.8131 21.1171 20.9333 20.7005
+\c 20.083 20.4819 18.8645 19.9191 18.3939 19.6841
+\c 17.8031 19.3884 16.769 19.0196 15.9562 19.0196
+\c 15.1448 19.0196 14.4058 18.7983 14.1845 18.4288
+\c 14.1845 18.4288 14.7008 18.5025 14.9966 18.577
+\c 15.2916 18.6507 16.4733 18.8727 17.0641 18.8727
+\c 17.6549 18.8727 19.206 19.6104 19.945 19.9068
+\c 20.6827 20.2012 21.421 20.4969 22.0863 20.2756
+\c 22.7508 20.0543 23.8587 19.5366 23.8587 19.5366
+\l 25.8524 21.6785
+\c 25.8524 21.6785 26.739 21.309 27.6248 21.3828
+\c 28.5107 21.4572 31.2441 22.5644 33.0896 21.4572
+\c 33.0896 21.4572 32.7939 22.4176 30.8739 22.27
+\c 28.954 22.1218 26.8865 21.309 26.1475 22.0474
+\l 31.4654 27.9561
+\c 31.4654 27.9561 32.3513 25.8149 34.0499 25.1496
+\c 36.2472 24.2897 36.3394 22.7864 36.3394 22.7864
+\c 36.3394 22.7864 35.3791 21.8261 34.3949 21.8261
+\c 34.3949 21.8261 34.9857 21.531 35.5765 21.8752
+\c 36.1666 22.2195 36.6597 22.4654 37.004 22.3677
+\c 37.3482 22.27 37.3735 21.9736 37.3735 21.9736
+\c 37.5948 22.7126 37.004 22.8602 37.004 22.8602
+\c 36.1181 25.2227 35.6748 25.3709 33.9755 26.1837
+\c 32.2768 26.9965 31.391 28.6207 31.391 28.6207
+\c 30.4313 27.2909 25.6311 22.1218 25.6311 22.1218
+\l 25.1141 22.4906
+\c 26.2219 23.0814 25.6311 23.4516 25.6311 23.746
+\c 25.6311 24.0418 26.4432 24.5588 26.4432 24.5588
+\c 26.2219 24.8539 25.7786 25.7404 25.7786 25.7404
+\l 26.0006 26.1092
+\l 25.7786 26.922
+\c 27.3291 26.922 27.3291 28.1043 27.3291 28.1043
+\c 26.8127 27.8817 26.4432 27.8817 25.0403 27.8817
+\c 23.6374 27.8817 22.4558 27.9561 22.0125 26.6263
+\c 21.5692 25.2965 22.2338 24.1893 22.2338 24.1893
+\c 21.126 24.2631 20.7571 25.6667 21.126 27.2909
+\c 21.4955 28.9158 23.4154 29.2115 24.7446 28.9158
+\c 26.0737 28.6207 26.4432 28.9158 26.9603 28.9158
+\c 27.4773 28.9158 27.5511 28.4725 27.5511 28.4725
+\c 27.8461 29.5803 27.1078 29.5803 27.1078 29.5803
+\c 26.517 28.6951 25.2616 29.2853 25.2616 29.2853
+\c 22.5289 29.8023 20.4614 28.6951 20.4614 26.4788
+\c 20.4614 24.2631 21.8643 23.6723 21.8643 23.6723
+\l 20.8309 22.7126
+\c 20.0181 22.8602 19.5011 22.9332 19.5011 22.9332
+\c 17.8769 24.707 16.5477 24.2631 16.5477 24.2631
+\c 17.6549 24.2631 18.2464 23.5992 18.689 23.3034
+\c 19.1322 23.0077 18.689 22.8602 18.689 22.8602
+\c 18.2464 22.6389 17.8031 22.4176 17.5073 21.8261
+\c 17.2123 21.2359 15.1448 20.2012 15.1448 20.2012
+\c 15.1448 20.2012 13.7412 20.1274 13.1504 18.355
+\c 12.5596 16.5833 13.6674 15.918 13.6674 15.918
+\l 16.1782 15.918
+\c 17.4336 15.918 18.7634 16.9521 18.7634 16.9521
+\c 18.7634 16.9521 20.2394 16.4357 21.0522 16.2875
+\c 21.8643 16.1393 22.5289 15.918 22.5289 15.918
+\c 21.421 14.2931 20.6089 13.7023 18.5414 13.9981
+\c 16.4733 14.2931 15.4399 15.6967 15.4399 15.6967
+\l 15.8825 15.0321
+\c 13.3717 13.8505 12.4858 10.9703 12.4858 10.9703
+\c 10.4914 10.3057 9.7524 10.9703 9.0885 11.8568
+\c 8.4239 12.7427 7.5374 17.1734 10.3439 20.3494
+\c 12.8089 23.1381 15.2158 23.0794 15.7657 23.0227
+\c 8.9902 23.9475 6.8073 15.8982 8.2757 12.4462
+\c 9.624 9.2791 12.4858 10.5277 12.4858 10.5277
+\c 11.673 7.1304 14.11 6.0225 14.11 6.0225
+\c 13.7412 4.6934 14.0363 3.2153 14.0363 3.2153
+\c 12.4858 5.136 10.8609 4.7671 9.9013 4.4707
+\c 8.9403 4.1763 7.2423 4.0281 6.282 4.3976
+\c 5.3224 4.7671 4.6578 5.136 4.2876 5.2835
+\c 3.9188 5.431 2.8847 5.0622 2.8847 4.0281
+\c 2.8847 2.9947 2.2946 2.699 1.9251 2.4777
+\c 1.5556 2.2557 1.6293 1.9599 1.6293 1.9599
+\c 4.2145 3.2153 3.1067 3.8806 3.4762 4.4707
+\c 3.845 5.0622 4.4358 4.9153 4.4358 4.9153
+\c 7.0204 3.2153 9.8269 4.1019 10.3439 4.3232
+\c 10.8609 4.5451 12.8547 4.3232 13.3717 3.2891
+\c 13.8887 2.2557 14.7746 2.3294 14.7746 2.3294
+\c 13.9632 3.5117 14.6278 5.9487 14.6278 5.9487
+\c 14.6278 5.9487 15.9562 5.8005 16.991 8.3857
+\c 18.0244 10.9703 17.2123 12.2256 16.4002 12.2256
+\c 15.5874 12.2256 14.4795 11.4128 14.4795 9.346
+\c 14.4795 7.2772 15.7349 7.2041 15.7349 7.2041
+\c 14.0363 5.6523 12.4858 7.4999 13.0029 10.3057
+\c 13.5199 13.1115 15.8825 14.6633 15.8825 14.6633
+\c 17.9506 12.3001 20.9784 13.3335 20.9784 13.3335
+\c 24.9659 12.9647 26.0006 9.6404 25.7049 7.9418
+\c 25.4098 6.2438 23.4892 6.5382 23.4892 6.5382
+\c 23.4892 6.5382 23.9325 5.9487 25.1885 6.2438
+\c 25.1885 6.2438 26.2957 5.2835 26.3694 2.9203
+\c 26.4432 0.557 24.9659 0.0407 18.467 2.4777
+\c 18.467 2.4777 19.8706 4.7671 19.1322 5.431
+\c 19.1322 5.431 19.206 5.6523 19.723 5.431
+\c 20.2394 5.2097 21.421 4.1763 23.4892 6.5382
+\c 24.6708 9.7142 23.0459 12.0781 21.7905 11.8568
+\c 20.5351 11.6348 20.8309 9.8624 21.3479 8.5326
+\c 21.8643 7.2041 22.9721 6.7602 22.9721 6.7602
+\c 21.4955 4.6934 19.7968 5.8005 19.7968 5.8005
+\c 20.9047 6.7602 21.3479 7.7942 20.8309 9.8624
+\c 20.3138 11.9306 17.5818 13.1115 17.6549 9.8624
+\c 17.7293 6.6126 19.2798 6.097 19.2798 6.097
+\c 18.1726 4.1763 15.8094 6.097 15.8094 6.097
+\c 16.6215 4.0281 18.689 4.8409 18.689 4.8409
+\c 16.4002 -0.1075 14.9966 0.7046 13.3717 1.1485
+\c 11.7475 1.5911 10.4914 1.9599 10.0482 1.9599
+\c 9.6056 1.9599 7.6856 2.2557 7.0948 2.6245
+\c 6.504 2.9947 6.1345 3.1416 5.2479 2.6245
+\c 4.3621 2.1075 3.328 1.5173 2.4414 1.3705
+\c 1.5556 1.2223 1.0385 0.7783 0.7435 0.7783
+\c 0.4477 0.7783 0.9648 1.5911 0.9648 1.5911
+\c 0.9648 1.5911 0.4477 1.296 0.0789 0.7046
+\c -0.2906 0.1144 0.7435 0.1882 0.9648 0.2613
+\c 1.1867 0.3357 1.7031 0.6315 1.7031 0.6315
+\c 3.0329 0.6315 5.1004 1.8862 5.765 2.0344
+\c 6.4295 2.1819 6.6508 1.9599 8.1282 1.4429
+\c 9.6056 0.9259 10.3439 1.2223 10.3439 1.2223
+\c 11.3042 1.1485 13.9632 -0.2551 15.6612 0.0407
+\c 17.3598 0.3357 18.2464 2.0344 18.2464 2.0344
+\c 18.2464 2.0344 21.4955 0.6315 25.1141 0.4095
+\c 26.4412 0.3282 27.3291 1.8862 26.8865 3.8806
+\c 26.4432 5.875 25.4829 6.6126 25.4829 6.6126
+\c 25.4829 6.6126 26.5914 7.2041 26.2957 9.4198
+\c 25.7998 13.1381 21.5692 13.5541 21.5692 13.5541
+\c 22.8253 14.1463 23.4154 15.7705 23.4892 16.1393
+\c 23.5629 16.5095 23.9325 16.6563 23.9325 16.6563
+\c 24.597 16.7308 25.3354 17.5429 25.3354 17.5429
+\c 28.5851 13.4072 32.0562 9.9369 32.0562 9.9369
+\c 31.7612 11.783 32.7939 12.8909 33.7549 13.9981
+\c 34.7145 15.1059 36.8564 15.918 37.3735 17.3954
+\c 37.8905 18.8727 37.2259 19.4628 37.2259 19.4628
+\c 38.8508 19.7586 37.9643 20.8658 37.9643 20.8658
+\m 15.7657 23.0227
+\c 15.8046 23.0186 15.8435 23.0138 15.8825 23.0077
+\c 15.8825 23.0077 15.8422 23.0159 15.7657 23.0227
+\s
+\m 24.9911 26.1092
+\c 24.9911 26.1092 25.0403 25.5184 24.6954 25.4693
+\c 24.3511 25.4208 23.4646 25.4693 23.957 25.6667
+\c 23.957 25.6667 24.6469 25.864 24.6469 26.0608
+\c 24.6469 26.2575 24.9911 26.1092 24.9911 26.1092
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian104.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian104.pgf
new file mode 100644
index 0000000000..91b04ab508
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian104.pgf
@@ -0,0 +1,237 @@
+\m 22.361 27.0788
+\c 22.361 27.0788 21.3761 26.6362 20.4902 26.8329
+\c 20.4902 26.8329 21.2784 26.882 21.8685 27.1778
+\o
+\s
+\m 17.8312 27.966
+\c 17.8312 27.966 16.8463 28.1634 16.1572 28.9509
+\c 16.1572 28.9509 19.2587 23.288 25.4626 26.0454
+\c 25.4626 26.0454 25.6593 26.2427 26.2507 25.6028
+\c 26.8409 24.9635 28.2691 24.0271 29.6966 25.012
+\c 29.6966 25.012 27.9241 24.4211 26.595 25.8978
+\c 26.595 25.8978 28.0225 27.4244 29.7464 25.8486
+\c 29.7464 25.8486 29.4998 26.9804 27.6291 26.8827
+\c 27.6291 26.8827 27.2992 27.0658 26.595 27.0296
+\c 24.675 26.9319 19.9978 24.9129 17.0929 27.9154
+\c 17.0929 27.9154 17.3886 27.6211 17.8312 27.966
+\s
+\m 31.5673 24.8146
+\c 31.5673 24.8146 32.6506 25.7503 33.0447 24.7155
+\o
+\m 31.9614 25.4054
+\c 31.0749 25.2572 30.4847 25.3562 30.4847 25.3562
+\c 31.3208 24.2729 33.6355 24.4696 33.6355 24.4696
+\c 33.2906 25.3063 32.848 25.5522 31.9614 25.4054
+\s
+\m 27.0874 25.0113
+\c 27.0874 25.0113 26.0527 24.6172 24.675 22.5989
+\c 23.2953 20.5792 20.3912 18.2665 16.4031 18.0206
+\c 12.4149 17.7734 10.1992 18.0691 8.7717 16.3459
+\c 7.3449 14.6226 7.0492 12.9493 5.6203 12.1126
+\c 5.6203 12.1126 6.6052 11.422 8.2301 13.146
+\c 8.2301 13.146 7.9842 11.1768 6.5076 11.2253
+\c 5.0309 11.2745 4.7351 11.8161 4.7351 11.8161
+\c 4.7351 11.8161 6.0144 12.5552 6.7534 14.0817
+\c 7.4925 15.6069 7.9357 16.6409 9.6091 17.38
+\c 11.2832 18.1183 13.2523 18.0691 15.7631 18.1675
+\c 18.2745 18.2665 21.3269 19.4481 23.0495 21.3674
+\c 24.7734 23.288 25.856 25.3063 27.0874 25.0113
+\s
+\m 0 0
+\l 44.3231 0
+\l 44.3231 29.3443
+\l 0 29.3443
+\o
+\i
+\m 7.8866 16.7407
+\c 7.8866 16.7407 6.9017 17.9708 5.2269 17.5767
+\c 3.5535 17.1833 3.6526 14.9191 5.3259 14.525
+\c 5.3259 14.525 4.4394 14.2777 3.307 15.0174
+\c 3.307 15.0174 2.9135 15.264 2.3719 15.0174
+\c 2.3719 15.0174 1.4362 13.2443 -0.0897 13.3434
+\c -0.0897 13.3434 0.5011 13.441 0.5503 14.9191
+\c 0.6002 16.3957 0.747 19.2029 4.1935 19.6947
+\c 4.1935 19.6947 1.2395 19.0547 1.4362 16.2475
+\c 1.4362 16.2475 1.8303 18.5131 3.5037 18.6101
+\c 3.5037 18.6101 1.7818 18.0213 1.8795 16.1007
+\c 1.8795 16.1007 2.0277 17.8226 3.307 18.2167
+\c 3.307 18.2167 2.3227 17.5282 2.2736 16.199
+\c 2.2736 16.199 2.6677 18.5131 4.7843 18.6613
+\c 4.7843 18.6613 3.4552 18.5623 3.2585 16.839
+\c 3.2585 16.839 3.6027 17.9708 5.2269 18.119
+\c 6.8518 18.2665 7.8866 17.035 7.8866 16.7407
+\s
+
+\m 38.1652 8.6654
+\c 39.1003 7.4838 40.8727 5.2196 39.7409 2.7573
+\c 39.7409 2.7573 38.2137 3.2505 38.2137 4.1356
+\c 38.2137 4.1356 38.7062 4.5297 38.756 4.8747
+\c 38.8052 5.2196 38.017 5.3664 38.2137 6.154
+\c 38.4104 6.9421 38.5593 7.5821 36.9338 9.1585
+\c 35.3089 10.7336 34.1764 10.487 33.684 10.4378
+\c 33.1922 10.3886 29.4507 10.1434 29.4507 10.1434
+\c 29.4507 10.1434 30.0415 10.9794 29.7956 12.062
+\c 29.7956 12.062 31.2231 12.2102 32.3555 11.7676
+\c 33.4873 11.325 34.4722 11.3735 35.0138 11.3735
+\c 35.5554 11.3735 37.2288 9.847 38.1652 8.6654
+\m 28.1707 14.6711
+\c 28.1707 14.6711 29.8448 14.7217 30.3857 13.6883
+\c 30.9273 12.6535 30.3857 12.4561 30.3857 12.4561
+\l 29.6966 12.5067
+\c 29.6966 12.5067 29.6474 13.6883 28.1707 14.6711
+\m 44.3192 8.0254
+\c 44.3192 8.0254 43.5802 7.6812 42.9402 7.7297
+\c 42.3009 7.7802 41.956 8.6654 41.956 8.6654
+\l 43.0392 8.6654
+\c 42.3494 10.291 38.9036 11.4227 38.017 11.7676
+\c 37.1312 12.1126 36.7371 12.1126 35.6046 11.8653
+\c 34.4722 11.6194 34.0296 11.7185 33.0939 12.062
+\c 32.1588 12.4076 30.9273 12.3584 30.8782 12.5067
+\c 30.829 12.6535 30.829 13.8351 30.829 13.8351
+\c 31.764 14.0318 33.5371 13.8351 34.2755 13.5886
+\c 35.0138 13.3427 36.0971 12.9984 36.7371 13.146
+\c 37.3777 13.2942 37.9678 13.2942 37.9678 13.2942
+\c 38.6078 12.6043 40.8727 11.6686 41.9075 11.0286
+\c 42.9402 10.3886 44.171 9.0103 44.171 9.0103
+\c 43.7776 10.5368 41.7586 11.4726 40.8727 11.8653
+\c 39.9868 12.2594 38.5095 13.3427 38.0662 13.5401
+\c 37.6236 13.7368 35.5063 13.5886 35.5063 13.5886
+\c 33.6355 14.6226 30.9772 14.3276 30.9772 14.3276
+\c 31.0264 15.4593 30.7306 16.2475 30.1398 17.0849
+\c 29.549 17.9216 29.4008 18.216 29.4008 18.216
+\c 31.1247 16.9367 32.1588 17.2324 32.1588 17.2324
+\c 29.3523 18.7098 30.7306 22.2546 30.7306 22.2546
+\l 31.764 22.2546
+\c 32.1588 22.2546 32.6267 21.9589 32.6267 21.9589
+\c 30.706 20.334 32.7735 18.5616 33.8083 17.897
+\c 34.8417 17.2324 33.7338 15.5338 33.7338 15.5338
+\c 33.7338 15.5338 35.7282 16.4941 35.58 18.5616
+\c 35.4325 20.6297 34.1764 20.7773 34.1764 20.7773
+\c 36.2446 18.8573 34.6204 17.38 34.6204 17.38
+\c 34.6942 19.0042 32.848 19.2999 32.6998 20.556
+\c 32.5522 21.8114 33.6594 22.032 33.6594 22.032
+\c 35.6538 20.9986 35.6538 22.9192 35.6538 22.9192
+\c 36.2446 22.549 36.5403 23.3618 36.5403 23.3618
+\c 32.6998 30.7465 25.9796 29.0479 22.656 28.7528
+\c 19.3332 28.4571 18.1516 29.3443 18.1516 29.3443
+\c 20.8345 25.7988 24.1819 27.3745 26.4475 27.8178
+\c 28.7116 28.2604 30.2874 27.4237 30.2874 27.4237
+\c 28.1208 29.3443 24.1819 27.4237 21.9676 27.6204
+\c 19.7519 27.8178 19.407 28.6545 19.407 28.6545
+\c 20.6371 28.1627 25.5609 28.8512 26.6442 28.9502
+\c 27.7274 29.0479 29.5982 29.0977 32.1588 27.6696
+\c 34.7188 26.2421 35.9495 24.0762 35.9004 23.8297
+\c 35.8505 23.5831 35.2112 23.5339 34.9646 23.7805
+\c 34.7188 24.0264 34.423 23.8788 34.423 23.8788
+\c 34.6696 23.8788 34.7188 23.5838 34.7188 23.5838
+\c 34.7679 23.1904 35.4571 22.8939 35.4571 22.8939
+\c 35.2604 22.2546 34.1764 22.4022 34.1764 22.4022
+\c 32.4047 23.2389 32.0598 22.6972 30.9772 22.9431
+\c 29.8933 23.189 29.4998 23.633 28.8599 23.8788
+\c 28.2192 24.1247 27.7274 24.2729 27.7274 24.2729
+\c 28.4166 23.3871 29.1057 22.9431 29.4998 22.7949
+\c 29.8933 22.648 30.2389 22.3537 30.2389 22.3537
+\c 28.9582 20.1366 30.4847 18.315 30.4847 18.315
+\c 28.614 18.6108 28.2691 21.0238 28.2691 21.0238
+\c 27.7766 19.9399 28.1707 18.5124 29.3025 17.2324
+\c 30.4356 15.9518 30.5339 14.3276 30.5339 14.3276
+\c 29.9923 15.4593 29.1057 15.5092 27.7274 16.1492
+\c 26.3484 16.7892 26.4966 18.1675 26.4966 18.1675
+\c 25.6593 15.5092 29.3025 14.1794 29.4507 12.2102
+\c 29.5982 10.2411 28.5641 9.4044 28.5641 9.4044
+\c 28.4658 12.3584 25.955 12.9493 25.5609 13.1951
+\c 25.1668 13.441 25.1668 14.6226 24.675 14.6226
+\c 24.1819 14.6226 24.7242 13.6883 25.4134 12.2594
+\c 26.1025 10.8319 26.0534 9.3054 26.0534 9.3054
+\c 25.8567 10.2411 24.576 11.4227 23.936 12.0135
+\c 23.2967 12.6043 23.3951 12.8502 23.1977 13.4895
+\c 23.0003 14.1309 22.7052 14.3768 22.7052 14.3768
+\c 22.0652 12.4076 23.7885 11.5218 23.7885 11.5218
+\c 23.3951 11.6194 23.0501 11.4227 23.0501 11.4227
+\c 23.3951 10.6851 23.3459 9.0595 23.3459 9.0595
+\c 23.0993 10.0929 22.0161 10.0929 21.0803 11.4726
+\c 20.1453 12.8502 20.4902 13.5886 20.4902 13.5886
+\c 19.1611 11.5204 21.4253 10.7827 21.1302 9.5035
+\c 20.8345 8.2228 19.9978 7.7802 19.9978 7.7802
+\c 20.7853 9.4044 19.4554 10.3388 18.8653 11.325
+\c 18.2745 12.3093 18.6194 13.0961 18.6194 13.0961
+\c 17.0929 12.7519 18.8161 9.6011 17.5854 8.1736
+\c 16.3539 6.7461 15.3697 7.2379 15.3697 7.2379
+\c 17.8312 8.7153 16.7487 10.6345 16.6496 11.7185
+\c 16.5506 12.801 17.0437 13.441 17.0437 13.441
+\c 15.9106 13.3427 15.8129 10.291 15.0739 9.3054
+\c 14.3363 8.3205 13.4005 8.567 13.4005 8.567
+\c 14.533 9.6503 14.5821 10.9794 14.4339 12.7519
+\c 14.2946 14.428 14.9025 14.5625 14.9694 14.5721
+\c 13.1553 14.4649 13.6457 10.4371 12.9081 9.2562
+\c 12.1697 8.0746 10.9881 7.8287 8.9691 7.5828
+\c 6.9508 7.3356 6.0643 6.9421 4.9325 6.0563
+\c 3.8001 5.1704 3.5535 3.8898 3.7017 2.7081
+\c 3.8493 1.5265 4.8342 0.5416 4.8342 0.5416
+\l 2.9627 0.5908
+\l 3.2093 1.9698
+\c 2.766 2.1173 1.9785 2.6091 1.9785 2.6091
+\c 4.0952 4.678 3.5037 6.9421 3.5037 6.9421
+\c 7.64 7.4838 7.9357 10.3886 7.9357 10.3886
+\c 7.2958 9.1585 5.5227 9.5519 5.5227 9.5519
+\c 6.1633 9.7978 6.6059 10.586 6.6059 10.586
+\c 6.1633 9.9945 4.3909 9.4044 4.3909 9.4044
+\c 5.6702 8.7651 7.0492 9.1585 7.0492 9.1585
+\c 6.4584 7.9769 4.5384 7.5828 3.8001 7.4838
+\c 3.0611 7.3854 3.0611 6.5986 3.0611 6.5986
+\c 3.1103 4.038 1.8303 3.1514 1.6336 2.9049
+\c 1.4362 2.6597 1.1903 2.5114 1.2395 2.1665
+\c 1.2893 1.8209 2.766 1.1816 2.766 1.1816
+\c 2.766 1.1816 2.5686 0.6898 2.3719 0.3941
+\c 2.1752 0.099 2.3221 0 2.3221 0
+\l 4.9817 0
+\c 5.3259 0 5.2269 0.444 4.7351 1.1331
+\c 4.242 1.8209 4.046 2.5114 4.1935 3.9389
+\c 4.3417 5.3664 5.8676 5.7605 5.8676 5.7605
+\c 6.4584 4.678 5.8177 4.8747 5.5725 3.6931
+\c 5.3259 2.5114 6.1633 2.4131 6.1633 2.4131
+\c 6.1633 2.4131 6.0151 2.6091 6.705 2.9049
+\c 7.3934 3.2013 7.5901 2.8072 7.5901 2.8072
+\c 7.3443 2.5606 7.1475 2.1665 7.1475 2.1665
+\c 6.6551 1.3298 7.3934 0.5908 7.3934 0.5908
+\c 8.28 0.3941 10.0524 1.0839 10.0524 1.0839
+\c 10.299 1.5757 10.1508 2.4623 9.7075 3.1514
+\c 9.2649 3.8413 8.0833 5.0714 7.9842 5.417
+\c 7.8859 5.7605 7.9842 5.8104 7.9842 5.8104
+\l 7.3934 5.7114
+\c 7.8367 4.4321 9.1658 3.3481 9.5108 2.6091
+\c 9.8557 1.8715 9.6091 1.6747 9.6091 1.6747
+\c 9.6091 1.6747 7.64 1.0341 7.5901 1.7724
+\c 7.5416 2.5114 8.28 2.6597 7.7875 3.299
+\c 7.2958 3.9389 6.8518 3.4472 6.5076 3.3481
+\c 6.1633 3.2505 6.0151 3.5954 6.0151 3.5954
+\c 6.1141 4.1356 6.5567 4.1356 6.6059 4.7763
+\c 6.6551 5.417 6.1633 6.0071 6.1633 6.0071
+\c 6.9017 6.6471 9.2649 7.0897 12.3166 7.3854
+\c 15.3697 7.6812 16.108 9.5035 16.108 9.5035
+\c 16.108 7.7802 14.4339 6.893 14.4339 6.893
+\c 19.3086 6.5481 18.2253 10.3886 18.2253 10.3886
+\c 18.2253 10.3886 18.9637 10.291 19.3578 9.1585
+\c 19.7512 8.0254 19.2587 7.0897 19.2587 7.0897
+\c 21.5735 7.2379 21.6718 10.0444 21.6718 10.0444
+\l 22.2128 9.6503
+\c 23.0501 8.8628 22.4593 7.2379 22.4593 7.2379
+\c 24.8226 8.0746 23.8377 11.226 23.8377 11.226
+\c 25.7576 10.3886 25.5609 7.9769 25.5609 7.9769
+\c 28.0225 9.0595 26.0042 11.7185 26.0042 11.7185
+\c 29.1057 11.1768 27.974 8.2228 27.974 8.2228
+\c 29.0074 8.567 29.2041 9.6503 29.2041 9.6503
+\c 29.2041 9.6503 31.6664 9.7978 32.6998 9.7493
+\c 33.7338 9.6988 35.0138 9.5519 35.0138 9.5519
+\c 36.7862 8.8628 37.9187 7.0897 37.9187 7.0897
+\c 37.9187 7.0897 37.5744 6.154 37.4754 5.6622
+\c 37.3777 5.1704 37.5744 5.1206 37.8203 5.1704
+\c 38.0662 5.2196 38.2137 4.9723 38.017 4.7763
+\c 37.8203 4.5789 37.3777 3.9389 37.3777 3.9389
+\c 38.1161 2.3632 40.1835 2.2157 40.1835 2.2157
+\c 42.2025 7.1402 36.1954 11.0286 36.1954 11.0286
+\c 39.6911 11.5709 41.5134 9.1585 41.5134 9.1585
+\c 42.0051 7.2871 42.5468 7.1887 42.5468 7.1887
+\l 44.1218 7.1887
+\c 44.3684 7.3854 44.3192 8.0254 44.3192 8.0254
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian105.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian105.pgf
new file mode 100644
index 0000000000..09f14e6683
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian105.pgf
@@ -0,0 +1,332 @@
+\m 37.0234 8.4352
+\c 37.0234 8.4352 35.1533 8.6319 32.7403 5.9238
+\c 30.3272 3.217 28.1122 0.754 25.3063 0.9029
+\c 25.3063 0.9029 27.619 1.0996 29.5888 3.512
+\c 31.558 5.9238 34.0694 9.0752 37.0234 8.4352
+\s
+\m 38.2057 8.3375
+\c 38.2057 8.3375 36.2195 7.1566 35.3016 5.6779
+\c 34.1678 3.8563 32.6911 0.6564 29.3935 0.8039
+\c 29.3935 0.8039 32.2983 1.101 33.676 4.0537
+\c 34.7094 6.2687 37.0726 8.4851 38.2057 8.3375
+\s
+\m 37.7119 6.3179
+\c 37.7119 6.3179 36.3343 4.7927 35.5468 3.4144
+\c 34.7599 2.0354 33.1835 0.754 31.756 0.754
+\c 31.756 0.754 33.3516 1.2902 34.1678 2.2813
+\c 35.5468 3.9546 36.6293 6.4176 37.7119 6.3179
+\s
+\m 33.2819 9.2234
+\c 33.2819 9.2234 33.8235 11.4883 35.5468 11.9316
+\c 37.2707 12.3741 39.1401 11.045 39.4864 8.7808
+\c 39.8299 6.5159 38.3048 4.1527 36.4326 3.4629
+\c 36.4326 3.4629 38.4509 4.8904 38.7474 7.3526
+\c 39.0424 9.8135 38.0582 11.045 36.531 11.045
+\c 34.0202 11.045 33.2819 9.2234 33.2819 9.2234
+\s
+\m 38.6975 12.2259
+\c 38.6975 12.2259 40.9617 11.1919 41.4548 8.7801
+\c 41.9466 6.3677 39.4352 1.9848 35.0543 2.5271
+\c 35.0543 2.5271 36.4825 2.577 37.5657 3.0688
+\c 38.649 3.5599 40.2234 4.4471 40.6673 7.0569
+\c 41.1085 9.6667 40.5191 10.6017 38.6975 12.2259
+\s
+\m 27.5582 13.9499
+\c 27.5582 13.9499 26.6355 13.8385 26.2291 12.842
+\c 26.2291 12.842 26.1184 12.6569 25.7858 12.8051
+\c 25.4545 12.9533 22.9055 15.0201 21.7246 15.4272
+\c 21.7246 15.4272 23.8659 14.8357 26.0071 15.5372
+\c 28.1497 16.2393 29.4051 17.4578 29.4051 17.4578
+\l 29.5151 16.6457
+\c 29.5151 16.6457 28.7774 15.9805 28.259 15.2421
+\c 27.7433 14.5038 27.8178 14.1718 28.0008 13.9499
+\o
+\m 25.0106 10.8961
+\c 25.0106 10.8961 23.4847 11.5375 19.7917 11.1925
+\l 17.7249 12.62
+\c 17.7249 12.62 18.119 13.0141 18.7084 13.0141
+\c 18.7084 13.0141 17.1327 13.064 16.4442 13.3591
+\c 15.7558 13.6534 15.3111 13.4574 15.3111 13.4574
+\c 15.3111 13.4574 16.6416 11.9316 15.3111 10.3558
+\c 13.9813 8.7808 12.2102 8.0917 9.9945 6.171
+\c 9.9945 6.171 9.8463 6.5159 10.4364 7.8936
+\c 11.0286 9.2719 12.702 13.9499 13.8351 15.1315
+\c 13.8351 15.1315 14.0803 14.2449 14.7695 14.5898
+\c 15.4593 14.9341 15.4593 16.2639 16.296 16.559
+\c 17.1327 16.8547 20.1359 16.658 25.8971 12.3741
+\o
+\m 16.001 10.8975
+\c 16.001 10.8975 16.5904 11.2417 16.4442 12.2765
+\c 16.4442 12.2765 16.7386 12.4233 17.3308 12.1283
+\c 17.9209 11.8325 18.6592 11.2417 18.6592 11.2417
+\c 18.6592 11.2417 16.8868 11.2916 16.001 10.8975
+\m 8.6148 4.9778
+\c 8.6148 4.9778 6.6218 7.5241 5.8459 11.144
+\c 5.07 14.7626 5.6253 19.8579 9.0595 23.2914
+\l 9.5745 22.59
+\c 9.5745 22.59 7.4701 20.375 7.0651 16.5719
+\c 6.6587 12.7682 7.6552 7.8567 9.5021 6.3063
+\o
+\m 7.6928 4.2757
+\c 7.6928 4.2757 5.9197 5.3091 4.5543 8.5213
+\c 3.1876 11.7335 1.4514 19.7466 7.729 25.027
+\l 8.3574 24.2886
+\c 8.3574 24.2886 5.9572 22.5531 4.9962 18.0855
+\c 4.0366 13.6172 5.6622 8.2269 8.2091 4.5707
+\o
+\m 2.4124 13.064
+\c 1.5996 17.0521 2.2642 23.0326 6.7693 25.988
+\c 6.7693 25.988 7.1389 26.2086 7.4332 25.6178
+\c 7.4332 25.6178 3.077 21.9992 2.7812 16.2393
+\c 2.4862 10.4788 4.7012 7.673 4.7012 7.673
+\c 4.7012 7.673 3.2245 9.0752 2.4124 13.064
+\m 2.1167 28.3512
+\c 2.1167 28.3512 8.1723 29.0889 10.5355 23.6985
+\l 9.9447 23.1801
+\c 9.9447 23.1801 8.246 27.6853 2.1167 28.3512
+\m 11.0518 27.9072
+\l 8.8368 26.5774
+\l 8.246 27.0221
+\c 8.246 27.0221 9.8709 27.9072 11.0518 27.9072
+\m 9.5021 19.2664
+\l 9.8709 17.2727
+\c 9.8709 17.2727 8.6893 15.796 8.0254 13.8016
+\c 8.0254 13.8016 8.3942 17.1245 9.5021 19.2664
+\m 11.1632 21.4821
+\c 11.1632 21.4821 12.0859 17.1245 10.0929 12.62
+\c 10.0929 12.62 10.8305 17.0521 9.8709 20.375
+\c 9.8709 20.375 10.5355 21.2615 11.1632 21.4821
+\m 8.3942 10.4788
+\l 8.0978 12.5463
+\c 8.0978 12.5463 9.5021 15.6485 9.7965 16.3869
+\c 9.7965 16.3869 10.0184 11.8824 8.3942 10.4788
+\m 19.3983 21.1133
+\c 19.3983 21.1133 15.779 22.3694 11.7171 19.9317
+\l 11.6433 20.5963
+\c 11.6433 20.5963 14.8193 23.3283 19.3983 21.1133
+\m 44.7046 9.4194
+\c 44.6062 12.1768 42.2908 13.6049 42.2908 13.6049
+\c 43.4724 16.8547 41.8496 19.4147 41.8496 19.4147
+\c 41.8496 20.5963 41.7014 21.2854 41.2083 21.9254
+\c 40.7158 22.5661 39.6817 22.7628 39.19 23.2061
+\c 38.6982 23.6487 38.1566 23.8945 37.1716 24.4368
+\c 36.1867 24.9785 36.1369 25.5693 36.1369 25.5693
+\c 34.9553 24.7818 34.1193 25.766 34.1193 25.766
+\c 34.0694 26.3076 33.8235 26.7994 33.3796 26.8479
+\c 32.9376 26.8977 32.6911 26.7017 32.6911 26.7017
+\c 33.676 26.5542 34.2176 25.3214 34.1193 24.5345
+\c 34.0202 23.7463 33.4301 23.0094 32.7901 22.9103
+\c 32.1508 22.8113 32.0026 23.0094 32.0026 23.0094
+\c 32.0026 23.0094 32.396 23.3051 32.4944 23.551
+\c 32.592 23.7969 32.8386 23.9936 32.8386 23.9936
+\c 32.5442 23.9936 32.4452 24.191 32.4452 24.191
+\l 32.0511 23.8945
+\c 31.6085 23.6985 31.4603 24.0919 31.4603 24.0919
+\c 31.4603 24.0919 31.9029 24.3877 31.558 24.3877
+\c 31.2144 24.3877 30.6728 24.0421 30.6728 24.0421
+\l 30.4754 24.8303
+\c 30.4754 24.8303 30.6222 25.5693 30.0328 26.1089
+\c 29.4413 26.6519 29.5397 27.3417 29.5397 27.3417
+\c 29.8846 27.2912 29.9829 27.5876 29.9829 27.5876
+\c 29.2453 27.5876 28.9004 28.2276 28.9004 28.2276
+\c 28.6053 27.6368 29.2938 27.2912 29.2938 27.2912
+\c 28.9495 26.8977 29.2938 25.7161 29.2938 25.7161
+\c 28.7521 25.3726 28.2112 26.1601 28.2112 26.1601
+\c 28.8006 25.027 29.7876 25.4702 29.7876 25.4702
+\c 30.4269 24.9785 30.3278 23.7969 30.3278 23.7969
+\c 30.3278 23.7969 30.7704 23.6487 30.9685 23.6487
+\l 31.2144 23.6487
+\c 31.5095 23.4519 32.0511 23.6487 32.0511 23.6487
+\c 32.0511 23.4028 31.6085 22.9595 31.6085 22.9595
+\c 32.8386 21.8264 33.5278 22.7628 33.5278 22.7628
+\c 34.1193 22.7628 33.8235 22.1713 33.7737 21.8264
+\c 33.7258 21.4821 33.9717 21.4336 33.9717 21.4336
+\c 34.5619 21.4336 34.316 22.1235 34.4628 22.9595
+\c 34.611 23.7969 34.4628 24.9785 34.4628 24.9785
+\c 35.1035 24.6827 35.8425 24.9785 35.8425 24.9785
+\c 36.531 23.7463 37.4667 23.6985 37.7625 23.6985
+\c 38.0582 23.6985 38.2542 23.4519 38.2542 23.4519
+\c 38.8942 22.3195 39.9276 22.2212 39.9276 22.2212
+\c 39.9276 22.2212 40.6673 22.1221 40.9624 20.991
+\c 41.2574 19.8579 41.0621 18.2815 41.0621 18.2815
+\c 41.4555 18.134 42.1932 15.8213 41.7997 14.5898
+\c 41.405 13.3591 40.8142 13.4082 39.7808 13.3591
+\c 38.7474 13.3099 36.1369 13.3591 34.7094 13.3591
+\c 33.2819 13.3591 32.8878 12.0791 32.8878 12.0791
+\c 32.6911 11.1925 31.756 10.7493 31.756 10.7493
+\c 32.5442 11.5375 32.4944 12.0791 32.4944 12.0791
+\c 32.3462 11.6365 31.9029 11.4384 31.9029 11.4384
+\l 32.1979 12.0791
+\c 31.5095 12.0791 31.1154 11.144 31.1154 11.144
+\c 30.8203 11.6836 30.9685 12.1283 31.6085 12.8167
+\c 32.2478 13.5073 32.9376 13.9499 32.9376 13.9499
+\c 33.9212 13.9977 35.3016 14.7374 35.8425 14.9341
+\c 36.3841 15.1315 37.5657 15.5242 38.4024 15.5741
+\c 39.2391 15.6232 39.9276 16.0173 39.9276 16.0173
+\c 38.845 16.2147 38.9932 17.298 39.0417 17.8396
+\c 39.0923 18.3806 39.8299 18.4304 39.8299 18.4304
+\c 38.3041 18.4304 38.5001 20.2998 38.5001 21.0395
+\c 38.5001 21.7779 37.3684 21.9254 37.3684 21.9254
+\l 37.5657 21.8762
+\c 37.7625 21.8264 37.7119 21.4821 37.7119 21.4821
+\c 37.2707 19.3156 38.5991 18.4304 38.5991 18.4304
+\c 38.0575 16.658 38.9932 16.1656 38.9932 16.1656
+\c 38.9932 16.1656 37.7625 16.0173 37.0234 15.7715
+\c 36.2844 15.5242 35.3992 15.1315 35.3992 15.1315
+\c 35.3992 15.1315 34.0202 14.4409 33.2819 14.3925
+\c 32.5442 14.3433 32.3462 13.8515 32.3462 13.8515
+\c 31.2636 14.2948 28.7521 13.8515 28.6053 13.9007
+\c 28.4571 13.9499 28.0131 14.1466 28.358 14.5407
+\c 28.7036 14.9341 29.8846 16.7065 29.8846 16.7065
+\c 32.0511 17.4947 34.9075 16.8049 34.9075 16.8049
+\c 33.0367 17.8396 30.1311 17.1498 30.1311 17.1498
+\c 30.1311 17.1498 29.8846 17.7904 29.8846 18.6278
+\c 29.8846 19.4638 30.0328 19.6612 30.4754 20.2998
+\c 30.9187 20.9419 31.1639 21.8762 31.1639 21.8762
+\l 30.8203 21.8264
+\c 30.6728 20.9419 30.2288 20.2998 29.7364 19.5622
+\c 29.2453 18.8245 29.5397 18.4304 29.5397 18.4304
+\c 27.1272 16.3616 25.8971 16.0672 24.3706 16.1164
+\c 22.8454 16.1656 19.3983 16.3616 19.3983 16.3616
+\c 18.5124 16.755 17.6258 17.0022 16.7885 17.0022
+\c 15.9511 17.0022 15.7558 16.6088 15.2619 16.0173
+\c 14.7695 15.4272 14.5236 14.9833 14.5236 14.9833
+\c 14.622 15.5242 14.3276 16.1164 14.3276 16.1164
+\c 13.5394 15.7715 12.5046 14.3925 12.5046 14.3925
+\c 13.6869 19.5123 22.4991 18.0855 23.2389 17.8396
+\c 23.9772 17.5924 24.3214 17.7904 25.2087 18.5288
+\c 26.0938 19.2664 28.1613 20.2028 28.7521 20.3996
+\c 29.3429 20.5963 30.377 22.3694 30.377 22.3694
+\c 30.0328 22.467 29.7876 22.3694 29.4912 21.8762
+\c 29.1947 21.3831 28.6053 20.8428 28.6053 20.8428
+\c 26.783 20.2028 25.3063 19.0212 24.8631 18.6763
+\c 24.4205 18.3314 23.6808 18.233 23.6808 18.233
+\c 18.4625 19.4638 13.7354 17.7406 12.6528 16.2147
+\c 11.5702 14.6889 12.1112 12.9158 12.1112 12.9158
+\c 11.5204 12.3257 10.9781 10.7984 10.6345 9.4194
+\c 10.2896 8.0418 9.5021 7.0077 9.5021 7.0077
+\c 9.0089 7.7959 8.369 9.4693 8.369 9.4693
+\c 12.0122 13.9499 11.6686 19.0212 11.6686 19.0212
+\c 16.197 22.0244 20.4317 20.5471 20.4317 20.5471
+\c 16.4934 24.2886 11.5204 20.991 11.5204 20.991
+\l 11.3722 22.0244
+\c 11.3722 22.0244 13.7853 24.7326 18.3649 24.4867
+\c 22.2553 24.2763 25.4545 21.7779 25.4545 21.7779
+\c 20.5799 26.1601 15.2134 25.8152 11.9138 23.107
+\c 8.8088 20.558 7.8779 16.6088 7.8779 16.6088
+\c 8.6148 19.8579 10.0423 21.6788 10.0423 21.6788
+\c 8.4195 20.0546 7.5323 17.199 7.5323 17.199
+\c 9.0595 22.8605 12.5046 25.6178 16.3452 25.8152
+\c 20.1858 26.0119 23.189 23.9444 23.189 23.9444
+\c 19.8409 26.602 17.3786 26.2584 14.7695 25.8643
+\c 12.1604 25.4702 10.8305 23.9444 10.8305 23.9444
+\c 10.7322 24.2395 9.9945 25.2244 9.9945 25.2244
+\l 10.3388 25.6178
+\l 11.3722 25.667
+\c 12.2102 26.1089 13.9813 27.0958 13.9813 27.0958
+\c 13.5872 27.0958 12.702 26.8479 12.702 26.8479
+\c 16.2468 28.5718 19.694 28.1292 19.694 28.1292
+\c 14.3269 29.4092 9.7965 25.5693 9.7965 25.5693
+\l 9.0595 26.2584
+\l 12.9479 28.8662
+\c 10.5355 28.8184 7.9755 27.1935 7.9755 27.1935
+\c 4.5782 29.9508 0 27.8827 0 27.8827
+\c 4.8241 28.6702 6.7448 26.2584 6.7448 26.2584
+\c 1.6242 23.6985 0.5505 14.6759 3.1507 9.7145
+\c 5.809 4.6438 7.4831 4.1527 7.4831 4.1527
+\c 7.4831 4.1527 6.7939 3.4144 5.3166 3.6603
+\c 3.8392 3.9055 2.6091 5.3835 2.6091 5.3835
+\c 2.6091 5.3835 2.4124 5.9245 1.92 5.7284
+\c 1.4275 5.5304 1.4275 4.5953 1.6734 4.497
+\c 1.92 4.3986 2.0675 4.0537 2.0675 4.0537
+\c 1.7226 3.1671 1.8701 3.0695 3.299 2.2321
+\c 4.7265 1.3954 4.8241 0.3114 5.2681 0.1147
+\c 5.71 -0.082 6.5474 -0.1796 7.6313 1.1488
+\c 8.7139 2.478 10.1906 2.773 12.2587 3.217
+\c 14.3276 3.6603 15.4593 4.8419 15.4593 4.8419
+\c 16.296 5.335 17.035 6.0235 17.2317 6.0235
+\c 17.4285 6.0235 18.7583 7.0569 21.5648 4.9894
+\c 24.3706 2.9212 26.6853 2.6754 26.6853 2.6754
+\c 25.404 1.7396 23.3372 1.099 23.3372 1.099
+\c 25.4545 0.9521 28.5069 3.4629 28.9004 3.8078
+\c 29.2938 4.1527 29.2938 4.3487 29.4912 4.6438
+\c 29.6879 4.9409 31.2144 6.811 33.676 8.0418
+\c 36.1369 9.2733 38.6483 9.2234 38.6483 9.2234
+\c 34.611 9.8634 30.7219 7.1054 29.9829 6.4661
+\c 29.2453 5.8261 29.6387 5.5304 29.2938 5.0871
+\c 28.9495 4.6438 27.6197 3.3153 27.6197 3.3153
+\c 24.667 2.9711 19.4959 6.9592 19.4959 6.9592
+\c 17.9708 6.712 14.6718 7.1552 14.6718 7.1552
+\c 15.3111 6.4661 16.2468 6.5644 16.2468 6.5644
+\c 14.9177 4.7428 10.7322 3.6603 9.5021 3.3652
+\c 8.2713 3.0695 7.3356 1.9363 6.9906 1.4937
+\c 6.6457 1.0505 5.7599 0.2138 5.2182 1.0505
+\c 4.6766 1.8878 3.495 2.773 2.9534 2.9212
+\c 2.4124 3.0695 2.4609 3.5605 2.4124 4.0537
+\c 2.3632 4.5468 1.92 4.6438 1.9698 5.0386
+\c 2.0183 5.4327 2.4124 5.335 2.4124 5.335
+\c 4.9218 2.4295 6.6963 3.3153 7.8273 4.1029
+\c 8.9605 4.8904 16.296 10.6509 17.0842 10.8483
+\c 17.871 11.045 23.189 11.045 23.189 11.045
+\c 26.3903 10.6017 29.5895 8.4345 29.5895 8.4345
+\l 29.3429 9.0267
+\c 28.9004 9.0752 28.4072 9.5683 28.4072 9.5683
+\c 29.7364 10.4528 30.3278 10.1585 30.3278 10.1585
+\l 30.377 10.3558
+\c 30.377 10.3558 29.9344 10.4528 29.4413 10.4528
+\c 28.9495 10.4528 28.1613 9.7145 28.1613 9.7145
+\c 27.5705 10.0601 25.6499 10.7984 25.6499 10.7984
+\c 25.6499 10.7984 26.5863 12.4718 26.882 13.1617
+\c 27.1764 13.8515 28.6538 13.7033 29.0971 13.7033
+\c 29.5397 13.7033 31.9527 13.7532 31.9527 13.7532
+\c 31.9527 13.7532 31.0669 13.5558 30.6728 11.9794
+\c 30.2787 10.405 30.8203 8.9283 31.2636 9.0267
+\c 31.7062 9.1257 31.4603 9.6667 31.4603 9.6667
+\c 32.592 10.6017 33.4793 12.2266 33.4793 12.2266
+\l 34.4628 12.62
+\c 35.6936 13.26 38.3533 12.3741 39.9781 12.3741
+\c 41.6024 12.3741 41.8496 13.3099 41.8496 13.3099
+\c 45.4423 10.8961 43.9164 6.2687 42.3414 4.497
+\c 40.7657 2.7238 39.9276 3.1671 39.9276 3.1671
+\c 41.7997 4.3487 42.8325 6.6635 42.5381 8.9775
+\c 42.243 11.2902 40.6673 12.0292 40.6673 12.0292
+\c 43.4724 9.0267 41.7499 4.6438 39.4864 3.1671
+\c 37.2201 1.6904 34.4628 2.0845 34.4628 2.0845
+\l 34.2176 1.9363
+\c 36.0891 1.2964 38.9932 2.478 38.9932 2.478
+\c 43.0797 2.8721 44.8023 6.6635 44.7046 9.4194
+\s
+\m 36.6293 27.6853
+\c 36.6293 27.6853 37.4667 26.4053 36.1867 26.3076
+\l 36.0392 26.7502
+\c 36.0392 26.7502 37.1232 26.4545 36.6293 27.6853
+\s
+\m 36.1362 28.0302
+\c 36.1362 28.0302 35.2018 28.1777 35.1028 27.5876
+\l 34.6602 27.981
+\c 34.6602 27.981 35.3487 28.7685 36.1362 28.0302
+\s
+\m 34.6602 29.1626
+\c 34.6602 29.1626 33.9212 29.5567 33.6261 28.72
+\c 33.6261 28.72 33.2812 29.2111 33.1835 28.621
+\c 33.1835 28.621 33.2327 29.8525 34.6602 29.1626
+\s
+\m 31.1154 28.3751
+\c 31.1154 28.3751 30.8203 28.8669 30.5744 28.8669
+\c 30.5744 28.8669 31.0163 29.36 31.5095 29.2118
+\c 31.5095 29.2118 31.4603 28.8669 31.7062 28.5718
+\c 31.7062 28.5718 31.3128 28.5718 31.1154 28.3751
+\m 32.7901 29.6059
+\c 32.1508 30.1475 31.6085 29.5082 31.6085 29.5082
+\c 30.5246 29.7049 30.0813 29.0151 30.0813 29.0151
+\c 29.3935 29.1141 29.0971 28.5718 29.0971 28.5718
+\c 30.2787 29.0151 31.1639 27.9325 31.1639 27.9325
+\c 31.2144 28.5233 32.3462 28.3751 32.3462 28.3751
+\c 32.3462 28.3751 31.7062 28.72 32.0026 29.2118
+\c 32.297 29.7049 32.7901 29.6059 32.7901 29.6059
+\s
+\m 32.0026 26.4545
+\c 32.0026 26.4545 31.9527 26.3076 31.9527 25.9627
+\c 31.9527 25.6178 31.8045 25.5686 31.6085 25.4211
+\c 31.6085 25.4211 30.8702 26.2578 32.0026 26.4545
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian106.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian106.pgf
new file mode 100644
index 0000000000..75b4524c9d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian106.pgf
@@ -0,0 +1,229 @@
+\m 12.7189 15.019
+\l 12.5215 14.5272
+\c 12.5215 14.5272 9.5681 13.3456 7.6475 11.4257
+\l 7.0082 11.3765
+\c 7.0082 11.3765 8.5825 13.2971 12.7189 15.019
+\s
+\m 4.5951 4.5327
+\c 4.5951 4.0976 4.2413 3.7452 3.8076 3.7452
+\c 3.3718 3.7452 3.0187 4.0976 3.0187 4.5327
+\c 3.0187 4.9685 3.3718 5.3202 3.8076 5.3202
+\c 4.2413 5.3202 4.5951 4.9685 4.5951 4.5327
+\s
+\m 22.7127 17.8754
+\c 22.7127 17.8754 19.5613 19.0064 18.1837 22.9959
+\c 18.1837 22.9959 17.8394 23.7834 18.2328 23.9303
+\c 18.6276 24.0785 18.5778 23.4385 18.7738 22.8969
+\c 18.9712 22.3546 19.2669 20.3369 22.7127 17.8754
+\s
+\m 24.2386 17.4813
+\c 24.2386 17.4813 21.9751 18.613 20.6452 21.2221
+\c 19.3161 23.8326 20.2013 23.9795 20.4485 23.7336
+\c 20.6944 23.4877 20.5469 20.1395 24.2386 17.4813
+\s
+\m 26.3566 16.9396
+\c 26.3566 16.9396 22.5638 18.7612 22.1226 21.7153
+\c 22.1226 21.7153 21.8275 23.3395 22.1226 23.5362
+\c 22.4177 23.7336 22.6635 23.6352 22.6635 22.8477
+\c 22.6635 22.0602 22.5638 19.5993 26.3566 16.9396
+\s
+\m 27.5382 16.497
+\c 27.5382 16.497 24.7324 17.876 23.9435 21.6661
+\c 23.9435 21.6661 23.6485 22.9461 23.9435 22.9461
+\c 24.2386 22.9461 24.2878 22.75 24.6334 21.371
+\c 24.9776 19.9934 25.2747 18.5638 27.5382 16.497
+\s
+\m 30.8863 18.4662
+\c 30.8863 18.4662 31.3289 19.7461 30.7381 20.5336
+\c 30.0415 21.4639 27.7834 20.9277 27.7834 20.9277
+\c 27.7834 20.9277 29.5558 21.6661 30.9342 22.75
+\c 30.9342 22.75 32.904 22.9959 33.3971 22.011
+\c 33.8889 21.0268 32.559 19.1553 30.8863 18.4662
+\m 37.1878 22.3546
+\c 36.0062 21.7644 35.4147 22.3546 36.6462 23.2418
+\c 37.8763 24.1277 38.812 24.4234 40.1412 24.4234
+\c 40.1412 24.4234 38.3694 22.9461 37.1878 22.3546
+\m 35.9079 23.6844
+\c 34.3806 22.8969 34.9223 25.506 38.3196 26.8843
+\c 38.3196 26.8843 37.4337 24.4726 35.9079 23.6844
+\m 43.6853 23.1919
+\c 43.6368 24.0785 41.4211 24.7178 41.4211 24.7178
+\c 43.7844 27.9683 43.1451 29.1499 41.6185 28.7558
+\c 40.092 28.3623 39.1071 27.6725 39.1071 27.6725
+\c 38.7137 29.3466 37.1373 29.6922 37.1373 29.6922
+\l 36.8921 29.2475
+\c 38.2212 29.2981 38.6146 27.4751 38.6146 27.4751
+\c 37.976 27.2299 36.3505 26.4909 35.3164 25.1611
+\c 34.283 23.8326 34.0863 22.4037 36.2514 23.4385
+\c 38.4186 24.4726 39.2061 27.3774 39.2061 27.3774
+\c 40.6828 28.2626 43.0959 29.3466 42.3569 27.4751
+\c 41.6185 25.605 40.6828 24.8667 40.6828 24.8667
+\c 40.6828 24.8667 38.4678 24.8168 36.8429 23.7336
+\c 34.7611 22.3464 35.4646 21.4694 36.9904 21.912
+\c 38.5177 22.3546 40.831 24.2752 40.831 24.2752
+\c 41.8637 24.4234 43.49 23.6844 43.1943 23.0936
+\c 42.8978 22.5035 42.6526 22.5035 39.2553 22.011
+\c 35.858 21.5186 33.2496 19.7946 33.2496 19.7946
+\c 35.5629 23.586 31.428 23.0936 31.428 23.0936
+\c 33.544 24.5211 36.2016 27.525 36.2016 27.525
+\l 35.5131 27.5742
+\c 32.4108 23.0936 25.5684 19.9428 25.5684 19.9428
+\l 25.7651 19.7946
+\c 27.5867 20.6327 29.9014 21.272 30.3925 20.1395
+\c 30.8863 19.0071 29.6057 17.2361 29.6057 17.2361
+\l 30.0476 17.1855
+\c 29.5558 16.7914 29.2601 16.398 29.2601 16.398
+\l 29.605 16.1029
+\c 33.1014 19.8445 38.3196 20.8786 40.6828 21.3212
+\c 43.046 21.7644 43.7359 22.3061 43.6853 23.1919
+\s
+\m 34.3315 3.2035
+\c 34.3315 3.2035 32.0174 4.1386 27.8831 2.218
+\c 27.8831 2.218 26.9467 2.0226 27.1441 2.7603
+\c 27.3408 3.4986 31.4751 4.3353 34.3315 3.2035
+\s
+\m 32.0181 4.1386
+\c 32.0181 4.1386 28.2766 4.3353 26.9474 3.7937
+\c 25.6176 3.2527 24.5842 3.1537 25.175 3.9419
+\c 25.7651 4.7294 29.3598 5.0258 32.0181 4.1386
+\s
+\m 29.3598 5.3202
+\c 29.3598 5.3202 26.4556 6.01 23.5501 4.3353
+\c 23.5501 4.3353 22.8596 4.0409 22.7134 4.6317
+\c 22.5645 5.2225 26.554 6.551 29.3598 5.3202
+\s
+\m 27.1926 6.6992
+\c 27.1926 6.6992 23.796 6.995 21.6793 5.7635
+\c 21.6793 5.7635 20.8419 5.715 21.1869 6.3051
+\c 21.5304 6.8959 24.1901 7.9799 27.1926 6.6992
+\s
+\m 10.3065 2.0711
+\c 10.3065 2.0711 15.6224 2.7111 15.9188 1.9236
+\c 16.2138 1.1354 15.2289 1.2344 14.4414 1.4304
+\c 13.6525 1.6285 11.2422 2.0711 10.3065 2.0711
+\s
+\m 11.6356 3.056
+\c 11.6356 3.056 14.787 3.7452 16.4106 3.7937
+\c 18.0361 3.8442 17.8879 2.8101 17.0512 2.8101
+\c 16.2145 2.8101 14.787 3.3019 11.6356 3.056
+\s
+\m 13.7523 4.435
+\c 13.7523 4.435 17.5922 5.715 18.8243 5.8625
+\c 20.0544 6.0107 20.301 5.3202 19.8079 4.8776
+\c 19.3161 4.435 17.1981 5.075 13.7523 4.435
+\s
+\m 41.596 3.7821
+\c 41.4847 3.5799 41.1623 3.5416 40.8761 3.698
+\c 40.5906 3.8545 40.4479 4.1454 40.5585 4.349
+\c 40.6705 4.5511 40.9915 4.5894 41.2784 4.433
+\c 41.5646 4.2759 41.7053 3.9856 41.596 3.7821
+\s
+\m 42.012 2.5144
+\c 40.7327 2.957 38.7629 4.8291 38.2212 5.075
+\c 37.6796 5.3202 37.4337 4.5819 37.9262 4.1386
+\c 38.4186 3.696 39.6986 2.9085 40.831 1.6777
+\c 40.831 1.6777 37.9262 2.5636 35.8081 4.6809
+\c 33.6922 6.7982 35.3662 9.7024 40.1412 7.4375
+\c 40.1412 7.4375 41.6684 6.2074 43.046 3.9419
+\c 44.4244 1.6777 43.2919 2.0718 42.012 2.5144
+\m 34.7741 4.6809
+\c 34.7741 4.6809 32.559 5.7635 32.0174 8.4225
+\c 31.4758 11.0807 37.237 11.8198 39.9458 7.9799
+\c 39.9458 7.9799 37.6304 8.9641 35.7098 8.4225
+\c 33.7912 7.8808 34.0364 5.5675 34.7741 4.6809
+\m 28.7191 9.8998
+\c 28.1283 12.5096 31.1903 13.8627 33.8397 12.8532
+\c 35.9072 12.0656 36.9898 10.589 36.9898 10.589
+\c 36.9898 10.589 34.0364 11.8689 32.1165 10.1457
+\c 30.1958 8.4225 32.3138 5.5675 32.3138 5.5675
+\c 32.3138 5.5675 29.31 7.29 28.7191 9.8998
+\m 25.3212 10.5398
+\c 23.4996 13.2971 24.7802 14.7738 26.2576 15.0197
+\c 26.9863 15.1413 29.5558 15.7095 33.1014 13.444
+\c 33.1014 13.444 29.7532 13.9856 28.5231 12.3614
+\c 27.291 10.7358 28.0307 8.865 29.4582 7.1432
+\c 29.4582 7.1432 27.1434 7.7825 25.3212 10.5398
+\m 21.3351 12.6565
+\c 20.3495 14.823 21.4321 18.2695 28.9165 15.4623
+\c 28.9165 15.4623 25.9133 16.1036 24.4858 14.4289
+\c 23.057 12.7555 23.7454 10.9339 25.8628 8.4225
+\c 25.8628 8.4225 22.3179 10.4899 21.3351 12.6565
+\m 10.8959 4.2376
+\c 9.5183 3.1544 7.2042 1.2351 4.742 1.0869
+\c 4.742 1.0869 5.1361 1.8245 6.2685 2.8101
+\c 7.4009 3.7944 8.7799 4.8291 8.8284 5.075
+\c 8.8783 5.3202 7.8934 5.3202 7.5491 5.1235
+\c 7.2042 4.9268 2.0837 0.7911 1.1971 0.9394
+\c 1.1971 0.9394 0.4089 0.6928 0.803 2.2186
+\c 1.1971 3.7452 2.2804 5.3694 4.8895 7.0441
+\c 7.4993 8.7182 10.355 9.7523 12.1274 9.0624
+\c 13.9005 8.374 12.2756 5.3202 10.8959 4.2376
+\m 43.7844 3.4993
+\c 42.9477 5.7635 36.2514 13.5922 27.5382 16.497
+\c 27.5382 16.497 17.3961 19.4511 13.3582 21.6176
+\c 9.3216 23.7841 6.2692 27.525 5.5295 28.6574
+\c 5.5295 28.6574 4.841 29.2482 4.6443 28.3623
+\c 4.4469 27.4758 5.2843 25.4568 5.2843 25.4568
+\c 5.2843 25.4568 4.742 25.6542 3.9059 25.7034
+\c 3.9059 25.7034 5.2344 25.3591 6.0226 24.3736
+\c 6.8101 23.39 8.0908 22.2084 8.5825 22.1094
+\c 9.0743 22.011 9.6665 22.4044 9.2717 22.7002
+\c 9.2717 22.7002 8.8284 22.651 8.4849 22.651
+\c 8.4849 22.651 6.9583 23.8333 6.7104 24.2267
+\c 6.7104 24.2267 7.0567 23.9795 7.8934 24.03
+\c 7.8934 24.03 6.3668 24.3736 5.7275 25.4568
+\c 5.0876 26.5408 4.841 28.3125 5.1852 28.3125
+\c 5.5295 28.3125 5.8758 27.2299 8.1884 25.0634
+\c 10.5018 22.8969 13.7523 20.4346 20.1528 18.5153
+\c 20.1528 18.5153 24.5336 17.0878 25.175 16.9403
+\c 25.175 16.9403 22.3685 17.5311 20.8904 16.2505
+\c 19.4145 14.9705 20.202 13.2473 20.4963 12.7555
+\c 20.4963 12.7555 17.0505 14.922 16.3621 16.9403
+\c 15.6729 18.9586 19.6112 18.2695 19.6112 18.2695
+\c 19.6112 18.2695 18.8236 18.8118 17.6413 18.8118
+\c 16.4604 18.8118 13.9988 18.1704 16.5581 15.3646
+\c 16.5581 15.3646 15.0814 16.0544 13.8008 17.3337
+\c 12.5208 18.6137 13.0132 19.9934 14.1942 19.7953
+\c 14.1942 19.7953 13.5064 20.2878 12.865 19.5487
+\c 12.2257 18.8118 13.0132 17.0878 13.1615 16.9403
+\c 13.3097 16.7921 7.1052 21.5186 0.6555 19.9934
+\c 0.6555 19.9934 1.3952 22.651 4.102 22.2576
+\c 4.102 22.2576 5.6777 21.0268 6.8593 20.5828
+\c 8.0409 20.1402 10.2074 20.4852 8.4849 21.6668
+\c 8.4849 21.6668 8.9766 21.3218 8.4849 20.9277
+\c 7.9917 20.5336 6.1701 21.912 5.5793 22.2576
+\c 5.5793 22.2576 6.1216 22.2084 6.8593 22.2084
+\c 6.8593 22.2084 3.6594 22.7978 1.5434 25.8024
+\c 1.5434 25.8024 2.1322 25.8509 2.5768 25.8509
+\c 2.5768 25.8509 1.7886 26.1965 0.803 26.1965
+\c 0.803 26.1965 2.2319 23.4884 3.6102 22.75
+\c 3.6102 22.75 0.7047 22.8484 -0.033 19.3035
+\c -0.033 19.3035 2.921 20.0911 7.8442 18.7127
+\c 12.7674 17.3337 16.903 12.8532 19.8072 11.5739
+\c 19.8072 11.5739 18.5771 7.9314 15.4755 6.6009
+\c 15.4755 6.6009 17.0505 8.2749 17.002 10.6866
+\c 16.9522 13.099 10.7491 12.8047 4.8895 8.7182
+\c 4.8895 8.7182 9.2717 11.2283 12.1766 11.7706
+\c 15.0814 12.3115 18.3305 11.4257 14.3431 6.0107
+\c 14.3431 6.0107 13.5549 5.174 12.8179 4.9268
+\c 12.8179 4.9268 12.4716 4.9268 12.865 5.5675
+\c 13.2591 6.2074 14.5398 8.8166 12.5707 9.505
+\c 10.6008 10.1956 5.4817 8.766 2.0837 5.4192
+\c 2.0837 5.4192 3.9059 8.4716 5.2344 9.6041
+\c 5.2344 9.6041 3.0187 8.4225 1.0988 4.1885
+\c -0.8205 -0.0455 0.607 0.2003 1.5905 0.397
+\c 2.5768 0.5938 3.0187 0.9878 3.7079 1.4311
+\c 4.3984 1.8744 5.4311 2.7118 5.776 2.8101
+\c 5.776 2.8101 4.94 1.6777 3.3145 0.397
+\c 3.3145 0.397 3.2161 -0.0455 4.0043 0.0036
+\c 4.7918 0.0535 5.0876 0.2987 5.8758 0.841
+\c 5.8758 0.841 6.5649 1.0869 6.8593 0.742
+\c 6.8593 0.742 10.7491 2.4167 14.9831 5.3202
+\c 19.2171 8.2257 21.4813 9.8998 21.4813 9.8998
+\c 21.4813 9.8998 33.2496 2.8593 41.9635 0.4469
+\c 41.9635 0.4469 42.0618 0.9878 41.3221 1.7269
+\c 40.5845 2.4659 39.6986 3.1052 38.2212 4.1885
+\c 38.2212 4.1885 38.1236 4.7301 38.3196 4.5819
+\c 38.5177 4.435 41.5202 2.3177 42.5543 1.8245
+\c 43.5883 1.3328 44.6217 1.2351 43.7844 3.4993
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian107.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian107.pgf
new file mode 100644
index 0000000000..bccb5dd141
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian107.pgf
@@ -0,0 +1,305 @@
+\m 12.82 2.298
+\c 13.3616 2.4947 13.3132 1.7065 12.7708 1.4599
+\c 12.7708 1.4599 12.2798 2.1006 12.82 2.298
+\m 16.8088 6.4821
+\c 16.4154 5.2513 15.6272 2.938 15.0856 1.9531
+\c 14.5433 0.9682 13.7073 0.8705 13.1663 0.8705
+\c 12.624 0.8705 12.9682 1.2639 12.9682 1.2639
+\c 13.7551 1.7065 13.6082 2.8881 12.8699 2.6914
+\c 12.1315 2.4947 12.18 1.854 12.4259 1.5098
+\c 12.6732 1.1649 12.3276 1.0658 12.3276 1.0658
+\c 11.3918 0.919 11.3918 1.3131 11.4417 1.7065
+\c 11.4916 2.1006 10.9492 2.0016 10.9492 2.0016
+\l 11.1466 1.8049
+\c 11.1466 1.3616 10.8031 1.3131 10.4097 1.4108
+\c 10.0156 1.5098 9.7683 2.0016 10.2608 2.1983
+\c 10.7532 2.3957 10.605 2.7406 10.605 2.7406
+\c 9.8674 2.1983 9.0785 2.4455 9.2759 2.938
+\c 9.4739 3.4291 10.0156 3.3314 10.0156 3.3314
+\l 9.8175 3.0357
+\c 10.2608 3.3314 10.9492 2.9865 10.9492 2.9865
+\c 10.9492 3.4291 10.2109 3.5773 10.2109 3.5773
+\c 10.8031 3.9222 12.2798 3.873 12.9682 4.6107
+\c 13.6581 5.3497 13.6082 7.9103 13.5099 9.7811
+\c 13.4586 10.7551 13.6608 11.2748 13.8664 11.5494
+\c 12.5304 10.2517 12.8248 7.3468 12.8699 5.9405
+\c 12.9191 4.4153 11.9342 4.2173 10.9008 4.0212
+\c 9.8674 3.8232 9.1768 3.6763 8.9808 2.8881
+\c 8.7834 2.1006 9.7191 1.7564 9.7191 1.7564
+\c 10.0627 0.7715 10.9984 1.1649 10.9984 1.1649
+\c 11.3433 0.3282 12.8699 0.6232 12.8699 0.6232
+\c 16.2672 0.1315 16.3649 3.8232 17.2514 6.2854
+\c 18.138 8.7477 19.3674 8.6978 19.3674 8.6978
+\c 18.1865 8.8454 17.2022 7.7129 16.8088 6.4821
+\m 13.8664 11.5494
+\c 13.9818 11.6614 14.1082 11.7625 14.2489 11.8486
+\c 14.2489 11.8486 14.0563 11.8028 13.8664 11.5494
+\s
+\m 21.6835 1.7564
+\c 21.6835 1.7564 21.5353 1.4114 20.8967 1.559
+\c 20.8967 1.559 20.7484 1.854 21.6835 1.7564
+\s
+\m 37.4857 2.3957
+\l 37.1906 2.1006
+\l 36.9441 2.1498
+\l 37.2897 2.4947
+\o
+\s
+\m 38.1762 0.5249
+\c 37.6838 0.5249 37.7329 1.0173 37.931 1.0173
+\c 38.1264 1.0173 38.5696 1.0658 38.6188 1.3616
+\c 38.6188 1.3616 38.668 0.5249 38.1762 0.5249
+\m 39.0129 7.6638
+\c 38.6188 8.2061 39.6529 8.6487 40.4404 7.8605
+\c 40.4404 7.8605 39.4063 7.1221 39.0129 7.6638
+\m 42.7545 3.4291
+\c 42.6069 6.8277 40.9329 8.107 40.9329 8.107
+\c 43.0509 13.8177 40.5394 17.7566 40.5394 17.7566
+\c 41.1623 17.4998 41.484 17.0538 41.609 16.8421
+\c 40.3714 19.178 38.3736 20.4648 38.3736 20.4648
+\c 43.098 14.8026 40.4404 8.1555 40.4404 8.1555
+\c 39.948 8.7955 38.4214 8.7962 38.767 7.7614
+\c 39.1119 6.728 40.7348 7.5661 40.7348 7.5661
+\c 42.8528 5.3982 41.9669 1.7065 41.5735 1.0658
+\c 41.1794 0.4259 40.6378 0.3767 40.6378 0.6717
+\c 40.6378 0.9675 40.4896 1.0658 40.4896 1.0658
+\c 40.1945 1.0173 40.0463 1.2639 40.0463 1.2639
+\c 39.8489 1.0173 40.0463 0.8698 40.0463 0.8698
+\c 40.4418 0.7708 40.0962 -0.0167 39.5552 0.5249
+\c 39.0129 1.0658 39.8011 1.5098 39.8011 1.5098
+\c 39.6037 1.7557 39.2103 1.5098 39.2103 1.5098
+\c 39.0621 1.8049 39.4555 2.1006 39.4555 2.1006
+\c 38.668 2.4455 38.4713 1.559 38.4713 1.559
+\c 38.2746 2.4947 37.6838 2.0016 37.6838 2.0016
+\c 38.1762 1.9039 38.028 1.0658 37.4379 0.919
+\c 36.8471 0.7708 36.9441 1.7557 36.9441 1.7557
+\c 36.1565 0.4757 37.6838 0.5249 37.6838 0.5249
+\c 38.3244 0.0324 38.767 0.7223 38.767 0.7223
+\c 39.3578 -0.3617 40.3912 0.4757 40.3912 0.4757
+\c 40.6877 -0.2141 42.9027 0.0324 42.7545 3.4291
+\m 41.609 16.8421
+\c 41.6302 16.8011 41.6521 16.7629 41.6712 16.7232
+\c 41.6712 16.7232 41.6521 16.769 41.609 16.8421
+\s
+\m 42.6069 7.6638
+\c 42.6069 7.6638 42.5086 5.3497 44.0843 4.0212
+\c 44.0843 4.0212 43.445 6.6297 44.0344 9.8788
+\c 44.6266 13.1279 44.2796 18.1016 40.1453 21.4497
+\c 40.1453 21.4497 38.2247 22.8273 33.9914 24.5014
+\c 29.183 26.4022 28.4767 27.0128 25.8178 27.3079
+\c 23.1595 27.6036 21.2395 26.4712 13.8541 29.0803
+\c 13.8541 29.0803 13.9525 28.7853 15.3308 28.3912
+\c 16.7098 27.9977 18.7779 26.9637 22.8139 26.7171
+\c 26.8518 26.4712 29.3626 25.7821 31.1842 25.043
+\c 33.0058 24.3047 36.6989 22.8772 38.2739 22.0391
+\c 39.8489 21.2031 41.6712 19.874 43.0502 16.4767
+\c 44.4285 13.0794 42.8521 9.1404 43.445 6.3339
+\c 43.445 6.3339 42.9518 6.2854 42.6069 7.6638
+\s
+\m 14.938 23.4195
+\c 14.938 23.4195 14.938 24.9447 13.9531 24.6011
+\c 12.9682 24.2562 13.3616 23.0254 14.0522 22.6805
+\c 14.0522 22.6805 12.7463 21.8677 12.4765 20.4648
+\c 12.4765 20.4648 11.245 21.0064 10.9014 23.3198
+\c 10.5558 25.6345 11.5407 27.1112 13.1164 27.2587
+\c 14.6915 27.4069 15.6279 26.1263 15.6764 25.3886
+\c 15.7249 24.6496 15.6764 23.6148 14.938 23.4195
+\m 14.3957 23.2713
+\c 14.3957 23.2713 13.7073 23.3198 13.7557 23.8621
+\c 13.8056 24.403 14.5439 24.3539 14.3957 23.2713
+\m 12.9682 27.5538
+\c 10.4267 27.1665 9.7191 24.6496 10.5073 22.3356
+\c 11.2948 20.0222 13.2141 19.6773 13.2141 19.6773
+\c 12.5256 21.154 14.4955 22.5814 14.4955 22.5814
+\c 18.0881 23.8621 15.8731 27.9977 12.9682 27.5538
+\s
+\m 13.1164 29.0803
+\c 13.1164 29.0803 10.8031 29.1288 8.4399 28.2429
+\l 7.8975 28.3406
+\c 7.8975 28.3406 10.5558 29.5229 13.1164 29.0803
+\s
+\m 4.1068 5.2029
+\c 3.6635 5.1038 3.6137 6.0395 4.5002 5.8913
+\c 4.5002 5.8913 4.5487 5.3012 4.1068 5.2029
+\m 2.2354 9.1896
+\c 1.8413 9.7312 3.2203 9.5352 3.4163 9.2886
+\c 3.4163 9.2886 2.6295 8.6487 2.2354 9.1896
+\m 7.9959 8.3536
+\c 7.0595 8.8945 6.0268 8.4028 5.9769 7.6153
+\c 5.9284 6.8277 6.7651 6.8277 6.7651 6.8277
+\c 6.7152 6.088 5.2379 5.9405 4.9927 6.728
+\c 4.7475 7.5162 4.156 7.6153 4.156 7.6153
+\c 4.8943 8.5004 3.9586 9.1418 3.9586 9.1418
+\c 4.9428 9.8794 4.156 10.9634 4.156 10.9634
+\c 4.5494 9.8303 3.6137 9.4362 3.6137 9.4362
+\c 2.3323 10.2735 1.3502 9.5352 1.8904 8.8454
+\c 2.4321 8.1562 3.8104 8.9437 3.8104 8.9437
+\c 4.4504 8.6978 3.9586 7.8611 3.4163 7.467
+\c 2.8747 7.0729 2.3829 7.3188 2.3829 7.3188
+\c 2.4321 6.728 3.0229 6.5805 3.5645 6.9739
+\c 4.1068 7.368 4.4504 7.172 4.4504 7.172
+\c 4.4019 6.728 4.5986 6.2854 4.5986 6.2854
+\c 3.8596 6.5313 3.2776 5.7657 3.6635 5.1038
+\c 4.0071 4.513 4.5986 5.0048 4.6963 5.2513
+\c 4.7953 5.4979 4.9927 6.0395 5.5343 6.0395
+\c 6.0766 6.0395 6.1238 5.3497 6.1238 5.3497
+\c 6.3703 5.3012 6.8136 5.0546 6.3218 4.8088
+\c 5.8287 4.5622 5.632 5.2029 5.632 5.2029
+\c 5.2877 4.2173 6.7152 3.9707 6.9625 4.7097
+\c 7.2077 5.4487 6.4202 5.6946 6.4202 5.6946
+\c 6.912 5.597 7.1585 6.0395 7.1585 6.0395
+\c 6.912 5.793 6.3218 6.2363 6.912 6.4336
+\c 7.5041 6.6304 7.8477 6.088 7.8477 6.088
+\c 7.8477 6.6304 7.3559 6.7786 7.3559 6.7786
+\c 7.8975 7.9588 6.7152 7.7621 6.7152 7.7621
+\c 7.3559 7.7129 7.5041 7.172 6.9625 7.172
+\c 6.4202 7.172 6.1238 7.812 6.4202 8.0578
+\c 6.7152 8.3037 8.4399 8.5995 8.586 6.9739
+\c 8.7342 5.3497 7.2576 3.6763 5.2877 3.6763
+\c 3.3193 3.6763 1.4472 5.9405 0.8079 11.6519
+\c 0.1672 17.3632 1.8413 20.2182 2.678 22.7782
+\c 3.5153 25.3381 5.0904 25.9296 5.8786 26.3722
+\c 6.6654 26.8161 7.2077 27.5538 7.2077 27.5538
+\l 6.5684 27.5538
+\c 6.1238 26.7663 4.8445 26.422 3.6137 25.0922
+\c 2.3829 23.7631 0.2171 19.7749 0.0197 15.0492
+\c -0.1764 10.322 1.1029 6.1372 2.7777 4.4153
+\c 4.4504 2.6914 6.8136 2.938 8.1427 4.513
+\c 9.4733 6.088 8.9309 7.812 7.9959 8.3536
+\s
+\m 2.2354 11.4552
+\c 1.6446 11.5043 2.0387 12.5384 3.3671 11.9469
+\c 3.3671 11.9469 2.8255 11.406 2.2354 11.4552
+\m 4.4504 13.4735
+\c 4.3022 12.3909 3.7134 12.046 3.5153 12.145
+\c 3.3193 12.2427 2.137 12.6368 1.7436 11.9469
+\c 1.3502 11.2578 2.1869 10.6185 3.4163 11.2093
+\c 4.6478 11.8001 4.4504 13.4735 4.4504 13.4735
+\s
+\m 1.8904 13.8669
+\c 1.7436 14.4577 2.9737 14.6059 3.8596 13.8669
+\c 3.8596 13.8669 2.0387 13.2761 1.8904 13.8669
+\m 5.7303 16.0833
+\c 5.2379 15.3927 4.2537 14.261 4.2537 14.261
+\c 4.2537 14.261 2.6295 14.7534 1.7436 14.4577
+\c 0.857 14.1626 1.8413 12.8328 3.3193 13.2269
+\c 4.7953 13.621 6.272 16.3291 6.272 16.3291
+\o
+\s
+\m 32.4157 14.0151
+\c 32.2675 15.8367 33.695 16.0839 33.9408 14.7043
+\c 34.1867 13.3266 33.9914 11.1102 33.3992 10.2244
+\c 33.3992 10.2244 32.5639 12.1935 32.4157 14.0151
+\m 22.1753 15.9849
+\c 21.2395 18.9874 21.2395 20.9081 22.1753 20.6123
+\c 23.111 20.3173 25.4244 16.1324 24.4886 11.6027
+\c 24.4886 11.6027 23.111 12.9817 22.1753 15.9849
+\m 17.1032 14.1141
+\c 16.9563 15.1475 18.8783 15.963 19.2697 13.3751
+\c 19.5156 11.7509 18.3347 11.406 18.3347 11.406
+\c 18.3347 11.406 17.2514 13.0794 17.1032 14.1141
+\m 11.8365 19.2832
+\c 12.3276 19.2347 11.8365 18.4957 11.3427 18.3973
+\c 11.3427 18.3973 11.3427 19.333 11.8365 19.2832
+\m 22.2244 9.7811
+\c 21.4847 10.0762 22.4205 10.8152 23.6526 9.831
+\c 23.6526 9.831 22.9621 9.4853 22.2244 9.7811
+\m 36.5506 6.9739
+\c 34.4832 8.3037 33.6472 9.4853 33.6472 9.4853
+\c 35.2707 15.4918 33.8432 15.6898 33.2524 15.8859
+\c 32.6616 16.0839 31.9225 15.4918 32.0216 13.1285
+\c 32.1199 10.7653 32.9573 9.4853 32.9573 9.4853
+\c 32.5639 8.7484 30.6426 8.0578 28.7718 8.6978
+\c 26.9017 9.3378 24.6355 11.0126 24.6355 11.0126
+\c 26.261 16.0334 23.9962 20.0714 22.4703 20.9572
+\c 20.9431 21.8438 20.648 19.1356 21.8297 15.6898
+\c 23.0113 12.2427 24.3903 10.9634 24.3903 10.9634
+\l 23.7995 10.0762
+\c 22.1254 11.2093 21.2894 10.2735 21.9287 9.6336
+\c 22.5687 8.9936 23.6028 9.4853 23.6028 9.4853
+\c 26.2119 6.0887 24.5877 1.2141 23.8978 0.6724
+\c 23.2093 0.1315 22.8139 0.4764 22.8139 0.4764
+\c 23.5044 1.7564 22.2244 1.2646 22.2244 1.2646
+\c 22.2244 1.2646 22.9129 1.4108 22.8651 1.0665
+\c 22.8139 0.7223 22.4205 0.4764 22.4205 0.4764
+\c 22.5188 0.7715 22.3713 0.82 22.3713 0.82
+\c 22.1753 0.4259 21.7818 0.2291 21.3871 0.2291
+\c 20.993 0.2291 21.0913 0.4764 21.0913 0.4764
+\c 21.7306 0.7715 21.5844 1.3131 21.5844 1.3131
+\c 20.896 0.6232 20.5497 1.1649 20.5497 1.1649
+\c 20.3537 0.919 20.6979 0.6232 20.6979 0.6232
+\c 20.6979 0.6232 20.3537 0.2783 19.8605 0.3282
+\c 19.3688 0.3774 19.5156 0.8705 19.7137 0.8705
+\c 19.909 0.8705 20.0081 1.1164 20.0081 1.1164
+\c 20.0572 1.3623 20.5497 1.6075 20.5497 1.6075
+\c 20.5497 1.6075 20.2546 1.7065 19.8605 1.3623
+\c 19.4664 1.0173 18.9733 1.1164 18.9733 1.1164
+\c 18.6297 1.4108 18.6789 2.5924 20.4028 3.0357
+\c 22.1254 3.4796 22.0769 5.1045 21.6336 5.9904
+\c 21.1903 6.8762 18.5799 10.9634 18.5799 10.9634
+\c 20.648 12.2427 18.9733 15.0492 18.3838 15.6393
+\c 17.7924 16.2308 16.3649 15.7383 16.5629 13.9666
+\c 16.7583 12.1935 17.8422 11.3069 17.8422 11.3069
+\c 13.8541 10.8152 11.4417 18.1992 11.4417 18.1992
+\c 12.4758 18.6425 12.5741 19.4307 11.8843 19.5297
+\c 11.1958 19.6288 11.146 18.594 11.146 18.594
+\c 10.6549 18.0531 8.7342 17.855 8.3401 18.1016
+\c 7.9467 18.3481 8.6851 18.594 8.6851 18.594
+\c 8.6851 18.594 7.847 18.8898 6.3218 17.6091
+\c 5.5446 16.9582 4.4743 16.4985 3.6109 16.2035
+\c 4.4517 17.45 7.0274 18.4697 7.847 19.7265
+\c 8.6851 21.0064 7.651 21.2038 7.011 20.6622
+\c 6.3703 20.1206 6.4195 19.1356 6.4195 19.1356
+\c 6.9618 20.169 7.7985 20.7114 7.5533 20.0714
+\c 7.3054 19.4307 5.632 18.3481 4.8445 17.855
+\c 4.1587 17.4274 3.2141 16.2916 2.9792 16.0033
+\c 2.4751 15.8572 2.137 15.7875 2.137 15.7875
+\c 2.038 15.3449 1.3502 14.8525 1.3502 14.8525
+\c 2.8747 14.7541 7.7493 17.3147 7.7493 17.3147
+\c 9.2752 17.2656 11.146 18.0531 11.146 18.0531
+\c 13.1649 10.2735 17.9904 10.8152 17.9904 10.8152
+\c 18.7281 9.9286 21.9779 5.2513 21.2395 4.0704
+\c 20.5012 2.8881 19.5156 3.6763 18.6789 2.4947
+\c 17.8422 1.3131 18.7281 0.9682 19.0238 0.6232
+\c 19.3196 0.2783 19.812 0.1315 19.812 0.1315
+\c 20.7478 -0.2134 22.4205 0.2291 22.4205 0.2291
+\c 24.6355 -0.8043 26.2119 3.5281 25.7693 5.793
+\c 25.326 8.0578 23.9477 9.6336 23.9477 9.6336
+\c 24.0945 9.6827 24.7352 10.5194 24.7352 10.5194
+\c 28.6734 5.8428 33.2039 8.846 33.2039 8.846
+\c 33.7455 8.0094 34.9749 7.2212 34.9749 7.2212
+\c 35.0248 6.2363 34.6314 4.513 34.0406 3.4796
+\c 33.4498 2.4455 32.7114 2.5924 32.4157 2.5924
+\c 32.1199 2.5924 32.1199 2.8881 32.316 3.3806
+\c 32.514 3.873 31.7258 3.873 31.7258 3.873
+\c 31.4799 3.8238 31.135 3.4291 31.0865 2.9865
+\c 31.036 2.5439 30.2485 2.4947 30.1009 2.6914
+\c 29.9534 2.8881 30.3475 3.2337 30.5941 3.7255
+\c 30.8406 4.2173 30.6924 4.3655 30.2485 4.3655
+\c 29.8072 4.3655 30.0026 3.8238 29.7075 3.4796
+\c 29.4131 3.1347 28.9685 3.3806 28.9685 3.3806
+\c 28.7718 4.0704 29.6085 4.5622 30.6924 5.5471
+\c 31.7757 6.5313 31.7757 7.8611 31.3823 7.9588
+\c 30.9875 8.0578 30.7901 7.812 30.7901 7.4179
+\l 30.7901 6.5805
+\c 30.5442 5.2513 28.6734 4.8579 28.4767 3.6278
+\c 28.2793 2.3957 29.9049 2.5439 29.9049 2.5439
+\c 30.2007 1.7065 31.3823 2.3472 31.3823 2.3472
+\c 32.8091 1.7065 33.9914 2.8881 33.9914 2.8881
+\c 35.7624 4.6107 35.4189 6.8762 35.4189 6.8762
+\c 35.4189 6.8762 37.8805 5.4979 38.2739 4.8579
+\c 38.6673 4.2173 38.2739 3.2337 38.2739 3.2337
+\c 39.5545 4.7589 38.6188 5.6461 36.5506 6.9739
+\s
+\m 5.1409 23.2214
+\c 5.1409 23.2214 6.2228 24.0089 6.6169 23.2713
+\c 6.6169 23.2713 5.5343 23.1231 5.1409 23.2214
+\m 5.2386 23.6654
+\c 4.7475 23.3696 4.7475 23.0254 4.5002 22.4838
+\c 4.2537 21.9415 4.2537 21.4989 4.2537 21.4989
+\c 4.2537 21.4989 4.4019 21.8438 4.8445 22.1389
+\c 5.2884 22.4332 5.2884 22.1389 5.7303 21.893
+\c 6.1743 21.6464 6.1743 22.3854 6.2228 22.7788
+\c 6.272 23.1723 7.2582 23.0746 7.2582 23.0746
+\c 6.9625 24.108 5.7303 23.9605 5.2386 23.6654
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian108.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian108.pgf
new file mode 100644
index 0000000000..d41cb58bb8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian108.pgf
@@ -0,0 +1,261 @@
+\m 2.0675 4.7776
+\c 2.0675 4.7776 0.5901 2.9553 0.5409 2.1678
+\c 0.4925 1.381 0.8374 1.381 0.8374 1.381
+\c 0.8374 1.381 0.7383 1.036 0.4433 1.1836
+\c 0.1468 1.3304 -0.2957 1.8242 0.3934 2.9068
+\c 1.0833 3.9901 2.0675 4.7776 2.0675 4.7776
+\s
+\m 1.5259 1.773
+\c 1.5259 1.773 1.9698 1.2327 1.1816 1.0367
+\c 1.1816 1.0367 1.4774 0.4937 1.9698 0.4937
+\c 2.4623 0.4937 2.9049 0.9855 2.9049 0.9855
+\c 2.9049 0.9855 1.5259 1.9718 2.659 3.3999
+\c 2.659 3.3999 1.9698 1.8236 3.8406 0.7908
+\c 3.8406 0.7908 3.3481 -0.0479 2.5108 0.002
+\c 1.6741 0.0511 1.1324 0.4937 0.9849 0.9384
+\c 0.8374 1.3816 1.5259 1.773 1.5259 1.773
+\s
+\m 3.0032 4.0877
+\c 3.0032 4.0877 4.9232 6.106 7.188 6.4025
+\c 9.4522 6.6982 13.9328 6.0091 16.6901 7.2883
+\c 16.6901 7.2883 15.9026 6.106 12.8004 5.7618
+\c 9.6988 5.4176 5.0222 6.106 3.0032 4.0877
+\s
+\m 3.0524 6.7959
+\c 3.0524 6.7959 1.8708 6.9441 2.1167 7.83
+\c 2.3632 8.7172 3.495 7.6333 3.0524 6.7959
+\m 3.5175 6.813
+\c 3.5496 6.9776 3.551 7.1661 3.495 7.3867
+\c 3.148 8.7773 1.6249 8.5191 1.7717 7.5349
+\c 1.92 6.5507 3.1999 6.5992 3.1999 6.5992
+\l 2.9049 6.0091
+\c 2.9049 6.0091 3.3823 6.2338 3.5093 6.7693
+\l 3.6432 6.7474
+\c 4.1356 6.6477 4.9723 6.7474 4.9723 6.7474
+\c 4.7053 6.8997 3.8768 6.8451 3.5175 6.813
+\s
+\m 5.7605 6.9933
+\c 5.7605 6.9933 9.3546 9.0608 9.9945 9.5532
+\c 9.9945 9.5532 8.2221 13.1472 12.1119 17.0855
+\c 12.1119 17.0855 10.5362 16.1996 9.403 14.1315
+\c 8.2713 12.064 6.1048 10.0948 3.4465 10.784
+\c 0.7882 11.4739 0 13.3924 0 14.6239
+\l 1.0833 14.083
+\c 1.0833 14.083 0.4925 13.9348 0.7383 13.5407
+\c 0.9849 13.1472 1.8216 11.6207 4.5789 11.9656
+\c 7.3356 12.3105 8.3696 13.9348 9.3054 15.1655
+\c 10.2404 16.397 11.8161 17.8245 13.146 17.9229
+\c 13.146 17.9229 11.3729 16.298 10.6837 13.9832
+\c 9.9945 11.6706 10.9794 9.6516 12.0128 9.504
+\c 13.0469 9.3565 12.9479 10.6372 11.7663 10.144
+\c 11.7663 10.144 11.8161 10.5873 12.3578 10.5873
+\c 12.8994 10.5873 13.7743 9.5184 12.5545 8.8142
+\c 11.2745 8.0759 10.388 9.0608 10.1912 9.308
+\c 10.1912 9.308 7.2864 7.3375 5.7605 6.9933
+\s
+\m 5.0222 13.5407
+\c 5.0222 13.5407 6.4996 14.1315 7.9762 15.4114
+\c 9.4529 16.6921 12.1611 19.4986 15.7059 19.892
+\c 19.2507 20.2861 24.469 18.7097 26.882 18.7609
+\c 29.2938 18.8094 31.4603 19.5484 32.1494 19.8435
+\c 32.1494 19.8435 29.6387 17.9727 25.7496 17.7747
+\c 21.8598 17.5786 19.4966 19.6461 16.1983 19.4487
+\c 12.8994 19.252 11.9643 18.1196 10.5362 17.1852
+\c 9.108 16.2495 7.2864 13.9348 5.0222 13.5407
+\s
+\m 33.7252 19.6461
+\c 33.7252 19.6461 34.8576 19.1543 34.7101 18.3163
+\c 34.5619 17.4803 33.3317 16.8888 32.7403 18.3661
+\c 32.1494 19.8435 33.036 21.8611 34.6609 21.6644
+\c 34.6609 21.6644 33.6261 21.37 33.3317 20.1379
+\c 33.036 18.9071 33.6261 17.7255 34.1678 18.0219
+\c 34.7101 18.3163 34.2176 19.3497 33.7252 19.6461
+\s
+\m 37.0241 20.2861
+\c 37.0241 20.2861 37.5159 19.892 37.0241 19.3504
+\c 36.531 18.8094 35.0543 19.0553 34.9559 20.7294
+\c 34.8576 22.4041 35.7926 23.1909 36.4825 23.2401
+\c 36.4825 23.2401 35.4976 22.7477 35.4484 20.9759
+\c 35.3992 19.2035 37.1218 19.3019 37.0241 20.2861
+\s
+\m 38.8942 22.8467
+\c 38.8942 22.8467 39.7316 22.6493 39.6824 21.9117
+\c 39.6332 21.1726 38.3533 20.2861 37.27 22.1077
+\c 36.1867 23.93 38.1067 25.5549 38.7467 25.3575
+\c 38.7467 25.3575 37.8608 25.1102 37.8116 23.3883
+\c 37.7625 21.6651 38.55 21.4185 39.19 21.6651
+\c 39.8299 21.9117 39.19 22.8467 38.8942 22.8467
+\s
+\m 40.8142 25.0125
+\c 40.8142 25.0125 41.6508 24.8158 41.7007 23.7818
+\c 41.7506 22.7477 40.3217 22.7477 39.7323 24.0768
+\c 39.1408 25.4066 40.1742 27.9181 42.784 27.0793
+\c 42.784 27.0793 42.6856 27.2774 42.3407 27.7692
+\c 41.9965 28.2616 41.9965 28.5082 41.9965 28.5082
+\c 41.9965 28.5082 43.2272 28.2616 43.719 28.0158
+\l 42.9814 28.9023
+\c 42.9814 28.9023 45.4914 28.7056 45.4914 27.6217
+\c 45.4914 27.6217 46.0829 27.3266 46.5262 26.884
+\c 46.5262 26.884 46.1328 26.785 45.9846 26.884
+\c 45.837 26.9824 45.4914 27.1306 45.4914 27.1306
+\c 45.4914 27.1306 44.8023 26.8341 44.7538 26.4407
+\c 44.7039 26.0459 45.4914 26.2433 45.4914 26.6859
+\c 45.4914 26.6859 45.639 26.0459 44.9013 26.0459
+\c 44.1623 26.0459 44.3105 26.9824 45.0482 27.2774
+\c 45.7872 27.5732 44.9013 28.1633 44.1623 28.4099
+\l 44.5065 27.2774
+\c 44.5065 27.2774 43.4731 27.7692 43.3256 27.5732
+\c 43.1774 27.3758 43.8665 26.785 43.8174 26.5391
+\c 43.7689 26.2925 42.5879 26.9332 41.6024 26.884
+\c 40.6174 26.8341 40.1742 25.7024 40.224 24.7168
+\c 40.2725 23.7326 40.9617 23.1909 41.3565 23.6335
+\c 41.7506 24.0768 40.8142 25.0125 40.8142 25.0125
+\s
+\m 47.018 26.6374
+\c 47.018 26.6374 47.9045 25.9975 48.2986 25.309
+\c 48.692 24.6184 48.593 24.225 50.2179 22.5516
+\c 50.2179 22.5516 50.3169 22.2552 49.9228 22.4041
+\c 49.5287 22.5516 48.1996 24.5208 47.9045 25.1123
+\c 47.6088 25.7024 47.3629 26.1948 47.0671 26.3417
+\c 47.0671 26.3417 46.7229 26.6374 47.018 26.6374
+\s
+\m 48.0022 20.4336
+\c 48.0022 20.4336 47.018 21.0743 47.3622 21.271
+\c 47.7071 21.4677 48.1497 20.9261 48.0022 20.4336
+\m 50.7103 22.1077
+\c 50.8579 21.6152 51.0553 20.9759 50.612 20.7301
+\c 50.1687 20.4828 49.6271 20.5327 49.2337 20.8284
+\c 48.8396 21.1235 49.0855 21.3195 49.2828 21.271
+\c 49.4802 21.2218 49.9713 20.8284 49.9713 20.8284
+\c 49.7746 21.7136 49.2828 21.7136 48.9379 21.4185
+\c 48.593 21.1235 48.692 20.9261 48.9864 20.7301
+\c 49.2828 20.5327 49.5779 20.1379 49.3313 19.892
+\c 49.0855 19.6468 48.5438 20.0894 48.5438 20.0894
+\c 48.5438 20.0894 48.4953 21.1235 47.7071 21.4677
+\c 46.9196 21.8133 46.7222 21.1726 46.9681 20.8762
+\c 47.2147 20.5825 47.0671 20.336 47.0671 20.336
+\c 45.4914 22.3549 44.5564 21.6651 44.5564 21.6651
+\c 46.0822 21.4677 47.0671 19.7438 47.5104 19.5969
+\c 47.953 19.4494 48.1996 19.991 48.1996 19.991
+\c 49.6271 19.0061 50.0704 20.1379 50.0704 20.1379
+\c 50.4645 20.0894 50.9562 20.336 51.252 20.8284
+\c 51.547 21.3195 50.7103 22.1077 50.7103 22.1077
+\s
+\m 40.0758 10.8325
+\c 39.5349 10.4391 38.845 10.4391 39.2883 11.1781
+\c 39.7316 11.9164 40.8148 12.1623 41.0115 12.1623
+\c 41.0115 12.1623 40.6174 11.2266 40.0758 10.8325
+\m 38.2057 16.7918
+\c 37.3192 17.1354 38.5985 18.3661 39.6824 17.0855
+\c 39.6824 17.0855 39.0916 16.4462 38.2057 16.7918
+\m 40.5683 16.7406
+\c 44.3597 19.252 45.098 22.3058 44.7039 23.4867
+\c 44.3098 24.669 42.784 24.669 42.4889 23.7818
+\c 42.1932 22.8945 43.2272 22.1569 43.2272 22.1569
+\c 41.7499 23.7818 43.1781 24.1752 43.6705 24.0276
+\c 44.1623 23.8808 44.8023 23.1418 43.424 20.7792
+\c 42.0456 18.416 40.0758 17.1354 40.0758 17.1354
+\c 40.0758 17.1354 39.6332 17.9727 38.6483 18.0711
+\c 37.311 18.2043 36.9879 17.0746 37.9592 16.6429
+\c 38.845 16.2495 40.0266 16.6429 40.0266 16.6429
+\c 41.4548 15.6095 40.9132 12.4089 40.9132 12.4089
+\c 40.9132 12.4089 39.8791 12.3105 39.0916 11.7689
+\c 38.3034 11.2266 38.0575 9.9466 39.3873 10.1925
+\c 40.7165 10.4391 41.2089 12.0141 41.2089 12.0141
+\c 41.5532 12.064 43.0305 11.9164 43.0305 11.9164
+\c 42.3407 12.1623 41.2574 12.4089 41.2574 12.4089
+\c 41.9466 14.9688 40.5683 16.7406 40.5683 16.7406
+\s
+\m 45.3439 23.5352
+\c 45.3439 23.5352 45.1472 23.7326 45.7865 24.5208
+\c 45.7865 24.5208 45.0482 24.4217 44.8023 24.1274
+\c 44.8023 24.1274 44.9505 24.7168 45.4914 25.1608
+\c 46.0331 25.6027 46.8213 25.5043 47.6081 24.2742
+\c 47.6081 24.2742 47.658 23.9785 47.3629 24.0768
+\c 47.3629 24.0768 46.9196 24.3732 46.8206 24.0283
+\c 46.7229 23.6834 46.6246 23.3392 46.2796 23.4874
+\l 45.7865 23.8808
+\c 45.7865 23.8808 45.3931 23.8801 45.3439 23.5352
+\s
+\m 44.3098 11.523
+\c 44.3098 11.523 46.1806 11.1289 46.4265 11.0306
+\c 46.673 10.9322 45.2947 10.9322 44.3098 11.523
+\s
+\m 48.2986 10.784
+\c 48.2986 10.784 49.9228 10.8837 50.4645 10.6857
+\c 50.4645 10.6857 51.3011 10.3421 52.4828 9.0614
+\c 53.6644 7.7808 55.486 6.3533 55.9784 5.7618
+\c 56.4709 5.1717 56.1751 5.2202 56.1751 5.2202
+\c 56.1751 5.2202 53.7819 7.3587 53.0244 8.0267
+\c 51.3503 9.504 51.2527 10.1953 49.6278 10.3899
+\c 48.3963 10.5381 48.2986 10.784 48.2986 10.784
+\s
+\m 56.9142 4.6301
+\c 56.9142 4.6301 57.3083 4.3842 57.4066 3.8425
+\c 57.4066 3.8425 57.2099 3.8425 56.9142 4.6301
+\s
+\m 58.1941 2.1678
+\c 58.1941 2.1678 58.8826 1.0852 58.1941 0.2977
+\c 58.1941 0.2977 57.2584 0.198 56.6676 0.4944
+\c 56.0768 0.7902 54.7968 1.6268 54.9935 2.7101
+\c 54.9935 2.7101 55.9784 1.3803 56.8158 1.2334
+\c 57.6525 1.0852 58.0459 1.1337 58.0459 1.1337
+\c 58.0459 1.1337 58.3417 1.4301 58.1941 2.1678
+\s
+\m 54.945 3.596
+\c 54.945 3.596 55.2401 4.3835 55.6834 4.0877
+\c 56.1266 3.7934 55.486 3.3999 54.945 3.596
+\m 36.2359 9.0614
+\c 36.2359 9.0614 35.3002 9.9965 35.6943 10.8325
+\c 36.0884 11.6699 37.5159 10.5381 36.2359 9.0614
+\m 54.6985 3.7934
+\c 54.6985 3.7934 54.206 4.0393 53.6644 5.1225
+\c 53.1227 6.2044 51.2527 9.7007 46.8206 9.7506
+\c 42.3906 9.7991 39.6824 7.7323 36.6785 8.7657
+\c 36.6785 8.7657 37.2208 9.3073 36.9743 10.5381
+\c 36.7277 11.7689 35.6451 11.7197 35.3992 10.9315
+\c 35.1527 10.1447 35.6943 9.0614 36.0392 8.9132
+\c 36.0392 8.9132 33.3311 5.8602 26.6355 7.4366
+\c 26.6355 7.4366 27.9148 8.47 28.802 10.4896
+\c 29.6879 12.5066 28.6046 13.738 27.7181 13.3931
+\c 26.8322 13.0482 26.6355 11.9171 28.0138 10.8837
+\c 28.0138 10.8837 26.882 11.8659 27.3246 12.8023
+\c 27.7679 13.738 28.802 13.0981 28.703 11.7197
+\c 28.6046 10.3421 26.6847 8.5191 25.7981 8.1756
+\c 25.7981 8.1756 24.3214 8.7657 23.9772 11.3741
+\c 23.6316 13.9832 25.6506 15.9052 26.7345 16.2488
+\c 26.7345 16.2488 25.0598 15.9544 24.124 14.1813
+\c 23.189 12.4089 23.3365 9.6509 25.4047 8.0267
+\c 25.4047 8.0267 22.7956 6.2543 18.1675 7.7808
+\c 18.1675 7.7808 20.6291 8.9617 19.8409 11.9663
+\c 19.8409 11.9663 19.9399 8.5683 17.5767 7.9782
+\c 17.5767 7.9782 15.7544 8.0267 14.6718 10.6378
+\c 13.5886 13.247 14.9177 16.0521 17.1334 16.5445
+\c 19.3491 17.0377 21.0232 15.5111 20.7766 14.0345
+\c 20.5307 12.5564 19.5458 12.6049 19.5458 12.6049
+\c 19.5458 12.6049 19.3976 13.7872 18.2658 13.7872
+\c 17.1334 13.7872 17.1334 12.704 17.5767 12.4089
+\c 17.5767 12.4089 17.4776 13.6895 18.2658 13.3931
+\c 19.0533 13.0981 19.3491 12.4594 19.3491 12.4594
+\l 18.5117 12.3105
+\c 18.5117 12.3105 18.9051 11.8673 20.3825 12.2621
+\c 21.8598 12.6548 22.3523 15.5596 20.0383 16.5445
+\c 17.7235 17.5281 14.4744 16.5445 13.982 13.4416
+\c 13.4902 10.3421 15.5577 8.2739 17.2317 7.3867
+\c 18.9051 6.5001 22.4015 5.1225 26.3889 7.3867
+\c 26.3889 7.3867 28.0138 6.0569 31.3128 6.106
+\c 34.611 6.1559 36.4818 8.6182 36.4818 8.6182
+\c 36.4818 8.6182 38.2542 7.4851 40.224 7.7323
+\c 42.1932 7.9782 44.1131 9.1099 47.2147 9.1099
+\c 50.3695 9.1099 51.8428 7.7808 53.0244 5.6628
+\c 54.206 3.5468 54.6001 3.2995 55.2893 3.2995
+\c 55.2893 3.2995 55.7325 3.2511 55.9784 3.6943
+\c 56.225 4.1369 55.486 5.1225 54.6985 3.7934
+\s
+\m 27.5213 16.4954
+\c 27.5213 16.4954 31.4111 17.8245 32.8386 14.7721
+\c 34.2668 11.7197 30.9187 9.7014 29.1954 10.4391
+\c 29.1954 10.4391 29.2938 10.6372 29.737 10.7348
+\c 30.1803 10.8325 32.0019 11.4732 32.297 12.7531
+\c 32.6685 14.3623 31.5586 17.0855 27.5213 16.4954
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian109.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian109.pgf
new file mode 100644
index 0000000000..0da63169ee
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian109.pgf
@@ -0,0 +1,301 @@
+\m 8.8663 9.3985
+\c 9.494 9.3985 9.6415 8.6977 8.0911 8.6608
+\c 8.0911 8.6608 8.2386 9.3985 8.8663 9.3985
+\m 19.0207 7.2087
+\c 17.7414 8.0454 15.3283 7.7989 14.7873 7.7989
+\c 14.245 7.7989 14.6883 7.5523 17.1991 7.3563
+\c 19.7105 7.1596 20.2521 5.5333 20.2521 5.5333
+\c 18.2331 7.1596 17.0024 6.3707 17.0024 6.3707
+\c 18.2331 5.7321 18.2823 4.4022 18.2823 4.4022
+\c 18.0856 4.6481 17.1007 5.2874 17.1007 5.2874
+\c 15.7224 6.2238 15.1316 6.0264 15.1316 6.0264
+\c 15.1316 6.0264 16.264 5.2382 16.264 4.6966
+\c 16.264 4.1563 15.7716 4.4514 15.7716 4.4514
+\c 14.4424 6.8631 12.6693 6.8139 11.3409 6.913
+\c 10.011 7.0113 9.5193 7.1596 8.7311 7.6021
+\c 7.9429 8.0454 8.1403 8.4894 8.1403 8.4894
+\l 8.3124 8.4388
+\c 9.5684 8.3651 10.3061 9.3985 9.1989 9.6205
+\c 8.0911 9.8417 7.6485 8.7346 7.6485 8.7346
+\c 5.2853 8.5126 3.6597 11.024 3.6597 11.024
+\c 4.62 8.3651 7.6485 8.3651 7.6485 8.3651
+\c 7.6485 5.8536 9.9373 6.2976 12.448 5.9281
+\c 14.9588 5.5586 16.4116 3.319 16.4116 3.319
+\c 16.6083 4.1065 16.5099 5.09 16.5099 5.09
+\c 17.1007 5.09 18.5781 3.8107 18.5781 3.8107
+\c 18.7256 5.2382 17.9381 6.0264 17.9381 6.0264
+\c 18.923 6.0756 19.9079 5.4855 20.2023 5.2874
+\c 20.4973 5.09 20.8429 5.1399 20.8429 5.1399
+\c 20.8429 5.4855 20.3013 6.3707 19.0207 7.2087
+\s
+\m 14.5531 8.5126
+\c 14.5531 8.5126 15.1808 9.3616 17.4333 8.8083
+\c 19.6852 8.2537 22.6768 7.6643 27.1075 7.4792
+\c 31.5389 7.2941 42.5054 8.2906 46.4559 8.9552
+\c 46.4559 8.9552 48.6348 9.3254 49.2625 8.6239
+\c 49.8908 7.9225 50.4079 7.553 51.1086 7.5161
+\c 51.8108 7.4792 52.0321 6.8139 52.0321 6.8139
+\c 52.0321 6.8139 51.8108 6.9615 51.22 6.9615
+\c 50.6292 6.9615 50.2965 7.0721 49.3369 7.9956
+\c 48.3766 8.919 47.5276 8.5864 46.1247 8.4388
+\c 44.7204 8.2906 39.9953 6.6664 32.683 6.4458
+\c 25.372 6.2231 23.4514 6.7149 18.4667 8.2906
+\c 18.4667 8.2906 16.3624 9.1779 14.5531 8.5126
+\s
+\m 52.3032 5.9281
+\l 51.959 6.6179
+\c 51.959 6.6179 52.9439 6.9622 52.3032 7.7012
+\l 51.6632 8.2906
+\c 51.6632 8.2906 51.6134 8.6847 51.8606 8.5372
+\c 52.1052 8.3897 52.5491 8.0946 53.4842 7.8972
+\c 54.4206 7.7012 54.6665 7.4539 54.8632 7.1596
+\c 54.8632 7.1596 54.8133 8.7838 53.0901 8.7346
+\c 53.0901 8.7346 54.8632 9.0296 55.6514 8.7346
+\c 56.4389 8.4388 56.7333 8.4894 56.7333 8.4894
+\c 56.7333 8.4894 56.1431 9.5713 55.3549 9.7195
+\c 54.5681 9.8663 53.2875 9.4231 51.1701 10.5562
+\c 51.1701 10.5562 51.9091 10.3103 52.7465 10.1621
+\c 53.5825 10.0139 54.2232 10.0644 54.8632 10.0644
+\c 55.5038 10.0644 57.8664 9.3261 56.9306 7.109
+\c 56.9306 7.109 56.4874 8.4388 54.8133 8.2421
+\c 54.8133 8.2421 55.9457 7.2087 54.7163 6.1255
+\c 54.7163 6.1255 54.5189 6.3707 54.4691 6.7149
+\c 54.4206 7.0598 53.7799 7.4048 52.8442 7.3078
+\c 52.8442 7.3078 52.894 6.2238 52.3032 5.9281
+\s
+\m 52.4016 14.4446
+\c 52.795 16.3153 55.0107 17.0059 56.833 16.9062
+\c 58.6539 16.8078 59.787 15.9711 59.5896 14.6426
+\c 59.3929 13.3128 57.473 13.0164 56.5372 13.3128
+\c 55.6022 13.6072 54.7648 14.1987 55.2573 14.6426
+\c 55.7497 15.0852 56.7339 14.6426 56.389 13.9036
+\c 56.389 13.9036 56.9805 14.7909 56.0946 15.1344
+\c 55.2074 15.4793 54.8536 14.8988 54.814 14.5443
+\c 54.7648 14.101 54.9615 13.6571 55.7497 13.1646
+\l 53.8291 11.983
+\c 53.8291 11.983 52.0075 12.5738 52.4016 14.4446
+\m 57.1772 11.1463
+\c 54.913 11.1463 54.1248 11.8853 54.1248 11.8853
+\c 54.7163 11.983 56.0946 13.0164 56.0946 13.0164
+\c 56.0946 13.0164 58.7522 12.3778 59.6388 14.0505
+\c 60.4017 15.4923 59.7371 17.2012 56.7838 17.3494
+\c 53.8298 17.4976 51.9091 15.7252 51.9091 14.101
+\c 51.9091 12.4748 53.239 11.7371 53.239 11.7371
+\c 53.239 11.7371 50.8757 10.5063 48.3643 11.0473
+\c 45.8535 11.5889 46.641 12.1305 47.6751 12.0813
+\c 48.7092 12.0322 49.6443 11.1955 49.6443 11.1955
+\l 50.2849 11.1955
+\c 50.2849 11.1955 48.7584 12.6728 47.0351 12.3778
+\c 45.3119 12.0813 46.346 10.8997 48.8567 10.703
+\c 51.3682 10.5063 53.3865 11.5397 53.3865 11.5397
+\c 58.8021 7.8473 67.2701 13.362 67.2701 13.362
+\c 63.5777 12.4748 59.4421 11.1463 57.1772 11.1463
+\s
+\m 69.6825 14.3954
+\c 69.6825 14.3954 69.2884 14.4446 69.3383 14.7403
+\c 69.3874 15.0361 69.83 15.2328 70.0267 14.8885
+\c 70.2235 14.5443 69.6825 14.3954 69.6825 14.3954
+\m 72.2916 15.6262
+\l 72.0949 15.3311
+\c 71.9966 15.577 71.7507 15.4793 71.7507 15.4793
+\c 71.7507 15.4793 72.2431 15.0361 71.5041 14.6426
+\c 70.7658 14.2486 70.175 14.6426 70.175 14.6426
+\c 70.6667 15.0859 69.535 15.577 69.1416 15.0361
+\c 68.7475 14.4951 69.4851 14.297 69.4851 14.297
+\c 68.5009 13.9535 64.8085 14.002 64.8085 14.002
+\c 63.9227 12.7712 62.1987 12.5253 62.1987 12.5253
+\c 63.0853 12.3778 63.9554 12.8921 64.2184 13.0676
+\c 64.6603 13.362 64.9062 13.362 64.9062 13.362
+\c 67.9593 12.8689 70.0267 14.297 70.0267 14.297
+\c 70.47 14.002 71.2084 14.002 71.8483 14.4446
+\c 72.4883 14.8885 72.2916 15.6262 72.2916 15.6262
+\s
+\m 71.2582 16.1186
+\c 71.2582 16.1186 69.4359 16.2682 67.8117 17.2012
+\c 66.1868 18.1376 65.2019 20.2557 64.4636 20.5514
+\c 63.7253 20.8465 63.3803 20.7461 63.3803 20.7461
+\c 63.3803 20.7461 63.8728 19.91 63.0853 19.6635
+\c 62.2971 19.419 62.1987 19.91 62.1987 19.91
+\c 62.1987 19.91 62.7895 19.5166 62.9377 20.0084
+\c 63.0853 20.5002 62.5921 20.6976 62.3469 20.2058
+\c 62.3469 20.2058 62.1496 20.8465 62.9869 21.0917
+\c 63.8236 21.3389 64.5135 21.0917 65.0544 20.5002
+\c 65.596 19.91 66.8268 17.8924 68.895 17.0551
+\c 70.8716 16.2546 71.2582 16.1186 71.2582 16.1186
+\s
+\m 63.7744 16.1186
+\c 63.7744 16.1186 63.6761 16.9068 62.1496 16.3652
+\l 63.381 17.596
+\c 63.381 17.596 62.5437 17.5468 61.8545 17.1042
+\l 61.4604 16.9567
+\c 61.4604 16.9567 61.9037 17.8426 62.741 18.1376
+\c 63.5771 18.4334 65.301 17.9901 65.2511 17.0066
+\c 65.2511 17.0066 64.2662 16.6125 63.7744 16.1186
+\s
+\m 57.1765 22.2733
+\c 57.1765 22.0759 57.1274 20.9448 56.0448 21.3389
+\c 55.3898 21.5759 55.0107 22.8641 55.454 24.6358
+\c 55.7333 25.7553 56.0448 26.4581 55.9949 27.5905
+\l 57.0782 25.7191
+\c 57.0782 25.7191 56.389 26.3106 56.1424 25.2758
+\c 55.8972 24.2424 55.6015 22.2733 56.3398 21.8799
+\c 57.0782 21.4851 57.1765 22.2733 57.1765 22.2733
+\s
+\m 59.2939 25.6214
+\c 59.7365 25.6214 60.3771 24.3906 60.3771 24.3906
+\c 60.3771 24.3906 60.4256 24.6857 60.2289 25.1296
+\c 60.0322 25.5729 59.4414 25.8673 59.244 26.5571
+\c 59.048 27.2456 58.8506 27.4929 58.8506 27.4929
+\l 58.8998 26.6063
+\c 58.949 25.1788 57.8425 23.2951 58.4565 21.8307
+\c 59.0972 20.3041 60.2788 21.0917 60.2788 21.0917
+\c 59.1136 21.3334 59.0958 22.3293 59.0753 23.1141
+\l 59.688 22.7166
+\c 59.6545 23.0171 59.2816 23.4078 59.0453 23.6284
+\c 58.9565 24.4159 59.2939 25.6214 59.2939 25.6214
+\s
+\m 40.5848 15.676
+\c 40.5848 15.676 39.6497 15.9219 39.5507 17.1042
+\c 39.453 18.2852 41.3238 18.5317 40.5848 15.676
+\m 40.8812 15.3311
+\c 41.3238 16.316 41.4221 17.2518 40.9297 17.8917
+\c 40.4372 18.5317 38.8622 18.2852 39.1081 17.0059
+\c 39.354 15.7252 40.5356 15.3311 40.5356 15.3311
+\c 38.7632 12.1804 35.1698 13.2145 35.1698 13.2145
+\c 38.5658 11.4919 40.7323 14.9869 40.7323 14.9869
+\c 40.8812 14.8885 42.0628 14.5921 42.0628 14.5921
+\l 42.1605 14.7895
+\c 41.4221 14.9869 40.8812 15.3311 40.8812 15.3311
+\s
+\m 44.4991 20.6982
+\c 44.4991 20.6982 42.407 27.443 35.9075 23.2582
+\l 35.5632 23.4549
+\c 35.5632 23.4549 37.238 24.9814 39.6497 24.9814
+\c 42.0628 24.9814 43.9828 23.8982 44.967 21.0917
+\o
+\s
+\m 15.7224 20.0091
+\l 15.3283 19.9094
+\c 15.3283 19.9094 14.7873 21.8799 12.9166 22.0274
+\c 11.0451 22.1756 9.2727 20.3041 9.2727 20.3041
+\l 8.8294 20.3041
+\c 8.8294 20.3041 9.9127 21.6825 11.3894 22.0759
+\c 12.8667 22.4707 14.6883 22.5205 15.7224 20.0091
+\s
+\m 10.6018 18.4334
+\l 10.2077 18.3835
+\c 10.2077 18.3835 9.716 19.615 7.5993 19.2209
+\c 5.482 18.8275 4.7429 17.4976 3.8571 15.3803
+\c 3.8571 15.3803 3.8079 17.7428 6.5645 19.171
+\c 9.3212 20.5992 10.5527 18.6301 10.6018 18.4334
+\s
+\m 8.5835 13.5102
+\l 8.8294 13.6571
+\l 9.9625 12.6728
+\l 9.716 12.5253
+\o
+\s
+\m 22.3681 14.0505
+\c 21.1865 16.1685 22.2698 18.6301 22.2698 18.6301
+\c 22.2698 18.6301 21.3839 17.8917 21.5314 16.0701
+\c 21.679 14.2486 22.3681 14.0505 22.3681 14.0505
+\m 40.0677 1.4229
+\c 25.5933 -0.7928 8.9032 0.8314 4.0292 3.7861
+\c -0.5668 6.5715 -0.6959 12.2425 3.5122 14.4917
+\l 3.4623 12.4256
+\l 3.7089 12.4748
+\l 3.8024 14.6379
+\c 3.9705 14.7191 4.1433 14.795 4.3249 14.8626
+\c 4.3249 14.8626 7.2783 15.7498 8.3124 16.3413
+\c 9.3465 16.9321 10.1586 17.0803 9.9373 16.3413
+\c 9.9373 16.3413 9.3369 15.6351 8.184 14.8325
+\l 7.6478 15.676
+\c 7.7434 15.2908 7.8192 14.8639 7.8602 14.614
+\c 7.4149 14.3237 6.9006 14.0293 6.318 13.7554
+\c 3.9554 12.6482 1.8873 11.3184 2.2568 8.2899
+\c 2.6263 5.2635 7.057 2.4556 16.2879 1.5711
+\c 25.5195 0.6853 39.1081 2.013 44.7204 2.7521
+\c 50.3334 3.4911 56.094 4.377 63.922 3.1209
+\c 63.922 3.1209 54.5428 3.6379 40.0677 1.4229
+\m 13.0122 17.4847
+\c 12.9466 16.1787 13.2622 15.0572 13.7246 14.1345
+\c 13.4602 13.8797 13.1611 13.6222 12.8175 13.362
+\c 10.4454 11.565 5.8754 11.6388 5.2846 12.5253
+\c 5.2846 12.5253 9.1737 13.362 10.7494 16.9068
+\o
+\m 13.3032 17.5591
+\l 15.5742 18.1369
+\c 15.5742 18.1369 15.9389 16.4144 13.9507 14.3592
+\c 13.3373 15.7655 13.2943 17.0837 13.3032 17.5591
+\m 24.5838 19.615
+\c 24.5838 19.615 25.372 15.4793 20.8423 12.4748
+\c 16.3125 9.4722 12.1769 11.246 11.7828 11.6872
+\c 11.7828 11.6872 13.1864 11.7829 14.4219 12.9986
+\c 15.3392 11.7562 16.3624 11.0971 16.3624 11.0971
+\l 16.805 11.1955
+\c 15.8214 11.7508 15.1145 12.4509 14.6036 13.1858
+\c 15.4765 14.1386 16.223 15.6959 16.2633 18.2367
+\c 16.2633 18.2367 23.353 19.615 24.5838 19.615
+\m 50.0377 18.4334
+\c 51.7117 17.3009 51.0718 14.7895 43.687 14.297
+\c 43.687 14.297 45.2135 17.0059 45.1145 19.615
+\c 45.1145 19.615 48.3636 19.5651 50.0377 18.4334
+\m 43.687 2.9003
+\c 37.6307 2.235 24.633 0.9796 14.2204 2.1613
+\c 3.8072 3.3429 2.5518 7.7005 3.1433 9.6205
+\c 3.7335 11.5397 5.0626 11.9092 5.0626 11.9092
+\c 8.0166 10.3595 11.3402 11.3184 11.3402 11.3184
+\c 12.5956 10.507 17.1745 8.8828 21.4577 11.5397
+\c 21.9064 11.8184 22.2978 12.1285 22.6447 12.455
+\c 24.0777 10.6142 25.4704 9.9654 25.4704 9.9654
+\l 25.8146 9.9654
+\c 24.5107 10.7645 23.2075 12.2453 22.8558 12.6605
+\c 25.5831 15.4595 25.0763 19.516 25.0763 19.516
+\c 35.9321 20.6976 44.5729 19.8124 44.5729 19.8124
+\c 42.8011 11.3184 35.637 9.546 32.6092 9.1034
+\c 29.5814 8.6601 27.9565 9.1772 27.9565 9.1772
+\c 38.2215 11.9092 36.3754 19.8124 36.3754 19.8124
+\c 36.0058 13.8299 30.5411 10.6539 26.0366 9.768
+\c 21.5314 8.8828 18.6512 10.0637 18.6512 10.0637
+\c 21.974 8.3651 27.5877 9.029 27.5877 9.029
+\c 38.8861 7.109 43.5388 14.0505 43.5388 14.0505
+\c 47.9702 12.6482 51.3675 15.0859 51.2193 17.3009
+\c 51.0718 19.516 44.4984 20.6976 44.4984 20.6976
+\c 34.9581 22.444 25.8904 21.2938 23.2997 20.8936
+\c 24.3775 22.5123 27.3999 25.5162 30.886 25.3257
+\c 34.48 25.1296 35.9075 21.9277 35.9075 21.9277
+\l 36.3514 22.0274
+\c 33.0033 27.5414 28.4244 25.4739 26.3562 24.2916
+\c 25.4929 23.7978 24.6904 23.1031 24.0476 22.4611
+\c 20.9099 25.5401 16.8862 24.0785 15.1808 22.4215
+\c 13.4568 20.7467 13.4568 19.1225 13.4568 19.1225
+\l 13.8018 19.2209
+\c 14.146 21.4851 16.3624 23.7021 19.2665 23.9972
+\c 21.9754 24.2718 23.4247 22.7446 23.8263 22.2357
+\c 23.0552 21.4366 22.5655 20.7713 22.5655 20.7713
+\c 15.7968 19.6669 10.9707 18.0994 7.7878 16.7716
+\c 7.794 18.6123 8.5337 19.615 8.5337 19.615
+\l 8.1396 19.4183
+\c 7.641 18.5269 7.529 17.277 7.5051 16.6528
+\c 4.2881 15.284 2.8476 14.1987 2.8476 14.1987
+\c 0.7057 16.7108 3.881 20.0337 3.881 20.0337
+\c 8.3861 24.3906 16.9532 26.0155 16.9532 26.0155
+\c 22.1967 25.4985 27.0707 28.0099 38.2953 27.4184
+\c 49.5206 26.8276 54.3215 24.7601 54.3215 24.7601
+\c 50.5547 26.6794 39.4032 29.7079 25.1507 28.0099
+\c 10.8969 26.3106 4.62 21.8799 2.6263 19.1478
+\c 0.6319 16.4144 2.4781 14.0505 2.4781 14.0505
+\c -1.6576 11.0234 0.6319 6.8884 0.6319 6.8884
+\c 3.881 0.1669 16.1404 -0.2764 28.4736 0.0924
+\c 40.8067 0.4626 53.8038 2.7521 60.5984 2.8258
+\c 66.4532 2.8894 70.8785 1.1449 71.9918 0.6607
+\c 59.9263 6.1091 49.6968 3.5601 43.687 2.9003
+\m 71.9918 0.6607
+\c 72.084 0.6197 72.1748 0.5794 72.267 0.5371
+\c 72.267 0.5371 72.1707 0.5828 71.9918 0.6607
+\s
+\m 33.1508 18.5317
+\c 33.1508 18.5317 32.265 16.6616 33.4958 14.5443
+\c 33.4958 14.5443 32.6099 14.9876 32.4617 16.6616
+\c 32.3142 18.335 33.1508 18.5317 33.1508 18.5317
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian11.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian11.pgf
new file mode 100644
index 0000000000..c1ad297915
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian11.pgf
@@ -0,0 +1,87 @@
+\m -0.0021 -0.0244
+\l 122.5091 -0.0244
+\l 122.5091 67.1817
+\l -0.0021 67.1817
+\o
+\i
+\m 49.3488 29.6987
+\c 49.3488 29.6987 51.966 23.1099 57.9317 23.1099
+\c 63.8957 23.1099 70.0708 27.0843 77.1872 30.3275
+\c 80.9176 32.0267 84.2364 33.0811 87.2223 33.5771
+\c 84.2364 34.0731 80.9176 35.1275 77.1872 36.8267
+\c 70.0708 40.0699 63.8957 44.0491 57.9317 44.0491
+\c 51.966 44.0491 49.3488 37.4555 49.3488 37.4555
+\c 47.0472 39.6523 44.638 38.9211 44.638 38.9211
+\c 46.1036 43.2123 49.7676 45.0923 49.7676 45.0923
+\c 58.2442 49.5915 65.6754 43.6299 76.1412 38.3963
+\c 81.4456 35.7435 86.1004 34.5467 89.4052 34.0091
+\l 95.4066 34.0091
+\l 95.4066 38.2331
+\c 70.2036 39.3979 61.4848 60.3771 61.4848 60.3771
+\c 65.4629 62.1563 65.7754 67.1819 65.7754 67.1819
+\c 65.984 61.5291 70.4863 61.7371 70.4863 61.7371
+\c 71.3215 51.6955 80.3255 43.2123 89.5348 40.6987
+\c 98.7456 38.1899 106.4895 40.5947 109.4191 44.1547
+\c 112.3506 47.7131 111.6176 53.3611 107.7456 53.4683
+\c 103.8724 53.5707 104.1872 47.7131 104.1872 47.7131
+\c 101.3597 52.6299 99.3724 46.3515 99.3724 46.3515
+\c 100.4191 54.4123 96.024 52.1051 96.024 52.1051
+\c 101.0472 57.2347 107.8496 58.5963 111.0941 53.9931
+\c 114.3394 49.3867 111.5128 44.6779 111.5128 44.6779
+\c 107.1957 38.2491 97.9724 38.1563 96.466 38.1835
+\l 96.466 34.0091
+\l 104.9332 34.0091
+\c 110.0895 35.1915 111.8098 38.0171 111.8098 38.0171
+\c 113.6676 35.6235 116.0832 34.5195 117.9285 34.0091
+\l 121.9786 34.0091
+\c 122.2708 34.0091 122.5082 33.7707 122.5082 33.4779
+\c 122.5082 33.1867 122.2708 32.9483 121.9786 32.9483
+\l 117.4052 32.9483
+\c 115.6426 32.3771 113.4957 31.2635 111.8098 29.0923
+\c 111.8098 29.0923 110.2207 31.6891 105.5472 32.9483
+\l 96.466 32.9483
+\l 96.466 28.9755
+\c 97.9724 29.0027 107.1957 28.9051 111.5128 22.4763
+\c 111.5128 22.4763 114.3394 17.7675 111.0941 13.1643
+\c 107.8496 8.5579 101.0472 9.9179 96.024 15.0475
+\c 96.024 15.0475 100.4191 12.7467 99.3724 20.8027
+\c 99.3724 20.8027 101.3597 14.5243 104.1872 19.4443
+\c 104.1872 19.4443 103.8724 13.5835 107.7456 13.6859
+\c 111.6176 13.7899 112.3506 19.4443 109.4191 23.0011
+\c 106.4895 26.5579 98.7456 28.9675 89.5348 26.4555
+\c 80.3255 23.9419 71.3215 15.4603 70.4863 5.4155
+\c 70.4863 5.4155 65.984 5.6267 65.7754 -0.0245
+\c 65.7754 -0.0245 65.4629 4.9963 61.4848 6.7771
+\c 61.4848 6.7771 70.2036 27.7547 95.4066 28.9211
+\l 95.4066 32.9483
+\l 89.116 32.9483
+\c 89.0192 32.9483 88.9442 33.0043 88.866 33.0523
+\c 85.6004 32.4731 81.166 31.2699 76.1412 28.7579
+\c 65.6754 23.5243 58.2442 17.5579 49.7676 22.0587
+\c 49.7676 22.0587 46.1036 23.9419 44.638 28.2331
+\c 44.638 28.2331 47.0472 27.5019 49.3488 29.6987
+\o
+\s
+\m 0.5285 34.6763
+\l 19.9856 34.6763
+\c 23.2879 35.2587 27.5285 36.4347 30.6442 38.8331
+\c 30.6442 38.8331 32.9941 35.8987 38.9957 34.6763
+\l 61.5856 34.6763
+\c 61.8786 34.6763 62.116 34.4395 62.116 34.1499
+\c 62.116 33.8539 61.8786 33.6187 61.5856 33.6187
+\l 39.1471 33.6187
+\c 36.6879 32.9595 33.2443 31.6299 30.6691 29.0363
+\c 30.6691 29.0363 26.8223 32.1099 18.3629 33.6187
+\l 0.5285 33.6187
+\c 0.2364 33.6187 -0.0012 33.8539 -0.0012 34.1499
+\c -0.0012 34.4395 0.2364 34.6763 0.5285 34.6763
+\o
+\s
+\m 69.2597 34.1339
+\c 69.2597 32.7835 68.1629 31.6875 66.8128 31.6875
+\c 65.4629 31.6875 64.366 32.7835 64.366 34.1339
+\c 64.366 35.4827 65.4629 36.5819 66.8128 36.5819
+\c 68.1629 36.5819 69.2597 35.4827 69.2597 34.1339
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian110.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian110.pgf
new file mode 100644
index 0000000000..83f6199bf3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian110.pgf
@@ -0,0 +1,122 @@
+\m 28.3482 11.932
+\c 28.3482 11.932 28.8892 11.9811 28.7416 11.2913
+\c 28.5948 10.6035 27.8551 10.0619 27.0682 10.0619
+\c 27.0682 10.0619 27.7082 8.241 25.0493 8.7812
+\c 25.0493 8.7812 24.6067 7.4029 23.1785 7.5989
+\c 21.7503 7.7963 21.8978 8.4862 22.4893 8.4862
+\c 23.0801 8.4862 23.0801 7.993 23.0801 7.993
+\c 23.0801 7.993 24.3608 7.9445 24.6067 8.7812
+\c 24.6067 8.7812 23.8676 8.8297 23.966 9.2238
+\c 24.065 9.6172 24.6552 9.2737 24.9509 9.0278
+\c 25.2466 8.7812 27.1167 8.8796 26.8217 10.0113
+\c 26.8217 10.0113 25.9358 9.9628 26.1318 10.4061
+\c 26.3299 10.8487 26.9692 10.6021 26.9692 10.6021
+\c 26.9692 10.6021 28.0525 10.3078 28.4957 11.3903
+\c 28.4957 11.3903 27.6584 11.3412 27.9056 11.8828
+\c 28.1501 12.4251 29.0374 13.8533 28.4459 13.9011
+\c 27.8551 13.9503 27.4125 11.0953 23.0801 9.7654
+\c 18.7478 8.4363 15.1538 8.9779 13.3315 9.9628
+\l 9.8365 12.6204
+\c 9.8365 12.6204 9.2949 12.7195 9.1466 12.671
+\c 9.1466 12.671 9.6398 13.1628 9.344 13.4578
+\c 9.049 13.7536 8.409 13.2618 8.409 13.0152
+\l 8.1139 13.0152
+\c 8.1139 13.0152 7.9657 13.7536 7.6201 13.5569
+\l 8.1617 14.3942
+\c 8.1617 14.3942 8.4575 14.147 8.3591 13.8533
+\c 8.3591 13.8533 8.6542 13.5569 9.049 13.8021
+\c 9.4424 14.0493 9.4424 14.3942 9.6883 14.3437
+\l 9.6398 13.606
+\c 9.6398 13.606 9.5407 13.2618 9.8864 13.0152
+\c 10.2299 12.7687 11.8548 11.6369 12.4955 11.1445
+\c 13.1354 10.6513 13.6771 10.0619 15.7446 9.6172
+\c 17.8127 9.1746 21.4559 9.3229 23.326 10.0619
+\c 25.1968 10.7995 26.9692 12.1772 27.8551 13.9011
+\c 28.7416 15.6243 30.0223 13.4578 28.3482 11.932
+\s
+\m 7.4726 13.0644
+\c 7.4726 13.0644 5.5035 12.031 5.3559 11.7838
+\c 5.2077 11.5385 5.7002 11.2435 6.7827 11.932
+\c 6.7827 11.932 7.4241 11.391 6.8326 11.1438
+\c 6.2418 10.8979 5.9474 10.6021 6.2418 10.4553
+\c 6.5382 10.3078 7.5224 10.5536 8.1132 10.5536
+\c 8.1132 10.5536 8.409 10.8487 8.8024 10.8487
+\c 9.1965 10.8487 9.344 9.6172 8.4575 9.9137
+\c 8.4575 9.9137 8.409 9.1261 8.9493 8.5838
+\c 8.9493 8.5838 9.245 8.4363 9.8358 8.4862
+\c 10.4273 8.5347 10.525 8.0415 10.1316 7.9445
+\c 9.7368 7.8455 9.1466 7.894 8.9991 8.0927
+\c 8.9991 8.0927 8.2116 7.7471 8.1132 6.9104
+\c 8.0142 6.0731 9.2942 5.8771 9.2942 5.8771
+\c 9.2942 5.8771 9.3939 5.138 8.7047 5.3354
+\c 8.0142 5.5321 7.9159 5.9747 7.7676 6.2705
+\c 7.6201 6.5648 6.2418 7.6481 5.11 7.6986
+\c 3.9769 7.7471 2.2537 8.2403 0.9737 7.6481
+\c 0.9737 7.6481 1.5153 8.1412 2.0085 8.2888
+\c 2.5002 8.4363 2.9428 8.0927 3.3376 8.0415
+\c 3.7304 7.993 4.7651 8.1412 5.3559 8.0415
+\c 5.9474 7.9445 7.0785 7.5504 7.6201 7.0587
+\c 7.6201 7.0587 7.67 7.7963 8.9493 8.2888
+\c 8.9493 8.2888 7.8674 8.6344 8.1132 10.0113
+\c 8.1132 10.0113 6.3408 10.2586 5.7002 10.1589
+\c 5.7002 10.1589 5.1585 10.3563 5.4044 10.7012
+\l 5.7002 10.8487
+\c 5.7002 10.8487 4.9618 10.8979 4.9618 11.4388
+\c 4.9618 11.9811 5.3061 12.2769 6.0936 12.671
+\c 6.8825 13.0644 7.4726 13.0644 7.4726 13.0644
+\s
+\m 7.7437 12.3254
+\c 7.7437 12.2024 7.6454 12.1048 7.5218 12.1048
+\c 7.3995 12.1048 7.3011 12.2024 7.3011 12.3254
+\c 7.3011 12.4483 7.3995 12.5474 7.5218 12.5474
+\c 7.6454 12.5474 7.7437 12.4483 7.7437 12.3254
+\s
+\m 26.8777 2.5726
+\c 26.892 2.5583 26.9064 2.5446 26.9207 2.5282
+\c 26.9207 2.5282 26.9064 2.546 26.8777 2.5726
+\m 10.6725 4.9898
+\c 10.6725 4.9898 10.3781 5.4836 10.7224 5.6797
+\c 11.0666 5.8771 11.0174 5.1872 10.6725 4.9898
+\m 23.6218 3.3656
+\c 22.686 3.3157 22.4401 3.6115 22.4401 3.6115
+\c 21.4061 4.7446 20.5195 5.6797 18.7963 5.8771
+\c 17.073 6.0731 15.498 5.138 14.6114 4.8416
+\c 13.7263 4.5472 13.0357 4.1033 12.1499 4.2515
+\c 11.264 4.3997 10.9191 4.8915 10.9191 4.8915
+\c 11.5099 5.1872 11.4115 6.418 10.6233 6.1223
+\c 9.8358 5.8272 10.5257 4.7446 10.5257 4.7446
+\c 10.1807 4.2515 9.245 4.0548 8.31 4.4974
+\c 7.3742 4.9413 6.7834 5.5806 5.5035 6.7629
+\c 4.2242 7.9445 2.8452 7.5504 2.1553 7.254
+\c 1.4662 6.9603 0.777 6.418 0.4819 6.6646
+\c 0.1855 6.9111 0.4819 7.5019 0.4819 7.5019
+\c 0.0387 7.254 -0.3554 6.2213 0.5311 6.1223
+\c 1.417 6.0239 2.6478 7.0587 3.8294 7.0081
+\c 5.011 6.9603 6.4392 4.6948 8.1624 3.9564
+\c 9.8857 3.2174 10.6233 4.4482 10.6233 4.4482
+\c 10.6233 4.4482 11.3132 3.6115 13.1839 3.6115
+\c 15.0547 3.6115 17.1721 5.3839 18.8461 5.4331
+\c 20.5195 5.4836 20.8153 4.4482 21.7503 3.6115
+\c 22.686 2.7748 23.1785 2.7748 24.8525 2.9223
+\c 26.2315 3.0432 26.7404 2.699 26.8777 2.5726
+\c 25.8033 3.701 24.5445 3.4134 23.6218 3.3656
+\s
+\m 26.9207 4.8908
+\c 27.3141 4.6948 27.0682 4.5957 26.5758 4.5465
+\c 26.5758 4.5465 26.5266 5.0889 26.9207 4.8908
+\m 27.8066 2.824
+\c 26.625 3.7597 26.7732 4.2508 26.7732 4.2508
+\c 27.6099 4.2508 27.7082 4.8908 27.0682 5.2364
+\c 26.4283 5.5806 26.1824 4.6948 26.1824 4.6948
+\c 23.966 4.3505 23.1785 7.353 23.1785 7.353
+\c 23.0309 4.4482 26.1824 4.2023 26.1824 4.2023
+\c 26.4774 3.5138 27.3141 2.7256 27.659 2.5276
+\c 28.0033 2.3315 28.939 0.8057 28.3981 0.6083
+\c 27.8558 0.4109 26.5758 0.4109 26.5758 0.4109
+\c 26.625 0.5577 26.7233 0.706 27.1174 0.8542
+\c 27.5115 1.0024 27.2165 1.445 27.2165 1.445
+\c 27.1673 1.1499 26.9207 1.1001 26.5266 0.6575
+\c 26.1325 0.2142 26.3299 0.0667 26.3299 0.0667
+\c 28.4466 -0.2298 29.1357 0.5577 29.1357 0.5577
+\c 29.1357 0.5577 28.9882 1.8883 27.8066 2.824
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian111.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian111.pgf
new file mode 100644
index 0000000000..3fc8b1c5c4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian111.pgf
@@ -0,0 +1,181 @@
+\m 4.7349 8.1238
+\c 4.7349 8.1238 6.6549 8.05 7.4676 8.5677
+\c 8.2797 9.0841 7.9102 9.7487 7.3939 9.6011
+\c 6.8768 9.4536 7.0981 8.7883 7.0981 8.7883
+\l 6.5073 8.5677
+\c 6.5073 8.5677 6.3591 9.5274 7.1719 9.9699
+\c 7.9847 10.4132 8.8706 9.6011 8.3535 8.7153
+\c 7.8365 7.8287 6.286 7.6812 4.7349 8.1238
+\s
+\m 8.8951 12.6535
+\c 8.8951 12.6535 4.6126 15.0659 5.4487 20.334
+\c 5.4487 20.334 8.0086 19.7924 8.8466 17.2331
+\c 9.6827 14.6711 9.2394 13.0469 9.2394 13.0469
+\c 9.2394 13.0469 10.1758 15.4102 9.2892 18.5131
+\c 9.2892 18.5131 11.2092 21.0238 16.3789 24.0762
+\c 20.3431 26.4155 30.2625 29.8361 36.7621 25.503
+\c 36.7621 25.503 36.3188 26.4879 33.4133 27.4729
+\c 30.5098 28.4578 24.5519 28.4086 19.0379 25.7995
+\c 13.5232 23.189 9.88 20.0888 9.0427 18.7583
+\c 8.206 17.4285 8.8466 18.5609 8.8466 18.5609
+\c 8.8466 18.5609 7.3201 20.5792 5.1543 20.6304
+\c 5.1543 20.6304 4.3654 18.5131 5.2028 16.0515
+\c 6.0395 13.5892 8.8951 12.6535 8.8951 12.6535
+\s
+\m 39.1622 23.6452
+\l 39.1622 23.4397
+\l 39.7093 23.6452
+\o
+\m 39.0884 23.3345
+\l 39.0884 23.719
+\l 39.9128 23.719
+\l 39.9258 23.648
+\o
+\s
+\m 41.2918 23.9772
+\c 41.2918 23.9772 42.3252 24.764 42.1777 26.5385
+\c 42.0302 28.3095 39.5686 28.5076 39.2237 27.5213
+\c 38.8788 26.5385 39.1738 25.5522 40.061 25.6028
+\c 40.9469 25.6513 40.8486 26.587 40.3554 26.5385
+\c 40.3554 26.5385 39.8637 26.6853 40.2578 27.0303
+\c 40.6512 27.3752 41.4394 27.0303 41.2427 26.0945
+\c 41.0453 25.1581 39.2237 24.764 38.8303 25.9463
+\c 38.4355 27.1279 38.7804 28.063 39.962 28.3095
+\c 41.1436 28.5561 42.5165 28.1169 42.621 26.6853
+\c 42.7685 24.667 41.2918 23.9772 41.2918 23.9772
+\s
+\m 36.1706 6.6963
+\c 36.1706 6.6963 36.5647 7.0412 37.2054 7.3861
+\c 37.8447 7.7297 39.322 8.6169 40.1095 9.7978
+\c 40.8971 10.9794 40.7003 12.1126 40.7003 12.1126
+\c 40.7003 12.1126 39.3145 11.392 37.4997 10.586
+\c 35.2854 9.6011 33.4631 10.6345 33.4631 10.6345
+\c 33.4631 10.6345 35.088 12.506 35.6788 13.3427
+\c 35.6788 13.3427 37.3037 12.6043 39.1738 14.0318
+\c 39.1738 14.0318 39.6171 13.9827 40.0112 14.1309
+\c 40.4046 14.2777 41.6853 15.5584 42.1278 13.9827
+\c 42.5711 12.4069 42.4236 7.1402 36.1706 6.6963
+\m 35.4329 16.9367
+\c 36.0231 17.9708 37.943 17.6272 35.4814 14.18
+\c 35.4814 14.18 34.8415 15.9026 35.4329 16.9367
+\m 31.6163 6.4989
+\c 30.5829 5.3173 29.3268 4.6527 28.6622 4.5789
+\c 27.9977 4.5045 27.038 4.2839 27.7026 4.8009
+\c 28.3672 5.3173 29.4743 5.9081 29.8438 6.1307
+\c 30.214 6.352 30.8048 7.4592 31.2474 8.4933
+\c 31.6907 9.5274 31.6907 9.8231 32.873 10.0437
+\c 32.873 10.0437 32.6504 7.6805 31.6163 6.4989
+\m 0.6232 17.3308
+\c 0.6232 17.3308 2.888 17.675 4.6611 13.5892
+\c 4.6611 13.5892 4.0212 13.3427 3.9713 11.9152
+\c 3.9713 11.9152 0.9681 12.5552 0.6232 17.3308
+\m 18.8897 12.702
+\c 18.0031 13.3918 18.8419 13.8836 19.4798 13.8344
+\c 20.1205 13.7859 21.007 13.0469 21.2037 12.5552
+\c 21.2037 12.5552 19.7755 12.0135 18.8897 12.702
+\m 36.9096 22.1064
+\c 36.9096 22.1064 37.9929 22.0572 38.1397 21.3674
+\c 38.2873 20.6789 37.5496 20.3825 37.0565 20.778
+\c 36.5647 21.1714 36.9096 22.1064 36.9096 22.1064
+\m 42.3751 14.4765
+\c 41.3403 15.6574 40.3547 14.7217 39.9613 14.5243
+\c 39.5679 14.3276 39.2722 14.3768 39.2722 14.3768
+\c 39.2722 14.3768 41.9803 16.9859 40.7003 20.8264
+\c 39.4197 24.667 37.2054 25.1096 37.2054 25.1096
+\c 38.682 24.1254 39.863 22.2055 40.158 20.334
+\c 40.4545 18.4639 39.322 14.0318 38.0414 13.7375
+\c 36.7621 13.441 35.7287 13.6876 35.7287 13.6876
+\c 35.7287 13.6876 36.7122 14.6711 37.008 15.5584
+\c 37.3037 16.4449 37.1555 17.7741 36.3181 17.8724
+\c 35.4814 17.9708 34.7438 17.3308 34.6454 15.9525
+\c 34.5457 14.5735 35.3824 13.8344 35.3824 13.8344
+\c 34.2998 11.9152 32.9714 11.6194 32.9714 11.6194
+\c 32.134 11.9152 30.656 15.1643 32.33 18.6606
+\c 34.0048 22.1556 36.4663 22.1064 36.4663 22.1064
+\c 35.3824 20.974 36.6139 20.1858 37.5496 20.1366
+\c 38.4847 20.0881 39.0761 20.9248 38.7305 21.5156
+\c 38.3863 22.1064 37.2539 22.2546 37.2539 22.2546
+\c 37.5496 22.8454 38.7804 23.5339 38.7804 23.5339
+\c 37.5496 23.3871 36.6631 22.3537 36.6631 22.3537
+\c 32.6756 22.4022 30.5084 18.2167 30.656 15.1643
+\c 30.8048 12.1126 32.5766 11.1263 32.5766 11.1263
+\c 28.0475 7.9271 22.4345 8.5677 22.4345 8.5677
+\c 22.6312 10.5368 21.7454 12.5552 21.7454 12.5552
+\c 21.7454 12.5552 22.873 13.1569 23.0745 14.6226
+\c 23.4194 17.1334 20.908 19.7924 18.1513 18.9065
+\c 15.3947 18.0206 14.6557 16.1983 14.9999 13.7859
+\c 15.3448 11.3742 17.5114 10.1182 17.5114 10.1182
+\c 17.5114 10.1182 17.5291 10.2192 17.5537 10.3914
+\c 15.282 11.9056 14.9671 14.9553 15.6891 16.5918
+\c 16.4281 18.2665 19.2838 19.4481 21.2037 18.0206
+\c 23.1244 16.5918 23.0246 13.2942 21.3519 12.9486
+\c 21.3519 12.9486 20.8588 13.9342 19.5795 14.2285
+\c 18.2989 14.5243 18.1015 13.146 18.5448 12.4568
+\c 18.988 11.7676 20.2188 11.6194 21.3519 12.1617
+\c 21.3519 12.1617 22.1388 10.7329 22.0411 8.8628
+\c 22.0411 8.8628 20.2134 8.8163 17.885 10.1844
+\c 17.8303 9.9385 17.7586 9.6926 17.6589 9.4536
+\l 17.5114 10.1182
+\c 16.4035 7.9025 13.5232 5.7605 10.865 5.6861
+\c 8.206 5.613 7.2457 7.6067 7.2457 7.6067
+\l 6.8024 7.5343
+\c 7.6889 6.0556 9.0181 5.5399 9.0181 5.5399
+\c 7.1227 5.0714 3.9228 3.0285 3.2575 2.6597
+\c 2.593 2.2895 1.9284 2.881 1.1907 3.5455
+\c 0.4517 4.2094 0.7468 4.5789 0.7468 4.5789
+\c 4.8087 8.1975 4.8087 12.4069 4.9562 13.2204
+\c 5.1044 14.0318 6.064 14.18 6.064 14.18
+\c 5.2519 14.18 4.8824 13.8105 4.8824 13.8105
+\c 3.4795 18.1675 0.0085 18.0937 0.0085 18.0937
+\c -0.2128 12.3332 3.7008 11.5204 3.7008 11.5204
+\c 3.7268 8.9611 1.3635 5.7605 0.6737 5.1704
+\c -0.0161 4.5789 0.3288 4.1841 0.3288 4.1841
+\c 0.4265 3.0531 2.3471 2.019 2.888 2.0688
+\c 3.4303 2.1173 4.267 2.7081 5.4978 3.3973
+\c 6.7286 4.0872 7.1726 3.8898 8.206 4.3324
+\c 9.2394 4.7763 9.7325 5.0714 9.7325 5.0714
+\c 11.2584 4.7265 13.2767 4.9232 13.2767 4.9232
+\c 13.2767 4.9232 13.1291 3.6937 12.3416 2.7081
+\c 11.5534 1.7239 9.9299 0.7383 9.4368 0.4931
+\c 8.945 0.2466 7.4676 0.1967 7.4676 0.4931
+\c 7.4676 0.7882 7.6643 0.9357 7.6643 0.9357
+\c 7.6643 0.9357 9.9299 2.019 10.52 2.7081
+\c 11.1108 3.3973 11.2584 4.4321 11.2584 4.4321
+\l 10.7659 4.2839
+\c 10.4715 2.8079 8.1076 1.4275 7.5168 1.1816
+\c 6.9267 0.9357 6.8283 0.64 6.8283 0.64
+\c 7.1726 0 8.3535 0 8.3535 0
+\c 10.3233 0 11.4066 1.1324 12.3416 1.6741
+\c 13.2767 2.215 14.5566 5.2196 14.5566 5.2196
+\l 14.0642 5.3173
+\c 17.609 7.1402 17.5598 9.2077 17.5598 9.2077
+\c 17.5598 9.2077 18.2504 9.6011 18.7421 9.1578
+\c 19.2346 8.7153 21.6962 7.9769 21.6962 7.9769
+\c 20.3185 3.2013 16.7238 1.379 15.5415 1.1324
+\c 14.3599 0.8866 13.7691 1.0839 13.7691 1.0839
+\c 18.4963 3.1514 19.3336 6.7953 19.2838 7.7795
+\c 19.2346 8.7631 18.348 8.9611 18.348 8.9611
+\c 18.348 8.9611 18.988 6.7953 17.4123 4.3829
+\c 15.8366 1.9698 12.9331 0.9357 12.9331 0.9357
+\c 12.5383 0.5416 14.4583 0.2466 14.4583 0.2466
+\c 14.4583 0.2466 15.1474 0.1967 18.2989 2.1658
+\c 21.4496 4.1363 22.3368 8.0261 22.3368 8.0261
+\c 26.8167 7.4346 30.8533 9.1094 30.8533 9.1094
+\c 30.8533 9.1094 30.0658 6.5979 29.1308 6.2038
+\c 28.1957 5.8104 27.2593 5.1206 26.9643 4.6288
+\c 26.6692 4.1363 27.5059 4.1363 27.5059 4.1363
+\c 28.7852 4.0373 29.8684 4.3324 31.6907 5.9081
+\c 33.5116 7.4838 33.5615 10.2404 33.5615 10.2404
+\c 33.5615 10.2404 34.89 9.8975 36.9096 10.0437
+\c 38.9279 10.1912 40.3069 11.6194 40.3069 11.6194
+\c 40.2079 10.9794 40.158 10.3388 39.4689 9.4044
+\c 38.7804 8.4687 36.1207 7.1887 36.1207 7.1887
+\c 35.7772 6.893 35.8264 6.4012 37.2054 6.352
+\c 38.5844 6.3028 40.2079 7.3861 41.2918 8.272
+\c 42.3751 9.1578 43.4078 13.2942 42.3751 14.4765
+\m 17.885 10.1844
+\c 18.3105 12.1406 17.4369 14.18 17.4369 14.18
+\c 17.8508 12.9383 17.6493 11.0833 17.5537 10.3914
+\c 17.6036 10.3572 17.6562 10.3231 17.7087 10.2903
+\c 17.7675 10.2541 17.8262 10.2192 17.885 10.1844
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian112.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian112.pgf
new file mode 100644
index 0000000000..2ff12ab15b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian112.pgf
@@ -0,0 +1,187 @@
+\m 5.1473 29.4659
+\c 5.1473 29.4659 5.4431 31.2376 5.8864 31.3858
+\c 6.329 31.5334 6.9307 31.5443 6.9942 30.7213
+\c 7.068 29.7616 6.1083 29.0233 5.1473 29.4659
+\m 6.0353 31.9766
+\c 5.0025 31.5641 4.7048 29.8354 4.7048 29.8354
+\c 2.6373 31.3121 -0.0217 38.0329 1.3074 45.7127
+\c 2.6373 53.3932 6.4772 54.7968 6.4772 54.7968
+\c 5.9601 54.7968 6.1083 54.9437 6.1083 54.9437
+\c 6.1083 54.9437 4.3673 54.79 2.2678 51.03
+\c -0.9076 45.3439 -0.1699 39.1401 1.0117 35.0782
+\c 2.1933 31.017 4.7792 29.2432 4.7792 29.2432
+\c 4.7792 29.2432 4.3352 28.7275 4.409 25.8466
+\c 4.4828 22.9663 3.8189 18.0186 3.8189 18.0186
+\c 4.7792 19.4222 5.0743 29.0964 5.0743 29.0964
+\c 5.0743 29.0964 6.7722 28.6948 7.363 30.1305
+\c 7.8801 31.3858 6.7722 32.2724 6.0353 31.9766
+\s
+\m 4.7048 13.8092
+\c 4.409 13.0708 3.5231 14.0311 4.1877 15.3603
+\c 4.1877 15.3603 5.0019 14.5475 4.7048 13.8092
+\m 0.8642 15.4334
+\c 0.5322 16.2325 2.8586 16.0242 2.8586 16.0242
+\c 2.8586 16.0242 1.2344 14.5475 0.8642 15.4334
+\m 7.3637 16.615
+\c 5.8126 17.9448 4.1146 16.0986 4.1146 16.0986
+\c 4.1146 16.0986 3.3018 16.837 1.8252 16.837
+\c 0.3485 16.837 -0.0217 15.0652 1.2344 14.917
+\c 2.4897 14.7695 3.3018 16.0242 3.3018 16.0242
+\c 3.7458 15.9518 3.8189 15.8029 3.8189 15.8029
+\c 2.638 13.5886 4.5565 12.6282 5.0736 13.661
+\c 5.5899 14.6957 4.3352 15.6554 4.3352 15.6554
+\c 5.9601 17.2796 7.1417 16.3206 7.1417 15.9518
+\c 7.1417 15.5816 6.329 15.7298 6.329 15.7298
+\c 8.3985 15.1383 7.3637 16.615 7.3637 16.615
+\s
+\m 7.2155 16.3206
+\c 7.2155 16.3206 8.2496 16.1724 7.8801 17.4285
+\c 7.5106 18.6838 6.329 21.8585 6.7722 24.2968
+\c 7.2155 26.7331 8.1751 25.8466 8.544 24.887
+\c 8.9135 23.9273 9.283 22.1549 8.6191 21.7861
+\c 7.9532 21.4166 7.585 23.0408 7.585 23.0408
+\c 7.585 23.0408 7.5106 21.4166 8.3978 21.1939
+\c 9.283 20.974 9.5794 22.5975 9.4305 23.9273
+\c 9.283 25.2572 8.544 26.7331 7.5106 26.4381
+\c 6.4772 26.143 5.0736 23.6309 7.2893 17.7228
+\c 7.2893 17.7228 7.8056 16.2462 7.2155 16.3206
+\s
+\m 8.9872 15.2852
+\c 8.1758 15.2852 8.6922 16.3206 9.4305 16.3206
+\l 10.1689 16.3206
+\c 10.1689 16.3206 9.8 15.2852 8.9872 15.2852
+\m 12.7548 16.9852
+\c 12.3115 17.2796 12.0171 18.3874 12.0171 18.3874
+\c 12.4583 20.4556 12.237 20.9733 12.237 20.9733
+\c 12.0171 20.7506 11.6476 20.8988 11.6476 20.8988
+\l 11.5725 19.7917
+\c 10.8348 22.0805 11.2774 23.7047 11.2774 23.7047
+\c 10.9079 23.6309 10.7617 24.2217 10.7617 24.2217
+\c 10.3915 19.7917 12.4583 16.7632 12.4583 16.7632
+\l 11.5725 16.3206
+\l 10.6135 16.7632
+\c 11.2774 26.2161 8.3985 28.2836 7.9532 28.3574
+\c 7.5898 28.4188 6.0353 28.8744 5.3686 24.3699
+\c 4.6269 19.3382 5.6651 16.9114 5.6651 16.9114
+\c 4.7792 26.0679 6.9205 27.9892 7.585 27.9892
+\c 8.2496 27.9892 9.4305 27.324 10.0951 23.1139
+\c 10.7617 18.9044 10.2433 16.9114 10.2433 16.9114
+\c 8.0283 17.0589 7.9532 14.917 8.9872 14.917
+\c 10.0213 14.917 10.5391 16.2455 10.5391 16.2455
+\c 10.9079 16.1724 12.3846 14.917 11.7938 14.3993
+\c 11.2023 13.8829 10.5391 14.5475 10.5391 14.5475
+\c 10.8348 13.661 12.1633 13.661 12.237 14.622
+\c 12.3115 15.5816 11.7207 15.8773 11.7207 15.8773
+\l 12.3846 16.3206
+\c 12.6796 15.8773 13.1249 15.8029 13.1249 15.8029
+\c 12.7548 16.0979 12.7548 16.3206 12.7548 16.3206
+\c 13.5655 16.6888 14.0101 16.2455 13.9357 15.8773
+\c 13.8619 15.5078 13.0498 15.3596 13.0498 15.3596
+\c 14.0101 14.8426 14.379 15.8029 14.379 15.8029
+\c 14.2321 17.2796 12.7548 16.9852 12.7548 16.9852
+\s
+\m 0 0
+\l 14.5959 0
+\l 14.5959 58.7097
+\l 0 58.7097
+\o
+\i
+\m 8.2496 52.6542
+\c 7.4375 52.6542 7.2155 53.762 9.2092 53.2464
+\c 9.2092 53.2464 9.061 52.6542 8.2496 52.6542
+\m 7.2155 55.9047
+\c 7.2155 55.9047 5.7382 57.6771 6.9205 58.1934
+\c 8.1014 58.7105 7.7319 55.9047 7.2155 55.9047
+\m 9.6539 53.3195
+\c 10.0951 54.0578 9.4305 54.7224 8.8411 55.0174
+\c 8.2496 55.3132 7.8063 55.7564 7.8063 55.7564
+\c 8.9142 57.6771 7.4375 58.7105 6.9205 58.7105
+\c 6.4034 58.7105 5.5899 58.119 6.0353 56.7912
+\c 6.4772 55.4607 7.8063 54.8713 8.5447 54.5748
+\c 9.2837 54.2798 9.2092 53.5407 9.2092 53.5407
+\c 6.7722 54.0578 7.068 52.6542 7.9532 52.3598
+\c 8.8411 52.0641 8.9872 52.9499 9.5794 52.8762
+\c 10.1695 52.8017 10.3915 51.6208 10.3915 51.6208
+\c 8.8411 52.8762 7.29 51.8428 6.5509 49.7015
+\c 5.8126 47.5582 7.068 45.195 7.068 45.195
+\l 7.585 45.2688
+\c 5.8864 48.0008 6.9205 51.1775 8.2496 51.5463
+\c 9.5794 51.9159 10.6866 50.7349 10.6866 50.7349
+\c 11.0554 52.9499 9.6539 53.3195 9.6539 53.3195
+\s
+
+\m 11.9426 25.4771
+\c 11.3505 24.5181 11.5725 27.324 11.5725 27.7672
+\c 11.5725 27.7672 12.5321 26.4381 11.9426 25.4771
+\m 10.3915 29.6872
+\c 10.3915 29.6872 9.3288 29.3873 9.4305 30.4993
+\c 9.5057 31.3121 10.6866 30.7213 10.6866 30.7213
+\o
+\m 9.9482 32.2724
+\c 9.9482 32.2724 7.0673 31.2376 5.7382 36.4811
+\c 4.409 41.7246 7.1424 44.5304 7.1424 44.5304
+\l 8.3985 42.6118
+\c 8.3985 42.6118 6.9198 42.021 7.2155 38.8443
+\c 7.6219 34.4765 9.4305 34.3399 9.4305 34.3399
+\c 7.6588 36.0385 7.2155 39.8047 7.7319 40.9856
+\c 8.2496 42.1679 8.7666 42.0934 8.7666 42.0934
+\c 8.7666 42.0934 10.9816 36.9982 11.2023 34.7825
+\c 11.4249 32.5675 9.9482 32.2724 9.9482 32.2724
+\m 11.4987 38.7706
+\c 11.9426 36.1123 11.5725 34.3399 11.5725 34.3399
+\c 11.5725 34.3399 10.9072 39.4358 9.3574 41.8728
+\c 9.3574 41.8728 11.0554 41.4296 11.4987 38.7706
+\m 13.7137 22.1549
+\c 12.0164 23.6309 12.4583 24.7394 12.4583 26.5112
+\c 12.4583 28.2836 11.4249 28.4318 11.4249 28.4318
+\c 11.2023 27.9141 10.7617 28.0623 10.7617 28.0623
+\c 10.7617 29.4659 11.2023 30.9426 11.4249 31.6065
+\c 11.6469 32.2724 11.4249 32.7157 11.4249 32.7157
+\c 12.0164 33.8966 12.8278 36.5556 11.6469 39.8047
+\c 10.4646 43.0544 8.8411 42.7594 8.8411 42.7594
+\l 7.585 44.6793
+\c 8.6922 44.9006 12.3839 44.1623 13.1973 39.8047
+\c 14.0101 35.4477 13.4931 32.493 13.2704 28.7275
+\c 13.0498 24.9607 13.7882 22.9663 13.7882 22.9663
+\c 13.7882 22.9663 13.7137 25.7721 14.0101 28.5056
+\c 14.3059 31.2376 15.413 37.3677 13.4931 41.1338
+\c 11.5725 44.9006 9.283 45.3439 7.5106 44.9751
+\c 5.7382 44.6049 4.2608 41.504 5.0012 37.6627
+\c 5.7382 33.8228 7.2155 32.3455 8.6922 31.7547
+\c 10.1689 31.1639 10.9816 32.4192 10.9816 32.4192
+\c 11.4249 32.4192 10.9072 31.0163 10.9072 31.0163
+\c 10.1689 31.3852 9.061 31.4596 9.061 30.278
+\c 9.061 29.0964 10.5391 29.317 10.5391 29.317
+\c 10.2433 28.2836 10.4646 27.0282 10.4646 27.0282
+\l 11.1299 27.6928
+\c 10.5391 25.0345 12.3115 22.6713 12.3115 22.6713
+\l 12.0164 22.0805
+\l 12.6065 22.0805
+\c 13.7137 20.6038 14.5265 20.3818 14.5265 20.3818
+\c 14.5265 21.1201 13.8619 22.5975 13.8619 22.5975
+\o
+\s
+\m 11.4987 0.5901
+\c 10.6873 0.5901 9.7263 6.3507 10.3915 11.6679
+\c 10.3915 11.6679 11.2023 10.3374 12.0171 5.9811
+\c 12.8278 1.6242 12.3115 0.5901 11.4987 0.5901
+\m 9.0617 4.5031
+\c 9.1355 0.4426 7.8801 -0.0744 6.9205 3.4704
+\c 5.9608 7.0152 7.363 12.258 8.0283 13.2177
+\c 8.0283 13.2177 8.9872 8.5664 9.0617 4.5031
+\m 12.6065 6.9415
+\c 11.9426 10.2643 10.6135 12.5538 10.6135 12.5538
+\l 10.6873 13.661
+\l 10.3915 14.1042
+\l 10.3171 12.9233
+\c 9.5057 14.0311 8.4716 13.8092 8.4716 13.8092
+\l 7.8801 15.2858
+\l 7.8063 14.9177
+\l 8.1014 13.8092
+\c 5.3686 11.0033 5.6651 1.8462 7.7319 0.5901
+\c 8.4682 0.1434 9.5057 -0.3702 9.4312 4.5782
+\c 9.3574 9.526 8.324 13.3666 8.324 13.3666
+\c 9.2837 13.8092 10.1695 12.5538 10.1695 12.5538
+\c 9.4312 5.8336 10.1695 0 11.6476 0
+\c 13.1249 0 13.2711 3.6179 12.6065 6.9415
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian113.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian113.pgf
new file mode 100644
index 0000000000..15fd19fca5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian113.pgf
@@ -0,0 +1,204 @@
+\m 56.5643 16.4297
+\l 56.5643 15.3451
+\l 53.6102 9.437
+\l 47.3074 9.3393
+\l 48.8838 13.1799
+\l 49.3749 13.1799
+\l 48.489 10.8167
+\l 51.9362 14.0658
+\l 52.4279 14.0658
+\l 48.0956 9.9301
+\l 53.3138 9.9301
+\l 53.1178 13.0815
+\l 53.4128 12.6874
+\l 53.6102 10.7176
+\o
+\s
+\m 53.3835 20.0838
+\l 55.0131 20.1466
+\l 54.8656 20.4424
+\l 52.6499 20.4424
+\l 50.5817 16.1592
+\c 50.5817 16.1592 51.0981 16.6018 51.4683 17.0451
+\c 51.7449 17.377 52.5222 18.9152 52.891 19.6631
+\l 53.3138 18.3011
+\o
+\s
+\m 53.0918 16.0841
+\c 53.0918 16.0841 54.0528 16.3805 54.0528 15.1982
+\c 54.0528 14.0173 52.4279 13.6484 52.206 14.6818
+\c 51.984 15.7159 53.0918 16.0841 53.0918 16.0841
+\s
+\m 45.6347 15.761
+\c 45.4229 15.8559 45.3075 16.0554 45.3751 16.205
+\c 45.4434 16.358 45.6688 16.4024 45.8799 16.3102
+\c 46.0896 16.2152 46.2064 16.0158 46.1387 15.8648
+\c 46.0718 15.7139 45.8451 15.6674 45.6347 15.761
+\m 45.5097 16.6749
+\c 45.0343 16.6749 44.6484 16.2897 44.6484 15.8136
+\c 44.6484 15.3382 45.0343 14.951 45.5097 14.951
+\c 45.9864 14.951 46.3717 15.3382 46.3717 15.8136
+\c 46.3717 16.2897 45.9864 16.6749 45.5097 16.6749
+\s
+\m 7.4781 20.8105
+\c 7.4781 20.8105 8.364 20.0722 7.7732 19.6296
+\c 7.1817 19.1863 2.6035 20.6138 0.1419 26.177
+\c 0.1419 26.177 0.4861 27.3586 1.2743 26.7685
+\c 1.2743 26.7685 0.6835 26.6701 0.6835 26.177
+\c 0.6835 25.6852 3.5884 21.9921 6.4925 20.2197
+\c 6.4925 20.2197 7.3784 19.6296 7.6263 19.8755
+\c 7.8715 20.1221 7.4781 20.8105 7.4781 20.8105
+\s
+\m 5.7535 21.8938
+\c 5.7535 21.8938 4.1785 22.5836 3.8329 22.5345
+\c 3.8329 22.5345 4.5726 23.0262 5.7535 21.8938
+\s
+\m 9.5449 21.3528
+\c 9.5449 21.3528 9.6931 20.6138 9.0538 20.6138
+\c 8.4132 20.6138 6.5424 22.042 5.3102 23.7646
+\c 5.3102 23.7646 4.7208 25.6852 3.5392 26.0308
+\c 3.5392 26.0308 3.8827 26.2261 4.1792 26.1278
+\c 4.1792 26.1278 3.641 26.6462 4.3267 27.4078
+\c 4.7693 27.9009 5.6565 27.4576 5.6565 27.4576
+\c 5.6565 27.4576 4.9667 27.655 4.5227 27.1134
+\c 4.0808 26.5711 4.6218 26.0308 4.6218 26.0308
+\c 4.6218 26.0308 4.9168 25.3895 5.2126 25.0445
+\c 5.5083 24.7003 7.0342 22.7803 7.8217 22.042
+\c 8.6092 21.3037 9.2492 20.2689 9.5449 21.3528
+\s
+\m 35.2939 17.1673
+\c 34.9489 16.9713 34.8513 16.9208 34.8513 16.9208
+\c 36.5246 17.1195 37.7561 18.3489 37.7561 18.3489
+\l 37.3122 18.3988
+\c 36.9187 17.907 35.6395 17.3647 35.2939 17.1673
+\m 47.1592 14.214
+\c 46.7658 13.9176 46.6175 12.8357 45.9284 12.3931
+\c 45.2399 11.9484 44.6477 11.6042 44.0084 10.0783
+\c 43.3684 8.5511 39.6269 4.5152 36.1305 4.3178
+\l 36.3286 5.2528
+\c 36.3286 5.2528 38.9384 5.5978 40.2676 7.4679
+\c 41.5967 9.3393 41.2518 11.8508 38.642 13.9674
+\c 38.642 13.9674 39.6761 14.214 41.3495 16.7247
+\c 41.3495 16.7247 39.6761 16.3805 39.2335 18.1024
+\c 39.2335 18.1024 40.7102 18.0054 42.0393 18.448
+\c 43.3684 18.8906 44.9933 19.383 46.0752 19.0873
+\c 47.1592 18.7922 48.045 17.1673 48.1434 16.2815
+\l 49.3742 15.1982
+\l 47.5526 15.2966
+\c 47.5526 15.2966 47.3074 15.1497 47.6024 15.05
+\c 47.8982 14.9516 49.0798 14.5084 49.0798 14.5084
+\c 49.0798 14.5084 47.5526 14.5084 47.1592 14.214
+\m 34.7536 16.3306
+\c 34.7536 16.3306 37.4119 16.8716 38.642 18.2506
+\l 39.0361 18.1522
+\c 39.0361 18.1522 38.5436 16.6264 39.9213 15.7392
+\c 39.9213 15.7392 39.4295 14.6566 38.3462 14.214
+\c 38.3462 14.214 36.9187 15.3956 34.7536 16.3306
+\m 34.1614 16.5267
+\c 34.1614 16.5267 31.0107 18.7437 22.1984 19.7764
+\c 22.1984 19.7764 20.6227 19.9247 20.7689 20.3181
+\c 20.9171 20.7115 27.1701 21.0079 33.5214 19.2847
+\c 33.5214 19.2847 33.4729 19.5797 32.9798 19.8755
+\c 32.488 20.1712 28.5491 22.1404 20.0312 23.1744
+\c 20.0312 23.1744 16.2405 23.8131 16.1907 24.1095
+\c 16.1435 24.4045 21.8528 26.3252 36.0814 20.6623
+\c 36.0814 20.6623 34.507 22.1895 31.6513 23.5679
+\c 28.795 24.9469 25.8901 25.5862 22.8377 25.9796
+\c 19.786 26.3737 14.4688 26.9153 13.878 27.4078
+\c 13.878 27.4078 18.752 28.0976 25.6934 26.8668
+\c 32.6356 25.636 38.4453 22.6321 38.8879 20.0722
+\c 39.3318 17.5129 34.4572 16.4775 34.1614 16.5267
+\m 21.1152 7.961
+\c 21.1152 7.961 25.7433 6.5335 25.6934 5.9427
+\c 25.6436 5.3512 23.1328 6.3368 21.1152 7.961
+\m 35.8355 4.1703
+\c 35.5411 3.2345 33.9149 1.1671 27.1701 0.9697
+\c 20.4247 0.773 10.0866 3.4811 2.3576 11.4567
+\c 2.3576 11.4567 2.5051 11.6042 2.8009 11.3576
+\c 3.0946 11.1124 17.0772 1.2162 24.7577 2.3972
+\c 24.7577 2.3972 25.1019 2.6936 24.3144 2.6936
+\c 23.5262 2.6936 14.5671 4.4646 7.821 11.2108
+\c 7.821 11.2108 7.9207 11.555 8.5115 11.1602
+\c 9.1017 10.7668 19.6378 3.6771 25.6934 4.4155
+\c 25.6934 4.4155 23.9217 5.203 22.9853 5.5001
+\c 22.0495 5.7945 19.4411 7.0751 19.2444 8.3551
+\c 19.2444 8.3551 19.9834 8.2554 20.3277 8.0102
+\c 20.6719 7.7636 23.8226 5.5479 25.6436 5.3512
+\c 25.6436 5.3512 26.0383 5.4004 25.94 5.8443
+\c 25.8416 6.2869 25.0541 7.321 19.4896 8.8475
+\c 19.4896 8.8475 20.967 10.915 26.0875 8.9937
+\c 26.0875 8.9937 25.8273 6.9693 29.0409 5.6961
+\c 31.6513 4.662 35.5411 5.1545 35.5411 5.1545
+\c 35.5411 5.1545 36.1305 5.1053 35.8355 4.1703
+\m 14.714 9.8809
+\l 18.752 8.6495
+\c 18.752 8.6495 18.6037 7.9118 20.1795 6.4843
+\c 20.1795 6.4843 16.0438 8.4036 14.714 9.8809
+\m 27.4652 9.5845
+\c 28.8455 10.176 33.1779 9.9793 35.8847 5.7453
+\c 35.8847 5.7453 33.2756 5.5479 29.7813 6.4338
+\c 26.2842 7.321 26.0875 8.9937 27.4652 9.5845
+\m 9.8407 24.7501
+\c 10.7265 23.5679 11.6124 22.6806 11.4642 22.1404
+\c 11.3174 21.5987 9.4951 23.5194 8.5593 25.4379
+\c 8.5593 25.4379 8.9548 25.9311 9.8407 24.7501
+\m 48.5867 16.2323
+\c 48.2923 17.4877 47.4051 19.3339 45.7078 19.4821
+\c 44.0084 19.6289 42.5318 18.8161 41.4239 18.6693
+\c 40.3154 18.5211 38.8387 18.5955 38.8387 18.5955
+\c 38.8387 18.5955 39.7252 19.0381 38.9862 20.9587
+\c 38.2479 22.8787 33.0044 26.5711 25.4714 27.6789
+\c 17.9392 28.7881 12.9921 27.4576 12.9921 27.4576
+\c 14.3206 26.5711 24.8069 25.2419 27.0963 24.7986
+\c 29.3872 24.3554 29.9021 23.4688 29.9021 23.4688
+\c 19.9342 26.3498 15.5759 25.0937 15.5759 24.2078
+\c 15.5759 23.322 19.8591 22.8049 22.5919 22.4354
+\c 25.3246 22.0666 26.4318 21.4013 26.4318 21.4013
+\l 25.6197 21.5495
+\c 20.1549 21.9921 18.1605 19.9247 23.0351 19.3339
+\c 27.9091 18.7437 30.3468 17.6345 30.3468 17.6345
+\c 23.9941 18.5211 19.786 17.3395 19.786 17.3395
+\c 16.9795 18.0054 13.7298 22.2872 12.6964 24.061
+\c 11.6623 25.8327 10.3331 28.0491 8.7813 28.1215
+\c 7.2302 28.1953 7.2302 26.793 8.3394 24.5036
+\c 9.4473 22.2141 11.3672 20.3679 11.8843 21.5495
+\c 12.3992 22.7312 10.4062 24.7242 9.6679 25.3895
+\c 8.9289 26.0547 8.4863 25.6852 8.4863 25.6852
+\c 8.4863 25.6852 7.3046 27.9009 8.9289 27.7527
+\c 10.5544 27.6058 11.9567 24.2816 14.4688 21.1056
+\c 16.9795 17.9303 19.5641 16.9713 19.5641 16.9713
+\c 14.1737 15.4933 17.0526 12.4662 19.047 11.4314
+\c 21.0414 10.398 24.5856 10.2498 24.5856 10.2498
+\c 20.3768 10.7668 16.0185 12.9094 16.9795 14.9031
+\c 17.9392 16.8969 24.4387 17.2664 29.4602 16.5267
+\c 34.4811 15.789 37.4365 13.9428 37.4365 13.9428
+\c 36.4755 12.3931 31.454 14.0173 31.454 14.0173
+\c 35.2215 11.9484 37.8791 13.5002 37.8791 13.5002
+\c 39.2075 13.352 41.5708 10.6186 40.3898 8.2554
+\c 39.2075 5.8935 36.1066 5.5978 36.1066 5.5978
+\c 36.1066 5.9666 34.5555 9.2164 30.7887 9.9547
+\c 27.0239 10.693 26.3573 9.2908 26.3573 9.2908
+\c 21.5578 11.2108 19.3428 9.5114 19.3428 9.5114
+\c 19.3428 9.5114 15.7972 12.2442 13.8035 13.9428
+\c 11.8105 15.6415 8.7082 17.782 6.4181 18.8161
+\c 4.1286 19.8516 1.1015 21.5495 0.6576 22.0666
+\c 0.2163 22.5836 0.7313 22.9531 0.7313 22.9531
+\c -0.5234 22.8787 0.2163 21.5495 0.2163 21.5495
+\c 3.8329 17.8565 8.2656 18.3735 13.4333 13.7946
+\c 18.6037 9.2164 19.3428 9.2164 19.3428 9.2164
+\l 19.2676 8.8475
+\l 12.9921 10.6186
+\c 13.3609 9.1419 18.3087 6.2617 18.3087 6.2617
+\c 15.7972 7.2957 8.7082 11.5058 7.7479 11.9484
+\c 6.7876 12.3931 7.4522 11.2845 7.4522 11.2845
+\c 8.1174 7.8141 15.7972 4.4899 15.7972 4.4899
+\c 10.9977 5.8191 3.169 11.7271 2.4313 11.874
+\c 1.693 12.0222 1.9874 11.2108 1.9874 11.2108
+\c 12.5481 -0.1628 21.6309 -0.4578 28.1318 0.2061
+\c 34.6293 0.8713 36.2549 3.9729 36.2549 3.9729
+\c 40.4629 5.0063 42.6786 7.3702 43.5652 8.5511
+\c 44.4517 9.7327 45.3376 11.5058 45.3376 11.5058
+\c 46.4454 11.5796 47.4795 13.4258 47.4795 13.4258
+\l 51.5899 14.1641
+\c 50.6296 14.6818 48.5867 16.2323 48.5867 16.2323
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian114.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian114.pgf
new file mode 100644
index 0000000000..7d6fb8c281
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian114.pgf
@@ -0,0 +1,84 @@
+\m 4.0002 0.4173
+\c 0.5291 -0.1735 -0.505 1.377 0.8986 2.6323
+\c 2.3015 3.8884 7.7663 3.8146 9.9082 2.4841
+\c 9.9082 2.4841 7.4712 1.0081 4.0002 0.4173
+\m 27.558 23.8276
+\c 29.4049 26.3384 31.8418 28.0377 33.3923 28.6278
+\c 34.9434 29.2193 37.3066 29.2193 37.6761 27.2249
+\c 38.045 25.2312 33.0241 17.255 22.684 15.04
+\c 22.684 15.04 25.7118 21.3169 27.558 23.8276
+\m 37.7492 10.8305
+\c 35.7555 6.0296 29.9957 2.0415 25.2692 1.377
+\c 20.5428 0.7124 18.032 1.9684 15.9638 2.4841
+\c 13.8957 3.0018 12.2715 3.3714 12.2715 3.3714
+\c 12.2715 3.3714 17.2124 6.3268 19.2874 9.3539
+\c 21.0598 11.9384 22.2414 14.6698 22.2414 14.6698
+\c 28.7396 15.7769 32.1369 18.5855 34.9434 21.2431
+\c 37.7492 23.9014 39.2266 27.6675 36.7158 28.9236
+\c 34.2058 30.179 30.8078 27.9646 27.6324 24.7886
+\c 24.4564 21.6119 20.9116 15.04 20.9116 15.04
+\c 20.6165 14.8911 15.4468 13.1938 11.5324 15.7769
+\c 7.6181 18.3628 8.7266 21.4644 10.3508 23.9014
+\c 11.9757 26.3384 17.588 29.0718 20.986 28.1115
+\c 24.3827 27.1518 23.4961 23.5325 22.2414 21.8339
+\c 20.986 20.1352 18.1058 18.0671 15.2248 18.8061
+\c 12.3445 19.5444 12.936 21.9077 14.7822 23.6801
+\c 16.6291 25.4525 19.5087 25.7482 19.5087 25.7482
+\c 16.1851 26.5603 11.9019 22.7935 13.0098 20.2835
+\c 14.1176 17.772 18.5484 17.4032 21.7981 20.9487
+\c 25.0472 24.4929 23.1273 27.0036 23.1273 27.0036
+\c 20.764 30.179 12.8623 28.9236 9.8345 24.4929
+\c 6.806 20.0622 8.6529 17.1812 11.9757 15.1882
+\c 15.2986 13.1938 20.6165 14.5229 20.6165 14.5229
+\c 20.6165 14.5229 20.3215 13.7108 18.4008 10.2397
+\c 16.4802 6.7687 11.7544 3.5203 11.7544 3.5203
+\c 4.2215 4.9956 0.1596 3.4458 0.012 1.8202
+\c -0.1355 0.196 1.0461 -0.1735 4.0002 0.1209
+\c 6.9542 0.4173 10.499 2.338 10.499 2.338
+\c 10.499 2.338 9.9813 2.6323 14.4127 1.1563
+\c 18.8441 -0.3217 24.7166 -0.7588 30.0694 2.338
+\c 36.1988 5.8835 38.1194 10.8305 38.1194 10.8305
+\o
+\s
+\m 39.5961 20.1352
+\c 36.4945 17.4769 32.3582 15.4088 29.6261 14.7442
+\c 29.6261 14.7442 30.9553 17.3294 31.6936 19.2487
+\c 32.4327 21.1693 34.8696 24.8617 37.306 26.8561
+\c 39.7429 28.8498 41.5898 28.9973 42.8452 27.9646
+\c 44.1013 26.9305 42.6977 22.7935 39.5961 20.1352
+\m 43.658 27.3738
+\c 42.9196 29.5144 40.4075 28.9973 39.0791 28.481
+\c 37.7492 27.9646 34.2051 24.7886 32.6539 22.4985
+\c 31.1028 20.209 28.2232 14.3016 28.2232 14.3016
+\c 28.2232 14.3016 24.4564 13.0456 21.3549 14.8911
+\c 18.2533 16.7379 18.5484 20.726 20.0257 22.9411
+\c 21.5024 25.1568 27.4105 29.0718 30.217 27.52
+\c 33.0235 25.9695 31.4723 22.2779 29.5524 20.6523
+\c 27.6318 19.0281 24.7522 18.4373 23.7181 19.3962
+\c 22.684 20.3572 23.201 22.4985 24.9735 23.8276
+\c 26.7459 25.1568 28.1488 24.9355 28.1488 24.9355
+\c 25.7118 25.6014 22.4627 22.6467 22.9797 20.2835
+\c 23.4961 17.9202 27.0416 18.2146 29.8474 20.5047
+\c 32.6539 22.7935 32.727 26.1908 30.6602 27.5944
+\c 28.5921 28.9973 24.2351 28.1846 21.2811 25.4525
+\c 18.3271 22.7198 17.4405 18.3628 20.0995 15.557
+\c 22.7584 12.7505 27.8537 13.9321 27.8537 13.9321
+\c 27.8537 13.9321 26.3026 9.9433 22.0194 5.2169
+\c 17.7363 0.4911 11.5324 -0.1735 8.7266 0.7868
+\c 5.9194 1.7458 5.4768 5.2913 8.2089 8.7624
+\c 10.9416 12.2328 15.9631 13.6364 18.3271 12.3065
+\c 20.6903 10.9781 20.1732 8.024 18.6966 6.2516
+\c 17.2192 4.4792 13.1573 3.1501 11.3849 4.2572
+\c 9.6125 5.3651 9.8338 8.0985 12.4183 9.5745
+\c 15.0035 11.0505 16.7759 10.6099 16.7759 10.6099
+\c 12.6403 12.4548 9.76 8.6148 9.8338 6.1034
+\c 9.9082 3.5933 13.1573 3.1501 15.5943 3.8139
+\c 18.032 4.4792 20.0257 6.7687 20.247 8.7624
+\c 20.4683 10.7561 19.6562 12.3065 17.2937 13.0456
+\c 14.9304 13.7839 11.3111 13.1938 8.8741 10.9781
+\c 6.4372 8.7624 4.886 4.2572 6.6585 1.9678
+\c 8.4309 -0.3217 11.7537 -0.3955 14.856 0.6386
+\c 17.9575 1.6734 22.3145 3.4451 25.5643 7.4332
+\c 28.8134 11.4207 29.4049 14.3016 29.4049 14.3016
+\c 40.999 17.255 44.3956 25.2312 43.658 27.3738
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian115.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian115.pgf
new file mode 100644
index 0000000000..ff5b64f05e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian115.pgf
@@ -0,0 +1,190 @@
+\m 35.4662 5.065
+\c 35.4662 5.065 36.6471 7.8708 33.8406 9.0524
+\c 33.8406 9.0524 33.6938 12.3029 34.9485 14.2215
+\c 34.9485 14.2215 35.9088 13.5583 37.0166 14.0009
+\c 38.1245 14.4428 38.9373 15.9222 38.1982 17.6188
+\c 38.1982 17.6188 40.2657 17.767 41.3005 14.5179
+\c 42.3339 11.2688 40.3402 5.065 35.4662 5.065
+\m 34.9485 5.065
+\c 34.9485 5.065 32.8065 5.065 32.2902 6.9856
+\l 34.2108 6.6892
+\c 34.2108 6.6892 34.0619 8.0184 33.8406 8.5354
+\c 33.8406 8.5354 34.7265 8.5354 35.1698 7.1318
+\c 35.6137 5.7296 34.9485 5.065 34.9485 5.065
+\m 30.5915 1.372
+\c 27.3417 0.4116 24.0926 0.7081 22.5422 1.6677
+\c 22.5422 1.6677 24.0189 2.6273 24.0189 4.1791
+\c 24.0189 4.1791 25.1267 6.6161 31.9207 6.8374
+\c 31.9207 6.8374 31.8469 5.2863 34.7265 4.5473
+\c 34.7265 4.5473 33.8406 2.3323 30.5915 1.372
+\m 22.2465 1.9634
+\c 22.2465 1.9634 20.6216 3.2181 20.5478 3.809
+\c 20.474 4.3998 20.474 4.7686 21.2124 4.3267
+\c 21.9507 3.8834 22.3195 3.2919 22.3195 3.2919
+\l 23.5756 4.1047
+\c 23.5756 4.1047 23.6494 2.7749 22.2465 1.9634
+\m 16.6341 0.9287
+\c 13.0148 1.2251 9.692 3.4401 8.6579 4.5473
+\c 8.6579 4.5473 10.6516 4.6955 11.6857 7.0587
+\c 11.6857 7.0587 16.6341 7.28 20.7691 4.7686
+\c 20.7691 4.7686 20.179 4.6955 20.2527 4.0309
+\c 20.3258 3.3664 20.9911 2.2592 21.9507 1.7415
+\c 21.9507 1.7415 20.2527 0.6343 16.6341 0.9287
+\m 8.2146 4.9906
+\c 8.2146 4.9906 6.3684 8.3141 9.1005 9.495
+\c 9.1005 9.495 9.6421 8.241 9.0274 6.3942
+\c 9.0274 6.3942 10.1346 7.0587 11.0949 6.9856
+\c 11.0949 6.9856 10.209 4.843 8.2146 4.9906
+\m 2.5279 7.5013
+\c 0.0178 10.4567 0.5341 13.7045 1.7895 15.9222
+\c 1.7895 15.9222 2.6023 14.0009 5.0393 14.6661
+\c 5.0393 14.6661 7.9933 13.4838 8.8792 9.9397
+\c 8.8792 9.9397 7.6976 9.4226 7.3288 8.0184
+\c 6.9592 6.6161 7.7714 4.9906 7.7714 4.9906
+\c 7.7714 4.9906 5.0393 4.5473 2.5279 7.5013
+\m 4.8911 14.9605
+\c 4.8911 14.9605 2.9711 14.5917 2.159 15.9953
+\c 2.159 15.9953 3.4144 17.767 5.1868 16.8811
+\c 5.1868 16.8811 4.4485 16.2166 2.8236 16.2166
+\o
+\m 4.0052 15.9222
+\l 5.4081 16.2903
+\c 5.4081 16.2903 5.7032 15.6989 5.2606 15.4769
+\o
+\m 0.8299 20.1548
+\c 1.1741 23.3548 4.6698 25.4222 7.7714 24.9305
+\c 7.7714 24.9305 5.9989 21.9771 8.3137 20.5004
+\c 8.3137 20.5004 7.8697 17.89 5.4081 17.1031
+\c 5.4081 17.1031 3.3898 18.4808 2.0115 16.4126
+\c 2.0115 16.4126 0.4843 16.9549 0.8299 20.1548
+\m 10.6769 22.5672
+\l 8.6087 23.4053
+\c 8.6087 23.4053 8.8546 21.6814 8.2638 20.844
+\c 8.2638 20.844 6.8855 22.4696 8.0671 24.4879
+\c 8.0671 24.4879 9.0028 25.1272 10.6769 22.5672
+\m 13.7293 28.3776
+\c 16.9292 29.2136 19.3908 28.2779 19.6865 27.2452
+\c 19.9823 26.2104 18.6518 23.9947 16.3876 22.8131
+\c 14.122 21.6315 11.1693 22.4696 11.1693 22.4696
+\c 11.1693 22.4696 10.5287 24.0446 8.5595 25.0787
+\c 8.5595 25.0787 10.5287 27.5396 13.7293 28.3776
+\m 9.0028 20.2532
+\l 9.0513 22.9128
+\l 10.7752 21.9771
+\c 10.7752 21.9771 10.8736 20.204 9.0028 20.2532
+\m 9.692 9.495
+\c 9.692 9.495 11.0949 9.2737 11.3162 7.5013
+\c 11.3162 7.5013 10.4303 7.5013 9.6175 6.9856
+\c 9.6175 6.9856 9.9133 8.6843 9.692 9.495
+\m 22.1727 5.8034
+\c 23.2068 5.8034 23.4281 4.843 23.4281 4.843
+\c 23.4281 4.843 23.3543 4.1791 22.3195 3.809
+\c 22.3195 3.809 21.3606 4.9168 20.8435 5.1381
+\c 20.8435 5.1381 21.1386 5.8034 22.1727 5.8034
+\m 33.176 8.5354
+\c 33.176 8.5354 33.5449 7.7984 33.7668 7.0587
+\c 33.7668 7.0587 32.8803 7.4037 32.3639 7.5013
+\c 32.3639 7.5013 31.9944 8.4616 33.176 8.5354
+\m 34.7265 15.8471
+\c 34.7265 15.8471 35.4662 15.8471 36.2038 16.1421
+\l 35.1698 15.4769
+\o
+\m 28.0808 18.8749
+\c 28.0808 18.8749 29.8532 20.5004 28.007 22.4935
+\c 28.007 22.4935 29.1142 23.4531 32.2902 22.8637
+\c 35.4662 22.2715 37.0166 19.3926 37.533 18.1372
+\c 37.533 18.1372 35.318 18.2847 34.5789 16.3641
+\c 34.5789 16.3641 30.8866 16.2166 28.0808 18.8749
+\m 27.785 19.0962
+\l 27.1204 20.5004
+\l 25.7906 19.687
+\c 25.7906 19.687 25.2005 21.5338 27.6375 22.3453
+\c 27.6375 22.3453 28.9666 20.7948 27.785 19.0962
+\m 25.7175 18.8749
+\l 26.8991 19.9089
+\l 27.49 18.728
+\c 27.49 18.728 26.5296 17.767 25.7175 18.8749
+\m 19.0711 17.989
+\c 19.0711 17.989 19.2924 19.687 16.2646 19.687
+\c 16.2646 19.687 17.003 21.9771 20.2527 23.2318
+\c 23.5018 24.4879 26.6034 23.5269 27.1942 22.5672
+\c 27.1942 22.5672 24.1664 21.4594 25.4218 19.3181
+\c 25.4218 19.3181 23.2068 17.8408 19.0711 17.989
+\m 18.3273 16.987
+\c 17.7912 17.8824 17.0767 18.2847 17.0767 18.2847
+\c 17.395 17.8299 17.6566 17.2466 17.811 16.862
+\c 17.6532 16.8613 17.4756 16.8873 17.2741 16.9529
+\c 16.0925 17.347 16.0925 19.2184 16.0925 19.2184
+\c 16.0925 19.2184 18.0623 19.9083 18.7508 18.0361
+\l 18.0623 18.0361
+\l 18.8498 17.5444
+\c 18.8498 17.5444 18.7037 17.1844 18.3273 16.987
+\m 18.6524 13.0153
+\c 18.6524 13.0153 16.7817 13.3097 16.3876 11.8337
+\c 15.9935 10.3563 16.8807 9.4705 16.8807 9.4705
+\c 16.8807 9.4705 12.4486 9.4705 12.4486 13.5064
+\c 12.4486 17.5444 14.9109 19.2184 15.6001 19.2184
+\c 15.6001 19.2184 15.1076 16.5601 17.9633 16.4618
+\c 17.9633 16.4618 19.2439 15.6729 18.6524 13.0153
+\m 19.0465 11.7353
+\l 18.0623 11.0455
+\l 18.6524 12.0304
+\c 18.6524 12.0304 19.1449 12.2271 19.0465 11.7353
+\m 27.1211 9.8639
+\c 27.1211 9.8639 26.432 8.3865 22.6897 8.0921
+\c 18.9482 7.7957 16.7817 9.3714 16.7817 10.9464
+\c 16.7817 12.5222 17.8649 12.6212 18.3574 12.6212
+\c 18.8498 12.6212 18.4803 12.4504 18.4803 12.4504
+\l 17.3725 10.4554
+\c 17.3725 10.4554 23.0838 13.3097 27.1211 9.8639
+\m 37.3124 14.7399
+\c 36.1301 13.7045 35.2435 14.6661 35.2435 14.6661
+\c 35.2435 14.6661 36.4996 16.2166 37.3124 16.5847
+\c 37.3124 16.5847 36.057 16.6599 35.318 16.511
+\c 35.318 16.511 36.057 18.2847 37.7556 17.6919
+\c 37.7556 17.6919 38.494 15.774 37.3124 14.7399
+\m 42.4814 12.2285
+\c 42.0873 17.7417 38.2467 17.9391 38.2467 17.9391
+\c 38.3458 18.6283 36.6717 22.7639 33.3236 23.5515
+\c 29.9761 24.3403 27.7112 22.7639 27.7112 22.7639
+\c 27.7112 22.7639 25.0523 26.2104 21.114 24.3403
+\c 16.6587 22.223 15.7968 19.5142 15.7968 19.5142
+\c 13.8276 19.5142 10.6769 16.1674 12.1529 12.3268
+\c 13.6302 8.4862 17.1751 9.1754 17.1751 9.1754
+\c 17.1751 9.1754 19.8552 6.5342 23.0831 7.0096
+\c 26.4306 7.5013 29.7787 10.0606 27.1204 12.7202
+\c 24.4622 15.3799 20.2275 12.9176 20.2275 12.9176
+\c 22.0976 13.7058 24.3638 14.0986 26.3329 12.9156
+\c 28.3027 11.7353 27.5145 9.9636 27.5145 9.9636
+\c 23.2805 14.787 19.4406 11.8337 19.4406 11.8337
+\c 19.4406 12.4238 18.8498 12.6212 18.8498 12.6212
+\c 20.0314 15.1818 18.4557 16.7568 18.4557 16.7568
+\c 19.1449 16.8552 19.2439 17.6427 19.2439 17.6427
+\c 22.493 16.2637 25.3487 18.5299 25.3487 18.5299
+\c 27.0228 17.446 27.8103 18.5299 27.8103 18.5299
+\c 30.4693 14.9844 34.4075 15.8703 34.4075 15.8703
+\l 34.8993 15.0835
+\c 32.241 11.9327 33.0292 8.7813 33.0292 8.7813
+\c 31.8469 8.978 31.8469 7.6004 31.8469 7.6004
+\c 27.0228 8.1891 23.7723 5.2371 23.7723 5.2371
+\c 23.7723 5.2371 23.1815 6.2214 22.1966 6.2214
+\c 21.2131 6.2214 20.6216 5.4332 20.6216 5.4332
+\c 15.9935 8.978 11.5628 7.5006 11.5628 7.5006
+\c 11.6611 9.5695 9.5936 9.7662 9.5936 9.7662
+\c 9.0028 13.8042 5.5557 15.2808 5.5557 15.2808
+\c 6.1471 15.871 5.6547 16.3627 5.6547 16.3627
+\c 8.117 17.3476 8.9038 19.9083 8.9038 19.9083
+\c 11.267 19.9083 11.0703 21.8774 11.0703 21.8774
+\c 17.8642 20.0073 20.4249 25.7187 20.1298 27.194
+\c 19.8334 28.6713 16.5843 29.9527 12.7444 28.7704
+\c 8.9038 27.5894 8.3137 25.3246 8.3137 25.3246
+\c 8.3137 25.3246 2.7007 26.4071 0.9282 22.863
+\c -1.3619 18.2827 1.9131 16.2651 1.9131 16.2651
+\c 1.1249 15.9693 -1.7307 10.8495 1.519 7.0096
+\c 4.7688 3.1697 8.412 4.5466 8.412 4.5466
+\c 8.412 4.5466 10.1844 1.4949 14.0243 0.4116
+\c 18.7364 -0.9175 22.2956 1.3972 22.2956 1.3972
+\c 22.2956 1.3972 25.1513 -0.5726 29.7787 0.3133
+\c 34.6356 1.2429 35.096 4.6463 35.096 4.6463
+\c 38.2467 4.2522 42.8748 6.7145 42.4814 12.2285
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian116.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian116.pgf
new file mode 100644
index 0000000000..701706520a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian116.pgf
@@ -0,0 +1,122 @@
+\m 10.5397 12.6053
+\c 10.5397 12.6053 11.2774 13.4427 12.1155 13.2453
+\c 12.9515 13.0479 13.0997 11.9646 12.0649 11.9646
+\c 11.0315 11.9646 10.5397 12.6053 10.5397 12.6053
+\m 17.9737 9.0113
+\c 17.9737 9.0113 16.8904 9.109 16.1521 10.2906
+\c 15.4144 11.4722 16.9894 11.6204 17.4819 11.1771
+\c 17.9737 10.7339 18.0727 9.5044 17.9737 9.0113
+\m 1.4803 14.8695
+\c 1.4803 14.8695 3.5477 16.741 5.4192 16.1502
+\c 7.2913 15.5593 6.8467 13.8846 6.109 13.442
+\c 5.3707 12.9987 3.0068 12.9496 1.4803 14.8695
+\m 7.9798 6.7956
+\c 8.8165 8.0271 10.1941 7.6815 10.3915 6.894
+\c 10.5882 6.1058 9.8998 4.5307 7.4375 4.6298
+\c 7.4375 4.6298 7.1424 5.5648 7.9798 6.7956
+\m 26.9348 7.6316
+\c 24.868 3.595 20.7303 3.2009 20.7303 3.2009
+\c 21.8142 8.2224 17.6178 7.5374 17.8261 5.6147
+\c 18.0235 3.7931 19.9435 3.2009 19.9435 3.2009
+\c 18.8602 1.4285 14.2321 0.5426 11.2774 1.2318
+\c 8.324 1.9196 7.4375 4.1858 7.4375 4.1858
+\c 7.4375 4.1858 9.5057 4.3825 10.3915 5.4658
+\c 11.2774 6.549 10.4892 8.5182 8.6191 7.73
+\c 6.749 6.9431 7.1424 4.7759 7.1424 4.7759
+\c -0.1446 7.0408 1.5308 14.2282 1.5308 14.2282
+\c 5.9608 10.781 8.4224 14.4262 6.3549 16.101
+\c 4.2881 17.7744 1.6278 15.3128 1.6278 15.3128
+\c 3.2042 19.251 6.5516 19.4983 6.5516 19.4983
+\c 6.5516 19.4983 6.109 18.1685 7.0926 17.036
+\c 8.0782 15.9036 10.0958 16.4944 9.8007 18.2668
+\c 9.5057 20.0386 7.1923 19.8924 7.1923 19.8924
+\c 8.6683 22.0582 10.0958 22.3526 10.0958 22.3526
+\c 10.048 21.8601 10.9448 19.5584 12.7548 20.0884
+\c 14.1829 20.5064 13.8387 22.6982 13.8387 22.6982
+\c 17.0878 22.1559 17.8753 19.8924 17.8753 19.8924
+\c 17.333 19.7927 16.3501 19.3501 16.3501 18.2176
+\c 16.3501 17.0866 17.7319 17.092 18.2209 18.0687
+\c 18.516 18.6609 18.2209 19.695 18.2209 19.695
+\c 19.7461 20.1868 21.2234 19.055 21.2234 19.055
+\c 21.2234 19.055 20.3369 18.2668 20.7802 17.2819
+\c 21.2234 16.2977 22.6018 16.4452 22.6018 16.4452
+\c 23.9808 12.9017 21.7644 10.4388 20.632 9.7496
+\c 19.5002 9.0598 18.3186 9.208 18.3186 9.208
+\c 18.3186 9.208 18.5563 9.8446 18.1219 10.9319
+\c 17.6301 12.1627 15.4144 12.063 15.7587 10.5378
+\c 16.1036 9.0099 17.9252 8.764 17.9252 8.764
+\c 17.9252 8.764 17.4819 7.3864 15.0695 7.1392
+\c 12.6571 6.894 10.343 8.7156 10.0958 9.9962
+\c 9.8499 11.2762 10.4892 12.2604 10.4892 12.2604
+\c 10.4892 12.2604 11.6708 11.2263 12.6065 11.7679
+\c 13.5423 12.3082 13.0505 13.4905 12.1639 13.5895
+\c 11.2774 13.6886 10.4414 12.9017 10.4414 12.9017
+\c 9.4565 15.1652 11.5731 17.8734 14.282 17.577
+\c 16.9894 17.2819 17.1848 15.4111 17.1377 14.5246
+\c 17.0878 13.6394 16.3488 12.0145 14.7744 12.3594
+\c 13.1987 12.7037 13.2472 14.3777 14.3312 14.6236
+\c 15.4144 14.8695 15.6104 13.6886 15.6104 13.6886
+\c 16.3488 14.8695 15.1678 16.3469 13.8387 15.6078
+\c 12.5089 14.8695 12.6571 12.3082 14.9213 12.063
+\c 17.1848 11.8178 18.2687 14.6714 16.9894 16.7895
+\c 15.7088 18.9075 12.1639 20.0386 10.2939 17.1344
+\c 8.4224 14.2288 10.343 12.5063 10.343 12.5063
+\c 8.3732 10.2421 10.5397 6.4507 13.8387 6.0074
+\c 17.1377 5.5648 18.2209 8.764 18.2209 8.764
+\c 18.2209 8.764 21.3225 8.3208 23.1926 11.1765
+\c 25.0633 14.0328 23.4876 16.7888 23.4876 16.7888
+\c 24.868 17.5763 25.4568 19.251 25.4568 19.251
+\c 29.298 17.6753 29.0023 11.6696 26.9348 7.6316
+\m 20.2385 3.4475
+\c 20.2385 3.4475 19.2051 3.694 18.6143 4.6298
+\c 18.0235 5.5648 18.2209 6.549 19.0077 6.5989
+\c 19.7953 6.6481 20.8293 5.8599 20.2385 3.4475
+\m 9.3581 18.2176
+\c 9.7522 16.6412 6.6008 15.6078 6.8467 19.5468
+\c 6.8467 19.5468 8.964 19.7927 9.3581 18.2176
+\m 1.5294 23.0896
+\c 3.2042 26.9302 8.9142 28.2101 10.884 26.4391
+\c 10.884 26.4391 10.2939 25.4057 10.0958 23.6811
+\c 10.0958 23.6811 7.6349 22.9919 6.749 19.9388
+\c 6.749 19.9388 3.0061 19.8405 1.2344 16.0982
+\c 1.2344 16.0982 -0.1446 19.2497 1.5294 23.0896
+\m 11.2774 26.2915
+\c 11.2774 26.2915 12.5239 25.7294 13.1092 24.1359
+\c 11.8798 24.2384 11.0138 24.0383 10.535 23.8709
+\c 10.6299 24.696 10.8888 25.5375 11.2774 26.2915
+\m 10.9338 21.2202
+\c 10.7344 21.6054 10.6101 22.0343 10.5452 22.4865
+\c 11.7979 22.8218 12.8319 22.8075 13.3906 22.7576
+\c 13.3927 22.7371 13.3947 22.718 13.3947 22.6982
+\c 13.5361 20.1041 11.6708 19.7927 10.9338 21.2202
+\m 17.3835 17.6282
+\c 16.3488 17.3318 16.2511 19.2517 18.0235 19.6458
+\c 18.0235 19.6458 18.4169 17.9226 17.3835 17.6282
+\m 22.5546 16.9465
+\c 21.6667 16.8058 20.9024 17.1194 20.9762 17.8235
+\c 21.011 18.1432 21.1476 18.4847 21.4304 18.7832
+\c 21.7296 18.3781 22.2801 17.5968 22.5546 16.9465
+\m 22.0615 19.2381
+\c 22.6926 19.5481 23.6399 19.7073 25.0142 19.5468
+\c 25.0142 19.5468 24.6201 17.8235 23.4385 17.2327
+\c 23.42 17.2239 23.4009 17.215 23.3811 17.2054
+\c 23.2356 17.6125 22.8859 18.3064 22.0615 19.2381
+\m 17.2845 28.3085
+\c 20.9277 27.816 26.2443 24.7643 25.1603 19.9388
+\c 25.1603 19.9388 22.9952 20.0379 21.7152 19.5447
+\c 21.7152 19.5447 19.7461 20.7263 18.0727 20.2346
+\c 18.0727 20.2346 16.596 23.287 13.6406 24.0745
+\c 13.6406 24.0745 12.7548 25.7485 11.5731 26.6344
+\c 11.5731 26.6344 13.6406 28.8009 17.2845 28.3085
+\m 29.2004 12.9489
+\c 29.0023 18.2654 25.6555 19.6451 25.6555 19.6451
+\c 26.4423 22.8935 24.3749 28.4082 19.1546 29.2934
+\c 13.9364 30.1806 11.1797 26.6358 11.1797 26.6358
+\c 7.3391 29.1957 1.7268 27.2266 0.4469 22.6962
+\c -0.8324 18.1678 1.0383 15.6072 1.0383 15.6072
+\c 1.0383 15.6072 -0.6364 10.0925 1.6278 7.2368
+\c 3.894 4.3818 6.9457 3.9877 6.9457 3.9877
+\c 7.4375 3.1995 9.309 0.5419 13.5423 0.0488
+\c 17.777 -0.443 20.3369 2.9052 20.3369 2.9052
+\c 25.3584 2.66 29.3957 7.6316 29.2004 12.9489
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian117.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian117.pgf
new file mode 100644
index 0000000000..a22d434348
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian117.pgf
@@ -0,0 +1,183 @@
+\m 25.3063 14.3324
+\c 25.3063 14.3324 23.2382 13.6419 21.8107 13.7416
+\c 20.3832 13.84 19.4474 14.775 20.6796 15.0694
+\c 21.9083 15.3665 24.2716 15.4635 25.3063 14.3324
+\m 23.8782 18.5658
+\c 23.8782 18.5658 22.0081 17.1874 21.073 16.8439
+\c 20.1373 16.4983 19.1524 17.1874 20.5799 17.975
+\c 22.0081 18.7631 23.4362 18.5658 23.8782 18.5658
+\m 22.4507 22.3578
+\c 22.4507 22.3578 21.5648 20.4864 20.7766 19.6982
+\c 19.9891 18.9107 18.3164 18.4189 18.4625 19.4523
+\c 18.6108 20.4864 22.0566 22.209 22.4507 22.3578
+\m 7.3854 22.6037
+\c 7.3854 22.6037 8.8635 21.7172 10.0936 20.388
+\c 11.3237 19.0589 11.0785 18.074 10.1926 18.5166
+\c 9.3061 18.9592 8.0247 19.7474 7.3854 22.6037
+\m 4.5304 19.1566
+\c 4.5304 19.1566 6.8937 18.9592 8.5179 18.1232
+\c 10.1428 17.2865 9.7493 16.0051 8.1729 16.5475
+\c 6.5972 17.0891 5.0222 18.4681 4.5304 19.1566
+\m 3.1029 14.7259
+\c 3.1029 14.7259 5.0222 15.415 6.7454 15.415
+\c 8.4687 15.415 9.3061 15.2183 9.207 14.5291
+\c 9.1087 13.84 5.7605 13.7901 3.1029 14.7259
+\m 4.5304 11.2295
+\c 4.5304 11.2295 6.253 12.756 7.5821 13.1016
+\c 8.912 13.4459 9.5021 13.1003 9.4522 12.6092
+\c 9.4051 12.1174 7.7795 11.1817 4.5304 11.2295
+\m 6.6478 6.9962
+\c 6.6478 6.9962 6.8937 8.326 8.1729 9.8512
+\c 9.4522 11.3784 11.127 11.4768 10.6345 9.9017
+\c 10.1428 8.326 6.6478 6.9962 6.6478 6.9962
+\m 19.054 4.2395
+\c 19.054 4.2395 17.6258 5.1746 16.6908 7.4388
+\c 15.7551 9.7043 17.1341 9.7043 17.7242 8.6211
+\c 18.3164 7.5385 18.9058 5.7162 19.054 4.2395
+\m 22.3031 6.9463
+\c 22.3031 6.9463 19.4973 8.1778 18.7583 9.6545
+\c 18.0199 11.1318 19.5957 10.9843 20.7766 9.6545
+\c 21.9589 8.326 22.3031 6.9463 22.3031 6.9463
+\m 24.5687 10.4912
+\c 24.5687 10.4912 22.8946 10.3928 20.7267 11.2295
+\c 18.5616 12.0676 19.9679 13.1276 21.1215 12.6591
+\c 24.0264 11.4768 24.5687 10.4912 24.5687 10.4912
+\m 25.947 10.6401
+\c 25.947 10.6401 24.6657 11.9692 22.5012 12.9534
+\c 20.3333 13.9383 19.2992 12.9534 19.3498 12.3626
+\c 19.3983 11.7718 20.5799 10.1476 24.9129 10.1968
+\c 24.9129 10.1968 26.783 9.2119 26.783 7.6362
+\c 26.783 6.0605 25.2073 5.9129 23.7805 6.3569
+\c 23.7805 6.3569 22.6487 9.1634 21.2205 10.2958
+\c 19.793 11.4269 18.5616 11.6721 18.2658 10.7384
+\c 17.9701 9.8027 19.2992 7.5385 22.5989 6.6028
+\c 22.5989 6.6028 23.8782 5.0277 23.1405 3.4015
+\c 22.4015 1.7766 19.9891 3.4514 19.9891 3.4514
+\c 19.9891 3.4514 20.4317 6.2579 18.6599 8.6703
+\c 17.0439 10.8696 15.7721 9.5834 16.0501 8.4729
+\c 16.2475 7.6854 16.839 5.1746 18.955 3.9937
+\c 18.955 3.9937 19.4973 2.2199 18.5117 1.138
+\c 17.5282 0.0547 15.5078 2.0239 15.361 2.2199
+\c 15.361 2.2199 16.1983 3.9937 15.9531 6.1588
+\c 15.7052 8.326 15.361 9.4571 14.4259 9.3096
+\c 13.4902 9.1634 12.9977 5.9628 14.622 3.4015
+\c 14.622 3.4015 13.9335 0.7432 12.801 0.4973
+\c 11.6693 0.2521 10.9296 2.3189 10.8326 3.254
+\c 10.8326 3.254 12.506 4.3871 13.0968 6.9463
+\c 13.6869 9.5076 12.9452 10.0486 12.2594 10.0486
+\c 11.6693 10.0486 9.7493 8.3752 10.4378 4.3871
+\c 10.4378 4.3871 9.1087 2.7622 7.3854 2.5655
+\c 5.6615 2.3674 5.8097 4.633 6.1055 5.3221
+\c 6.1055 5.3221 9.5021 6.208 10.5362 8.7201
+\c 11.5702 11.2295 10.7814 11.6721 9.4522 11.1305
+\c 8.1244 10.5902 6.5002 8.3738 6.3022 6.8487
+\c 6.3022 6.8487 4.6281 5.9129 2.758 6.5031
+\c 0.8879 7.0939 2.954 9.8512 2.954 9.8512
+\c 2.954 9.8512 5.4662 9.4571 7.6313 10.4912
+\c 9.7985 11.5266 10.291 13.0033 9.4051 13.3475
+\c 9.0889 13.4698 8.6408 13.5422 8.0732 13.4664
+\c 7.7078 13.327 7.3028 13.2102 6.8738 13.1331
+\c 6.0228 12.7813 5.0065 12.1372 3.8399 11.0335
+\c 3.8399 11.0335 0.7889 10.5902 0.4433 12.0177
+\c 0.0997 13.4459 1.9698 14.135 1.9698 14.135
+\c 1.9698 14.135 3.1029 13.2485 5.2681 13.0525
+\c 5.807 13.0033 6.3561 13.0395 6.8738 13.1331
+\c 7.3199 13.3175 7.7201 13.4199 8.0732 13.4664
+\c 9.0397 13.8386 9.7036 14.3727 9.6503 14.775
+\c 9.5581 15.4656 6.5972 16.5475 2.8065 14.9232
+\c 2.8065 14.9232 0.9856 15.4635 0.4433 16.8439
+\c -0.0984 18.2208 2.0695 19.0589 2.8564 19.0589
+\c 2.8564 19.0589 3.8399 17.7782 5.8097 16.6458
+\c 7.7795 15.5141 9.8463 15.8576 9.9945 16.6957
+\c 10.1428 17.5324 8.8635 19.3041 4.038 19.4523
+\c 4.038 19.4523 1.9404 20.9727 2.4124 22.7991
+\c 2.8065 24.327 5.8097 23.3919 5.8097 23.3919
+\c 5.8097 23.3919 6.5481 20.3382 8.6654 18.8137
+\c 10.7814 17.2865 11.4719 18.4681 11.2267 19.2071
+\c 10.9794 19.9448 9.6995 21.8155 7.1389 23.0948
+\c 7.1389 23.0948 5.7605 24.8194 6.4005 26.7387
+\c 7.0419 28.6593 9.9454 26.542 9.9454 26.542
+\c 9.9454 26.542 9.3061 25.1623 9.9945 22.7513
+\c 10.6844 20.3382 11.5204 19.1074 12.6036 19.4024
+\c 13.6869 19.6982 13.2935 23.5381 10.7336 26.2961
+\c 10.7336 26.2961 10.7814 28.2161 11.8155 28.561
+\c 12.8509 28.9052 13.9833 27.0829 13.9833 27.0829
+\c 13.9833 27.0829 13.2443 25.0168 13.1965 23.2922
+\c 13.1446 21.5703 13.4902 19.5507 14.3276 19.354
+\c 15.1643 19.1566 16.5419 21.8647 14.8193 26.2462
+\c 14.8193 26.2462 15.46 28.4619 16.2967 28.561
+\c 17.1341 28.6593 17.9223 28.1669 18.5117 26.1486
+\c 18.5117 26.1486 17.1341 24.7197 16.3466 23.3414
+\c 15.559 21.9637 15.1144 19.7474 16.3957 19.3041
+\c 17.675 18.8622 19.2507 21.668 19.1032 24.8686
+\c 19.1032 24.8686 20.1865 27.0344 21.713 27.2318
+\c 23.2382 27.4279 23.7805 26.0004 23.189 24.2771
+\c 23.189 24.2771 21.4671 23.7355 19.4474 21.8647
+\c 17.4298 19.9946 17.8724 19.0589 18.5616 18.6648
+\c 19.2507 18.2714 21.073 18.6156 22.8448 22.5047
+\c 22.8448 22.5047 25.1581 24.327 26.4395 23.6371
+\c 27.7187 22.9473 25.6014 20.093 25.6014 20.093
+\c 25.6014 20.093 23.4847 20.093 21.2684 19.1566
+\c 19.054 18.2208 19.3983 16.9921 19.4973 16.7442
+\c 19.5957 16.4983 21.2684 15.6616 24.3221 18.5658
+\c 24.3221 18.5658 25.9955 19.0097 27.7187 18.2208
+\c 29.4427 17.4326 28.6545 15.9082 27.1279 15.2675
+\c 27.1279 15.2675 25.0598 16.2025 22.5989 16.055
+\c 20.1373 15.9082 19.793 15.3167 19.7432 14.5291
+\c 19.6933 13.7416 22.4015 12.7076 25.848 14.3809
+\c 25.848 14.3809 28.0145 14.0353 28.6046 13.0033
+\c 29.1961 11.9692 27.9646 10.4912 25.947 10.6401
+\m 14.9191 3.7956
+\c 14.9191 3.7956 14.081 4.7306 13.9335 6.9962
+\c 13.7853 9.2611 14.8193 9.3601 15.1144 8.1279
+\c 15.4108 6.8978 15.1144 4.5852 14.9191 3.7956
+\m 11.2267 8.6211
+\c 12.0627 10.246 13.0968 9.7542 12.7512 8.2277
+\c 12.4076 6.7004 10.7336 4.8304 10.7336 4.8304
+\c 10.7336 4.8304 10.388 6.9962 11.2267 8.6211
+\m 10.5362 25.7552
+\c 10.5362 25.7552 12.0135 24.5735 12.7512 21.8647
+\c 13.4902 19.1566 11.978 19.4441 11.4719 20.6838
+\c 11.0286 21.7657 10.4378 23.047 10.5362 25.7552
+\m 14.622 25.4102
+\c 14.622 25.4102 15.1643 24.2279 15.3118 22.4562
+\c 15.46 20.6838 14.8726 19.7965 14.525 19.7965
+\c 13.9335 19.7965 13.3918 22.209 14.622 25.4102
+\m 18.7583 24.5735
+\c 18.7583 24.5735 18.5616 21.7172 18.0684 20.6838
+\c 17.576 19.6497 15.932 18.8519 16.0016 20.7316
+\c 16.0501 22.0621 18.7583 24.5735 18.7583 24.5735
+\m 29.3921 12.56
+\c 29.3921 14.2826 27.3745 15.0694 27.3745 15.0694
+\c 27.3745 15.0694 29.9338 16.3507 29.1469 18.074
+\c 28.3587 19.7965 25.8978 19.9448 25.8978 19.9448
+\c 27.4729 21.9631 27.5705 23.5886 26.4886 24.2279
+\c 25.4061 24.8686 23.6323 24.4253 23.6323 24.4253
+\c 23.6323 24.4253 24.3713 26.7387 22.6487 27.6252
+\c 20.5669 28.6955 18.7098 26.443 18.7098 26.443
+\c 17.7747 29.1518 16.6908 29.1518 15.8049 28.9052
+\c 14.9191 28.6593 14.081 27.38 14.081 27.38
+\c 13.5899 28.3151 12.3578 29.3478 11.2745 28.8062
+\c 10.1926 28.2652 9.7985 26.9846 9.7985 26.9846
+\c 9.7985 26.9846 7.5821 28.7085 6.253 27.477
+\c 4.7189 26.0577 5.6123 23.7853 5.6123 23.7853
+\c 5.6123 23.7853 2.5606 24.7696 1.9698 22.7014
+\c 1.379 20.6346 2.8564 19.354 2.8564 19.354
+\c 2.8564 19.354 -0.0485 18.9107 0 17.0392
+\c 0.0492 15.1691 1.8216 14.3809 1.8216 14.3809
+\c 1.8216 14.3809 -0.4918 13.2485 0.1475 11.4768
+\c 0.7889 9.7043 2.5606 9.9017 2.5606 9.9017
+\c 1.6249 8.326 1.2315 6.7004 2.4124 5.8644
+\c 3.635 4.9991 5.8097 5.2729 5.8097 5.2729
+\c 5.8097 5.2729 4.9238 2.3674 6.5481 1.8258
+\c 8.4707 1.1865 10.5362 3.1064 10.5362 3.1064
+\c 10.7336 1.3832 11.7178 -0.0935 12.9977 0.0042
+\c 14.2784 0.1039 15.3118 1.974 15.3118 1.974
+\c 15.6075 1.5806 16.936 0.3006 18.3656 0.5964
+\c 19.793 0.8907 20.0383 2.9589 20.0383 2.9589
+\c 20.9248 2.2199 22.5497 1.8763 23.4362 3.0579
+\c 24.3221 4.2395 23.8782 6.012 23.8782 6.012
+\c 23.8782 6.012 27.0794 5.1746 27.3253 7.488
+\c 27.4776 8.9223 26.587 10.3443 26.587 10.3443
+\c 26.587 10.3443 29.3921 10.8361 29.3921 12.56
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian118.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian118.pgf
new file mode 100644
index 0000000000..60c68543c5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian118.pgf
@@ -0,0 +1,163 @@
+\m 14.4134 19.0561
+\c 13.7195 19.0561 13.158 19.6182 13.158 20.3115
+\c 13.158 21.0054 13.7195 21.5676 14.4134 21.5676
+\c 15.1073 21.5676 15.6695 21.0054 15.6695 20.3115
+\c 15.6695 19.6182 15.1073 19.0561 14.4134 19.0561
+\m 14.4134 22.0839
+\c 13.434 22.0839 12.6403 21.2903 12.6403 20.3115
+\c 12.6403 19.3334 13.434 18.5391 14.4134 18.5391
+\c 15.3922 18.5391 16.1851 19.3334 16.1851 20.3115
+\c 16.1851 21.2903 15.3922 22.0839 14.4134 22.0839
+\s
+\m 26.7534 6.5317
+\c 26.306 6.9074 25.746 7.2536 25.0506 7.5501
+\c 27.2588 10.5444 27.6734 13.8693 27.1612 16.1759
+\c 26.5704 18.8348 25.2405 20.6059 25.2405 20.6059
+\c 25.7582 20.3115 28.5647 18.022 28.786 13.59
+\c 28.9657 9.9761 27.3524 7.3691 26.7534 6.5317
+\m 23.2161 6.1
+\c 20.7524 3.7703 19.314 6.0495 20.1459 6.9449
+\c 20.4348 7.2564 20.9369 7.4319 21.499 7.5275
+\c 22.6157 7.2898 23.0494 6.5857 23.2161 6.1
+\m 22.1567 7.6061
+\c 23.2926 7.686 24.354 7.4613 24.354 7.4613
+\c 24.0924 7.0904 23.9141 6.8445 23.6669 6.5686
+\c 23.1969 7.1881 22.6464 7.4804 22.1567 7.6061
+\m 26.2275 17.9544
+\c 26.2193 17.9763 26.2104 17.9988 26.2015 18.022
+\c 26.2015 18.022 26.2111 17.9975 26.2275 17.9544
+\c 28.534 12.0805 24.7242 7.6826 24.7242 7.6826
+\c 18.5941 8.8635 18.8899 5.5413 20.2935 4.9505
+\c 21.6964 4.359 23.3206 5.6144 23.3206 5.6144
+\c 22.6567 3.5483 19.7757 2.8086 18.4459 3.2512
+\c 17.1174 3.6965 16.2309 6.0597 17.6338 7.9776
+\c 19.0374 9.899 22.9524 11.5969 25.0199 13.8126
+\c 26.864 15.79 26.3579 17.5883 26.2275 17.9544
+\m 14.6572 1.2582
+\c 14.6572 1.2582 7.2732 0.7828 2.8363 6.1779
+\c 3.4462 6.7045 4.0746 7.0556 4.4878 7.2564
+\c 4.7672 6.8998 5.0698 6.5488 5.4031 6.2052
+\c 5.4031 6.2052 4.9605 4.5824 6.6585 3.2512
+\c 8.3571 1.922 11.0161 1.5532 12.4928 3.842
+\c 13.9694 6.1321 12.1246 8.5685 9.7614 10.194
+\c 7.3982 11.8196 4.6647 13.4438 4.0739 15.807
+\c 3.4831 18.1696 4.5165 21.2711 7.5443 22.0839
+\c 7.5443 22.0839 5.8436 21.3333 6.2896 18.8348
+\c 6.6585 16.766 8.3571 16.6191 8.3571 16.6191
+\c 8.3571 16.6191 7.6925 15.29 8.1351 14.2559
+\c 8.5798 13.2218 10.4246 12.1877 11.902 13.5169
+\c 11.902 13.5169 11.9245 11.3012 14.6572 11.3012
+\c 17.3906 11.3012 17.4125 13.5169 17.4125 13.5169
+\c 18.8899 12.1877 20.736 13.2218 21.1786 14.2559
+\c 21.6233 15.29 20.9573 16.6191 20.9573 16.6191
+\c 20.9573 16.6191 22.6567 16.766 23.0255 18.8348
+\c 23.4715 21.3333 20.986 22.0839 20.986 22.0839
+\c 24.5302 22.3804 25.8313 18.1696 25.2405 15.807
+\c 24.6497 13.4438 21.9183 11.8196 19.5544 10.194
+\c 17.1919 8.5685 15.345 6.1321 16.8224 3.842
+\c 18.2991 1.5532 20.9573 1.922 22.6567 3.2512
+\c 24.354 4.5824 23.9121 6.2052 23.9121 6.2052
+\c 24.2447 6.5488 24.5479 6.8998 24.8266 7.2564
+\c 25.2398 7.0556 25.8682 6.7045 26.4775 6.1779
+\c 22.0413 0.7828 14.6572 1.2582 14.6572 1.2582
+\m 7.8155 7.5275
+\c 8.3769 7.4319 8.8803 7.2564 9.1692 6.9449
+\c 10.0004 6.0495 8.562 3.7703 6.0984 6.1
+\c 6.265 6.5857 6.6981 7.2898 7.8155 7.5275
+\m 5.6476 6.5686
+\c 5.4024 6.8445 5.2221 7.0904 4.9605 7.4613
+\c 4.9605 7.4613 6.0219 7.686 7.1584 7.6061
+\c 6.6687 7.4804 6.1175 7.1881 5.6476 6.5686
+\m 4.2959 13.8126
+\c 6.3627 11.5969 10.2771 9.899 11.68 7.9776
+\c 13.0836 6.0597 12.197 3.6965 10.8686 3.2512
+\c 9.5387 2.8086 6.6585 3.5483 5.9939 5.6144
+\c 5.9939 5.6144 7.6181 4.359 9.021 4.9505
+\c 10.4246 5.5413 10.7203 8.8635 4.5903 7.6826
+\c 4.5903 7.6826 0.7818 12.0805 3.087 17.9544
+\c 3.1027 17.9975 3.1136 18.022 3.1136 18.022
+\c 3.1041 17.9988 3.0965 17.9763 3.087 17.9544
+\c 2.9565 17.5883 2.4504 15.79 4.2959 13.8126
+\m 0.5284 13.59
+\c 0.7504 18.022 3.5562 20.3115 4.0739 20.6059
+\c 4.0739 20.6059 2.7455 18.8348 2.1533 16.1759
+\c 1.6417 13.8693 2.0563 10.5444 4.2638 7.5501
+\c 3.5692 7.2536 3.0098 6.9074 2.5617 6.5317
+\c 1.9621 7.3691 0.3488 9.9761 0.5284 13.59
+\m 8.9486 16.9893
+\c 8.9486 16.9893 9.7614 18.4653 10.499 18.3909
+\c 11.2367 18.3178 11.2367 16.9893 8.9486 16.9893
+\m 12.0502 14.4779
+\c 12.0502 14.4779 11.902 15.7333 12.2708 16.1759
+\c 12.2708 16.1759 12.6403 16.4716 12.6403 15.8801
+\c 12.6403 15.29 12.0502 14.4779 12.0502 14.4779
+\m 16.9979 13.9602
+\c 16.9979 13.9602 15.2255 14.846 15.8163 15.585
+\c 16.4064 16.3234 17.1461 14.4028 16.9979 13.9602
+\m 20.3945 17.1355
+\c 20.3945 17.1355 18.6959 16.766 18.6959 17.6532
+\c 18.6959 18.5391 20.3945 17.1355 20.3945 17.1355
+\m 20.2484 21.7882
+\c 20.2484 21.7882 19.5818 21.0512 18.7703 21.2711
+\c 17.9582 21.4924 18.9923 22.5265 20.2484 21.7882
+\m 17.2916 26.2203
+\c 17.2916 26.2203 17.2185 24.3734 16.4809 24.5216
+\c 15.7419 24.6691 16.3327 26.1458 17.2916 26.2203
+\m 12.3445 26.6635
+\c 12.3445 26.6635 13.1403 25.9621 13.3786 25.1855
+\c 13.6737 24.2252 12.2708 23.5613 12.3445 26.6635
+\m 9.1692 22.0839
+\c 9.1692 22.0839 11.3842 23.0442 11.458 22.0839
+\c 11.5475 20.9324 9.9813 21.3449 9.1692 22.0839
+\m 8.8742 22.0102
+\c 8.8742 22.0102 9.3167 21.2711 10.7941 21.1243
+\c 12.2708 20.9761 12.936 23.7081 8.8742 22.5265
+\c 8.8742 22.5265 7.8394 23.9308 8.8742 25.6288
+\c 9.844 27.2202 11.9764 26.6635 11.9764 26.6635
+\c 11.9764 26.6635 11.5318 24.2996 12.7878 24.0039
+\c 14.0439 23.7081 14.6347 25.7777 12.2708 27.1054
+\c 12.2708 27.1054 12.4928 28.4353 14.8553 28.4353
+\c 17.2185 28.4353 17.2185 26.5884 17.2185 26.5884
+\c 17.2185 26.5884 15.8901 26.1458 15.8901 25.1855
+\c 15.8901 24.2252 16.7029 23.9308 17.2185 24.5947
+\c 17.989 25.5844 17.5887 26.4402 17.5887 26.4402
+\c 17.5887 26.4402 19.3741 26.9224 20.5428 25.038
+\c 21.5024 23.4875 20.3945 22.1584 20.3945 22.1584
+\c 20.3945 22.1584 18.032 22.7485 18.1795 21.4924
+\c 18.3271 20.2377 20.1002 20.9761 20.6165 21.5676
+\c 20.6165 21.5676 22.3883 21.0512 22.3152 19.2774
+\c 22.2414 17.505 20.6896 17.4319 20.6896 17.4319
+\c 20.6896 17.4319 18.6228 19.1292 18.2533 17.6532
+\c 17.8845 16.1759 20.6896 16.766 20.6896 16.766
+\c 20.6896 16.766 21.4293 14.9942 20.025 14.1084
+\c 18.6228 13.2218 17.3667 13.8871 17.3667 13.8871
+\c 17.3667 13.8871 17.0368 16.8138 15.595 15.8801
+\c 14.3396 15.0687 16.8511 13.5169 16.8511 13.5169
+\c 16.8511 13.5169 16.7029 12.4084 14.5602 12.2622
+\c 14.5602 12.2622 12.5658 12.4828 12.1246 13.9602
+\c 12.1246 13.9602 13.8212 16.1021 12.6403 16.6191
+\c 11.458 17.1355 11.68 14.0346 11.68 14.0346
+\c 11.68 14.0346 10.3501 13.0736 9.3167 13.9602
+\c 8.284 14.846 8.6529 16.1021 8.8742 16.3978
+\c 8.8742 16.3978 10.2026 16.1021 11.2367 17.3575
+\c 12.2708 18.6128 9.9813 19.7951 8.6529 17.1355
+\c 8.6529 17.1355 7.3982 17.505 6.9535 19.2774
+\c 6.5102 21.0512 8.8742 22.0102 8.8742 22.0102
+\m 21.0304 22.4534
+\c 21.0304 22.4534 22.0645 23.7826 21.4006 25.7025
+\c 20.736 27.6225 18.5941 27.5487 17.56 27.253
+\c 17.56 27.253 17.0942 29.2481 14.6572 28.9516
+\c 12.2202 29.2481 11.7544 27.253 11.7544 27.253
+\c 10.7203 27.5487 8.5798 27.6225 7.9138 25.7025
+\c 7.2499 23.7826 8.284 22.4534 8.284 22.4534
+\c 2.5973 21.9357 -0.2099 17.2093 0.0121 12.5572
+\c 0.1971 8.6839 1.5058 6.5262 1.9402 5.9122
+\c 0.0926 3.7074 1.2176 0.9378 1.2176 0.9378
+\c 0.6582 3.0033 1.3016 4.51 2.2059 5.5509
+\c 2.9381 4.5797 6.8866 -0.1297 14.6572 0.0021
+\c 21.8391 0.0021 26.2821 4.6398 27.097 5.5646
+\c 28.006 4.523 28.6583 3.0128 28.0969 0.9378
+\c 28.0969 0.9378 29.2218 3.7074 27.3743 5.9122
+\c 27.8087 6.5262 29.1173 8.6839 29.3024 12.5572
+\c 29.5244 17.2093 26.7172 21.9357 21.0304 22.4534
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian119.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian119.pgf
new file mode 100644
index 0000000000..0d79436577
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian119.pgf
@@ -0,0 +1,178 @@
+\m 38.8847 1.379
+\c 37.7031 0.5416 33.5183 -0.3436 29.6279 3.2491
+\c 29.6279 3.2491 30.1702 3.6924 30.6134 4.333
+\c 30.6134 4.333 32.3367 2.5606 34.6016 3.0039
+\c 36.8664 3.4465 38.3438 5.1212 38.6873 7.8786
+\c 39.033 10.6338 38.2939 14.721 35.3891 17.8717
+\c 32.4835 21.0238 30.1702 21.4664 28.3977 20.7766
+\c 28.3977 20.7766 28.2987 22.0559 29.7768 23.2382
+\c 31.2541 24.4205 35.3399 24.7162 37.9005 21.9589
+\c 40.4598 19.2022 42.1345 14.4266 42.3299 10.3395
+\c 42.5286 6.2537 40.7897 2.7286 38.8847 1.379
+\m 29.2344 3.7422
+\c 29.2344 3.7422 27.8069 4.9238 26.8712 9.1087
+\c 26.8712 9.1087 26.4778 9.3054 26.527 8.8635
+\c 26.5761 8.4188 27.4128 5.0721 28.938 3.4465
+\c 28.938 3.4465 27.8069 2.9049 26.2811 4.5304
+\c 24.7539 6.1546 23.7205 11.7178 24.3598 15.4593
+\c 24.3598 15.4593 26.3788 14.9184 27.2161 13.6377
+\c 27.2161 13.6377 26.6738 9.0588 30.2685 4.9737
+\c 30.2685 4.9737 29.925 4.0865 29.2344 3.7422
+\m 14.465 1.4774
+\c 8.3595 1.0833 4.0763 2.5108 2.599 6.4497
+\c 1.1223 10.388 1.5157 16.0501 4.8638 20.6796
+\c 4.8638 20.6796 6.4395 19.4474 7.9654 19.4474
+\c 7.9654 19.4474 8.7529 19.4973 8.7529 19.2022
+\c 8.7529 19.2022 7.9169 16.6416 9.787 14.2784
+\c 11.6585 11.9152 12.5935 11.0785 12.5935 11.0785
+\c 12.5935 11.0785 11.7076 10.0451 11.4624 8.9113
+\c 11.2152 7.7795 10.8703 5.9074 12.6434 5.7612
+\c 14.4151 5.6123 15.0551 9.4522 13.4794 11.6693
+\c 13.4794 11.6693 15.7948 14.081 17.9599 15.0174
+\c 20.1265 15.9531 22.5382 16.1983 24.1146 15.6075
+\c 24.1146 15.6075 22.6379 7.8772 26.2312 3.9396
+\c 26.2312 3.9396 20.569 1.8715 14.465 1.4774
+\m 12.8899 10.7329
+\c 12.8899 10.7329 13.6925 9.0629 13.5784 7.5821
+\c 13.4309 5.6622 11.806 5.7612 11.6585 6.9913
+\c 11.5102 8.2228 11.9037 9.7971 12.8899 10.7329
+\m 27.3643 19.6926
+\c 27.3643 19.6926 26.822 16.4442 27.0194 15.1649
+\c 27.0194 15.1649 25.9355 15.9531 24.5578 16.2482
+\c 24.5578 16.2482 25.5421 18.5616 27.3643 19.6926
+\m 30.2187 5.5153
+\c 30.2187 5.5153 27.0693 9.8463 27.6587 13.2935
+\c 27.6587 13.2935 30.6141 9.9454 30.2187 5.5153
+\m 28.1034 20.0383
+\c 29.0862 20.4815 32.2882 19.6448 34.5032 16.7407
+\c 36.7175 13.8351 37.7031 9.8463 37.3582 6.7454
+\c 37.0146 3.6432 33.4193 1.9213 30.9078 4.7258
+\c 30.9078 4.7258 32.9767 10.9303 27.3643 15.0174
+\c 27.3643 15.0174 27.1171 19.5957 28.1034 20.0383
+\m 18.8957 23.2382
+\l 18.9933 22.6965
+\c 18.9933 22.6965 18.0098 22.4513 17.3691 21.4173
+\c 17.3691 21.4173 16.4826 21.5655 16.3849 23.6323
+\o
+\m 20.5199 26.7345
+\c 20.5199 26.7345 19.3874 25.9463 18.8458 24.1739
+\l 16.8767 24.5188
+\c 16.8767 24.5188 18.1075 26.7837 20.5199 26.7345
+\m 21.5546 26.4886
+\c 21.5546 26.4886 21.209 25.7503 21.4071 24.3221
+\c 21.444 24.0462 21.5 23.7696 21.5574 23.4923
+\l 19.8225 22.9916
+\c 19.8225 23.0865 19.8252 23.1863 19.8314 23.288
+\c 19.9796 25.8473 21.0615 26.5371 21.5546 26.4886
+\m 21.8272 21.3612
+\c 21.5908 21.2547 21.0417 21.017 20.5294 20.8661
+\c 20.205 21.2294 19.9052 21.7847 19.8369 22.6235
+\l 21.6304 23.1398
+\c 21.7589 22.5306 21.8716 21.9288 21.8272 21.3612
+\m 21.4549 20.235
+\c 21.4549 20.235 21.0909 20.3374 20.7084 20.6864
+\c 21.2807 20.8586 21.5983 20.9535 21.7752 21.0054
+\c 21.7179 20.7377 21.6195 20.4802 21.4549 20.235
+\m 17.7154 21.1502
+\c 17.9381 21.6222 18.3581 22.0579 18.9933 22.353
+\c 18.9933 22.353 19.1948 21.4145 19.8225 20.7076
+\c 19.1156 20.5724 18.1935 20.4733 17.7154 21.1502
+\m 18.8957 18.6606
+\c 17.8254 18.8983 17.3486 19.8545 17.5836 20.7821
+\c 17.8336 20.5191 18.5337 20.0335 20.0274 20.4815
+\c 20.0336 20.4836 20.0383 20.4849 20.0438 20.4856
+\c 20.3771 20.1899 20.8067 19.9693 21.3566 19.9399
+\c 21.3566 19.9399 20.6681 18.2665 18.8957 18.6606
+\m 22.7772 27.4223
+\c 23.4281 27.4981 25.0107 27.4899 25.6759 25.7831
+\c 25.6111 25.6711 25.5373 25.559 25.4526 25.4484
+\c 25.4437 25.4532 25.0496 25.0106 24.0654 24.3221
+\c 23.5326 23.9499 23.1174 23.7935 22.8483 23.7279
+\c 22.8196 24.068 22.797 24.4089 22.7841 24.7162
+\c 22.7574 25.3835 22.6037 26.5228 22.7772 27.4223
+\m 23.9657 28.7521
+\c 25.3652 28.9167 26.4184 27.5712 25.8385 26.1184
+\c 25.6814 26.4907 25.3085 27.1607 24.5578 27.5712
+\c 23.9862 27.8833 23.3475 27.8649 22.8694 27.7788
+\c 23.0422 28.2979 23.3701 28.6832 23.9657 28.7521
+\m 23.0313 21.8107
+\c 23.0313 21.8107 22.9446 22.5695 22.8722 23.426
+\c 24.1207 23.6514 25.1992 24.6131 25.6097 25.0222
+\l 25.6896 24.9614
+\c 25.6896 24.9614 25.7395 22.6965 23.0313 21.8107
+\m 42.0847 17.5282
+\c 40.1647 21.909 36.9641 25.503 32.4835 24.8644
+\c 28.0036 24.2231 27.9053 20.6796 27.9053 20.6796
+\c 25.1985 19.5957 24.3126 16.2482 24.3126 16.2482
+\c 24.3126 16.2482 22.0471 16.7898 19.1415 15.9531
+\c 15.8829 15.014 13.1843 11.8161 13.1843 11.8161
+\c 12.4951 13.146 10.8211 13.5394 9.787 15.3118
+\c 8.7529 17.0842 9.0002 19.2992 9.0002 19.2992
+\c 9.3444 19.5957 10.9686 19.9898 12.5935 21.1222
+\c 14.2198 22.2539 14.0715 24.1739 14.0715 24.1739
+\l 16.139 23.7313
+\c 15.8925 21.7622 17.2223 21.0723 17.2223 21.0723
+\c 17.0249 20.8264 16.4833 17.9223 19.1415 17.9223
+\c 21.8005 17.9223 22.4405 19.7439 22.4405 19.7439
+\c 24.8529 19.6926 26.2811 22.4015 26.2811 22.4015
+\l 25.8371 22.353
+\c 24.4103 20.0881 22.6379 20.0881 22.6379 20.0881
+\c 22.8831 20.4323 23.0313 21.4173 23.0313 21.4173
+\c 26.9211 23.09 25.9355 25.8473 25.9355 25.8473
+\c 25.9355 25.8473 26.527 26.4886 26.3296 27.3745
+\c 26.1336 28.2611 25.2463 29.3429 23.5723 28.9004
+\c 21.8982 28.4578 21.5546 26.9797 21.5546 26.9797
+\c 21.3087 26.9797 20.7671 26.8342 20.7671 26.8342
+\c 18.1075 27.4729 16.4348 24.5188 16.4348 24.5188
+\l 14.2669 24.8644
+\c 14.2669 24.4205 13.7266 24.4205 13.7266 24.4205
+\c 14.1692 22.353 11.2152 20.6782 9.4933 20.5806
+\c 7.7687 20.4815 6.4887 21.1721 6.4887 21.1721
+\c 7.3254 23.09 8.7044 23.6323 9.9844 23.5346
+\c 11.2644 23.4369 11.4126 22.5982 11.4126 22.5982
+\c 11.9037 22.5982 12.8387 23.9287 12.8387 23.9287
+\c 12.8387 23.9287 12.2978 24.2729 12.1502 24.8644
+\c 12.0027 25.4532 12.3968 26.0454 12.7417 26.2414
+\c 13.0859 26.4395 13.1843 26.5371 13.3332 26.0454
+\c 13.4794 25.5529 13.7266 24.9614 13.7266 24.9614
+\l 14.0217 25.3555
+\c 13.7751 25.4532 13.7266 25.9463 13.6774 26.2919
+\c 13.6276 26.6362 13.1358 27.2277 12.2499 26.2919
+\c 11.3634 25.3555 11.9535 24.2729 11.9535 24.2729
+\c 11.806 23.8297 11.4126 23.6821 11.4126 23.6821
+\c 7.4736 25.0598 6.2913 21.269 6.2913 21.269
+\c 4.0271 21.5655 4.6671 25.0106 4.6671 25.0106
+\c 5.4055 23.6821 5.9471 24.4205 5.9471 24.4205
+\c 4.2737 25.6513 5.0612 27.3745 5.652 27.522
+\c 6.2422 27.6702 6.3419 27.2761 6.3419 27.2761
+\c 5.9471 26.4395 5.9471 24.7162 6.4395 24.4205
+\c 6.932 24.1254 7.0802 24.7647 7.0802 24.7647
+\c 6.736 25.2578 6.4887 26.5863 6.8828 27.4729
+\c 7.2762 28.3587 8.5063 28.0637 8.5063 28.0637
+\c 7.4736 28.7521 6.5878 27.7187 6.5878 27.7187
+\c 4.717 28.2105 4.5681 26.5371 4.5681 26.5371
+\l -0.0102 27.2761
+\c 0.0882 26.5863 3.534 26.1437 4.2245 25.9463
+\c 4.913 25.7503 4.717 25.208 4.717 25.208
+\c 3.0914 24.5188 4.6671 20.8264 4.6671 20.8264
+\c -1.8809 12.4076 -0.0102 0.8374 9.1962 0.1981
+\c 18.4039 -0.4419 26.6253 3.6432 26.6253 3.6432
+\c 27.9053 2.0682 29.3342 3.1029 29.3342 3.1029
+\c 29.5794 2.5606 32.4357 0.0499 36.1759 0
+\c 39.9181 -0.0485 42.0847 3.0531 42.922 5.9579
+\c 43.7594 8.8635 44.0053 13.146 42.0847 17.5282
+\m 9.4933 24.7162
+\c 9.4434 24.1739 9.9844 24.2231 9.9844 24.2231
+\c 10.2801 24.3713 9.9338 24.9614 9.9338 24.9614
+\c 9.8369 27.3253 12.0027 27.7187 12.1502 27.5712
+\c 12.2978 27.423 12.6919 27.3253 12.6919 27.3253
+\c 12.6919 27.3253 12.7909 28.1135 11.4624 27.7679
+\c 9.4148 27.2379 9.5404 25.2578 9.4933 24.7162
+\m 8.2605 24.5188
+\l 8.2605 25.5529
+\c 8.2605 26.0454 8.3595 27.2277 9.048 27.8663
+\c 9.7385 28.5069 10.6735 28.162 10.6735 28.162
+\l 10.4277 28.5069
+\c 7.9654 28.7043 7.7188 25.9463 7.7188 25.0598
+\c 7.7188 24.1739 8.2605 24.5188 8.2605 24.5188
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian12.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian12.pgf
new file mode 100644
index 0000000000..127213cd9a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian12.pgf
@@ -0,0 +1,112 @@
+\m 68.0224 72.9737
+\c 65.2878 72.9737 63.0675 70.7607 63.0675 68.0188
+\c 63.0675 65.2843 65.2878 63.064 68.0224 63.064
+\c 70.7606 63.064 72.9809 65.2843 72.9809 68.0188
+\c 72.9809 70.7607 70.7606 72.9737 68.0224 72.9737
+\o
+\s
+\m 86.4474 92.7786
+\c 84.1873 85.5456 77.9792 79.5621 76.6753 76.6754
+\c 79.5584 77.9793 85.5419 84.1873 92.775 86.4438
+\c 98.1934 88.1389 103.2859 86.3279 103.2859 86.3279
+\c 101.4786 96.2775 105.0969 102.6087 107.2447 104.7565
+\l 115.3833 112.8951
+\c 117.0784 114.5938 116.1258 116.1259 116.1258 116.1259
+\c 116.1258 116.1259 114.5937 117.0821 112.8986 115.3834
+\l 104.7601 107.2412
+\c 102.6086 105.097 96.281 101.475 86.3315 103.286
+\c 86.3315 103.286 88.1388 98.1935 86.4474 92.7786
+\o
+\s
+\m 63.5493 98.5484
+\c 67.0626 91.8333 66.9032 83.2239 68.0224 80.2575
+\c 69.1416 83.2239 68.9822 91.8333 72.4992 98.5484
+\c 75.1323 103.5757 80.0111 105.9083 80.0111 105.9083
+\c 71.7023 111.6636 69.7827 118.6939 69.7827 121.7291
+\l 69.7827 133.2397
+\c 69.7827 135.6411 68.0224 136.054 68.0224 136.054
+\c 68.0224 136.054 66.2657 135.6411 66.2657 133.2397
+\l 66.2657 121.7291
+\c 66.2657 118.6939 64.3461 111.6636 56.0337 105.9083
+\c 56.0337 105.9083 60.9125 103.5757 63.5493 98.5484
+\o
+\s
+\m 28.8001 104.7565
+\c 30.9443 102.6087 34.5626 96.2775 32.7553 86.3279
+\c 32.7553 86.3279 37.8514 88.1389 43.2662 86.4438
+\c 50.5029 84.1801 56.4792 77.9793 59.3695 76.6754
+\c 58.062 79.5621 51.8575 85.5383 49.5974 92.7786
+\c 47.906 98.1935 49.7097 103.286 49.7097 103.286
+\c 39.7638 101.475 33.4326 105.097 31.2847 107.2412
+\c 29.1405 109.3926 24.8449 113.6847 23.1462 115.3834
+\c 21.4511 117.0821 19.919 116.1186 19.919 116.1186
+\c 19.919 116.1186 18.9628 114.5938 20.6615 112.8951
+\c 22.3566 111.2036 26.6522 106.9043 28.8001 104.7565
+\o
+\s
+\m 107.2447 31.2776
+\c 105.1005 33.429 101.4786 39.7602 103.2895 49.7061
+\c 103.2895 49.7061 98.1934 47.906 92.775 49.5939
+\c 85.5455 51.8576 79.562 58.062 76.6753 59.3696
+\c 77.9792 56.4792 84.1873 50.4994 86.4474 43.2627
+\c 88.1388 37.8478 86.3351 32.7481 86.3351 32.7481
+\c 96.281 34.5591 102.6122 30.948 104.7601 28.7965
+\l 112.8986 20.6543
+\c 114.5937 18.9628 116.1258 19.9118 116.1258 19.9118
+\c 116.1258 19.9118 117.0784 21.4511 115.3833 23.1462
+\l 107.2447 31.2776
+\o
+\s
+\m 30.1366 56.0337
+\c 30.1366 56.0337 32.4619 60.9125 37.4892 63.5457
+\c 44.2043 67.0626 52.821 66.9033 55.7838 68.0188
+\c 52.821 69.1417 44.2043 68.9787 37.4892 72.4956
+\c 32.4619 75.1324 30.1366 80.0076 30.1366 80.0076
+\c 24.3813 71.7024 17.3474 69.7791 14.3122 69.7791
+\l 2.8015 69.7791
+\c 0.4038 69.7791 -0.0091 68.0188 -0.0091 68.0188
+\c -0.0091 68.0188 0.4038 66.2586 2.8015 66.2586
+\l 14.3122 66.2586
+\c 17.3474 66.2586 24.3813 64.3425 30.1366 56.0337
+\o
+\s
+\m 133.2432 69.7791
+\l 121.7326 69.7791
+\c 118.6974 69.7791 111.6599 71.7024 105.9082 80.0076
+\c 105.9082 80.0076 103.5829 75.1324 98.5556 72.4956
+\c 91.8405 68.9787 83.2238 69.1417 80.2574 68.0188
+\c 83.2238 66.9033 91.8405 67.0626 98.5556 63.5457
+\c 103.5829 60.9125 105.9082 56.0337 105.9082 56.0337
+\c 111.6599 64.3425 118.6974 66.2586 121.7326 66.2586
+\l 133.2432 66.2586
+\c 135.641 66.2586 136.0539 68.0188 136.0539 68.0188
+\c 136.0539 68.0188 135.641 69.7791 133.2432 69.7791
+\o
+\s
+\m 72.4992 37.482
+\c 68.9822 44.2044 69.1416 52.8174 68.0224 55.7838
+\c 66.9032 52.8174 67.0626 44.2044 63.5493 37.482
+\c 60.9125 32.4619 56.0337 30.133 56.0337 30.133
+\c 64.3461 24.3813 66.2657 17.3438 66.2657 14.3086
+\l 66.2657 2.798
+\c 66.2657 0.4002 68.0224 -0.009 68.0224 -0.009
+\c 68.0224 -0.009 69.7827 0.4002 69.7827 2.798
+\l 69.7827 14.3086
+\c 69.7827 17.3438 71.7023 24.3813 80.0111 30.133
+\c 80.0111 30.133 75.1323 32.4619 72.4992 37.482
+\o
+\s
+\m 49.5974 43.2735
+\c 51.8575 50.4994 58.062 56.4792 59.3695 59.3696
+\c 56.4792 58.062 50.5029 51.8576 43.2662 49.5939
+\c 37.8514 47.906 32.7553 49.7061 32.7553 49.7061
+\c 34.5626 39.7602 30.9443 33.429 28.8001 31.2884
+\c 26.6486 29.137 22.3566 24.8413 20.6579 23.1462
+\c 18.9628 21.4511 19.919 19.9118 19.919 19.9118
+\c 19.919 19.9118 21.4511 18.9628 23.1462 20.6616
+\c 24.8412 22.3494 29.1369 26.6523 31.2847 28.7965
+\c 33.4326 30.948 39.7638 34.5591 49.7097 32.7481
+\c 49.7097 32.7481 47.9023 37.8514 49.5974 43.2735
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian120.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian120.pgf
new file mode 100644
index 0000000000..5cf6acecd9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian120.pgf
@@ -0,0 +1,145 @@
+\m 6.6983 15.123
+\c 4.9258 15.3197 4.8275 16.157 4.8773 16.6495
+\c 4.9258 17.1413 5.6649 17.5354 6.1081 17.4363
+\c 6.1081 17.4363 7.007 16.6925 8.8463 15.875
+\l 8.0779 15.3197
+\l 8.4222 15.2712
+\l 9.1031 15.7629
+\c 9.9795 15.3893 11.045 15.0075 12.3119 14.679
+\c 12.3119 14.679 8.472 14.9262 6.6983 15.123
+\m 15.3138 21.1294
+\c 15.3138 21.1294 14.5761 19.6527 13.5434 19.5045
+\c 12.5087 19.3576 13.3952 21.2025 15.3138 21.1294
+\m 4.8773 20.292
+\c 4.6315 22.1136 6.0098 23.3943 6.0098 23.3943
+\c 6.0098 23.3943 11.2772 22.3103 15.6594 22.4585
+\l 15.4135 21.7687
+\c 15.4135 21.7687 13.7381 21.3746 12.9506 20.391
+\c 12.163 19.4061 12.8529 18.4219 14.0844 19.2593
+\c 15.3138 20.0953 15.7079 21.5228 15.7079 21.5228
+\c 15.7079 21.5228 17.1852 22.0651 20.0402 21.8192
+\c 22.8973 21.5727 23.9799 20.391 23.831 19.6035
+\c 23.6848 18.816 22.3543 17.8803 22.3543 17.8803
+\c 22.3543 17.8803 18.9583 18.3721 16.4968 17.7321
+\c 16.4968 17.7321 10.6864 19.1104 6.8472 17.9288
+\c 6.8472 17.9288 5.1232 18.4704 4.8773 20.292
+\m 0.3476 27.5285
+\c 0.5935 28.9089 4.04 30.3357 9.1113 30.9757
+\c 14.1827 31.615 18.3177 31.0249 18.3177 31.0249
+\l 17.4318 27.5285
+\c 13.5728 27.4356 10.3572 26.2233 8.5287 25.3545
+\c 7.6244 25.5123 6.7843 25.7097 6.1081 25.9549
+\c 3.2525 26.9883 5.7625 28.2682 9.6523 28.8099
+\c 13.5434 29.3515 17.58 29.2525 17.58 29.2525
+\l 17.6777 29.6964
+\c 8.0779 30.1889 3.1193 27.6836 4.9764 26.2492
+\c 5.6355 25.7404 6.7754 25.3852 8.0807 25.1366
+\c 7.3205 24.7528 6.8956 24.4768 6.8956 24.4768
+\l 7.4373 24.526
+\c 7.828 24.7132 8.2084 24.886 8.5813 25.0458
+\c 11.4841 24.5636 14.973 24.5506 15.8554 24.526
+\l 16.005 24.9201
+\c 15.0904 24.7801 11.8919 24.8409 9.097 25.263
+\c 14.0352 27.2867 17.2843 27.0866 17.2843 27.0866
+\l 16.201 23.5425
+\c 1.3339 23.8375 0.1003 26.1516 0.3476 27.5285
+\m 22.3543 34.5205
+\c 22.3543 34.5205 22.5032 37.1303 24.1779 39.1971
+\c 25.8506 41.2653 26.688 40.5775 25.7024 38.7545
+\c 24.7189 36.9336 22.3543 34.5205 22.3543 34.5205
+\m 20.14 33.9789
+\c 21.7157 37.7211 24.6697 43.2836 26.1949 43.7282
+\c 27.7207 44.1708 28.3621 43.7774 28.1148 40.8719
+\c 27.8689 37.9677 24.5714 33.1422 22.3543 34.2248
+\c 22.3543 34.2248 25.3582 36.4904 26.3438 39.4444
+\c 26.3438 39.4444 26.7864 41.1191 25.6546 41.1191
+\c 24.5215 41.1191 23.5864 39.7394 22.9451 38.6077
+\c 22.3072 37.4753 21.3708 34.9153 22.1583 34.1763
+\l 19.2527 30.878
+\l 19.4515 30.7305
+\l 19.8456 31.0747
+\c 19.8456 31.0747 26.9339 30.3357 28.3122 28.9089
+\c 29.6912 27.4814 27.2296 25.9057 26.1949 25.7575
+\c 26.1949 25.7575 24.9156 27.4814 18.1217 27.3332
+\l 17.9236 26.9883
+\c 17.9236 26.9883 25.5078 27.3059 25.949 25.1667
+\c 26.2441 23.7378 16.5466 23.6401 16.5466 23.6401
+\c 16.5466 23.6401 18.5649 30.2374 20.14 33.9789
+\m 23.4376 16.1072
+\c 22.8488 15.1721 18.6127 15.2213 18.6127 15.2213
+\l 23.0441 17.4862
+\c 23.0441 17.4862 24.0297 17.0429 23.4376 16.1072
+\m 10.6379 16.5996
+\c 10.6379 16.5996 8.3723 17.1413 7.2406 17.8297
+\c 7.2406 17.8297 11.0805 18.6193 14.4286 17.6829
+\o
+\m 17.2843 15.2712
+\c 17.2843 15.2712 14.3309 15.3688 11.0313 16.4528
+\l 14.9204 17.5845
+\c 14.9204 17.5845 16.5466 17.4363 19.0581 16.6987
+\l 19.4515 16.7963
+\l 17.2344 17.5354
+\c 17.2344 17.5354 18.8095 18.1255 21.8625 17.6344
+\o
+\m 19.3524 9.2149
+\c 17.6777 9.2648 17.1374 10.544 19.5485 10.6922
+\c 21.9609 10.8405 22.6015 10.0516 22.6015 10.0516
+\c 22.6015 10.0516 21.0272 9.1657 19.3524 9.2149
+\m 22.995 10.3473
+\c 25.2113 13.1531 22.1829 14.705 22.1829 14.705
+\c 22.1829 14.705 24.4238 12.9079 22.7989 10.3965
+\c 22.7989 10.3965 21.5681 11.0365 19.1544 10.8398
+\c 16.7427 10.6424 16.7413 8.6733 19.1544 8.6234
+\c 21.5681 8.5749 23.0441 10.0516 23.0441 10.0516
+\c 23.0441 10.0516 26.8355 9.5106 28.3122 7.3428
+\c 29.7903 5.1776 28.1647 3.6511 25.4579 2.6675
+\c 22.7491 1.6819 17.1354 0.6485 7.3888 1.5836
+\c 7.3888 1.5836 1.2341 2.0269 0.3476 4.0943
+\c -0.539 6.1618 3.1049 7.8366 4.4334 8.1309
+\c 4.4334 8.1309 4.7298 5.3258 9.6045 3.8969
+\c 14.4785 2.4701 20.976 2.8642 24.374 4.3901
+\c 27.7706 5.9159 22.8973 7.7874 20.9275 8.0333
+\c 18.9583 8.2792 14.7243 9.6575 5.419 8.329
+\c 5.419 8.329 11.129 8.8208 16.005 8.525
+\c 20.879 8.23 25.113 6.9493 25.0133 5.7185
+\c 24.9156 4.4884 20.6809 3.7986 12.5087 4.5861
+\c 4.3357 5.375 3.8747 8.8181 4.9258 11.3322
+\c 5.8124 13.4496 7.1914 14.3354 7.1914 14.3354
+\c 7.1914 14.3354 11.0313 13.8437 13.5926 14.2863
+\l 13.5434 14.6804
+\c 13.5434 14.6804 16.5466 13.9905 22.1829 14.705
+\c 22.1829 14.705 24.1779 15.3688 24.251 16.3292
+\c 24.3241 17.2895 23.4376 17.8065 23.4376 17.8065
+\c 23.4376 17.8065 25.7277 19.2094 23.3638 21.0556
+\c 21.0006 22.9018 15.8322 21.8677 15.8322 21.8677
+\l 16.1279 22.4585
+\c 16.1279 22.4585 22.6261 22.6798 24.9887 23.5657
+\c 27.3526 24.4529 26.3192 25.487 26.3192 25.487
+\c 29.6414 26.6686 29.9385 28.5893 27.5746 29.6964
+\c 25.2113 30.8043 19.9672 31.2469 19.9672 31.2469
+\l 22.2559 33.9789
+\c 23.8808 33.0193 25.7277 35.2343 25.7277 35.2343
+\c 30.3059 40.2572 28.9768 43.4318 27.9427 43.9489
+\c 26.9086 44.4659 25.2113 44.2453 22.6999 40.6998
+\c 20.1891 37.1549 18.416 31.4695 18.416 31.4695
+\c 4.6062 32.3547 -0.4153 29.1056 0.0266 26.8161
+\c 0.4705 24.526 5.8609 23.5657 5.8609 23.5657
+\c 2.538 19.8009 5.9353 17.8065 5.9353 17.8065
+\c 5.9353 17.8065 4.3125 17.3632 4.5331 16.1072
+\c 4.753 14.8525 6.8226 14.4092 6.8226 14.4092
+\c 3.3508 11.7502 4.4587 8.2792 4.4587 8.2792
+\c 4.4587 8.2792 -0.194 7.1706 0.0266 4.3655
+\c 0.2492 1.559 9.2589 -0.4354 15.3138 0.0816
+\c 21.3708 0.5994 29.1257 2.0016 29.1981 5.6946
+\c 29.2725 9.387 22.995 10.3473 22.995 10.3473
+\m 26.0965 28.1207
+\l 26.4913 28.1207
+\c 23.6848 29.6964 18.8593 29.4997 18.8593 29.4997
+\l 18.9092 29.2525
+\c 23.1917 29.3515 26.0965 28.1207 26.0965 28.1207
+\m 25.2113 25.3634
+\l 25.2113 25.6591
+\c 21.9131 24.5759 17.7761 24.7241 17.7761 24.7241
+\l 17.6278 24.4768
+\c 22.5032 24.33 25.2113 25.3634 25.2113 25.3634
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian121.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian121.pgf
new file mode 100644
index 0000000000..b2f87bfc82
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian121.pgf
@@ -0,0 +1,238 @@
+\m 18.9765 2.0267
+\l 19.3466 2.1004
+\c 19.4949 2.6175 20.0836 3.7991 20.0836 3.7991
+\c 20.0836 3.7991 19.7892 3.7991 19.6417 3.431
+\c 19.3466 2.6913 18.9765 2.0267 18.9765 2.0267
+\m 15.4323 3.504
+\c 15.4323 3.504 15.5054 4.6119 16.5395 5.4978
+\c 17.5742 6.3843 19.9354 5.7942 15.4323 3.504
+\m 15.4323 2.1749
+\c 15.4323 2.1749 15.211 2.4693 15.5054 2.6913
+\c 15.8011 2.9139 18.0906 3.5771 18.6069 5.424
+\c 19.1247 7.2702 14.9883 6.0141 15.0635 3.2076
+\c 15.0635 3.2076 12.8478 2.8395 12.3307 3.7247
+\c 12.3307 3.7247 16.1706 4.6119 17.1316 7.7141
+\c 17.1316 7.7141 19.2729 8.083 19.9354 6.6056
+\c 20.602 5.1289 17.5742 2.6913 15.4323 2.1749
+\m 6.939 0.8451
+\c 6.939 0.8451 7.8256 1.2877 6.939 2.1749
+\c 6.0525 3.0614 4.2807 2.2487 5.7574 0.6982
+\c 5.7574 0.6982 5.4623 0.0323 3.6892 0.4756
+\c 1.9175 0.9188 1.548 2.765 2.2126 3.5771
+\c 2.2126 3.5771 5.0184 1.5841 11.8868 3.6509
+\c 11.8868 3.6509 12.3307 2.5437 14.9883 2.6913
+\l 15.1366 2.1749
+\c 15.1366 2.1749 13.0684 0.6245 6.939 0.8451
+\m 6.2 0.9188
+\c 6.2 0.9188 4.9453 1.4359 5.6836 1.9529
+\c 6.4227 2.4693 6.644 1.3614 6.2 0.9188
+\m 1.6962 8.083
+\c 1.6962 8.083 2.8034 6.9013 4.207 6.6801
+\c 4.207 6.6801 3.0991 5.9403 2.2126 4.3168
+\c 2.2126 4.3168 -0.0024 5.7197 1.6962 8.083
+\m 2.8034 12.8094
+\c 2.8034 12.8094 3.2473 11.8491 4.0594 11.1845
+\c 4.0594 11.1845 2.2863 9.6334 1.77 8.8957
+\c 1.77 8.8957 0.6628 10.9632 2.8034 12.8094
+\m 2.6552 19.6027
+\c 2.6552 19.6027 3.2473 18.57 4.6496 18.1267
+\c 4.6496 18.1267 3.3942 17.3877 2.8778 16.9451
+\c 2.8778 16.9451 2.2126 17.7565 2.6552 19.6027
+\m 2.3608 20.6368
+\c 2.3608 20.6368 1.77 21.819 2.0657 23.2964
+\c 2.0657 23.2964 3.1736 22.2616 3.5417 22.1148
+\c 3.5417 22.1148 2.6552 21.2276 2.3608 20.6368
+\m 1.2516 27.5058
+\c 1.2516 27.5058 2.1504 26.5496 3.7036 25.7675
+\c 2.8683 25.2321 2.356 24.4876 2.1361 24.1126
+\c 1.3827 24.8202 0.8506 25.8966 1.2516 27.5058
+\m 0.8841 31.5663
+\c 0.8841 31.5663 2.0657 30.5323 2.8034 30.2386
+\l 1.326 28.3179
+\c 1.326 28.3179 0.2926 30.0903 0.8841 31.5663
+\m 1.031 35.9246
+\c 1.031 35.9246 1.992 34.965 3.2473 34.5217
+\c 3.2473 34.5217 1.8437 33.3401 0.8841 32.4536
+\c 0.8841 32.4536 -0.2982 33.1181 1.031 35.9246
+\m 0.3664 38.878
+\c 0.9572 40.5766 2.7296 40.7986 2.7296 40.7986
+\c 2.7296 40.7986 3.5417 38.2134 6.2 39.5432
+\l 7.0128 38.878
+\c 7.0128 38.878 3.9112 38.878 1.1785 36.5148
+\c 1.1785 36.5148 -0.2237 37.18 0.3664 38.878
+\m 3.8368 43.9009
+\c 4.724 44.4166 5.7574 43.3087 5.7574 43.3087
+\c 5.7574 43.3087 5.5368 42.3491 5.5368 41.9065
+\l 3.0991 41.3894
+\c 3.0991 41.3894 2.619 43.1899 3.8368 43.9009
+\m 6.0525 39.9121
+\c 6.0525 39.9121 4.0594 38.5092 3.0254 40.9455
+\l 5.5368 41.4632
+\c 5.5368 41.4632 5.6099 40.4298 6.0525 39.9121
+\m 7.1603 44.047
+\c 8.4895 44.2704 8.3419 42.2009 8.1951 41.9802
+\l 5.9049 41.9802
+\c 5.9049 41.9802 5.8319 43.8271 7.1603 44.047
+\m 6.7908 40.2823
+\c 6.7908 40.2823 6.0525 40.7986 6.1269 41.6845
+\c 6.1269 41.6845 7.4561 41.7583 7.9731 41.6845
+\c 7.9731 41.6845 7.2341 40.5029 6.7908 40.2823
+\m 12.5527 40.9455
+\c 14.3982 40.2823 14.3231 38.4354 12.9939 38.0666
+\c 12.9939 38.0666 10.6307 39.3213 8.1951 38.878
+\c 8.1951 38.878 7.678 39.3213 7.0859 39.9858
+\c 7.0859 39.9858 8.0469 40.8724 8.3419 41.5376
+\c 8.3419 41.5376 10.7052 41.61 12.5527 40.9455
+\m 8.5639 38.5822
+\c 8.5639 38.5822 11.2967 38.878 12.1081 37.8446
+\c 12.1081 37.8446 10.4845 37.4744 8.5639 38.5822
+\m 12.5527 35.2594
+\c 12.5527 35.2594 8.9334 37.18 4.207 35.0388
+\c 4.207 35.0388 2.6552 35.2594 1.326 36.2197
+\c 1.326 36.2197 3.5417 38.2879 7.3816 38.5092
+\c 7.3816 38.5092 9.8193 36.0722 13.5861 37.4006
+\c 13.5861 37.4006 14.6933 35.6289 12.5527 35.2594
+\m 4.724 34.8906
+\c 4.724 34.8906 8.4895 36.8112 12.3307 34.965
+\c 12.3307 34.965 9.5973 33.7827 4.724 34.8906
+\m 14.0294 32.6755
+\c 13.8074 31.2713 11.8868 30.9769 11.8868 30.9769
+\c 11.8868 30.9769 10.115 32.3054 7.3085 32.0847
+\c 4.5027 31.8628 3.6148 30.7549 3.6148 30.7549
+\c 3.6148 30.7549 1.6962 31.3457 1.1785 32.233
+\c 1.1785 32.233 2.6552 33.7089 3.5417 34.2998
+\c 3.5417 34.2998 8.7114 32.0103 13.0684 34.5217
+\c 13.0684 34.5217 14.25 34.0778 14.0294 32.6755
+\m 4.0594 30.7549
+\c 4.0594 30.7549 7.9 33.0444 11.5917 30.7549
+\c 11.5917 30.7549 7.2341 29.9421 4.0594 30.7549
+\m 12.035 26.693
+\c 12.035 26.693 8.0469 28.7619 4.5758 26.3242
+\c 4.5758 26.3242 2.8034 26.9143 1.4736 28.0953
+\l 3.0254 30.1641
+\c 3.0254 30.1641 8.7114 28.3179 12.3307 30.6074
+\c 12.3307 30.6074 15.7274 28.3179 12.035 26.693
+\m 4.9453 26.2504
+\c 4.9453 26.2504 8.2675 28.3179 11.6655 26.3987
+\c 11.6655 26.3987 8.9334 25.0688 4.9453 26.2504
+\m 13.2159 24.6249
+\c 13.3641 23.5908 11.8868 22.6312 11.8868 22.6312
+\c 11.8868 22.6312 8.4157 24.4043 4.6496 22.8531
+\c 4.6496 22.8531 3.3792 23.0908 2.3622 23.9145
+\c 2.3703 23.9316 2.3785 23.948 2.3922 23.9671
+\c 2.6142 24.3441 3.1558 25.1201 4.0178 25.6146
+\c 5.9705 24.7143 8.8296 24.1652 12.1825 25.8802
+\c 12.1825 25.8802 13.0684 25.6596 13.2159 24.6249
+\m 5.0928 22.5574
+\c 5.0928 22.5574 8.1206 23.8128 10.7052 22.7049
+\c 10.7052 22.7049 8.9334 21.5971 5.0928 22.5574
+\m 12.8478 20.1942
+\c 12.6996 19.2338 11.813 18.9388 11.813 18.9388
+\c 11.813 18.9388 8.4895 20.6368 5.6099 18.6437
+\c 5.6099 18.6437 3.3942 19.087 2.5821 20.5644
+\c 2.5821 20.5644 3.3942 21.9659 3.9112 21.9659
+\c 3.9112 21.9659 7.9 19.7509 12.1081 22.0403
+\c 12.1081 22.0403 12.9939 21.1538 12.8478 20.1942
+\m 6.0525 18.57
+\c 6.0525 18.57 8.4895 19.9722 11.0009 18.7906
+\c 11.0009 18.7906 9.0816 17.7565 6.0525 18.57
+\m 11.6655 15.5415
+\c 11.6655 15.5415 8.7859 16.5756 5.3141 14.9507
+\c 5.3141 14.9507 3.8368 15.4677 3.0991 16.5756
+\c 3.0991 16.5756 4.4296 17.6827 5.0184 17.9047
+\c 5.0184 17.9047 9.2292 16.3543 11.9605 18.348
+\c 11.9605 18.348 13.8074 16.7238 11.6655 15.5415
+\m 5.7574 14.8025
+\c 5.7574 14.8025 7.6043 15.9847 11.3711 15.3195
+\c 11.3711 15.3195 8.7859 13.9166 5.7574 14.8025
+\m 3.0254 13.6215
+\c 3.0254 13.6215 2.5076 14.4336 3.0991 15.7635
+\c 3.0991 15.7635 4.3552 14.5818 4.6496 14.5818
+\o
+\m 12.5527 12.4392
+\c 12.5527 12.4392 8.2675 13.8435 5.1666 11.3321
+\c 5.1666 11.3321 3.7637 11.6278 3.1736 13.2527
+\l 5.0184 14.3599
+\c 5.0184 14.3599 5.7574 13.6215 7.9731 13.5478
+\c 10.1888 13.474 12.1081 15.0244 12.1081 15.0244
+\c 12.1081 15.0244 14.1762 14.0641 12.5527 12.4392
+\m 5.4623 11.2583
+\c 5.4623 11.2583 8.7114 13.2527 12.035 12.1442
+\c 12.035 12.1442 9.2292 10.2242 5.4623 11.2583
+\m 14.1018 10.1504
+\c 14.1018 10.1504 9.0816 10.593 5.0928 7.2702
+\c 5.0928 7.2702 3.1736 7.3439 1.992 8.6
+\c 1.992 8.6 3.985 10.8895 4.5027 11.037
+\c 4.5027 11.037 9.0816 8.8957 12.5527 11.8491
+\c 12.5527 11.8491 14.1018 11.8491 14.1018 10.1504
+\m 5.4623 7.2702
+\c 5.4623 7.2702 9.8193 10.298 13.9549 9.8554
+\c 13.9549 9.8554 13.0684 8.3773 10.4845 7.6404
+\c 7.9 6.9013 5.4623 7.2702 5.4623 7.2702
+\m 16.6863 7.4184
+\c 16.6863 7.4184 14.8415 5.2027 12.1825 4.3168
+\c 12.1825 4.3168 11.8868 6.3843 16.6863 7.4184
+\m 16.8345 7.861
+\c 16.8345 7.861 11.9605 7.1957 11.7399 4.3899
+\c 11.7399 4.3899 4.7971 2.4693 2.5076 4.1693
+\c 2.5076 4.1693 3.6148 6.2368 4.6496 6.5325
+\c 4.6496 6.5325 11.2967 5.0552 14.3231 9.7816
+\c 14.3231 9.7816 16.8345 9.7816 16.8345 7.861
+\m 29.6854 2.9139
+\c 29.3152 4.3168 27.2477 3.431 26.952 2.6175
+\c 26.6569 1.8061 27.913 2.1004 27.913 2.1004
+\c 27.913 2.1004 26.8052 2.1004 27.396 2.765
+\c 28.3003 3.7827 29.2421 3.2076 29.3897 2.8395
+\c 29.5372 2.4693 29.3152 1.5096 27.5435 1.0677
+\c 25.7704 0.6245 24.4419 0.7706 24.4419 0.7706
+\c 25.3285 1.0677 26.1406 2.1004 26.1406 2.1004
+\c 27.8386 4.0948 26.1406 4.7587 24.5895 3.8736
+\c 23.039 2.9877 22.9653 1.2877 22.9653 1.2877
+\c 23.9249 3.8736 25.8448 4.2431 26.3619 3.7247
+\c 26.8789 3.2076 24.6619 1.2139 22.744 0.9926
+\c 20.8233 0.7706 20.3807 1.3614 20.3807 1.3614
+\c 25.8448 4.0211 23.7029 5.646 22.4468 5.424
+\c 21.1915 5.2027 20.8233 4.5381 20.8233 4.5381
+\c 21.783 5.3509 23.7767 5.424 23.5547 4.3899
+\c 23.3348 3.3565 21.0446 2.2487 19.4949 1.8061
+\c 17.9424 1.3614 16.3919 1.8061 16.3919 1.8061
+\c 20.1581 3.2076 20.9702 5.5715 20.2325 6.9013
+\c 19.4949 8.2298 17.2047 8.0092 17.2047 8.0092
+\c 16.8345 10.298 14.5464 10.0774 14.5464 10.0774
+\c 14.6202 11.8491 12.9215 12.1442 12.9215 12.1442
+\c 12.9215 12.1442 13.5123 12.6612 13.5123 13.6215
+\c 13.5123 14.5818 12.3307 15.3195 12.3307 15.3195
+\c 12.3307 15.3195 13.1422 15.8379 13.1422 16.8706
+\c 13.1422 17.9047 12.1825 18.6437 12.1825 18.6437
+\c 12.1825 18.6437 13.2904 19.0125 13.2904 20.2679
+\c 13.2904 21.5233 12.3307 22.3354 12.3307 22.3354
+\c 12.3307 22.3354 13.6606 23.2964 13.7343 24.4043
+\c 13.8074 25.5121 12.5527 26.1022 12.5527 26.1022
+\c 13.8805 26.9881 14.1762 27.8753 14.1762 28.7619
+\c 14.1762 29.6471 12.7733 30.6811 12.7733 30.6811
+\c 12.7733 30.6811 14.1762 31.1975 14.4713 32.6018
+\c 14.7684 34.0033 13.3641 34.6686 13.3641 34.6686
+\c 15.8011 36.441 13.5861 37.6971 13.5861 37.6971
+\c 15.1366 38.361 15.211 39.9121 13.2904 40.9455
+\c 11.3711 41.9802 8.4895 41.9802 8.4895 41.9802
+\c 8.4895 41.9802 8.859 43.8271 7.678 44.1953
+\c 6.4964 44.5641 5.9787 43.6044 5.9787 43.6044
+\c 5.9787 43.6044 5.0928 44.6385 3.9112 44.1953
+\c 2.2399 43.5689 2.7296 41.0937 2.7296 41.0937
+\c 1.4736 40.5766 0.3725 40.1785 0.0713 38.7305
+\c -0.2982 36.958 0.8841 36.2197 0.8841 36.2197
+\c -0.8897 33.1181 0.6628 32.1585 0.6628 32.1585
+\c -0.2982 30.0159 1.1054 27.8009 1.1054 27.8009
+\c -0.0024 25.2164 1.9175 23.6652 1.9175 23.6652
+\c 1.1785 21.1538 2.5076 20.0459 2.5076 20.0459
+\c 1.6218 18.0529 2.8034 16.2805 2.8034 16.2805
+\c 1.992 14.2861 2.7296 13.1782 2.7296 13.1782
+\c -0.2237 10.4462 1.6218 8.3773 1.6218 8.3773
+\c -0.5932 6.163 1.9175 3.7247 1.9175 3.7247
+\c 1.77 3.504 0.8841 1.5096 3.0254 0.4756
+\c 5.4098 -0.6753 6.2745 0.6245 6.2745 0.6245
+\c 11.5917 -0.7791 15.5791 1.5841 15.5791 1.5841
+\c 17.4253 0.328 19.1984 1.0677 19.1984 1.0677
+\c 20.3807 -0.4103 23.5547 0.4756 23.5547 0.4756
+\c 27.3222 -0.6316 30.0549 1.5096 29.6854 2.9139
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian122.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian122.pgf
new file mode 100644
index 0000000000..76813dfdd8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian122.pgf
@@ -0,0 +1,132 @@
+\m 9.9939 20.4071
+\c 9.9939 20.4071 5.9074 19.7671 5.2169 22.4746
+\c 4.5284 25.1827 7.1368 26.1178 7.9749 25.9709
+\c 8.8122 25.8241 10.5833 25.43 10.2391 23.3611
+\c 9.8948 21.2929 7.2365 21.1461 6.6444 22.4746
+\c 6.0549 23.8044 7.1368 24.6424 7.6778 24.6424
+\c 7.6778 24.6424 7.089 23.4601 8.024 23.0667
+\c 8.9591 22.6726 9.5007 23.7545 9.2057 24.5434
+\c 8.9099 25.3309 7.3841 26.0699 6.2011 24.986
+\c 5.0201 23.9027 5.0693 21.3913 7.4326 20.9487
+\c 7.4326 20.9487 8.8607 20.7035 9.6476 20.8012
+\c 9.6476 20.8012 9.8456 20.7527 9.9939 20.4071
+\s
+\m 36.4811 19.7917
+\c 36.4811 19.7917 38.0316 20.6045 38.2529 22.1549
+\c 38.4748 23.7067 37.662 24.5181 36.5542 24.5181
+\c 35.4464 24.5181 34.93 23.3365 35.3726 22.6733
+\c 35.8152 22.0081 37.2925 22.5251 36.8493 23.7067
+\c 36.8493 23.7067 37.7358 23.3365 37.2925 21.8598
+\c 36.8493 20.3832 34.1917 20.8264 34.0441 22.5982
+\c 33.8966 24.3699 35.152 25.1089 35.9634 25.2572
+\c 36.7762 25.4054 38.1046 25.2572 38.5479 23.8542
+\c 38.9912 22.4513 38.4748 20.235 36.4811 19.7917
+\s
+\m 35.8159 10.1919
+\c 35.8159 10.1919 31.4589 10.6338 28.8006 12.2587
+\c 26.1417 13.8836 27.4715 15.5836 29.9078 14.8439
+\c 32.3448 14.1049 35.5208 11.1509 35.8159 10.1919
+\m 37.7365 16.6908
+\c 37.7365 16.6908 37.0712 16.1744 35.2995 16.0262
+\c 33.5264 15.8773 33.452 17.5767 35.152 17.5015
+\c 36.8499 17.4285 37.7365 16.6908 37.7365 16.6908
+\m 40.2473 24.9621
+\c 39.7302 22.8195 40.6905 20.3832 39.8791 18.9058
+\c 39.0663 17.4285 38.1053 16.9852 38.1053 16.9852
+\c 38.1053 16.9852 36.7762 18.2412 34.6349 17.6498
+\c 32.493 17.0603 33.3789 15.6567 35.2264 15.6567
+\c 37.0712 15.6567 38.2529 16.6908 38.2529 16.6908
+\c 38.2529 16.6908 39.8047 16.0262 40.1735 14.0311
+\c 40.5423 12.0374 38.9912 10.0437 36.3336 10.4119
+\c 36.3336 10.4119 34.1923 13.441 31.0887 14.7702
+\c 27.9885 16.0993 26.6594 14.9184 26.6594 13.9574
+\c 26.6594 12.9977 27.1764 11.0785 31.0156 9.6742
+\c 34.8562 8.2706 36.5549 9.4529 36.5549 9.4529
+\c 36.5549 9.4529 38.9912 5.391 38.7706 1.4774
+\c 38.7706 1.4774 32.1966 0.6646 25.7735 5.9081
+\c 25.7735 5.9081 26.5105 9.526 24.5175 15.2865
+\c 24.5175 15.2865 24.8132 18.6101 24.2955 20.9733
+\c 24.2955 20.9733 31.6071 28.6538 43.1275 28.4332
+\c 43.1275 28.4332 40.7643 27.1033 40.2473 24.9621
+\m 25.1813 6.6471
+\c 25.1813 6.6471 23.2614 8.4188 22.3762 10.1175
+\c 22.3762 10.1175 23.8522 12.5552 24.3692 14.4013
+\c 24.3692 14.4013 25.7735 10.6338 25.1813 6.6471
+\m 22.2273 1.9206
+\c 20.0867 1.8455 19.052 6.2038 19.052 6.2038
+\c 19.052 6.2038 20.6769 7.533 22.1542 9.7493
+\c 22.1542 9.7493 23.5585 7.533 25.1813 5.8336
+\c 25.1813 5.8336 24.9594 2.0149 22.2273 1.9206
+\m 20.0867 14.4751
+\c 20.0867 14.4751 21.0471 11.7424 21.9322 10.1919
+\c 21.9322 10.1919 20.2343 7.606 18.7569 6.7946
+\c 18.7569 6.7946 18.3867 11.2998 20.0867 14.4751
+\m 6.449 16.7646
+\c 6.449 16.7646 8.1217 17.3554 9.2542 17.3554
+\c 10.388 17.3554 11.0764 16.9613 10.2397 16.2714
+\c 9.4017 15.5836 7.089 16.2223 6.449 16.7646
+\m 7.7283 10.364
+\c 7.7283 10.364 8.9598 12.6781 11.9131 14.4013
+\c 14.8672 16.1253 17.132 15.9771 17.2796 14.8931
+\c 17.4278 13.8099 13.5872 10.2165 7.7283 10.364
+\m 5.5372 1.2554
+\c 5.169 4.8747 6.8663 9.1578 6.8663 9.1578
+\c 14.3262 8.4933 17.0576 12.3325 17.7235 13.8099
+\c 18.3867 15.2865 17.5015 17.0603 13.1453 15.4354
+\c 8.7877 13.8099 7.311 10.3395 7.311 10.3395
+\c 6.8663 10.3395 3.6172 11.0785 3.7655 13.1453
+\c 3.913 15.2134 5.5372 16.0993 5.5372 16.0993
+\c 7.4571 15.4354 9.3047 15.4354 10.3381 16.0262
+\c 11.3715 16.6157 11.1495 17.5767 9.6742 17.7242
+\c 8.1962 17.8717 6.2018 16.9852 6.2018 16.9852
+\c 5.0946 17.2072 3.9861 19.4966 3.4704 22.9677
+\c 2.9527 26.4381 1.1809 28.063 1.1809 28.063
+\c 14.8426 28.3587 20.0867 20.4556 20.0867 20.4556
+\c 19.4208 17.0603 20.0867 15.7312 20.0867 15.7312
+\c 17.4278 10.7821 18.3136 6.3268 18.3136 6.3268
+\c 12.1105 1.9691 5.5372 1.2554 5.5372 1.2554
+\m 20.4563 20.3094
+\l 21.6379 18.5356
+\c 21.6379 18.5356 20.3074 16.7646 20.3074 16.3206
+\c 20.3074 16.3206 19.9392 18.1675 20.4563 20.3094
+\m 22.2273 24.8883
+\c 22.2273 24.8883 23.5585 23.2621 23.7047 21.0477
+\c 23.7047 21.0477 22.745 20.0874 21.9322 18.832
+\l 20.6024 20.7527
+\c 20.6024 20.7527 21.1201 22.8195 22.2273 24.8883
+\m 23.999 14.5496
+\c 23.999 14.5496 22.5968 11.2998 22.0798 10.7083
+\c 22.0798 10.7083 20.3818 13.8099 20.3818 15.4354
+\c 20.3818 15.4354 21.2684 17.2072 22.006 18.1675
+\c 22.006 18.1675 23.5585 15.5085 23.999 14.5496
+\m 23.999 15.5836
+\l 22.1542 18.5356
+\c 22.1542 18.5356 23.5585 20.3832 23.9266 20.6045
+\c 23.9266 20.6045 24.5175 18.2412 23.999 15.5836
+\m 43.9396 28.7282
+\c 31.3858 29.1708 24.1473 21.491 24.1473 21.491
+\c 24.1473 22.6726 22.5968 25.4047 22.5968 25.4047
+\c 23.7784 27.1771 25.4033 28.5063 25.4033 28.5063
+\l 25.4033 29.0971
+\c 23.7784 28.1367 22.3024 25.626 22.3024 25.626
+\c 21.2684 27.5459 18.5349 29.3921 18.5349 29.3921
+\l 18.3136 28.8758
+\c 18.3136 28.8758 21.4897 26.6601 22.0798 25.2572
+\c 22.0798 25.2572 20.6769 22.4507 20.3074 20.9733
+\c 20.3074 20.9733 13.2914 29.6892 0 28.285
+\l 0.8107 27.5459
+\c 2.4363 25.6998 2.5094 22.4507 2.8789 20.0874
+\c 3.247 17.7242 5.389 16.3944 5.389 16.3944
+\c 5.389 16.3944 3.1002 14.8439 3.3953 12.5552
+\c 3.6924 10.265 6.6444 9.4529 6.6444 9.4529
+\c 4.5031 4.7995 5.169 0 5.169 0
+\c 13.734 0.5908 18.3136 5.4648 18.3136 5.4648
+\c 18.3136 5.4648 19.052 0.3695 22.5224 0.3695
+\c 25.9948 0.3695 25.7735 5.1697 25.7735 5.1697
+\c 32.4192 -1.6256 39.3607 0.444 39.3607 0.444
+\c 39.5089 5.5386 36.9237 9.526 36.9237 9.526
+\c 36.9237 9.526 40.0997 10.1175 40.6161 12.702
+\c 41.1345 15.2865 38.623 16.9128 38.623 16.9128
+\c 41.6502 18.6101 41.5026 20.8258 41.5026 23.928
+\c 41.5026 27.0514 43.9396 28.7282 43.9396 28.7282
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian123.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian123.pgf
new file mode 100644
index 0000000000..f7d412dd21
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian123.pgf
@@ -0,0 +1,435 @@
+\m 31.9541 11.7442
+\c 31.9541 11.7442 31.4118 12.5823 32.0531 12.9757
+\c 32.6918 13.3698 33.0353 11.9908 31.9541 11.7442
+\m 33.676 11.4
+\c 32.3475 11.1548 32.2977 11.695 32.2977 11.695
+\c 32.9376 11.9908 33.0353 12.4832 32.9875 12.8275
+\c 32.9376 13.1731 32.3591 13.7632 31.7191 13.2222
+\c 31.0798 12.6799 31.6461 10.7846 33.1835 10.7101
+\c 35.055 10.6206 35.3992 12.0399 35.3992 12.0399
+\c 35.3992 12.0399 35.0051 11.6458 33.676 11.4
+\s
+\m 28.9987 11.3494
+\c 28.9987 11.3494 28.3587 11.8917 28.6551 12.3849
+\c 28.9072 12.8077 29.541 11.7941 28.9987 11.3494
+\m 29.2958 11.3494
+\c 30.0826 12.4334 28.9004 13.3199 28.4079 12.5823
+\c 27.9154 11.8432 28.9393 10.3112 30.168 10.2306
+\c 31.2759 10.1562 31.8544 11.0065 31.8544 11.0065
+\c 29.9344 10.3659 29.2958 11.3494 29.2958 11.3494
+\s
+\m 34.6739 10.5619
+\l 34.8945 10.7101
+\c 34.8945 10.7101 35.486 10.5995 35.6342 9.9349
+\l 35.4122 9.7505
+\c 35.4122 9.7505 35.2647 10.1931 34.6739 10.5619
+\s
+\m 27.2516 24.3356
+\c 27.0678 24.3356 26.9196 24.4851 26.9196 24.6675
+\c 26.9196 24.8519 27.0678 25.0015 27.2516 25.0015
+\c 27.4353 25.0015 27.5835 24.8519 27.5835 24.6675
+\c 27.5835 24.4851 27.4353 24.3356 27.2516 24.3356
+\m 27.2516 25.2952
+\c 26.9046 25.2952 26.6239 25.0145 26.6239 24.6675
+\c 26.6239 24.3219 26.9046 24.0405 27.2516 24.0405
+\c 27.5978 24.0405 27.8786 24.3219 27.8786 24.6675
+\c 27.8786 25.0145 27.5978 25.2952 27.2516 25.2952
+\s
+\m 32.0156 24.4838
+\c 31.8715 24.4838 31.756 24.5999 31.756 24.7419
+\c 31.756 24.8854 31.8715 25.0015 32.0156 25.0015
+\c 32.1563 25.0015 32.2731 24.8854 32.2731 24.7419
+\c 32.2731 24.5999 32.1563 24.4838 32.0156 24.4838
+\m 32.0156 25.4072
+\c 31.6467 25.4072 31.349 25.1094 31.349 24.7419
+\c 31.349 24.3752 31.6467 24.0781 32.0156 24.0781
+\c 32.3824 24.0781 32.6788 24.3752 32.6788 24.7419
+\c 32.6788 25.1094 32.3824 25.4072 32.0156 25.4072
+\s
+\m 32.0156 23.5603
+\c 31.4029 23.5603 30.907 24.0562 30.907 24.6675
+\c 30.907 25.2802 31.4029 25.7753 32.0156 25.7753
+\c 32.6276 25.7753 33.1227 25.2802 33.1227 24.6675
+\c 33.1227 24.0562 32.6276 23.5603 32.0156 23.5603
+\m 26.1068 24.5569
+\c 26.1068 25.1292 26.6266 25.5916 27.2693 25.5916
+\c 27.912 25.5916 28.4332 25.1292 28.4332 24.5569
+\c 28.4332 23.9865 27.912 23.5228 27.2693 23.5228
+\c 26.6266 23.5228 26.1068 23.9865 26.1068 24.5569
+\m 32.0156 26.1824
+\c 31.127 26.1824 30.4091 25.4625 30.4091 24.576
+\c 30.4091 24.1928 30.5423 23.8431 30.765 23.5678
+\c 30.237 23.1594 29.2077 21.456 29.2077 21.456
+\c 28.9864 22.1212 28.285 23.3022 28.285 23.3022
+\l 28.2132 23.2974
+\c 28.6135 23.5699 28.8758 24.007 28.8758 24.5022
+\c 28.8758 25.328 28.1504 25.9973 27.2563 25.9973
+\c 26.3616 25.9973 25.6355 25.328 25.6355 24.5022
+\c 25.6355 23.6751 26.0331 23.0057 27.2563 23.0057
+\c 27.4626 23.0057 27.658 23.0426 27.8389 23.1082
+\c 28.4673 22.3282 29.1339 20.1999 29.1339 20.1999
+\c 29.7295 21.6739 30.698 22.988 30.9774 23.3506
+\c 31.2574 23.1136 31.6194 22.9695 32.0156 22.9695
+\c 32.9021 22.9695 33.622 23.6887 33.622 24.576
+\c 33.622 25.4625 32.9021 26.1824 32.0156 26.1824
+\s
+\m 23.0906 1.7988
+\c 22.8454 3.3746 23.7812 4.408 23.7812 4.408
+\c 21.5156 3.3247 22.1549 0.5196 23.0906 0.1746
+\c 24.0271 -0.1703 24.568 0.8631 24.568 0.8631
+\c 24.3713 0.8146 23.3372 0.2231 23.0906 1.7988
+\m 43.5722 22.5754
+\c 43.5722 22.5754 43.4745 23.1662 44.7545 23.0686
+\c 46.0337 22.9695 47.3137 22.5754 47.3137 22.5754
+\c 47.3137 22.5754 44.6554 22.9204 43.5722 22.5754
+\m 35.8179 0.9621
+\c 34.8583 0.5926 34.1193 1.8487 34.1193 1.8487
+\c 34.1193 1.8487 34.0455 2.2175 33.8242 3.6942
+\c 33.6029 5.1716 32.4206 5.1716 32.4957 3.768
+\c 32.5681 2.3644 33.3809 1.6267 33.3809 1.6267
+\c 33.3809 1.6267 33.3809 0.5926 32.3475 0.5926
+\c 31.3134 0.5926 30.7964 1.8487 30.7964 1.8487
+\c 30.961 2.3978 31.0839 3.8841 30.9255 4.9441
+\c 31.086 4.7098 31.3148 4.5644 31.6085 4.5808
+\c 32.8639 4.6552 32.4957 6.205 32.4957 6.205
+\c 32.9383 6.3532 33.0865 5.3191 33.0865 5.3191
+\c 33.4547 4.507 34.1937 4.4332 34.1937 4.4332
+\c 35.1533 4.2119 36.7789 1.331 35.8179 0.9621
+\m 33.48 2.6369
+\c 33.48 2.6369 32.5449 3.768 32.8885 4.2119
+\c 33.2341 4.6552 33.5285 2.9805 33.48 2.6369
+\m 30.5751 2.7831
+\c 30.5751 2.7831 30.1325 3.4729 29.9843 4.6053
+\c 29.8368 5.7378 30.278 5.9837 30.5259 5.3942
+\c 30.7711 4.8014 30.7711 3.4729 30.5751 2.7831
+\m 27.8676 3.0795
+\c 27.8676 3.0795 27.7693 4.0139 27.9154 4.9496
+\c 28.0637 5.886 28.5561 5.6394 28.4571 4.5562
+\c 28.3594 3.4729 27.8676 3.0795 27.8676 3.0795
+\m 25.3562 2.4395
+\c 25.3562 2.4395 25.2087 3.0795 25.3063 3.7202
+\c 25.4061 4.3588 25.7503 4.2611 25.7503 3.6204
+\c 25.7503 2.9805 25.6021 2.6369 25.3562 2.4395
+\m 28.8512 8.4944
+\c 28.8512 8.4944 28.4079 9.2341 28.8512 9.3803
+\c 29.2958 9.5278 29.2958 8.6918 28.8512 8.4944
+\m 32.2362 15.4735
+\c 32.2362 15.4735 31.2759 16.1018 31.7929 16.47
+\c 32.3106 16.8395 32.2362 15.4735 32.2362 15.4735
+\m 34.4157 17.8367
+\c 34.8945 18.2069 35.0796 16.5451 35.0796 16.5451
+\c 35.0796 16.5451 33.9342 17.4679 34.4157 17.8367
+\m 24.7784 17.7253
+\c 25.2578 17.6892 25.1841 17.2828 24.8883 16.9515
+\c 24.5926 16.6182 24.2606 16.5813 24.2606 16.5813
+\c 24.2606 16.5813 24.2982 17.7629 24.7784 17.7253
+\m 27.7693 16.5451
+\c 27.7693 17.099 28.4707 17.1352 28.4332 16.5075
+\c 28.397 15.8805 28.1374 15.3997 28.1374 15.3997
+\c 28.1374 15.3997 27.7693 15.9898 27.7693 16.5451
+\m 23.4854 13.9606
+\c 23.8925 13.9606 23.9294 13.6642 23.5954 13.3691
+\c 23.2628 13.0733 22.8208 12.9989 22.8208 12.9989
+\c 22.8208 12.9989 23.079 13.9606 23.4854 13.9606
+\m 25.6636 12.779
+\c 25.8486 13.1109 26.4388 12.9627 26.1806 12.4095
+\c 25.9224 11.8548 25.4791 11.6704 25.4791 11.6704
+\c 25.4791 11.6704 25.4791 12.4457 25.6636 12.779
+\m 44.3843 27.4754
+\c 38.6237 25.1852 37.5903 20.2375 37.5903 20.2375
+\c 36.7045 21.1227 35.4498 21.7141 35.4498 21.7141
+\c 36.852 24.5213 35.3016 26.0711 35.3016 26.0711
+\c 36.1123 27.1052 39.7316 27.0307 39.7316 27.0307
+\c 37.4428 29.6904 34.1193 27.918 34.1193 27.918
+\c 29.6892 30.428 25.1103 28.0648 25.1103 28.0648
+\c 21.7868 29.5422 19.3484 27.4009 19.3484 27.4009
+\c 23.6323 26.5144 23.5592 25.4803 23.5592 25.4803
+\l 23.5954 25.1121
+\l 23.8925 25.0746
+\l 24.2982 26.0342
+\c 24.2606 26.957 21.1222 27.6584 21.1222 27.6584
+\c 22.3038 28.7314 25.4423 27.5491 25.4423 27.5491
+\c 25.4423 27.5491 26.9558 28.6563 29.8368 28.5457
+\c 32.7163 28.435 34.2313 27.4754 34.2313 27.4754
+\c 36.6307 28.8776 37.7754 27.6584 37.7754 27.6584
+\c 36.7045 27.918 35.2271 27.1789 34.8583 26.9201
+\c 34.4895 26.6619 34.4526 26.4406 34.4526 26.4406
+\c 35.6717 25.4065 36.0023 23.449 34.8945 21.7517
+\c 33.7866 20.0524 30.834 19.6835 29.6148 19.6835
+\c 28.397 19.6835 25.8486 19.6467 24.2606 21.3078
+\c 22.6733 22.9695 23.6705 24.6675 23.6705 24.6675
+\l 23.411 24.9264
+\c 22.3038 23.1539 23.7812 20.902 23.7812 20.902
+\c 23.2259 20.6432 22.3769 20.0893 22.3769 20.0893
+\c 21.8605 20.1261 20.8258 21.5297 19.903 22.9695
+\c 18.9803 24.41 18.3895 25.5179 16.1731 26.6257
+\c 13.9581 27.7335 11.0054 27.9548 6.352 27.5491
+\c 1.7 27.1414 -0.0362 25.8867 0 25.0746
+\c 0.0369 24.2625 2.032 23.5235 4.7633 23.8561
+\c 7.4968 24.1873 10.8572 25.3328 12.2977 25.5547
+\c 13.7368 25.7753 13.9581 25.2597 13.9581 25.2597
+\c 12.8871 24.4838 9.0841 24.8157 6.2407 23.893
+\c 3.3973 22.9695 2.4746 20.3112 2.4746 20.3112
+\c 3.2498 20.6807 4.469 20.4588 5.7237 20.5701
+\c 6.9783 20.6807 8.3457 21.2716 10.9303 22.1574
+\c 13.5148 23.0433 14.8077 22.7113 14.8077 22.7113
+\c 9.194 22.2305 5.9449 19.3516 6.4265 18.7225
+\c 6.9053 18.0955 9.86 18.8339 13.1453 19.868
+\c 16.4326 20.902 16.6539 20.4226 16.6539 20.4226
+\c 13.8467 20.163 12.1132 19.2772 10.8572 18.4275
+\c 9.6011 17.5778 10.1182 17.2097 12.2232 17.2097
+\c 14.3276 17.2097 17.4285 18.5757 18.0575 18.7594
+\c 18.6845 18.9452 18.6101 18.3537 18.6101 18.3537
+\c 18.6101 18.3537 17.0173 18.1912 14.6609 17.3572
+\c 12.2601 16.5075 11.6679 15.2153 11.6679 15.2153
+\c 13.2935 14.2188 17.1334 15.9898 17.1334 15.9898
+\c 13.8467 14.3656 13.6268 12.9627 13.6268 12.9627
+\c 14.8815 11.8917 17.8355 14.0705 18.4632 14.2188
+\c 19.0916 14.3656 19.0916 13.9606 19.0916 13.9606
+\c 15.2134 12.8527 14.3276 10.1562 14.3276 10.1562
+\c 15.99 9.7874 18.3526 11.6704 18.9058 11.7811
+\c 19.4604 11.8917 19.1278 11.486 19.1278 11.486
+\c 16.6539 10.4895 16.3582 8.5689 16.3582 8.5689
+\c 18.6101 8.1632 19.166 9.3803 19.8292 9.603
+\c 20.4945 9.8242 20.3101 9.4923 20.3101 9.4923
+\c 18.8327 8.31 18.5739 7.0908 18.5739 7.0908
+\c 18.9803 7.0184 20.7896 7.3135 20.7896 7.3135
+\c 20.3101 5.8368 21.1222 5.3191 21.1222 5.3191
+\c 21.8236 6.6851 23.0428 6.9071 23.0428 6.9071
+\c 22.5996 5.5035 22.8946 4.5446 23.6705 4.6176
+\c 24.4444 4.6921 24.2238 5.9461 24.2238 5.9461
+\c 24.2982 5.5773 23.9656 4.7283 23.6323 5.024
+\c 23.3003 5.3191 23.8549 7.461 23.8549 7.461
+\c 22.5996 7.3873 21.4179 6.1688 21.4179 6.1688
+\c 20.8258 7.5724 22.8208 8.2731 22.8208 8.2731
+\c 24.1131 8.0511 24.6295 8.31 24.6295 8.31
+\c 21.196 9.0121 20.8626 11.5598 20.8258 11.7442
+\c 20.7896 11.9286 20.8258 12.1137 20.8258 12.1137
+\l 20.4583 12.5194
+\c 20.4583 9.9349 22.4513 8.6064 22.4513 8.6064
+\c 21.3435 8.6426 20.7527 7.5348 20.7527 7.5348
+\c 20.2363 7.3504 19.5342 7.4979 19.5342 7.4979
+\c 19.4604 7.8298 20.3101 8.754 20.4945 8.9746
+\c 20.6796 9.1966 21.3073 9.7874 20.8626 10.0462
+\c 20.4214 10.3044 19.9768 10.0462 18.9803 9.3448
+\c 17.9831 8.6426 16.8397 8.8646 16.8397 8.8646
+\c 16.9128 9.1966 17.3916 10.0462 18.7576 10.6357
+\c 20.125 11.2278 20.3463 11.7442 19.903 12.1506
+\c 19.4604 12.5563 18.5363 12.0024 17.7256 11.4491
+\c 16.9128 10.8952 14.734 9.9725 14.8446 10.5995
+\c 14.9559 11.2278 16.3213 11.9655 17.2447 12.3364
+\c 18.1688 12.7045 19.5711 13.4804 19.3867 14.2188
+\c 19.2029 14.9571 18.0951 14.4401 17.3916 14.1074
+\c 16.6915 13.7755 16.2468 13.2222 15.3248 13.1471
+\c 14.4013 13.0733 14.3276 13.2953 14.3276 13.2953
+\c 14.624 14.0705 17.3916 15.4735 18.0951 15.9174
+\c 18.7958 16.36 18.4632 16.7664 18.4632 16.7664
+\c 18.4632 16.7664 17.9831 16.47 17.6504 16.36
+\c 17.3185 16.2494 17.0972 16.4331 17.0972 16.4331
+\c 14.3276 14.9195 12.5183 15.4366 12.5183 15.4366
+\c 13.1835 16.6558 18.3526 17.8367 18.3526 17.8367
+\c 19.6455 18.17 19.2029 19.536 17.9469 19.0183
+\c 16.6915 18.5019 14.8815 17.8736 13.7368 17.7998
+\c 12.5927 17.7253 10.9303 17.3572 11.0792 17.8367
+\c 11.2253 18.3168 15.0283 19.7949 15.99 19.8304
+\c 16.9497 19.868 17.5767 20.0155 17.688 20.5701
+\c 17.7986 21.1227 15.7681 20.7914 15.7681 20.7914
+\c 13.8112 20.5332 10.2664 19.2772 8.8621 19.0559
+\c 7.4599 18.8339 7.0535 18.9814 7.0535 18.9814
+\c 8.7153 21.1964 13.8467 21.8986 14.9559 22.0837
+\c 16.0631 22.2681 16.1731 22.4525 16.2106 22.8964
+\c 16.2468 23.339 13.4417 23.0064 13.4417 23.0064
+\c 9.6749 22.4156 9.0841 21.6411 7.4599 21.234
+\c 5.8336 20.8283 3.1767 20.902 3.1767 20.902
+\c 4.9116 22.9333 8.8266 24.1873 12.0381 24.2987
+\c 15.2503 24.41 15.1021 25.7385 13.5517 25.8867
+\c 12.0019 26.0342 10.8941 25.6285 9.194 25.149
+\c 7.4968 24.6675 5.9449 24.3731 5.9449 24.3731
+\c 1.4043 23.8561 0.1851 24.5937 0.2957 25.2597
+\c 0.4071 25.9229 3.2867 27.3647 8.9003 27.1052
+\c 14.5127 26.8477 14.7702 25.7023 14.7702 25.7023
+\c 16.1 25.5547 18.4632 23.9674 19.903 22.0468
+\c 21.3435 20.1261 22.118 19.8304 22.118 19.8304
+\c 20.9733 19.0927 21.2322 17.5416 21.2322 17.5416
+\c 21.2322 17.5416 19.4604 16.36 20.0512 14.2188
+\c 20.6414 12.0768 22.4145 12.3719 22.4145 12.3719
+\c 22.4145 12.3719 22.5996 11.4491 23.6705 11.0059
+\c 24.7401 10.5619 25.3678 11.2634 25.3678 11.2634
+\c 26.6601 9.0121 28.7282 10.4151 28.7282 10.4151
+\c 28.7282 10.4151 26.2557 10.2306 25.7373 11.5598
+\c 25.7373 11.5598 26.2182 11.7442 26.4763 12.225
+\c 26.7345 12.7045 26.6601 13.3329 26.1068 13.3329
+\c 25.5522 13.3329 25.0365 12.7045 25.2578 11.5229
+\c 25.2578 11.5229 24.5181 11.1172 23.5592 11.6704
+\c 22.5996 12.225 22.8208 12.7045 22.8208 12.7045
+\c 22.8208 12.7045 23.4472 12.5194 24.0025 13.2953
+\c 24.5564 14.0705 23.3741 14.6614 22.8208 13.7379
+\c 22.4882 13.1847 22.4882 12.7414 22.4882 12.7414
+\c 22.4882 12.7414 21.4541 12.7045 20.7896 13.406
+\c 20.125 14.1074 20.0512 15.9898 21.1591 17.099
+\c 21.1591 17.099 22.0811 14.6989 24.0025 15.9174
+\c 24.0025 15.9174 24.3822 14.5951 25.626 14.2918
+\c 27.1409 13.923 28.0268 14.8089 28.0268 14.8089
+\c 28.0268 14.8089 28.3594 13.923 29.6892 13.8492
+\c 31.0184 13.7755 31.7567 14.2543 32.1993 14.6614
+\c 32.1993 14.6614 29.0233 14.033 28.397 15.1791
+\c 28.397 15.1791 28.7651 15.7699 28.7651 16.5075
+\c 28.7651 17.2459 28.1374 17.4679 27.731 17.2097
+\c 27.326 16.9515 27.104 15.9536 27.9523 15.0309
+\c 27.9523 15.0309 27.104 14.4401 25.8855 14.9195
+\c 24.6664 15.3997 24.3713 16.2494 24.3713 16.2494
+\c 24.3713 16.2494 25.3678 16.5075 25.4423 17.5054
+\c 25.5153 18.5019 23.8925 18.6126 23.9294 16.36
+\c 23.9294 16.36 23.0428 16.0649 22.2662 16.7664
+\c 21.4917 17.4679 21.1591 19.6091 23.8925 20.5701
+\c 23.8925 20.5701 25.5153 18.7225 28.5438 18.5388
+\c 31.5709 18.3537 34.0455 19.2772 35.2647 21.3822
+\c 35.2647 21.3822 36.5945 20.6432 37.4428 19.868
+\c 38.2925 19.0927 38.5138 17.7629 37.6648 16.9146
+\c 36.8158 16.0649 35.3746 16.2494 35.3746 16.2494
+\c 35.5604 17.0253 35.2647 17.8736 34.8945 18.2069
+\c 34.5257 18.5388 33.7866 18.4275 34.0455 17.431
+\c 34.3044 16.4331 35.1533 15.9898 35.1533 15.9898
+\c 35.1533 15.9898 35.1533 15.5472 34.1937 15.1791
+\c 33.0818 14.7508 32.5681 15.3259 32.5681 15.3259
+\c 32.7525 16.138 32.2362 17.2097 31.5341 16.8395
+\c 30.834 16.47 31.6085 14.8826 33.3085 14.5883
+\c 35.0051 14.2918 35.3384 15.8436 35.3384 15.8436
+\c 37.7754 15.2884 38.5506 17.6523 38.5506 17.6523
+\c 38.8457 17.5532 39.3375 16.3238 39.0431 14.9933
+\c 38.7487 13.6642 37.9605 12.8766 36.5808 12.6301
+\c 35.1554 12.376 34.4157 13.6157 35.1042 13.7632
+\c 35.7933 13.9107 35.7441 13.0249 35.7441 13.0249
+\c 36.1874 13.6642 35.4983 14.6484 34.9081 14.1573
+\c 34.3166 13.6642 34.611 12.4832 36.0392 12.0884
+\c 37.4674 11.6943 38.3546 12.779 38.3546 12.779
+\c 38.3546 12.779 38.4523 11.8917 37.714 10.7101
+\c 36.9743 9.5278 35.2271 9.3072 34.8583 9.7252
+\c 34.4895 10.1446 34.3166 9.9725 34.3166 9.9725
+\c 34.2176 9.676 34.8583 9.3803 34.8583 9.3803
+\l 34.7592 9.1344
+\c 34.2176 8.4944 32.9875 8.5928 32.6918 8.7908
+\c 32.396 8.9862 32.1501 9.5278 32.5941 9.676
+\c 33.036 9.8242 32.84 9.0852 32.84 9.0852
+\c 32.84 9.0852 33.2826 9.2826 33.1344 9.676
+\c 32.9875 10.0701 32.2478 10.1193 32.1501 9.5278
+\c 32.0525 8.937 32.396 8.6918 32.396 8.6918
+\c 31.7069 8.0033 30.5751 8.0511 30.5751 8.0511
+\c 29.3436 8.101 29.0977 8.4944 29.0977 8.4944
+\c 29.0977 8.4944 29.4912 8.741 29.4912 9.1843
+\c 29.4912 9.6275 28.9502 9.8242 28.5561 9.4308
+\c 28.1627 9.0367 28.7036 8.2984 28.7036 8.2984
+\c 28.7036 8.2984 28.2617 7.9036 26.8329 8.1987
+\c 25.4061 8.4944 25.012 9.8242 25.5044 9.8734
+\c 25.9962 9.9226 25.9962 9.3318 25.9962 9.3318
+\c 26.2926 10.1193 25.2578 10.5619 25.012 9.8242
+\c 24.7647 9.0852 25.4539 7.9036 27.0303 7.6577
+\c 28.6053 7.4112 28.9987 7.9535 28.9987 7.9535
+\c 31.2144 6.8709 32.5941 8.5436 32.5941 8.5436
+\c 33.6767 7.9036 34.6609 8.6426 34.6609 8.6426
+\c 35.1533 8.5935 36.2373 7.7575 36.5323 6.8709
+\c 36.826 5.9837 36.4825 5.6886 36.2858 5.7378
+\c 36.0891 5.787 36.0891 6.2801 36.0891 6.2801
+\c 36.0891 7.1653 34.9081 7.6577 34.3658 7.6086
+\c 33.8242 7.5594 34.0701 7.1161 34.0701 7.1161
+\c 34.5639 6.8709 34.7592 5.3942 34.1193 5.3942
+\c 33.48 5.3942 33.2341 7.0184 32.84 7.1161
+\c 32.4459 7.2151 32.2977 6.8709 32.2478 6.1804
+\c 32.1993 5.4912 32.0525 5.246 32.0525 5.246
+\c 31.0184 5.1716 31.6085 7.683 31.6085 7.683
+\c 30.8995 7.5245 30.5894 6.6284 30.6468 5.8395
+\c 30.1305 6.6469 29.6148 6.2036 29.541 4.7283
+\c 29.4673 3.2516 30.1325 2.1438 30.1325 2.1438
+\c 30.1325 2.1438 29.6148 1.331 28.9502 1.331
+\c 28.285 1.331 28.2119 1.8487 28.2119 1.8487
+\c 28.8764 3.0303 28.802 5.9837 28.3594 6.0574
+\c 27.9154 6.1319 27.5466 5.7624 27.5466 5.7624
+\c 27.5466 7.9036 26.6601 7.3135 26.6601 7.3135
+\c 27.326 7.0908 27.2516 5.6148 27.2516 5.6148
+\l 27.5466 5.4666
+\c 26.7345 2.809 27.6211 1.5536 27.6211 1.5536
+\c 27.6211 1.5536 27.5466 0.6678 26.5132 0.7409
+\c 25.4791 0.8146 25.4791 2.1438 25.4791 2.1438
+\c 26.5132 2.3644 25.9224 4.2119 25.9224 4.2119
+\c 25.9224 4.2119 26.2926 4.4332 26.1444 5.9099
+\c 25.9962 7.3873 24.8883 6.7958 24.8883 6.7958
+\c 26.1444 6.4276 25.626 4.7283 25.626 4.7283
+\c 24.8883 4.2857 24.6664 3.4729 24.6664 2.5126
+\c 24.6664 1.5536 25.4061 0.2976 26.4388 0.2231
+\c 27.4742 0.1494 27.8417 1.1104 27.8417 1.1104
+\c 27.8417 1.1104 28.2119 0.2976 29.2446 0.2976
+\c 30.278 0.2976 30.5751 1.4785 30.5751 1.4785
+\c 30.5751 1.4785 30.8708 -0.0713 32.1993 0.0025
+\c 33.5285 0.0756 33.676 1.1841 33.676 1.1841
+\c 33.676 1.1841 34.2675 0.3713 35.3746 0.2231
+\c 36.4825 0.0756 36.7045 1.1841 36.2605 2.5864
+\c 35.8179 3.9906 34.4895 4.7283 34.4895 4.7283
+\c 35.1533 5.246 34.7838 6.5014 34.7838 6.5014
+\c 35.7441 6.4276 35.8179 4.7283 35.8179 4.7283
+\c 38.9939 6.6482 35.0051 8.937 35.0051 8.937
+\l 35.2271 9.3072
+\c 36.1123 8.937 36.5576 9.3803 36.5576 9.3803
+\c 37.8868 7.239 41.2841 7.5348 41.2841 7.5348
+\c 41.3572 7.9781 41.2841 9.3803 41.2841 9.3803
+\c 42.8338 8.4944 44.1637 9.0121 44.1637 9.0121
+\c 44.2361 10.4895 42.8338 11.5229 42.8338 11.5229
+\c 43.2771 11.5974 45.4177 11.0803 45.4177 11.0803
+\c 45.1971 12.9989 43.4991 13.7379 43.4991 13.7379
+\c 43.4991 13.7379 45.0488 13.8124 45.6403 13.8124
+\c 46.2311 13.8124 46.0105 14.033 46.0105 14.033
+\c 46.0105 14.8464 44.0899 16.1018 44.0899 16.1018
+\l 47.2659 16.1018
+\c 47.1177 16.6926 45.8623 17.7253 45.8623 17.7253
+\c 45.8623 17.7253 48.9625 16.5451 49.1845 17.2828
+\c 49.4072 18.0218 46.9695 20.0155 45.2715 20.3857
+\c 43.5722 20.7538 41.8004 20.0893 41.8004 20.0893
+\c 40.8394 20.3857 41.9473 20.6056 41.9473 20.6056
+\c 43.941 21.1964 47.0439 20.163 47.7816 19.9417
+\c 48.5213 19.7197 52.73 18.8339 52.73 19.7197
+\c 52.73 20.6056 48.6681 22.2305 48.6681 22.2305
+\c 51.9917 21.7141 53.689 22.0837 53.689 22.0837
+\c 52.0654 21.9354 49.5547 22.3787 48.2993 22.7482
+\c 47.0439 23.1177 44.9027 23.7079 43.7948 23.2653
+\c 42.6863 22.822 43.0544 21.9354 44.0899 21.8617
+\c 45.124 21.7879 46.3049 21.6411 46.3049 21.6411
+\c 49.8504 21.1227 51.4002 19.9417 51.4002 19.9417
+\c 49.1114 19.4985 46.3049 20.7538 44.3843 20.9758
+\c 42.4643 21.1964 40.6919 20.902 40.545 20.2375
+\c 40.3962 19.5722 41.5784 19.7197 41.5784 19.7197
+\c 47.0439 20.0893 48.4468 17.3572 48.4468 17.3572
+\c 47.5603 17.2097 45.8623 18.17 44.5332 18.4644
+\c 43.202 18.7594 41.3572 18.8339 40.8394 18.3168
+\c 40.3231 17.7998 41.0621 17.6523 41.0621 17.6523
+\c 44.6062 18.0218 45.7141 16.3962 45.7141 16.3962
+\c 45.3439 16.3962 44.1637 16.2494 42.982 16.47
+\c 41.8004 16.6926 40.7657 16.3238 40.7657 16.3238
+\c 43.5722 15.8805 45.4177 14.1812 45.4177 14.1812
+\c 44.3843 13.9606 43.1289 14.4032 41.8728 14.5507
+\c 40.6188 14.6989 40.8394 14.4032 40.8394 14.4032
+\c 44.458 12.8527 44.5332 11.6704 44.5332 11.6704
+\c 44.0154 11.6704 42.3175 12.1875 41.2841 12.3364
+\c 40.25 12.4832 39.7316 12.1137 39.7316 12.1137
+\c 43.6473 10.7101 43.4246 9.3072 43.4246 9.3072
+\c 42.5394 9.1597 41.8004 9.5278 40.9139 9.898
+\c 40.028 10.2668 39.5096 10.1931 39.5096 10.1931
+\c 41.1359 8.3469 40.1762 7.9036 40.1762 7.9036
+\c 37.6648 8.2731 36.9258 9.5278 36.9258 9.5278
+\c 39.3628 10.7839 38.6237 13.0733 38.6237 13.0733
+\c 41.0621 16.3238 38.6237 18.17 38.6237 18.17
+\c 38.7719 19.3516 37.9605 20.0155 37.9605 20.0155
+\c 37.9605 20.4588 40.6188 24.5937 44.458 26.4406
+\c 48.2993 28.2868 54.2074 27.4754 56.7174 26.1455
+\c 59.2282 24.8157 58.4899 24.0781 56.7919 24.0781
+\c 55.0926 24.0781 52.1385 25.4065 52.1385 25.4065
+\c 52.73 24.8157 58.1941 22.3787 58.7118 24.5213
+\c 59.2282 26.6619 50.1448 29.7641 44.3843 27.4754
+\s
+\m 54.8965 21.9853
+\c 54.8965 21.9853 52.6808 24.2994 48.6435 24.6935
+\c 48.6435 24.6935 47.313 24.7918 45.9361 24.6935
+\c 44.5564 24.5937 44.0646 25.0869 45.098 25.7275
+\c 46.1321 26.3675 48.7911 26.0226 48.7911 26.0226
+\c 48.7911 26.0226 47.4121 26.0226 47.4121 25.6777
+\c 47.4121 25.6777 50.3176 26.0711 52.5319 24.6935
+\c 54.749 23.3138 55.6349 21.9361 54.8965 21.9853
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian124.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian124.pgf
new file mode 100644
index 0000000000..45ad084b6e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian124.pgf
@@ -0,0 +1,917 @@
+\m 31.8052 41.7048
+\c 31.5607 41.7048 31.3626 41.9029 31.3626 42.1474
+\c 31.3626 42.3933 31.5607 42.5907 31.8052 42.5907
+\c 32.0497 42.5907 32.2485 42.3933 32.2485 42.1474
+\c 32.2485 41.9029 32.0497 41.7048 31.8052 41.7048
+\m 31.8052 42.9841
+\c 31.3428 42.9841 30.9678 42.6105 30.9678 42.1474
+\c 30.9678 41.6857 31.3428 41.3114 31.8052 41.3114
+\c 32.2669 41.3114 32.6419 41.6857 32.6419 42.1474
+\c 32.6419 42.6105 32.2669 42.9841 31.8052 42.9841
+\s
+\m 33.6268 16.4483
+\c 33.6268 16.4483 33.971 14.7749 35.2517 14.4792
+\c 36.5317 14.1841 36.5808 14.8726 36.5808 14.8726
+\c 36.5808 14.8726 36.6792 13.9369 35.6943 13.9369
+\c 34.7101 13.9369 33.5285 14.8234 33.6268 16.4483
+\s
+\m 36.6307 16.1519
+\c 36.6307 16.1519 35.7933 17.0876 35.3992 17.3335
+\c 35.0051 17.5808 34.4642 17.7276 34.7101 16.99
+\c 34.9559 16.2509 38.0582 15.0202 38.5008 16.8909
+\c 38.5008 16.8909 38.5008 15.4627 37.4674 15.3166
+\c 36.4333 15.1684 34.3651 15.8083 34.316 16.9408
+\c 34.2675 18.0725 35.2517 18.0234 35.8425 17.4326
+\c 36.4333 16.8424 36.6307 16.1519 36.6307 16.1519
+\s
+\m 38.5008 17.9742
+\c 38.5008 17.9742 37.0241 19.5991 36.3841 19.7473
+\c 35.7435 19.8955 35.8917 19.4024 36.6307 18.7132
+\c 37.3684 18.0234 40.6666 16.4982 41.4548 18.4168
+\c 41.4548 18.4168 41.8981 16.645 39.5349 16.7434
+\c 37.1716 16.8424 35.5468 18.8601 35.4976 19.5506
+\c 35.4491 20.2384 37.1218 20.683 38.5008 17.9742
+\s
+\m 0 0
+\l 58.3299 0
+\l 58.3299 58.8013
+\l 0 58.8013
+\o
+\i
+\m 56.7256 54.8972
+\c 56.7352 54.8938 56.7454 54.8917 56.7543 54.887
+\c 56.7543 54.887 56.7448 54.8917 56.7256 54.8972
+\m 48.7904 28.0678
+\c 47.6088 27.0829 45.4921 26.492 44.6056 26.5412
+\c 43.7197 26.5911 43.7197 27.3779 44.5571 27.4278
+\c 45.3938 27.477 47.018 27.3779 47.018 27.3779
+\c 46.2585 27.7379 44.7831 27.9038 44.0721 27.6354
+\c 44.2784 28.4953 43.9041 29.3354 43.9041 29.3354
+\c 43.9041 29.3354 44.9744 29.4741 45.8555 30.6263
+\c 45.7366 30.1735 46.3425 29.9269 47.0678 29.8894
+\c 48.0029 29.8395 49.7753 30.4795 49.7753 30.4795
+\c 50.6618 29.8395 49.972 29.052 48.7904 28.0678
+\m 45.1964 23.6862
+\l 44.9997 23.6862
+\c 44.9997 23.6862 43.6207 23.8344 42.6364 24.3255
+\c 41.6515 24.818 42.3407 25.3104 43.3755 24.9163
+\c 44.4089 24.5222 45.1964 23.6862 45.1964 23.6862
+\m 48.0029 24.5721
+\c 47.117 24.1288 45.5413 24.0298 45.5413 24.0298
+\c 45.5413 24.0298 45.1964 24.3747 43.5223 25.1137
+\c 41.8482 25.8527 41.4056 24.5222 42.7847 23.8344
+\c 44.163 23.1439 45.4921 23.2928 45.4921 23.2928
+\c 45.3938 21.6666 43.6207 21.8148 43.6207 21.8148
+\c 42.4343 23.0756 41.4439 23.3864 41.0266 23.4642
+\c 41.9247 24.3173 41.3934 25.753 41.3934 25.753
+\c 41.3934 25.753 42.1126 25.5461 43.3871 26.5665
+\c 43.4841 26.6437 43.5688 26.7263 43.6439 26.811
+\c 43.7819 26.477 44.3044 26.2284 45.3446 26.197
+\c 46.9203 26.1471 47.9537 26.6389 47.9537 26.6389
+\c 48.7904 26.0495 48.8894 25.0161 48.0029 24.5721
+\m 20.6782 25.4586
+\c 20.6782 25.4586 20.8258 25.975 21.1215 26.2701
+\c 21.4173 26.5665 21.7116 26.1601 21.3797 25.8268
+\c 21.0477 25.4942 20.6782 25.4586 20.6782 25.4586
+\m 22.7457 23.8693
+\c 22.7457 23.8693 23.0415 24.6827 23.3365 25.0885
+\c 23.6323 25.4942 24.3706 25.3104 23.7805 24.6459
+\c 23.189 23.9806 22.7457 23.8693 22.7457 23.8693
+\m 24.7401 22.7252
+\c 24.7401 22.7252 25.0352 23.7231 25.4416 23.8693
+\c 25.848 24.0182 25.8842 23.3529 24.7401 22.7252
+\m 22.4507 20.9897
+\c 22.8932 21.3968 23.3741 20.9528 22.9677 20.4358
+\c 22.5613 19.9194 22.118 19.8456 22.118 19.8456
+\c 22.118 19.8456 22.0074 20.584 22.4507 20.9897
+\m 24.3344 18.8491
+\c 24.3344 18.8491 24.3706 19.9563 24.8876 20.252
+\c 25.4047 20.5471 25.8104 19.6974 24.3344 18.8491
+\m 28.1005 18.257
+\c 28.1005 18.257 28.1367 18.9598 28.3956 18.9598
+\c 28.6538 18.9598 28.1005 18.257 28.1005 18.257
+\m 32.0142 18.4427
+\c 32.1624 18.4427 32.3468 18.257 31.9042 17.8888
+\c 31.9042 17.8888 31.8667 18.4427 32.0142 18.4427
+\m 27.0665 23.1323
+\c 27.3246 23.538 27.9154 23.2423 27.5097 22.6897
+\c 27.1033 22.1344 26.8445 22.0231 26.8445 22.0231
+\c 26.8445 22.0231 26.8076 22.7252 27.0665 23.1323
+\m 28.7644 21.1748
+\c 28.7644 21.1748 28.9126 22.0982 29.2815 22.5415
+\c 29.651 22.9841 30.0574 22.6153 29.651 22.0982
+\c 29.2453 21.5805 28.7644 21.1748 28.7644 21.1748
+\m 30.7588 20.6209
+\c 30.7588 20.6209 30.7219 21.0641 30.9808 21.5805
+\c 31.239 22.0982 31.7929 21.84 31.4972 21.3592
+\c 31.2021 20.8784 30.7588 20.6209 30.7588 20.6209
+\m 33.1589 20.6209
+\c 33.1589 20.6209 33.0859 20.9897 33.3072 21.6174
+\c 33.5285 22.2451 34.0824 21.8025 33.7129 21.2861
+\c 33.344 20.7691 33.1589 20.6209 33.1589 20.6209
+\m 24.0749 29.2002
+\c 24.0749 29.2002 22.7956 27.8711 21.9582 26.9353
+\c 21.9582 26.9353 23.1398 26.1963 26.7338 27.477
+\c 26.7338 27.477 26.0447 25.6554 25.8971 24.9655
+\c 25.8971 24.9655 26.9305 25.6055 28.1122 26.0495
+\c 29.2938 26.492 29.7377 26.8861 29.7377 26.8861
+\c 29.7377 26.8861 29.2938 25.0632 29.6387 23.6862
+\c 29.6387 23.6862 31.116 24.5721 32.101 25.9012
+\c 32.101 25.9012 31.8052 22.7 32.1494 21.6174
+\c 32.1494 21.6174 32.6918 22.4056 33.3311 23.0449
+\c 33.971 23.6862 34.4143 24.0796 34.7101 25.1137
+\c 34.7101 25.1137 34.9068 23.8344 35.8425 22.8482
+\c 35.8425 22.8482 35.5468 20.4358 34.5619 19.7473
+\c 33.5769 19.0574 33.0859 19.7473 33.1835 20.2391
+\c 33.1835 20.2391 33.7737 20.3873 34.0701 21.323
+\c 34.3651 22.2574 33.4301 22.8482 33.036 21.519
+\c 32.6419 20.1906 32.7894 19.8941 32.7894 19.8941
+\c 32.7894 19.8941 32.0511 19.3532 31.3619 19.4024
+\c 30.6728 19.4515 30.7711 20.3873 30.7711 20.3873
+\c 30.7711 20.3873 31.3128 20.4849 31.657 21.1748
+\c 31.9876 21.8353 31.657 22.2089 31.4603 22.2574
+\c 31.0525 22.3598 30.6236 21.8148 30.4269 20.3873
+\c 30.4269 20.3873 29.4905 19.6974 29.0486 19.7473
+\c 28.6046 19.7958 28.6046 20.584 28.9004 20.9296
+\c 29.1954 21.2731 29.6879 21.4207 30.082 22.2089
+\c 30.4754 22.9964 29.8354 23.6862 29.1469 22.8482
+\c 28.4571 22.0122 28.4079 20.7807 28.4079 20.7807
+\c 28.4079 20.7807 27.5712 20.4849 27.2263 20.4849
+\c 26.882 20.4849 26.4381 21.323 26.9305 21.7164
+\c 26.9305 21.7164 27.6197 22.2089 28.0138 22.7505
+\c 28.4079 23.2928 28.162 23.9321 27.5712 23.7354
+\c 26.9804 23.538 26.3397 23.0941 26.4879 21.0757
+\c 26.4879 21.0757 26.3397 19.8456 28.3095 20.2882
+\c 28.3095 20.2882 28.4079 19.4024 28.9987 19.4024
+\c 29.5895 19.4024 30.2787 19.8941 30.2787 19.8941
+\c 30.2787 19.8941 30.5252 19.0574 31.3128 19.108
+\c 32.101 19.1551 32.8386 19.6489 32.8386 19.6489
+\c 32.8386 19.6489 33.4793 18.6149 34.7101 19.4515
+\c 34.7101 19.4515 33.6268 16.99 32.3468 16.5965
+\l 31.7929 17.1867
+\c 31.7929 17.1867 32.4944 17.8888 32.5313 18.4789
+\c 32.5675 19.0704 31.8298 18.9598 31.6447 18.5527
+\c 31.4603 18.1463 31.5101 17.0883 31.5101 17.0883
+\c 31.5101 17.0883 30.6728 16.35 30.377 16.4483
+\c 29.763 16.6526 29.9829 17.285 29.9829 17.285
+\c 30.8203 17.9742 30.8695 19.3532 30.0328 18.9099
+\c 29.1954 18.4666 29.3921 17.0391 29.3921 17.0391
+\c 29.3921 17.0391 28.9495 16.3001 28.4571 16.3998
+\c 27.7747 16.5351 27.9653 17.3841 27.9653 17.3841
+\c 28.4079 17.6299 29.2453 19.4024 28.5561 19.4024
+\c 27.8663 19.4024 27.6197 17.5808 27.6197 17.5808
+\c 26.6348 16.4483 26.1929 17.285 26.2414 18.024
+\c 26.2906 18.7631 26.5863 19.5506 26.9804 19.5506
+\c 27.3745 19.5506 26.7338 18.2208 26.7338 18.2208
+\c 27.9653 19.1551 27.4722 20.584 26.6348 19.7958
+\c 25.7988 19.0083 25.8971 17.6791 25.8971 17.6791
+\c 25.8971 17.6791 25.7004 17.6299 25.0598 17.7775
+\c 24.4198 17.9257 24.5673 18.4666 24.5673 18.4666
+\c 26.5371 19.944 25.7496 21.1748 24.8139 20.5348
+\c 23.8782 19.8955 23.9772 18.4666 23.9772 18.4666
+\l 23.09 18.5151
+\c 22.2048 18.5664 22.0074 19.3033 22.0074 19.3033
+\c 23.1398 19.6489 24.1739 21.4698 22.9431 21.519
+\c 21.7116 21.5689 21.8107 19.8456 21.8107 19.8456
+\c 20.0383 19.3033 20.2841 21.1748 20.2841 21.1748
+\c 21.7936 21.4685 21.9814 22.424 21.9807 22.8878
+\c 21.9691 22.9684 21.9609 23.0517 21.9582 23.1439
+\c 21.9582 23.1439 21.9801 23.0442 21.9807 22.8878
+\c 22.2123 21.2574 24.2231 22.0607 24.2231 22.0607
+\c 24.5188 20.5348 25.7988 21.323 25.7988 21.323
+\c 24.2231 21.0757 24.6172 22.2587 24.6172 22.2587
+\c 24.6172 22.2587 25.208 22.4548 25.8971 23.2423
+\c 26.4955 23.9253 25.8971 24.9655 25.0106 23.8829
+\c 24.305 23.0203 24.4198 22.4548 24.4198 22.4548
+\c 24.4198 22.4548 23.6814 22.0122 22.8448 22.2089
+\c 22.0074 22.4056 22.4022 23.1439 22.4022 23.1439
+\c 25.1089 24.5721 24.8631 25.9012 23.7805 25.6055
+\c 22.6965 25.3104 22.0566 23.6862 22.0566 23.6862
+\c 22.0566 23.6862 21.269 23.1439 20.7274 23.7839
+\c 20.1858 24.4239 20.53 25.0147 20.53 25.0147
+\c 21.3674 25.1629 22.6474 26.1471 21.8598 26.5904
+\c 21.0723 27.033 20.6782 25.9989 20.3832 25.4573
+\c 20.0874 24.9163 19.8415 24.7688 19.4474 24.9163
+\c 19.054 25.0632 18.0199 26.0495 20.0874 27.8711
+\c 22.1549 29.6926 24.0749 29.2002 24.0749 29.2002
+\m 35.2025 28.8068
+\c 35.35 29.2494 36.0884 28.8068 35.2025 27.6743
+\c 35.2025 27.6743 35.0543 28.3621 35.2025 28.8068
+\m 33.5769 14.2333
+\c 33.5285 12.7068 32.2485 11.6242 29.8853 11.0819
+\c 27.5213 10.5403 23.3857 9.2104 22.2048 5.3214
+\c 22.2048 5.3214 21.6625 6.9462 23.0415 9.0144
+\c 24.4198 11.0819 25.0598 10.6878 24.8631 11.377
+\c 24.8631 11.377 26.8322 11.5737 27.3246 13.6425
+\c 27.3246 13.6425 27.7187 14.0851 28.1122 13.7402
+\c 28.5063 13.3953 29.9829 12.7068 31.8052 15.809
+\c 31.8052 15.809 33.6268 15.7585 33.5769 14.2333
+\m 27.5213 7.9305
+\c 28.5561 7.8806 29.6879 7.4879 30.2302 6.3063
+\c 30.7711 5.1247 30.2302 4.7312 30.2302 4.7312
+\c 30.2302 4.7312 29.7377 7.7836 25.9955 7.1921
+\c 25.9955 7.1921 28.162 6.4039 27.9653 4.2381
+\c 27.9653 4.2381 27.6689 5.6656 26.6847 6.0597
+\c 25.7004 6.4531 24.7155 6.8978 24.7155 6.8978
+\c 24.7155 6.8978 25.3555 5.6656 25.503 5.0762
+\c 25.6246 4.5899 25.2141 4.0714 25.0645 3.9034
+\l 24.9983 3.8768
+\c 24.9061 4.1165 24.3064 5.6943 24.1247 6.6013
+\c 23.9273 7.5862 24.6664 7.9305 25.848 8.4229
+\c 25.848 8.4229 26.4879 7.9803 27.5213 7.9305
+\m 25.8869 4.221
+\c 25.8999 4.4334 25.865 4.6404 25.848 4.7797
+\c 25.7988 5.1738 25.9463 5.4696 25.9463 5.4696
+\c 26.3793 5.4696 26.6539 5.0844 26.8281 4.5864
+\o
+\m 23.7504 4.3098
+\l 22.3728 4.2538
+\c 22.5736 5.9791 23.4847 6.2072 23.4847 6.2072
+\c 23.4328 5.7189 23.5032 4.9334 23.7504 4.3098
+\m 19.7985 1.8619
+\c 20.1714 2.4582 20.4604 3.1678 20.6707 3.8139
+\l 23.9273 3.9471
+\c 24.0134 3.8023 24.1145 3.6767 24.2299 3.579
+\o
+\m 18.7084 1.9739
+\c 18.2658 1.0382 17.3301 0.4474 16.936 0.6441
+\c 16.5426 0.8408 16.2967 1.3824 16.9859 2.465
+\c 17.675 3.5489 18.4625 4.7797 18.5616 5.4696
+\c 18.5616 5.4696 19.2992 5.1738 20.0383 5.1738
+\c 20.0383 5.1738 19.1517 2.9083 18.7084 1.9739
+\m 13.8836 0.545
+\c 13.8836 0.545 13.0469 0.1018 12.8994 0.7431
+\c 12.7519 1.3824 12.8987 2.2683 13.2935 2.8598
+\c 13.6869 3.4506 15.2134 4.8289 15.6069 6.4531
+\l 17.1334 5.9613
+\c 17.1334 5.9613 16.0501 1.5798 13.8836 0.545
+\m 10.5853 1.5306
+\c 9.3546 0.7431 7.6798 0.5949 8.567 3.0073
+\c 8.567 3.0073 10.5368 4.0407 12.4561 7.0446
+\c 12.4561 7.0446 13.4902 6.0597 13.3427 5.2715
+\c 13.1945 4.4833 11.8161 2.3188 10.5853 1.5306
+\m 5.0707 2.3188
+\c 3.7415 2.2683 4.2832 4.1889 5.8097 5.6656
+\c 7.3356 7.1436 9.8463 8.4728 9.8463 8.4728
+\c 9.8463 8.4728 10.0444 8.177 9.9945 7.7836
+\c 9.9945 7.7836 10.0444 7.6347 10.5853 8.177
+\c 11.127 8.7187 11.6686 9.261 12.0128 9.0144
+\c 12.3578 8.7678 11.767 8.177 11.5204 8.177
+\c 11.5204 8.177 12.1119 7.9803 11.8653 7.3888
+\c 11.6187 6.798 10.7336 6.5528 10.7336 6.5528
+\l 11.2246 7.8335
+\c 11.2246 7.8335 10.183 6.3602 9.5021 5.3705
+\c 8.9605 4.583 6.4005 2.368 5.0707 2.3188
+\m 2.5108 8.9161
+\c 2.5108 8.9161 2.8557 9.4071 3.594 9.6544
+\c 4.333 9.9003 4.3815 9.261 3.7415 9.0144
+\c 3.1016 8.7678 2.5108 8.9161 2.5108 8.9161
+\m 4.5782 6.6512
+\c 4.5782 6.6512 6.154 8.0288 5.7599 9.1128
+\c 5.3664 10.1953 3.1514 7.4879 3.4465 6.9462
+\c 3.4465 6.9462 2.1665 6.2072 1.1816 6.3554
+\c 1.1816 6.3554 0.7383 6.5528 1.0341 6.8978
+\c 1.3291 7.2413 1.5757 7.7338 1.5757 7.7338
+\c 1.5757 7.7338 2.8065 7.7836 3.7914 8.4229
+\c 4.7756 9.0629 5.1199 9.9003 4.4799 9.9495
+\c 3.8406 9.9986 2.7075 9.9003 1.6741 8.7187
+\c 1.6741 8.7187 0.935 9.3095 1.8216 10.0485
+\c 2.7075 10.7861 5.1206 12.0668 8.4188 10.2937
+\c 8.4188 10.2937 6.7946 6.6013 4.5782 6.6512
+\m 3.7914 7.2413
+\c 3.7914 7.2413 4.2832 8.2269 4.6281 8.5705
+\c 4.973 8.9161 5.514 8.8662 5.1206 8.2269
+\c 4.7265 7.5862 3.7914 7.2413 3.7914 7.2413
+\m 8.8129 10.2438
+\c 8.8129 10.2438 9.6988 9.8026 9.8463 9.5554
+\c 9.9945 9.3095 9.9454 8.9161 9.9454 8.9161
+\c 9.9454 8.9161 9.0595 8.4229 8.0746 7.7836
+\c 8.0746 7.7836 8.6654 8.4728 8.8129 10.2438
+\m 8.9113 15.3644
+\c 9.108 17.0391 9.6988 17.4824 10.1421 17.0391
+\c 10.5853 16.5965 11.0279 13.8877 8.9605 11.5245
+\c 8.9605 11.5245 8.7146 13.691 8.9113 15.3644
+\m 14.7695 6.701
+\c 14.7695 6.701 14.721 5.764 13.9335 5.1247
+\c 13.9335 5.1247 13.8836 6.1587 14.7695 6.701
+\m 14.4252 7.4879
+\c 14.4252 7.4879 14.2285 7.0446 14.4751 6.9462
+\l 13.982 6.3063
+\c 13.982 6.3063 13.5394 6.8465 13.8836 7.2413
+\c 13.8836 7.2413 14.081 7.2912 14.081 7.0446
+\c 14.081 7.0446 14.2784 7.1921 14.2285 7.6347
+\l 13.7368 7.8335
+\c 13.7368 7.8335 13.6377 9.4078 14.721 9.261
+\c 15.8043 9.1128 15.0652 7.3403 15.0652 7.3403
+\c 15.0652 7.3403 14.6226 7.3403 14.4252 7.4879
+\m 11.3237 10.6379
+\c 12.2587 11.1311 13.2436 11.8195 13.7368 12.2635
+\c 14.2285 12.7068 14.5728 12.756 14.5728 12.756
+\l 14.6718 11.9671
+\c 15.0167 11.9671 14.9184 12.4117 14.9184 12.4117
+\c 15.2619 12.5586 15.46 12.1153 15.46 12.1153
+\c 15.6069 10.097 16.001 10.836 16.4934 9.4078
+\c 16.9859 7.9803 16.3452 7.2912 16.001 6.9947
+\c 15.6567 6.701 15.46 6.9462 15.46 6.9462
+\c 15.46 6.9462 15.6069 7.7338 15.6069 8.7187
+\c 15.6069 9.7036 14.4751 10.1953 14.4751 10.1953
+\c 12.9977 9.5554 13.2436 7.6347 13.2436 7.6347
+\c 12.4063 7.6846 12.5053 9.0144 12.5053 9.0144
+\c 13.7853 9.5554 13.7368 11.0327 13.7368 11.0327
+\c 13.7368 11.0327 13.3912 10.3921 12.5552 10.2937
+\c 11.7178 10.1967 10.7336 9.5069 10.7336 9.5069
+\c 10.7336 9.5069 10.3886 10.1462 11.3237 10.6379
+\m 14.6226 19.1811
+\c 14.8071 19.7343 15.5085 19.7343 15.2134 18.8853
+\c 14.9184 18.0357 14.6226 17.4448 14.6226 17.4448
+\c 14.6226 17.4448 14.4382 18.6265 14.6226 19.1811
+\m 14.0318 16.8554
+\c 13.9581 15.6738 13.8105 13.6787 12.1119 13.3106
+\c 12.1119 13.3106 12.7396 13.9369 12.8502 15.4887
+\c 12.9602 17.0391 12.0374 19.3662 13.2197 21.3592
+\c 13.2197 21.3592 14.1794 22.9103 16.8745 22.2451
+\c 16.8745 22.2451 19.3491 21.323 19.6073 18.8853
+\c 19.8661 16.4483 18.6845 15.2667 18.3888 14.639
+\c 18.0937 14.0113 17.7611 12.4602 18.1306 11.463
+\c 18.1306 11.463 16.8745 12.3496 16.949 14.2702
+\c 17.0221 16.1895 18.1675 18.0001 17.7242 19.2173
+\c 17.7242 19.2173 17.5391 19.5875 17.0965 19.513
+\c 16.6532 19.4392 16.1 18.9229 16.5426 15.7469
+\c 16.5426 15.7469 15.8043 14.4177 15.0652 13.8262
+\c 15.0652 13.8262 14.5482 14.8979 14.7695 16.8178
+\c 14.7695 16.8178 16.3951 19.9563 15.0652 20.1783
+\c 13.7368 20.3989 14.1049 18.0357 14.0318 16.8554
+\m 13.5879 23.2928
+\c 10.7821 23.5865 11.1762 25.4081 11.2745 25.6055
+\c 11.2745 25.6055 13.441 24.4239 14.9184 25.3596
+\c 14.9184 25.3596 14.8685 24.2272 16.7885 23.4882
+\c 16.7885 23.4882 16.3951 22.9964 13.5879 23.2928
+\m 13.7368 25.6554
+\c 12.8004 25.5078 12.0128 26.0495 12.0128 26.0495
+\c 12.0128 26.0495 12.4063 26.4436 13.2935 26.492
+\c 14.1794 26.5412 14.6718 25.8022 13.7368 25.6554
+\m 9.7487 29.7411
+\c 9.7487 29.7411 12.3578 28.0671 13.7853 29.052
+\c 13.7853 29.052 13.5879 27.6245 15.5577 27.2796
+\c 15.5577 27.2796 15.1151 26.7379 14.9669 26.0986
+\l 14.6718 26.1471
+\c 14.6718 26.1471 14.2777 27.3287 11.5702 26.5412
+\c 11.5702 26.5412 8.4188 28.4127 9.7487 29.7411
+\m 18.832 22.9841
+\c 18.832 22.9841 18.9796 23.9068 19.3853 24.0919
+\c 19.7917 24.277 20.3087 23.6118 18.832 22.9841
+\m 17.3178 18.8853
+\c 17.7242 18.8491 17.244 17.408 16.9859 16.781
+\c 16.9859 16.781 16.9121 17.1867 16.8745 18.0725
+\c 16.8452 18.7774 16.9121 18.9229 17.3178 18.8853
+\m 19.054 8.2754
+\l 17.9701 7.9803
+\c 17.9701 7.9803 18.0691 7.9305 18.315 7.7836
+\c 18.5616 7.6347 17.7734 5.6171 17.1826 4.9771
+\c 17.1826 4.9771 17.3301 6.1096 17.8724 7.2413
+\l 17.5767 7.2912
+\l 17.1334 6.4039
+\l 16.1485 6.7495
+\c 16.1485 6.7495 17.2317 7.0931 17.3301 8.3246
+\c 17.4285 9.5554 16.6409 10.0485 16.2967 10.7861
+\c 15.9511 11.5245 15.7544 12.6084 15.361 12.7068
+\l 15.1397 12.8666
+\l 16.2844 14.1589
+\c 16.2844 14.1589 16.1 10.5034 19.2016 9.9863
+\c 19.2016 9.9863 18.3888 10.7622 18.3888 11.8701
+\c 18.3888 11.8701 18.6101 11.907 18.8689 11.7588
+\c 19.1278 11.6105 19.7548 11.2042 20.6782 11.2042
+\c 20.6782 11.2042 20.9248 7.9305 20.2841 5.764
+\c 20.2841 5.764 19.6442 5.4689 18.6101 5.9613
+\c 18.6101 5.9613 19.2992 6.8465 19.054 8.2754
+\m 22.0811 16.4108
+\c 22.0811 16.4108 22.2294 16.8909 22.3393 17.1498
+\c 22.4507 17.408 23.0039 17.4824 22.7457 16.9278
+\c 22.4882 16.3746 22.0811 16.4108 22.0811 16.4108
+\m 24.2231 15.6369
+\c 24.2231 15.6369 24.3344 16.0795 24.5557 16.3001
+\c 24.777 16.5221 25.294 16.6334 24.9245 16.1171
+\c 24.5557 15.6 24.2231 15.6369 24.2231 15.6369
+\m 21.4903 13.8262
+\c 21.4903 13.8262 21.5648 14.344 21.8223 14.4177
+\c 22.0811 14.4922 21.9336 14.0475 21.4903 13.8262
+\m 22.1481 4.2436
+\l 20.7868 4.1882
+\c 21.015 4.9607 21.1215 5.5741 21.1215 5.6656
+\c 21.1215 5.863 21.5149 5.9613 21.5149 5.9613
+\c 21.5798 5.0529 21.9227 4.5106 22.1481 4.2436
+\m 21.269 11.2793
+\c 21.269 11.2793 22.3762 11.4015 23.0415 12.1153
+\c 23.0415 12.1153 23.4847 11.0327 24.2716 11.377
+\c 24.2716 11.377 24.2231 11.0327 23.5838 10.7861
+\c 22.9431 10.5403 22.0566 9.6544 21.5648 7.7836
+\c 21.5648 7.7836 21.614 10.5894 21.269 11.2793
+\m 26.3643 15.2298
+\c 26.3643 15.2298 26.4012 15.7469 26.6976 15.8944
+\c 26.992 16.0426 27.1033 15.4142 26.3643 15.2298
+\m 29.9092 18.369
+\c 30.0574 18.6633 30.3893 18.5151 30.168 18.1101
+\c 29.946 17.7037 29.8354 17.6299 29.8354 17.6299
+\c 29.8354 17.6299 29.7616 18.0725 29.9092 18.369
+\m 30.2056 16.1895
+\c 30.5 16.1519 30.9432 16.1519 31.4972 16.8909
+\c 31.4972 16.8909 31.6447 16.7441 31.8667 16.5221
+\c 31.8667 16.5221 31.2021 15.2298 30.4269 14.6021
+\c 29.651 13.9738 28.9864 13.6049 28.3587 13.9
+\c 28.3587 13.9 28.1736 14.3071 28.58 14.4177
+\c 28.9864 14.5284 29.5403 15.0816 29.5403 15.6369
+\c 29.5403 15.6369 29.4297 15.9682 29.1708 15.7831
+\c 28.9126 15.6 29.2077 15.1192 28.5063 14.8234
+\c 28.5063 14.8234 28.2481 15.0816 28.1367 14.8234
+\c 28.0261 14.5646 28.1736 14.2333 27.5459 14.344
+\c 27.5459 14.344 27.1033 13.6787 26.4757 13.9369
+\c 25.848 14.1958 26.0693 14.6759 26.4757 14.8234
+\c 26.882 14.9703 27.1402 15.3405 27.2884 15.6369
+\c 27.436 15.9313 27.436 16.4859 26.8076 16.337
+\c 26.1799 16.1895 25.9955 15.4887 25.8104 14.7866
+\c 25.8104 14.7866 25.626 14.4546 25.2565 14.5284
+\c 25.2565 14.5284 26.0324 13.3837 26.9551 13.4198
+\c 26.9551 13.4198 26.2544 12.2014 24.6288 11.6105
+\c 24.6288 11.6105 24.4444 11.8701 24.0018 11.6843
+\c 23.5578 11.4999 23.2996 12.1658 23.706 12.829
+\c 23.706 12.829 23.5578 13.051 23.7805 13.3475
+\c 24.0018 13.6425 24.1855 13.4567 24.1117 13.2368
+\c 24.1117 13.2368 24.5557 13.2368 24.5557 13.8262
+\c 24.5557 13.8262 24.2231 14.1958 23.706 13.79
+\c 23.189 13.3837 23.3365 13.1255 23.0415 12.7922
+\c 22.7457 12.4602 21.6386 12.4602 21.4903 13.1255
+\c 21.4903 13.1255 21.4173 13.4198 21.6386 13.5681
+\c 21.8598 13.7163 22.4138 13.5681 22.6358 14.7504
+\c 22.6358 14.7504 22.9308 14.5284 23.6323 14.7866
+\c 23.6323 14.7866 23.8536 13.8631 24.8514 14.1958
+\c 24.8514 14.1958 23.6698 14.5284 24.0749 15.3774
+\c 24.0749 15.3774 24.4075 15.193 25.0352 15.7469
+\c 25.6629 16.3001 25.3671 16.8178 25.1089 16.8554
+\c 24.8514 16.8909 23.6698 16.7072 23.6698 15.1192
+\c 23.6698 15.1192 22.857 15.0079 22.4138 15.3405
+\c 21.9712 15.6738 21.9712 16.0057 21.9712 16.0057
+\c 21.9712 16.0057 23.189 16.3746 23.0783 17.2242
+\c 22.9677 18.0725 21.8598 17.5931 21.8223 16.5221
+\c 21.8223 16.5221 21.269 16.2264 20.752 16.4483
+\c 20.752 16.4483 21.0102 15.9313 21.7492 15.9313
+\c 21.7492 15.9313 21.6386 15.3036 22.2294 15.0079
+\c 22.2294 15.0079 21.269 14.9341 21.0477 13.6049
+\c 21.0477 13.6049 20.6045 13.1624 20.1981 13.4943
+\c 19.7917 13.8262 19.903 14.122 19.903 14.122
+\c 19.903 14.122 20.8995 14.4922 21.0102 15.3405
+\c 21.1215 16.1895 20.3456 15.8575 20.3456 15.8575
+\c 20.3456 15.8575 20.8633 15.6738 20.5669 15.1192
+\c 20.2718 14.5646 19.7186 14.4177 20.1612 15.4887
+\c 20.1612 15.4887 19.7548 15.3036 19.5704 14.5646
+\c 19.3853 13.8262 19.3491 12.756 20.752 12.8666
+\c 20.752 12.8666 21.0846 12.7184 21.1577 12.6446
+\c 21.2322 12.5709 21.6386 12.129 22.3031 12.2758
+\c 22.3031 12.2758 22.3031 11.9807 21.6754 11.8325
+\c 21.0477 11.6843 20.2718 11.4999 19.5335 11.7588
+\c 18.7945 12.0176 17.466 12.9035 20.0137 16.6703
+\c 20.0137 16.6703 20.9364 16.5221 21.7492 18.5527
+\l 22.0074 18.7747
+\c 22.0074 18.7747 22.672 17.7413 24.038 18.1101
+\c 24.038 18.1101 24.2231 16.9278 25.8842 17.4448
+\c 25.8842 17.4448 25.9955 16.1895 27.3984 16.9654
+\c 27.3984 16.9654 27.5459 16.337 28.2481 16.2264
+\c 28.9495 16.1171 29.3921 16.5965 29.3921 16.5965
+\c 29.3921 16.5965 29.8006 16.2407 30.2056 16.1895
+\m 20.4938 21.5074
+\c 20.4938 21.5074 20.4938 22.3564 21.0102 22.7252
+\c 21.5272 23.0954 22.1549 22.4302 20.4938 21.5074
+\m 20.0505 21.4336
+\c 20.0505 21.4336 19.8286 21.2486 19.2016 21.2861
+\c 19.2016 21.2861 19.4591 20.9897 19.9761 20.9897
+\c 19.9761 20.9897 19.9399 19.1811 21.8598 19.4392
+\c 21.8598 19.4392 21.5648 18.9229 21.3059 18.7747
+\c 21.0477 18.6265 20.3087 18.7747 20.5669 18.0357
+\c 20.5669 18.0357 20.8258 18.5527 21.269 18.3321
+\c 21.269 18.3321 20.8633 17.5562 20.1981 17.1498
+\c 20.1981 17.1498 20.5669 20.7322 17.2816 22.5039
+\c 17.2816 22.5039 18.1675 22.8728 18.7583 21.7656
+\c 18.7583 21.7656 18.9427 21.9507 18.7583 22.3933
+\c 18.7583 22.3933 19.7917 22.7997 20.1612 23.9068
+\c 20.1612 23.9068 20.4323 23.2669 21.1946 23.2054
+\c 21.1946 23.2054 20.2356 22.9841 20.0505 21.4336
+\m 17.1334 23.8344
+\c 17.1334 23.8344 18.3888 23.7231 19.054 24.6827
+\c 19.054 24.6827 19.2753 24.4976 19.8286 24.4976
+\c 19.8286 24.4976 18.9427 24.4976 18.315 22.7997
+\c 18.315 22.7997 17.8348 22.6153 17.3554 23.0585
+\c 16.8745 23.5011 17.1334 23.8344 17.1334 23.8344
+\m 18.537 25.1629
+\c 19.0165 25.0161 19.0165 24.277 17.3178 24.277
+\c 17.3178 24.277 18.0561 25.3104 18.537 25.1629
+\m 33.1344 29.052
+\c 33.2826 29.4953 33.3802 29.5444 33.5769 29.5444
+\c 33.7737 29.5444 34.0701 29.0021 32.937 27.6245
+\c 32.937 27.6245 32.9868 28.6087 33.1344 29.052
+\m 17.3301 45.1021
+\c 19.2992 43.8713 19.3033 41.9596 16.936 43.034
+\c 15.8534 43.5271 12.8987 46.2844 12.8987 46.2844
+\c 12.8987 46.2844 14.9669 46.5788 17.3301 45.1021
+\m 18.6599 39.3423
+\c 19.5451 39.0465 19.9399 38.5541 19.5451 38.3075
+\c 19.1517 38.0616 16.936 38.899 15.9511 39.7849
+\c 15.9511 39.7849 17.7734 39.6373 18.6599 39.3423
+\m 17.5268 35.2551
+\c 18.3635 34.8125 18.0691 34.2709 17.6252 34.3201
+\c 17.1826 34.3692 15.8036 34.7135 15.1151 35.8951
+\c 15.1151 35.8951 16.6908 35.6984 17.5268 35.2551
+\m 17.8724 31.071
+\c 18.6101 30.8736 19.4939 30.1229 18.0691 30.3818
+\c 16.9859 30.5785 16.6908 30.9221 16.6908 30.9221
+\c 16.6908 30.9221 17.1334 31.2677 17.8724 31.071
+\m 41.5778 29.7411
+\c 41.2458 30 42.3168 30.3688 42.6856 29.6312
+\c 42.6856 29.6312 41.9104 29.483 41.5778 29.7411
+\m 43.2395 33.9881
+\c 42.575 33.8399 42.4643 34.4676 43.2395 34.6896
+\c 44.0148 34.9102 44.4949 34.7633 44.4949 34.7633
+\c 44.4949 34.7633 43.9041 34.1363 43.2395 33.9881
+\m 43.092 38.5664
+\c 42.5005 38.2713 42.0579 38.3444 42.5381 39.0465
+\c 43.0182 39.748 44.1261 39.6742 44.6056 39.5636
+\c 44.6056 39.5636 43.6821 38.8621 43.092 38.5664
+\m 43.424 43.8105
+\c 41.726 42.7389 41.6884 43.8836 42.4643 44.7333
+\c 43.2395 45.5823 45.1595 46.6532 46.1567 46.4688
+\c 46.1567 46.4688 45.1226 44.8801 43.424 43.8105
+\m 48.1504 33.9266
+\c 47.7078 33.6801 46.7721 33.8775 47.5111 34.4676
+\c 48.2494 35.0584 49.7753 34.9102 49.7753 34.9102
+\c 49.7753 34.9102 48.5937 34.1725 48.1504 33.9266
+\m 49.2835 39.1449
+\c 48.1504 38.6039 48.2986 39.539 49.037 40.0813
+\c 49.7753 40.6229 50.7602 40.9665 51.4985 40.918
+\c 51.4985 40.918 50.4153 39.6872 49.2835 39.1449
+\m 50.8592 44.9539
+\c 49.7753 44.3146 49.5287 45.2503 50.7602 46.0877
+\c 51.991 46.9237 53.4185 47.5145 53.4185 47.5145
+\c 53.4185 47.5145 51.9418 45.5953 50.8592 44.9539
+\m 57.0617 54.7026
+\c 57.5541 54.3091 57.604 53.1275 56.324 51.3551
+\c 55.0434 49.5834 53.5168 47.8594 53.5168 47.8594
+\c 52.2861 47.5145 48.9871 45.6929 49.6278 44.7572
+\c 50.2677 43.8215 51.3503 44.5113 52.8277 45.6929
+\c 54.305 46.8745 54.7968 47.2201 54.7968 47.2201
+\c 55.4867 47.1703 55.2401 46.0877 54.3542 44.5605
+\c 53.4677 43.0353 51.9418 41.2622 51.9418 41.2622
+\c 51.9418 41.2622 50.711 41.558 49.332 40.7206
+\c 47.9537 39.8846 47.7078 38.2597 49.332 38.5056
+\c 50.9569 38.7515 52.6802 40.6707 52.6802 40.6707
+\c 53.5667 40.1298 53.4677 39.1449 52.7293 38.0616
+\c 51.991 36.979 50.1202 35.3043 50.1202 35.3043
+\c 49.332 35.6492 48.3471 35.4033 47.5111 34.9102
+\c 46.6737 34.4191 46.477 33.4827 47.9045 33.4827
+\c 49.332 33.4827 50.8592 34.5666 50.8592 34.5666
+\c 52.0402 32.4001 49.0861 31.1195 49.0861 31.1195
+\c 49.0861 31.1195 48.5199 31.2923 47.9291 31.2923
+\c 47.3383 31.2923 47.1655 30.9221 47.1655 30.9221
+\c 47.8553 31.2677 48.5937 31.071 48.5937 31.071
+\c 48.5937 31.071 48.7419 30.6769 47.3144 30.2828
+\c 45.8862 29.8894 46.1567 31.071 46.1567 31.071
+\c 47.5603 33.4711 45.751 34.652 45.751 34.652
+\c 46.5993 35.0953 47.7809 36.7202 47.8553 37.8287
+\c 47.9291 38.9366 47.0801 38.5664 47.0801 38.5664
+\c 47.227 39.6742 46.1943 39.8962 46.1943 39.8962
+\c 47.3383 40.4501 48.7419 42.5545 49.0738 44.6964
+\c 49.4065 46.8377 47.744 47.1703 47.744 47.1703
+\c 47.744 47.1703 50.8825 50.5307 53.3201 52.9308
+\c 55.5208 55.0987 56.5474 54.9457 56.7256 54.8972
+\c 55.9108 55.2059 54.6124 54.6657 54.6124 54.6657
+\c 54.9081 55.3316 56.9756 56.5132 57.8253 57.436
+\c 58.6743 58.358 58.2679 58.8389 57.9353 58.8027
+\c 57.604 58.7651 57.5664 58.2467 57.5664 58.2467
+\c 56.4224 57.5097 53.1357 55.294 51.8428 53.4847
+\c 50.5512 51.6754 46.8213 47.2078 46.8213 47.2078
+\c 44.4949 46.7639 42.0579 45.2503 41.7622 43.8836
+\c 41.4671 42.5183 42.2055 42.5183 43.9779 43.8836
+\c 45.751 45.2503 47.1908 46.8008 47.1908 46.8008
+\c 48.8525 46.4313 48.6674 44.7709 47.744 43.0708
+\c 46.8213 41.3735 45.1964 40.155 45.1964 40.155
+\c 45.1964 40.155 44.4212 40.155 43.0182 39.748
+\c 41.6146 39.3423 41.2827 38.0493 42.6118 38.0493
+\c 43.941 38.0493 45.8985 39.6004 45.8985 39.6004
+\c 46.4893 39.416 47.117 38.7883 46.6737 37.4954
+\c 46.2305 36.2031 44.8637 35.0215 44.8637 35.0215
+\c 42.2792 35.5754 41.8366 33.9137 42.8331 33.6917
+\c 43.831 33.4711 45.3077 34.5052 45.3077 34.5052
+\c 45.9354 34.4307 46.5631 33.5448 45.7134 32.1044
+\c 44.8637 30.6646 43.2395 29.8149 43.2395 29.8149
+\c 42.5005 30.4795 41.3934 30.7021 41.2458 29.7411
+\c 41.0976 28.7822 43.6821 29.1503 43.6821 29.1503
+\c 44.0892 28.5588 43.941 27.7481 42.575 26.9353
+\c 41.2089 26.1232 39.4365 26.6027 39.5103 27.046
+\c 39.584 27.4886 40.7657 27.0829 40.7657 27.0829
+\c 39.2514 27.9687 38.55 27.1197 39.399 26.3814
+\c 40.2486 25.6424 41.1721 25.7161 41.1721 25.7161
+\c 41.1721 23.7969 39.067 22.8366 37.9223 24.0551
+\c 36.7775 25.2735 37.2577 28.7446 37.2577 28.7446
+\c 37.2577 28.7446 39.6947 30.3688 40.7288 32.3263
+\c 41.7622 34.2839 40.7288 36.1287 40.1749 37.311
+\c 39.6209 38.4919 38.3287 40.9303 39.3252 42.9971
+\c 40.3224 45.0652 42.9076 49.9399 47.7078 53.4847
+\c 52.508 57.0289 55.6465 58.6169 55.6465 58.6169
+\c 47.3014 55.3678 41.8735 48.8314 39.6209 44.9177
+\c 37.3684 41.004 37.9223 38.4919 38.9564 36.9422
+\c 39.9904 35.391 40.9501 33.286 39.7323 31.588
+\c 38.5131 29.8894 37.1839 29.4092 37.1839 29.4092
+\c 37.5896 31.9575 38.2173 37.0152 36.7407 40.0068
+\c 35.264 42.9971 33.7866 44.29 31.8667 44.9915
+\c 29.946 45.6929 28.7275 44.9177 28.7275 44.9177
+\c 24.4444 45.7674 24.26 42.5183 24.26 42.5183
+\c 25.626 42.8871 26.6847 42.8386 26.9305 42.6904
+\c 27.1771 42.5422 26.8322 42.3448 26.8322 42.3448
+\c 25.503 42.1481 25.0106 41.3114 25.0106 41.3114
+\l 26.6847 41.3114
+\c 28.7036 41.0156 29.9344 38.2583 29.3921 36.1423
+\c 28.8512 34.0243 27.3246 32.1044 24.7654 31.5136
+\c 22.2048 30.9221 21.614 31.9077 21.5648 32.8434
+\c 21.5156 33.7791 22.2048 34.1227 23.2382 34.6158
+\c 24.2716 35.1076 24.7654 35.8459 24.8631 37.2734
+\c 24.9614 38.7009 23.5339 42.0006 21.1215 45.447
+\c 18.7084 48.8935 11.6686 54.0626 9.5021 55.2442
+\c 7.3356 56.4258 6.1055 56.7707 6.1055 56.7707
+\c 6.1055 56.7707 10.0929 55.2442 16.5918 49.582
+\c 23.09 43.9212 24.1739 38.9973 24.1739 37.7666
+\c 24.1739 36.5358 22.9923 35.9941 22.9923 35.9941
+\c 20.1366 34.5168 20.9248 32.8919 21.1215 32.4985
+\c 21.3182 32.1044 21.3674 31.9077 21.3674 31.9077
+\c 20.8749 31.9575 19.8415 32.547 19.8415 32.547
+\c 19.9891 29.5943 22.1549 29.2985 22.1549 29.2985
+\c 18.1176 28.0671 18.4134 25.4573 18.4134 25.4573
+\c 16.936 25.2114 16.7885 23.7354 16.7885 23.7354
+\c 14.4252 24.818 15.9511 27.046 15.9511 27.046
+\c 17.0596 27.046 19.164 27.662 18.9058 28.3621
+\c 18.6476 29.065 17.798 28.5964 17.798 28.5964
+\c 18.537 28.5964 18.537 28.0794 17.8724 27.9318
+\c 17.2072 27.785 16.6908 27.8205 16.6908 27.8205
+\c 16.8008 28.1538 17.4285 28.5233 17.4285 28.5233
+\c 16.7646 28.3389 16.3575 27.8574 16.3575 27.8574
+\c 16.1362 27.785 13.9943 28.1538 14.1794 29.2241
+\c 14.3645 30.2944 15.3241 30.9972 15.3241 30.9972
+\c 16.1362 30.4057 17.5029 29.9256 18.6101 29.9631
+\c 19.7186 30 19.2753 31.071 18.1306 31.3285
+\c 16.9859 31.588 16.2468 31.2185 16.2468 31.2185
+\c 13.3297 32.6576 13.441 34.6158 13.441 34.6158
+\l 13.1828 34.8002
+\c 12.6658 32.1419 15.1397 31.1454 15.1397 31.1454
+\c 14.4751 30.6646 13.8105 29.4461 13.8105 29.4461
+\c 10.3026 29.0759 7.6436 33.286 7.7911 34.2839
+\c 7.9393 35.2804 8.7883 35.169 8.7883 35.169
+\c 12.0012 32.547 12.8502 33.7286 12.8502 34.0619
+\c 12.8502 34.3938 12.5552 34.5414 12.5552 34.5414
+\c 12.5176 34.247 12.5552 33.8775 11.8899 34.1363
+\c 11.2246 34.3938 10.3763 35.169 10.3763 35.169
+\c 11.6317 35.391 12.075 34.8002 12.075 34.8002
+\l 12.4438 34.8002
+\c 11.6317 35.7974 9.9331 35.6492 9.9331 35.6492
+\c 7.311 37.9387 6.4989 39.8962 6.5726 40.4501
+\c 6.6464 41.004 7.311 40.6707 7.311 40.6707
+\c 7.311 40.6707 8.7515 39.748 9.8217 39.1947
+\c 10.8934 38.6401 12.7758 38.3444 12.9602 39.0103
+\c 13.1453 39.6742 12.5552 39.7111 12.5552 39.7111
+\c 12.5552 39.7111 12.8502 39.4891 12.5552 39.3054
+\c 12.2587 39.1203 11.7055 39.2678 11.7055 39.2678
+\c 9.0841 40.3019 8.0869 41.4835 8.0869 41.4835
+\c 11.0778 41.2622 12.2225 40.1919 12.2225 40.1919
+\l 12.5552 40.155
+\c 10.8196 41.8892 7.2748 41.8892 7.2748 41.8892
+\c 2.6959 45.0652 1.3291 47.9455 1.92 48.7583
+\c 2.5108 49.5697 3.3604 49.2378 3.3604 49.2378
+\c 6.6464 44.6226 9.3423 44.5113 9.7855 44.7333
+\c 10.2281 44.9539 9.7855 45.4347 9.7855 45.4347
+\c 9.9699 44.9177 9.2309 45.1021 9.2309 45.1021
+\c 6.462 46.2468 5.2066 48.6476 5.2066 48.6476
+\c 6.0556 48.7214 7.0897 47.9824 7.4599 47.8717
+\c 7.828 47.7604 8.1231 47.6866 8.1231 47.6866
+\c 7.7174 48.1306 3.8037 49.6804 3.8037 49.6804
+\c 2.6959 51.0109 1.1078 53.8536 1.4774 54.3337
+\c 1.8462 54.8132 3.1016 54.4075 4.0988 53.7798
+\c 5.096 53.1521 8.1975 50.4569 8.1975 50.4569
+\c 10.1544 48.4625 11.4473 46.3951 11.4473 46.3951
+\c 10.8558 46.2468 10.2281 45.1021 10.8558 43.5148
+\c 11.4842 41.9268 13.6992 40.4125 14.0318 40.2274
+\c 14.3645 40.0444 14.2531 39.6742 14.2531 39.6742
+\c 13.5517 39.526 13.1453 38.8252 13.1828 37.9387
+\c 13.2197 37.0528 13.5148 35.9812 15.4716 34.8002
+\c 17.4285 33.6193 18.5732 34.0988 18.5732 34.0988
+\c 18.8689 34.5414 18.4625 35.169 17.2816 35.7974
+\c 16.1 36.4251 14.7695 36.0918 14.7695 36.0918
+\c 13.7368 36.9422 13.6254 38.1975 13.8105 38.9734
+\c 13.9943 39.748 14.8808 39.6004 14.8808 39.6004
+\c 16.3951 38.3089 20.6045 37.2003 20.0874 38.6401
+\c 19.5704 40.0813 15.3979 40.2274 15.3979 40.2274
+\c 14.8439 40.3757 11.8899 43.034 11.4473 44.4382
+\c 11.0033 45.8411 11.8161 46.1738 11.8161 46.1738
+\c 15.029 43.1077 16.949 42.3332 18.0937 42.3332
+\c 19.2378 42.3332 20.3087 43.663 17.2072 45.4347
+\c 14.1049 47.2078 12.3332 46.8745 12.3332 46.8745
+\c 11.6317 47.6866 9.9331 50.7882 7.2748 53.4847
+\c 4.6158 56.1799 1.071 57.6204 0.8121 57.8417
+\c 0.5539 58.0637 0.9603 58.2467 0.9603 58.2467
+\l 0.8866 58.6538
+\c 0.4064 58.4687 0 57.8786 0 57.8786
+\c 4.3945 55.8111 7.311 51.5272 7.311 51.5272
+\c 6.6464 52.1925 4.1732 54.4819 2.5845 54.8508
+\c 0.9972 55.2203 0.7015 54.4819 1.2923 52.7464
+\c 1.8831 51.0109 3.1384 49.5342 3.1384 49.5342
+\c 0.6284 49.903 0.5908 47.5029 2.215 45.4347
+\c 3.8406 43.3673 6.4251 40.9303 6.4251 40.9303
+\c 5.7974 40.4125 6.0556 39.0465 6.7946 37.8656
+\c 7.533 36.684 8.3451 35.5754 8.3451 35.5754
+\c 8.3451 35.5754 6.8315 34.9846 7.4223 33.1023
+\c 8.0131 31.2185 9.5267 29.8518 9.5267 29.8518
+\c 9.5267 29.8518 8.6736 29.7247 8.899 28.2276
+\c 9.108 26.837 10.8804 25.8514 10.8804 25.8514
+\c 10.8804 25.8514 9.8593 24.8672 11.0778 23.6118
+\c 12.2963 22.3564 13.8836 22.3195 13.8836 22.3195
+\c 12.1481 21.6174 11.5204 19.291 11.6317 18.0357
+\c 11.7424 16.781 12.1119 14.8979 11.5942 13.9738
+\c 11.0778 13.051 10.9303 12.5347 10.9303 12.5347
+\c 13.1084 12.0545 14.2162 14.7128 14.2162 14.7128
+\c 14.3645 13.6049 14.7333 13.0141 14.5482 13.0141
+\c 14.3645 13.0141 14.1425 13.1992 14.1425 13.1992
+\c 13.6254 11.9432 11.0778 11.0819 11.0778 11.0819
+\c 10.5368 10.8852 10.2896 10.1462 10.2896 10.1462
+\l 9.108 10.737
+\c 9.108 10.737 9.8463 11.7711 10.5853 13.691
+\c 11.3237 15.611 10.9303 17.4824 9.9454 17.7276
+\c 8.9605 17.9742 8.0746 16.9401 7.9264 15.0202
+\c 7.7788 13.1002 8.7637 10.9829 8.7637 10.9829
+\c 7.8765 12.1153 5.9572 15.1684 5.9572 15.1684
+\c 8.1231 17.3342 9.108 19.944 9.0096 21.2731
+\c 8.9297 22.3537 7.9264 22.7505 7.0405 22.5538
+\c 6.154 22.3564 5.0707 21.0266 5.0707 19.6974
+\c 5.0707 18.369 6.5481 18.2699 6.893 19.4024
+\c 7.2372 20.5348 6.893 21.4698 6.893 21.4698
+\c 6.9428 20.3367 6.4005 18.8601 6.0556 18.9598
+\c 5.7114 19.0574 5.7114 19.4024 5.8097 20.0423
+\c 5.9081 20.6816 6.7946 22.3059 7.7788 22.0607
+\c 8.7637 21.8148 8.567 20.5348 8.1729 19.3033
+\c 7.7788 18.0725 5.7599 15.5126 5.7599 15.5126
+\c 0.935 17.7276 1.8708 21.0266 2.3632 21.323
+\c 2.8557 21.6174 3.1999 21.0757 3.1999 21.0757
+\c 2.8557 19.8456 3.8891 18.5664 4.5297 18.6633
+\c 5.1643 18.7617 4.7756 19.3033 4.7756 19.3033
+\c 4.333 18.6633 3.2983 19.9932 3.6432 20.2882
+\c 3.9881 20.584 4.7265 19.5991 4.7265 19.5991
+\c 4.6281 20.2391 3.4957 21.323 3.4957 21.323
+\c 2.954 24.178 3.1999 27.3779 4.7756 26.8861
+\c 6.3513 26.393 6.7946 22.7505 6.7946 22.7505
+\c 6.9415 26.9353 4.1848 28.7077 2.954 26.9353
+\c 1.7226 25.1629 2.8557 21.9623 2.8557 21.9623
+\c 1.2308 22.5538 0.3442 20.8784 1.28 18.369
+\c 2.2157 15.8575 5.4156 14.8234 5.4156 14.8234
+\c 6.4989 12.2136 8.2221 10.9829 8.2221 10.9829
+\l 8.2713 10.737
+\c 3.9881 12.7068 1.0341 10.4419 0.64 9.1128
+\c 0.2466 7.7836 1.28 7.8806 1.28 7.8806
+\c 1.28 7.8806 -0.0499 6.2578 0.8866 5.6171
+\c 2.1412 4.7579 3.9389 6.1096 3.9389 6.1096
+\c 4.4314 5.5187 5.6615 6.0597 5.6615 6.0597
+\c 5.6615 6.0597 2.8557 3.1548 4.333 2.0224
+\c 5.9231 0.8032 8.1729 2.8598 8.1729 2.8598
+\c 7.828 0.7916 8.5172 0.4966 9.8463 0.6441
+\c 11.1762 0.7916 12.6528 2.1713 12.6528 2.1713
+\c 12.6528 2.1713 12.2587 0.2015 13.2436 0.0533
+\c 14.8569 -0.1878 16.1485 1.5306 16.1485 1.5306
+\c 16.2926 -0.4296 18.2447 -0.0225 19.3949 1.3087
+\l 24.6875 3.3597
+\c 24.7592 3.3488 24.8337 3.3454 24.9122 3.3522
+\c 25.3787 3.3905 25.628 3.5599 25.7592 3.7757
+\l 26.9319 4.2292
+\c 26.9585 4.1199 26.9818 4.0093 27.0016 3.8986
+\l 21.7553 0.3046
+\l 21.9643 0
+\l 27.0624 3.4929
+\c 27.1354 2.8823 27.1279 2.368 27.1279 2.368
+\c 29.7862 4.0407 27.7679 6.2072 27.7679 6.2072
+\c 29.7862 5.9122 29.5403 3.1548 29.5403 3.1548
+\c 30.155 3.3468 30.4993 3.7347 30.6714 4.1848
+\l 41.5313 3.7743
+\l 41.5532 3.6972
+\c 41.1529 3.2662 39.6332 1.2349 39.6332 1.2349
+\c 41.8482 2.6624 47.018 3.943 47.018 3.943
+\c 42.6856 4.7797 39.8791 6.0597 39.8791 6.0597
+\c 39.9611 5.4894 40.9856 4.4819 41.3367 4.1507
+\l 30.7718 4.5502
+\c 30.806 4.7346 30.8169 4.9232 30.8128 5.1083
+\l 44.137 9.5335
+\c 44.0592 9.3184 43.8078 8.6401 43.5223 8.0288
+\c 43.1781 7.2912 43.2272 6.6013 43.2272 6.6013
+\c 43.8672 7.7338 49.6776 11.4268 49.6776 11.4268
+\c 46.0829 11.0819 41.504 11.0327 41.504 11.0327
+\c 42.4957 10.4125 43.2914 10.0075 43.7463 9.793
+\l 30.7793 5.486
+\c 30.7377 5.779 30.6605 6.0474 30.5737 6.2578
+\l 30.6892 6.1123
+\l 38.5527 12.4138
+\l 38.2549 9.6045
+\l 42.0456 15.3658
+\l 35.6458 12.5599
+\l 37.9974 12.4425
+\l 30.4945 6.4292
+\c 30.0874 7.2236 29.1053 8.0855 27.8663 8.177
+\c 26.5371 8.2747 26.143 8.6196 26.143 8.6196
+\c 26.143 8.6196 27.9154 9.3095 29.9829 10.0485
+\c 32.0511 10.7861 33.8235 11.9671 33.8734 13.9874
+\c 33.9219 16.0057 32.1986 16.2509 32.1986 16.2509
+\c 34.7101 16.99 35.0051 19.9194 35.0051 19.9194
+\c 36.113 20.7322 36.113 22.4302 36.113 22.4302
+\c 37.0733 21.4712 38.2549 21.1379 38.2549 21.1379
+\c 38.2549 20.3989 38.6975 19.9932 38.9564 19.8818
+\c 39.2139 19.7712 39.6578 20.1045 39.6578 20.1045
+\c 39.6578 20.1045 39.067 20.1045 38.8826 20.5095
+\c 38.6975 20.9159 38.8088 21.2124 39.6209 20.9159
+\c 40.433 20.6209 41.0976 19.8456 41.0976 19.8456
+\c 40.2855 21.7287 38.9564 21.4336 38.9564 21.4336
+\c 38.8826 22.4302 37.996 22.8366 37.996 22.8366
+\c 38.6237 22.2451 38.5868 21.5805 38.5868 21.5805
+\c 34.7101 23.4274 35.2264 26.9722 35.2264 26.9722
+\c 36.0761 28.302 35.8179 29.8149 35.1158 29.4461
+\c 34.4143 29.0759 35.042 27.0829 34.5987 25.6424
+\c 34.1561 24.2033 32.7157 22.9472 32.7157 22.9472
+\c 32.6419 23.4274 32.8632 26.8984 32.8632 26.8984
+\c 32.8632 26.8984 33.4909 27.7481 33.8973 28.5588
+\c 34.3037 29.3723 34.1186 30.0738 33.3072 29.8894
+\c 32.4944 29.7043 32.7894 27.9318 32.1986 26.824
+\c 31.6085 25.7161 30.0205 24.4976 30.0205 24.4976
+\c 29.8354 25.1998 30.1311 27.1935 30.1311 27.1935
+\c 32.3093 28.4127 32.4575 30.2944 31.9404 30.4795
+\c 31.4234 30.6646 31.1277 30.0376 31.1277 30.0376
+\c 31.4234 30.1475 32.0511 30.0376 31.6085 29.0759
+\c 31.1645 28.1163 30.4631 27.895 30.4631 27.895
+\c 30.4631 28.2651 30.6851 29.0759 30.8695 29.4092
+\c 31.0539 29.7411 30.7957 29.6681 30.7957 29.6681
+\c 30.2418 29.3723 30.3156 28.3758 29.8354 27.6743
+\c 29.3559 26.9722 26.6232 26.2701 26.6232 26.2701
+\l 27.0665 27.8574
+\c 27.0665 27.8574 29.0971 28.5588 30.0574 29.6312
+\c 30.5287 30.155 30.5375 30.739 30.2787 30.8128
+\c 30.0205 30.8859 29.946 30.6646 29.946 30.6646
+\c 29.9829 29.5567 28.5431 29.0397 28.3218 29.1135
+\c 28.1005 29.1872 28.7275 29.9631 28.7275 29.9631
+\c 27.5835 29.1503 27.9523 28.929 27.9523 28.929
+\c 24.0018 26.8609 23.2259 27.7481 23.2259 27.7481
+\l 24.5557 29.1503
+\c 27.9892 29.8149 29.7247 31.0341 29.5403 31.6249
+\c 29.3559 32.2157 28.4701 31.6249 28.4701 31.6249
+\c 28.4701 31.6249 28.8758 31.6611 29.0233 31.588
+\c 29.1708 31.5136 28.9495 31.2185 28.9495 31.2185
+\c 27.3984 30.2944 26.7707 30.2944 26.7707 30.2944
+\c 26.6601 30.8497 27.6941 31.4767 27.6941 31.4767
+\c 25.9586 30.6646 26.3281 30.0376 26.3281 30.0376
+\c 26.3281 30.0376 24.6288 29.5567 22.6358 30.0738
+\c 20.6407 30.5908 20.5669 31.8093 20.5669 31.8093
+\c 21.0102 31.4029 23.1159 30.517 25.8842 31.5136
+\c 28.6538 32.5108 30.4269 34.5052 30.7219 37.0152
+\c 31.017 39.526 28.7275 41.1147 28.1736 41.558
+\c 27.6197 42.0006 27.3246 42.0743 27.3246 42.0743
+\c 27.5835 42.1856 27.9154 42.3332 28.6913 41.8523
+\c 29.4666 41.3735 29.9829 41.2622 29.9829 41.2622
+\c 30.1311 41.6686 30.0574 42.0374 29.651 42.1481
+\c 29.2453 42.2594 28.3218 42.5183 28.1367 42.7389
+\c 27.9523 42.9609 27.8048 43.1446 27.1771 43.2559
+\c 26.5494 43.3673 25.0352 43.4041 25.0352 43.4041
+\c 25.5522 44.2531 26.6601 44.5851 27.731 44.6226
+\c 28.8013 44.6595 28.4701 44.3262 28.9126 43.8105
+\c 29.3559 43.2935 30.3156 43.4041 30.3156 43.4041
+\c 30.0574 43.4779 30.0574 43.6992 30.0574 43.6992
+\l 30.2056 43.8467
+\l 30.0943 43.9574
+\c 29.9829 44.0687 29.9092 43.663 29.7247 43.6992
+\c 29.5403 43.7354 29.0602 44.1056 29.0602 44.1056
+\c 29.2077 44.4382 29.5772 44.1787 29.5772 44.1787
+\c 29.9092 44.1056 29.7992 44.2531 29.7992 44.2531
+\c 29.2077 44.5489 29.2077 44.7333 29.2077 44.7333
+\c 29.5772 45.0284 30.4631 44.9915 30.4631 44.9915
+\c 32.7157 44.6964 34.2299 43.2559 35.8917 40.7445
+\c 37.5528 38.2344 37.3315 34.5414 37.1471 32.4732
+\c 36.962 30.4057 36.8882 27.5261 36.962 25.7906
+\c 37.0357 24.0551 37.7379 22.4302 39.9904 22.9472
+\c 40.3176 23.0223 40.5772 23.1357 40.7868 23.2737
+\c 42.1003 22.8379 43.0299 21.8646 43.0299 21.8646
+\c 41.5532 21.5689 39.9904 22.9472 39.9904 22.9472
+\l 39.7808 22.7505
+\c 41.504 20.6332 43.9164 20.9296 43.9164 20.9296
+\c 44.163 20.2889 44.163 19.8955 42.8823 19.5506
+\c 41.603 19.2057 39.9775 19.9932 39.9775 19.9932
+\c 39.8791 19.7473 39.4365 19.5991 39.4365 19.5991
+\c 41.2089 18.2208 42.7348 18.0725 43.6705 19.0083
+\c 44.6056 19.944 44.0639 21.1263 44.0639 21.1263
+\c 46.6239 21.6174 45.8364 23.2928 45.8364 23.2928
+\c 45.8364 23.2928 48.0029 23.3898 48.7419 24.3747
+\c 49.7002 25.654 48.3471 26.837 48.3471 26.837
+\c 48.3471 26.837 49.0861 27.1812 50.2186 28.4127
+\c 51.3503 29.6428 50.1202 30.7254 50.1202 30.7254
+\c 52.5818 33.4827 51.0553 34.8617 51.0553 34.8617
+\c 51.7943 35.2551 53.1726 37.4708 53.6152 38.899
+\c 54.0585 40.3272 53.0244 41.0156 53.0244 41.0156
+\c 53.0244 41.0156 54.206 42.1481 55.4375 44.8077
+\c 56.3076 46.686 55.1909 48.0561 55.1909 48.0561
+\c 56.0283 48.8443 57.604 51.9466 57.8499 53.3242
+\c 58.0958 54.7026 57.0617 54.7026 57.0617 54.7026
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian125.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian125.pgf
new file mode 100644
index 0000000000..023a8c01cc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian125.pgf
@@ -0,0 +1,375 @@
+\m 19.9798 33.202
+\c 19.9798 33.202 20.2749 31.5033 18.5756 31.6509
+\c 16.8776 31.7991 15.8442 32.6849 14.5881 32.4623
+\c 14.5881 32.4623 15.1796 32.8325 15.8189 32.8817
+\c 15.8189 32.8817 14.7363 33.719 13.1114 31.9951
+\c 13.1114 31.9951 13.899 33.5216 15.0813 33.5216
+\c 16.2629 33.5216 16.9022 33.0299 17.6412 32.6358
+\c 18.3788 32.2424 19.6595 31.7007 19.9798 33.202
+\s
+\m 18.5762 29.386
+\c 18.5762 29.386 17.5913 30.6666 17.0504 30.7643
+\c 17.0504 30.7643 16.6078 30.7151 16.4097 30.8135
+\c 16.213 30.9125 15.8688 31.1092 15.1304 31.0116
+\c 14.3921 30.9125 13.8996 30.8135 13.5055 30.321
+\c 13.5055 30.321 13.358 30.9617 14.638 31.4542
+\c 15.9186 31.9459 16.6071 31.6509 16.7546 31.0116
+\c 16.7546 31.0116 17.4937 31.0601 17.9363 30.5669
+\c 18.3795 30.0758 18.5762 29.386 18.5762 29.386
+\s
+\m 18.0845 28.8437
+\l 17.7887 28.6968
+\l 17.4937 29.0418
+\c 17.4937 29.0418 16.6563 27.7611 15.5245 28.7952
+\c 15.5245 28.7952 15.8688 28.5493 16.4097 28.6483
+\c 16.952 28.746 17.297 29.0418 17.1487 29.4843
+\c 17.0012 29.9276 16.1638 30.5184 15.1304 29.4359
+\c 15.1304 29.4359 14.8354 29.2378 14.4898 29.2876
+\l 14.3921 28.9919
+\l 13.7023 28.9919
+\c 13.7023 28.9919 14.0472 29.8791 15.377 30.3716
+\c 16.7061 30.8634 17.4937 29.8791 18.0845 28.8437
+\s
+\m 18.0353 28.3034
+\c 18.0353 28.3034 16.7061 25.6929 14.1947 27.2195
+\c 14.1947 27.2195 14.778 26.9907 16.0163 27.1218
+\c 16.952 27.2195 18.0353 28.3034 18.0353 28.3034
+\s
+\m 16.8038 29.3368
+\c 16.8038 29.1743 16.6057 29.0418 16.3612 29.0418
+\c 16.116 29.0418 15.9186 29.1743 15.9186 29.3368
+\c 15.9186 29.4994 16.116 29.6326 16.3612 29.6326
+\c 16.6057 29.6326 16.8038 29.4994 16.8038 29.3368
+\s
+\m 23.0568 27.2195
+\c 23.0568 27.2195 22.3178 27.1703 21.9742 28.007
+\c 21.9742 28.007 22.2194 26.6785 22.4161 25.5461
+\c 22.6135 24.4137 22.9093 22.9855 21.7277 22.4438
+\c 21.7277 22.4438 21.3827 22.198 21.0877 22.2963
+\c 21.0877 22.2963 20.9395 21.9521 20.3487 21.9521
+\c 20.3487 21.9521 20.1028 21.8039 20.1028 21.5081
+\c 20.1028 21.5081 20.0536 21.9022 20.152 22.1474
+\c 20.152 22.1474 19.6103 22.493 19.4136 22.7888
+\c 19.4136 22.7888 18.7245 22.7396 18.2819 22.9363
+\c 17.8379 23.1344 17.4937 23.9704 18.7736 25.2497
+\c 18.7736 25.2497 18.8228 25.2497 18.6746 24.7579
+\c 18.5271 24.2654 18.232 23.7238 18.8727 23.6746
+\c 19.512 23.6255 20.0543 23.3297 20.1028 22.7396
+\c 20.1028 22.7396 20.447 22.8379 20.6437 22.6412
+\c 20.8411 22.4438 21.6286 22.4438 21.8752 23.3297
+\c 21.8752 23.3297 20.7926 22.7888 19.8077 23.8222
+\c 19.8077 23.8222 19.8562 23.9212 20.3487 23.6746
+\c 20.8411 23.4281 21.8253 23.1829 22.1211 24.3638
+\c 22.1211 24.3638 22.1211 24.9553 21.9742 25.8405
+\c 21.8253 26.7277 20.6437 31.0116 22.8601 31.3059
+\c 22.8601 31.3059 25.4692 31.7977 25.8626 31.9951
+\c 25.8626 31.9951 25.7158 31.7492 25.0758 31.5027
+\c 25.0758 31.5027 24.8784 31.2574 25.2725 31.1092
+\c 25.6659 30.9617 25.8626 30.7636 25.9617 30.2732
+\c 25.9617 30.2732 25.5676 31.2069 24.4358 30.8135
+\c 24.4358 30.8135 25.2725 30.2234 25.6174 29.83
+\c 25.6174 29.83 25.2725 29.83 24.9283 29.9768
+\c 24.5827 30.1243 24.2876 30.7151 23.4994 30.6653
+\c 22.7126 30.6175 22.3676 29.9276 22.2693 29.6811
+\c 22.2693 29.6811 22.6135 30.1735 23.5493 30.1243
+\c 24.4843 30.0758 25.0259 29.4843 25.1735 28.5493
+\c 25.1735 28.5493 25.1243 28.3034 24.7309 28.8935
+\c 24.7309 28.8935 24.4843 27.7126 23.1558 28.1552
+\c 23.1558 28.1552 24.1401 28.1552 24.2876 28.8437
+\c 24.2876 28.8437 24.2384 28.8437 24.0417 28.7952
+\c 23.8443 28.746 23.3027 28.5493 23.3526 28.9427
+\c 23.4133 29.4338 24.2384 29.0909 24.2384 29.0909
+\c 24.2384 29.0909 23.3526 29.83 22.5152 28.9427
+\c 22.5152 28.9427 22.4161 28.9919 22.5152 29.386
+\c 22.5152 29.386 22.2194 29.2876 22.1709 28.8437
+\c 22.1709 28.8437 22.0227 29.0418 22.0726 29.3368
+\c 22.0726 29.3368 21.531 28.2037 23.0568 27.2195
+\s
+\m 25.42 28.0562
+\c 25.42 28.0562 25.2226 26.3835 23.5486 26.3336
+\c 23.5486 26.3336 25.0751 26.8752 25.0751 28.0562
+\o
+\s
+\m 21.9244 22.198
+\c 21.9244 22.198 21.8752 21.0163 23.0069 19.9823
+\c 23.0069 19.9823 21.4319 20.4249 21.9244 22.198
+\s
+\m 21.8253 19.539
+\c 21.8253 19.539 21.3329 18.8013 19.9546 18.8013
+\c 18.5762 18.8013 18.0353 19.6872 18.0353 19.6872
+\c 18.0353 19.6872 18.7245 19.1449 19.8562 19.1449
+\c 20.9886 19.1449 21.1854 19.3416 21.5303 19.539
+\c 21.8752 19.7371 21.8253 19.539 21.8253 19.539
+\s
+\m 19.7579 17.0774
+\c 19.7579 17.0774 19.6595 18.4072 19.2654 18.3082
+\c 19.2654 18.3082 19.6103 18.7016 19.9552 18.3567
+\c 19.9552 18.3567 20.0536 17.8157 19.7579 17.0774
+\s
+\m 17.3946 22.198
+\c 17.3946 22.198 17.4445 21.4589 16.7061 20.9672
+\c 16.7061 20.9672 17.6412 21.0648 17.9854 21.0648
+\c 18.3304 21.0648 18.3304 21.2137 18.5271 21.1639
+\c 18.7245 21.114 19.167 20.7705 19.7579 20.7705
+\c 20.3487 20.7705 21.3336 20.8681 21.3336 20.8681
+\c 21.3336 20.8681 21.1369 20.4249 20.6936 20.2766
+\c 20.6936 20.2766 21.2844 20.3764 21.6286 20.4747
+\c 21.9742 20.5724 22.466 20.5246 22.466 20.5246
+\c 22.466 20.5246 22.3178 20.3265 21.3336 20.1298
+\c 20.3487 19.9331 20.2011 19.7364 18.6753 20.0799
+\c 17.1487 20.4249 17.0012 20.5232 15.9186 19.8347
+\c 15.9186 19.8347 15.2288 20.1797 15.9186 20.7705
+\c 16.6071 21.3606 16.9029 21.1639 17.3946 22.198
+\s
+\m 18.6746 1.1256
+\c 18.6746 1.1256 17.788 3.5872 14.2432 4.8187
+\c 10.6984 6.0488 8.8276 6.1485 6.9568 7.5261
+\c 5.086 8.9045 4.052 10.6776 4.052 10.6776
+\c 4.052 10.6776 6.2185 11.0211 4.8402 13.8782
+\c 4.8402 13.8782 5.3818 14.025 5.6277 13.7785
+\c 5.8742 13.5326 7.006 12.45 7.8919 12.2533
+\c 7.8919 12.2533 7.2034 11.3176 8.1876 10.431
+\c 9.1725 9.5451 10.6492 9.8402 10.6492 9.8402
+\c 10.6492 9.8402 10.404 8.9045 11.1908 8.5104
+\c 12.2946 7.9585 13.3573 8.856 13.3573 8.856
+\c 13.3573 8.856 13.2583 7.7235 13.6524 6.936
+\c 14.0472 6.1471 15.6714 6.5911 15.6714 6.5911
+\c 15.6714 6.5911 15.3265 4.2279 17.6405 4.6705
+\c 17.6405 4.6705 17.8871 3.6371 18.6254 3.2921
+\c 18.6254 3.2921 18.5271 2.1604 19.2654 1.1256
+\o
+\m 8.0892 3.4889
+\c 3.2644 5.6062 -0.7735 9.7917 1.2455 14.6165
+\c 1.2455 14.6165 2.4769 12.9418 4.6434 13.3844
+\c 4.6434 13.3844 5.3319 12.3516 4.6926 11.4658
+\c 4.0526 10.5785 2.2304 10.8244 1.8861 12.5975
+\c 1.8861 12.5975 1.4428 10.9235 3.7562 10.4795
+\c 3.7562 10.4795 4.4952 7.6252 7.6952 6.1485
+\c 10.8958 4.6705 17.0989 4.1794 18.232 1.0764
+\c 18.232 1.0764 12.9141 1.3722 8.0892 3.4889
+\m 4.4952 13.6323
+\c 4.4952 13.6323 2.3779 13.8782 1.9353 15.305
+\c 1.9353 15.305 3.5595 15.6 4.4952 13.6323
+\m 4.6434 17.8164
+\c 4.5444 19.539 5.3818 20.1797 5.8251 18.9495
+\c 6.2677 17.7174 6.3168 15.8958 5.4303 14.8617
+\c 5.4303 14.8617 4.7411 16.0925 4.6434 17.8164
+\m 11.8308 11.3176
+\c 12.2748 11.366 12.7672 10.7267 11.0433 10.1353
+\c 11.0433 10.1353 11.3889 11.2677 11.8308 11.3176
+\m 18.5756 6.4927
+\c 19.0188 6.4927 18.7729 5.7052 18.0346 5.6062
+\c 18.0346 5.6062 18.133 6.4927 18.5756 6.4927
+\m 3.8798 27.8472
+\c 5.1352 27.8103 6.1693 26.9982 5.6154 25.7804
+\c 5.0615 24.5619 2.9079 24.5243 1.6396 26.7769
+\c 1.6396 26.7769 2.6245 27.884 3.8798 27.8472
+\m 24.5335 14.1725
+\c 24.5335 14.1725 25.6174 13.6323 25.961 12.6467
+\c 26.3052 11.6625 25.9118 10.9726 25.2718 10.8743
+\c 24.6325 10.7759 23.1552 11.8592 24.5335 14.1725
+\m 20.5952 4.9177
+\c 20.2004 5.1131 20.5454 5.7052 21.5794 5.0646
+\c 21.5794 5.0646 20.9886 4.7196 20.5952 4.9177
+\m 20.2503 6.8363
+\c 19.6595 7.0829 20.0037 7.5753 20.5952 7.3294
+\c 21.1854 7.0829 21.3329 6.936 21.3329 6.936
+\c 21.3329 6.936 20.8411 6.5911 20.2503 6.8363
+\m 20.0037 8.7576
+\c 19.2162 8.9543 19.0687 9.7418 19.9546 9.7418
+\c 20.8411 9.7418 21.4319 9.052 21.4319 9.052
+\c 21.4319 9.052 20.7919 8.5602 20.0037 8.7576
+\m 19.9546 11.2691
+\c 19.4621 11.7601 20.0037 12.2034 20.7421 11.5634
+\c 21.4811 10.9235 21.5303 10.7759 21.5303 10.7759
+\c 21.5303 10.7759 20.447 10.7759 19.9546 11.2691
+\m 21.2345 13.5824
+\c 21.4319 14.0749 22.0719 13.4841 22.4161 13.189
+\c 22.4161 13.189 21.0378 13.09 21.2345 13.5824
+\m 13.3573 17.9633
+\c 13.3573 17.9633 13.3082 19.0472 13.7514 19.1449
+\c 14.1947 19.2439 13.7023 18.1115 13.3573 17.9633
+\m 10.1574 33.5701
+\c 10.699 33.4725 11.0433 32.7833 10.6007 32.4391
+\c 10.1574 32.0941 9.6158 32.2424 9.0742 33.1275
+\c 9.0742 33.1275 9.6158 33.6692 10.1574 33.5701
+\m 9.2224 25.251
+\c 10.0092 25.2012 10.1574 24.0687 9.3692 24.0202
+\c 8.5817 23.9704 7.9909 24.5619 7.9909 24.5619
+\c 7.9909 24.5619 8.4342 25.3009 9.2224 25.251
+\m 6.8591 32.2908
+\c 6.9076 31.601 6.2185 31.3066 5.8251 31.7492
+\c 5.431 32.1932 5.1851 33.0299 5.1851 33.0299
+\c 5.1851 33.0299 6.8093 32.9807 6.8591 32.2908
+\m 3.1169 22.8379
+\c 4.2493 23.0346 5.0369 22.5429 4.8402 21.657
+\c 4.6434 20.7711 3.0677 19.7357 1.492 21.3114
+\c 1.492 21.3114 1.9845 22.6412 3.1169 22.8379
+\m 9.4676 13.3844
+\c 9.8125 13.4349 10.3049 12.9909 9.665 12.7451
+\c 9.025 12.4985 8.7784 12.7451 8.7784 12.7451
+\c 8.7784 12.7451 9.1233 13.3359 9.4676 13.3844
+\m 14.1947 10.3326
+\c 14.6872 10.7267 15.5239 10.2336 13.8006 9.151
+\c 13.8006 9.151 13.7023 9.9385 14.1947 10.3326
+\m 17.2471 8.9543
+\c 18.133 9.5451 18.7729 8.412 17.6904 7.7235
+\c 16.6064 7.0337 16.2622 7.0829 16.2622 7.0829
+\c 16.2622 7.0829 16.3605 8.3635 17.2471 8.9543
+\m 20.2004 3.982
+\c 20.7421 4.0305 20.9886 3.342 19.3146 3.243
+\c 19.3146 3.243 19.6595 3.9328 20.2004 3.982
+\m 29.6534 8.7084
+\c 29.6049 10.9726 29.1124 10.9726 29.1124 10.9726
+\c 29.6049 6.8868 28.3741 4.5728 25.7151 2.7512
+\c 23.0568 0.9289 19.5605 1.0273 19.5605 1.0273
+\l 19.2654 1.7663
+\c 18.9697 2.5046 19.1179 2.8987 19.1179 2.8987
+\c 20.3978 2.7997 21.7768 3.8823 20.7421 4.2764
+\c 19.7087 4.6711 18.872 3.4902 18.872 3.4902
+\c 18.1821 3.6371 18.0346 5.1629 18.0346 5.1629
+\c 18.7729 5.3603 19.2162 5.9013 19.2162 6.3452
+\c 19.2162 6.7878 18.7245 7.1327 18.1821 6.5426
+\c 17.6405 5.9511 17.5913 5.0646 17.5913 5.0646
+\c 15.918 4.6213 15.918 6.5911 15.918 6.5911
+\c 16.312 6.5911 17.5422 7.0829 18.232 7.8704
+\c 18.9212 8.6579 18.4779 10.0383 17.1972 9.3969
+\c 15.918 8.7576 15.9671 7.1327 15.9671 7.1327
+\c 15.9671 7.1327 15.4248 6.8363 14.5389 7.1819
+\c 13.6524 7.5261 13.7023 8.856 13.7023 8.856
+\c 14.2432 9.0028 14.933 9.5936 15.2288 10.0383
+\c 15.5239 10.4802 14.834 11.2192 14.0472 10.7267
+\c 13.259 10.2336 13.4564 9.151 13.4564 9.151
+\c 11.5856 7.9202 11.1908 9.8402 11.1908 9.8402
+\c 13.4564 10.2835 12.8157 11.6625 11.9298 11.7117
+\c 11.0433 11.7601 10.5508 10.0868 10.5508 10.0868
+\c 8.1876 10.3326 8.5817 12.3516 8.5817 12.3516
+\c 10.6007 12.1051 10.4525 13.4349 9.665 13.6808
+\c 8.8768 13.9267 7.9417 12.6467 7.9417 12.6467
+\c 6.8093 12.7956 5.6775 14.4683 5.6775 14.4683
+\c 5.8742 14.6165 7.1043 15.9941 6.465 18.2105
+\c 5.8251 20.4255 4.1018 20.5738 3.9536 17.8656
+\c 3.8061 15.1588 4.8893 14.1725 4.8893 14.1725
+\l 4.6926 14.0749
+\c 3.4618 16.1922 1.6887 15.5024 1.6887 15.5024
+\c 0.2612 17.7174 1.2953 20.7711 1.2953 20.7711
+\c 3.1654 19.2931 5.1352 20.4747 5.2834 21.558
+\c 5.431 22.6412 4.3969 23.2812 3.2153 23.1829
+\c 2.0337 23.0838 1.393 22.1003 1.393 22.1003
+\c -0.1329 24.4635 1.5412 26.1854 1.5412 26.1854
+\c 2.772 23.7245 5.9719 24.4621 6.1194 26.1854
+\c 6.2677 27.9093 4.7411 28.2542 3.7562 28.2044
+\c 2.772 28.1552 1.8369 27.6143 1.8369 27.6143
+\c 1.8369 27.6143 1.6396 28.5493 2.2304 30.4699
+\c 2.8218 32.3885 4.9378 32.7334 4.9378 32.7334
+\c 5.3818 30.4699 7.3509 31.3066 7.4001 32.2908
+\c 7.4493 33.2758 5.1851 33.3249 5.1851 33.3249
+\c 4.9877 35.8357 6.8591 39.5294 10.0584 41.8421
+\c 13.259 44.1562 18.9212 45.2886 22.6135 42.5804
+\c 26.3059 39.8723 26.8475 36.6724 27.0442 33.5701
+\c 27.2409 30.4699 26.9957 27.466 26.9957 27.466
+\l 27.3892 27.4162
+\l 27.0934 26.9736
+\c 28.7183 22.9855 28.6691 19.8354 27.4383 17.8164
+\c 26.2075 15.7981 24.5827 15.7981 24.5827 15.7981
+\c 26.4043 16.7338 26.9957 19.1449 26.9459 20.7711
+\c 26.8967 22.3953 26.0108 25.9402 26.0108 25.9402
+\c 26.0108 25.9402 26.5033 30.1243 26.1092 34.064
+\c 25.7151 38.0022 25.1243 39.8723 23.401 41.448
+\c 21.6778 43.0237 19.6103 43.8611 16.2622 43.566
+\c 12.9141 43.2689 10.7974 40.9562 9.2224 38.1989
+\c 7.6467 35.4423 8.5817 32.9301 8.5817 32.9301
+\c 8.5817 32.9301 7.1043 32.045 6.6618 29.0418
+\c 6.2185 26.0379 7.5968 24.6595 7.5968 24.6595
+\c 5.4303 21.6072 7.1535 18.2105 8.4342 15.7476
+\c 9.7141 13.2874 13.0131 11.2691 16.2622 11.8093
+\c 19.512 12.3516 20.2995 14.2224 20.2995 14.2224
+\c 17.9854 11.6126 14.7848 12.0074 13.3082 12.4985
+\c 11.8308 12.9909 8.4833 15.1083 7.5476 19.1947
+\c 6.6126 23.2812 7.9909 24.2169 7.9909 24.2169
+\c 8.286 23.8222 9.5666 23.4779 10.1082 24.1671
+\c 10.6492 24.8576 10.0584 25.8412 9.1233 25.6444
+\c 8.1876 25.4471 7.9417 24.8576 7.9417 24.8576
+\c 7.3017 25.6438 6.7102 26.8261 7.2034 29.3368
+\c 7.564 31.1789 8.8768 32.7334 8.8768 32.7334
+\c 9.2224 31.4542 11.0433 31.9459 11.2899 32.5873
+\c 11.5357 33.2266 11.0931 33.8666 10.2558 33.9157
+\c 9.4191 33.9642 9.025 33.3748 9.025 33.3748
+\c 8.7292 33.8174 8.5325 37.0173 10.5017 39.6264
+\c 12.4715 42.2355 15.4248 43.7627 18.872 43.2689
+\c 22.3178 42.7778 24.0902 40.3654 24.8784 38.494
+\c 25.6659 36.6239 26.3551 31.2069 25.42 25.3494
+\c 24.4843 19.4912 21.826 14.5175 17.7395 14.7149
+\c 13.6524 14.9116 13.554 17.7174 13.554 17.7174
+\c 14.1947 17.7672 14.9822 19.638 13.899 19.638
+\c 12.8157 19.638 13.0131 17.9633 13.0131 17.9633
+\c 13.0131 17.9633 11.3889 17.8164 10.3541 20.377
+\c 9.32 22.9377 11.5357 24.7087 11.5357 24.7087
+\c 9.7141 23.6255 9.32 21.3128 10.2073 19.343
+\c 11.0931 17.3732 13.0623 17.6689 13.0623 17.6689
+\c 13.3082 16.0447 13.9488 15.0099 15.573 14.4198
+\c 17.6678 13.6569 20.2995 13.9267 22.7119 16.1922
+\c 25.1243 18.4564 25.8626 23.8222 25.8626 23.8222
+\c 27.0442 18.5554 24.8292 16.2899 24.041 15.6991
+\c 23.2535 15.1083 21.9735 15.1083 21.9735 15.1083
+\c 22.9578 15.1083 23.2043 14.5175 23.2043 13.9765
+\c 23.2043 13.4349 22.5644 13.4349 22.5644 13.4349
+\c 22.2693 13.9765 20.8411 14.6165 20.8903 13.6808
+\c 20.9388 12.7451 22.466 12.9909 22.466 12.9909
+\c 23.0069 12.7956 23.0069 12.1542 22.8594 11.5143
+\c 22.7119 10.8743 21.9735 10.8743 21.9735 10.8743
+\l 20.8411 11.9084
+\c 19.7087 12.7451 18.7729 11.7117 19.7572 11.0724
+\c 20.7421 10.4317 21.727 10.4802 21.727 10.4802
+\c 22.367 9.9385 21.727 9.2501 21.727 9.2501
+\c 21.727 9.2501 20.8903 9.9884 19.8562 10.0868
+\c 18.8221 10.1851 18.3788 9.151 19.4136 8.6579
+\c 20.447 8.1668 21.5303 8.7576 21.5303 8.7576
+\c 21.5303 8.7576 21.9735 8.6579 22.0227 8.0186
+\c 22.0719 7.3786 21.6286 7.2809 21.6286 7.2809
+\c 21.0877 7.7235 19.5605 8.0186 19.6595 7.0829
+\c 19.7572 6.1485 21.5303 6.7878 21.5303 6.7878
+\c 21.5303 6.7878 22.1703 6.5426 22.3178 5.9511
+\c 22.466 5.3603 22.0719 5.1131 22.0719 5.1131
+\c 21.3821 6.0488 19.807 5.9511 19.9546 5.1131
+\c 20.1028 4.2764 21.7768 4.7695 21.7768 4.7695
+\c 23.0568 3.342 22.1204 1.6673 22.1204 1.6673
+\c 23.4994 3.0463 22.5152 4.8679 22.5152 4.8679
+\c 23.5486 6.0993 21.9735 7.0337 21.9735 7.0337
+\c 21.9735 7.0337 22.367 7.3294 22.466 8.0186
+\c 22.5644 8.7084 21.8752 9.0028 21.8752 9.0028
+\c 22.8594 9.8901 21.9735 10.6277 21.9735 10.6277
+\c 21.9735 10.6277 23.0069 10.53 23.2043 11.5634
+\c 23.4366 12.7806 22.8102 13.1391 22.8102 13.1391
+\c 23.1053 13.189 23.401 13.5326 23.401 13.5326
+\l 23.746 13.5824
+\c 23.2535 11.1693 24.4536 10.2555 25.6174 10.5785
+\c 26.5033 10.8258 26.4043 12.2533 26.4043 12.2533
+\c 28.6691 10.9235 26.6016 7.9202 26.1584 7.0829
+\c 25.7151 6.2469 24.8292 5.557 23.7951 3.8823
+\c 22.7611 2.2096 23.0069 1.7663 23.0069 1.7663
+\c 23.746 3.1938 24.5335 4.2764 25.6174 5.0154
+\c 26.7 5.7537 28.5216 7.8219 28.0291 10.1353
+\c 27.5367 12.4486 26.4534 12.45 26.4534 12.45
+\c 26.06 14.0257 24.7302 14.4184 24.7302 14.4184
+\c 27.2409 15.3542 28.9157 11.7117 28.9157 11.7117
+\l 29.5058 11.2192
+\c 28.62 13.7785 27.1426 14.8118 25.7643 14.9116
+\c 24.386 15.0099 23.5486 13.8782 23.5486 13.8782
+\c 23.6968 14.7647 23.0568 15.0099 23.0568 15.0099
+\c 28.5708 15.3542 28.7183 20.0321 28.7183 22.1986
+\c 28.7183 24.3638 27.635 27.5159 27.635 27.5159
+\c 27.635 27.5159 28.2757 31.8974 26.9957 36.7714
+\c 25.7151 41.6447 22.1703 44.747 16.1638 44.402
+\c 10.1574 44.0571 6.9076 40.0205 5.4801 37.9032
+\c 4.0526 35.7858 4.7903 33.0784 4.7903 33.0784
+\c 4.7903 33.0784 2.8218 33.0784 1.6396 30.7643
+\c 0.4579 28.4503 1.393 26.7277 1.393 26.7277
+\c 1.393 26.7277 0.2612 26.2851 0.1137 24.2654
+\c -0.0345 22.2471 1.1478 21.8537 1.1478 21.8537
+\c -1.3145 17.3732 0.9504 14.9607 0.9504 14.9607
+\c 0.3596 14.5666 -0.7722 11.1208 0.9019 8.2153
+\c 2.576 5.3111 6.2185 2.5538 11.0931 1.0764
+\c 15.9671 -0.3995 20.4962 -0.3019 24.8292 1.0273
+\c 29.1616 2.3571 29.7025 6.4429 29.6534 8.7084
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian126.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian126.pgf
new file mode 100644
index 0000000000..0dce574bf1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian126.pgf
@@ -0,0 +1,405 @@
+\m 26.7766 35.1327
+\c 26.1113 35.5015 25.4468 37.0526 25.4468 37.0526
+\c 25.4468 37.0526 26.5546 37.4221 27.5149 36.3881
+\c 28.4746 35.3533 27.4412 34.7625 26.7766 35.1327
+\m 25.89 32.9901
+\c 25.9638 31.8829 25.595 31.5134 24.9297 31.7354
+\c 24.2651 31.9567 24.0438 33.0645 24.5609 35.1327
+\c 24.5609 35.1327 25.8163 34.0986 25.89 32.9901
+\m 22.8622 32.6212
+\c 23.0835 31.6616 22.7885 31.1439 22.1977 31.2921
+\c 21.6069 31.4403 21.4593 33.1383 21.9764 34.0248
+\c 21.9764 34.0248 22.6409 33.5816 22.8622 32.6212
+\m 19.5387 32.6957
+\c 18.8003 31.9567 18.2102 32.8432 18.7266 33.6553
+\c 19.2436 34.4674 19.7607 34.5419 19.7607 34.5419
+\c 19.7607 34.5419 20.2777 33.4333 19.5387 32.6957
+\m 16.9542 34.0248
+\c 16.2158 33.2865 15.2555 33.3603 15.2555 34.3943
+\c 15.2555 35.4277 17.6932 35.8703 17.6932 35.8703
+\c 17.6932 35.8703 17.6932 34.7625 16.9542 34.0248
+\m 15.0342 36.0186
+\c 14.3696 35.0589 12.561 36.0903 13.4831 37.4221
+\c 14.1483 38.3818 15.0342 38.752 15.0342 38.752
+\c 15.0342 38.752 15.6988 36.9782 15.0342 36.0186
+\m 12.1539 39.4889
+\c 12.4497 38.4555 11.7851 37.9385 10.9723 38.6775
+\c 10.1595 39.4159 10.8248 41.1876 10.8248 41.1876
+\c 10.8248 41.1876 11.8589 40.523 12.1539 39.4889
+\m 25.0779 42.2224
+\c 25.5212 42.665 26.0376 42.3699 25.373 41.7784
+\c 24.7084 41.1876 24.3396 40.8932 24.3396 40.8932
+\c 24.3396 40.8932 24.6347 41.7784 25.0779 42.2224
+\m 27.5887 40.0798
+\c 28.4746 39.9336 28.549 38.8244 27.3674 38.6775
+\c 26.1858 38.53 25.9638 39.2676 25.9638 39.2676
+\c 25.9638 39.2676 26.7028 40.2286 27.5887 40.0798
+\m 27.81 36.7576
+\c 26.4808 37.5704 25.5212 37.3484 25.5212 37.3484
+\c 25.5212 37.3484 25.373 37.7165 25.595 38.3073
+\c 25.595 38.3073 26.7028 37.6434 27.9582 38.2336
+\c 29.2129 38.8244 28.8441 40.3769 27.6624 40.3769
+\c 26.4808 40.3769 25.5212 39.3414 25.5212 39.3414
+\c 25.5212 39.3414 24.6347 40.0067 24.4871 40.4493
+\c 24.4871 40.4493 25.5212 40.745 26.1858 41.6309
+\c 26.8497 42.5181 25.0779 43.626 24.0438 40.9663
+\c 24.0438 40.9663 21.9764 40.745 19.9082 43.4771
+\c 19.9082 43.4771 20.6465 40.6706 24.1914 40.3769
+\c 24.1914 40.3769 24.2651 39.5634 25.2992 38.4555
+\c 25.2992 38.4555 24.9297 37.791 25.0779 37.2002
+\c 25.0779 37.2002 24.1176 36.8307 23.8963 35.5753
+\c 23.8963 35.5753 22.7147 35.9441 21.6069 35.1327
+\c 21.6069 35.1327 20.6465 35.5015 19.7607 35.3533
+\c 19.7607 35.3533 19.1699 36.6094 18.1358 36.7576
+\c 18.1358 36.7576 18.1358 38.4555 17.0286 39.3414
+\c 15.9201 40.2286 15.1817 39.7861 15.1817 39.7861
+\c 15.1817 39.7861 14.3696 42.3699 11.932 42.443
+\c 9.495 42.5181 9.2737 39.0457 10.6766 38.1598
+\c 12.0795 37.2739 12.7454 38.53 12.4497 39.4159
+\c 12.1539 40.3017 11.5638 41.2627 10.8248 41.484
+\c 10.8248 41.484 10.9682 42.0748 11.7107 42.0748
+\c 12.671 42.0748 14.2214 41.484 14.886 39.6372
+\c 14.886 39.6372 12.8923 38.9726 12.7454 37.2739
+\c 12.5965 35.5753 13.4093 34.9845 14.3696 35.0589
+\c 15.33 35.1327 16.2896 37.4959 15.403 38.8988
+\c 15.403 38.8988 16.6591 39.1946 17.3237 38.2336
+\c 17.9882 37.2739 17.7663 36.6831 17.7663 36.6831
+\c 17.7663 36.6831 16.9542 36.6094 15.7726 35.9441
+\c 14.5909 35.2809 14.4434 33.8035 15.33 33.2121
+\c 16.2158 32.6212 17.9882 33.8035 18.062 35.8703
+\c 18.062 35.8703 19.0961 36.0186 19.3912 35.1327
+\c 19.3912 35.1327 18.062 34.8369 17.8407 33.7291
+\c 17.6187 32.6212 17.9882 31.8829 18.8003 31.9567
+\c 19.6131 32.0311 20.8685 33.1383 20.1295 34.6894
+\c 20.1295 34.6894 20.8685 35.0589 21.3849 34.5419
+\c 21.3849 34.5419 20.499 33.3603 20.7947 32.2511
+\c 21.0898 31.1439 21.6806 30.7013 22.6409 30.997
+\c 23.6006 31.2921 23.5268 33.2121 22.1977 34.615
+\c 22.1977 34.615 23.158 35.7228 23.8225 35.2809
+\c 23.8225 35.2809 23.5268 33.8766 23.7481 32.3993
+\c 23.9701 30.9233 25.2992 30.997 25.7425 31.2921
+\c 26.1858 31.5885 27.4412 33.0645 24.5609 35.7228
+\c 24.5609 35.7228 24.7822 36.2399 25.2255 36.4611
+\c 25.2255 36.4611 25.6681 34.6894 26.9979 34.3199
+\c 28.327 33.9518 29.1398 35.9441 27.81 36.7576
+\s
+\m 9.1261 39.267
+\c 10.012 38.6024 8.9772 37.8647 8.314 38.3811
+\c 7.6481 38.8981 7.2048 39.5634 7.2048 39.5634
+\c 7.2048 39.5634 8.2396 39.9343 9.1261 39.267
+\m 8.1651 36.9775
+\c 9.1261 36.3874 9.0517 35.3533 7.7956 35.6497
+\c 6.5416 35.9441 5.7282 36.9037 5.7282 36.9037
+\c 5.7282 36.9037 7.2048 37.5704 8.1651 36.9775
+\m 7.1317 33.8759
+\c 8.5353 33.5809 8.756 32.3255 7.058 32.5475
+\c 5.3593 32.7688 4.7692 33.3603 4.7692 33.3603
+\c 4.7692 33.3603 5.7282 34.1717 7.1317 33.8759
+\m 9.8652 29.0764
+\c 5.5069 29.5197 4.1033 31.6609 3.882 32.2517
+\c 3.6614 32.8432 4.399 33.0638 4.399 33.0638
+\c 5.7282 30.8488 9.9376 31.5127 8.8304 33.3603
+\c 7.7226 35.2071 4.6217 33.8029 4.6217 33.8029
+\c 4.6217 33.8029 4.0302 34.0242 4.1033 35.132
+\c 4.1777 36.2392 4.9905 36.3143 4.9905 36.3143
+\c 6.6147 33.5809 9.7163 34.8369 9.1261 36.3874
+\c 8.5353 37.9385 5.2125 37.3477 5.2125 37.3477
+\c 4.7692 38.9726 6.3941 39.267 6.3941 39.267
+\c 8.0183 36.4611 10.3078 37.4959 9.7907 38.8244
+\c 9.273 40.1542 7.1317 39.8585 7.1317 39.8585
+\c 6.9104 40.3762 7.058 41.1876 7.058 41.1876
+\c 6.1714 40.6706 6.3941 39.6372 6.3941 39.6372
+\c 4.1777 39.3414 4.8423 36.8307 4.8423 36.8307
+\c 4.8423 36.8307 3.6614 36.4611 3.5869 35.2071
+\c 3.5131 33.9511 4.1777 33.5064 4.1777 33.5064
+\c 4.1777 33.5064 3.0699 32.7688 3.4401 31.8078
+\c 4.0097 30.3243 5.8026 28.5587 11.2674 28.2643
+\c 16.7329 27.9692 19.2429 31.3659 19.2429 31.3659
+\c 17.0286 29.5197 14.2214 28.6338 9.8652 29.0764
+\s
+\m 1.5932 26.1224
+\c 1.5932 26.1224 5.7288 30.258 11.7107 30.1105
+\c 17.6925 29.9623 24.5602 28.5587 27.8837 21.6172
+\c 31.2066 14.6757 28.6958 7.8811 26.5539 5.2966
+\c 24.4134 2.7121 19.3912 -2.0151 10.0865 0.9397
+\c 0.7804 3.8923 -0.2537 11.8699 0.0421 16.078
+\c 0.3378 20.2881 2.6266 25.8273 8.756 27.4515
+\c 14.8853 29.0764 20.7203 27.4515 23.8219 23.6123
+\c 26.9234 19.7703 27.8837 16.1517 26.4808 10.7628
+\c 25.0772 5.369 18.6528 0.7908 12.3752 2.1206
+\c 6.0977 3.4504 3.6607 7.5861 2.4791 9.6535
+\c 1.2974 11.7217 0.8542 16.4482 2.9961 20.1399
+\c 2.9961 20.1399 0.4853 15.1921 2.7748 9.8011
+\c 5.0643 4.4101 11.7107 2.0468 15.4024 2.637
+\c 19.0954 3.2278 23.8219 5.0753 25.2992 10.0231
+\c 26.7766 14.9708 26.8497 18.1468 23.2317 22.5782
+\c 19.6125 27.0089 15.625 27.304 12.2277 27.2295
+\c 8.8304 27.1565 6.0977 25.9735 4.0302 24.128
+\c 1.962 22.2825 0.2634 18.5156 0.3378 15.6354
+\c 0.4116 12.7558 0.2634 8.5457 4.5472 4.632
+\c 8.8304 0.717 14.1477 0.2013 18.8003 1.0127
+\c 23.453 1.8262 26.9234 7.069 27.6618 9.3585
+\c 28.4008 11.6479 29.7299 17.1858 26.5539 22.5782
+\c 23.3786 27.9686 17.323 29.2246 16.2896 29.2977
+\c 15.2555 29.3721 8.3134 31.2177 1.5932 26.1224
+\s
+\m 14.4079 15.7385
+\l 14.8505 18.4719
+\l 15.2159 18.4118
+\l 14.7726 15.6805
+\o
+\s
+\m 15.2309 21.0517
+\c 15.2309 21.0517 16.0184 19.8701 15.8217 19.3284
+\c 15.625 18.7875 15.1326 18.836 15.1326 18.836
+\c 15.1326 18.836 14.3942 18.8858 14.5418 19.771
+\c 14.6893 20.6569 15.2309 21.0517 15.2309 21.0517
+\s
+\m 14.246 15.242
+\c 14.246 15.242 14.4919 14.2577 13.8526 14.2577
+\c 13.2119 14.2577 13.0159 15.0446 13.0159 15.0446
+\c 12.9606 14.8499 12.9558 14.6737 12.9865 14.518
+\l 11.7435 13.7325
+\c 11.6854 13.9818 11.7353 14.2079 11.7353 14.2079
+\c 11.7353 14.2079 11.0072 13.8049 11.0878 13.3179
+\l 10.0291 12.6472
+\c 10.1192 13.2127 9.9137 14.0112 9.9137 14.0112
+\c 9.8645 13.2237 8.5838 11.4021 8.5838 11.4021
+\c 9.8153 11.8447 11.4402 12.042 11.4402 12.042
+\c 10.8501 12.2879 10.4567 12.3371 10.2101 12.3248
+\l 11.2674 12.9942
+\c 11.7134 12.5529 12.3752 13.1239 12.3752 13.1239
+\c 12.1533 13.1772 12.005 13.2783 11.906 13.3978
+\l 13.1334 14.1744
+\c 13.5056 13.6362 14.3956 13.5495 14.6401 14.1095
+\c 14.9844 14.897 14.246 15.242 14.246 15.242
+\s
+\m 11.3951 7.304
+\l 11.6048 6.5998
+\c 11.6594 6.4167 11.7011 6.2487 11.7448 6.0698
+\c 11.9012 6.2016 12.0351 6.315 12.1703 6.4318
+\l 12.7311 6.8955
+\l 13.2659 6.7323
+\l 11.9326 5.6982
+\l 12.4593 3.9968
+\l 11.8958 4.169
+\l 11.684 4.9046
+\c 11.6246 5.0958 11.5816 5.2768 11.5358 5.468
+\c 11.3821 5.3308 11.2435 5.2181 11.0925 5.0869
+\l 10.5099 4.5931
+\l 9.9635 4.7604
+\l 11.3582 5.8553
+\l 10.8432 7.4747
+\o
+\s
+\m 8.8625 8.5518
+\l 8.9923 7.8279
+\c 9.0264 7.64 9.049 7.4693 9.0729 7.2855
+\c 9.2436 7.3989 9.3884 7.4959 9.536 7.599
+\l 10.1445 7.9972
+\l 10.6581 7.7746
+\l 9.2184 6.8955
+\l 9.5523 5.1457
+\l 9.0121 5.3793
+\l 8.8837 6.136
+\c 8.8461 6.3314 8.8222 6.5144 8.799 6.7118
+\c 8.631 6.5902 8.4807 6.4946 8.3154 6.3805
+\l 7.6816 5.955
+\l 7.1577 6.1818
+\l 8.6651 7.1148
+\l 8.3332 8.7807
+\o
+\s
+\m 7.3749 10.2956
+\l 7.114 9.6078
+\c 7.0464 9.4288 6.9781 9.2724 6.9036 9.1017
+\c 7.1072 9.1112 7.2827 9.1208 7.4616 9.1324
+\l 8.1884 9.1611
+\l 8.5148 8.7055
+\l 6.8278 8.6925
+\l 6.2145 7.0205
+\l 5.8709 7.4993
+\l 6.1489 8.2144
+\c 6.2179 8.4016 6.2923 8.5703 6.3729 8.7513
+\c 6.1673 8.7342 5.9891 8.7301 5.7883 8.7158
+\l 5.026 8.6782
+\l 4.6941 9.1413
+\l 6.4665 9.1666
+\l 7.0382 10.7648
+\o
+\s
+\m 20.3474 5.7433
+\l 19.3536 6.9768
+\c 19.1897 7.1749 19.0476 7.3586 18.9226 7.5478
+\c 18.9233 7.3135 18.9247 7.08 18.9233 6.8231
+\l 18.939 5.2413
+\l 18.4629 5.0705
+\l 18.5524 7.9283
+\l 18.9868 8.0833
+\l 20.8344 5.9168
+\o
+\s
+\m 18.0272 4.8998
+\l 17.5709 4.7379
+\l 16.6728 7.2569
+\l 17.1276 7.4187
+\o
+\s
+\m 17.1065 4.5712
+\l 16.6509 4.4094
+\l 15.7514 6.929
+\l 16.2069 7.0902
+\o
+\s
+\m 16.054 4.1963
+\l 15.5984 4.0344
+\l 14.6995 6.5534
+\l 15.1551 6.7166
+\o
+\s
+\m 24.4024 10.5251
+\l 22.8834 10.9738
+\c 22.6362 11.0442 22.4155 11.1138 22.2059 11.1985
+\c 22.3384 11.008 22.4715 10.8167 22.6177 10.6029
+\l 23.5295 9.31
+\l 23.2352 8.9002
+\l 21.684 11.3017
+\l 21.9538 11.6766
+\l 24.7043 10.9444
+\o
+\s
+\m 22.9729 8.5122
+\l 22.6901 8.1195
+\l 20.5181 9.6822
+\l 20.8009 10.075
+\o
+\s
+\m 22.4026 7.7193
+\l 22.1198 7.3265
+\l 19.9478 8.8886
+\l 20.2299 9.2813
+\o
+\s
+\m 24.7972 16.6749
+\l 23.2987 16.1586
+\c 23.0569 16.0711 22.837 16.0022 22.6163 15.9482
+\c 22.8356 15.869 23.0555 15.7911 23.2973 15.703
+\l 24.7904 15.1798
+\l 24.789 14.673
+\l 22.1314 15.7303
+\l 22.1341 16.1914
+\l 24.7993 17.1913
+\o
+\s
+\m 24.8006 14.2065
+\l 24.7986 13.7216
+\l 22.1232 13.7339
+\l 22.1253 14.2181
+\o
+\s
+\m 17.4398 24.8308
+\l 17.9179 24.7509
+\l 17.4712 22.1131
+\l 16.9938 22.1937
+\o
+\s
+\m 12.5795 25.3485
+\l 13.063 25.3355
+\l 12.9961 22.6595
+\l 12.5125 22.6725
+\o
+\s
+\m 7.8189 23.475
+\l 8.2171 23.7496
+\l 9.7374 21.5475
+\l 9.3386 21.2723
+\o
+\s
+\m 4.8477 20.5804
+\l 5.0977 20.9964
+\l 7.3906 19.6174
+\l 7.1406 19.2014
+\o
+\s
+\m 8.5517 23.9005
+\l 8.9506 24.1751
+\l 10.4696 21.9717
+\l 10.0714 21.6964
+\o
+\s
+\m 13.4653 25.3485
+\l 13.9496 25.3355
+\l 13.8827 22.6595
+\l 13.3984 22.6725
+\o
+\s
+\m 14.302 25.3485
+\l 14.7863 25.3355
+\l 14.7193 22.6595
+\l 14.2358 22.6725
+\o
+\s
+\m 22.5071 21.5516
+\l 21.4539 20.3687
+\c 21.2845 20.1733 21.1274 20.0046 20.9621 19.8496
+\c 21.1916 19.8885 21.4211 19.9288 21.6758 19.9691
+\l 23.2331 20.2457
+\l 23.4797 19.8024
+\l 20.6459 19.4227
+\l 20.4211 19.8264
+\l 22.2557 22.0038
+\o
+\s
+\m 19.1022 24.2878
+\l 18.7225 22.7497
+\c 18.6631 22.4997 18.603 22.2763 18.5292 22.0612
+\c 18.7136 22.2032 18.8987 22.3453 19.1043 22.5004
+\l 20.3542 23.4716
+\l 20.7777 23.1943
+\l 18.4493 21.5359
+\l 18.062 21.7893
+\l 18.6692 24.5699
+\o
+\s
+\m 13.5534 6.7057
+\l 14.0507 6.5581
+\l 13.2372 3.8097
+\l 12.7407 3.9565
+\o
+\s
+\m 6.8756 11.3085
+\l 7.0525 10.8208
+\l 4.3573 9.8421
+\l 4.1811 10.329
+\o
+\s
+\m 6.0867 14.7092
+\l 5.4495 14.3418
+\c 5.2842 14.2461 5.1326 14.1676 4.9673 14.0815
+\c 5.1312 13.9593 5.2726 13.8568 5.4194 13.7537
+\l 6.0014 13.3152
+\l 5.9665 12.7572
+\l 4.6497 13.8131
+\l 3.1184 12.9033
+\l 3.1546 13.4907
+\l 3.8212 13.8705
+\c 3.9926 13.9702 4.1572 14.0556 4.3341 14.145
+\c 4.1641 14.2612 4.0234 14.3698 3.8594 14.4872
+\l 3.2433 14.938
+\l 3.2789 15.5083
+\l 4.6688 14.4066
+\l 6.1216 15.2857
+\o
+\s
+\m 6.2534 16.4427
+\l 6.1994 15.927
+\l 3.3472 16.2214
+\l 3.4011 16.7371
+\o
+\s
+\m 6.3026 17.3279
+\l 6.2493 16.8143
+\l 3.3977 17.108
+\l 3.451 17.6236
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian127.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian127.pgf
new file mode 100644
index 0000000000..c331530ca6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian127.pgf
@@ -0,0 +1,220 @@
+\m 20.5792 8.0202
+\c 19.9392 8.0202 20.9733 6.5435 20.9733 6.5435
+\l 21.0225 6.7409
+\c 20.7267 7.2333 20.5792 8.0202 20.5792 8.0202
+\m 5.6123 4.1803
+\c 5.6123 4.1803 13.8344 3.6871 18.4127 4.3278
+\c 22.9923 4.9685 29.737 6.5435 33.4294 7.9717
+\l 32.1003 6.0019
+\c 32.1003 6.0019 27.5705 5.5586 22.5483 4.1803
+\c 17.5268 2.8019 13.7354 1.817 8.6647 2.0636
+\c 8.6647 2.0636 5.6615 3.0963 5.6123 4.1803
+\m 4.8733 5.4602
+\c 4.8733 5.4602 7.4831 4.7219 14.5728 5.1652
+\c 21.6625 5.6084 30.7704 7.874 35.0543 9.4982
+\l 33.8228 8.3651
+\c 33.8228 8.3651 27.7181 6.5435 21.6625 5.6084
+\c 15.6069 4.6734 12.6528 4.2294 5.4648 4.5259
+\o
+\m 9.2822 7.0974
+\l 9.2098 13.1209
+\c 9.403 13.2001 9.5984 13.2739 9.7971 13.3388
+\l 11.963 7.1835
+\o
+\m 12.6036 5.5108
+\c 12.6036 5.5108 11.1331 5.4179 9.302 5.5012
+\l 9.2876 6.6787
+\l 12.2587 6.7409
+\o
+\m 30.3278 8.7107
+\l 26.6847 7.775
+\c 26.6847 7.775 27.9646 9.5966 29.6872 9.8418
+\o
+\m 30.0813 10.1382
+\c 30.0813 10.1382 32.9868 11.1709 34.7094 9.7926
+\l 31.017 8.9067
+\o
+\m 25.2565 13.2398
+\c 25.2565 13.2398 27.1272 15.3072 29.3429 15.4063
+\c 31.5586 15.5039 34.2169 15.3564 34.8077 10.63
+\c 34.8077 10.63 33.1828 11.8614 30.8688 11.2221
+\c 28.5554 10.5808 26.143 7.775 26.143 7.775
+\c 26.143 7.775 27.2256 10.0398 25.2565 13.2398
+\m 1.3285 6.8392
+\c 1.3285 6.8392 3.4458 7.7258 4.2832 10.5815
+\c 5.1199 13.4371 3.1016 16.5879 3.1016 16.5879
+\l 6.6464 15.4063
+\c 6.6464 15.4063 6.3015 12.1558 4.7749 10.63
+\c 4.7749 10.63 4.8733 10.5815 5.7599 11.1231
+\c 6.4531 11.5459 7.5077 12.3307 8.7351 12.9105
+\l 9.1681 7.094
+\o
+\m 7.188 21.8061
+\l 7.4831 20.7229
+\l 7.9755 20.6245
+\l 5.8582 19.7878
+\c 5.8582 19.7878 6.6956 21.412 7.188 21.8061
+\m 9.6489 21.2146
+\l 8.2214 20.7229
+\l 7.5821 22.1025
+\c 7.5821 22.1025 9.5021 21.5602 9.6489 21.2146
+\m 11.8155 11.6155
+\c 11.1263 11.6647 11.5197 12.1073 12.0122 12.205
+\c 12.5046 12.3033 12.7013 12.1073 12.7013 12.1073
+\c 12.7013 12.1073 12.5053 11.5657 11.8155 11.6155
+\m 10.7814 17.8672
+\c 10.3388 18.1636 11.4712 18.361 11.9138 17.9662
+\c 11.9138 17.9662 11.2246 17.5714 10.7814 17.8672
+\m 18.5609 25.3516
+\l 16.0495 24.8592
+\l 15.7052 26.09
+\o
+\m 26.3889 19.7393
+\c 26.3889 19.7393 29.8846 20.576 34.5127 18.7059
+\c 39.1408 16.8338 41.7499 13.6339 41.9466 13.1913
+\c 41.9466 13.1913 38.2542 13.7807 36.7277 11.4673
+\c 36.7277 11.4673 36.0385 17.9177 26.3889 19.7393
+\m 37.0234 10.6805
+\c 37.0234 10.6805 37.171 12.2548 39.0909 12.7466
+\c 41.0115 13.2398 42.5873 12.5014 42.5873 12.5014
+\o
+\m 14.3269 1.5718
+\c 20.5792 1.621 24.5181 4.1325 30.4262 5.2143
+\c 36.3336 6.2976 41.5532 5.6084 41.5532 5.6084
+\c 39.3375 6.5435 32.7894 6.1993 32.7894 6.1993
+\c 34.611 8.5133 35.6451 9.4982 37.27 10.3349
+\c 38.8942 11.1709 43.719 12.4522 43.719 12.4522
+\l 42.9315 12.5506
+\c 38.5985 19.3937 31.2629 19.9353 31.2629 19.9353
+\c 31.6078 24.8093 27.0781 25.4001 27.0781 25.4001
+\l 25.9463 25.2027
+\c 24.7148 26.4834 24.0257 26.2368 24.0257 26.2368
+\l 23.09 27.9109
+\l 22.5982 27.8125
+\l 23.4841 26.2368
+\l 23.2867 26.09
+\c 23.0906 25.9411 22.9923 25.4001 22.9923 25.4001
+\c 23.2867 25.9411 23.9273 25.9909 23.9273 25.9909
+\c 24.5666 25.9909 25.7482 25.0566 25.7482 25.0566
+\l 23.2867 24.3176
+\l 23.9765 24.2185
+\l 27.2256 25.0074
+\c 31.1154 23.7752 30.6721 20.1826 30.6721 20.1826
+\c 26.3397 20.7242 24.0749 19.3452 24.0749 19.3452
+\c 24.2723 22.3969 22.0074 23.0874 22.0074 23.0874
+\c 24.2723 21.6579 23.6316 18.6554 23.6316 18.6554
+\c 24.124 19.0488 25.4532 19.4429 25.4532 19.4429
+\c 25.4532 19.4429 27.0781 19.6403 31.2629 17.6705
+\c 35.4484 15.702 36.5802 10.9756 36.5802 10.9756
+\c 36.2851 10.0398 35.1035 10.3834 35.1035 10.3834
+\c 35.5461 12.4522 34.3153 15.2587 31.2629 15.8004
+\c 28.2105 16.342 25.9948 14.3729 25.9948 14.3729
+\c 26.143 17.4738 23.7306 17.9177 23.7306 17.9177
+\c 25.6499 16.4404 25.3057 14.028 25.3057 14.028
+\l 24.9122 13.5348
+\c 24.0749 14.3729 22.8939 14.9138 22.8939 14.9138
+\l 23.3857 15.5545
+\c 24.6657 19.4927 20.7274 21.9051 17.9701 21.7084
+\c 15.2134 21.5104 14.0803 19.837 14.0803 19.837
+\c 14.3754 22.6442 12.0122 23.53 12.0122 23.53
+\l 20.1366 25.3516
+\l 20.4317 25.6474
+\l 18.955 25.4001
+\l 15.5085 26.3359
+\l 15.0161 28.1083
+\l 14.5236 28.1083
+\l 15.5085 24.7117
+\l 10.5847 23.5778
+\c 14.2777 22.4461 13.0961 19.4429 13.0961 19.4429
+\c 12.1604 20.6245 10.7814 20.9202 10.7814 20.9202
+\c 11.9145 20.3786 12.8004 18.9511 12.8004 18.9511
+\l 12.3086 18.4088
+\c 11.8653 18.6062 9.9939 18.8514 10.2896 17.8672
+\c 10.5847 16.8836 12.3571 17.8672 12.3571 17.8672
+\c 12.5538 17.7196 13.7853 17.1787 13.9328 15.4063
+\c 14.0803 13.6339 13.0469 12.4522 13.0469 12.4522
+\c 13.0469 12.4522 12.6036 12.4522 11.8653 12.5014
+\c 11.127 12.5513 10.5847 11.5165 11.6187 11.2699
+\c 12.6528 11.0234 13.1938 11.8614 13.1938 11.8614
+\c 14.3754 11.6647 14.8678 10.2352 14.7203 8.6123
+\c 14.5728 6.9861 13.982 6.1501 13.982 6.1501
+\c 13.982 6.1501 15.9019 7.5284 15.557 9.8431
+\c 15.2134 12.1579 13.2928 12.3033 13.2928 12.3033
+\c 13.2928 12.3033 14.7203 14.1748 14.4252 15.8496
+\c 14.1295 17.5229 12.7512 18.2128 12.7512 18.2128
+\l 13.7354 19.2469
+\c 17.4278 22.7418 21.3175 21.1176 22.45 18.9511
+\c 23.5817 16.7846 22.7457 15.0614 22.7457 15.0614
+\c 22.7457 15.0614 20.1366 15.9978 17.5767 15.3564
+\c 15.0161 14.7164 14.3754 12.7466 14.3754 12.7466
+\c 14.3754 12.7466 16.1977 15.0122 19.2009 15.1597
+\c 22.2041 15.3072 23.9273 14.2247 25.0591 12.0096
+\c 26.1922 9.7926 25.5515 7.4792 25.5515 7.4792
+\c 25.5515 7.4792 23.5332 9.6464 20.1851 9.0542
+\c 16.837 8.4634 14.9669 6.1501 14.9669 6.1501
+\c 21.1208 10.1881 25.1089 7.3317 25.1089 7.3317
+\c 20.9733 6.1002 13.0469 5.6084 13.0469 5.6084
+\l 10.1421 13.4371
+\c 10.39 13.556 10.642 13.6653 10.8907 13.7616
+\l 11.3729 13.2398
+\l 11.7178 13.043
+\l 11.2274 13.8886
+\c 12.3673 14.2984 13.342 14.4705 13.342 14.4705
+\c 9.748 14.6673 5.9566 12.0096 5.9566 12.0096
+\c 5.9566 12.0096 7.6306 14.028 7.1382 16.2921
+\c 6.6464 18.557 5.2182 19.0488 5.2182 19.0488
+\c 7.3356 20.1327 11.963 21.7084 11.963 21.7084
+\c 11.5696 21.7569 10.0437 21.4626 10.0437 21.4626
+\c 9.0096 22.2487 7.5323 22.3969 7.5323 22.3969
+\l 7.1382 23.4795
+\l 6.6464 23.53
+\l 7.188 22.2501
+\c 6.5474 21.7084 5.514 19.6403 5.514 19.6403
+\l 4.0865 18.8036
+\c 6.4989 18.7544 6.5972 15.7013 6.5972 15.7013
+\l 1.9691 17.3249
+\c 3.495 15.3072 4.0865 13.8306 3.6917 11.1231
+\c 3.2983 8.4143 0.4426 6.4957 0.4426 6.4957
+\l 9.1995 6.678
+\l 9.2869 5.5012
+\c 9.2275 5.5046 9.1681 5.5074 9.108 5.5108
+\c 7.188 5.6084 4.4799 5.855 4.4799 5.855
+\c 5.2182 2.5561 7.188 2.4078 7.729 2.3102
+\c 8.2706 2.2111 8.3696 1.817 8.3696 1.817
+\l 0 2.8019
+\c 3.5448 1.621 8.0739 1.522 14.3269 1.5718
+\m 30.2295 1.2269
+\c 27.324 0.3417 24.124 0.4387 24.124 0.4387
+\c 27.3738 -0.398 32.0012 1.0302 35.6943 2.1128
+\c 39.3867 3.196 42.9807 2.8019 42.9807 2.8019
+\c 38.106 4.575 33.1337 2.1128 30.2295 1.2269
+\m 43.7504 3.9405
+\c 43.7614 3.9371 43.7689 3.9351 43.7689 3.9351
+\c 43.7627 3.9371 43.7566 3.9378 43.7504 3.9405
+\m 30.0321 4.4268
+\c 24.7148 3.2937 23.8775 1.621 17.3301 0.882
+\c 10.7814 0.1437 5.7599 0.5869 5.7599 0.5869
+\c 19.8409 -1.1855 23.0408 1.4236 31.2137 3.4918
+\c 39.0977 5.4862 43.4533 4.045 43.7504 3.9405
+\c 40.4023 5.1665 35.3398 5.5579 30.0321 4.4268
+\m 13.9328 8.1199
+\c 14.1787 7.9717 14.4252 8.07 14.4252 8.07
+\l 12.8994 10.63
+\c 12.6528 10.5323 12.7027 10.2352 12.7027 10.2352
+\c 12.7027 10.2352 13.6869 8.2674 13.9328 8.1199
+\m 20.8258 21.3628
+\l 21.3175 21.1668
+\c 21.9083 23.6776 20.0867 24.4658 20.0867 24.4658
+\c 21.6133 22.8901 20.8258 21.3628 20.8258 21.3628
+\m 8.468 27.6158
+\c 9.8491 27.5585 10.0437 26.6309 9.9454 25.8933
+\c 9.8463 25.1542 8.9605 24.9575 8.8621 25.6474
+\c 8.7637 26.3359 9.5021 26.6808 9.5021 26.6808
+\c 8.5664 26.7791 7.8772 25.2027 9.2063 24.9575
+\c 10.5362 24.7117 10.4371 26.5817 10.4371 26.5817
+\c 11.7178 26.5326 12.7512 27.5175 12.7512 27.5175
+\c 11.422 26.73 10.3388 26.9752 10.3388 26.9752
+\c 8.8122 29.3384 5.8582 27.1725 4.0865 26.2368
+\c 2.3134 25.3025 0.7875 26.09 0.7875 26.09
+\c 3.1992 24.0211 6.1048 27.7149 8.468 27.6158
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian128.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian128.pgf
new file mode 100644
index 0000000000..85a05df05d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian128.pgf
@@ -0,0 +1,173 @@
+\m 23.7791 18.0215
+\c 23.7791 18.0215 22.7457 18.2428 22.6713 19.794
+\c 22.5975 21.3444 24.0749 21.1955 24.1486 20.0153
+\c 24.2224 18.833 23.7791 18.0215 23.7791 18.0215
+\m 34.4143 16.3236
+\c 38.1805 14.6236 41.7253 16.6917 42.9807 19.1294
+\c 43.1016 19.3637 43.2061 19.6048 43.2955 19.8513
+\c 44.1999 16.4977 41.2103 14.5457 38.845 14.4029
+\c 36.408 14.254 34.5612 16.0265 34.5612 16.0265
+\c 37.4421 12.4823 42.021 13.6632 43.424 16.2484
+\c 44.6616 18.529 43.773 20.3486 43.5462 20.7454
+\c 43.9731 22.8409 43.3427 25.1146 41.6515 26.5141
+\c 39.5096 28.2866 36.5563 27.4007 36.5563 27.4007
+\c 34.2661 28.3603 32.4199 27.6957 32.4199 27.6957
+\c 32.4199 27.6957 30.7213 29.2469 28.2843 29.2469
+\c 25.8473 29.2469 25.3302 27.6957 25.3302 27.6957
+\c 27.5459 29.6895 29.5403 28.5816 31.2383 27.6957
+\c 32.937 26.8099 34.0441 24.0765 32.8625 21.4926
+\c 31.6809 18.9074 29.9829 18.6868 29.9829 18.6868
+\c 30.3524 19.2756 30.795 20.6798 30.795 20.6798
+\c 33.3802 23.4133 31.0908 26.5141 29.0226 27.178
+\c 26.9551 27.844 25.404 26.5141 25.404 26.5141
+\c 28.2105 28.139 30.9432 26.0709 31.3128 23.9282
+\c 31.6809 21.7877 30.4993 21.2706 30.4993 21.2706
+\c 30.4993 21.2706 30.5737 24.0765 27.9148 25.2581
+\c 24.8316 26.6296 23.0408 24.8899 23.0408 24.8899
+\c 23.0408 24.8899 25.6998 26.4397 28.5056 24.2247
+\c 31.3128 22.009 29.7609 17.4307 27.2502 17.0605
+\c 24.7394 16.6917 24.1486 17.6514 24.1486 17.6514
+\c 24.1486 17.6514 25.1089 18.7599 24.5919 20.311
+\c 24.0749 21.8614 21.9329 21.5657 22.0811 19.7202
+\c 22.2287 17.8733 23.5578 17.4307 23.5578 17.4307
+\c 22.0238 16.9759 21.2779 17.6131 21.0143 17.9321
+\c 22.3243 16.1644 23.9273 17.2094 23.9273 17.2094
+\c 23.9273 17.2094 24.9607 16.5442 27.0289 16.6917
+\c 29.0964 16.8399 29.6134 18.3897 29.6134 18.3897
+\c 31.3128 18.4641 33.6753 20.2366 33.971 23.1906
+\c 34.0899 24.3804 33.8495 25.2936 33.5196 25.9609
+\c 33.3878 25.9896 33.3065 25.9971 33.3065 25.9971
+\c 33.3065 25.9971 33.3768 26.0067 33.495 26.0108
+\c 33.008 26.9663 32.3462 27.4007 32.3462 27.4007
+\c 37.3684 28.4341 38.4762 24.5204 37.5896 21.6388
+\c 36.6143 18.4689 32.6412 17.9478 32.6412 17.9478
+\c 39.4358 17.9478 38.9926 24.6673 38.9926 24.6673
+\c 40.0266 24.3722 40.9863 22.4516 40.0266 19.9422
+\c 39.0663 17.4307 36.1867 17.2094 36.1867 17.2094
+\c 37.1464 17.0605 40.6912 17.2825 40.9863 21.1955
+\c 41.282 25.1105 38.6237 25.3325 38.6237 25.3325
+\c 38.328 26.1453 37.0726 27.178 37.0726 27.178
+\c 41.7991 28.0659 44.5311 23.1906 41.9466 18.9812
+\c 39.3621 14.7711 34.8569 16.5442 34.3399 16.8399
+\c 33.8235 17.1343 33.7497 16.4711 33.7497 16.4711
+\c 34.1507 13.8599 36.7366 8.3357 37.2174 7.3262
+\c 37.382 7.3454 37.5432 7.3645 37.7017 7.3863
+\c 35.292 12.2282 34.4143 16.3236 34.4143 16.3236
+\m 31.6809 3.6209
+\c 31.6809 3.6209 27.7672 1.4783 21.8592 1.774
+\c 15.9511 2.0698 13.5148 3.7677 13.5148 3.7677
+\c 13.5148 3.7677 11.0027 2.5861 9.8211 2.3655
+\c 9.8211 2.3655 7.7536 5.0969 6.572 6.0572
+\c 6.572 6.0572 21.5641 2.4393 43.2764 6.5736
+\c 43.2764 6.5736 43.941 6.7218 43.6452 5.8359
+\c 43.3495 4.9493 42.3899 2.9543 42.3899 2.9543
+\c 42.3899 2.9543 38.1067 1.2577 31.6809 3.6209
+\m 16.0249 26.0709
+\c 16.0249 26.0709 15.3603 21.2706 14.4744 18.3166
+\c 13.5879 15.3619 10.1912 10.1191 5.9811 7.8296
+\c 5.9811 7.8296 3.0278 8.346 1.5504 9.0119
+\c 1.5504 9.0119 12.1843 14.8455 16.0249 26.0709
+\m 16.2468 25.2581
+\l 17.4285 21.8614
+\c 17.4285 21.8614 16.3206 20.9018 16.0993 19.2756
+\o
+\m 20.0867 22.231
+\c 20.0867 22.231 18.9051 20.6061 19.4222 18.3897
+\c 19.9392 16.1754 21.2684 15.437 21.2684 15.437
+\c 21.2684 15.437 18.315 15.437 17.3547 17.7251
+\c 16.3944 20.0153 17.576 22.3047 20.0867 22.231
+\m 21.3428 6.6487
+\l 19.2746 6.7218
+\l 20.0867 14.9937
+\l 22.0067 15.0675
+\o
+\m 16.2468 17.8733
+\c 16.2468 17.8733 16.6164 16.1754 19.6442 15.0675
+\l 18.8314 7.3126
+\c 18.8314 7.3126 16.3944 11.8908 16.2468 17.8733
+\m 14.6964 6.9437
+\l 15.5085 18.2428
+\c 15.5085 18.2428 15.9511 10.2666 18.5363 6.7218
+\o
+\m 6.9415 7.7559
+\c 6.9415 7.7559 11.8155 9.8971 14.9177 18.2428
+\l 13.8092 6.7955
+\c 13.8092 6.7955 7.311 7.7559 6.9415 7.7559
+\m 43.1282 3.1032
+\l 44.3098 6.0572
+\c 44.3836 6.87 43.1282 6.87 43.1282 6.87
+\c 35.2257 5.6877 19.5697 5.2444 13.9574 5.6877
+\c 8.3444 6.131 5.6123 6.5005 5.6123 6.5005
+\l 2.7321 8.1991
+\c 12.7013 5.6146 21.7854 6.0572 30.4262 6.2054
+\c 39.0663 6.3529 42.5374 7.7559 43.424 7.7559
+\c 44.3098 7.7559 43.719 7.2388 43.719 7.2388
+\l 44.0885 7.0175
+\l 44.6056 8.2736
+\c 44.6056 8.2736 43.8672 8.2736 38.2542 7.4601
+\c 38.0746 7.4348 37.8909 7.4096 37.7017 7.3863
+\c 37.714 7.3611 37.7249 7.3365 37.7379 7.3126
+\c 37.7379 7.3126 37.2673 7.2211 37.2174 7.3262
+\c 35.7353 7.1527 34.0154 7.023 32.2758 6.9274
+\l 32.5675 17.579
+\l 32.0511 17.579
+\l 31.3223 6.8789
+\c 29.6189 6.7955 27.9346 6.7423 26.4777 6.7088
+\c 28.8805 9.6266 31.3858 17.357 31.3858 17.357
+\l 30.4993 16.9123
+\c 29.4188 12.5889 26.3602 7.5243 25.8486 6.6951
+\c 23.5865 6.6487 22.0067 6.6487 22.0067 6.6487
+\l 22.2287 7.387
+\c 24.4444 9.3807 28.7275 16.4711 28.7275 16.4711
+\l 27.9148 16.3967
+\c 24.1486 9.7503 22.0067 7.8296 22.0067 7.8296
+\l 22.6713 15.0675
+\c 22.6713 15.0675 20.0867 16.0265 19.9392 19.1294
+\c 19.7917 22.231 24.2224 23.5594 25.5515 21.6388
+\c 26.8814 19.7202 25.626 17.5045 25.626 17.5045
+\c 27.3977 17.5045 29.0226 19.2756 28.4318 21.7132
+\c 27.841 24.1509 26.3643 24.3722 24.8876 24.3722
+\c 23.4103 24.3722 23.4103 23.6339 23.4103 23.6339
+\c 23.4103 23.6339 24.6657 24.7417 26.8076 23.4133
+\c 28.9488 22.0834 28.5056 18.9074 26.2906 17.9478
+\c 26.2906 17.9478 28.2105 22.0834 23.4103 23.6339
+\c 21.4159 23.6339 20.8251 22.4516 20.8251 22.4516
+\c 18.6838 23.0431 17.798 21.8614 17.798 21.8614
+\c 16.6901 24.0765 16.1731 27.4007 16.1731 27.4007
+\c 13.1453 16.6173 1.0334 9.085 1.0334 9.085
+\l 0 9.307
+\l 0.5901 8.7886
+\c 5.8336 7.3126 9.4529 2.2173 9.4529 2.2173
+\c 3.7661 1.1094 0.5901 3.0294 0.5901 3.0294
+\c 0.5901 3.0294 2.8796 1.4045 5.5379 1.1839
+\c 9.0834 0.8881 13.2928 3.1769 13.2928 3.1769
+\c 13.2928 3.1769 16.1731 1.1094 21.5641 1.1094
+\c 26.9551 1.1094 31.5341 3.2514 31.5341 3.2514
+\c 31.5341 3.2514 35.5959 1.4045 39.2883 1.7003
+\c 44.0086 2.078 44.8269 3.7677 44.8269 3.7677
+\c 43.941 3.2514 43.1282 3.1032 43.1282 3.1032
+\m 21.0143 17.9321
+\c 20.976 17.9847 20.9371 18.0379 20.8995 18.0939
+\c 20.8995 18.0939 20.935 18.0284 21.0143 17.9321
+\m 35.7428 22.4516
+\c 35.1527 19.2025 32.3462 18.9074 32.3462 18.9074
+\c 34.4881 18.9812 36.9988 20.9018 36.4818 23.6339
+\c 36.0481 25.9247 34.1097 26.0347 33.495 26.0108
+\c 33.5032 25.995 33.5121 25.978 33.5196 25.9609
+\c 34.1978 25.8222 36.2373 25.172 35.7428 22.4516
+\m 37.5159 13.5902
+\c 39.8791 9.0119 41.4296 7.9778 41.4296 7.9778
+\l 41.8728 7.9778
+\c 39.3621 10.7836 38.1805 13.5902 38.1805 13.5902
+\o
+\m 31.5341 2.2173
+\c 31.5341 2.2173 28.358 0.8137 22.7457 0.591
+\c 17.1334 0.3704 13.7361 2.0698 13.7361 2.0698
+\c 7.606 -0.0722 3.0278 0.8881 3.0278 0.8881
+\c 9.3785 -0.5892 13.6616 1.7003 13.6616 1.7003
+\c 13.6616 1.7003 19.1264 -0.0722 23.1152 0.0023
+\c 27.1027 0.076 31.5341 1.8471 31.5341 1.8471
+\c 31.5341 1.8471 34.3399 0.1491 37.8847 0.2229
+\c 41.4296 0.2973 44.3098 2.2173 44.3098 2.2173
+\c 36.7775 -0.885 31.5341 2.2173 31.5341 2.2173
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian129.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian129.pgf
new file mode 100644
index 0000000000..3c1b4758e8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian129.pgf
@@ -0,0 +1,99 @@
+\m 5.8336 3.1746
+\c 3.2655 3.1746 0.6946 8.3655 0.6946 14.3166
+\c 0.6946 20.2677 2.689 24.9054 5.2524 24.7401
+\c 7.5336 24.5919 9.9706 19.9098 9.9706 13.9574
+\c 9.9706 8.0063 8.2706 3.1746 5.8336 3.1746
+\m 5.4648 25.2572
+\c 2.3878 25.3699 0 20.5683 0 14.3276
+\c 0 8.0855 2.9779 3.0449 6.0556 2.9547
+\c 8.5664 2.8796 10.8558 7.7174 10.8558 13.9574
+\c 10.8558 20.1988 7.4961 25.1834 5.4648 25.2572
+\s
+\m 8.4926 2.5114
+\c 5.7674 2.5114 3.4697 7.9674 3.4697 14.2927
+\c 3.4697 20.6188 5.5857 25.5495 8.3054 25.3726
+\c 10.7267 25.2155 13.3133 20.237 13.3133 13.9123
+\c 13.3133 7.5869 11.0792 2.5114 8.4926 2.5114
+\m 8.5322 25.9224
+\c 5.2654 26.0413 2.7327 20.9364 2.7327 14.303
+\c 2.7327 7.6716 5.5222 2.0907 8.789 1.9944
+\c 11.4521 1.9152 14.2531 7.2782 14.2531 13.9123
+\c 14.2531 20.545 10.6871 25.8439 8.5322 25.9224
+\s
+\m 11.3729 1.7355
+\c 8.5083 1.7355 6.0932 7.5801 6.0932 14.3542
+\c 6.0932 21.1283 8.3171 26.4087 11.1775 26.2209
+\c 13.7211 26.0515 16.1731 20.4371 16.1731 13.6637
+\c 16.1731 6.8882 14.0919 1.7355 11.3729 1.7355
+\m 11.4145 26.8083
+\c 7.9817 26.9353 5.3179 21.4705 5.3179 14.3658
+\c 5.3179 7.2625 8.2494 1.2847 11.6836 1.1816
+\c 14.4847 1.0976 17.4291 6.8424 17.4291 13.9451
+\c 17.4291 21.0498 13.6808 26.7236 11.4145 26.8083
+\s
+\m 16.8055 0.6065
+\c 12.2949 0.6065 8.4926 7.005 8.4926 14.4246
+\c 8.4926 21.8441 11.9958 27.6258 16.4968 27.4196
+\c 20.5013 27.2338 24.3617 21.0867 24.3617 13.6678
+\c 24.3617 6.2503 21.0853 0.6065 16.8055 0.6065
+\m 16.7946 28.063
+\c 11.8373 28.2023 7.9899 22.2171 7.9899 14.4375
+\c 7.9899 6.658 11.879 0.1127 16.8383 0
+\c 20.8831 -0.0915 25.4791 6.1977 25.4791 13.9779
+\c 25.4791 21.7574 20.0656 27.9708 16.7946 28.063
+\s
+\m 19.7978 0.6161
+\c 15.1561 0.4658 11.2404 7.117 11.2404 14.6527
+\c 11.2404 22.1884 14.2716 28.2733 18.9051 28.0637
+\c 23.0292 27.8758 27.6941 22.3769 27.8417 14.2538
+\c 27.9796 6.7195 23.5585 0.739 19.7978 0.6161
+\m 28.4339 14.2586
+\c 28.2105 23.8536 22.5873 28.5547 19.2166 28.6538
+\c 14.1111 28.8047 10.556 22.4186 10.7076 14.4744
+\c 10.8606 6.5317 14.7039 0.1229 19.8115 0.0007
+\c 23.9758 -0.1004 28.6176 6.3165 28.4339 14.2586
+\s
+\m 22.9677 0.8866
+\c 18.4516 0.7377 14.4901 7.5056 14.4901 14.9061
+\c 14.4901 22.3052 17.6416 28.2167 22.1549 28.1374
+\c 26.4395 28.0637 30.5048 22.4903 30.6482 14.5134
+\c 30.7807 7.115 26.628 1.0068 22.9677 0.8866
+\m 31.6829 14.5181
+\c 31.4603 23.941 25.837 28.5575 22.4664 28.6538
+\c 17.3608 28.8013 13.8058 22.5306 13.9574 14.7312
+\c 14.1097 6.9319 17.953 0.6386 23.0606 0.517
+\c 27.2263 0.4187 31.8667 6.7195 31.6829 14.5181
+\s
+\m 30.9439 2.7334
+\c 26.7659 2.5989 22.8707 8.4885 22.8707 15.2093
+\c 22.8707 21.9288 25.7838 27.2953 29.9604 27.2256
+\c 33.9205 27.1587 37.6812 22.0969 37.8137 14.8521
+\c 37.9373 8.134 34.3276 2.8427 30.9439 2.7334
+\m 38.7713 14.8569
+\c 38.5657 23.4144 33.3645 27.606 30.2473 27.6948
+\c 25.5249 27.8287 22.2369 22.1331 22.3789 15.0502
+\c 22.519 7.9667 26.1471 2.4001 30.8702 2.2895
+\c 34.7224 2.2 38.9413 7.7747 38.7713 14.8569
+\s
+\m 34.0708 3.5783
+\c 30.1824 3.4554 26.5549 8.8157 26.5549 14.93
+\c 26.5549 21.045 29.2692 25.9292 33.1555 25.8644
+\c 36.8418 25.8036 40.3422 21.1973 40.4658 14.6062
+\c 40.5799 8.4926 37.2201 3.6773 34.0708 3.5783
+\m 41.3572 14.6103
+\c 41.1659 22.3967 36.324 26.2113 33.4233 26.2926
+\c 29.0274 26.4142 25.9675 21.2322 26.0986 14.7852
+\c 26.2291 8.341 29.6052 3.2757 34.0018 3.1746
+\c 37.5876 3.0947 41.5156 8.1654 41.3572 14.6103
+\s
+\m 36.4517 4.219
+\c 32.6118 4.1035 29.0329 9.1558 29.0329 14.9197
+\c 29.0329 20.6816 31.711 25.2845 35.5481 25.2244
+\c 39.1886 25.1663 42.644 20.8258 42.7669 14.6131
+\c 42.8803 8.8512 39.5629 4.3139 36.4517 4.219
+\m 43.6459 14.6165
+\c 43.4567 21.9562 38.6777 25.5509 35.8118 25.6274
+\c 31.4733 25.7414 28.4516 20.8586 28.5814 14.7818
+\c 28.7091 8.7091 32.0429 3.9348 36.3841 3.8392
+\c 39.9256 3.7627 43.803 8.5438 43.6459 14.6165
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian13.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian13.pgf
new file mode 100644
index 0000000000..3786c56fcc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian13.pgf
@@ -0,0 +1,81 @@
+\m 16.64 52.2688
+\c 9.0372 42.1354 1.4399 33.9916 4.6975 31.8271
+\c 7.955 29.6573 9.7642 32.9148 22.0674 50.2793
+\c 34.3707 67.6493 36.9013 74.1644 36.9013 74.1644
+\c 33.4634 71.448 24.2373 62.3968 16.64 52.2688
+\o
+\s
+\m 36.9013 161.7303
+\c 36.9013 161.7303 34.3707 168.2454 22.0674 185.6154
+\c 9.7642 202.9799 7.955 206.2375 4.6975 204.0676
+\c 1.4399 201.9032 9.0372 193.7593 16.64 183.6259
+\c 24.2373 173.4979 33.4634 164.4468 36.9013 161.7303
+\o
+\s
+\m 61.5079 150.5147
+\c 66.5746 142.5621 64.7655 129.5319 68.023 128.4442
+\c 71.2806 129.5319 69.4714 142.5621 74.5326 150.5147
+\c 79.6048 158.4782 86.1145 161.0034 86.1145 161.0034
+\c 78.5171 166.8025 70.5536 175.8427 70.5536 187.7907
+\l 70.5536 230.844
+\c 70.5536 235.1892 68.023 235.9162 68.023 235.9162
+\c 68.023 235.9162 65.4924 235.1892 65.4924 230.844
+\l 65.4924 187.7907
+\c 65.4924 175.8427 57.5289 166.8025 49.9261 161.0034
+\c 49.9261 161.0034 56.4412 158.4782 61.5079 150.5147
+\o
+\s
+\m 119.406 183.6259
+\c 127.0088 193.7593 134.6061 201.9032 131.3431 204.0676
+\c 128.091 206.2375 126.2818 202.9799 113.9786 185.6154
+\c 101.6753 168.2454 99.1392 161.7303 99.1392 161.7303
+\c 102.5771 164.4468 111.8087 173.4979 119.406 183.6259
+\o
+\s
+\m 99.1392 74.1644
+\c 99.1392 74.1644 101.6753 67.6493 113.9786 50.2793
+\c 126.2818 32.9148 128.091 29.6573 131.3431 31.8271
+\c 134.6061 33.9916 127.0088 42.1354 119.406 52.2688
+\c 111.8087 62.3968 102.5771 71.448 99.1392 74.1644
+\o
+\s
+\m 133.3381 120.4862
+\l 120.1275 120.4862
+\c 113.7381 120.4862 102.9652 128.4442 99.8661 136.0361
+\c 99.8661 136.0361 94.5972 129.5264 90.334 124.4652
+\c 86.0707 119.393 79.102 121.2076 78.5171 117.9556
+\c 79.102 114.6816 86.0707 116.5017 90.334 111.4295
+\c 94.5972 106.3683 99.8661 99.8586 99.8661 99.8586
+\c 102.9652 107.456 113.7381 115.4085 120.1275 115.4085
+\l 133.3381 115.4085
+\c 135.661 115.4085 136.0545 117.9556 136.0545 117.9556
+\c 136.0545 117.9556 135.661 120.4862 133.3381 120.4862
+\o
+\s
+\m 57.5289 117.9556
+\c 56.944 121.2076 49.9698 119.393 45.712 124.4652
+\c 41.4488 129.5264 36.1799 136.0361 36.1799 136.0361
+\c 33.0808 128.4442 22.3079 120.4862 15.9131 120.4862
+\l 2.7025 120.4862
+\c 0.3741 120.4862 -0.0085 117.9556 -0.0085 117.9556
+\c -0.0085 117.9556 0.3741 115.4085 2.7025 115.4085
+\l 15.9131 115.4085
+\c 22.3079 115.4085 33.0808 107.456 36.1799 99.8586
+\c 36.1799 99.8586 41.4488 106.3683 45.712 111.4295
+\c 49.9698 116.5017 56.944 114.6816 57.5289 117.9556
+\o
+\s
+\m 74.5326 85.3855
+\c 69.4714 93.349 71.2806 106.3628 68.023 107.456
+\c 64.7655 106.3628 66.5746 93.349 61.5079 85.3855
+\c 56.4412 77.422 49.9261 74.8913 49.9261 74.8913
+\c 57.5289 69.0922 65.4924 60.052 65.4924 48.104
+\l 65.4924 5.0507
+\c 65.4924 0.7055 68.023 -0.016 68.023 -0.016
+\c 68.023 -0.016 70.5536 0.7055 70.5536 5.0507
+\l 70.5536 48.104
+\c 70.5536 60.052 78.5171 69.0922 86.1145 74.8913
+\c 86.1145 74.8913 79.6048 77.422 74.5326 85.3855
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian130.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian130.pgf
new file mode 100644
index 0000000000..6103469533
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian130.pgf
@@ -0,0 +1,53 @@
+\m 14.2708 0.3893
+\c 8.6578 3.2443 3.7585 10.6345 2.0851 16.0508
+\c 0.4111 21.4671 2.2818 27.9626 5.8274 28.55
+\c 9.3722 29.1442 10.6515 27.0747 10.6515 27.0747
+\c 10.6515 27.0747 9.8517 26.3848 9.2363 25.7018
+\c 7.0718 27.5186 4.0665 25.8794 3.8575 22.7444
+\c 3.6608 19.7937 6.5213 17.1778 8.584 17.0344
+\c 11.3406 16.8363 13.6062 19.1039 13.4088 21.8564
+\c 13.2121 24.6158 11.3044 26.9927 11.3044 26.9927
+\c 12.7811 28.2699 14.2708 28.9871 14.2708 28.9871
+\c 14.2708 28.9871 15.7597 28.2699 17.2371 26.9927
+\c 17.2371 26.9927 15.3288 24.6158 15.132 21.8564
+\c 14.936 19.1039 17.2002 16.8363 19.9569 17.0344
+\c 22.0202 17.1778 24.8807 19.7937 24.6833 22.7444
+\c 24.4743 25.8794 21.469 27.5186 19.3046 25.7018
+\c 18.6892 26.3848 17.8894 27.0747 17.8894 27.0747
+\c 17.8894 27.0747 19.1693 29.1442 22.7142 28.55
+\c 26.259 27.9626 28.1305 21.4671 26.4557 16.0508
+\c 24.7823 10.6345 19.8838 3.2443 14.2708 0.3893
+\m 9.3722 24.9095
+\c 9.3722 24.9095 10.4138 23.5366 10.2581 21.8564
+\c 10.0484 19.6025 7.5383 21.4125 9.3722 24.9095
+\m 12.818 21.4671
+\c 12.7196 18.3116 9.9623 17.2324 8.6823 17.4305
+\c 7.4024 17.6217 5.6184 18.4277 4.9401 21.3647
+\c 4.0542 25.2032 7.1066 27.2727 9.0764 25.4013
+\c 9.0764 25.4013 8.0185 24.3289 8.0178 22.4507
+\c 8.0178 21.071 8.6823 20.0874 9.6673 20.2855
+\c 10.6132 20.4699 11.5578 22.8468 9.5771 25.3466
+\c 9.7704 25.5857 10.226 26.1048 10.9472 26.6853
+\c 10.9472 26.6853 12.917 24.6158 12.818 21.4671
+\m 19.17 24.9095
+\c 21.0032 21.4125 18.4925 19.6025 18.2835 21.8564
+\c 18.1277 23.5366 19.17 24.9095 19.17 24.9095
+\m 17.5943 26.6853
+\c 18.3149 26.1048 18.7718 25.5857 18.9644 25.3466
+\c 16.9837 22.8468 17.9276 20.4699 18.8743 20.2855
+\c 19.8592 20.0874 20.5231 21.071 20.5231 22.4507
+\c 20.5231 24.3289 19.4644 25.4013 19.4644 25.4013
+\c 21.4342 27.2727 24.4873 25.2032 23.6007 21.3647
+\c 22.9232 18.4277 21.1385 17.6217 19.8585 17.4305
+\c 18.5792 17.2324 15.8219 18.3116 15.7229 21.4671
+\c 15.6252 24.6158 17.5943 26.6853 17.5943 26.6853
+\m 25.4715 27.7645
+\c 23.9941 29.0964 20.3025 30.3258 17.496 27.3752
+\c 15.352 28.8505 15.212 28.8368 14.2708 29.2466
+\c 13.3289 28.8368 13.1896 28.8505 11.0449 27.3752
+\c 8.2391 30.3258 4.5467 29.0964 3.07 27.7645
+\c 1.5927 26.4395 -2.6905 21.5627 2.4792 12.2601
+\c 7.6483 2.9506 14.2708 0 14.2708 0
+\c 14.2708 0 20.8926 2.9506 26.0623 12.2601
+\c 31.232 21.5627 26.9489 26.4395 25.4715 27.7645
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian131.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian131.pgf
new file mode 100644
index 0000000000..db7ea4afa0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian131.pgf
@@ -0,0 +1,234 @@
+\m 4.0623 0
+\c 4.0623 0 5.1708 2.3632 4.1361 6.2769
+\c 3.1027 10.1906 0.9361 15.1151 0.3699 19.3498
+\c -0.3322 24.5953 2.4381 27.5459 4.5793 28.5022
+\c 6.7213 29.4652 8.4083 28.2768 9.0107 26.9517
+\c 9.7491 25.333 9.1583 23.8508 7.9029 23.4069
+\c 6.6475 22.9697 5.5397 23.7074 5.3921 24.7388
+\c 5.2562 25.695 5.7609 26.337 6.2534 26.337
+\c 6.2534 26.337 4.9488 26.9517 3.5459 25.333
+\c 2.1423 23.7074 3.029 19.1244 3.841 17.6491
+\c 4.6531 16.1738 9.232 8.7153 5.8347 1.1065
+\c 5.8347 1.1065 6.5738 3.3194 6.5738 6.1266
+\c 6.5738 8.9338 4.7275 13.2163 3.7672 15.2858
+\c 2.8076 17.3554 1.9702 19.4454 2.1669 22.2048
+\c 2.3644 24.9641 4.1859 27.6211 6.9917 26.2892
+\c 6.9917 26.2892 5.9338 26.3643 5.6626 25.5515
+\c 5.3921 24.7388 5.86 23.5298 7.1891 23.6323
+\c 8.5183 23.7279 8.9124 24.7388 8.9615 25.8452
+\c 9.0107 26.9517 7.7308 28.6046 6.1551 28.5568
+\c 4.5793 28.5022 2.7577 27.6689 1.5761 24.7114
+\c 0.3945 21.7608 1.2312 18.7556 1.8227 16.6929
+\c 2.4135 14.6233 4.6286 9.0568 5.0226 5.6622
+\c 5.6032 0.6557 4.0623 0 4.0623 0
+\s
+\m 5.0719 24.1718
+\c 5.0719 24.1718 4.481 22.5463 5.3178 20.2855
+\c 6.1551 18.0179 7.8292 17.0822 8.8141 13.9813
+\c 9.799 10.8804 8.321 7.9776 8.321 7.9776
+\c 8.321 7.9776 8.8626 10.0403 8.1242 12.9977
+\c 7.3858 15.9484 5.4673 17.9154 4.7276 20.1352
+\c 4.2352 21.6105 4.481 23.0927 5.0719 24.1718
+\s
+\m 12.1621 19.0561
+\c 12.1621 19.0561 12.8021 18.3662 12.4565 17.5261
+\c 12.1122 16.6929 10.5373 16.0508 8.814 17.3759
+\c 7.0907 18.7077 6.4993 21.4671 6.894 22.7922
+\c 6.894 22.7922 6.7949 20.4289 8.5673 18.3662
+\c 10.3397 16.2967 12.9004 16.6929 12.1621 19.0561
+\s
+\m 12.9985 22.7922
+\c 12.9985 22.7922 14.3775 22.7444 14.6228 21.9589
+\c 15.0134 20.709 13.9342 19.0561 11.6687 19.4454
+\c 9.4045 19.8415 8.5179 22.5463 8.912 23.8782
+\c 8.912 23.8782 8.7645 22.0545 10.3395 20.9207
+\c 11.9152 19.7937 13.491 19.8415 14.0818 20.6748
+\c 14.6726 21.5149 14.426 22.3004 12.9985 22.7922
+\s
+\m 9.2079 25.4013
+\c 9.2079 25.4013 9.8964 24.124 12.1121 24.0284
+\c 14.3278 23.926 14.9684 25.8999 14.1311 27.3205
+\c 13.2937 28.7549 10.8321 28.8027 10.2905 27.6689
+\c 9.7489 26.5351 11.3737 25.3057 13.1462 25.5515
+\c 13.1462 25.5515 12.1121 24.9095 10.6354 25.8452
+\c 9.1581 26.781 9.8479 28.2085 10.7829 28.6046
+\c 11.7187 29.0008 14.435 29.1783 14.9684 26.1936
+\c 15.4602 23.4342 11.0295 21.4671 9.2079 25.4013
+\s
+\m 44.8333 40.53
+\c 44.8333 40.53 42.3662 39.3826 38.2361 40.3524
+\c 34.1053 41.3291 28.8959 43.4123 24.4365 43.9109
+\c 18.9082 44.5325 15.8524 41.7116 14.8764 39.5601
+\c 13.9004 37.4018 15.1749 35.7353 16.5764 35.1547
+\c 18.2955 34.4375 19.8392 35.0523 20.2852 36.3158
+\c 20.7312 37.5794 19.9375 38.6722 18.8481 38.8088
+\c 17.8441 38.9249 17.1713 38.4127 17.1802 37.9209
+\c 17.1802 37.9209 16.5122 39.2118 18.1978 40.6393
+\c 19.8836 42.0736 24.7111 41.2608 26.2766 40.4686
+\c 27.842 39.6831 35.7547 35.223 43.6961 38.7405
+\c 43.6961 38.7405 41.3793 37.9619 38.4293 37.9209
+\c 35.4795 37.8731 30.9477 39.6558 28.7593 40.5778
+\c 26.5709 41.5067 24.358 42.3127 21.4627 42.0668
+\c 18.5674 41.8277 15.8018 39.9631 17.243 37.1833
+\c 17.243 37.1833 17.1488 38.2351 17.9991 38.522
+\c 18.8481 38.8088 20.1233 38.358 20.0406 37.0262
+\c 19.958 35.6943 18.9034 35.2845 17.7403 35.223
+\c 16.5764 35.1547 14.8224 36.4046 14.8497 37.9824
+\c 14.8764 39.5601 15.7274 41.3906 18.8139 42.62
+\c 21.9005 43.8495 25.0704 43.0572 27.2539 42.5039
+\c 29.4368 41.9439 35.3197 39.8197 38.8972 39.4782
+\c 44.1653 38.9796 44.8333 40.53 44.8333 40.53
+\s
+\m 19.4385 39.1367
+\c 19.4385 39.1367 21.1372 39.7514 23.5311 38.9523
+\c 25.925 38.1531 26.9346 36.4934 30.2103 35.5577
+\c 33.4854 34.622 36.5159 36.1451 36.5159 36.1451
+\c 36.5159 36.1451 34.3507 35.5713 31.2348 36.2612
+\c 28.1175 36.951 26.0227 38.8361 23.6773 39.5465
+\c 22.1166 40.0109 20.5675 39.7446 19.4385 39.1367
+\s
+\m 24.9319 32.129
+\c 24.9319 32.129 25.6668 31.5006 26.5411 31.8558
+\c 27.4153 32.2109 28.0635 33.8023 26.6394 35.503
+\c 25.2147 37.2037 22.3072 37.7502 20.9158 37.3335
+\c 20.9158 37.3335 23.3979 37.4701 25.5999 35.7353
+\c 27.8019 33.9936 27.4276 31.4255 24.9319 32.129
+\s
+\m 21.0123 31.2342
+\c 21.0123 31.2342 21.0846 29.8545 21.9174 29.6223
+\c 23.2361 29.2466 24.9602 30.3531 24.5107 32.6139
+\c 24.0606 34.8747 21.2002 35.7148 19.8095 35.2981
+\c 19.8095 35.2981 21.7212 35.4757 22.937 33.9185
+\c 24.1521 32.3612 24.1255 30.7834 23.2546 30.1824
+\c 22.3838 29.5813 21.5519 29.8135 21.0123 31.2342
+\s
+\m 18.2091 34.9771
+\c 18.2091 34.9771 19.5663 34.3146 19.7043 32.0948
+\c 19.8422 29.8818 17.7829 29.2125 16.2681 30.0253
+\c 14.7545 30.8381 14.6643 33.3037 15.8459 33.857
+\c 17.0276 34.4239 18.3471 32.812 18.1156 31.0361
+\c 18.1156 31.0361 18.7726 32.0811 17.7659 33.5428
+\c 16.7599 35.0044 15.2695 34.2941 14.8699 33.3516
+\c 14.471 32.409 14.3248 29.6906 17.4722 29.2057
+\c 20.3778 28.7617 22.3783 33.2218 18.2091 34.9771
+\s
+\m 11.0045 40.25
+\c 11.0045 40.25 12.8507 40.5437 14.3274 36.1109
+\c 14.3274 36.1109 15.4359 32.4227 14.2543 30.4283
+\c 13.0727 28.4339 9.8229 28.8778 7.7554 29.2466
+\c 7.7554 29.2466 7.3121 29.6155 7.9023 29.7589
+\c 7.9023 29.7589 9.5278 29.3149 11.374 29.6838
+\c 11.374 29.6838 13.7366 30.2029 14.3274 32.1221
+\c 14.3274 32.1221 14.6969 34.0414 13.8103 36.7734
+\c 12.9245 39.5055 11.374 39.8812 10.3399 40.1749
+\c 9.3059 40.4686 8.8626 40.1749 8.7888 40.8374
+\c 8.7888 40.8374 8.0505 41.1311 7.9767 40.1749
+\c 7.9023 39.2118 7.1639 37.8868 5.6134 37.2925
+\c 5.6134 37.2925 5.466 37.1491 5.0964 37.4428
+\c 5.0964 37.4428 5.1702 36.7051 4.5794 35.7421
+\c 3.9893 34.7859 3.6191 34.1917 3.6191 33.5291
+\c 3.6191 32.8598 3.1766 31.3845 7.5334 29.9092
+\c 7.5334 29.9092 7.681 29.5403 7.1639 29.6155
+\c 6.6476 29.6838 6.2043 30.0594 5.8348 29.6838
+\c 5.466 29.3149 2.9545 29.3149 1.4778 31.0908
+\c 0.0005 32.8598 -0.6634 35.9675 0.887 39.2118
+\c 2.4382 42.463 5.0964 42.7566 5.0964 42.7566
+\c 5.0964 42.7566 5.3922 42.3878 4.5794 42.0941
+\c 3.7673 41.8004 1.5516 40.7622 0.8133 37.8116
+\c 0.0749 34.8542 1.4778 30.3531 5.0964 30.5034
+\c 5.0964 30.5034 3.1027 31.3093 3.1766 33.6726
+\c 3.2503 36.0358 4.5794 36.4798 4.6532 37.8116
+\c 4.6532 37.8116 4.5056 38.6244 4.2106 38.3239
+\c 3.9148 38.0302 4.2843 37.6614 4.2843 37.6614
+\c 4.2843 37.6614 3.4716 38.3239 4.1361 38.7678
+\c 4.8007 39.2118 5.244 38.2556 5.244 37.7365
+\c 5.244 37.7365 6.2043 37.8116 7.0164 38.9181
+\c 7.8292 40.0246 7.4597 42.2444 6.7214 43.0503
+\c 6.7214 43.0503 7.8292 40.9876 9.8229 41.0628
+\c 11.8166 41.1311 12.9982 40.9876 13.6635 39.7309
+\c 13.6635 39.7309 13.5153 40.9125 12.7769 41.575
+\c 12.7769 41.575 14.4755 40.8374 14.1061 38.0302
+\c 14.1061 38.0302 13.6635 38.5493 13.1458 39.1367
+\c 12.6287 39.7309 12.5556 40.25 11.0045 40.25
+\s
+\m 7.7551 43.2006
+\l 6.2779 42.9069
+\c 6.2779 42.9069 5.6133 43.1255 6.1303 43.2757
+\c 6.6474 43.426 7.6814 43.9383 7.7551 43.2006
+\s
+\m 10.8568 42.6132
+\c 10.8568 42.6132 8.8631 42.6132 8.6411 43.4943
+\c 8.6411 43.4943 10.8568 43.0503 10.8568 42.6132
+\s
+\m 12.5553 41.9439
+\c 12.5553 41.9439 11.9645 41.8004 11.2999 42.3195
+\c 11.2999 42.3195 11.3744 42.6132 11.8169 42.3878
+\c 12.2595 42.1693 12.5553 41.9439 12.5553 41.9439
+\s
+\m 7.5334 34.9088
+\c 7.5334 34.9088 6.2535 34.8064 5.6134 33.7272
+\c 4.9735 32.6412 5.5643 31.9036 5.5643 31.9036
+\c 5.5643 31.9036 5.0719 31.7055 4.8751 32.3953
+\c 4.6784 33.0852 5.121 35.0044 7.5334 34.9088
+\s
+\m 6.8444 32.8871
+\c 6.4995 32.5934 6.1553 32.6412 6.1553 32.6412
+\l 6.4011 32.8871
+\c 6.4011 32.8871 6.8936 32.9349 6.7952 33.4267
+\l 6.9428 33.6726
+\c 6.9428 33.6726 7.1887 33.1808 6.8444 32.8871
+\m 8.2719 34.3146
+\c 8.2719 34.3146 7.7801 34.4649 6.746 34.1165
+\c 5.7112 33.775 5.6136 32.5934 5.5644 31.9036
+\c 5.5146 31.2137 6.0569 31.4596 6.0569 31.4596
+\c 5.8103 31.6099 5.9586 32.3475 5.9586 32.3475
+\c 5.9586 32.3475 6.2037 32.2997 6.7952 32.5456
+\c 7.3854 32.7915 7.2385 33.6726 7.2385 33.6726
+\c 7.2385 33.6726 7.4352 33.8706 7.6811 33.9731
+\c 7.927 34.0687 8.2719 34.3146 8.2719 34.3146
+\s
+\m 8.9118 35.9402
+\c 8.9118 35.9402 8.321 37.2174 9.355 38.3034
+\c 10.3898 39.3826 11.5714 38.9932 11.5714 38.9932
+\c 11.5714 38.9932 11.7681 38.843 11.3248 38.7474
+\c 10.8816 38.6449 9.1091 38.3034 8.9118 35.9402
+\s
+\m 11.6688 34.3146
+\c 11.6688 34.3146 11.3738 34.4102 11.3738 34.1643
+\c 11.3738 33.9185 11.6204 33.133 11.1764 32.8393
+\c 10.7338 32.5456 10.0932 32.4431 9.7489 32.3475
+\c 9.4046 32.2451 9.3057 32.047 9.3057 32.047
+\c 9.3057 32.047 9.0598 32.1973 8.9614 32.491
+\c 8.8514 32.8256 9.1581 33.0374 9.5024 32.9896
+\c 9.8473 32.9349 10.3397 33.133 10.6355 33.6248
+\c 10.8848 34.0414 10.4873 34.6083 10.9797 34.7107
+\c 11.4722 34.8064 11.6688 34.3146 11.6688 34.3146
+\s
+\m 12.605 32.2451
+\c 12.605 32.2451 12.6535 31.3093 11.4235 31.0156
+\c 11.4235 31.0156 12.8502 30.8654 12.605 32.2451
+\s
+\m 10.0443 30.4283
+\c 10.0443 30.4283 10.0935 31.2137 9.7991 31.4118
+\c 9.7991 31.4118 9.7991 31.5552 10.1925 31.5552
+\c 10.586 31.5552 11.1775 31.8011 11.325 32.2451
+\c 11.325 32.2451 11.3742 32.5934 11.9151 32.7915
+\c 12.4567 32.9827 12.5059 33.5291 12.5059 33.5291
+\c 12.5059 33.5291 12.9492 33.5291 13.2942 33.6248
+\c 13.2942 33.6248 13.5401 33.3789 13.3433 33.2286
+\c 13.1459 33.0852 12.555 32.9827 12.555 32.9827
+\c 12.555 32.9827 12.0633 31.6577 10.8325 31.364
+\c 10.8325 31.364 10.6351 31.1181 10.4384 30.8176
+\c 10.2417 30.5239 10.0443 30.4283 10.0443 30.4283
+\s
+\m 10.3399 36.6778
+\c 10.3399 36.6778 10.4389 37.074 10.8323 36.8759
+\c 10.8323 36.8759 10.734 36.5276 10.3399 36.6778
+\m 11.768 38.1531
+\c 11.1772 38.3512 10.1923 38.2556 9.7 37.1218
+\c 9.2082 35.988 9.7491 35.2503 9.7491 35.2503
+\c 9.9956 35.4484 9.8966 35.6943 9.9956 36.0904
+\c 10.094 36.4798 10.8815 36.5822 10.8815 36.5822
+\c 11.8657 36.8759 11.3248 37.9073 11.3248 37.9073
+\c 11.669 37.9073 11.768 38.1531 11.768 38.1531
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian132.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian132.pgf
new file mode 100644
index 0000000000..e6911ae3a0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian132.pgf
@@ -0,0 +1,234 @@
+\m 40.7718 0
+\c 40.7718 0 39.664 2.3632 40.698 6.2769
+\c 41.7308 10.1906 43.898 15.1151 44.4614 19.3498
+\c 45.165 24.5953 42.396 27.5459 40.2534 28.5022
+\c 38.1115 29.4652 36.4258 28.2768 35.8234 26.9517
+\c 35.085 25.333 35.6752 23.8508 36.9312 23.4069
+\c 38.1866 22.9697 39.2945 23.7074 39.4427 24.7388
+\c 39.5793 25.695 39.0732 26.337 38.58 26.337
+\c 38.58 26.337 39.8859 26.9517 41.2882 25.333
+\c 42.6918 23.7074 41.8059 19.1244 40.9931 17.6491
+\c 40.181 16.1738 35.6014 8.7153 38.9994 1.1065
+\c 38.9994 1.1065 38.2604 3.3194 38.2604 6.1266
+\c 38.2604 8.9338 40.1066 13.2163 41.0676 15.2858
+\c 42.0272 17.3554 42.8639 19.4454 42.6665 22.2048
+\c 42.4698 24.9641 40.6468 27.6211 37.843 26.2892
+\c 37.843 26.2892 38.9004 26.3643 39.1708 25.5515
+\c 39.4427 24.7388 38.9741 23.5298 37.645 23.6323
+\c 36.3165 23.7279 35.9204 24.7388 35.8732 25.8452
+\c 35.8234 26.9517 37.1027 28.6046 38.6777 28.5568
+\c 40.2534 28.5022 42.0764 27.6689 43.258 24.7114
+\c 44.441 21.7608 43.6029 18.7556 43.01 16.6929
+\c 42.4213 14.6233 40.2063 9.0568 39.8129 5.6622
+\c 39.2309 0.6557 40.7718 0 40.7718 0
+\s
+\m 39.7609 24.1718
+\c 39.7609 24.1718 40.3531 22.5463 39.5157 20.2855
+\c 38.677 18.0179 37.0043 17.0822 36.0208 13.9813
+\c 35.0345 10.8804 36.5119 7.9776 36.5119 7.9776
+\c 36.5119 7.9776 35.9702 10.0403 36.7092 12.9977
+\c 37.4476 15.9484 39.3669 17.9154 40.1066 20.1352
+\c 40.5997 21.6105 40.3524 23.0927 39.7609 24.1718
+\s
+\m 32.6713 19.0561
+\c 32.6713 19.0561 32.032 18.3662 32.3762 17.5261
+\c 32.7211 16.6929 34.2975 16.0508 36.0208 17.3759
+\c 37.7433 18.7077 38.3335 21.4671 37.94 22.7922
+\c 37.94 22.7922 38.0377 20.4289 36.2667 18.3662
+\c 34.4929 16.2967 31.9336 16.6929 32.6713 19.0561
+\s
+\m 31.8353 22.7922
+\c 31.8353 22.7922 30.4563 22.7444 30.2111 21.9589
+\c 29.8217 20.709 30.9002 19.0561 33.1644 19.4454
+\c 35.4293 19.8415 36.3165 22.5463 35.9224 23.8782
+\c 35.9224 23.8782 36.0686 22.0545 34.4935 20.9207
+\c 32.9185 19.7937 31.3421 19.8415 30.752 20.6748
+\c 30.1605 21.5149 30.4078 22.3004 31.8353 22.7922
+\s
+\m 35.6267 25.4013
+\c 35.6267 25.4013 34.9368 24.124 32.7211 24.0284
+\c 30.5068 23.926 29.8654 25.8999 30.7028 27.3205
+\c 31.5402 28.7549 34.0011 28.8027 34.5434 27.6689
+\c 35.085 26.5351 33.4602 25.3057 31.6877 25.5515
+\c 31.6877 25.5515 32.7211 24.9095 34.1978 25.8452
+\c 35.6745 26.781 34.9867 28.2085 34.051 28.6046
+\c 33.1159 29.0008 30.4002 29.1783 29.8654 26.1936
+\c 29.3723 23.4342 33.8044 21.4671 35.6267 25.4013
+\s
+\m 0 40.53
+\c 0 40.53 2.4664 39.3826 6.5972 40.3524
+\c 10.7274 41.3291 15.9374 43.4123 20.3968 43.9109
+\c 25.9251 44.5325 28.9823 41.7116 29.957 39.5601
+\c 30.933 37.4018 29.6592 35.7353 28.2576 35.1547
+\c 26.5371 34.4375 24.9942 35.0523 24.5475 36.3158
+\c 24.1015 37.5794 24.8965 38.6722 25.9852 38.8088
+\c 26.99 38.9249 27.6627 38.4127 27.6532 37.9209
+\c 27.6532 37.9209 28.3218 39.2118 26.6348 40.6393
+\c 24.9498 42.0736 20.1216 41.2608 18.5575 40.4686
+\c 16.9927 39.6831 9.08 35.223 1.1372 38.7405
+\c 1.1372 38.7405 3.454 37.9619 6.4039 37.9209
+\c 9.3539 37.8731 13.885 39.6558 16.0747 40.5778
+\c 18.2638 41.5067 20.4761 42.3127 23.3707 42.0668
+\c 26.2653 41.8277 29.0322 39.9631 27.591 37.1833
+\c 27.591 37.1833 27.6839 38.2351 26.8349 38.522
+\c 25.9852 38.8088 24.7101 38.358 24.792 37.0262
+\c 24.8747 35.6943 25.9306 35.2845 27.0945 35.223
+\c 28.2576 35.1547 30.0109 36.4046 29.9836 37.9824
+\c 29.957 39.5601 29.1053 41.3906 26.0187 42.62
+\c 22.9335 43.8495 19.7637 43.0572 17.5801 42.5039
+\c 15.3979 41.9439 9.513 39.8197 5.9361 39.4782
+\c 0.668 38.9796 0 40.53 0 40.53
+\s
+\m 25.3951 39.1367
+\c 25.3951 39.1367 23.6978 39.7514 21.3046 38.9523
+\c 18.9099 38.1531 17.8997 36.4934 14.6233 35.5577
+\c 11.3476 34.622 8.3177 36.1451 8.3177 36.1451
+\c 8.3177 36.1451 10.4829 35.5713 13.6002 36.2612
+\c 16.7168 36.951 18.8122 38.8361 21.1563 39.5465
+\c 22.717 40.0109 24.2661 39.7446 25.3951 39.1367
+\s
+\m 19.9023 32.129
+\c 19.9023 32.129 19.1667 31.5006 18.2918 31.8558
+\c 17.4182 32.2109 16.7707 33.8023 18.1941 35.503
+\c 19.6196 37.2037 22.5272 37.7502 23.9171 37.3335
+\c 23.9171 37.3335 21.435 37.4701 19.2343 35.7353
+\c 17.0316 33.9936 17.4059 31.4255 19.9023 32.129
+\s
+\m 23.8208 31.2342
+\c 23.8208 31.2342 23.7484 29.8545 22.9165 29.6223
+\c 21.5976 29.2466 19.8743 30.3531 20.3231 32.6139
+\c 20.7725 34.8747 23.6336 35.7148 25.0249 35.2981
+\c 25.0249 35.2981 23.1118 35.4757 21.8974 33.9185
+\c 20.681 32.3612 20.7083 30.7834 21.5798 30.1824
+\c 22.4507 29.5813 23.2812 29.8135 23.8208 31.2342
+\s
+\m 26.6246 34.9771
+\c 26.6246 34.9771 25.2681 34.3146 25.1294 32.0948
+\c 24.9908 29.8818 27.0514 29.2125 28.5657 30.0253
+\c 30.0806 30.8381 30.1687 33.3037 28.9885 33.857
+\c 27.8062 34.4239 26.4873 32.812 26.7181 31.0361
+\c 26.7181 31.0361 26.0611 32.0811 27.0685 33.5428
+\c 28.0739 35.0044 29.5649 34.2941 29.9638 33.3516
+\c 30.3634 32.409 30.5095 29.6906 27.3622 29.2057
+\c 24.4553 28.7617 22.4554 33.2218 26.6246 34.9771
+\s
+\m 33.8303 40.25
+\c 33.8303 40.25 31.9835 40.5437 30.5068 36.1109
+\c 30.5068 36.1109 29.3996 32.4227 30.5806 30.4283
+\c 31.7629 28.4339 35.0113 28.8778 37.0794 29.2466
+\c 37.0794 29.2466 37.5227 29.6155 36.9312 29.7589
+\c 36.9312 29.7589 35.3063 29.3149 33.4602 29.6838
+\c 33.4602 29.6838 31.0969 30.2029 30.5068 32.1221
+\c 30.5068 32.1221 30.1366 34.0414 31.0225 36.7734
+\c 31.9097 39.5055 33.4602 39.8812 34.4935 40.1749
+\c 35.5276 40.4686 35.9709 40.1749 36.0454 40.8374
+\c 36.0454 40.8374 36.7823 41.1311 36.8568 40.1749
+\c 36.9312 39.2118 37.6689 37.8868 39.22 37.2925
+\c 39.22 37.2925 39.3675 37.1491 39.7377 37.4428
+\c 39.7377 37.4428 39.664 36.7051 40.2534 35.7421
+\c 40.8456 34.7859 41.2151 34.1917 41.2151 33.5291
+\c 41.2151 32.8598 41.6577 31.3845 37.3007 29.9092
+\c 37.3007 29.9092 37.1525 29.5403 37.6689 29.6155
+\c 38.1866 29.6838 38.6299 30.0594 38.9994 29.6838
+\c 39.3675 29.3149 41.879 29.3149 43.357 31.0908
+\c 44.8303 32.8598 45.4996 35.9675 43.9465 39.2118
+\c 42.396 42.463 39.7377 42.7566 39.7377 42.7566
+\c 39.7377 42.7566 39.4427 42.3878 40.2534 42.0941
+\c 41.0676 41.8004 43.2833 40.7622 44.0209 37.8116
+\c 44.762 34.8542 43.357 30.3531 39.7377 30.5034
+\c 39.7377 30.5034 41.7308 31.3093 41.6577 33.6726
+\c 41.5839 36.0358 40.2534 36.4798 40.181 37.8116
+\c 40.181 37.8116 40.3285 38.6244 40.6236 38.3239
+\c 40.92 38.0302 40.5498 37.6614 40.5498 37.6614
+\c 40.5498 37.6614 41.3626 38.3239 40.698 38.7678
+\c 40.0328 39.2118 39.5902 38.2556 39.5902 37.7365
+\c 39.5902 37.7365 38.6299 37.8116 37.8178 38.9181
+\c 37.0043 40.0246 37.3745 42.2444 38.1122 43.0503
+\c 38.1122 43.0503 37.0043 40.9876 35.0113 41.0628
+\c 33.0176 41.1311 31.8353 40.9876 31.1707 39.7309
+\c 31.1707 39.7309 31.3189 40.9125 32.0566 41.575
+\c 32.0566 41.575 30.3586 40.8374 30.7281 38.0302
+\c 30.7281 38.0302 31.1707 38.5493 31.6884 39.1367
+\c 32.2048 39.7309 32.2785 40.25 33.8303 40.25
+\s
+\m 37.0788 43.2006
+\l 38.5561 42.9069
+\c 38.5561 42.9069 39.2193 43.1255 38.7036 43.2757
+\c 38.1859 43.426 37.1518 43.9383 37.0788 43.2006
+\s
+\m 33.9772 42.6132
+\c 33.9772 42.6132 35.9702 42.6132 36.1929 43.4943
+\c 36.1929 43.4943 33.9772 43.0503 33.9772 42.6132
+\s
+\m 32.2779 41.9439
+\c 32.2779 41.9439 32.8693 41.8004 33.5332 42.3195
+\c 33.5332 42.3195 33.4595 42.6132 33.0169 42.3878
+\c 32.5743 42.1693 32.2779 41.9439 32.2779 41.9439
+\s
+\m 37.3007 34.9088
+\c 37.3007 34.9088 38.58 34.8064 39.22 33.7272
+\c 39.86 32.6412 39.2705 31.9036 39.2705 31.9036
+\c 39.2705 31.9036 39.7616 31.7055 39.959 32.3953
+\c 40.1564 33.0852 39.7131 35.0044 37.3007 34.9088
+\s
+\m 37.9885 32.8871
+\c 37.6443 33.1808 37.8902 33.6726 37.8902 33.6726
+\l 38.0377 33.4267
+\c 37.94 32.9349 38.4311 32.8871 38.4311 32.8871
+\l 38.677 32.6412
+\c 38.677 32.6412 38.3335 32.5934 37.9885 32.8871
+\m 38.0882 34.1165
+\c 37.0542 34.4649 36.561 34.3146 36.561 34.3146
+\c 36.561 34.3146 36.906 34.0687 37.1518 33.9731
+\c 37.3977 33.8706 37.5958 33.6726 37.5958 33.6726
+\c 37.5958 33.6726 37.4476 32.7915 38.0377 32.5456
+\c 38.6292 32.2997 38.8758 32.3475 38.8758 32.3475
+\c 38.8758 32.3475 39.024 31.6099 38.7781 31.4596
+\c 38.7781 31.4596 39.3184 31.2137 39.2699 31.9036
+\c 39.2193 32.5934 39.1216 33.775 38.0882 34.1165
+\s
+\m 35.9224 35.9402
+\c 35.9224 35.9402 36.5119 37.2174 35.4798 38.3034
+\c 34.4457 39.3826 33.2634 38.9932 33.2634 38.9932
+\c 33.2634 38.9932 33.0647 38.843 33.51 38.7474
+\c 33.9526 38.6449 35.725 38.3034 35.9224 35.9402
+\s
+\m 33.1644 34.3146
+\c 33.1644 34.3146 33.4602 34.4102 33.4602 34.1643
+\c 33.4602 33.9185 33.2136 33.133 33.6582 32.8393
+\c 34.0988 32.5456 34.7408 32.4431 35.085 32.3475
+\c 35.4286 32.2451 35.5276 32.047 35.5276 32.047
+\c 35.5276 32.047 35.7742 32.1973 35.8732 32.491
+\c 35.9818 32.8256 35.6752 33.0374 35.3316 32.9896
+\c 34.986 32.9349 34.4929 33.133 34.1985 33.6248
+\c 33.9492 34.0414 34.346 34.6083 33.8536 34.7107
+\c 33.3618 34.8064 33.1644 34.3146 33.1644 34.3146
+\s
+\m 32.2287 32.2451
+\c 32.2287 32.2451 32.1802 31.3093 33.4103 31.0156
+\c 33.4103 31.0156 31.9835 30.8654 32.2287 32.2451
+\s
+\m 34.7893 30.4283
+\c 34.7893 30.4283 34.7408 31.2137 35.0345 31.4118
+\c 35.0345 31.4118 35.0345 31.5552 34.6411 31.5552
+\c 34.2477 31.5552 33.6582 31.8011 33.51 32.2451
+\c 33.51 32.2451 33.4602 32.5934 32.9185 32.7915
+\c 32.3769 32.9827 32.3277 33.5291 32.3277 33.5291
+\c 32.3277 33.5291 31.8844 33.5291 31.5402 33.6248
+\c 31.5402 33.6248 31.2943 33.3789 31.4903 33.2286
+\c 31.6884 33.0852 32.2779 32.9827 32.2779 32.9827
+\c 32.2779 32.9827 32.771 31.6577 34.0018 31.364
+\c 34.0018 31.364 34.1985 31.1181 34.3959 30.8176
+\c 34.5919 30.5239 34.7893 30.4283 34.7893 30.4283
+\s
+\m 34.0011 36.8759
+\c 34.3959 37.074 34.4935 36.6778 34.4935 36.6778
+\c 34.0988 36.5276 34.0011 36.8759 34.0011 36.8759
+\m 33.51 37.9073
+\c 33.51 37.9073 32.9677 36.8759 33.9533 36.5822
+\c 33.9533 36.5822 34.7408 36.4798 34.8392 36.0904
+\c 34.9375 35.6943 34.8392 35.4484 35.085 35.2503
+\c 35.085 35.2503 35.6253 35.988 35.1335 37.1218
+\c 34.6418 38.2556 33.6582 38.3512 33.0654 38.1531
+\c 33.0654 38.1531 33.1637 37.9073 33.51 37.9073
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian133.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian133.pgf
new file mode 100644
index 0000000000..e1acac9318
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian133.pgf
@@ -0,0 +1,38 @@
+\m 0 0
+\l 14.9947 0
+\l 14.9947 14.5895
+\l 0 14.5895
+\o
+\i
+\m 7.4983 14.5895
+\l 8.7639 14.5895
+\c 10.0931 13.2577 12.4556 14.8832 14.2287 12.6703
+\c 15.4834 11.0993 14.8188 9.2689 14.8188 9.2689
+\c 14.0805 13.8519 9.0583 13.5582 9.0583 13.5582
+\c 17.3296 9.8631 12.8989 5.5806 12.8989 5.5806
+\c 14.3769 7.2062 13.6734 9.3167 12.4556 10.307
+\c 10.0931 12.2263 8.3206 13.7016 8.3206 13.7016
+\c 8.9108 10.6007 11.4215 10.4505 12.3081 7.9438
+\c 13.4289 4.7678 10.3874 1.4415 10.3874 1.4415
+\c 12.6031 5.1366 11.8655 7.3496 10.5357 8.9752
+\c 9.2065 10.6007 8.1724 12.964 8.1724 12.964
+\c 8.3206 10.6007 9.0583 10.1568 9.7966 6.0245
+\c 10.5357 1.8855 7.7298 -0.0338 7.7298 -0.0338
+\c 7.7298 -0.0338 8.9108 0.9976 8.9108 4.5424
+\c 8.9108 8.0872 7.6451 10.0065 7.4983 11.9326
+\c 7.3501 10.0065 6.0838 8.0872 6.0838 4.5424
+\c 6.0838 0.9976 7.2647 -0.0338 7.2647 -0.0338
+\c 7.2647 -0.0338 4.4589 1.8855 5.1979 6.0245
+\c 5.9356 10.1568 6.6739 10.6007 6.8221 12.964
+\c 6.8221 12.964 5.7873 10.6007 4.4589 8.9752
+\c 3.1297 7.3496 2.39 5.1366 4.6071 1.4415
+\c 4.6071 1.4415 1.5656 4.7678 2.6865 7.9438
+\c 3.5723 10.4505 6.0838 10.6007 6.6739 13.7016
+\c 6.6739 13.7016 4.9015 12.2263 2.5383 10.307
+\c 1.3198 9.3167 0.619 7.2062 2.0957 5.5806
+\c 2.0957 5.5806 -2.3357 9.8631 5.9356 13.5582
+\c 5.9356 13.5582 0.914 13.8519 0.175 9.2689
+\c 0.175 9.2689 -0.4882 11.0993 0.7672 12.6703
+\c 2.5383 14.8832 4.9015 13.2577 6.232 14.5895
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian134.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian134.pgf
new file mode 100644
index 0000000000..0059b622a2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian134.pgf
@@ -0,0 +1,111 @@
+\m 13.9662 2.766
+\c 13.6814 2.1103 13.29 1.6321 12.8508 1.277
+\l 12.8508 9.1658
+\l 12.9102 9.1658
+\c 13.525 6.9938 14.8206 4.733 13.9662 2.766
+\m 9.6331 0.3003
+\c 8.5499 0.3003 7.4263 2.2264 8.3532 3.3533
+\c 8.7165 3.7973 9.0799 3.9134 9.3825 3.8929
+\l 9.6147 3.8451
+\c 9.9227 3.7563 10.1256 3.5514 10.1256 3.5514
+\c 10.1256 3.5514 10.0915 3.8451 9.7984 4.0227
+\l 9.7984 9.1658
+\l 11.0566 9.1658
+\l 11.0566 0.4437
+\c 10.5095 0.3276 10.0027 0.3003 9.6331 0.3003
+\m 9.3825 9.1658
+\l 9.3825 4.1388
+\c 9.1906 4.1525 8.9522 4.132 8.6489 4.0432
+\c 8.528 4.009 8.4188 3.9476 8.3218 3.8656
+\l 8.3218 9.1658
+\o
+\m 12.4349 9.1658
+\l 12.4349 0.9833
+\c 12.1207 0.792 11.7949 0.6554 11.4725 0.553
+\l 11.4725 9.1658
+\o
+\m 2.0961 9.5619
+\c 2.1439 9.76 2.1849 9.9513 2.2163 10.1493
+\c 2.6104 12.615 0.9363 14.0903 0.9363 14.0903
+\c 6.647 11.529 7.4509 12.1232 7.4509 12.1232
+\c 7.4509 12.1232 8.2548 11.529 13.9662 14.0903
+\c 13.9662 14.0903 12.2921 12.615 12.6855 10.1493
+\c 12.7176 9.9513 12.7586 9.76 12.8064 9.5619
+\o
+\m 6.5268 3.9066
+\c 6.4435 3.9681 6.3533 4.0159 6.2536 4.0432
+\c 6.1074 4.0842 5.9783 4.1115 5.8595 4.1251
+\l 5.8595 9.1658
+\l 6.5268 9.1658
+\o
+\m 5.2694 0.3003
+\c 5.001 0.3003 4.6601 0.3139 4.2845 0.3686
+\l 4.2845 9.1658
+\l 5.4435 9.1658
+\l 5.4435 4.132
+\c 4.8322 4.05 4.7769 3.5514 4.7769 3.5514
+\c 4.7769 3.5514 5.0494 3.8246 5.4435 3.8793
+\l 5.8595 3.8451
+\c 6.0787 3.7905 6.3137 3.6402 6.5493 3.3533
+\c 7.4769 2.2264 6.352 0.3003 5.2694 0.3003
+\m 2.8071 9.1658
+\l 3.8678 9.1658
+\l 3.8678 0.4437
+\c 3.5222 0.5188 3.1609 0.6281 2.8071 0.7989
+\o
+\m 0.9363 2.766
+\c 0.0819 4.733 1.3776 6.9938 1.9923 9.1658
+\l 2.3912 9.1658
+\l 2.3912 1.0311
+\c 1.8167 1.3999 1.2929 1.9463 0.9363 2.766
+\m 14.6553 6.0171
+\c 13.5721 9.5619 12.0954 11.2353 14.6553 14.6777
+\c 14.6553 14.6777 10.7991 13.1068 7.4509 13.1068
+\c 4.1035 13.1068 0.2472 14.6777 0.2472 14.6777
+\c 2.8071 11.2353 1.3304 9.5619 0.2472 6.0171
+\c -0.5806 3.3055 0.7772 1.3453 2.7388 0.4847
+\l 2.8071 0.4027
+\c 3.3938 0.2047 4.0304 0.0544 4.6786 0.0066
+\c 6.8943 -0.1437 7.4489 2.1307 6.9434 3.3465
+\l 6.9434 9.1658
+\l 7.9051 9.1658
+\l 7.9051 3.1963
+\c 7.4987 1.96 8.0943 -0.1369 10.224 0.0066
+\c 13.0796 0.2047 15.7386 2.4723 14.6553 6.0171
+\s
+\m 4.2838 12.2598
+\l 4.5816 11.3446
+\l 5.5439 11.3446
+\l 4.7646 10.7845
+\l 5.0624 9.8693
+\l 4.2838 10.4294
+\l 3.5052 9.8693
+\l 3.8023 10.7845
+\l 3.0243 11.3446
+\l 3.986 11.3446
+\o
+\s
+\m 7.3478 12.2598
+\l 7.6456 11.3446
+\l 8.6079 11.3446
+\l 7.8293 10.7845
+\l 8.1271 9.8693
+\l 7.3478 10.4294
+\l 6.5692 9.8693
+\l 6.8669 10.7845
+\l 6.0876 11.3446
+\l 7.0507 11.3446
+\o
+\s
+\m 10.7943 12.2598
+\l 11.0921 11.3446
+\l 12.0544 11.3446
+\l 11.2758 10.7845
+\l 11.5729 9.8693
+\l 10.7943 10.4294
+\l 10.0156 9.8693
+\l 10.3134 10.7845
+\l 9.5341 11.3446
+\l 10.4965 11.3446
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian135.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian135.pgf
new file mode 100644
index 0000000000..333fb75374
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian135.pgf
@@ -0,0 +1,31 @@
+\m 7.6475 6.0774
+\c 7.6475 6.0774 8.7308 -0.8688 -0.0323 0.1011
+\c -0.0323 0.1011 2.9225 0.4836 4.5952 3.5708
+\c 6.2692 6.658 4.3985 9.9365 2.0352 11.282
+\c 2.0352 11.282 2.8227 11.7669 5.8751 9.1647
+\c 5.8751 9.1647 4.7919 11.282 3.2168 12.1563
+\c 1.6411 13.0237 0.8536 12.4431 0.8536 12.4431
+\c 0.8536 12.4431 0.3618 13.5974 2.331 13.9867
+\c 4.2994 14.3692 5.186 13.1193 6.0725 13.1193
+\c 6.9584 13.1193 9.519 13.7955 11.4881 10.6126
+\c 13.4573 7.4298 12.1773 2.799 14.8356 -0.0014
+\c 14.8356 -0.0014 10.2082 0.1967 10.6023 6.3643
+\c 10.6023 6.3643 11.094 1.8359 13.8514 0.7704
+\c 13.8514 0.7704 13.0638 0.7773 12.2756 5.695
+\c 11.4881 10.6126 9.9124 13.5018 6.0725 12.73
+\c 6.0725 12.73 2.331 15.141 1.051 12.8256
+\c 1.051 12.8256 2.7244 13.5974 4.005 12.1563
+\c 5.2857 10.7083 6.3676 8.8778 7.4508 7.8123
+\c 7.4508 7.8123 5.9742 8.4885 4.005 10.1277
+\c 4.005 10.1277 5.8758 8.8778 5.7768 5.7906
+\c 5.6791 2.7034 3.5126 1.2554 1.8385 0.2923
+\c 1.8385 0.2923 3.7093 0.1011 5.3834 1.351
+\c 7.0574 2.6077 7.5492 5.4013 7.6475 6.0774
+\s
+\m 6.6633 11.9582
+\c 6.6633 11.9582 7.0574 10.8995 7.0574 10.319
+\c 7.0574 10.319 6.3676 10.1277 5.8758 11.2888
+\c 5.3827 12.4431 5.6784 12.8256 6.2692 12.1563
+\c 6.2692 12.1563 5.4817 12.2519 6.2692 11.2888
+\c 7.0574 10.319 6.6633 11.9582 6.6633 11.9582
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian136.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian136.pgf
new file mode 100644
index 0000000000..ef8a61329d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian136.pgf
@@ -0,0 +1,287 @@
+\m 0 25.5177
+\c 0 25.5177 1.6987 24.6298 5.5386 25.3743
+\c 9.3791 26.112 13.8099 28.2498 17.3547 29.0626
+\c 20.9002 29.8754 24.5905 29.8685 27.1033 27.0682
+\c 29.6879 24.1927 28.3587 21.8295 27.6935 21.1601
+\c 27.0289 20.4976 25.3302 19.8351 24.0018 21.0167
+\c 22.672 22.1983 23.3365 23.5985 23.7798 23.9673
+\c 24.2231 24.3361 25.626 24.9304 26.2906 23.3048
+\c 26.2906 23.3048 26.365 26.1803 23.6323 26.7745
+\c 20.9002 27.3619 18.6101 26.3305 14.1787 24.261
+\c 9.748 22.1983 5.613 22.5671 2.3632 23.3799
+\c 2.3632 23.3799 6.1294 22.5671 10.3395 24.0424
+\c 14.5482 25.5177 17.0214 26.8496 18.4625 27.2936
+\c 20.1612 27.8058 24.5762 28.1405 26.0693 25.5929
+\c 27.3246 23.4482 26.143 22.5671 26.143 22.5671
+\c 26.143 22.5671 26.156 24.3635 24.3713 23.8922
+\c 22.967 23.5233 23.4847 20.9416 25.1834 20.7162
+\c 26.8814 20.4976 28.5063 21.3855 28.285 23.8922
+\c 28.063 26.4057 25.1089 28.9192 22.0081 28.9192
+\c 18.9051 28.9192 15.9511 27.5873 11.8155 26.3305
+\c 7.6805 25.0738 3.7661 23.4482 0 25.5177
+\s
+\m 24.0018 24.5615
+\c 24.0018 24.5615 22.5244 25.4426 20.0137 24.261
+\c 17.5022 23.0794 14.0318 19.2409 8.1975 21.085
+\c 8.1975 21.085 10.265 20.8118 12.9977 21.5289
+\c 16.9121 22.5671 20.7527 26.5559 24.0018 24.5615
+\s
+\m 22.967 22.8608
+\c 22.967 22.8608 20.0867 22.936 17.6498 20.7162
+\c 15.2128 18.5032 17.6498 16.7274 19.054 17.4718
+\c 19.054 17.4718 17.9462 16.7274 16.8376 17.4718
+\c 15.7298 18.2095 15.8377 20.7367 19.2746 22.1983
+\c 22.2294 23.4482 22.967 22.8608 22.967 22.8608
+\s
+\m 24.6657 20.7162
+\c 24.6657 20.7162 21.7123 21.0167 20.3094 18.9472
+\c 18.9051 16.8776 20.0867 15.0813 21.5634 15.5253
+\c 23.0415 15.9692 22.8195 17.6153 22.8195 17.6153
+\c 22.8195 17.6153 23.4841 15.0267 21.0477 15.1086
+\c 18.8566 15.1769 18.7474 17.9158 20.235 19.4662
+\c 21.4657 20.7435 22.967 21.085 24.6657 20.7162
+\s
+\m 25.1834 17.2465
+\c 25.1834 17.2465 24.9621 18.872 26.6608 19.5345
+\c 28.3587 20.2039 29.319 17.909 28.1374 15.9897
+\c 26.9558 14.0704 23.6323 14.0704 23.1897 16.9528
+\c 22.7464 19.8351 25.4791 20.5727 25.4791 20.5727
+\c 25.4791 20.5727 23.1084 19.7668 23.706 16.9528
+\c 24.2231 14.5144 27.3253 14.8081 27.9161 16.6591
+\c 28.4134 18.2163 28.0637 19.2409 27.1771 19.2409
+\c 26.2912 19.2409 25.2572 18.5783 25.1834 17.2465
+\s
+\m 72.2259 25.5177
+\c 72.2259 25.5177 70.5273 24.6298 66.6867 25.3743
+\c 62.8475 26.112 58.4154 28.2498 54.8706 29.0626
+\c 51.3257 29.8754 47.6347 29.8685 45.1226 27.0682
+\c 42.5374 24.1927 43.8672 21.8295 44.5311 21.1601
+\c 45.1964 20.4976 46.895 19.8351 48.2242 21.0167
+\c 49.5533 22.1983 48.8894 23.5985 48.4462 23.9673
+\c 48.0029 24.3361 46.6 24.9304 45.9354 23.3048
+\c 45.9354 23.3048 45.8609 26.1803 48.593 26.7745
+\c 51.3257 27.3619 53.6152 26.3305 58.0466 24.261
+\c 62.4773 22.1983 66.6136 22.5671 69.8627 23.3799
+\c 69.8627 23.3799 66.0966 22.5671 61.8872 24.0424
+\c 57.6771 25.5177 55.2046 26.8496 53.7634 27.2936
+\c 52.0648 27.8058 47.6491 28.1405 46.1567 25.5929
+\c 44.9013 23.4482 46.0829 22.5671 46.0829 22.5671
+\c 46.0829 22.5671 46.0693 24.3635 47.8553 23.8922
+\c 49.2583 23.5233 48.7412 20.9416 47.0426 20.7162
+\c 45.3446 20.4976 43.719 21.3855 43.9403 23.8922
+\c 44.163 26.4057 47.117 28.9192 50.2186 28.9192
+\c 53.3201 28.9192 56.2742 27.5873 60.4098 26.3305
+\c 64.5448 25.0738 68.4591 23.4482 72.2259 25.5177
+\s
+\m 48.2249 24.5615
+\c 48.2249 24.5615 49.7015 25.4426 52.2116 24.261
+\c 54.723 23.0794 58.1948 19.2409 64.0291 21.085
+\c 64.0291 21.085 61.9609 20.8118 59.2282 21.5289
+\c 55.3145 22.5671 51.4739 26.5559 48.2249 24.5615
+\s
+\m 49.2583 22.8608
+\c 49.2583 22.8608 52.1378 22.936 54.5755 20.7162
+\c 57.0125 18.5032 54.5755 16.7274 53.1719 17.4718
+\c 53.1719 17.4718 54.2805 16.7274 55.3876 17.4718
+\c 56.4955 18.2095 56.3875 20.7367 52.9506 22.1983
+\c 49.9973 23.4482 49.2583 22.8608 49.2583 22.8608
+\s
+\m 47.5596 20.7162
+\c 47.5596 20.7162 50.5136 21.0167 51.9165 18.9472
+\c 53.3201 16.8776 52.1378 15.0813 50.6618 15.5253
+\c 49.1838 15.9692 49.4058 17.6153 49.4058 17.6153
+\c 49.4058 17.6153 48.7412 15.0267 51.1782 15.1086
+\c 53.3686 15.1769 53.4786 17.9158 51.9903 19.4662
+\c 50.7595 20.7435 49.2583 21.085 47.5596 20.7162
+\s
+\m 47.0426 17.2465
+\c 47.0426 17.2465 47.2645 18.872 45.5659 19.5345
+\c 43.8679 20.2039 42.9062 17.909 44.0885 15.9897
+\c 45.2701 14.0704 48.5937 14.0704 49.037 16.9528
+\c 49.4795 19.8351 46.7468 20.5727 46.7468 20.5727
+\c 46.7468 20.5727 49.1182 19.7668 48.5206 16.9528
+\c 48.0036 14.5144 44.9013 14.8081 44.3098 16.6591
+\c 43.8126 18.2163 44.1623 19.2409 45.0488 19.2409
+\c 45.9347 19.2409 46.9695 18.5783 47.0426 17.2465
+\s
+\m 42.6685 17.4445
+\c 42.3837 16.7888 41.9924 16.3107 41.5539 15.9556
+\l 41.5539 23.8444
+\l 41.6126 23.8444
+\c 42.2273 21.6724 43.523 19.4116 42.6685 17.4445
+\m 38.3355 14.9857
+\c 37.2529 14.9857 36.1287 16.9049 37.0555 18.0387
+\c 37.4189 18.4827 37.7823 18.592 38.0848 18.5715
+\l 38.3171 18.5305
+\c 38.6251 18.4349 38.828 18.23 38.828 18.23
+\c 38.828 18.23 38.7938 18.5237 38.5008 18.7013
+\l 38.5008 23.8444
+\l 39.7589 23.8444
+\l 39.7589 15.1291
+\c 39.2118 15.0062 38.7057 14.9857 38.3355 14.9857
+\m 38.0848 23.8444
+\l 38.0848 18.8174
+\c 37.8929 18.831 37.6545 18.8106 37.3513 18.7218
+\c 37.2304 18.6876 37.1211 18.6261 37.0241 18.5442
+\l 37.0241 23.8444
+\o
+\m 41.1379 23.8444
+\l 41.1379 15.6619
+\c 40.8237 15.4706 40.4972 15.334 40.1755 15.2384
+\l 40.1755 23.8444
+\o
+\m 30.7984 24.2405
+\c 30.8463 24.4386 30.8872 24.6367 30.9187 24.8279
+\c 31.3128 27.2936 29.6387 28.7689 29.6387 28.7689
+\c 35.35 26.2076 36.154 26.8018 36.154 26.8018
+\c 36.154 26.8018 36.9579 26.2076 42.6685 28.7689
+\c 42.6685 28.7689 40.9945 27.2936 41.3879 24.8279
+\c 41.42 24.6367 41.461 24.4386 41.5088 24.2405
+\o
+\m 35.2292 18.5852
+\c 35.1458 18.6466 35.0557 18.6944 34.9559 18.7218
+\c 34.8098 18.7696 34.6807 18.7901 34.5625 18.8037
+\l 34.5625 23.8444
+\l 35.2292 23.8444
+\o
+\m 33.9717 14.9857
+\c 33.7033 14.9857 33.3625 14.9925 32.9868 15.0471
+\l 32.9868 23.8444
+\l 34.1459 23.8444
+\l 34.1459 18.8174
+\c 33.5346 18.7354 33.4793 18.23 33.4793 18.23
+\c 33.4793 18.23 33.7518 18.5032 34.1459 18.5647
+\l 34.5625 18.5305
+\c 34.7811 18.469 35.0161 18.3256 35.2517 18.0387
+\c 36.1792 16.9049 35.055 14.9857 33.9717 14.9857
+\m 31.5101 23.8444
+\l 32.5702 23.8444
+\l 32.5702 15.1223
+\c 32.2253 15.1974 31.8639 15.3067 31.5101 15.4774
+\o
+\m 29.6387 17.4445
+\c 28.7842 19.4116 30.0799 21.6724 30.6946 23.8444
+\l 31.0935 23.8444
+\l 31.0935 15.7097
+\c 30.5191 16.0785 29.9952 16.6249 29.6387 17.4445
+\m 43.3577 20.6957
+\c 42.2744 24.2405 40.7978 25.9139 43.3577 29.3563
+\c 43.3577 29.3563 39.5021 27.7854 36.154 27.7854
+\c 32.8058 27.7854 28.9495 29.3563 28.9495 29.3563
+\c 31.5101 25.9139 30.0328 24.2405 28.9495 20.6957
+\c 28.1217 17.9841 29.4795 16.0239 31.4412 15.1633
+\l 31.5101 15.0813
+\l 31.5101 15.1359
+\c 32.0962 14.8832 32.7334 14.733 33.3809 14.6852
+\c 35.5966 14.5349 36.1512 16.8093 35.6458 18.0251
+\l 35.6458 23.8444
+\l 36.6082 23.8444
+\l 36.6082 17.8817
+\c 36.2018 16.6386 36.7967 14.5417 38.9263 14.6852
+\c 41.7827 14.8832 44.441 17.1508 43.3577 20.6957
+\s
+\m 32.9861 26.9384
+\l 33.2846 26.0232
+\l 34.2463 26.0232
+\l 33.4677 25.4631
+\l 33.7648 24.5479
+\l 32.9861 25.1079
+\l 32.2075 24.5479
+\l 32.5046 25.4631
+\l 31.7273 26.0232
+\l 32.689 26.0232
+\o
+\s
+\m 36.0501 26.9384
+\l 36.3479 26.0232
+\l 37.3103 26.0232
+\l 36.5317 25.4631
+\l 36.8295 24.5479
+\l 36.0501 25.1079
+\l 35.2715 24.5479
+\l 35.5693 25.4631
+\l 34.7907 26.0232
+\l 35.753 26.0232
+\o
+\s
+\m 39.4966 26.9384
+\l 39.7944 26.0232
+\l 40.7561 26.0232
+\l 39.9781 25.4631
+\l 40.2753 24.5479
+\l 39.4966 25.1079
+\l 38.718 24.5479
+\l 39.0158 25.4631
+\l 38.2365 26.0232
+\l 39.1988 26.0232
+\o
+\s
+\m 36.5317 35.9542
+\c 36.5317 35.9542 37.6149 28.8645 28.8512 29.8481
+\c 28.8512 29.8481 31.8052 30.2442 33.4793 33.3929
+\c 35.1527 36.5484 33.2819 39.8952 30.9187 41.2749
+\c 30.9187 41.2749 31.7069 41.7666 34.7592 39.1097
+\c 34.7592 39.1097 33.676 41.2749 32.1003 42.1628
+\c 30.5252 43.0439 29.737 42.4565 29.737 42.4565
+\c 29.737 42.4565 29.2453 43.6381 31.2144 44.0274
+\c 33.1842 44.4236 34.0701 43.1463 34.9559 43.1463
+\c 35.8425 43.1463 38.4031 43.8362 40.3722 40.585
+\c 42.3407 37.3339 41.0607 32.6074 43.719 29.7524
+\c 43.719 29.7524 39.0916 29.9505 39.4857 36.2547
+\c 39.4857 36.2547 39.9781 31.6239 42.7348 30.5379
+\c 42.7348 30.5379 41.948 30.5379 41.1598 35.5649
+\c 40.3722 40.585 38.7965 43.5356 34.9559 42.7502
+\c 34.9559 42.7502 31.2144 45.209 29.9344 42.8458
+\c 29.9344 42.8458 31.6085 43.6381 32.8885 42.1628
+\c 34.1684 40.6806 35.2517 38.8092 36.3343 37.73
+\c 36.3343 37.73 34.8576 38.4199 32.8885 40.0933
+\c 32.8885 40.0933 34.7592 38.8092 34.6609 35.6605
+\c 34.5625 32.5118 32.396 31.0297 30.7219 30.0461
+\c 30.7219 30.0461 32.5927 29.8481 34.2668 31.1321
+\c 35.9409 32.4094 36.4333 35.2643 36.5317 35.9542
+\s
+\m 35.5474 41.9647
+\c 35.5474 41.9647 35.9409 40.8787 35.9409 40.2913
+\c 35.9409 40.2913 35.2517 40.0933 34.7599 41.2749
+\c 34.2668 42.4565 34.5619 42.8458 35.1533 42.1628
+\c 35.1533 42.1628 34.3658 42.2584 35.1533 41.2749
+\c 35.9409 40.2913 35.5474 41.9647 35.5474 41.9647
+\s
+\m 0 0
+\l 72.2259 0
+\l 72.2259 44.1033
+\l 0 44.1033
+\o
+\i
+\m 35.9757 14.5895
+\l 37.242 14.5895
+\c 38.5711 13.2577 40.9344 14.8832 42.7068 12.6703
+\c 43.9615 11.0993 43.2976 9.2689 43.2976 9.2689
+\c 42.5593 13.8519 37.5371 13.5513 37.5371 13.5513
+\c 45.8084 9.8631 41.3776 5.5806 41.3776 5.5806
+\c 42.8543 7.2062 42.1529 9.3167 40.9344 10.307
+\c 38.5711 12.2263 36.7987 13.7016 36.7987 13.7016
+\c 37.3895 10.6007 39.9003 10.4505 40.7862 7.9438
+\c 41.907 4.7678 38.8662 1.4415 38.8662 1.4415
+\c 41.0819 5.1366 40.3436 7.3496 39.0144 8.9752
+\c 37.6846 10.6007 36.6512 12.964 36.6512 12.964
+\c 36.7987 10.6007 37.5371 10.1568 38.2761 6.0245
+\c 39.0144 1.8855 36.2079 -0.0338 36.2079 -0.0338
+\c 36.2079 -0.0338 37.3895 0.9976 37.3895 4.5424
+\c 37.3895 8.0872 36.1239 10.0065 35.9757 11.9326
+\c 35.8282 10.0065 34.5625 8.0872 34.5625 4.5424
+\c 34.5625 0.9976 35.7441 -0.0338 35.7441 -0.0338
+\c 35.7441 -0.0338 32.937 1.8855 33.676 6.0245
+\c 34.4143 10.1568 35.1527 10.6007 35.3002 12.964
+\c 35.3002 12.964 34.2668 10.6007 32.937 8.9752
+\c 31.6078 7.3496 30.8695 5.1366 33.0852 1.4415
+\c 33.0852 1.4415 30.0444 4.7678 31.1652 7.9438
+\c 32.0511 10.4505 34.5625 10.6007 35.1527 13.7016
+\c 35.1527 13.7016 33.3809 12.2263 31.0177 10.307
+\c 29.7985 9.3167 29.0971 7.2062 30.5737 5.5806
+\c 30.5737 5.5806 26.143 9.8631 34.4143 13.5513
+\c 34.4143 13.5513 29.3921 13.8519 28.6538 9.2689
+\c 28.6538 9.2689 27.9899 11.0993 29.2453 12.6703
+\c 31.0177 14.8832 33.3809 13.2577 34.7094 14.5895
+\o
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian137.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian137.pgf
new file mode 100644
index 0000000000..cc5b53a104
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian137.pgf
@@ -0,0 +1,401 @@
+\m 53.1248 39.581
+\c 54.0598 38.133 56.9866 39.3966 56.9866 39.3966
+\c 53.6534 42.7912 52.1897 41.0222 53.1248 39.581
+\m 53.3891 29.1104
+\c 53.3891 29.1104 54.5885 31.1458 54.6288 32.382
+\c 54.6698 33.6251 53.9581 34.5608 53.3481 33.0514
+\c 52.7396 31.5488 53.3891 29.1104 53.3891 29.1104
+\m 45.4423 33.8642
+\c 45.4423 33.8642 48.5923 34.6974 49.4461 35.6946
+\c 50.3005 36.6918 49.0192 37.689 47.7795 36.7738
+\c 46.5399 35.8586 45.4423 33.8642 45.4423 33.8642
+\m 39.2227 38.2355
+\c 39.2227 38.2355 42.9219 38.6248 44.4874 39.7381
+\c 46.0522 40.8582 44.8535 41.9579 43.0032 41.2885
+\c 41.1536 40.6123 39.4877 39.0278 39.2227 38.2355
+\m 32.4145 42.7707
+\c 32.4145 42.7707 36.1949 43.6449 36.7844 44.7173
+\c 37.3738 45.7964 35.4224 46.1448 34.081 45.3115
+\c 32.7403 44.4782 32.4145 42.7707 32.4145 42.7707
+\m 21.7034 46.1448
+\c 21.7034 46.1448 26.1143 46.6297 27.313 47.6679
+\c 28.5117 48.7061 24.2845 49.8603 21.7034 46.1448
+\m 21.338 46.1652
+\c 22.0975 47.7225 23.3761 48.3236 23.3761 48.3236
+\c 26.0133 49.7989 29.2904 48.9998 27.9318 47.6406
+\c 26.5726 46.2814 21.5778 45.7623 21.5778 45.7623
+\c 22.857 41.1656 32.0074 42.6477 32.0074 42.6477
+\c 33.1658 47.3605 37.4414 46.4863 37.3219 45.0041
+\c 37.2017 43.5288 32.4466 42.0877 32.4466 42.0877
+\c 34.0052 38.3721 38.6804 38.2901 38.6804 38.2901
+\c 38.6804 38.2901 39.1196 39.8884 42.2758 41.4115
+\c 45.4327 42.9278 46.6321 40.6875 44.4334 39.2941
+\c 42.2362 37.894 38.9195 37.6549 38.9195 37.6549
+\c 38.0807 32.7782 44.9532 33.7344 44.9532 33.7344
+\c 47.5104 38.6931 50.8271 38.0101 49.9877 35.9747
+\c 49.149 33.9393 44.7538 32.8601 44.7538 32.8601
+\c 42.9561 29.3016 45.1533 26.3852 47.8704 26.3032
+\c 50.5874 26.2212 53.2245 28.9396 53.2245 28.9396
+\c 52.5449 30.3398 52.745 31.9791 52.745 31.9791
+\c 52.9848 34.6155 54.6233 34.9365 54.943 33.1402
+\c 55.2626 31.337 53.5845 28.7416 53.5845 28.7416
+\c 55.3425 27.0614 58.4598 28.9396 58.7392 32.4981
+\c 59.0185 36.0566 57.1006 39.2122 57.1006 39.2122
+\c 53.6241 36.7328 51.2267 40.7694 53.0244 41.5686
+\c 54.8228 42.3677 57.4606 39.6083 57.4606 39.6083
+\c 59.6578 41.4115 59.0185 44.847 59.0185 44.847
+\c 58.0193 49.3617 53.3843 51.8752 53.3843 51.8752
+\c 46.5112 55.5157 38.1204 53.9926 25.6533 51.3561
+\c 13.1863 48.7197 1.838 53.8355 1.838 53.8355
+\c 6.113 47.8455 21.338 46.1652 21.338 46.1652
+\m 0 55.1537
+\c 10.1496 49.4369 21.7376 51.8001 26.2926 52.9544
+\c 30.8476 54.1155 33.4451 54.6346 33.4451 54.6346
+\c 45.4327 56.3968 55.4218 53.1593 58.2993 47.4425
+\c 61.1762 41.7325 57.5794 39.3283 57.5794 39.3283
+\c 57.5794 39.3283 61.3763 34.0554 58.5787 30.1008
+\c 55.7817 26.1461 53.4643 28.4615 53.4643 28.4615
+\c 51.0669 25.7431 47.8697 24.5888 45.193 26.6652
+\c 42.5155 28.7416 44.2743 32.7372 44.2743 32.7372
+\c 37.561 31.8971 38.5602 37.5729 38.5602 37.5729
+\c 33.1255 37.3749 32.0682 41.9032 32.0682 41.9032
+\c 22.2471 39.3966 21.2861 45.7486 21.2861 45.7486
+\c 8.5288 44.7241 0 55.1537 0 55.1537
+\s
+\m 96.3076 39.581
+\c 95.3719 38.133 92.4452 39.3966 92.4452 39.3966
+\c 95.779 42.7912 97.2413 41.0222 96.3076 39.581
+\m 96.0419 29.1104
+\c 96.0419 29.1104 94.8426 31.1458 94.803 32.382
+\c 94.762 33.6251 95.4744 34.5608 96.0836 33.0514
+\c 96.6922 31.5488 96.0419 29.1104 96.0419 29.1104
+\m 103.9895 33.8642
+\c 103.9895 33.8642 100.8401 34.6974 99.9857 35.6946
+\c 99.1326 36.6918 100.4119 37.689 101.6522 36.7738
+\c 102.8926 35.8586 103.9895 33.8642 103.9895 33.8642
+\m 110.209 38.2355
+\c 110.209 38.2355 106.5098 38.6248 104.945 39.7381
+\c 103.3796 40.8582 104.5789 41.9579 106.4285 41.2885
+\c 108.2781 40.6123 109.9447 39.0278 110.209 38.2355
+\m 117.018 42.7707
+\c 117.018 42.7707 113.2368 43.6449 112.6481 44.7173
+\c 112.0593 45.7964 114.0093 46.1448 115.3514 45.3115
+\c 116.6915 44.4782 117.018 42.7707 117.018 42.7707
+\m 127.729 46.1448
+\c 127.729 46.1448 123.3181 46.6297 122.1187 47.6679
+\c 120.9194 48.7061 125.1472 49.8603 127.729 46.1448
+\m 128.093 46.1652
+\c 127.3349 47.7225 126.0556 48.3236 126.0556 48.3236
+\c 123.4171 49.7989 120.1421 48.9998 121.5006 47.6406
+\c 122.8584 46.2814 127.854 45.7623 127.854 45.7623
+\c 126.5754 41.1656 117.4251 42.6477 117.4251 42.6477
+\c 116.2667 47.3605 111.991 46.4863 112.1105 45.0041
+\c 112.2307 43.5288 116.9852 42.0877 116.9852 42.0877
+\c 115.4272 38.3721 110.7513 38.2901 110.7513 38.2901
+\c 110.7513 38.2901 110.3122 39.8884 107.1559 41.4115
+\c 103.9984 42.9278 102.8004 40.6875 104.9983 39.2941
+\c 107.1942 37.894 110.5109 37.6549 110.5109 37.6549
+\c 111.351 32.7782 104.4792 33.7344 104.4792 33.7344
+\c 101.9213 38.6931 98.6046 38.0101 99.4434 35.9747
+\c 100.2835 33.9393 104.6787 32.8601 104.6787 32.8601
+\c 106.477 29.3016 104.2791 26.3852 101.5607 26.3032
+\c 98.845 26.2212 96.2079 28.9396 96.2079 28.9396
+\c 96.8868 30.3398 96.686 31.9791 96.686 31.9791
+\c 96.447 34.6155 94.8084 34.9365 94.4881 33.1402
+\c 94.1684 31.337 95.8473 28.7416 95.8473 28.7416
+\c 94.0892 27.0614 90.9713 28.9396 90.6933 32.4981
+\c 90.4126 36.0566 92.3318 39.2122 92.3318 39.2122
+\c 95.807 36.7328 98.2051 40.7694 96.4074 41.5686
+\c 94.6083 42.3677 91.9712 39.6083 91.9712 39.6083
+\c 89.7739 41.4115 90.4126 44.847 90.4126 44.847
+\c 91.4125 49.3617 96.0474 51.8752 96.0474 51.8752
+\c 102.9213 55.5157 111.3121 53.9926 123.7791 51.3561
+\c 136.2455 48.7197 147.5931 53.8355 147.5931 53.8355
+\c 143.3188 47.8455 128.093 46.1652 128.093 46.1652
+\m 149.4304 55.1537
+\c 139.2815 49.4369 127.6942 51.8001 123.1391 52.9544
+\c 118.5848 54.1155 115.9866 54.6346 115.9866 54.6346
+\c 103.9997 56.3968 94.01 53.1593 91.1331 47.4425
+\c 88.2563 41.7325 91.8523 39.3283 91.8523 39.3283
+\c 91.8523 39.3283 88.0562 34.0554 90.8538 30.1008
+\c 93.65 26.1461 95.9682 28.4615 95.9682 28.4615
+\c 98.3656 25.7431 101.5621 24.5888 104.2395 26.6652
+\c 106.9162 28.7416 105.1581 32.7372 105.1581 32.7372
+\c 111.8715 31.8971 110.8722 37.5729 110.8722 37.5729
+\c 116.3063 37.3749 117.3622 41.9032 117.3622 41.9032
+\c 127.1846 39.3966 128.1443 45.7486 128.1443 45.7486
+\c 140.903 44.7241 149.4304 55.1537 149.4304 55.1537
+\s
+\m 70.655 59.2586
+\c 70.655 59.2586 73.8563 46.9644 61.5047 44.5055
+\c 61.5047 44.5055 67.6805 47.702 68.7098 53.9994
+\c 69.7391 60.2831 69.511 65.2077 72.1979 68.8071
+\c 74.887 72.4135 78.2611 71.669 78.4892 70.2346
+\c 78.718 68.8071 76.6027 67.7212 76.6027 66.9767
+\c 76.6027 66.2322 78.5459 65.4877 79.2904 67.7758
+\c 80.0335 70.0639 79.6906 71.949 82.5504 73.3219
+\c 85.4102 74.6947 87.5815 72.5227 87.9257 71.3206
+\c 87.9257 71.3206 86.1526 73.438 83.2354 71.8944
+\c 83.2354 71.8944 81.657 71.1294 80.5854 68.6022
+\c 79.5144 66.0819 78.7877 65.0096 77.6477 64.1831
+\c 77.6477 64.1831 79.5144 64.2856 81.1727 66.5327
+\c 82.8325 68.7798 83.4888 69.5721 85.0789 69.7429
+\c 85.0789 69.7429 81.4842 67.8099 79.8593 62.421
+\c 78.2351 57.0252 78.4079 48.146 87.2912 44.649
+\c 87.2912 44.649 82.0368 44.649 79.2384 48.4875
+\c 76.4374 52.326 77.1293 57.0935 77.1293 57.0935
+\c 77.1293 57.0935 75.7469 52.046 78.2699 48.2484
+\c 80.793 44.4441 86.4606 43.8225 89.4679 44.5465
+\c 89.4679 44.5465 83.1767 45.4481 80.8961 51.8411
+\c 78.6155 58.2341 80.0328 65.9112 86.2537 70.3986
+\c 86.2537 70.3986 83.9389 70.6444 82.3134 68.6705
+\c 80.6899 66.7035 80.8613 66.1844 79.1681 65.1462
+\c 79.1681 65.1462 79.8258 66.0478 81.2076 68.5681
+\c 82.5893 71.0952 85.8049 73.7522 88.4994 70.2278
+\c 88.4994 70.2278 88.5698 72.9599 85.8049 73.8956
+\c 83.0401 74.8245 80.3436 73.1648 79.4454 70.4737
+\c 78.5459 67.7758 78.3389 66.7035 77.5097 66.9767
+\c 76.6792 67.2567 77.8205 67.6324 78.511 69.0872
+\c 79.2036 70.542 78.5459 72.3383 75.5741 71.6143
+\c 72.6009 70.8835 70.597 68.4656 69.2145 63.1108
+\c 67.8308 57.7492 67.382 47.8318 60.3313 44.164
+\c 60.3313 44.164 64.4095 43.5766 68.5575 46.9302
+\c 72.7054 50.2838 72.1979 56.1646 70.655 59.2586
+\s
+\m 0 0
+\l 149.4304 0
+\l 149.4304 74.1551
+\l 0 74.1551
+\o
+\i
+\m 74.9013 14.5895
+\l 76.1676 14.5895
+\c 77.4974 13.2577 79.8607 14.8832 81.6317 12.6634
+\c 82.8871 11.0993 82.2239 9.2689 82.2239 9.2689
+\c 81.4842 13.845 76.4634 13.5513 76.4634 13.5513
+\c 84.734 9.8631 80.3033 5.5806 80.3033 5.5806
+\c 81.7793 7.1993 81.0792 9.3167 79.8607 10.307
+\c 77.4974 12.2263 75.7237 13.7016 75.7237 13.7016
+\c 76.3152 10.6007 78.8259 10.4505 79.7125 7.9438
+\c 80.8333 4.761 77.7918 1.4415 77.7918 1.4415
+\c 80.0075 5.1366 79.2692 7.3496 77.94 8.9752
+\c 76.6102 10.6007 75.5768 12.964 75.5768 12.964
+\c 75.7237 10.6007 76.4634 10.1568 77.201 6.0177
+\c 77.94 1.8855 75.1342 -0.0338 75.1342 -0.0338
+\c 75.1342 -0.0338 76.3152 0.9976 76.3152 4.5424
+\c 76.3152 8.0872 75.0488 10.0065 74.9013 11.9258
+\c 74.7531 10.0065 73.4868 8.0872 73.4868 4.5424
+\c 73.4868 0.9976 74.6691 -0.0338 74.6691 -0.0338
+\c 74.6691 -0.0338 71.8626 1.8855 72.6002 6.0177
+\c 73.3399 10.1568 74.0776 10.6007 74.2258 12.964
+\c 74.2258 12.964 73.1931 10.6007 71.8626 8.9752
+\c 70.5334 7.3496 69.7951 5.1366 72.0108 1.4415
+\c 72.0108 1.4415 68.9687 4.761 70.0908 7.9438
+\c 70.9767 10.4505 73.4868 10.6007 74.0776 13.7016
+\c 74.0776 13.7016 72.3059 12.2263 69.942 10.307
+\c 68.7241 9.3167 68.022 7.1993 69.4994 5.5806
+\c 69.4994 5.5806 65.0687 9.8631 73.3399 13.5513
+\c 73.3399 13.5513 68.3177 13.845 67.5787 9.2689
+\c 67.5787 9.2689 66.9155 11.0993 68.1702 12.6634
+\c 69.942 14.8832 72.3059 13.2577 73.635 14.5895
+\o
+\s
+
+\m 84.135 20.7708
+\l 84.135 30.8043
+\c 84.4369 29.7524 84.8303 28.5025 85.3043 26.8974
+\c 85.9525 24.6981 85.5925 22.4715 84.135 20.7708
+\m 80.6769 18.5237
+\c 80.6475 18.5169 80.6195 18.5032 80.5901 18.4964
+\l 80.5901 34.677
+\l 81.8455 34.677
+\l 81.8455 19.0291
+\c 81.4972 18.8379 81.1024 18.6739 80.6769 18.5237
+\m 79.0137 34.677
+\l 80.0745 34.677
+\l 80.0745 18.312
+\c 79.6954 18.1753 79.3423 18.0387 79.0137 17.9021
+\o
+\m 75.0639 15.0813
+\c 75.0639 15.0813 74.374 16.461 72.799 17.2465
+\c 72.7006 17.2943 72.5941 17.3421 72.48 17.3831
+\l 72.6139 17.3831
+\l 72.6139 34.677
+\l 73.7211 34.677
+\l 73.7211 24.0493
+\l 74.2395 24.0493
+\l 74.2395 34.677
+\l 75.2975 34.677
+\l 75.2975 24.0493
+\l 75.8152 24.0493
+\l 75.8152 34.677
+\l 76.8254 34.677
+\l 76.8841 16.8025
+\c 76.0898 16.2834 75.5235 15.7233 75.0639 15.0813
+\m 69.4632 18.2163
+\l 69.4632 34.677
+\l 70.2268 34.677
+\l 70.2268 18.0592
+\l 70.7438 18.0592
+\l 70.7438 34.677
+\l 72.0969 34.677
+\l 72.0969 17.5128
+\c 71.3776 17.7382 70.4474 17.9226 69.4632 18.2163
+\m 65.1185 20.8869
+\c 62.8543 23.7419 64.4874 28.7689 65.1185 30.8316
+\c 65.5283 32.1771 65.9088 33.4475 66.1137 34.677
+\l 66.1888 34.677
+\l 66.1888 19.8214
+\c 65.807 20.1219 65.4457 20.4771 65.1185 20.8869
+\m 68.0842 18.7354
+\l 68.0842 34.677
+\l 68.9461 34.677
+\l 68.9461 18.3803
+\c 68.6381 18.4827 68.328 18.6056 68.0186 18.7354
+\o
+\m 67.5678 34.677
+\l 67.5678 18.9472
+\c 67.2748 19.0906 66.9866 19.2613 66.7052 19.4458
+\l 66.7052 34.677
+\o
+\m 78.4981 34.677
+\l 78.4981 17.6767
+\c 78.0698 17.4787 77.686 17.2806 77.341 17.0825
+\l 77.341 34.677
+\o
+\m 65.0195 40.4826
+\c 65.0195 40.4826 65.807 41.2749 70.0417 40.1889
+\c 74.2764 39.1029 78.0172 35.9542 84.1227 39.1029
+\c 84.1227 39.1029 83.5319 37.1358 83.4342 35.0663
+\l 66.1724 35.0663
+\c 66.4251 36.9377 66.2202 38.7136 65.0195 40.4826
+\m 83.6186 32.3615
+\l 83.6186 20.2312
+\c 83.2512 19.8897 82.8331 19.5755 82.3632 19.2955
+\l 82.3632 34.677
+\l 83.424 34.677
+\c 83.4253 33.9325 83.6186 32.3615 83.6186 32.3615
+\m 86.0918 25.5177
+\c 85.9135 28.284 83.926 31.1321 83.8276 34.677
+\l 83.8276 35.0663
+\c 83.8645 37.17 84.6151 39.6971 84.6151 39.6971
+\c 77.7215 36.1523 72.9943 40.0933 69.8436 40.7763
+\c 66.6929 41.4661 64.3289 40.8787 64.3289 40.8787
+\c 68.3676 34.8682 62.6221 30.6335 63.4438 23.94
+\c 64.1336 18.3324 69.1551 17.8338 71.5183 17.3421
+\c 73.8816 16.8503 74.9013 14.5895 74.9013 14.5895
+\c 76.1178 15.976 77.41 16.7 78.97 17.3831
+\c 79.763 17.7314 80.571 18.0456 81.4644 18.4281
+\c 85.402 20.1014 86.2892 22.4647 86.0918 25.5177
+\s
+\m 69.5738 43.9045
+\c 64.4772 44.567 60.1947 42.6477 60.1947 42.6477
+\c 63.8256 43.8157 67.3212 43.2761 70.6673 42.436
+\l 71.3449 43.2419
+\c 71.937 43.6108 71.8633 43.0166 71.8633 43.0166
+\l 71.3913 42.2516
+\c 72.1262 42.0603 72.8543 41.8554 73.5729 41.6574
+\l 74.2265 42.4292
+\c 74.8173 42.798 74.7429 42.2038 74.7429 42.2038
+\l 74.2859 41.4661
+\c 76.6409 40.8309 78.912 40.305 81.0949 40.4348
+\c 85.0864 40.667 88.7754 44.1299 88.7754 44.1299
+\c 80.6516 38.9595 74.6691 43.2419 69.5738 43.9045
+\s
+\m 73.7825 21.9729
+\c 73.7211 24.0493 75.8507 24.4864 75.8507 21.8226
+\c 75.8507 21.8226 75.7032 20.3473 74.9642 19.1657
+\c 74.9642 19.1657 73.844 19.8965 73.7825 21.9729
+\m 89.1442 28.8645
+\c 88.9174 31.5419 87.5685 32.6074 86.878 36.9377
+\c 86.1902 41.2749 88.7754 44.1299 88.7754 44.1299
+\c 88.7754 44.1299 85.7954 41.3705 85.7954 36.9377
+\c 85.7954 32.5118 88.2583 29.2607 88.1586 24.4318
+\c 88.0603 19.6097 86.4845 17.2465 83.2354 15.9692
+\c 80.1885 14.7671 76.5344 16.5976 75.4429 18.2915
+\c 75.3699 18.4007 75.2018 18.5169 75.2606 18.6261
+\c 77.8458 23.1818 75.4826 24.4113 74.8173 24.4113
+\c 74.152 24.4113 73.0141 24.0561 73.118 21.9729
+\c 73.1931 20.4976 74.4724 18.6261 74.4724 18.6261
+\c 72.6009 14.6852 65.807 13.606 62.2615 19.7053
+\c 58.7173 25.8114 63.0497 28.8645 63.6405 34.8682
+\c 64.2313 40.8787 61.0805 42.2584 61.0805 42.2584
+\c 61.0805 42.2584 63.5175 40.3596 62.2615 35.1892
+\c 61.0068 30.0188 58.274 27.2184 61.1543 20.5659
+\c 64.0346 13.9202 72.5517 13.5035 74.8665 18.3324
+\c 74.8665 18.3324 75.9982 16.2151 79.2473 15.4023
+\c 82.4978 14.5895 84.7627 16.017 85.7469 16.8776
+\c 89.414 20.0878 89.4393 25.3675 89.1442 28.8645
+\s
+\m 68.662 38.3789
+\l 68.9639 37.45
+\l 69.9379 37.45
+\l 69.1497 36.8831
+\l 69.4502 35.9542
+\l 68.662 36.5279
+\l 67.8758 35.9542
+\l 68.177 36.8831
+\l 67.3895 37.45
+\l 68.3621 37.45
+\o
+\s
+\m 71.6228 38.3789
+\l 71.9227 37.45
+\l 72.8974 37.45
+\l 72.1092 36.8831
+\l 72.4097 35.9542
+\l 71.6228 36.5279
+\l 70.8367 35.9542
+\l 71.1365 36.8831
+\l 70.349 37.45
+\l 71.3216 37.45
+\o
+\s
+\m 74.2811 38.3789
+\l 74.581 37.45
+\l 75.5556 37.45
+\l 74.7681 36.8831
+\l 75.0693 35.9542
+\l 74.2811 36.5279
+\l 73.4943 35.9542
+\l 73.7948 36.8831
+\l 73.008 37.45
+\l 73.9813 37.45
+\o
+\s
+\m 81.7595 38.3789
+\l 82.0586 37.45
+\l 83.0333 37.45
+\l 82.2458 36.8831
+\l 82.5456 35.9542
+\l 81.7595 36.5279
+\l 80.9726 35.9542
+\l 81.2725 36.8831
+\l 80.4849 37.45
+\l 81.4576 37.45
+\o
+\s
+\m 79.1988 38.3789
+\l 79.4987 37.45
+\l 80.472 37.45
+\l 79.6851 36.8831
+\l 79.9863 35.9542
+\l 79.1988 36.5279
+\l 78.4113 35.9542
+\l 78.7112 36.8831
+\l 77.925 37.45
+\l 78.899 37.45
+\o
+\s
+\m 76.9278 38.3789
+\l 77.2297 37.45
+\l 78.2023 37.45
+\l 77.4148 36.8831
+\l 77.7146 35.9542
+\l 76.9278 36.5279
+\l 76.1417 35.9542
+\l 76.4415 36.8831
+\l 75.654 37.45
+\l 76.6287 37.45
+\o
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian138.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian138.pgf
new file mode 100644
index 0000000000..387de5b894
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian138.pgf
@@ -0,0 +1,24 @@
+\m 11.1115 3.3536
+\c 11.1115 3.3536 10.1095 3.9137 10.1464 4.4328
+\c 10.2045 5.2729 11.4851 3.8454 11.1115 3.3536
+\m 4.5327 4.4328
+\c 4.5689 3.9137 3.5676 3.3536 3.5676 3.3536
+\c 3.194 3.8454 4.4733 5.2729 4.5327 4.4328
+\m 14.0676 6.2086
+\c 12.7159 7.5815 11.3642 7.1921 11.3642 7.1921
+\c 11.3642 7.1921 14.03 6.8233 14.2595 4.8289
+\c 14.4528 3.1555 12.6435 2.8072 11.4851 3.4014
+\c 11.4851 3.4014 11.4605 4.4328 10.6887 4.9245
+\c 9.9162 5.4163 9.1438 4.1391 10.882 3.0531
+\c 10.882 3.0531 10.2345 0.6898 7.3392 0.8879
+\c 4.4439 0.6898 3.7971 3.0531 3.7971 3.0531
+\c 5.534 4.1391 4.7629 5.4163 3.9904 4.9245
+\c 3.2179 4.4328 3.194 3.4014 3.194 3.4014
+\c 2.0356 2.8072 0.2256 3.1555 0.4183 4.8289
+\c 0.6491 6.8233 3.3142 7.1921 3.3142 7.1921
+\c 3.3142 7.1921 1.9625 7.5815 0.6115 6.2086
+\c -0.7401 4.8289 0.1287 1.6734 3.4112 2.5613
+\c 3.4112 2.5613 4.2848 0 7.3392 0
+\c 10.3937 0 11.2672 2.5613 11.2672 2.5613
+\c 14.5498 1.6734 15.4186 4.8289 14.0676 6.2086
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian139.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian139.pgf
new file mode 100644
index 0000000000..5310df5b31
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian139.pgf
@@ -0,0 +1,291 @@
+\m 0 0
+\l 72.6685 0
+\l 72.6685 36.9041
+\l 0 36.9041
+\o
+\i
+\m 36.197 14.5893
+\l 37.4626 14.5893
+\c 38.7918 13.2643 41.155 14.8899 42.9274 12.6701
+\c 44.1814 11.0991 43.5182 9.2755 43.5182 9.2755
+\c 42.7806 13.8517 37.7577 13.558 37.7577 13.558
+\c 46.0296 9.8629 41.5989 5.5804 41.5989 5.5804
+\c 43.0749 7.206 42.3735 9.3165 41.155 10.3068
+\c 38.7918 12.2261 37.02 13.7082 37.02 13.7082
+\c 37.6101 10.6074 40.1216 10.4571 41.0068 7.9436
+\c 42.1283 4.7676 39.0875 1.4481 39.0875 1.4481
+\c 41.3032 5.1364 40.5642 7.3562 39.2357 8.9818
+\c 37.9059 10.6074 36.8718 12.9706 36.8718 12.9706
+\c 37.02 10.6074 37.7577 10.1634 38.4967 6.0243
+\c 39.2357 1.8921 36.4285 -0.034 36.4285 -0.034
+\c 36.4285 -0.034 37.6101 1.0042 37.6101 4.549
+\c 37.6101 8.0939 36.3452 10.0131 36.197 11.9324
+\c 36.0488 10.0131 34.7831 8.0939 34.7831 4.549
+\c 34.7831 1.0042 35.9648 -0.034 35.9648 -0.034
+\c 35.9648 -0.034 33.1583 1.8921 33.8966 6.0243
+\c 34.6356 10.1634 35.3733 10.6074 35.5215 12.9706
+\c 35.5215 12.9706 34.4874 10.6074 33.1583 8.9818
+\c 31.8291 7.3562 31.0901 5.1364 33.3058 1.4481
+\c 33.3058 1.4481 30.2657 4.7676 31.3865 7.9436
+\c 32.2724 10.4571 34.7831 10.6074 35.3733 13.7082
+\c 35.3733 13.7082 33.6015 12.2261 31.2383 10.3068
+\c 30.0198 9.3165 29.3184 7.206 30.795 5.5804
+\c 30.795 5.5804 26.3643 9.8629 34.6356 13.558
+\c 34.6356 13.558 29.6127 13.8517 28.8751 9.2755
+\c 28.8751 9.2755 28.2119 11.0991 29.4666 12.6701
+\c 31.2383 14.8899 33.6015 13.2643 34.9307 14.5893
+\o
+\s
+\m 0 17.8405
+\c 0 17.8405 1.6966 16.9526 5.5386 17.697
+\c 9.3778 18.4347 13.8099 20.5725 17.354 21.3853
+\c 20.8995 22.1981 24.5892 22.1913 27.1033 19.3909
+\c 29.6865 16.5154 28.3587 14.1522 27.6935 13.4828
+\c 27.0275 12.8203 25.3296 12.1578 24.0004 13.3394
+\c 22.6713 14.521 23.3365 15.9212 23.7778 16.29
+\c 24.2224 16.6589 25.6267 17.2531 26.2906 15.6275
+\c 26.2906 15.6275 26.3643 18.503 23.6316 19.0972
+\c 20.8995 19.6846 18.6101 18.6533 14.178 16.5837
+\c 9.7473 14.521 5.6116 14.8899 2.3625 15.7026
+\c 2.3625 15.7026 6.13 14.8899 10.3381 16.3652
+\c 14.5482 17.8405 17.0207 19.1724 18.4612 19.6163
+\c 20.1612 20.1286 24.5755 20.4632 26.0672 17.9156
+\c 27.3226 15.7709 26.1417 14.8899 26.1417 14.8899
+\c 26.1417 14.8899 26.1546 16.6862 24.3706 16.2149
+\c 22.9663 15.8461 23.4841 13.2643 25.1813 13.0389
+\c 26.8793 12.8203 28.5042 13.7082 28.2843 16.2149
+\c 28.0623 18.7284 25.1083 21.2419 22.0074 21.2419
+\c 18.9044 21.2419 15.9504 19.91 11.8148 18.6533
+\c 7.6798 17.3965 3.7661 15.7709 0 17.8405
+\s
+\m 24.0004 16.8843
+\c 24.0004 16.8843 22.5231 17.7653 20.0123 16.5837
+\c 17.5022 15.4021 14.0298 11.5636 8.1955 13.4077
+\c 8.1955 13.4077 10.265 13.1345 12.9971 13.8517
+\c 16.9107 14.8899 20.7513 18.8787 24.0004 16.8843
+\s
+\m 22.9663 15.1836
+\c 22.9663 15.1836 20.0861 15.2587 17.6498 13.0389
+\c 15.2114 10.8259 17.6498 9.0501 19.052 9.7946
+\c 19.052 9.7946 17.9441 9.0501 16.8356 9.7946
+\c 15.7291 10.5322 15.8377 13.0594 19.274 14.521
+\c 22.228 15.7709 22.9663 15.1836 22.9663 15.1836
+\s
+\m 24.665 13.0389
+\c 24.665 13.0389 21.711 13.3394 20.308 11.2699
+\c 18.9044 9.2004 20.0867 7.404 21.5627 7.848
+\c 23.0408 8.2919 22.8188 9.938 22.8188 9.938
+\c 22.8188 9.938 23.4841 7.3494 21.0464 7.4313
+\c 18.856 7.4996 18.746 10.2385 20.2336 11.789
+\c 21.4651 13.0662 22.967 13.4077 24.665 13.0389
+\s
+\m 25.182 9.5692
+\c 25.182 9.5692 24.96 11.1948 26.6594 11.8573
+\c 28.358 12.5266 29.3184 10.2317 28.1361 8.3124
+\c 26.9551 6.3932 23.6309 6.3932 23.1883 9.2755
+\c 22.745 12.1578 25.4785 12.8955 25.4785 12.8955
+\c 25.4785 12.8955 23.1077 12.0895 23.7047 9.2755
+\c 24.2224 6.8371 27.3233 7.1308 27.9154 8.9818
+\c 28.4134 10.5391 28.0623 11.5636 27.1764 11.5636
+\c 26.2906 11.5636 25.2565 10.9011 25.182 9.5692
+\s
+\m 72.6685 17.8405
+\c 72.6685 17.8405 70.9699 16.9526 67.1293 17.697
+\c 63.2894 18.4347 58.8566 20.5725 55.3132 21.3853
+\c 51.767 22.1981 48.0773 22.1913 45.5645 19.3909
+\c 42.9807 16.5154 44.3098 14.1522 44.9737 13.4828
+\c 45.639 12.8203 47.3369 12.1578 48.6668 13.3394
+\c 49.9959 14.521 49.3313 15.9212 48.8887 16.29
+\c 48.4448 16.6589 47.0412 17.2531 46.3773 15.6275
+\c 46.3773 15.6275 46.3029 18.503 49.0363 19.0972
+\c 51.767 19.6846 54.0571 18.6533 58.4885 16.5837
+\c 62.9213 14.521 67.0549 14.8899 70.3046 15.7026
+\c 70.3046 15.7026 66.5392 14.8899 62.3284 16.3652
+\c 58.1197 17.8405 55.6465 19.1724 54.2053 19.6163
+\c 52.5073 20.1286 48.0917 20.4632 46.6 17.9156
+\c 45.3439 15.7709 46.5255 14.8899 46.5255 14.8899
+\c 46.5255 14.8899 46.5119 16.6862 48.2966 16.2149
+\c 49.7008 15.8461 49.1831 13.2643 47.4851 13.0389
+\c 45.7872 12.8203 44.1623 13.7082 44.3836 16.2149
+\c 44.6049 18.7284 47.5589 21.2419 50.6598 21.2419
+\c 53.762 21.2419 56.7168 19.91 60.8517 18.6533
+\c 64.9874 17.3965 68.9024 15.7709 72.6685 17.8405
+\s
+\m 48.6668 16.8843
+\c 48.6668 16.8843 50.1441 17.7653 52.6549 16.5837
+\c 55.165 15.4021 58.6367 11.5636 64.471 13.4077
+\c 64.471 13.4077 62.4028 13.1345 59.6694 13.8517
+\c 55.7564 14.8899 51.9152 18.8787 48.6668 16.8843
+\s
+\m 49.7008 15.1836
+\c 49.7008 15.1836 52.5804 15.2587 55.0181 13.0389
+\c 57.4551 10.8259 55.0181 9.0501 53.6145 9.7946
+\c 53.6145 9.7946 54.723 9.0501 55.8309 9.7946
+\c 56.9387 10.5322 56.8301 13.0594 53.3932 14.521
+\c 50.4385 15.7709 49.7008 15.1836 49.7008 15.1836
+\s
+\m 48.0022 13.0389
+\c 48.0022 13.0389 50.9562 13.3394 52.3598 11.2699
+\c 53.7627 9.2004 52.5804 7.404 51.1038 7.848
+\c 49.6264 8.2919 49.8491 9.938 49.8491 9.938
+\c 49.8491 9.938 49.1845 7.3494 51.6215 7.4313
+\c 53.8119 7.4996 53.9212 10.2385 52.4336 11.789
+\c 51.2021 13.0662 49.7008 13.4077 48.0022 13.0389
+\s
+\m 47.4851 9.5692
+\c 47.4851 9.5692 47.7071 11.1948 46.0071 11.8573
+\c 44.3105 12.5266 43.3488 10.2317 44.5311 8.3124
+\c 45.712 6.3932 49.0363 6.3932 49.4789 9.2755
+\c 49.9221 12.1578 47.1887 12.8955 47.1887 12.8955
+\c 47.1887 12.8955 49.5595 12.0895 48.9632 9.2755
+\c 48.4448 6.8371 45.3439 7.1308 44.7524 8.9818
+\c 44.2552 10.5391 44.6049 11.5636 45.4914 11.5636
+\c 46.3773 11.5636 47.4114 10.9011 47.4851 9.5692
+\s
+\m 39.9802 17.9429
+\c 39.9802 17.9429 38.957 18.503 38.996 19.0221
+\c 39.0554 19.8554 40.3613 18.4347 39.9802 17.9429
+\m 33.2689 19.0221
+\c 33.3058 18.503 32.2833 17.9429 32.2833 17.9429
+\c 31.9029 18.4347 33.2081 19.8554 33.2689 19.0221
+\m 42.995 20.7979
+\c 41.6167 22.1708 40.2377 21.7815 40.2377 21.7815
+\c 40.2377 21.7815 42.9561 21.4126 43.191 19.4182
+\c 43.3884 17.7449 41.5422 17.3965 40.3613 17.9907
+\c 40.3613 17.9907 40.3367 19.0221 39.5485 19.5139
+\c 38.761 20.0056 37.9735 18.7284 39.7452 17.6424
+\c 39.7452 17.6424 39.0848 15.2792 36.1328 15.4772
+\c 33.1767 15.2792 32.5176 17.6424 32.5176 17.6424
+\c 34.2921 18.7284 33.5039 20.0056 32.715 19.5139
+\c 31.9268 19.0221 31.9029 17.9907 31.9029 17.9907
+\c 30.7199 17.3965 28.8751 17.7449 29.0718 19.4182
+\c 29.3061 21.4126 32.0258 21.7815 32.0258 21.7815
+\c 32.0258 21.7815 30.6475 22.1708 29.2685 20.7979
+\c 27.8909 19.4182 28.7774 16.2695 32.1242 17.1506
+\c 32.1242 17.1506 33.0169 14.5893 36.1328 14.5893
+\c 39.248 14.5893 40.1387 17.1506 40.1387 17.1506
+\c 43.4882 16.2695 44.3733 19.4182 42.995 20.7979
+\s
+\m 36.7024 23.8988
+\c 36.7024 23.8988 35.4723 23.4548 35.0297 23.9466
+\o
+\s
+\m 34.6349 25.2785
+\c 34.6349 25.2785 34.8801 24.8823 35.6198 24.8345
+\c 36.3582 24.7867 36.9483 25.0326 36.9483 25.0326
+\c 36.9483 25.0326 37.4899 24.8823 37.4899 24.2403
+\c 37.4899 24.2403 36.9982 24.4384 36.7017 24.4384
+\c 36.4074 24.4384 35.8159 24.2403 35.0775 24.4384
+\c 35.0775 24.4384 34.9307 24.5886 34.5366 24.2881
+\c 34.1432 23.9944 33.6992 24.0969 33.9949 24.3906
+\c 33.9949 24.3906 34.5366 24.4862 34.6349 25.2785
+\s
+\m 35.0297 26.7538
+\c 35.0297 26.7538 34.9307 26.5079 35.0297 26.1596
+\c 35.0297 26.1596 36.2106 25.7156 36.5071 26.4055
+\c 36.5071 26.4055 36.5542 26.706 36.8506 26.706
+\c 37.1464 26.706 37.4995 26.2825 36.949 25.9137
+\c 36.2106 25.4219 36.2598 25.3741 35.8664 25.3741
+\c 35.4723 25.3741 35.3733 25.62 35.0297 25.62
+\c 34.6841 25.62 34.389 26.0161 34.389 26.3098
+\c 34.389 26.8494 35.0297 26.7538 35.0297 26.7538
+\s
+\m 41.4289 27.2456
+\c 40.543 27.0953 40.5922 28.6731 42.463 28.1335
+\c 42.463 28.1335 42.3154 27.3958 41.4289 27.2456
+\m 42.8092 22.7172
+\c 42.1194 23.2568 41.4787 23.6051 42.1194 24.4384
+\c 42.7587 25.2785 43.5968 26.706 42.7587 28.0857
+\c 42.7587 28.0857 43.497 29.0692 43.3495 31.33
+\c 43.2033 33.5976 41.3312 37.0946 36.0638 36.8966
+\c 34.3385 36.8283 30.0567 36.5482 28.9728 32.9078
+\c 27.8909 29.2605 29.5656 27.8876 29.5656 27.8876
+\c 29.5656 27.8876 28.5793 27.5871 28.4817 26.5557
+\c 28.3635 25.3263 29.7609 24.2881 29.7609 23.3524
+\c 29.7609 22.4235 28.9243 22.4713 28.9243 22.4713
+\c 28.9243 22.4713 28.5725 22.4576 28.4311 22.123
+\c 28.2843 21.7815 28.7774 21.7815 28.7774 21.7815
+\c 31.6816 22.9153 29.9092 25.2239 29.2685 25.9683
+\c 28.6292 26.706 28.8751 27.4436 29.8108 27.7373
+\c 30.7465 28.031 32.4691 26.5557 31.435 26.5557
+\c 30.4009 26.5557 29.8108 27.2934 29.8108 27.2934
+\c 29.8108 27.2934 29.7609 27.0475 30.4993 26.3577
+\c 30.4993 26.3577 30.2042 26.2142 30.3524 25.8659
+\c 30.4993 25.5244 31.3865 22.2732 35.6683 21.9795
+\c 39.9522 21.679 41.5771 26.2142 41.7253 26.5557
+\c 41.7253 26.5557 41.6269 26.8972 41.2335 26.3577
+\c 40.8394 25.8181 39.5588 23.0587 36.4074 22.765
+\l 34.8323 22.765
+\c 34.5373 22.765 31.5825 23.6529 30.6967 26.064
+\l 31.435 26.064
+\c 31.976 26.064 32.3209 26.3577 31.9268 27.0475
+\c 31.5341 27.7373 30.2042 28.2291 30.2042 28.2291
+\c 30.2042 28.2291 29.2186 30.9885 30.6967 32.9078
+\c 32.4623 35.2027 35.374 35.1685 36.309 35.1207
+\c 37.244 35.0729 42.021 34.7314 42.5128 29.7044
+\c 42.5128 29.7044 42.8092 29.9503 42.3154 31.774
+\c 41.8223 33.5976 39.7528 35.3256 36.4572 35.4691
+\c 32.9622 35.6125 30.7404 34.6221 29.959 32.3682
+\c 29.1203 29.9503 30.0062 28.2291 30.0062 28.2291
+\c 30.0062 28.2291 29.7609 27.9832 29.3675 28.475
+\c 28.9728 28.9668 28.1361 32.5594 30.5485 34.7792
+\c 32.9622 36.9922 36.0139 36.596 36.5542 36.596
+\c 37.0958 36.596 40.7404 36.1043 41.9712 34.1372
+\c 43.2033 32.1701 43.3495 30.1962 42.661 28.5774
+\c 42.661 28.5774 41.2807 28.9668 40.8394 28.0857
+\c 40.3948 27.1978 41.2807 26.8972 41.8223 27.1499
+\c 42.3646 27.3958 42.5128 27.7852 42.5128 27.7852
+\c 42.5128 27.7852 43.1528 27.2456 42.5128 26.3098
+\c 41.8728 25.3741 40.9371 24.4384 41.3312 23.4548
+\c 41.7253 22.4713 43.2033 21.9249 43.2033 21.9249
+\c 43.2033 21.9249 43.497 22.1708 42.8092 22.7172
+\s
+\m 37.9837 27.5393
+\c 37.7365 27.5871 37.4414 28.475 36.7024 28.3316
+\c 36.7024 28.3316 36.7024 28.6731 37.0473 28.5774
+\c 37.3929 28.475 37.4899 28.3316 37.7365 28.1335
+\c 37.9837 27.9354 38.1798 27.833 38.4769 27.833
+\c 38.4769 27.833 38.229 27.4915 37.9837 27.5393
+\m 37.8349 28.7687
+\c 38.7706 28.8233 39.9522 28.475 39.9522 28.475
+\c 39.1647 29.1648 37.3431 29.2605 37.3431 29.2605
+\c 38.1798 30.1006 40.1496 28.7209 40.1496 28.7209
+\c 39.6571 30.1484 37.9346 30.1006 37.5412 29.8069
+\c 37.1457 29.5132 36.9005 29.3629 36.9005 29.3629
+\c 35.8165 28.3794 36.2598 27.8876 36.2598 27.8876
+\c 37.0473 28.5228 37.1956 27.6895 37.7864 27.3412
+\c 38.3772 26.9997 38.524 27.4436 38.524 27.4436
+\c 38.8204 27.5871 39.2637 27.2934 39.2637 27.2934
+\l 40.0014 27.6895
+\c 39.7562 28.5228 37.8349 28.7687 37.8349 28.7687
+\s
+\m 34.7326 27.5871
+\c 34.7326 27.5871 34.5844 28.2291 34.3392 28.2291
+\c 34.0933 28.2291 33.8467 27.833 33.5032 27.5393
+\c 33.1576 27.2456 32.8127 27.5393 32.8127 27.5393
+\c 32.8127 27.5393 33.3051 27.6895 33.8959 28.2291
+\c 33.8959 28.2291 33.355 28.2769 33.1576 28.2291
+\c 33.1576 28.2291 33.1576 27.9832 32.9616 27.9832
+\c 32.7628 27.9832 32.715 28.1813 32.715 28.1813
+\c 32.715 28.1813 32.2225 28.2769 31.976 27.9354
+\c 31.7301 27.5871 30.9917 27.9832 31.0901 28.5228
+\c 31.1884 29.0692 31.7806 29.9025 32.9117 30.0049
+\c 34.0441 30.1006 35.1267 29.2605 35.2257 28.6253
+\c 35.2257 28.6253 34.6349 29.7591 33.1098 29.6566
+\c 31.5825 29.561 31.5334 28.5228 31.5334 28.5228
+\c 31.5334 28.5228 31.6317 28.2291 31.9288 28.6253
+\c 32.2225 29.0146 33.09 29.6225 34.2914 28.919
+\c 35.1267 28.4272 34.7326 27.5871 34.7326 27.5871
+\s
+\m 35.891 34.4582
+\c 36.1867 32.9829 37.5883 32.6141 39.804 31.8013
+\c 42.021 30.9885 41.8728 29.0692 41.8728 29.0692
+\c 41.8728 29.0692 42.3892 30.6197 40.6905 31.8696
+\c 38.9919 33.1263 36.9244 33.0512 35.8165 34.827
+\s
+\m 35.6799 34.4582
+\c 35.4061 32.9829 34.1042 32.6141 32.049 31.8013
+\c 29.9939 30.9885 30.1311 29.0692 30.1311 29.0692
+\c 30.1311 29.0692 29.6523 30.6197 31.2267 31.8696
+\c 32.8024 33.1263 34.7217 33.0512 35.7503 34.827
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian14.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian14.pgf
new file mode 100644
index 0000000000..79264b03c4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian14.pgf
@@ -0,0 +1,87 @@
+\m -0.0001 -0.0244
+\l 122.5065 -0.0244
+\l 122.5065 67.1817
+\l -0.0001 67.1817
+\o
+\i
+\m 73.1572 29.6987
+\c 73.1572 29.6987 70.5412 23.1099 64.5748 23.1099
+\c 58.61 23.1099 52.4356 27.0843 45.3172 30.3275
+\c 41.5892 32.0267 38.2692 33.0811 35.2836 33.5771
+\c 38.2692 34.0731 41.5892 35.1275 45.3172 36.8267
+\c 52.4356 40.0699 58.61 44.0491 64.5748 44.0491
+\c 70.5412 44.0491 73.1572 37.4555 73.1572 37.4555
+\c 75.4596 39.6523 77.8676 38.9211 77.8676 38.9211
+\c 76.4036 43.2123 72.7396 45.0923 72.7396 45.0923
+\c 64.2628 49.5915 56.8308 43.6299 46.3652 38.3963
+\c 41.0612 35.7435 36.4068 34.5467 33.1012 34.0091
+\l 27.0996 34.0091
+\l 27.0996 38.2331
+\c 52.3028 39.3979 61.0212 60.3771 61.0212 60.3771
+\c 57.0436 62.1563 56.7316 67.1819 56.7316 67.1819
+\c 56.5204 61.5291 52.0196 61.7371 52.0196 61.7371
+\c 51.1828 51.6955 42.1812 43.2123 32.9716 40.6987
+\c 23.7604 38.1899 16.0164 40.5947 13.0868 44.1547
+\c 10.1556 47.7131 10.8884 53.3611 14.7604 53.4683
+\c 18.634 53.5707 18.3172 47.7131 18.3172 47.7131
+\c 21.146 52.6299 23.1348 46.3515 23.1348 46.3515
+\c 22.0868 54.4123 26.482 52.1051 26.482 52.1051
+\c 21.4596 57.2347 14.6548 58.5963 11.4116 53.9931
+\c 8.1668 49.3867 10.994 44.6779 10.994 44.6779
+\c 15.3108 38.2491 24.5348 38.1563 26.0404 38.1835
+\l 26.0404 34.0091
+\l 17.5732 34.0091
+\c 12.4164 35.1915 10.6964 38.0171 10.6964 38.0171
+\c 8.8388 35.6235 6.4228 34.5195 4.578 34.0091
+\l 0.5284 34.0091
+\c 0.2356 34.0091 -0.0012 33.7707 -0.0012 33.4779
+\c -0.0012 33.1867 0.2356 32.9483 0.5284 32.9483
+\l 5.1012 32.9483
+\c 6.8644 32.3771 9.01 31.2635 10.6964 29.0923
+\c 10.6964 29.0923 12.2852 31.6891 16.9588 32.9483
+\l 26.0404 32.9483
+\l 26.0404 28.9755
+\c 24.5348 29.0027 15.3108 28.9051 10.994 22.4763
+\c 10.994 22.4763 8.1668 17.7675 11.4116 13.1643
+\c 14.6548 8.5579 21.4596 9.9179 26.482 15.0475
+\c 26.482 15.0475 22.0868 12.7467 23.1348 20.8027
+\c 23.1348 20.8027 21.146 14.5243 18.3172 19.4443
+\c 18.3172 19.4443 18.634 13.5835 14.7604 13.6859
+\c 10.8884 13.7899 10.1556 19.4443 13.0868 23.0011
+\c 16.0164 26.5579 23.7604 28.9675 32.9716 26.4555
+\c 42.1812 23.9419 51.1828 15.4603 52.0196 5.4155
+\c 52.0196 5.4155 56.5204 5.6267 56.7316 -0.0245
+\c 56.7316 -0.0245 57.0436 4.9963 61.0212 6.7771
+\c 61.0212 6.7771 52.3028 27.7547 27.0996 28.9211
+\l 27.0996 32.9483
+\l 33.3908 32.9483
+\c 33.4868 32.9483 33.562 33.0043 33.6404 33.0523
+\c 36.906 32.4731 41.3412 31.2699 46.3652 28.7579
+\c 56.8308 23.5243 64.2628 17.5579 72.7396 22.0587
+\c 72.7396 22.0587 76.4036 23.9419 77.8676 28.2331
+\c 77.8676 28.2331 75.4596 27.5019 73.1572 29.6987
+\o
+\s
+\m 121.978 34.6763
+\l 102.5188 34.6763
+\c 99.218 35.2587 94.978 36.4347 91.8628 38.8331
+\c 91.8628 38.8331 89.5124 35.8987 83.5108 34.6763
+\l 60.9188 34.6763
+\c 60.6276 34.6763 60.3908 34.4395 60.3908 34.1499
+\c 60.3908 33.8539 60.6276 33.6187 60.9188 33.6187
+\l 83.3588 33.6187
+\c 85.818 32.9595 89.2628 31.6299 91.8372 29.0363
+\c 91.8372 29.0363 95.6836 32.1099 104.1428 33.6187
+\l 121.978 33.6187
+\c 122.2692 33.6187 122.5076 33.8539 122.5076 34.1499
+\c 122.5076 34.4395 122.2692 34.6763 121.978 34.6763
+\o
+\s
+\m 53.2468 34.1339
+\c 53.2468 32.7835 54.3428 31.6875 55.6932 31.6875
+\c 57.0436 31.6875 58.1412 32.7835 58.1412 34.1339
+\c 58.1412 35.4827 57.0436 36.5819 55.6932 36.5819
+\c 54.3428 36.5819 53.2468 35.4827 53.2468 34.1339
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian140.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian140.pgf
new file mode 100644
index 0000000000..408e51dd78
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian140.pgf
@@ -0,0 +1,32 @@
+\m 5.0387 11.42
+\c 5.9252 11.42 5.2361 10.3408 4.2512 10.4364
+\c 4.2512 10.4364 4.1528 11.42 5.0387 11.42
+\m 12.1284 13.2914
+\c 9.4701 15.8527 7.0078 15.1629 6.3193 12.7041
+\c 5.6295 10.2384 8.1901 9.1592 10.4543 7.9776
+\c 12.7185 6.796 12.9166 3.1487 12.9166 3.1487
+\c 13.0142 6.9872 11.3408 8.565 10.1592 9.0568
+\c 8.9776 9.5485 8.1901 10.0403 8.1901 10.0403
+\c 8.1901 10.0403 8.9776 10.1428 10.4543 10.0403
+\c 11.931 9.9447 12.3258 9.4529 12.3258 9.4529
+\c 11.4385 11.9118 7.8944 10.1428 7.4019 10.6345
+\c 6.9095 11.1263 7.0078 11.9118 7.0078 11.9118
+\c 8.2885 10.1428 9.6661 10.7301 10.1592 11.7137
+\c 10.595 12.5879 9.2208 13.8242 8.3615 13.0456
+\c 7.5993 12.3557 8.5835 11.8161 8.5835 11.8161
+\l 8.5835 12.3079
+\c 8.5835 12.7997 9.1743 12.7997 9.1743 12.7997
+\c 10.1592 12.1098 8.7809 10.5321 7.6977 11.9118
+\c 6.6144 13.2914 8.1901 15.361 10.5533 13.7832
+\c 12.9166 12.2055 14.0982 9.3505 13.9991 6.4955
+\c 13.9001 3.6405 12.5225 1.769 12.5225 1.769
+\c 11.3408 7.0897 7.24 7.2195 5.26 7.8751
+\c 3.9308 8.3191 4.2512 9.651 4.2512 9.651
+\c 6.2203 9.8422 6.4129 11.8093 5.0387 11.9118
+\c 3.7587 12.0142 3.5128 10.5321 3.5128 10.5321
+\c 0.6572 11.2219 0.0165 14.7668 0.0165 14.7668
+\c -0.2786 10.9282 3.463 9.7466 3.463 9.7466
+\c 3.34 6.1061 7.8944 6.9872 10.2576 4.8221
+\c 12.6201 2.6569 12.3244 0 12.3244 0
+\c 16.4614 5.0201 14.7867 10.7301 12.1284 13.2914
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian141.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian141.pgf
new file mode 100644
index 0000000000..b5d39802c3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian141.pgf
@@ -0,0 +1,32 @@
+\m 10.5697 10.4364
+\c 9.5854 10.3408 8.8949 11.42 9.7822 11.42
+\c 10.6694 11.42 10.5697 10.4364 10.5697 10.4364
+\m 2.4958 0
+\c 2.4958 0 2.1987 2.6569 4.5626 4.8221
+\c 6.9258 6.9872 11.4801 6.1061 11.3572 9.7466
+\c 11.3572 9.7466 15.0994 10.9282 14.803 14.7668
+\c 14.803 14.7668 14.1637 11.2219 11.3087 10.5321
+\c 11.3087 10.5321 11.0628 12.0142 9.7822 11.9118
+\c 8.4072 11.8093 8.5999 9.8422 10.5697 9.651
+\c 10.5697 9.651 10.8893 8.3191 9.5602 7.8751
+\c 7.5808 7.2195 3.4793 7.0897 2.2997 1.769
+\c 2.2997 1.769 0.9194 3.6405 0.8217 6.4955
+\c 0.7227 9.3505 1.9036 12.2055 4.2668 13.7832
+\c 6.6307 15.361 8.2064 13.2914 7.1232 11.9118
+\c 6.0399 10.5321 4.6616 12.1098 5.6458 12.7997
+\c 5.6458 12.7997 6.2366 12.7997 6.2366 12.3079
+\l 6.2366 11.8161
+\c 6.2366 11.8161 7.2222 12.3557 6.4586 13.0456
+\c 5.6007 13.8242 4.2252 12.5879 4.6616 11.7137
+\c 5.1541 10.7301 6.5317 10.1428 7.8123 11.9118
+\c 7.8123 11.9118 7.9114 11.1263 7.4189 10.6345
+\c 6.9258 10.1428 3.381 11.9118 2.4958 9.4529
+\c 2.4958 9.4529 2.8892 9.9447 4.3665 10.0403
+\c 5.8432 10.1428 6.6307 10.0403 6.6307 10.0403
+\c 6.6307 10.0403 5.8432 9.5485 4.6616 9.0568
+\c 3.4793 8.565 1.8052 6.9872 1.9036 3.1487
+\c 1.9036 3.1487 2.1017 6.796 4.3665 7.9776
+\c 6.6307 9.1592 9.1907 10.2384 8.5015 12.7041
+\c 7.8123 15.1629 5.3501 15.8527 2.6925 13.2914
+\c 0.0335 10.7301 -1.6392 5.0201 2.4958 0
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian142.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian142.pgf
new file mode 100644
index 0000000000..5a5c075c65
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian142.pgf
@@ -0,0 +1,190 @@
+\m 24.3734 6.1608
+\l 24.3734 16.1669
+\c 24.678 15.1219 25.0714 13.872 25.5495 12.2738
+\c 26.2011 10.0813 25.8391 7.8547 24.3734 6.1608
+\m 20.8989 3.9273
+\c 20.8675 3.9137 20.8395 3.9068 20.8108 3.8932
+\l 20.8108 20.0328
+\l 22.0737 20.0328
+\l 22.0737 4.4259
+\c 21.7233 4.2415 21.3251 4.0708 20.8989 3.9273
+\m 19.2276 20.0328
+\l 20.291 20.0328
+\l 20.291 3.7156
+\c 19.9106 3.5722 19.5575 3.4356 19.2276 3.299
+\o
+\m 15.2572 0.4918
+\c 15.2572 0.4918 14.5639 1.8646 12.9807 2.6501
+\c 12.8824 2.6979 12.7758 2.7457 12.6597 2.7867
+\l 12.7956 2.7867
+\l 12.7956 20.0328
+\l 13.9089 20.0328
+\l 13.9089 9.4392
+\l 14.4287 9.4392
+\l 14.4287 20.0328
+\l 15.4922 20.0328
+\l 15.4922 9.4392
+\l 16.0113 9.4392
+\l 16.0113 20.0328
+\l 17.0269 20.0328
+\l 17.0856 2.2061
+\c 16.2886 1.687 15.7189 1.127 15.2572 0.4918
+\m 9.6285 3.62
+\l 9.6285 20.0328
+\l 10.3955 20.0328
+\l 10.3955 3.4629
+\l 10.9146 3.4629
+\l 10.9146 20.0328
+\l 12.2759 20.0328
+\l 12.2759 2.9165
+\c 11.5525 3.1419 10.6182 3.3263 9.6285 3.62
+\m 5.2627 6.2837
+\c 2.9862 9.1319 4.6281 14.1384 5.2627 16.2011
+\c 5.6738 17.5398 6.0577 18.8102 6.2612 20.0328
+\l 6.3377 20.0328
+\l 6.3377 5.2182
+\c 5.9539 5.5187 5.5912 5.8671 5.2627 6.2837
+\m 8.2433 4.1391
+\l 8.2433 20.0328
+\l 9.1094 20.0328
+\l 9.1094 3.7839
+\c 8.7993 3.8863 8.4879 4.0025 8.1764 4.1391
+\o
+\m 7.7242 20.0328
+\l 7.7242 4.344
+\c 7.4285 4.4942 7.1389 4.6582 6.8575 4.8426
+\l 6.8575 20.0328
+\o
+\m 18.7085 20.0328
+\l 18.7085 3.0736
+\c 18.2775 2.8823 17.8923 2.6842 17.5453 2.4862
+\l 17.5453 20.0328
+\o
+\m 5.1623 25.8247
+\c 5.1623 25.8247 5.9546 26.6102 10.2091 25.531
+\c 14.4656 24.4519 18.2263 21.31 24.3611 24.4519
+\c 24.3611 24.4519 23.7676 22.4848 23.6692 20.4221
+\l 6.3207 20.4221
+\c 6.5747 22.2867 6.3712 24.0557 5.1623 25.8247
+\m 23.8543 17.7242
+\l 23.8543 5.6212
+\c 23.4855 5.2865 23.0654 4.9723 22.5928 4.6991
+\l 22.5928 20.0328
+\l 23.6596 20.0328
+\c 23.6596 19.2951 23.8543 17.7242 23.8543 17.7242
+\m 26.3405 10.9009
+\c 26.1615 13.6603 24.1623 16.4948 24.0653 20.0328
+\l 24.0653 20.4221
+\c 24.1029 22.519 24.8563 25.0393 24.8563 25.0393
+\c 17.9278 21.5013 13.1788 25.4354 10.0117 26.1184
+\c 6.8452 26.8083 4.4697 26.2209 4.4697 26.2209
+\c 8.5268 20.224 2.7546 16.003 3.5784 9.33
+\c 4.2723 3.7293 9.3191 3.2375 11.6932 2.7457
+\c 14.0694 2.2539 15.0953 0 15.0953 0
+\c 16.3152 1.3865 17.6143 2.1037 19.1839 2.7867
+\c 19.9782 3.1282 20.7917 3.4492 21.6885 3.8249
+\c 25.6479 5.4983 26.5385 7.8547 26.3405 10.9009
+\s
+\m 13.9697 7.3629
+\c 13.9089 9.4392 16.0481 9.8695 16.0481 7.2126
+\c 16.0481 7.2126 15.8999 5.7441 15.1582 4.5625
+\c 15.1582 4.5625 14.0319 5.2865 13.9697 7.3629
+\m 29.4086 14.234
+\c 29.1811 16.9114 27.8247 17.9701 27.1321 22.2867
+\c 26.4395 26.6102 28.6217 29.5881 28.6217 29.5881
+\c 28.6217 29.5881 26.0434 26.7058 26.0434 22.2867
+\c 26.0434 17.8676 28.5179 14.6301 28.4189 9.8149
+\c 28.3198 5.0065 26.7366 2.6501 23.4711 1.3729
+\c 20.4078 0.1776 16.7359 2.0012 15.6376 3.6883
+\c 15.5652 3.8044 15.3952 3.9205 15.4539 4.0229
+\c 18.0521 8.565 15.6779 9.7944 15.01 9.7944
+\c 14.342 9.7944 13.1972 9.4392 13.3017 7.3629
+\c 13.3776 5.8876 14.6637 4.0229 14.6637 4.0229
+\c 12.7833 0.0956 5.9552 -0.9835 2.392 5.1021
+\c -1.1713 11.1946 3.1822 14.234 3.7764 20.224
+\c 4.3707 26.2141 0.263 28.3587 0.263 28.3587
+\c 0.263 28.3587 3.6535 25.7018 2.392 20.545
+\c 1.1304 15.3883 -1.6146 12.5948 1.2787 5.9627
+\c 4.1726 -0.6694 12.7335 -1.086 15.0598 3.7293
+\c 15.0598 3.7293 16.197 1.6187 19.4625 0.806
+\c 22.7287 -0.0068 25.0052 1.4207 25.9935 2.2813
+\c 29.679 5.4846 29.705 10.7506 29.4086 14.234
+\s
+\m 8.8246 23.7211
+\l 9.1258 22.799
+\l 10.1046 22.799
+\l 9.3129 22.2321
+\l 9.6155 21.31
+\l 8.8246 21.8769
+\l 8.0337 21.31
+\l 8.3355 22.2321
+\l 7.5439 22.799
+\l 8.5227 22.799
+\o
+\s
+\m 11.7984 23.7211
+\l 12.1003 22.799
+\l 13.0798 22.799
+\l 12.2875 22.2321
+\l 12.59 21.31
+\l 11.7984 21.8769
+\l 11.0082 21.31
+\l 11.3108 22.2321
+\l 10.5185 22.799
+\l 11.4972 22.799
+\o
+\s
+\m 14.4704 23.7211
+\l 14.7723 22.799
+\l 15.751 22.799
+\l 14.9601 22.2321
+\l 15.262 21.31
+\l 14.4704 21.8769
+\l 13.6808 21.31
+\l 13.9813 22.2321
+\l 13.1904 22.799
+\l 14.1685 22.799
+\o
+\s
+\m 21.9869 23.7211
+\l 22.2888 22.799
+\l 23.2662 22.799
+\l 22.4753 22.2321
+\l 22.7772 21.31
+\l 21.9869 21.8769
+\l 21.1946 21.31
+\l 21.4972 22.2321
+\l 20.7056 22.799
+\l 21.6844 22.799
+\o
+\s
+\m 19.4127 23.7211
+\l 19.7139 22.799
+\l 20.694 22.799
+\l 19.9017 22.2321
+\l 20.2043 21.31
+\l 19.4127 21.8769
+\l 18.6224 21.31
+\l 18.9243 22.2321
+\l 18.1327 22.799
+\l 19.1108 22.799
+\o
+\s
+\m 17.1321 23.7211
+\l 17.434 22.799
+\l 18.4114 22.799
+\l 17.6211 22.2321
+\l 17.9223 21.31
+\l 17.1321 21.8769
+\l 16.3398 21.31
+\l 16.6424 22.2321
+\l 15.8507 22.799
+\l 16.8295 22.799
+\o
+\s
+\m 0.2623 28.3587
+\c 0.2623 28.3587 3.6897 30.0799 8.5329 29.6838
+\c 14.5394 29.192 21.3353 24.568 28.8178 30.1755
+\c 28.8178 30.1755 25.764 26.3165 20.153 26.1389
+\c 13.8509 25.9409 9.1244 31.0635 0.2623 28.3587
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian143.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian143.pgf
new file mode 100644
index 0000000000..40db42bd8c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian143.pgf
@@ -0,0 +1,260 @@
+\m 14.6221 0.385
+\c 14.6221 0.385 13.8346 1.7647 12.9481 1.5666
+\c 12.0622 1.3754 11.9631 1.0748 11.274 0.6855
+\c 10.5848 0.2894 9.0098 -0.298 7.6315 1.2729
+\c 6.2525 2.8507 6.6514 4.4011 7.7291 5.61
+\c 8.5419 6.5184 10.6668 6.095 9.8957 4.4284
+\c 9.3049 3.1444 8.0249 2.3589 8.0249 2.3589
+\c 8.0249 2.3589 9.9448 4.2304 9.6498 5.1866
+\c 9.354 6.1496 7.6554 5.1866 7.4341 3.1922
+\c 7.2121 1.1978 8.7632 0.9792 9.9448 1.2729
+\c 11.5096 1.6622 14.0559 2.8985 14.6221 0.385
+\s
+\m 2.7083 6.3682
+\c 2.7083 6.3682 0.0487 6.9624 0.6401 9.4691
+\c 1.3143 12.3377 3.4467 13.533 4.5545 13.9018
+\c 5.6617 14.2707 6.6957 13.6833 5.3666 12.5016
+\c 4.0375 11.32 1.8955 11.6889 1.8955 11.6889
+\c 3.8892 10.5824 6.4007 12.3514 6.4007 13.2393
+\c 6.4007 14.1272 5.1535 14.7351 3.4467 13.977
+\c 2.1175 13.3827 1.5998 12.6451 1.5998 12.6451
+\c 1.5998 12.6451 0.3451 13.1642 0.7877 15.3088
+\c 1.2303 17.4467 3.0034 17.5218 3.0034 17.5218
+\c 6.4007 18.6283 8.0993 19.8099 9.059 20.6978
+\c 10.0186 21.5857 11.2009 22.2482 12.7513 25.4994
+\c 14.3032 28.7437 14.8188 29.3379 15.8529 29.4882
+\c 16.8877 29.6316 17.5516 28.9691 17.5516 28.9691
+\l 17.7735 29.2628
+\c 17.4785 29.7819 15.7791 30.2258 14.2287 29.2628
+\c 12.6776 28.3066 12.4556 27.0498 11.5697 24.9052
+\c 10.6839 22.7673 10.0931 21.8794 8.6157 20.7729
+\c 7.139 19.6596 5.4404 19.3659 3.4467 18.7034
+\c 1.4529 18.0409 1.8955 17.5218 1.3047 17.0778
+\c 0.7139 16.6339 0.4926 16.1899 0.4926 16.1899
+\l 0.1231 16.9276
+\c -0.1726 15.9714 0.4182 15.2337 0.4182 15.2337
+\c -0.2457 13.3827 1.3047 12.4265 1.3047 12.4265
+\c -2.2401 7.0375 2.5601 6.0745 2.5601 6.0745
+\c 1.8955 0.7606 6.6957 1.8671 6.6957 1.8671
+\c 6.6957 1.8671 4.7758 1.792 3.8892 2.6048
+\c 3.0034 3.4176 2.4863 5.8559 4.6283 8.144
+\c 6.7695 10.4321 8.0249 9.6945 7.5079 8.144
+\c 6.9915 6.5936 4.5545 5.7808 3.6679 5.7808
+\c 3.6679 5.7808 4.4801 5.412 6.0312 6.1496
+\c 7.5823 6.8873 8.837 8.9568 7.5079 10.0633
+\c 6.1794 11.1698 3.3729 8.8065 2.7083 6.3682
+\s
+\m 7.5816 18.4848
+\c 7.5816 18.4848 7.4341 18.116 6.9908 16.9276
+\c 6.5482 15.7528 3.8162 13.2393 2.1913 15.8211
+\c 2.1913 15.8211 3.8162 15.0834 4.8496 15.6777
+\c 6.0291 16.347 6.5482 16.7841 6.917 17.5969
+\c 7.2859 18.4097 7.5816 18.4848 7.5816 18.4848
+\s
+\m 3.0771 20.0353
+\c 3.0771 20.0353 5.5879 21.5106 6.5482 23.1362
+\c 7.5079 24.7617 9.7235 28.9691 12.8258 28.45
+\c 12.8258 28.45 10.4626 28.3066 9.576 26.3122
+\c 8.6895 24.3178 7.5079 20.4041 3.0771 20.0353
+\s
+\m 10.9052 22.0297
+\c 10.9052 22.0297 13.4897 22.3985 14.8188 24.3178
+\c 16.1487 26.237 14.3032 28.0061 14.3032 28.0061
+\c 14.3032 28.0061 16.2969 27.1933 15.6316 24.5363
+\c 14.9889 21.9682 10.9052 22.0297 10.9052 22.0297
+\s
+\m 23.6816 27.7124
+\c 23.6816 27.7124 22.1305 29.7819 19.546 28.7505
+\c 16.9608 27.7124 16.6664 24.1675 17.7735 23.949
+\c 18.8814 23.7236 19.841 26.1619 18.6594 27.8626
+\l 18.9552 28.1563
+\c 18.9552 28.1563 20.1368 26.8244 19.2509 24.6866
+\c 18.3644 22.5419 16.0004 23.5801 16.2224 25.6428
+\c 16.4034 27.3367 17.5516 29.0442 19.6935 29.5565
+\c 21.8354 30.0756 23.4596 28.6003 23.6816 27.7124
+\s
+\m 28.9982 15.0083
+\c 26.2661 17.5969 28.9982 19.4411 28.7024 20.6978
+\c 28.1813 22.9108 25.9704 22.3985 25.0101 21.9546
+\c 23.9698 21.4696 23.3121 19.8099 24.6412 19.7348
+\c 25.9704 19.6665 27.2995 21.8043 27.2995 21.8043
+\c 26.7825 20.4724 25.9704 19.7348 25.1576 19.5162
+\c 24.3455 19.2908 22.7944 19.8099 23.7547 21.5857
+\c 24.715 23.3547 27.2995 22.9108 27.2995 22.9108
+\c 27.8903 24.4612 27.5208 26.1619 25.0101 26.4556
+\c 22.4993 26.7493 20.8013 24.6115 20.4318 23.505
+\c 20.0623 22.3985 21.0226 21.3603 22.4993 22.5419
+\c 23.976 23.7236 23.976 26.0868 23.976 26.0868
+\l 24.2724 26.0868
+\c 24.2724 26.0868 24.198 24.3178 23.4596 23.1362
+\c 22.7213 21.9546 21.2439 21.0666 20.2105 22.098
+\c 19.1765 23.1362 20.2836 25.5677 22.278 26.6059
+\c 24.2724 27.6372 26.4874 27.0498 27.2995 25.7931
+\c 28.1116 24.5363 27.5953 22.7673 27.5953 22.7673
+\c 27.5953 22.7673 29.6628 21.8794 29.072 19.5162
+\c 28.6635 17.8838 28.3336 17.4467 28.4811 16.4904
+\c 28.6287 15.5274 28.9982 15.0083 28.9982 15.0083
+\s
+\m 0.1477 17.3237
+\c 0.1477 17.3237 -0.2464 22.4463 3.3961 26.3873
+\c 7.04 30.3215 12.2589 29.9322 13.5389 29.536
+\c 13.5389 29.536 2.4126 30.1234 0.1477 17.3237
+\s
+\m 15.7791 12.8705
+\c 15.7791 12.8705 10.3144 12.4265 10.3874 7.181
+\l 10.0186 7.5498
+\c 10.0186 7.5498 9.0597 11.6137 13.6379 13.0139
+\c 13.6379 13.0139 15.1146 13.089 15.7791 12.8705
+\s
+\m 17.9948 13.3144
+\c 17.9948 13.3144 16.5919 16.0465 17.0345 17.3715
+\c 17.4778 18.7034 19.7673 20.4724 21.9823 19.8099
+\c 21.9823 19.8099 20.4318 19.4411 19.1765 18.478
+\c 17.9211 17.5218 17.6246 16.1899 17.6991 15.1586
+\c 17.7735 14.1272 17.9948 13.3144 17.9948 13.3144
+\s
+\m 15.2129 10.678
+\c 15.2129 10.678 12.7513 9.6945 12.3081 7.1332
+\c 12.3081 7.1332 11.8648 7.823 12.6038 9.1549
+\c 13.3422 10.4799 14.9172 11.1698 15.2614 10.9717
+\o
+\m 14.6713 8.3626
+\c 14.0313 7.7206 13.5389 8.4104 13.5389 8.4104
+\l 13.7854 8.5607
+\c 13.7854 8.5607 14.0313 8.267 14.4254 8.6085
+\c 14.8188 8.9568 14.5238 9.2983 14.5238 9.2983
+\l 14.6713 9.4964
+\c 14.6713 9.4964 15.3113 9.0046 14.6713 8.3626
+\m 15.5572 11.0195
+\c 15.2614 11.9826 13.1209 10.8761 12.3081 9.1002
+\c 11.4953 7.3312 12.0861 6.3682 12.0861 6.3682
+\c 12.6038 6.8121 13.5634 7.181 13.5634 7.181
+\c 13.5634 7.181 13.433 7.6522 13.1209 7.4064
+\c 12.653 7.0375 12.6038 7.2561 12.6038 7.2561
+\c 12.7513 7.9186 13.1939 8.144 13.1939 8.144
+\c 13.1939 8.144 14.144 7.543 14.8188 8.144
+\c 15.4588 8.7109 15.1146 9.0251 15.1146 9.5442
+\c 15.1146 10.0633 15.7785 10.2819 15.7785 10.2819
+\c 16.0749 10.2819 15.8529 9.8379 15.8529 9.8379
+\c 15.6316 9.4691 16.0004 9.4008 16.0004 9.4008
+\c 16.2217 9.5442 16.2962 10.1384 16.2962 10.1384
+\c 16.5175 10.7258 16.6657 10.8009 16.6657 10.8009
+\c 16.443 11.32 15.5572 11.0195 15.5572 11.0195
+\s
+\m 19.201 15.0083
+\c 19.201 15.0083 18.9552 15.6981 19.8417 16.5861
+\c 20.7276 17.474 22.2534 17.474 22.2534 17.474
+\c 22.2534 17.474 20.6285 17.2281 19.201 15.0083
+\m 21.5151 15.0629
+\c 21.1709 14.5165 20.481 14.2707 20.1859 14.7624
+\l 20.4325 15.0083
+\c 20.4325 15.0083 20.8252 14.8649 21.1217 15.1586
+\c 21.4161 15.4523 21.1217 15.746 21.1217 15.746
+\l 21.4659 16.0465
+\c 21.4659 16.0465 21.86 15.6025 21.5151 15.0629
+\m 20.3827 13.977
+\l 19.4968 13.8267
+\c 19.4968 13.8267 19.4469 14.1272 19.7427 14.3731
+\c 19.7427 14.3731 20.1859 14.2707 20.4325 14.2707
+\o
+\m 22.8941 17.6721
+\c 22.8941 17.8633 22.7459 18.0614 22.7459 18.0614
+\c 19.9401 17.4193 19.201 16.5383 18.8568 15.2542
+\c 18.5119 13.977 19.2509 12.9934 19.2509 12.9934
+\l 19.4968 13.1915
+\c 20.0384 13.5808 20.6784 13.7311 20.6784 13.7311
+\l 20.6784 14.2707
+\c 22.3033 14.4209 21.86 16.2924 21.86 16.2924
+\c 22.1551 16.7841 22.599 16.832 22.599 16.832
+\c 22.4501 16.3402 22.4501 15.6025 22.4501 15.6025
+\c 22.7957 15.6981 22.8941 16.0465 22.8941 16.0465
+\c 22.8941 16.6817 23.1892 17.9658 23.1892 17.9658
+\c 23.0416 17.6721 22.8941 17.6721 22.8941 17.6721
+\s
+\m 17.6998 11.9826
+\c 17.6998 11.9826 18.3644 10.8009 19.102 10.1384
+\c 19.102 10.1384 18.8076 9.9882 18.2906 10.5072
+\c 17.7729 11.0195 17.1827 11.9826 17.6998 11.9826
+\s
+\m 20.6285 10.9239
+\c 20.6285 10.9239 20.063 11.8323 19.6928 11.9826
+\c 19.324 12.1328 19.102 12.5768 19.102 12.5768
+\c 19.102 12.5768 19.4107 12.8022 19.6197 12.5016
+\c 19.9886 11.9621 20.9243 11.6615 20.6285 10.9239
+\s
+\m 21.3184 11.32
+\c 21.3184 11.32 21.2685 11.6615 21.6134 11.6615
+\c 21.9584 11.6615 22.1551 11.4157 22.4016 11.3678
+\c 22.6475 11.32 22.8442 11.2176 22.6967 10.678
+\c 22.5492 10.1384 22.3525 9.6466 22.3525 9.2505
+\c 22.3525 8.8544 22.2043 8.465 21.5151 8.2192
+\c 20.8259 7.9733 20.9735 7.6727 20.5302 7.4747
+\c 20.0869 7.2834 19.0043 7.5293 18.8076 8.2192
+\c 18.6102 8.9022 19.0542 9.0046 19.0542 9.0046
+\c 19.0542 9.0046 19.3486 8.3626 19.6935 8.3626
+\c 20.0384 8.3626 19.8902 8.7587 19.6935 8.8065
+\c 19.4968 8.8544 19.0043 9.2983 19.0043 9.592
+\c 19.0043 9.592 19.1519 9.8925 19.3486 9.8925
+\c 19.3486 9.8925 19.9401 9.2983 20.5302 9.2027
+\c 21.1217 9.1002 21.3676 9.4964 21.5643 9.8379
+\c 21.761 10.1862 21.86 10.6302 22.1059 10.9239
+\c 22.3525 11.2176 21.5151 11.3678 21.3184 11.32
+\s
+\m 23.0416 7.9186
+\c 22.7951 7.9186 22.8442 8.4104 23.0908 8.4104
+\c 23.3367 8.4104 23.3859 8.2192 23.3859 8.2192
+\c 23.3859 8.2192 23.2875 7.9186 23.0416 7.9186
+\m 25.8973 9.4008
+\c 25.0599 9.4008 24.4199 9.9403 24.4199 9.9403
+\c 24.1734 9.7423 24.2724 9.3461 24.2724 9.3461
+\c 24.5675 9.4008 24.8632 9.3461 24.8632 9.3461
+\c 24.5675 9.3461 23.7793 8.9022 23.7793 8.9022
+\c 23.6816 8.5607 23.435 8.6563 23.1892 8.6563
+\c 22.9426 8.6563 22.4501 8.1167 22.4501 8.1167
+\c 22.7459 8.1167 22.7459 7.823 22.7459 7.823
+\c 22.7459 7.823 22.3525 7.4747 22.2043 7.3312
+\c 22.0567 7.181 21.9092 7.379 21.9092 7.379
+\c 21.9092 7.379 21.6626 7.4269 21.5643 7.1332
+\c 21.4659 6.8395 21.3184 6.5389 21.3184 6.5389
+\c 21.1217 6.0472 21.3676 5.8013 21.3676 5.8013
+\c 21.3676 5.8013 21.1709 5.9515 20.8751 5.9515
+\c 20.58 5.9515 20.4325 6.1018 20.4325 6.1018
+\c 20.2358 5.6578 20.5302 5.1661 20.7768 5.0636
+\c 21.0226 4.968 21.1709 4.1279 21.1709 4.1279
+\c 21.3184 4.8177 21.9584 5.8013 22.0567 6.0472
+\c 22.1551 6.2931 22.7951 6.6892 23.2875 6.9351
+\c 23.7793 7.181 23.6318 7.7752 23.6318 7.7752
+\c 24.2232 7.7752 24.3216 8.1167 24.519 8.267
+\c 24.7157 8.4104 25.0599 8.9022 25.0599 8.9022
+\c 25.9458 8.8065 25.8973 9.4008 25.8973 9.4008
+\s
+\m 24.6167 7.8708
+\l 24.9124 8.0211
+\c 24.9124 8.0211 25.6507 7.2288 24.4199 6.1496
+\c 23.1892 5.0636 22.9918 4.6197 21.9577 4.8656
+\c 21.9577 4.8656 21.9092 5.2617 22.1059 5.2139
+\c 22.3033 5.1661 22.6475 5.3095 22.9426 5.5554
+\c 23.2383 5.8013 24.1242 6.4433 24.4199 6.8873
+\c 24.7157 7.3312 24.6167 7.8708 24.6167 7.8708
+\s
+\m 25.0108 6.1496
+\l 24.1987 5.3368
+\c 24.1987 5.3368 24.1734 5.9037 25.0108 6.1496
+\s
+\m 25.1583 5.1114
+\c 25.1583 5.1114 24.2724 4.2304 24.2232 3.9845
+\c 24.1734 3.7386 24.0258 3.3902 24.9124 2.7482
+\c 24.9124 2.7482 24.6658 2.7004 24.3209 2.9463
+\c 23.9767 3.1922 23.7308 3.882 24.0757 4.2782
+\c 24.4199 4.6743 24.9124 5.3095 24.9124 5.3095
+\o
+\s
+\m 25.1583 19.5162
+\l 25.8229 19.4411
+\c 25.8229 19.4411 27.7435 17.3715 29.072 12.7953
+\c 30.4018 8.2192 29.2448 4.6333 27.5215 2.6048
+\c 25.454 0.1664 19.0289 -2.1968 11.274 3.6361
+\c 11.274 3.6361 14.3762 1.8671 18.1424 1.2729
+\c 21.9092 0.6855 26.6753 1.4095 28.2605 5.9242
+\c 29.7372 10.1384 27.2265 17.6721 25.1583 19.5162
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian144.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian144.pgf
new file mode 100644
index 0000000000..e3f932d3a2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian144.pgf
@@ -0,0 +1,289 @@
+\m 0 0
+\l 29.3778 0
+\l 29.3778 29.669
+\l 0 29.669
+\o
+\i
+\m 4.7311 18.9605
+\c 6.5841 19.3498 8.6693 18.3662 8.2759 16.3035
+\c 7.8818 14.234 3.3521 13.7422 1.383 16.1055
+\c 1.383 16.1055 0.3004 15.3132 0.6938 13.6398
+\c 1.0879 11.9664 3.5495 11.0785 5.3219 11.7683
+\c 7.0943 12.4582 4.8786 15.1151 2.2695 12.4104
+\l 1.9738 12.5606
+\c 1.9738 12.5606 2.9095 13.6398 4.1396 13.8857
+\c 5.3711 14.1316 6.5527 13.5442 6.4051 12.3147
+\c 6.2576 11.0785 4.1396 9.8491 1.6787 11.2766
+\c 1.6787 11.2766 1.1862 9.0636 3.057 8.3259
+\c 4.9278 7.5815 6.2576 8.3259 6.3061 8.8177
+\c 6.356 9.3095 4.8294 9.6988 3.8937 8.5718
+\l 3.5986 8.6196
+\c 3.5986 8.6196 3.8937 9.4051 4.977 9.5554
+\c 6.0602 9.6988 6.7986 9.3573 6.6517 8.5718
+\c 6.5035 7.7795 5.3711 6.8984 3.2544 7.4858
+\c 3.2544 7.4858 3.1554 7.1443 3.3521 6.4545
+\c 3.5495 5.7646 4.5836 4.2347 3.8937 2.5613
+\c 3.2045 0.8879 0.4971 0.0546 -0.0937 0.0546
+\c -0.0937 0.0546 3.1171 1.4821 3.3521 2.6159
+\c 3.8452 4.9792 2.6636 4.8289 2.7613 7.5336
+\c 2.7613 7.5336 0.5948 8.9133 1.482 11.4746
+\c 1.482 11.4746 -1.177 13.3461 1.2853 16.6929
+\c 1.2853 16.6929 0.4971 17.7788 1.2853 19.3498
+\c 2.0721 20.9275 4.9278 21.713 8.3743 19.6503
+\c 8.3743 19.6503 10.1467 21.6174 13.7899 19.7459
+\c 13.7899 19.7459 10.1494 20.5314 9.0634 19.2542
+\c 8.2267 18.2706 9.4575 17.4783 10.7375 17.2871
+\c 10.7375 17.2871 7.7835 16.5972 8.1769 19.3498
+\c 8.1769 19.3498 6.6019 20.7773 4.1396 20.6816
+\c 1.6787 20.5792 0.2505 18.0725 2.2196 16.4948
+\c 4.1895 14.9238 7.0451 15.6615 7.4877 16.3992
+\c 7.8531 17.007 7.5868 18.5643 5.617 18.6599
+\c 3.6478 18.7624 2.5154 17.3349 2.5154 17.3349
+\l 2.2695 17.4305
+\c 2.2695 17.4305 2.8603 18.5643 4.7311 18.9605
+\s
+\m 1.5066 27.1293
+\c 1.5066 27.1293 0.9158 23.8099 4.8294 22.6282
+\c 8.7438 21.4466 11.5503 22.8468 13.8391 20.4084
+\c 13.8391 20.4084 13.1745 21.1461 10.7382 21.2964
+\c 8.3012 21.4466 0.9889 20.4084 1.5066 27.1293
+\s
+\m 14.1341 21.3715
+\c 14.1341 21.3715 13.7653 22.8468 10.9588 22.9971
+\c 8.153 23.1405 5.272 22.9971 3.9429 24.9163
+\c 2.6137 26.8356 3.9429 28.9051 5.4196 29.1237
+\c 6.8969 29.3491 7.4133 28.0923 7.4133 28.0923
+\c 7.4133 28.0923 6.6756 29.1988 5.272 28.83
+\c 3.8684 28.4612 3.1308 26.3165 4.5337 25.0666
+\c 5.9373 23.8099 9.7772 23.885 10.5162 23.885
+\c 11.2539 23.885 13.7653 23.3659 14.1341 21.3715
+\s
+\m 18.2705 25.9477
+\c 17.8764 25.4081 16.888 25.5925 17.2856 26.5419
+\c 17.6797 27.4776 18.5662 27.5254 18.5662 27.5254
+\c 18.5662 27.5254 18.6646 26.4873 18.2705 25.9477
+\m 21.594 28.0172
+\c 20.4862 28.83 18.7875 27.9421 18.7875 27.9421
+\c 15.9072 31.3367 12.5844 28.6797 12.5844 28.6797
+\c 12.5844 28.6797 14.0173 29.7931 15.8335 29.3491
+\c 17.6305 28.9051 18.4672 27.7713 18.4672 27.7713
+\c 18.1714 27.7713 17.2856 27.4981 16.9898 26.5419
+\c 16.6592 25.4627 17.8791 24.8002 18.7137 25.9477
+\c 19.3045 26.7605 18.8613 27.7235 18.8613 27.7235
+\c 20.6337 28.6797 21.9628 27.6484 21.2983 26.4668
+\c 20.6337 25.2852 19.1563 25.21 17.6797 24.6226
+\c 16.2023 24.0284 15.5377 22.478 15.5377 22.478
+\c 17.0151 24.3221 18.7875 24.6226 20.5599 25.0598
+\c 22.3323 25.5037 22.7012 27.2044 21.594 28.0172
+\m 12.2231 27.7918
+\c 12.2231 27.7918 12.8385 27.4913 13.0154 26.6444
+\c 13.1909 25.7974 11.6425 25.4901 11.7825 26.7195
+\c 11.8706 27.4913 12.2231 27.7918 12.2231 27.7918
+\m 11.2545 24.6909
+\c 9.5566 25.1349 8.8913 25.654 8.8913 26.6853
+\c 8.8913 27.7235 10.5162 28.6797 12.0666 27.9421
+\c 12.0666 27.9421 11.2545 27.3547 11.2545 26.3916
+\c 11.2545 25.1349 13.3876 24.9095 13.4702 26.3165
+\c 13.5447 27.5733 12.2886 28.1675 12.2886 28.1675
+\c 11.8454 28.5363 9.3346 29.0486 8.375 27.423
+\c 7.47 25.893 8.7308 24.5338 10.4424 24.3221
+\c 12.8794 24.0284 13.6915 22.7717 13.6915 22.7717
+\c 13.6915 22.7717 12.9532 24.247 11.2545 24.6909
+\s
+\m 21.8891 28.4612
+\c 21.8891 28.4612 23.587 29.3491 24.9169 28.0172
+\c 26.246 26.6853 24.6949 23.6596 22.2586 23.5845
+\c 19.8209 23.5162 17.7534 23.9533 15.0944 21.3715
+\c 15.0944 21.3715 16.4243 23.5162 18.418 24.0284
+\c 20.4117 24.5475 23.5058 23.3591 24.6949 25.654
+\c 25.7297 27.6484 23.8828 28.9803 21.8891 28.4612
+\s
+\m 26.8368 26.2414
+\c 26.8368 26.2414 27.9447 25.21 26.246 23.2156
+\c 24.5474 21.2212 21.2238 21.8838 18.7131 21.8155
+\c 16.7712 21.754 16.0548 21.1461 15.6853 20.6338
+\c 15.6853 20.6338 15.7597 21.3715 17.1626 21.8838
+\c 18.5655 22.4028 23.3056 22.0818 25.2857 23.2156
+\c 27.3539 24.3972 26.8368 26.2414 26.8368 26.2414
+\s
+\m 15.7098 19.1517
+\c 15.7098 19.1517 16.7931 20.6338 19.058 20.9275
+\c 21.3228 21.2212 22.6527 20.388 22.5536 19.0083
+\c 22.4553 17.6286 20.3871 17.2802 19.7471 17.2802
+\c 19.7471 17.2802 21.5687 17.5808 22.0612 18.5165
+\c 22.5536 19.4522 20.1412 21.3237 15.7098 19.1517
+\s
+\m 21.7163 20.4358
+\c 21.7163 20.4358 22.5045 21.0232 24.3254 21.2759
+\c 26.1477 21.5218 28.7076 20.9753 28.9043 18.7624
+\c 29.1017 16.5426 27.1326 15.0195 25.4585 14.6711
+\c 23.7844 14.3296 21.372 15.8049 22.5045 17.533
+\c 23.6369 19.2542 26.4434 18.4687 28.0184 17.4305
+\c 28.0184 17.4305 25.9509 18.2706 24.4736 18.216
+\c 22.9969 18.1682 22.3562 17.089 23.0953 16.2967
+\c 23.8343 15.5112 26.0985 15.4634 27.5758 16.6929
+\c 28.5826 17.533 29.1509 19.4522 27.3293 20.5314
+\c 25.507 21.6174 22.7012 20.8319 21.8645 20.1899
+\o
+\s
+\m 25.7037 12.2601
+\c 24.5221 12.2123 23.9313 13.5442 25.1129 13.6398
+\c 26.2952 13.7422 27.4768 12.6562 27.4768 12.6562
+\c 27.4768 12.6562 26.886 12.3079 25.7037 12.2601
+\m 28.6584 16.2011
+\c 29.6426 13.592 28.1168 12.9499 28.1168 12.9499
+\c 26.1477 14.1316 25.2174 14.1042 24.5221 13.592
+\c 23.7844 13.0524 23.9811 11.7205 25.606 11.5224
+\c 26.8368 11.379 27.9693 12.2601 27.9693 12.2601
+\c 29.2492 10.4433 28.1168 9.1114 27.1817 8.7631
+\c 26.2453 8.4216 24.3752 8.6196 24.5221 9.5075
+\c 24.6703 10.3886 25.8027 9.8969 25.8027 9.8969
+\c 25.5568 10.293 23.9313 10.4433 24.2277 8.9611
+\c 24.5665 7.2673 27.8217 7.2878 28.7575 9.3095
+\c 29.6365 11.2083 28.4118 12.5606 28.4118 12.5606
+\c 30.4308 13.9881 28.6584 16.2011 28.6584 16.2011
+\s
+\m 27.0827 8.0801
+\c 27.0827 8.0801 27.9686 7.1443 27.3293 5.6144
+\c 26.5438 3.7429 24.7687 1.8236 29.1502 0.5942
+\c 29.1502 0.5942 27.9201 0.3961 26.4427 1.6256
+\c 24.966 2.8618 26.1477 4.6786 26.4919 5.3685
+\c 26.8368 6.0583 27.4768 6.8438 27.0827 8.0801
+\s
+\m 24.5719 8.2235
+\c 21.2238 0.3961 16.2515 0 15.4141 0
+\l 14.3807 0
+\c 8.866 0.3483 5.5678 7.3902 5.5678 7.3902
+\l 5.7153 7.6839
+\c 5.7153 7.6839 7.7828 4.4328 9.1119 3.1077
+\c 10.4418 1.7758 12.2688 0.3005 15.0699 0.4986
+\c 17.9255 0.6898 21.7163 2.4657 24.2769 8.6196
+\l 24.6211 8.6196
+\o
+\s
+\m 13.3958 2.6091
+\c 13.3958 2.6091 13.9128 3.5722 14.7249 3.6473
+\c 15.537 3.7224 16.3498 2.6091 16.3498 2.6091
+\c 16.3498 2.6091 14.7987 3.941 13.3958 2.6091
+\s
+\m 16.7931 4.3098
+\c 16.7931 4.3098 16.3252 4.1664 15.9564 3.7907
+\c 15.5869 3.4219 14.7994 3.2785 13.9873 3.6473
+\c 13.1745 4.0161 13.1745 4.2347 12.6568 4.2347
+\c 12.6568 4.2347 12.7312 4.6786 13.1007 4.5352
+\c 13.1007 4.5352 13.9422 3.9888 14.7256 3.8932
+\c 15.9072 3.7429 16.0548 4.8289 16.7931 4.3098
+\s
+\m 14.2823 13.7627
+\c 14.2823 13.7627 13.6915 13.3188 12.2886 14.2067
+\c 12.2886 14.2067 12.2142 13.6876 11.7716 13.8379
+\c 11.7716 13.8379 10.8113 14.7941 8.0785 14.1316
+\l 8.0048 14.5004
+\c 8.0048 14.5004 7.2664 14.2818 6.8232 13.5442
+\c 6.8232 13.5442 6.0104 14.0564 8.0785 14.9443
+\c 10.1467 15.8323 12.5099 14.7941 14.2823 13.7627
+\s
+\m 6.8969 12.1372
+\c 6.8969 12.1372 7.3402 13.0251 8.6693 13.469
+\c 8.6693 13.469 8.5956 13.2436 9.0389 13.2436
+\c 9.4814 13.2436 11.7716 12.7314 12.805 12.062
+\c 12.805 12.062 13.027 11.2492 12.2886 11.1058
+\c 12.2886 11.1058 11.9191 11.4746 12.5099 11.6932
+\c 12.5099 11.6932 12.2886 12.062 11.9191 11.9186
+\c 11.5496 11.7683 11.3283 11.3995 11.3283 11.3995
+\c 11.3283 11.3995 10.9588 11.7683 11.6234 12.2123
+\l 10.368 12.3625
+\c 10.368 12.3625 9.9992 11.7683 9.5559 12.3625
+\c 9.5559 12.3625 9.3346 11.9186 9.6297 11.7683
+\c 10.2649 11.4541 10.5162 11.9937 10.5162 11.9937
+\l 10.9588 11.9186
+\c 10.9588 11.9186 10.7744 11.3995 10.1098 11.3244
+\c 9.3715 11.2424 9.0389 11.7683 9.0389 12.3625
+\c 9.0389 12.3625 8.448 12.506 7.7097 11.6932
+\l 7.3402 11.9186
+\c 7.3402 11.9186 7.4877 12.4308 8.0048 12.5811
+\c 8.0048 12.5811 7.192 12.506 6.8969 12.1372
+\s
+\m 18.9596 11.5702
+\c 18.6857 11.6522 18.6297 11.9459 18.6181 12.062
+\c 19.0662 12.1098 19.5456 12.1167 19.9869 12.1098
+\c 19.9254 11.4746 19.2868 11.4815 18.9596 11.5702
+\m 22.0619 12.1167
+\c 19.6986 13.4963 18.3681 12.7519 18.3681 12.7519
+\c 18.3681 12.7519 17.5321 12.4104 16.8921 12.3147
+\c 16.2515 12.2123 16.5472 11.6727 16.5472 11.6727
+\c 16.7931 11.5224 16.5472 11.2766 16.5472 11.2766
+\c 16.7931 10.7848 17.0888 11.1809 17.0888 11.1809
+\c 17.8272 11.1809 17.5806 11.8708 17.5806 11.8708
+\c 17.7896 11.9391 18.0314 11.9869 18.2916 12.0279
+\c 18.349 11.7683 18.5573 11.2424 19.3045 11.2766
+\c 20.034 11.3175 20.1959 11.8366 20.23 12.103
+\c 21.0107 12.0825 21.6186 12.0142 21.6186 12.0142
+\o
+\s
+\m 19.8455 13.2983
+\c 19.8455 13.2983 18.9596 13.592 17.5314 12.8543
+\c 17.5314 12.8543 17.778 12.8065 18.3681 12.9499
+\c 18.9596 13.1002 19.8455 13.2983 19.8455 13.2983
+\s
+\m 22.4054 13.1958
+\c 22.4054 13.1958 20.4855 15.3132 16.9898 13.2983
+\c 16.9898 13.2983 17.5212 14.0837 19.5013 14.4799
+\c 21.2238 14.8214 22.4054 13.1958 22.4054 13.1958
+\s
+\m 22.6028 13.5442
+\c 22.6028 13.5442 21.6671 14.7258 19.698 14.7258
+\c 17.7281 14.7258 16.2515 13.5442 16.2515 13.5442
+\c 16.2515 13.5442 16.1531 13.8857 16.9406 14.3296
+\c 17.7281 14.7736 19.3039 15.6069 21.0271 15.0195
+\c 22.7497 14.4252 22.6028 13.5442 22.6028 13.5442
+\s
+\m 15.9072 9.7739
+\c 15.9072 9.7739 17.0888 9.6305 17.0151 8.4489
+\c 17.0151 8.4489 16.7931 7.9298 16.2023 7.7044
+\c 15.6115 7.4858 14.9476 6.8984 14.283 7.2673
+\c 13.6178 7.6361 13.2483 8.2986 12.7319 8.2986
+\c 12.7319 8.2986 12.3631 8.6674 13.027 9.6305
+\c 13.027 9.6305 13.6178 9.9242 13.6178 10.293
+\c 13.6178 10.293 14.1348 10.5116 13.9873 10.1428
+\c 13.8391 9.7739 13.3227 9.1865 13.3227 9.1865
+\c 13.3227 9.1865 13.6178 8.8177 13.9135 8.4489
+\c 14.2086 8.0801 14.7994 7.9298 15.6115 8.2986
+\c 16.4243 8.6674 16.7931 9.1865 15.8335 9.4802
+\c 15.8335 9.4802 15.5377 9.8491 15.9072 9.7739
+\s
+\m 25.2126 12.1167
+\l 24.8431 12.3352
+\c 24.9742 11.5976 24.7372 10.6004 24.5562 9.9378
+\c 24.6785 9.9037 24.893 10.0881 25.0159 10.0471
+\c 25.2727 11.3449 25.2126 12.1167 25.2126 12.1167
+\s
+\m 15.5623 5.7168
+\l 14.9722 5.7168
+\c 14.9722 5.7168 14.8732 6.0105 15.3171 6.0105
+\l 16.0049 6.0583
+\c 16.0049 6.0583 15.8581 5.7646 15.5623 5.7168
+\m 14.061 5.7646
+\c 13.8841 5.7646 13.7407 5.8261 13.7407 5.9081
+\c 13.7407 5.99 13.8841 6.0583 14.061 6.0583
+\c 14.2373 6.0583 14.3807 5.99 14.3807 5.9081
+\c 14.3807 5.8261 14.2373 5.7646 14.061 5.7646
+\m 18.8121 5.5187
+\c 18.517 5.7168 18.2213 5.7168 18.0239 6.0583
+\c 17.8272 6.3998 17.2856 6.6526 17.138 6.5979
+\c 16.9898 6.5501 17.2856 6.0105 16.8921 6.0105
+\c 16.498 6.0105 15.7597 6.5501 15.7597 6.5501
+\c 15.7597 6.5501 15.1689 6.0583 14.8233 6.0583
+\l 14.184 6.3998
+\c 13.7407 5.9627 12.3132 6.154 12.3132 6.154
+\l 12.3624 6.3998
+\c 12.3624 6.6526 11.969 6.796 11.969 6.796
+\c 11.969 6.796 11.9198 5.7646 10.9349 5.027
+\c 10.9349 5.027 10.6883 4.6308 10.9841 4.4806
+\c 10.9841 4.4806 11.6241 5.027 11.9198 5.1704
+\c 12.2149 5.3207 14.0365 5.0748 14.9722 4.5352
+\c 14.9722 4.5352 15.2181 4.9245 16.0049 4.9723
+\c 16.7931 5.027 17.5321 5.1226 17.9747 5.4163
+\c 17.9747 5.4163 18.7629 5.1704 18.9596 5.027
+\c 18.9596 5.027 19.1072 5.3207 18.8121 5.5187
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian145.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian145.pgf
new file mode 100644
index 0000000000..68adac1ac5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian145.pgf
@@ -0,0 +1,260 @@
+\m 7.3815 0.1948
+\c 7.3815 0.1948 6.984 0.8915 6.5366 0.789
+\c 6.0886 0.6934 6.0394 0.5431 5.6911 0.3451
+\c 5.3441 0.147 4.5484 -0.1535 3.8517 0.6456
+\c 3.1557 1.4379 3.3572 2.2165 3.9023 2.8312
+\c 4.3121 3.2889 5.3844 3.0771 4.9951 2.2302
+\c 4.6973 1.5882 4.0512 1.192 4.0512 1.192
+\c 4.0512 1.192 5.0204 2.1346 4.8715 2.6195
+\c 4.7226 3.1044 3.8647 2.6195 3.7527 1.6086
+\c 3.6407 0.6046 4.4234 0.4953 5.0204 0.6456
+\c 5.8106 0.8368 7.096 1.4652 7.3815 0.1948
+\s
+\m 1.3676 3.2137
+\c 1.3676 3.2137 0.0248 3.5143 0.3233 4.7778
+\c 0.6634 6.2258 1.7398 6.8337 2.2992 7.0181
+\c 2.8586 7.2025 3.3804 6.9088 2.7097 6.3078
+\c 2.0376 5.7136 0.9571 5.898 0.9571 5.898
+\c 1.9639 5.3379 3.2309 6.2326 3.2309 6.6834
+\c 3.2309 7.1274 2.6018 7.4348 1.7398 7.0523
+\c 1.0684 6.7586 0.8082 6.3829 0.8082 6.3829
+\c 0.8082 6.3829 0.1737 6.6425 0.3977 7.7284
+\c 0.6211 8.8076 1.5165 8.8418 1.5165 8.8418
+\c 3.2309 9.4018 4.088 10.0029 4.5737 10.4468
+\c 5.0579 10.8976 5.6549 11.2323 6.4376 12.8715
+\c 7.2203 14.5108 7.4813 14.8113 8.0031 14.8864
+\c 8.5256 14.9616 8.8609 14.6269 8.8609 14.6269
+\l 8.973 14.7703
+\c 8.8241 15.0367 7.9669 15.2553 7.1835 14.7703
+\c 6.4007 14.2854 6.2887 13.657 5.8413 12.571
+\c 5.394 11.4919 5.0955 11.0479 4.3496 10.4878
+\c 3.6045 9.9278 2.7466 9.7775 1.7398 9.4428
+\c 0.7331 9.1081 0.9571 8.8418 0.6586 8.6232
+\c 0.3602 8.3978 0.2488 8.1724 0.2488 8.1724
+\l 0.0624 8.5481
+\c -0.0865 8.0631 0.2113 7.6875 0.2113 7.6875
+\c -0.1248 6.7586 0.6586 6.2736 0.6586 6.2736
+\c -1.1309 3.5484 1.2925 3.0635 1.2925 3.0635
+\c 0.9571 0.3792 3.3804 0.9393 3.3804 0.9393
+\c 3.3804 0.9393 2.4106 0.9051 1.9639 1.315
+\c 1.5165 1.7248 1.2549 2.9542 2.3361 4.1085
+\c 3.4173 5.2628 4.0518 4.8939 3.7902 4.1085
+\c 3.5293 3.3298 2.2992 2.92 1.8512 2.92
+\c 1.8512 2.92 2.2617 2.7288 3.0451 3.1044
+\c 3.8285 3.4733 4.4616 4.5183 3.7902 5.0784
+\c 3.1188 5.6384 1.7023 4.4432 1.3676 3.2137
+\s
+\m 3.8278 9.3267
+\c 3.8278 9.3267 3.7527 9.1423 3.5287 8.5481
+\c 3.3053 7.947 1.9263 6.6834 1.106 7.988
+\c 1.106 7.988 1.9263 7.6123 2.4481 7.9129
+\c 3.043 8.2544 3.3053 8.4729 3.4918 8.8827
+\c 3.6782 9.2925 3.8278 9.3267 3.8278 9.3267
+\s
+\m 1.5534 10.1122
+\c 1.5534 10.1122 2.821 10.8566 3.306 11.6763
+\c 3.7902 12.4959 4.909 14.6269 6.4752 14.3605
+\c 6.4752 14.3605 5.2819 14.2854 4.8346 13.2813
+\c 4.3872 12.2773 3.7902 10.2966 1.5534 10.1122
+\s
+\m 5.5053 11.1162
+\c 5.5053 11.1162 6.8105 11.3074 7.4813 12.2773
+\c 8.1527 13.2472 7.2197 14.1419 7.2197 14.1419
+\c 7.2197 14.1419 8.2271 13.7321 7.8917 12.3866
+\c 7.5666 11.0889 5.5053 11.1162 5.5053 11.1162
+\s
+\m 11.9557 13.9917
+\c 11.9557 13.9917 11.1729 15.0367 9.8677 14.5108
+\c 8.5631 13.9917 8.4136 12.2022 8.973 12.0861
+\c 9.5323 11.9768 10.0173 13.2062 9.421 14.0668
+\l 9.5699 14.2171
+\c 9.5699 14.2171 10.1662 13.5409 9.7188 12.4617
+\c 9.2707 11.3826 8.0789 11.9017 8.1902 12.9467
+\c 8.2811 13.8004 8.8609 14.661 9.9421 14.9206
+\c 11.024 15.187 11.8437 14.4356 11.9557 13.9917
+\s
+\m 14.6399 7.5782
+\c 13.2609 8.8827 14.6399 9.8116 14.491 10.4468
+\c 14.2281 11.567 13.1113 11.3074 12.6264 11.082
+\c 12.1012 10.8362 11.7692 10.0029 12.4406 9.9619
+\c 13.1113 9.9278 13.7827 11.0069 13.7827 11.0069
+\c 13.5218 10.3376 13.1113 9.9619 12.7015 9.8526
+\c 12.2917 9.7365 11.5083 10.0029 11.9932 10.8976
+\c 12.4775 11.7924 13.7827 11.567 13.7827 11.567
+\c 14.0805 12.3524 13.8947 13.2062 12.6264 13.3565
+\c 11.3587 13.5067 10.5015 12.4276 10.3151 11.8675
+\c 10.1286 11.3074 10.6136 10.7815 11.3587 11.3826
+\c 12.1046 11.9768 12.1046 13.1721 12.1046 13.1721
+\l 12.2535 13.1721
+\c 12.2535 13.1721 12.2166 12.2773 11.8437 11.6763
+\c 11.4707 11.082 10.7249 10.6381 10.2031 11.1572
+\c 9.6806 11.6763 10.2406 12.9125 11.2474 13.4316
+\c 12.2535 13.9507 13.3722 13.657 13.7827 13.0218
+\c 14.1932 12.3866 13.9316 11.4919 13.9316 11.4919
+\c 13.9316 11.4919 14.9753 11.0479 14.6775 9.8526
+\c 14.4712 9.0262 14.3039 8.8076 14.3797 8.3227
+\c 14.4541 7.8377 14.6399 7.5782 14.6399 7.5782
+\s
+\m 0.0747 8.7461
+\c 0.0747 8.7461 -0.1248 11.3279 1.7153 13.3223
+\c 3.5546 15.3099 6.189 15.1118 6.8351 14.9069
+\c 6.8351 14.9069 1.218 15.2074 0.0747 8.7461
+\s
+\m 7.9662 6.499
+\c 7.9662 6.499 5.2061 6.2736 5.2444 3.6235
+\l 5.0579 3.8148
+\c 5.0579 3.8148 4.573 5.8638 6.8843 6.5673
+\c 6.8843 6.5673 7.6301 6.6083 7.9662 6.499
+\s
+\m 9.085 6.7176
+\c 9.085 6.7176 8.376 8.0973 8.6 8.7735
+\c 8.8241 9.4428 9.9797 10.3376 11.0978 10.0029
+\c 11.0978 10.0029 10.3151 9.8116 9.6806 9.3267
+\c 9.0474 8.8418 8.8985 8.1724 8.9361 7.6533
+\c 8.9723 7.1274 9.085 6.7176 9.085 6.7176
+\s
+\m 7.68 5.3925
+\c 7.68 5.3925 6.4376 4.8939 6.2136 3.603
+\c 6.2136 3.603 5.9895 3.9514 6.3625 4.6207
+\c 6.7354 5.2901 7.5304 5.6384 7.7046 5.536
+\o
+\m 7.4068 4.2246
+\c 7.0837 3.8967 6.8344 4.2451 6.8344 4.2451
+\l 6.9594 4.3202
+\c 6.9594 4.3202 7.0837 4.1699 7.2825 4.3475
+\c 7.4806 4.5183 7.3317 4.6959 7.3317 4.6959
+\l 7.4068 4.7915
+\c 7.4068 4.7915 7.7299 4.5456 7.4068 4.2246
+\m 7.8535 5.5633
+\c 7.7046 6.0482 6.6241 5.4882 6.2136 4.5934
+\c 5.8031 3.6987 6.1016 3.2137 6.1016 3.2137
+\c 6.3625 3.4391 6.8474 3.6235 6.8474 3.6235
+\c 6.8474 3.6235 6.7812 3.8626 6.6241 3.7396
+\c 6.3871 3.5484 6.3625 3.6645 6.3625 3.6645
+\c 6.4376 3.9992 6.661 4.1085 6.661 4.1085
+\c 6.661 4.1085 7.1397 3.8079 7.4806 4.1085
+\c 7.8043 4.3953 7.6301 4.5593 7.6301 4.8188
+\c 7.6301 5.0784 7.9662 5.1876 7.9662 5.1876
+\c 8.1151 5.1876 8.0031 4.9691 8.0031 4.9691
+\c 7.8917 4.7778 8.0782 4.7437 8.0782 4.7437
+\c 8.1895 4.8188 8.2271 5.1193 8.2271 5.1193
+\c 8.3384 5.413 8.4129 5.454 8.4129 5.454
+\c 8.3015 5.7136 7.8535 5.5633 7.8535 5.5633
+\s
+\m 9.6935 7.5782
+\c 9.6935 7.5782 9.5699 7.9265 10.0173 8.3705
+\c 10.4647 8.8213 11.2351 8.8213 11.2351 8.8213
+\c 11.2351 8.8213 10.4148 8.6983 9.6935 7.5782
+\m 10.8622 7.6055
+\c 10.6887 7.3323 10.3397 7.2025 10.1914 7.4552
+\l 10.3158 7.5782
+\c 10.3158 7.5782 10.5145 7.5031 10.6634 7.6533
+\c 10.8123 7.8036 10.6634 7.9538 10.6634 7.9538
+\l 10.8369 8.0973
+\c 10.8369 8.0973 11.0357 7.8787 10.8622 7.6055
+\m 10.2905 7.0523
+\l 9.8438 6.984
+\c 9.8438 6.984 9.8185 7.1274 9.9674 7.2572
+\c 9.9674 7.2572 10.1914 7.2025 10.3158 7.2025
+\o
+\m 11.5582 8.9169
+\c 11.5582 9.0193 11.4837 9.115 11.4837 9.115
+\c 10.0671 8.7939 9.6935 8.35 9.52 7.7011
+\c 9.3466 7.0523 9.7188 6.5605 9.7188 6.5605
+\l 9.8438 6.6561
+\c 10.1163 6.8542 10.4394 6.9293 10.4394 6.9293
+\l 10.4394 7.2025
+\c 11.2597 7.2777 11.0357 8.2202 11.0357 8.2202
+\c 11.1859 8.4729 11.4093 8.5003 11.4093 8.5003
+\c 11.3341 8.2475 11.3341 7.8787 11.3341 7.8787
+\c 11.5083 7.9265 11.5582 8.0973 11.5582 8.0973
+\c 11.5582 8.4251 11.7071 9.0672 11.7071 9.0672
+\c 11.6326 8.9169 11.5582 8.9169 11.5582 8.9169
+\s
+\m 8.9361 6.0482
+\c 8.9361 6.0482 9.2707 5.454 9.6444 5.1193
+\c 9.6444 5.1193 9.4948 5.0442 9.2339 5.3037
+\c 8.973 5.5633 8.6745 6.0482 8.9361 6.0482
+\s
+\m 10.4141 5.5155
+\c 10.4141 5.5155 10.1286 5.9731 9.9415 6.0482
+\c 9.7557 6.1234 9.6437 6.3488 9.6437 6.3488
+\c 9.6437 6.3488 9.8001 6.4649 9.9046 6.3078
+\c 10.091 6.0346 10.563 5.8843 10.4141 5.5155
+\s
+\m 10.7624 5.7136
+\c 10.7624 5.7136 10.7372 5.8843 10.9113 5.8843
+\c 11.0855 5.8843 11.1852 5.7614 11.3095 5.7409
+\c 11.4338 5.7136 11.5329 5.6657 11.4584 5.3925
+\c 11.384 5.1193 11.2843 4.8666 11.2843 4.6685
+\c 11.2843 4.4705 11.2098 4.2724 10.8622 4.1495
+\c 10.5138 4.0197 10.5883 3.8763 10.3643 3.7738
+\c 10.1409 3.6713 9.5938 3.8011 9.4948 4.1495
+\c 9.3957 4.4978 9.6191 4.5456 9.6191 4.5456
+\c 9.6191 4.5456 9.768 4.2246 9.9415 4.2246
+\c 10.1163 4.2246 10.0419 4.4227 9.9415 4.4432
+\c 9.8431 4.4705 9.5938 4.6959 9.5938 4.8461
+\c 9.5938 4.8461 9.6689 4.9896 9.768 4.9896
+\c 9.768 4.9896 10.0665 4.6959 10.3643 4.6412
+\c 10.6627 4.5934 10.7877 4.7915 10.8868 4.9691
+\c 10.9858 5.1398 11.0357 5.3652 11.1606 5.5155
+\c 11.2843 5.6657 10.8622 5.7409 10.7624 5.7136
+\s
+\m 11.6326 3.9992
+\c 11.5076 3.9992 11.5329 4.2451 11.6572 4.2451
+\c 11.7815 4.2451 11.8061 4.1495 11.8061 4.1495
+\c 11.8061 4.1495 11.7569 3.9992 11.6326 3.9992
+\m 13.0738 4.7437
+\c 12.651 4.7437 12.3286 5.0169 12.3286 5.0169
+\c 12.2043 4.9213 12.2541 4.7164 12.2541 4.7164
+\c 12.4024 4.7437 12.5526 4.7164 12.5526 4.7164
+\c 12.4024 4.7164 12.0055 4.4978 12.0055 4.4978
+\c 11.9557 4.3202 11.8314 4.368 11.7071 4.368
+\c 11.5827 4.368 11.3334 4.1016 11.3334 4.1016
+\c 11.483 4.1016 11.483 3.9514 11.483 3.9514
+\c 11.483 3.9514 11.285 3.7738 11.2091 3.6987
+\c 11.1347 3.6235 11.0602 3.726 11.0602 3.726
+\c 11.0602 3.726 10.9359 3.7465 10.8861 3.603
+\c 10.8362 3.4528 10.7631 3.3025 10.7631 3.3025
+\c 10.6634 3.0566 10.7877 2.9269 10.7877 2.9269
+\c 10.7877 2.9269 10.688 3.002 10.5391 3.002
+\c 10.3895 3.002 10.3151 3.0771 10.3151 3.0771
+\c 10.2154 2.8586 10.3649 2.6058 10.4892 2.558
+\c 10.6136 2.5102 10.688 2.0868 10.688 2.0868
+\c 10.7631 2.4351 11.0848 2.9269 11.1347 3.0566
+\c 11.1845 3.1796 11.5076 3.3777 11.7569 3.5006
+\c 12.0055 3.6235 11.9311 3.9241 11.9311 3.9241
+\c 12.2296 3.9241 12.2787 4.1016 12.3785 4.1699
+\c 12.4768 4.2451 12.651 4.4978 12.651 4.4978
+\c 13.099 4.4432 13.0738 4.7437 13.0738 4.7437
+\s
+\m 12.4283 3.9719
+\l 12.5772 4.047
+\c 12.5772 4.047 12.9495 3.6509 12.3286 3.1044
+\c 11.7071 2.558 11.6087 2.3326 11.0855 2.4556
+\c 11.0855 2.4556 11.0609 2.6537 11.1606 2.6332
+\c 11.2604 2.6058 11.4338 2.681 11.5827 2.8039
+\c 11.7323 2.9269 12.1797 3.2547 12.3286 3.4733
+\c 12.4775 3.6987 12.4283 3.9719 12.4283 3.9719
+\s
+\m 12.6264 3.1044
+\l 12.2166 2.6946
+\c 12.2166 2.6946 12.2036 2.9815 12.6264 3.1044
+\s
+\m 12.7015 2.5785
+\c 12.7015 2.5785 12.2535 2.1346 12.2289 2.0116
+\c 12.2036 1.8887 12.1298 1.7111 12.5765 1.3901
+\c 12.5765 1.3901 12.4529 1.3628 12.2787 1.4857
+\c 12.1046 1.6086 11.9803 1.957 12.1544 2.1619
+\c 12.3279 2.36 12.5765 2.681 12.5765 2.681
+\o
+\s
+\m 12.7015 9.8526
+\l 13.0369 9.8116
+\c 13.0369 9.8116 14.0061 8.7735 14.6775 6.458
+\c 15.3482 4.1495 14.7649 2.3395 13.8947 1.315
+\c 12.8504 0.0855 9.6061 -1.1097 5.6911 1.834
+\c 5.6911 1.834 7.2579 0.9393 9.1594 0.6456
+\c 11.0609 0.3451 13.4665 0.7139 14.267 2.9883
+\c 15.0128 5.1193 13.7452 8.9169 12.7015 9.8526
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian146.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian146.pgf
new file mode 100644
index 0000000000..242b05a8a6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian146.pgf
@@ -0,0 +1,283 @@
+\m 2.3883 9.569
+\c 3.324 9.7671 4.3766 9.2685 4.1778 8.2303
+\c 3.9791 7.1853 1.6923 6.9326 0.6979 8.1279
+\c 0.6979 8.1279 0.1514 7.7317 0.3495 6.8848
+\c 0.549 6.0447 1.7914 5.5939 2.6861 5.9422
+\c 3.5815 6.2906 2.4628 7.6293 1.1452 6.2632
+\l 0.9957 6.3384
+\c 0.9957 6.3384 1.4683 6.8848 2.0898 7.0077
+\c 2.7114 7.1307 3.3083 6.837 3.2332 6.2154
+\c 3.1581 5.5939 2.0898 4.9723 0.8468 5.6963
+\c 0.8468 5.6963 0.5981 4.5762 1.5434 4.2005
+\c 2.488 3.8249 3.1581 4.2005 3.1833 4.4464
+\c 3.2086 4.6991 2.4375 4.8972 1.9655 4.3235
+\l 1.8166 4.3508
+\c 1.8166 4.3508 1.9655 4.7469 2.5126 4.8221
+\c 3.059 4.8972 3.432 4.7196 3.3575 4.3235
+\c 3.2831 3.9273 2.7114 3.4834 1.6425 3.7771
+\c 1.6425 3.7771 1.5926 3.6063 1.6923 3.258
+\c 1.7914 2.9096 2.3139 2.1378 1.9655 1.2909
+\c 1.6172 0.4508 0.2505 0.0273 -0.0473 0.0273
+\c -0.0473 0.0273 1.5735 0.7513 1.6923 1.3182
+\c 1.9403 2.5135 1.344 2.4384 1.3938 3.8044
+\c 1.3938 3.8044 0.2997 4.5011 0.7477 5.792
+\c 0.7477 5.792 -0.5951 6.7345 0.6487 8.4284
+\c 0.6487 8.4284 0.2505 8.9748 0.6487 9.7671
+\c 1.0462 10.5662 2.488 10.9624 4.2277 9.9174
+\c 4.2277 9.9174 5.1224 10.9146 6.9618 9.9652
+\c 6.9618 9.9652 5.1231 10.3681 4.576 9.7193
+\c 4.1532 9.2207 4.7748 8.8245 5.4202 8.7289
+\c 5.4202 8.7289 3.9292 8.3806 4.128 9.7671
+\c 4.128 9.7671 3.3322 10.4911 2.0898 10.4364
+\c 0.8468 10.3886 0.1262 9.1251 1.1206 8.3259
+\c 2.1144 7.5336 3.5563 7.9025 3.7803 8.2781
+\c 3.9647 8.5855 3.8295 9.3709 2.8357 9.4188
+\c 1.8412 9.4734 1.2695 8.7494 1.2695 8.7494
+\l 1.1452 8.7972
+\c 1.1452 8.7972 1.4437 9.3709 2.3883 9.569
+\s
+\m 0.76 13.6944
+\c 0.76 13.6944 0.4615 12.021 2.4375 11.42
+\c 4.4135 10.8258 5.8307 11.5361 6.9864 10.3067
+\c 6.9864 10.3067 6.6503 10.6755 5.4202 10.7506
+\c 4.1894 10.8258 0.4991 10.3067 0.76 13.6944
+\s
+\m 7.1359 10.7848
+\c 7.1359 10.7848 6.9495 11.5361 5.5315 11.6112
+\c 4.1157 11.6795 2.6608 11.6112 1.9901 12.5811
+\c 1.3187 13.5442 1.9901 14.5892 2.736 14.7053
+\c 3.4818 14.8146 3.7427 14.1794 3.7427 14.1794
+\c 3.7427 14.1794 3.3698 14.7394 2.6608 14.555
+\c 1.9532 14.3638 1.5803 13.2846 2.2886 12.6494
+\c 2.9969 12.021 4.936 12.0552 5.3082 12.0552
+\c 5.6818 12.0552 6.9495 11.7956 7.1359 10.7848
+\s
+\m 9.2232 13.1002
+\c 9.0245 12.827 8.5252 12.9226 8.7267 13.3939
+\c 8.9248 13.872 9.3728 13.8925 9.3728 13.8925
+\c 9.3728 13.8925 9.4227 13.3734 9.2232 13.1002
+\m 10.9007 14.1452
+\c 10.342 14.555 9.4841 14.1042 9.4841 14.1042
+\c 8.03 15.8186 6.3525 14.4799 6.3525 14.4799
+\c 6.3525 14.4799 7.0765 15.04 7.9931 14.8146
+\c 8.9002 14.5892 9.323 14.0223 9.323 14.0223
+\c 9.1734 14.0223 8.7267 13.8788 8.5771 13.3939
+\c 8.4098 12.8543 9.0258 12.5196 9.4466 13.1002
+\c 9.7457 13.51 9.5224 13.9949 9.5224 13.9949
+\c 10.4165 14.4799 11.0872 13.954 10.7518 13.3597
+\c 10.4165 12.7655 9.6706 12.7245 8.9248 12.4308
+\c 8.1789 12.1303 7.8442 11.3449 7.8442 11.3449
+\c 8.5894 12.2806 9.4841 12.4308 10.3796 12.6494
+\c 11.2736 12.8748 11.4601 13.7354 10.9007 14.1452
+\m 6.1702 14.0291
+\c 6.1702 14.0291 6.4809 13.8788 6.5697 13.4485
+\c 6.6592 13.0251 5.8771 12.868 5.9482 13.4895
+\c 5.9926 13.8788 6.1702 14.0291 6.1702 14.0291
+\m 5.6811 12.465
+\c 4.8239 12.6904 4.4886 12.9499 4.4886 13.469
+\c 4.4886 13.9949 5.3082 14.4799 6.0916 14.1042
+\c 6.0916 14.1042 5.6811 13.8037 5.6811 13.3256
+\c 5.6811 12.6904 6.7582 12.5743 6.7999 13.2846
+\c 6.8368 13.9198 6.2036 14.2203 6.2036 14.2203
+\c 5.9796 14.4048 4.7119 14.6643 4.2277 13.8447
+\c 3.7701 13.0729 4.4073 12.383 5.2713 12.2806
+\c 6.5014 12.1303 6.9112 11.4951 6.9112 11.4951
+\c 6.9112 11.4951 6.539 12.2396 5.6811 12.465
+\s
+\m 11.0503 14.3638
+\c 11.0503 14.3638 11.9075 14.8146 12.5789 14.1452
+\c 13.2503 13.4759 12.4669 11.9459 11.2361 11.9049
+\c 10.006 11.8708 8.9623 12.0962 7.6202 10.7848
+\c 7.6202 10.7848 8.2909 11.8708 9.2977 12.1303
+\c 10.3044 12.3899 11.8665 11.7956 12.4669 12.9499
+\c 12.9887 13.954 12.0571 14.6301 11.0503 14.3638
+\s
+\m 13.5481 13.2505
+\c 13.5481 13.2505 14.1075 12.7245 13.2503 11.7205
+\c 12.3924 10.7097 10.7149 11.0512 9.4466 11.0102
+\c 8.4665 10.9829 8.1045 10.6755 7.9187 10.416
+\c 7.9187 10.416 7.9556 10.7848 8.6638 11.0512
+\c 9.3728 11.3107 11.7654 11.1468 12.7653 11.7205
+\c 13.809 12.3147 13.5481 13.2505 13.5481 13.2505
+\s
+\m 7.931 9.6715
+\c 7.931 9.6715 8.4781 10.416 9.6214 10.5662
+\c 10.7648 10.7165 11.4355 10.293 11.3857 9.5963
+\c 11.3365 8.8997 10.2921 8.7289 9.9691 8.7289
+\c 9.9691 8.7289 10.8884 8.8723 11.1377 9.3436
+\c 11.3857 9.8217 10.1678 10.7643 7.931 9.6715
+\s
+\m 10.9636 10.3135
+\c 10.9636 10.3135 11.3617 10.614 12.2804 10.737
+\c 13.2004 10.8599 14.4934 10.5867 14.5924 9.4734
+\c 14.6914 8.3533 13.697 7.5815 12.8528 7.4107
+\c 12.0072 7.2331 10.7894 7.9776 11.3617 8.8519
+\c 11.9327 9.7193 13.35 9.3231 14.145 8.7972
+\c 14.145 8.7972 13.1014 9.2207 12.3555 9.2002
+\c 11.6097 9.1729 11.2866 8.6265 11.6595 8.2303
+\c 12.0318 7.8273 13.1758 7.8068 13.921 8.4284
+\c 14.4298 8.8519 14.7167 9.8217 13.7967 10.3613
+\c 12.8774 10.9146 11.4608 10.5116 11.038 10.1906
+\o
+\s
+\m 12.9764 6.1881
+\c 12.3794 6.1676 12.0816 6.837 12.6779 6.8848
+\c 13.2749 6.9326 13.8718 6.3862 13.8718 6.3862
+\c 13.8718 6.3862 13.5733 6.2154 12.9764 6.1881
+\m 14.4681 8.1757
+\c 14.9653 6.8575 14.1942 6.5364 14.1942 6.5364
+\c 13.2004 7.1307 12.7305 7.117 12.3794 6.8575
+\c 12.0072 6.5843 12.1069 5.9149 12.9265 5.8193
+\c 13.5481 5.7441 14.1198 6.1881 14.1198 6.1881
+\c 14.7659 5.2729 14.1942 4.5967 13.7222 4.4259
+\c 13.2503 4.2483 12.3057 4.3508 12.3794 4.7948
+\c 12.4546 5.2455 13.0263 4.9928 13.0263 4.9928
+\c 12.9019 5.1977 12.0816 5.2729 12.2312 4.5215
+\c 12.402 3.6678 14.0453 3.6814 14.5173 4.6991
+\c 14.9619 5.6554 14.3438 6.3384 14.3438 6.3384
+\c 15.3622 7.0624 14.4681 8.1757 14.4681 8.1757
+\s
+\m 13.6731 4.0776
+\c 13.6731 4.0776 14.1198 3.6063 13.7974 2.8345
+\c 13.4012 1.8919 12.5044 0.9221 14.7167 0.3005
+\c 14.7167 0.3005 14.0952 0.1981 13.35 0.8196
+\c 12.6041 1.4412 13.2011 2.3632 13.3739 2.7116
+\c 13.5481 3.0599 13.8718 3.456 13.6731 4.0776
+\s
+\m 12.4054 4.1527
+\c 10.7149 0.1981 8.2042 0 7.7814 0
+\l 7.2596 0
+\c 4.4756 0.1708 2.8104 3.7293 2.8104 3.7293
+\l 2.8855 3.8795
+\c 2.8855 3.8795 3.9292 2.2403 4.5999 1.5641
+\c 5.2713 0.8947 6.1934 0.1503 7.6079 0.2527
+\c 9.0491 0.3483 10.9636 1.2431 12.2551 4.3508
+\l 12.4293 4.3508
+\o
+\s
+\m 6.7623 1.3182
+\c 6.7623 1.3182 7.0232 1.8032 7.4337 1.8373
+\c 7.8442 1.8783 8.2547 1.3182 8.2547 1.3182
+\c 8.2547 1.3182 7.4713 1.9876 6.7623 1.3182
+\s
+\m 8.4781 2.172
+\c 8.4781 2.172 8.2417 2.0969 8.0553 1.9124
+\c 7.8688 1.728 7.4713 1.6529 7.0608 1.8373
+\c 6.6503 2.0286 6.6503 2.1378 6.3901 2.1378
+\c 6.3901 2.1378 6.427 2.3632 6.6141 2.2881
+\c 6.6141 2.2881 7.039 2.0149 7.4337 1.9671
+\c 8.03 1.8919 8.1051 2.4384 8.4781 2.172
+\s
+\m 7.2097 6.9462
+\c 7.2097 6.9462 6.9112 6.7209 6.2029 7.1716
+\c 6.2029 7.1716 6.1661 6.9121 5.942 6.9872
+\c 5.942 6.9872 5.4578 7.4722 4.0781 7.1307
+\l 4.0405 7.3219
+\c 4.0405 7.3219 3.6676 7.2058 3.4443 6.837
+\c 3.4443 6.837 3.0338 7.0965 4.0781 7.5473
+\c 5.1224 7.9913 6.315 7.4722 7.2097 6.9462
+\s
+\m 3.4818 6.1266
+\c 3.4818 6.1266 3.7052 6.5774 4.3766 6.796
+\c 4.3766 6.796 4.3397 6.6867 4.563 6.6867
+\c 4.7864 6.6867 5.9427 6.4272 6.4645 6.0925
+\c 6.4645 6.0925 6.5766 5.6827 6.2036 5.6075
+\c 6.2036 5.6075 6.0172 5.792 6.315 5.9012
+\c 6.315 5.9012 6.2036 6.0925 6.0172 6.0173
+\c 5.8307 5.9422 5.7187 5.7578 5.7187 5.7578
+\c 5.7187 5.7578 5.5315 5.9422 5.8676 6.1676
+\l 5.2337 6.2359
+\c 5.2337 6.2359 5.0473 5.9422 4.8239 6.2359
+\c 4.8239 6.2359 4.7119 6.0173 4.8615 5.9422
+\c 5.1818 5.7783 5.3082 6.0515 5.3082 6.0515
+\l 5.5315 6.0173
+\c 5.5315 6.0173 5.4393 5.7578 5.1033 5.7168
+\c 4.7317 5.6758 4.563 5.9422 4.563 6.2359
+\c 4.563 6.2359 4.2646 6.311 3.8923 5.9012
+\l 3.7052 6.0173
+\c 3.7052 6.0173 3.7803 6.2769 4.0405 6.352
+\c 4.0405 6.352 3.6307 6.311 3.4818 6.1266
+\s
+\m 9.5716 5.8398
+\c 9.4329 5.8807 9.4049 6.031 9.3988 6.0925
+\c 9.6255 6.113 9.8673 6.113 10.0907 6.113
+\c 10.0592 5.792 9.7369 5.792 9.5716 5.8398
+\m 11.1377 6.113
+\c 9.9438 6.8096 9.2731 6.4408 9.2731 6.4408
+\c 9.2731 6.4408 8.851 6.2632 8.5272 6.2154
+\c 8.2042 6.1676 8.3538 5.8944 8.3538 5.8944
+\c 8.4781 5.8193 8.3538 5.6895 8.3538 5.6895
+\c 8.4781 5.4436 8.627 5.6417 8.627 5.6417
+\c 8.9999 5.6417 8.8756 5.99 8.8756 5.99
+\c 8.9808 6.0242 9.103 6.0515 9.2342 6.072
+\c 9.2628 5.9422 9.3687 5.6758 9.7457 5.6895
+\c 10.1139 5.71 10.1952 5.9764 10.2129 6.113
+\c 10.607 6.0993 10.9137 6.0652 10.9137 6.0652
+\o
+\s
+\m 10.0196 6.714
+\c 10.0196 6.714 9.5716 6.8575 8.8503 6.4886
+\c 8.8503 6.4886 8.9746 6.4613 9.2731 6.5364
+\c 9.5716 6.6116 10.0196 6.714 10.0196 6.714
+\s
+\m 11.3112 6.6594
+\c 11.3112 6.6594 10.342 7.7317 8.5771 6.714
+\c 8.5771 6.714 8.8455 7.1102 9.8448 7.3082
+\c 10.7149 7.479 11.3112 6.6594 11.3112 6.6594
+\s
+\m 11.4109 6.837
+\c 11.4109 6.837 10.939 7.4312 9.9445 7.4312
+\c 8.95 7.4312 8.2042 6.837 8.2042 6.837
+\c 8.2042 6.837 8.1543 7.0077 8.5525 7.2331
+\c 8.95 7.4585 9.7457 7.882 10.6152 7.5815
+\c 11.4854 7.2809 11.4109 6.837 11.4109 6.837
+\s
+\m 8.03 4.9314
+\c 8.03 4.9314 8.627 4.8562 8.5894 4.262
+\c 8.5894 4.262 8.4781 4.0025 8.1789 3.8932
+\c 7.8811 3.7771 7.5458 3.4834 7.2097 3.6678
+\c 6.875 3.8522 6.6879 4.1869 6.427 4.1869
+\c 6.427 4.1869 6.2405 4.3781 6.5766 4.8562
+\c 6.5766 4.8562 6.875 5.0065 6.875 5.1977
+\c 6.875 5.1977 7.1359 5.307 7.0608 5.1226
+\c 6.9864 4.9314 6.7255 4.6377 6.7255 4.6377
+\c 6.7255 4.6377 6.875 4.4464 7.0232 4.262
+\c 7.1728 4.0776 7.4713 4.0025 7.8811 4.1869
+\c 8.2909 4.3781 8.4781 4.6377 7.9931 4.7879
+\c 7.9931 4.7879 7.8442 4.9723 8.03 4.9314
+\s
+\m 12.7285 6.113
+\l 12.542 6.2291
+\c 12.6082 5.8534 12.488 5.348 12.3965 5.0201
+\c 12.4587 4.9997 12.5666 5.0885 12.6287 5.068
+\c 12.7592 5.7237 12.7285 6.113 12.7285 6.113
+\s
+\m 7.8565 2.8823
+\l 7.5574 2.8823
+\c 7.5574 2.8823 7.5082 3.0326 7.7315 3.0326
+\l 8.0799 3.0599
+\c 8.0799 3.0599 8.0054 2.9096 7.8565 2.8823
+\m 7.0984 2.9096
+\c 7.0089 2.9096 6.9358 2.9438 6.9358 2.9848
+\c 6.9358 3.0257 7.0089 3.0599 7.0984 3.0599
+\c 7.1872 3.0599 7.2603 3.0257 7.2603 2.9848
+\c 7.2603 2.9438 7.1872 2.9096 7.0984 2.9096
+\m 9.4971 2.7867
+\c 9.3475 2.8823 9.1986 2.8823 9.0989 3.0599
+\c 8.9992 3.2307 8.726 3.3536 8.6509 3.3331
+\c 8.5764 3.3058 8.726 3.0326 8.5266 3.0326
+\c 8.3278 3.0326 7.9556 3.3058 7.9556 3.3058
+\c 7.9556 3.3058 7.6571 3.0599 7.4829 3.0599
+\l 7.1598 3.2307
+\c 6.9358 3.0053 6.2152 3.1077 6.2152 3.1077
+\l 6.2405 3.2307
+\c 6.2405 3.3536 6.0411 3.4287 6.0411 3.4287
+\c 6.0411 3.4287 6.0178 2.9096 5.5206 2.534
+\c 5.5206 2.534 5.3949 2.3359 5.5438 2.2608
+\c 5.5438 2.2608 5.8669 2.534 6.0178 2.6091
+\c 6.1661 2.6842 7.0861 2.5613 7.5574 2.2881
+\c 7.5574 2.2881 7.6824 2.4862 8.0799 2.5135
+\c 8.4774 2.534 8.8503 2.5818 9.0737 2.7321
+\c 9.0737 2.7321 9.4718 2.6091 9.5716 2.534
+\c 9.5716 2.534 9.6453 2.6842 9.4971 2.7867
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian147.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian147.pgf
new file mode 100644
index 0000000000..73244b3c94
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian147.pgf
@@ -0,0 +1,104 @@
+\m 20.964 8.9543
+\c 18.9942 6.5911 18.4034 9.2548 19.6833 12.0074
+\c 20.964 14.7668 23.0315 16.5358 23.0315 16.5358
+\c 23.1305 15.7503 22.9324 11.3175 20.964 8.9543
+\m 7.5755 16.5358
+\c 7.5755 16.5358 9.6437 14.7668 10.9237 12.0074
+\c 12.2036 9.2548 11.6135 6.5911 9.6437 8.9543
+\c 7.6739 11.3175 7.4772 15.7503 7.5755 16.5358
+\m 8.5604 4.8221
+\c 8.5604 4.8221 10.0385 5.5119 12.2036 5.6075
+\c 14.3702 5.71 15.1584 4.5284 13.1885 4.0366
+\c 11.2187 3.5448 8.5604 4.8221 8.5604 4.8221
+\m 22.0465 4.8221
+\c 22.0465 4.8221 19.3876 3.5448 17.4191 4.0366
+\c 15.4493 4.5284 16.2375 5.71 18.4027 5.6075
+\c 20.5692 5.5119 22.0465 4.8221 22.0465 4.8221
+\m 28.0045 10.976
+\c 25.1481 6.5433 22.0957 5.1636 22.0957 5.1636
+\c 21.2099 5.6622 19.1417 6.154 17.0742 5.8534
+\c 15.006 5.5597 15.4985 3.6883 18.0591 3.5927
+\c 20.6191 3.4902 22.1948 4.3781 22.1948 4.3781
+\c 24.6563 1.127 15.3038 1.4753 15.3038 1.4753
+\c 15.3038 1.4753 5.9513 1.127 8.4129 4.3781
+\c 8.4129 4.3781 9.9886 3.4902 12.5492 3.5927
+\c 15.1092 3.6883 15.601 5.5597 13.5335 5.8534
+\c 11.4653 6.154 9.3978 5.6622 8.512 5.1636
+\c 8.512 5.1636 5.4589 6.5433 2.6032 10.976
+\c -0.2525 15.4088 1.593 17.854 2.8989 18.2638
+\c 4.474 18.7556 5.9513 17.9701 6.6405 17.3759
+\c 6.6405 17.3759 5.9022 13.8788 7.8713 10.1359
+\c 9.8404 6.3998 11.9086 6.5911 12.3027 8.9543
+\c 12.6961 11.3175 10.3329 15.7503 7.5755 17.2256
+\c 7.5755 17.2256 7.3788 19.6913 9.348 21.3647
+\c 11.3178 23.038 14.0751 20.3811 14.8626 18.5097
+\c 14.8626 18.5097 13.7794 16.9319 13.0902 13.5851
+\c 12.4003 10.2384 13.0902 7.479 15.3038 7.479
+\c 17.5209 7.6771 18.2066 10.2384 17.5175 13.5851
+\c 16.8276 16.9319 15.7451 18.5097 15.7451 18.5097
+\c 16.5333 20.3811 19.2899 23.038 21.2597 21.3647
+\c 23.2288 19.6913 23.0315 17.2256 23.0315 17.2256
+\c 20.2748 15.7503 17.9116 11.3175 18.305 8.9543
+\c 18.6991 6.5911 20.7666 6.3998 22.7371 10.1359
+\c 24.7062 13.8788 23.9665 17.3759 23.9665 17.3759
+\c 24.6563 17.9701 26.1337 18.7556 27.7094 18.2638
+\c 29.0153 17.854 30.8602 15.4088 28.0045 10.976
+\m 15.3797 17.9154
+\c 15.3797 17.9154 16.3646 15.7503 16.758 12.9909
+\c 17.1514 10.2384 16.1672 9.1524 15.0839 9.2548
+\c 14.0006 9.3505 13.2131 10.6277 13.8039 13.2914
+\c 14.3947 15.9484 15.3797 17.9154 15.3797 17.9154
+\m 23.7705 17.8676
+\c 23.7705 17.8676 23.5943 21.1802 20.8158 22.1501
+\c 17.7149 23.2361 15.3038 19.0014 15.3038 19.0014
+\c 15.3038 19.0014 12.8935 23.2361 9.7919 22.1501
+\c 7.0134 21.1802 6.8379 17.8676 6.8379 17.8676
+\c 2.9973 20.6748 -1.7292 17.7242 0.6341 12.4035
+\c 2.9973 7.0897 7.872 4.4259 7.872 4.4259
+\c 5.213 0.1434 15.2567 0 15.2567 0
+\l 15.351 0
+\c 15.351 0 25.394 0.1434 22.7357 4.4259
+\c 22.7357 4.4259 27.6104 7.0897 29.9736 12.4035
+\c 32.3355 17.7242 27.6104 20.6748 23.7705 17.8676
+\s
+\m 0 0
+\l 30.6072 0
+\l 30.6072 29.4646
+\l 0 29.4646
+\o
+\i
+\m 15.0347 26.8015
+\c 15.0347 26.8015 13.7794 28.5773 14.8872 29.0212
+\c 15.995 29.4652 15.9213 27.102 15.0347 26.8015
+\m 12.0069 25.0324
+\c 11.0473 25.1076 10.619 25.6062 11.1211 26.1389
+\c 11.9578 27.0268 13.4836 25.4013 13.4836 25.4013
+\c 13.4836 25.4013 12.9673 24.9573 12.0069 25.0324
+\m 19.0474 26.1389
+\c 19.5495 25.6062 19.1212 25.1076 18.1616 25.0324
+\c 17.2013 24.9573 16.6842 25.4013 16.6842 25.4013
+\c 16.6842 25.4013 18.2101 27.0268 19.0474 26.1389
+\m 16.3891 21.713
+\c 15.6501 23.8508 16.6842 25.0324 16.6842 25.0324
+\c 16.6842 25.0324 17.9396 24.5134 18.9737 24.8139
+\c 20.0071 25.1076 20.0815 26.658 18.5297 26.658
+\c 17.4963 26.658 16.4629 25.695 16.4629 25.695
+\c 16.4629 25.695 15.8721 25.9955 15.5026 26.5829
+\c 15.5026 26.5829 16.0196 27.2454 16.1679 28.1333
+\c 16.3154 29.0212 15.5272 29.4652 15.0839 29.4652
+\c 14.6406 29.4652 13.8531 29.0212 14.0013 28.1333
+\c 14.1489 27.2454 14.6652 26.5829 14.6652 26.5829
+\c 14.2964 25.9955 13.7056 25.695 13.7056 25.695
+\c 13.7056 25.695 12.6715 26.658 11.6381 26.658
+\c 10.087 26.658 10.1607 25.1076 11.1941 24.8139
+\c 12.2289 24.5134 13.4836 25.0324 13.4836 25.0324
+\c 13.4836 25.0324 14.5184 23.8508 13.7794 21.713
+\c 12.7193 18.6394 9.4224 19.2746 9.4224 19.2746
+\c 9.4224 19.2746 10.382 18.5302 12.7453 19.4932
+\c 15.1085 20.4563 15.4527 23.5776 13.9269 25.4013
+\c 13.9269 25.4013 14.8626 26.1389 15.0839 26.4326
+\c 15.3052 26.1389 16.2409 25.4013 16.2409 25.4013
+\c 14.7151 23.5776 15.0593 20.4563 17.4225 19.4932
+\c 19.7858 18.5302 20.7461 19.2746 20.7461 19.2746
+\c 20.7461 19.2746 17.4485 18.6394 16.3891 21.713
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian148.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian148.pgf
new file mode 100644
index 0000000000..85f4694f39
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian148.pgf
@@ -0,0 +1,83 @@
+\m 27.7519 9.972
+\c 25.8319 7.6088 22.8048 6.5023 20.8842 6.8711
+\c 20.8842 6.8711 23.8389 7.7522 26.0553 10.5594
+\c 28.2696 13.3666 27.9001 17.8745 24.2077 17.0617
+\c 24.2077 17.0617 26.129 16.8363 25.3887 15.2858
+\c 24.651 13.7354 21.5774 14.9921 22.436 17.3554
+\c 23.3219 19.7937 26.9405 19.4249 28.1958 17.5739
+\c 29.4512 15.7298 29.6725 12.3352 27.7519 9.972
+\m 15.5676 1.6256
+\c 15.5676 1.6256 14.6811 4.8016 11.3568 6.6457
+\c 11.3568 6.6457 14.0165 7.9025 14.9023 9.8969
+\c 14.9023 9.8969 16.5272 7.4585 19.1131 6.5023
+\c 19.1131 6.5023 16.6755 4.1391 15.5676 1.6256
+\m 12.2441 22.8946
+\c 12.7604 29.834 15.2725 33.7477 15.2725 33.7477
+\c 15.2725 33.7477 17.5613 30.7971 18.0046 24.0011
+\c 18.4472 17.2051 14.7555 11.0785 14.7555 11.0785
+\c 14.7555 11.0785 11.727 15.9552 12.2441 22.8946
+\m 13.5732 36.8554
+\l 14.8279 37.6614
+\l 16.6755 36.2612
+\c 16.6755 36.2612 15.2725 35.0044 15.1981 34.7859
+\c 15.1981 34.7859 14.4591 36.2612 13.5732 36.8554
+\m 13.7938 41.4316
+\c 13.7938 42.982 16.2322 43.2757 16.4535 41.5819
+\c 16.6755 39.8812 14.9761 38.5493 14.9761 38.5493
+\c 14.9761 38.5493 13.7938 39.8812 13.7938 41.4316
+\m 4.4891 7.8273
+\c 1.6833 9.4529 0.8705 12.4104 1.018 14.1042
+\c 1.1663 15.8049 1.5358 17.6491 3.6777 18.3867
+\c 5.819 19.1312 7.6651 17.6491 7.4445 16.1738
+\c 7.2225 14.6985 5.8927 14.1042 4.7849 14.8419
+\c 3.6777 15.5864 4.2671 16.6177 4.2671 16.6177
+\c 4.2671 16.6177 2.4954 16.3992 2.7181 14.0291
+\c 2.9387 11.6659 4.4154 10.416 6.336 9.0841
+\c 8.2559 7.7522 9.8802 6.9394 9.8802 6.9394
+\c 9.8802 6.9394 7.297 6.2018 4.4891 7.8273
+\m 6.8524 35.3733
+\c 3.1593 35.0796 0.5017 35.5987 1.2407 37.7365
+\c 1.9784 39.8812 10.3972 39.9563 12.9831 36.8554
+\c 12.9831 36.8554 10.5461 35.6738 6.8524 35.3733
+\m 22.7304 38.4742
+\c 25.6106 38.9932 28.5647 38.4742 28.6384 36.7051
+\c 28.7122 34.9293 25.6851 34.861 24.0602 34.861
+\c 22.436 34.861 20.1465 34.861 17.4876 36.4115
+\c 17.4876 36.4115 19.8508 37.9619 22.7304 38.4742
+\m 29.5257 16.1738
+\c 28.2696 20.0874 24.0602 20.0874 22.5098 18.9058
+\c 20.7455 17.5603 20.7367 14.2545 23.5432 13.8105
+\c 26.349 13.3666 26.349 15.9552 26.349 15.9552
+\c 27.9001 13.4417 25.502 10.2794 23.3956 8.7153
+\c 21.4019 7.2399 19.9983 6.9394 19.9983 6.9394
+\c 17.1174 7.6088 15.2725 10.5594 15.2725 10.5594
+\c 16.2322 12.0347 19.0387 16.9114 18.6685 24.0762
+\c 18.299 31.241 15.4938 34.1234 15.4938 34.1234
+\c 15.7889 34.861 17.3393 35.9675 17.3393 35.9675
+\c 17.3393 35.9675 20.0728 33.6794 23.4687 33.6794
+\c 26.866 33.6794 29.0079 34.9293 29.081 36.7051
+\c 29.1555 38.4742 26.6447 39.2869 22.8786 38.7747
+\c 19.1131 38.2556 17.1911 36.63 17.1911 36.63
+\c 16.6017 37.074 15.3463 38.1053 15.3463 38.1053
+\c 16.2322 38.843 17.8571 40.9876 17.0443 42.9069
+\c 16.1434 45.0379 12.9107 44.2456 12.9831 41.8004
+\c 13.0562 39.2869 14.3867 38.2556 14.3867 38.2556
+\l 13.1306 37.3677
+\c 8.5524 41.3565 -0.0898 39.5875 0.5755 36.7051
+\c 1.2407 33.8228 6.4835 33.898 9.068 34.4854
+\c 11.6533 35.0796 13.2788 36.4115 13.2788 36.4115
+\c 14.0165 35.8924 14.9761 34.1234 14.9761 34.1234
+\c 14.9761 34.1234 11.4306 29.6906 11.4306 23.1132
+\c 11.4306 14.3979 14.3122 10.5594 14.3122 10.5594
+\c 12.9093 7.6839 10.5461 7.1648 10.5461 7.1648
+\c 10.5461 7.1648 9.3638 7.7522 5.819 10.3408
+\c 2.2734 12.9226 3.5295 15.2858 3.5295 15.2858
+\c 3.5295 13.2914 7.8127 12.185 8.5524 15.7298
+\c 9.2723 19.1927 2.7905 20.75 0.8705 17.0617
+\c -1.0487 13.3666 0.2804 8.8655 4.1203 6.8711
+\c 7.9595 4.8767 10.6929 6.352 10.6929 6.352
+\c 14.7555 4.2825 15.4194 0 15.4194 0
+\c 17.0443 3.9137 19.8508 6.2769 19.8508 6.2769
+\c 23.4687 5.7578 25.3887 7.0145 26.7178 7.9776
+\c 28.0483 8.9338 30.7817 12.2601 29.5257 16.1738
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian149.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian149.pgf
new file mode 100644
index 0000000000..01a8bb40f8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian149.pgf
@@ -0,0 +1,94 @@
+\m 11.1289 24.8119
+\c 11.1289 24.8119 12.8037 16.0488 4.3357 7.1833
+\c 4.3357 7.1833 10.243 13.6856 11.1289 24.8119
+\s
+\m 18.5601 24.8119
+\c 18.5601 24.8119 16.8874 16.0488 25.354 7.1833
+\c 25.354 7.1833 19.446 13.6856 18.5601 24.8119
+\s
+\m 20.5818 1.8695
+\c 20.5818 1.8695 11.7204 10.7282 2.2682 14.273
+\c 2.2682 14.273 13.0004 11.9098 20.5818 1.8695
+\s
+\m 8.6837 1.8695
+\c 8.6837 1.8695 17.5472 10.7282 26.9994 14.273
+\c 26.9994 14.273 16.2665 11.9098 8.6837 1.8695
+\s
+\m 3.7435 21.1646
+\c 3.7435 21.1646 13.4915 17.5241 25.4073 20.8709
+\c 25.4073 20.8709 14.378 15.7483 3.7435 21.1646
+\s
+\m 14.7728 12.5518
+\l 15.9544 13.2143
+\l 16.9154 11.3702
+\o
+\m 14.3302 12.7704
+\l 13.2463 13.3373
+\l 13.5721 14.5189
+\l 15.6088 14.5189
+\l 15.88 13.7334
+\o
+\m 12.4833 11.5888
+\l 13.0004 12.9206
+\l 13.8856 12.504
+\o
+\m 10.7854 14.6213
+\l 13.0741 14.4711
+\l 12.7053 13.6583
+\o
+\m 14.4777 17.7905
+\l 15.2174 15.6459
+\l 13.8739 15.6117
+\o
+\m 13.7373 25.6247
+\c 13.8856 27.7625 15.2898 27.4688 15.8069 26.8063
+\c 16.3239 26.1369 16.2488 24.2177 14.4777 19.4161
+\c 14.4777 19.4161 13.5919 23.48 13.7373 25.6247
+\m 26.8095 2.0607
+\c 27.5486 -0.6713 23.7087 0.9542 18.7609 9.2255
+\c 18.7609 9.2255 26.0719 4.7928 26.8095 2.0607
+\m 8.5697 5.4621
+\c 6.9441 3.0989 4.6553 0.7357 2.956 0.442
+\c 1.258 0.1414 3.0304 3.7614 11.0067 9.9632
+\c 11.0067 9.9632 10.1946 7.8253 8.5697 5.4621
+\m 1.9233 17.128
+\c -0.2194 18.091 0.3721 19.1975 1.9233 18.8287
+\c 3.473 18.4599 5.91 17.4217 7.7569 15.5776
+\c 7.7569 15.5776 4.0652 16.1718 1.9233 17.128
+\m 25.7024 18.6033
+\c 27.8436 19.1975 28.362 18.8287 27.8436 18.0159
+\c 27.3279 17.2031 24.1513 16.3903 20.0901 16.0215
+\c 20.0901 16.0215 23.5604 18.0159 25.7024 18.6033
+\m 15.8622 15.6868
+\c 15.1751 17.4763 14.7728 18.8287 14.7728 18.8287
+\c 14.7728 18.8287 16.0282 22.3735 16.4708 24.3679
+\c 16.9154 26.3623 16.3977 27.6874 15.2147 27.9128
+\c 14.0345 28.1313 12.7053 27.3937 12.8515 25.0305
+\c 13.0004 22.6672 14.1075 18.6033 14.1075 18.6033
+\c 13.8125 16.7592 13.1486 15.5024 13.1486 15.5024
+\l 8.3477 15.7278
+\c 5.5419 18.3847 1.7013 20.304 0.5927 19.4912
+\c -0.5144 18.6784 -0.2931 17.3534 3.178 16.1718
+\c 6.649 14.9902 9.7513 14.7648 9.7513 14.7648
+\l 12.7053 13.0641
+\l 12.0407 11.3702
+\l 10.5627 10.2227
+\c 4.7291 6.8281 1.7013 2.4364 1.775 0.8108
+\c 1.8488 -0.8148 4.8028 -0.0771 7.8313 3.7614
+\c 10.8591 7.6 11.5968 10.2637 11.5968 10.2637
+\l 14.6253 12.2581
+\l 16.9885 10.8511
+\c 18.6865 6.6437 22.6015 1.4733 25.4073 0.5103
+\c 28.2138 -0.4459 27.9918 2.6549 25.0378 5.3119
+\c 22.0831 7.9688 18.6865 9.8949 18.6865 9.8949
+\c 17.9338 11.0355 17.2549 12.3947 16.6791 13.6993
+\l 18.0116 14.6213
+\c 23.8371 15.0721 28.6489 17.3466 28.584 18.4599
+\c 28.5096 19.7166 26.7365 19.4161 25.1123 18.8287
+\c 23.4874 18.2345 19.9418 16.2401 19.9418 16.2401
+\c 18.6291 15.9122 16.7487 15.7483 15.8622 15.6868
+\m 16.3171 14.5462
+\c 16.6654 14.5462 17.0097 14.5599 17.3525 14.5804
+\l 16.5363 14.0271
+\c 16.4612 14.1979 16.3881 14.3754 16.3171 14.5462
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian15.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian15.pgf
new file mode 100644
index 0000000000..82e4749813
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian15.pgf
@@ -0,0 +1,212 @@
+\m 5.9532 7.8222
+\c 5.3932 7.9662 4.7212 8.0446 3.9068 7.9534
+\c 2.2108 7.7614 0.7724 6.6878 0.2412 5.2222
+\c 0.2284 5.1854 0.222 5.147 0.2092 5.1102
+\c 0.2092 5.1134 0.2092 5.115 0.2076 5.1166
+\c -0.306 3.9438 0.038 0.9422 2.3148 0.435
+\c 3.998 0.0622 5.5436 0.7166 5.7308 2.0254
+\c 5.918 3.339 4.9324 4.5342 3.6716 4.459
+\c 2.0316 4.3662 2.5948 3.339 1.8444 3.2446
+\c 1.6268 3.2158 1.4316 3.2846 1.2604 3.3902
+\c 1.0412 3.8382 1.0236 4.2942 1.238 4.8814
+\c 1.6652 6.0638 2.8412 6.9278 4.23 7.0862
+\c 5.4652 7.2238 6.2476 6.9598 6.7244 6.6814
+\c 7.0092 6.307 7.31 5.9422 7.6348 5.5934
+\c 10.2204 2.8398 13.9772 1.315 18.502 1.1854
+\c 30.8444 0.8334 37.2636 12.2878 42.262 23.1006
+\c 43.47 25.7166 44.806 28.0782 46.1564 30.1774
+\c 45.8124 28.827 45.534 27.2126 45.4476 25.3486
+\c 44.9756 24.907 43.0652 22.8974 42.9724 19.0542
+\c 42.8844 15.5182 42.9468 10.923 42.966 9.6446
+\c 41.582 9.3598 40.5372 8.1326 40.5372 6.6622
+\c 40.5372 4.9838 41.902 3.6206 43.5804 3.6206
+\c 45.2588 3.6206 46.6236 4.9838 46.6236 6.6622
+\c 46.6236 8.275 45.3628 9.5854 43.7772 9.6878
+\c 43.7564 10.9982 43.6988 15.539 43.7836 19.0318
+\c 43.8444 21.5502 44.766 23.2126 45.422 24.0878
+\c 45.4252 21.2414 45.8844 17.9006 47.1804 14.139
+\c 50.0188 7.4574 56.9052 0.3598 67.7356 0.475
+\c 69.1532 0.491 70.5868 0.6606 72.0012 0.9502
+\l 72.0044 0.8814
+\c 72.1548 0.8846 75.7564 1.0254 81.1868 4.4078
+\l 83.7868 6.0878
+\c 87.6572 8.6382 90.4556 10.4814 95.062 9.915
+\c 97.2972 9.6414 98.8812 8.5422 99.5196 6.819
+\c 100.0988 5.2574 99.798 3.3278 98.806 2.2366
+\c 97.8316 1.163 95.9532 0.7262 94.4364 1.2158
+\c 93.7772 1.4302 92.646 2.0078 92.4828 3.4734
+\c 92.4636 3.6414 92.4636 3.7934 92.4716 3.939
+\c 92.7196 5.3038 94.0924 6.0478 94.9868 5.6494
+\c 95.9004 5.2446 96.3068 5.3102 96.6108 5.5822
+\c 96.9148 5.8526 96.9148 7.3422 94.582 7.2398
+\c 92.2476 7.139 91.5724 4.7694 91.5724 4.7694
+\l 91.5916 4.7038
+\c 91.4716 4.3102 91.4172 3.8654 91.4748 3.363
+\c 91.6396 1.8766 92.6044 0.7438 94.1244 0.251
+\c 96.0252 -0.365 98.31 0.1822 99.5564 1.5534
+\c 100.8108 2.931 101.1852 5.243 100.47 7.1726
+\c 100.0204 8.3854 98.7356 10.4862 95.1852 10.923
+\c 90.5804 11.4878 87.5964 9.7902 84.0844 7.4942
+\c 84.2396 7.659 84.3964 7.8206 84.542 7.9854
+\c 85.4476 9.0286 86.2092 10.1486 86.8284 11.3246
+\c 92.5676 14.411 96.9244 13.3502 98.6412 11.635
+\c 99.5196 12.651 100.4652 15.5598 97.1532 17.0478
+\c 93.262 16.8318 89.1228 14.1182 87.6108 13.0318
+\c 87.7276 13.331 87.8364 13.635 87.9356 13.9422
+\c 91.0604 18.9438 96.9612 19.7502 99.046 19.347
+\c 99.2492 21.715 97.558 23.4046 96.342 23.7438
+\c 92.854 23.3406 89.8988 19.0878 88.6252 16.963
+\c 88.6796 17.3694 88.7212 17.7806 88.7484 18.195
+\c 88.7548 18.1758 88.758 18.1486 88.7644 18.1294
+\c 91.0636 26.9902 96.4076 26.7182 96.4076 26.7182
+\c 96.4076 26.7182 96.07 29.4254 93.2284 30.1694
+\c 89.4236 28.0382 88.8156 22.627 88.718 21.0702
+\c 88.6924 21.363 88.662 21.6558 88.6252 21.9534
+\c 88.5132 22.9166 88.3164 23.8574 88.0476 24.771
+\c 88.5068 31.659 90.6588 33.0446 90.6588 33.0446
+\c 90.6588 33.0446 89.2396 35.0735 88.0204 35.4799
+\c 85.9964 34.3071 86.4924 30.0414 87.0156 27.4286
+\c 86.7932 27.8814 86.5532 28.3262 86.2924 28.755
+\c 85.798 29.7278 84.8604 31.4046 83.4652 33.1294
+\c 81.758 35.2495 80.982 37.4479 81.2828 39.3183
+\c 81.4812 40.5487 82.1516 41.5839 83.166 42.2415
+\c 83.926 42.7311 84.7164 42.9423 85.4204 42.8591
+\c 85.7548 42.7007 86.11 42.3519 85.8396 41.5679
+\c 85.5868 40.9583 84.7548 40.0735 85.4844 39.0303
+\c 86.1948 38.0159 88.7308 38.2207 88.8332 40.1471
+\c 88.9148 41.6767 87.6988 42.8911 86.5788 43.3279
+\c 86.5164 43.3599 86.4636 43.4031 86.398 43.4287
+\c 85.302 43.9055 83.9644 43.7199 82.7276 42.9231
+\c 81.5148 42.1423 80.718 40.9071 80.4828 39.4511
+\c 80.1564 37.4255 80.9292 35.1039 82.6396 32.8814
+\c 82.2924 33.1502 81.9388 33.4094 81.566 33.6462
+\c 77.9964 35.9199 74.4252 37.0015 69.758 35.1759
+\c 67.6844 34.3631 65.4348 32.4542 63.7356 31.1102
+\c 61.414 29.275 56.9052 26.5838 54.1324 28.9534
+\c 52.3868 30.443 52.5756 34.3631 55.902 34.2767
+\c 56.3724 34.2639 56.7564 34.0751 57.0476 33.7567
+\c 57.2812 33.4654 57.4716 33.0606 57.3788 32.5374
+\c 57.1772 31.3886 57.1484 30.7726 57.8524 30.7102
+\c 58.4172 30.6606 58.79 31.1566 58.8924 31.8414
+\c 58.902 31.851 58.8988 31.8574 58.8988 31.8654
+\c 58.9964 32.5758 58.8044 33.4782 58.2252 34.1935
+\c 57.9676 34.5119 57.7372 34.6895 57.5324 34.7759
+\c 57.0508 35.0783 56.4956 35.2143 55.958 35.2431
+\c 52.3996 35.4303 51.0364 30.6622 53.3228 28.3374
+\c 54.4012 27.2398 56.0956 26.8094 58.3596 27.0622
+\c 58.8252 27.1134 59.278 27.235 59.7244 27.395
+\c 59.7308 26.7438 59.774 26.0942 59.8716 25.4574
+\c 59.094 24.883 55.2764 22.4158 51.8316 26.5838
+\c 50.75 26.2478 48.4508 24.8942 48.4508 24.8942
+\c 48.4508 24.8942 49.0588 21.579 52.4412 21.107
+\c 55.7436 20.6446 59.0412 23.2734 60.0764 24.467
+\c 60.2636 23.6974 60.5324 22.963 60.886 22.2718
+\c 60.2156 21.0558 58.1692 18.3598 53.0508 17.995
+\c 51.5612 15.6942 50.9532 13.5982 50.9532 13.5982
+\c 50.9532 13.5982 57.4588 11.4798 61.4172 21.3726
+\c 61.8124 20.7886 62.2732 20.2478 62.8284 19.7742
+\c 62.5484 18.4974 61.526 15.0078 58.19 11.2974
+\c 58.1228 6.7662 59.5436 5.1438 59.5436 5.1438
+\c 59.5436 5.1438 61.9788 5.9534 63.7372 8.7934
+\c 63.4828 12.8494 63.1308 16.7102 64.2556 19.1854
+\c 64.9036 19.3342 65.5212 19.5726 66.0988 19.8606
+\c 65.7596 17.6622 64.6204 7.6702 71.7196 6.2254
+\c 72.6652 9.4046 72.462 12.1102 72.462 12.1102
+\c 72.462 12.1102 67.6124 13.5662 67.1468 20.4654
+\c 67.646 20.795 68.0956 21.147 68.4844 21.499
+\c 69.238 19.7854 72.934 12.3726 79.7676 14.411
+\c 79.0924 16.9118 77.8748 18.3998 77.8748 18.3998
+\c 77.8748 18.3998 71.822 17.227 69.1916 22.1998
+\c 69.5228 22.563 69.7644 22.8894 69.9036 23.1422
+\c 70.8972 22.3694 72.1372 21.9246 73.4924 21.883
+\c 74.4316 21.8542 75.1644 22.0526 75.7436 22.3422
+\c 75.7452 22.3422 75.7452 22.3422 75.7468 22.3422
+\c 76.014 22.4766 76.2524 22.6222 76.4508 22.7822
+\c 78.086 23.9758 78.7868 25.891 78.0268 27.7694
+\c 77.1644 29.899 73.9676 29.6958 73.3596 27.7694
+\c 72.7516 25.8414 74.222 25.0286 75.39 24.979
+\c 76.406 24.9326 76.3052 24.3134 76.262 24.1534
+\c 75.7372 23.2974 74.4236 22.8654 73.4108 22.8974
+\c 72.022 22.9422 70.7132 23.6158 69.8588 24.5726
+\c 68.9292 25.6142 68.7036 27.1422 68.8412 28.835
+\c 69.1756 32.9102 73.8748 34.3695 75.4204 34.7359
+\c 77.7436 34.4831 79.5148 33.5102 80.9132 32.619
+\c 84.454 30.3614 86.8876 26.3214 87.4188 21.8062
+\c 88.0476 16.8622 86.7372 12.363 83.6236 8.7886
+\c 79.9228 4.5406 73.6812 1.755 67.7212 1.691
+\c 57.494 1.5838 50.9836 8.2974 48.3164 14.5726
+\c 44.2124 26.4958 49.014 34.1599 49.0636 34.2351
+\c 50.7724 36.5359 52.3916 38.3135 53.6172 39.5567
+\c 54.3308 40.0783 54.918 40.5535 55.35 40.9263
+\c 55.35 39.4351 57.2444 37.8127 58.6956 37.7967
+\c 60.1884 42.6223 63.6428 46.7647 68.5836 48.2559
+\c 76.0668 50.5199 86.0092 47.5247 91.278 43.3375
+\c 97.7068 37.8447 100.0668 32.6158 100.9292 29.275
+\c 101.1916 28.0414 101.3692 26.7886 101.414 25.515
+\l 102.6284 25.4798
+\c 102.6332 25.5262 102.6476 25.7006 102.6476 25.9918
+\c 102.6476 26.6942 102.5532 28.091 102.0412 29.9502
+\c 99.6012 40.4223 89.6684 49.4415 77.6716 51.2079
+\c 73.9276 51.7567 70.1196 51.6207 66.414 50.9071
+\c 60.422 49.7551 54.7852 47.3279 49.5196 44.2895
+\c 44.4444 41.3599 39.8732 37.8351 33.7372 37.6863
+\c 30.8012 37.6143 25.8364 38.2575 23.8284 40.7887
+\c 23.83 40.7887 25.4316 38.7695 25.4316 38.7695
+\c 33.6876 31.7918 42.3596 33.5198 48.39 36.4175
+\c 46.7452 34.2815 44.2124 30.395 41.0988 23.6622
+\c 35.102 10.6862 28.7868 2.307 18.3516 2.6046
+\c 14.0988 2.7246 10.7308 4.0814 8.3388 6.6318
+\c 6.0908 9.0254 5.0044 12.3182 5.126 15.7742
+\c 5.3244 21.3998 9.686 25.7326 15.0588 25.6382
+\c 17.6252 25.5918 20.0508 24.339 21.7148 22.1982
+\c 23.3772 20.0574 23.9948 17.4078 23.406 14.9214
+\c 22.8732 12.6686 21.5452 10.9726 19.6652 10.1438
+\c 17.886 9.3598 15.7708 9.435 14.1484 10.3422
+\c 11.846 11.6286 11.0252 14.611 11.5692 16.6078
+\c 11.6972 17.0814 12.086 18.0382 12.862 18.6862
+\c 13.2396 18.883 14.1212 19.2606 14.358 18.5854
+\c 14.6172 17.8558 13.2364 17.763 13.598 15.9486
+\c 14.0044 13.9182 17.3532 13.6638 18.1132 15.491
+\c 19.0668 17.779 17.15 20.211 14.462 20.211
+\c 14.0092 20.1598 13.6652 20.0622 13.3964 19.9598
+\c 12.0332 19.5246 10.9884 18.387 10.5484 16.7598
+\c 9.8828 14.3182 10.9068 10.8894 13.75 9.3006
+\c 15.6988 8.2158 18.0332 8.0942 20.1564 9.0286
+\c 22.3916 10.0174 23.9692 12.0078 24.59 14.6414
+\c 25.1612 17.0622 24.59 19.7486 23.246 21.995
+\c 23.3436 21.875 23.4428 21.755 23.542 21.6286
+\c 26.3324 18.1294 31.4284 16.9534 33.2828 20.3614
+\c 35.158 23.8094 31.6076 26.6526 27.4988 26.7534
+\c 33.334 24.3182 31.0508 20.7662 29.2236 20.3118
+\c 27.3964 19.8542 25.5708 20.8174 22.222 23.9134
+\c 18.8748 27.0078 14.7148 26.6014 14.7148 26.6014
+\c 8.7644 26.5806 4.23 21.7214 4.0108 15.491
+\c 3.9132 12.7038 4.5964 10.0702 5.9532 7.8222
+\o
+\m 30.8028 36.8111
+\c 35.0364 36.1535 39.8332 37.1615 44.2988 39.8271
+\c 49.3692 42.8527 58.7836 48.4431 69.302 49.6527
+\c 68.9484 49.5695 68.5772 49.5279 68.2316 49.4223
+\c 63.3212 47.9407 59.7964 44.4543 57.958 39.3535
+\c 56.4124 40.2527 56.3644 42.3823 56.3644 42.4831
+\l 56.3564 43.9343
+\l 55.326 42.9135
+\c 54.7788 42.3663 43.0956 31.1006 30.8028 36.8111
+\o
+\m 71.6316 34.4911
+\c 69.7788 33.5198 67.8668 31.8286 67.6284 28.9342
+\c 67.462 26.9134 67.982 25.1598 69.1244 23.8654
+\c 68.566 22.7934 66.8172 20.635 64.0332 20.307
+\c 61.4092 21.4606 60.8268 24.939 60.926 27.9342
+\c 62.1132 28.5758 63.2668 29.4782 64.4588 30.4222
+\c 66.0876 31.7102 68.2924 33.3534 70.1628 34.0927
+\c 70.6732 34.2623 71.1564 34.3871 71.6316 34.4911
+\o
+\m 43.5804 8.8958
+\c 44.8108 8.8958 45.8124 7.8942 45.8124 6.6622
+\c 45.8124 5.4318 44.8108 4.4318 43.5804 4.4318
+\c 42.3484 4.4318 41.3484 5.4318 41.3484 6.6622
+\c 41.3484 7.8942 42.3484 8.8958 43.5804 8.8958
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian150.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian150.pgf
new file mode 100644
index 0000000000..143ef9b66f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian150.pgf
@@ -0,0 +1,60 @@
+\m 14.9662 1.1816
+\c 14.9662 1.1816 12.3578 19.5205 1.6242 28.7754
+\c 1.6242 28.7754 6.0071 26.2892 14.5728 26.781
+\c 23.1398 27.2727 28.2604 29.1442 28.2604 29.1442
+\c 28.2604 29.1442 18.9058 20.5792 14.9662 1.1816
+\m 0 29.7384
+\c 8.567 22.6487 15.0659 0 15.0659 0
+\c 18.9058 16.1464 29.5403 29.834 29.5403 29.834
+\c 10.1421 25.3057 0 29.7384 0 29.7384
+\s
+\m 14.9887 9.5895
+\c 14.9887 9.5895 13.5722 19.7596 7.7508 24.889
+\c 7.7508 24.889 10.1277 23.5093 14.7749 23.7825
+\c 19.4215 24.0557 22.2007 25.0939 22.2007 25.0939
+\c 22.2007 25.0939 17.1252 20.347 14.9887 9.5895
+\m 6.8684 25.4218
+\c 11.5156 21.4876 15.042 8.9338 15.042 8.9338
+\c 17.1252 17.8881 22.8946 25.4764 22.8946 25.4764
+\c 12.3714 22.9629 6.8684 25.4218 6.8684 25.4218
+\s
+\m 17.074 38.1805
+\l 17.0596 38.481
+\l 16.8165 38.6449
+\l 15.1458 39.7719
+\l 14.8139 39.9973
+\l 14.4833 39.7719
+\l 12.8147 38.6449
+\l 12.5702 38.481
+\l 12.5558 38.1805
+\c 12.5504 38.0848 12.0648 28.6114 10.0587 19.9713
+\c 9.0363 15.5727 6.5897 10.2862 4.5147 6.311
+\c 7.1587 14.1725 11.0962 27.7099 11.0798 38.6381
+\c 13.2498 40.0109 14.2989 40.7691 14.8173 41.1857
+\c 15.7414 40.4276 17.5896 39.246 18.5506 38.6381
+\c 18.5329 27.7167 22.4691 14.1725 25.1137 6.3179
+\c 23.038 10.2862 20.5915 15.5727 19.5697 19.9713
+\c 17.5644 28.6114 17.0794 38.0848 17.074 38.1805
+\m 14.6971 43.2757
+\c 15.4709 43.2757 16.1 42.6474 16.1 41.8687
+\c 16.1 41.5955 16.018 41.336 15.8807 41.1242
+\c 15.3145 41.5204 14.8829 41.8551 14.8139 41.9917
+\c 14.7401 41.8482 14.2326 41.4589 13.5906 41.0081
+\c 13.4055 41.2472 13.2935 41.5477 13.2935 41.8687
+\c 13.2935 42.6474 13.9219 43.2757 14.6971 43.2757
+\m 19.1428 38.9659
+\c 19.1428 38.9659 17.5063 39.9973 16.2441 40.8647
+\c 16.4326 41.1584 16.5426 41.4999 16.5426 41.8687
+\c 16.5426 42.8933 15.7161 43.7197 14.6971 43.7197
+\c 13.676 43.7197 12.8502 42.8933 12.8502 41.8687
+\c 12.8502 41.4521 12.9902 41.0696 13.2252 40.7554
+\c 11.9896 39.9085 10.487 38.9659 10.487 38.9659
+\c 10.6332 22.4985 1.6242 0.0478 1.6242 0.0478
+\c 1.9206 0.4166 8.7153 11.5702 10.6332 19.8415
+\c 12.676 28.6319 13.1453 38.1531 13.1453 38.1531
+\l 14.8139 39.2869
+\l 16.4838 38.1531
+\c 16.4838 38.1531 16.9531 28.6319 18.9946 19.8415
+\c 20.9146 11.5702 27.7099 0.4166 28.0049 0.0478
+\c 28.0049 0.0478 18.9946 22.4985 19.1428 38.9659
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian151.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian151.pgf
new file mode 100644
index 0000000000..f8cf63fdf4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian151.pgf
@@ -0,0 +1,48 @@
+\m 1.4183 3.4543
+\c 1.4183 3.4543 2.4531 8.2354 5.9979 11.8758
+\c 9.5414 15.5163 12.8458 17.9546 15.6468 18.2757
+\c 19.0441 18.6718 19.5461 13.5287 15.6468 8.2354
+\c 11.5849 2.7166 6.3913 1.1184 4.7172 0.9476
+\c 2.6183 0.729 1.3616 0.9681 0.8767 2.4229
+\c 0.6793 3.0171 -0.2414 6.4527 2.8458 11.4797
+\c 5.5034 15.8168 11.4121 20.0515 15.4494 20.5433
+\c 17.9103 20.8438 21.0631 19.0611 19.8808 13.7473
+\c 19.8808 13.7473 21.8506 18.5694 18.7969 20.2427
+\c 15.7452 21.923 11.1171 21.035 5.308 15.6187
+\c -0.503 10.2024 -1.5262 1.5282 2.1566 0.2578
+\c 4.7159 -0.6302 8.5155 0.7837 12.7911 4.2944
+\c 16.9022 7.6685 21.0379 14.5327 18.1576 17.9342
+\c 14.6756 22.0391 0.8275 11.6299 1.4183 3.4543
+\s
+\m 10.8931 22.6674
+\c 10.8931 22.6674 15.0963 25.3722 20.2988 25.4405
+\c 25.5 25.5156 29.6534 24.8804 31.9148 23.0909
+\c 34.6599 20.9121 31.3001 16.8277 24.6489 15.8236
+\c 17.7184 14.7718 12.8 17.3741 11.4647 18.4601
+\c 9.7893 19.8261 9.0503 20.9053 9.7538 22.3123
+\c 10.0379 22.8792 11.8588 26.0347 17.7341 27.4417
+\c 22.7918 28.6506 30.1329 27.4349 33.4113 24.8667
+\c 35.4105 23.3026 36.405 19.7373 31.7024 16.7457
+\c 31.7024 16.7457 36.6201 18.8084 35.6216 22.2303
+\c 34.6216 25.6522 30.6315 28.3638 22.507 28.6506
+\c 14.3832 28.9375 7.368 23.4051 9.1124 19.8193
+\c 10.3241 17.3194 14.0984 15.5982 19.7312 15.0382
+\c 25.1475 14.5054 33.1101 16.4793 33.483 21.0214
+\c 33.9331 26.5128 16.3776 29.0058 10.8931 22.6674
+\s
+\m 42.031 3.4543
+\c 42.031 3.4543 40.9969 8.2354 37.4527 11.8758
+\c 33.9072 15.5163 30.6048 17.9546 27.8024 18.2757
+\c 24.4051 18.6718 23.9031 13.5287 27.8024 8.2354
+\c 31.865 2.7166 37.0593 1.1184 38.7334 0.9476
+\c 40.8302 0.729 42.0883 0.9681 42.5726 2.4229
+\c 42.7693 3.0171 43.6907 6.4527 40.6041 11.4797
+\c 37.9452 15.8168 32.0364 20.0515 27.9998 20.5433
+\c 25.5389 20.8438 22.3868 19.0611 23.5684 13.7473
+\c 23.5684 13.7473 21.5993 18.5694 24.6524 20.2427
+\c 27.7041 21.923 32.3335 21.035 38.1426 15.6187
+\c 43.9516 10.2024 44.9747 1.5282 41.2919 0.2578
+\c 38.7334 -0.6302 34.9331 0.7837 30.6581 4.2944
+\c 26.5464 7.6685 22.4121 14.5327 25.291 17.9342
+\c 28.773 22.0391 42.6211 11.6299 42.031 3.4543
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian152.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian152.pgf
new file mode 100644
index 0000000000..a12cba15c3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian152.pgf
@@ -0,0 +1,109 @@
+\m 28.3023 20.1878
+\c 28.3023 20.1878 26.4561 20.2615 26.5299 20.9999
+\c 26.6036 21.7382 28.2292 21.0743 28.3023 20.1878
+\m 32.2166 4.3091
+\c 32.2166 4.3091 28.1548 3.9402 27.1207 4.753
+\c 26.0873 5.5651 27.4902 7.4113 32.2166 4.3091
+\m 34.8012 9.3313
+\c 34.8012 9.3313 31.5514 8.9617 30.0747 9.9227
+\c 28.598 10.8824 29.2626 11.6952 30.518 11.6214
+\c 31.7741 11.5476 33.9891 10.5873 34.8012 9.3313
+\m 37.6084 15.24
+\c 37.6084 15.24 32.5855 15.018 32.1429 16.1259
+\c 31.6996 17.2337 35.6133 17.6032 37.6084 15.24
+\m 56.7355 18.5629
+\c 56.5142 17.3819 52.5254 14.4272 38.4205 15.1662
+\c 38.4205 15.1662 34.6543 18.7111 31.9209 16.7167
+\c 31.9209 16.7167 31.035 15.6088 33.3983 15.018
+\c 35.7615 14.4272 38.7893 13.9846 38.7893 13.9846
+\c 38.7893 13.9846 39.9729 12.288 38.6418 10.9568
+\c 37.2388 9.5526 35.0969 9.5526 35.0969 9.5526
+\c 35.0969 9.5526 33.8408 11.2512 31.3301 11.8434
+\c 28.8193 12.4328 28.0065 10.8086 29.4839 9.5526
+\c 30.9613 8.2985 32.955 7.9283 35.1707 8.3709
+\c 35.1707 8.3709 35.7615 5.5651 32.5124 4.4573
+\c 32.5124 4.4573 30.518 5.7871 28.9669 6.3035
+\c 26.9451 6.9776 25.2834 5.1539 27.1944 4.1622
+\c 29.1882 3.1274 30.7393 3.3494 32.3642 3.5714
+\c 32.3642 3.5714 33.1025 0.6174 28.3023 0.3216
+\c 23.5028 0.0266 16.9294 5.3438 9.1014 6.6723
+\c 9.1014 6.6723 10.2086 8.6667 8.6581 10.3653
+\c 8.6581 10.3653 10.1355 10.9568 10.283 13.5407
+\c 10.4299 16.1259 8.1411 17.3819 8.1411 17.3819
+\c 8.1411 17.3819 8.9539 18.4891 7.9198 20.7041
+\c 7.9198 20.7041 10.7263 20.9999 16.3379 22.9198
+\c 21.9516 24.8404 28.7456 26.6866 32.5855 26.7604
+\c 36.4267 26.8342 42.0384 26.7604 42.5554 24.1752
+\c 43.0725 21.5913 36.4267 21.3694 34.9487 23.2156
+\c 34.9487 23.2156 35.4664 23.8064 34.7274 24.4709
+\c 33.9891 25.1362 33.1025 24.4709 34.2841 23.2156
+\c 34.2841 23.2156 32.3642 20.2615 28.6718 20.4097
+\c 28.6718 20.4097 28.3023 21.6651 26.8994 21.6651
+\c 25.3769 21.6651 25.5702 19.8182 28.6718 19.5225
+\c 28.6718 19.5225 28.3761 15.5344 23.5028 14.5754
+\c 18.6281 13.6144 14.862 13.8364 14.0492 16.8649
+\c 13.2371 19.8927 18.333 21.8857 18.333 21.8857
+\c 18.333 21.8857 17.8153 21.8857 16.7081 21.4431
+\c 15.6003 20.9999 12.5718 19.0061 13.7534 16.3479
+\c 14.935 13.6882 18.111 12.5803 23.4283 13.3938
+\c 28.706 14.1998 28.8904 19.0048 28.9655 19.3661
+\c 28.9662 19.3716 28.9669 19.3757 28.9669 19.3757
+\c 28.9669 19.3736 28.9662 19.3681 28.9655 19.3661
+\c 28.9614 19.3224 28.986 19.1537 29.6321 19.1537
+\c 30.3698 19.1537 39.085 19.5225 43.4427 19.8927
+\c 47.7989 20.2615 52.5991 20.5566 54.1503 20.4835
+\c 55.7014 20.4097 56.9568 19.7452 56.7355 18.5629
+\m 34.5799 23.29
+\c 34.5799 23.29 33.8408 24.3234 34.2841 24.3972
+\c 34.7274 24.4709 34.8756 23.6588 34.5799 23.29
+\m 4.5225 3.7927
+\c 2.0855 3.2757 0.1656 3.8665 1.3472 5.8609
+\c 2.5288 7.8539 7.5503 6.4524 8.2149 6.3779
+\c 8.2149 6.3779 6.9595 4.3091 4.5225 3.7927
+\m 4.4487 10.2171
+\c 3.4146 10.2171 2.455 10.5873 2.7501 11.9158
+\c 3.0458 13.2456 6.5907 12.2115 7.6978 11.0306
+\c 7.6978 11.0306 5.4828 10.2171 4.4487 10.2171
+\m 4.0792 15.3875
+\c 2.1593 15.0925 1.0487 17.2412 3.1196 18.0465
+\c 4.4487 18.5629 7.107 17.5295 7.107 17.5295
+\c 7.107 17.5295 5.9056 15.6689 4.0792 15.3875
+\m 0.4613 23.1418
+\c 0.5344 24.6191 5.5566 23.9546 7.1815 21.0743
+\c 7.1815 21.0743 0.3868 21.6651 0.4613 23.1418
+\m 57.3263 18.8593
+\c 56.5142 21.4431 51.8608 20.9999 45.5832 20.4835
+\c 39.3063 19.9665 31.9209 19.4487 30.4442 19.4487
+\c 28.9669 19.4487 29.4108 19.6707 29.4108 19.6707
+\c 33.7671 20.114 34.6543 22.8467 34.6543 22.8467
+\c 36.4998 21.7382 38.568 21.2212 41.005 22.0339
+\c 43.4427 22.8467 43.5157 25.1362 40.6355 26.6866
+\c 37.7552 28.2371 35.2451 28.0902 29.8534 27.5725
+\c 24.4617 27.0555 22.3949 25.283 15.6734 23.0673
+\c 8.9539 20.8523 7.8467 21.1481 7.8467 21.1481
+\c 7.8467 21.1481 7.1815 22.6985 4.892 23.7326
+\c 2.205 24.9456 0.5344 24.3234 0.0918 23.5113
+\c -0.3515 22.6985 0.8301 21.2956 3.1933 20.7041
+\c 5.5566 20.114 7.3283 20.6303 7.3283 20.6303
+\c 8.2149 19.3757 7.3283 17.8245 7.3283 17.8245
+\c 2.7501 19.5225 1.5685 17.5295 1.5685 16.7167
+\c 1.5685 15.9039 2.0855 14.5754 4.7438 14.8705
+\c 7.4028 15.1662 8.0673 17.0855 8.0673 17.0855
+\c 8.0673 17.0855 9.9135 16.1996 9.8398 14.1328
+\c 9.766 12.064 7.9936 11.2512 7.9936 11.2512
+\c 3.3409 14.3535 1.6429 11.9902 2.233 10.7342
+\c 2.8238 9.4802 4.5963 9.4802 5.7779 9.627
+\c 6.9595 9.7745 8.2893 10.2916 8.2893 10.2916
+\c 9.6922 8.5192 8.6581 6.6723 8.6581 6.6723
+\c 4.5963 7.5595 1.5685 7.3375 0.6826 5.7133
+\c -0.204 4.0884 0.8301 2.2423 4.0792 2.8331
+\c 7.2771 3.4136 8.708 6.1559 8.708 6.1559
+\c 9.7414 6.0091 14.7882 3.3494 18.4806 1.8721
+\c 22.1729 0.3954 24.9057 -0.2692 29.1882 0.1003
+\c 33.4727 0.4698 32.7337 3.7927 32.7337 3.7927
+\c 36.7949 5.5651 35.392 8.4454 35.392 8.4454
+\c 35.392 8.4454 38.568 9.1837 39.3063 10.5873
+\c 40.2967 12.469 39.085 14.1328 39.085 14.1328
+\c 49.0543 13.025 58.1384 16.2741 57.3263 18.8593
+\s
+
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian153.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian153.pgf
new file mode 100644
index 0000000000..7a6c5ffef5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian153.pgf
@@ -0,0 +1,108 @@
+\m 30.847 20.9999
+\c 30.9201 20.2608 29.0739 20.1878 29.0739 20.1878
+\c 29.1477 21.0736 30.7725 21.7382 30.847 20.9999
+\m 30.2555 4.753
+\c 29.2221 3.9402 25.1602 4.3091 25.1602 4.3091
+\c 29.8867 7.4106 31.2896 5.5644 30.2555 4.753
+\m 26.8582 11.6214
+\c 28.1143 11.6952 28.7795 10.8824 27.3022 9.9221
+\c 25.8248 8.9617 22.5757 9.3313 22.5757 9.3313
+\c 23.3878 10.5873 25.6035 11.5469 26.8582 11.6214
+\m 25.234 16.1259
+\c 24.7907 15.0173 19.7692 15.24 19.7692 15.24
+\c 21.7629 17.6032 25.6766 17.233 25.234 16.1259
+\m 3.2266 20.4835
+\c 4.7777 20.5566 9.5773 20.2608 13.9349 19.892
+\c 18.2918 19.5225 27.0064 19.1537 27.7447 19.1537
+\c 28.3895 19.1537 28.4148 19.3224 28.4114 19.3654
+\c 28.4107 19.3681 28.41 19.3736 28.4093 19.3757
+\c 28.4093 19.3757 28.4107 19.3716 28.4114 19.3654
+\c 28.4858 19.0048 28.6702 14.1991 33.9486 13.3931
+\c 39.2658 12.5803 42.4411 13.6882 43.6228 16.3472
+\c 44.8044 19.0055 41.7766 20.9999 40.6687 21.4424
+\c 39.5609 21.8857 39.0438 21.8857 39.0438 21.8857
+\c 39.0438 21.8857 44.1398 19.892 43.327 16.8642
+\c 42.5149 13.8364 38.7481 13.6144 33.8748 14.5747
+\c 29.0001 15.5344 28.7051 19.5225 28.7051 19.5225
+\c 31.8066 19.8182 31.9999 21.6651 30.4768 21.6651
+\c 29.0739 21.6651 28.7051 20.4091 28.7051 20.4091
+\c 25.0127 20.2608 23.0921 23.2156 23.0921 23.2156
+\c 24.2737 24.4709 23.3878 25.1355 22.6495 24.4709
+\c 21.9104 23.8057 22.4275 23.2156 22.4275 23.2156
+\c 20.9508 21.3694 14.3037 21.5907 14.8208 24.1752
+\c 15.3378 26.7604 20.9508 26.8342 24.7907 26.7604
+\c 28.6306 26.6859 35.4252 24.8398 41.0382 22.9198
+\c 46.6506 20.9999 49.4571 20.7041 49.4571 20.7041
+\c 48.423 18.4891 49.2351 17.3813 49.2351 17.3813
+\c 49.2351 17.3813 46.9456 16.1259 47.0938 13.54
+\c 47.2414 10.9561 48.718 10.3653 48.718 10.3653
+\c 47.1676 8.6667 48.2754 6.6723 48.2754 6.6723
+\c 40.4474 5.3438 33.8748 0.0266 29.0739 0.3216
+\c 24.2737 0.6174 25.0127 3.5714 25.0127 3.5714
+\c 26.6369 3.3494 28.188 3.1274 30.1824 4.1622
+\c 32.0935 5.1533 30.4317 6.9769 28.4093 6.3035
+\c 26.8582 5.7864 24.8645 4.4573 24.8645 4.4573
+\c 21.6147 5.5644 22.2062 8.3709 22.2062 8.3709
+\c 24.4219 7.9277 26.4156 8.2979 27.8923 9.5526
+\c 29.3689 10.8079 28.5568 12.4328 26.0461 11.8427
+\c 23.5346 11.2512 22.28 9.5526 22.28 9.5526
+\c 22.28 9.5526 20.138 9.5526 18.7351 10.9561
+\c 17.4039 12.288 18.5876 13.9846 18.5876 13.9846
+\c 18.5876 13.9846 21.6147 14.4272 23.9786 15.0173
+\c 26.3418 15.6088 25.4553 16.7167 25.4553 16.7167
+\c 22.7225 18.7104 18.9564 15.1656 18.9564 15.1656
+\c 4.8508 14.4272 0.8634 17.3813 0.6414 18.5629
+\c 0.4201 19.7445 1.6762 20.4091 3.2266 20.4835
+\m 23.0921 24.3972
+\c 23.5346 24.3227 22.797 23.2893 22.797 23.2893
+\c 22.5012 23.6581 22.6495 24.4709 23.0921 24.3972
+\m 49.1613 6.3772
+\c 49.8259 6.4517 54.8481 7.8539 56.0297 5.8602
+\c 57.2113 3.8665 55.2914 3.2757 52.8537 3.792
+\c 50.4167 4.3091 49.1613 6.3772 49.1613 6.3772
+\m 49.6784 11.0299
+\c 50.7862 12.2115 54.331 13.2456 54.6268 11.9158
+\c 54.9219 10.5873 53.9615 10.2171 52.9281 10.2171
+\c 51.8941 10.2171 49.6784 11.0299 49.6784 11.0299
+\m 50.2692 17.5288
+\c 50.2692 17.5288 52.9281 18.5629 54.2566 18.0458
+\c 56.3275 17.2406 55.2176 15.0918 53.2976 15.3869
+\c 51.4713 15.6683 50.2692 17.5288 50.2692 17.5288
+\m 50.1954 21.0736
+\c 51.821 23.9539 56.8418 24.6185 56.9156 23.1411
+\c 56.99 21.6651 50.1954 21.0736 50.1954 21.0736
+\m 18.2918 14.1322
+\c 18.2918 14.1322 17.0802 12.4683 18.0699 10.5873
+\c 18.8089 9.1837 21.9842 8.4447 21.9842 8.4447
+\c 21.9842 8.4447 20.5813 5.5644 24.6432 3.792
+\c 24.6432 3.792 23.9042 0.4692 28.188 0.1003
+\c 32.4712 -0.2692 35.2033 0.3954 38.8963 1.8721
+\c 42.5887 3.3494 47.6355 6.0091 48.6695 6.1559
+\c 48.6695 6.1559 50.0998 3.4136 53.2976 2.8324
+\c 56.5467 2.2416 57.5808 4.0884 56.6943 5.7126
+\c 55.8084 7.3375 52.7799 7.5588 48.718 6.6723
+\c 48.718 6.6723 47.6846 8.5192 49.0876 10.2909
+\c 49.0876 10.2909 50.4167 9.7738 51.5983 9.6263
+\c 52.7799 9.4795 54.5523 9.4795 55.1431 10.7342
+\c 55.7346 11.9895 54.0353 14.3535 49.3833 11.2512
+\c 49.3833 11.2512 47.6102 12.064 47.5364 14.1322
+\c 47.4627 16.1996 49.3088 17.0848 49.3088 17.0848
+\c 49.3088 17.0848 49.9734 15.1656 52.6324 14.8698
+\c 55.2914 14.5747 55.8084 15.9032 55.8084 16.7167
+\c 55.8084 17.5288 54.6268 19.5225 50.0479 17.8245
+\c 50.0479 17.8245 49.1613 19.3757 50.0479 20.6303
+\c 50.0479 20.6303 51.821 20.1133 54.1835 20.7041
+\c 56.5467 21.2949 57.7284 22.6985 57.2851 23.5113
+\c 56.8418 24.3227 55.1725 24.9456 52.4842 23.7319
+\c 50.1954 22.6985 49.5308 21.1481 49.5308 21.1481
+\c 49.5308 21.1481 48.423 20.8523 41.7028 23.0673
+\c 34.982 25.283 32.9138 27.0555 27.5234 27.5718
+\c 22.1317 28.0902 19.621 28.2364 16.7414 26.6859
+\c 13.8611 25.1355 13.9349 22.8467 16.3719 22.0339
+\c 18.8089 21.2212 20.877 21.7382 22.7225 22.8467
+\c 22.7225 22.8467 23.6091 20.1133 27.966 19.6707
+\c 27.966 19.6707 28.4093 19.4487 26.9326 19.4487
+\c 25.4553 19.4487 18.0699 19.9665 11.7936 20.4835
+\c 5.5154 20.9999 0.8634 21.4424 0.0506 18.8586
+\c -0.7615 16.2734 8.3226 13.0243 18.2918 14.1322
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian154.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian154.pgf
new file mode 100644
index 0000000000..b18dfb739e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian154.pgf
@@ -0,0 +1,108 @@
+\m 18.4588 12.5718
+\c 18.5025 12.1278 17.3974 12.08 17.3974 12.08
+\c 17.4425 12.6128 18.4144 13.0089 18.4588 12.5718
+\m 18.1043 2.8457
+\c 17.4869 2.3607 15.0574 2.5793 15.0574 2.5793
+\c 17.883 4.4371 18.7238 3.3306 18.1043 2.8457
+\m 16.0716 6.9574
+\c 16.8223 6.9984 17.2218 6.5135 16.338 5.9397
+\c 15.4535 5.366 13.5097 5.5846 13.5097 5.5846
+\c 13.9953 6.3359 15.321 6.9096 16.0716 6.9574
+\m 15.0997 9.6485
+\c 14.8347 8.986 11.8281 9.1226 11.8281 9.1226
+\c 13.024 10.5364 15.3647 10.3178 15.0997 9.6485
+\m 1.9292 12.2576
+\c 2.8581 12.3054 5.7308 12.1278 8.3393 11.9093
+\c 10.9449 11.6839 16.1604 11.4653 16.603 11.4653
+\c 16.9889 11.4653 17.004 11.5678 17.0005 11.5882
+\c 17.0005 11.5951 16.9999 11.5951 16.9999 11.5951
+\c 16.9999 11.5951 17.0005 11.5951 17.0005 11.5882
+\c 17.0463 11.3765 17.1556 8.501 20.3145 8.0161
+\c 23.4974 7.5311 25.3961 8.1937 26.1031 9.7851
+\c 26.8114 11.3765 24.9993 12.5718 24.3361 12.8313
+\c 23.6736 13.0977 23.3655 13.0977 23.3655 13.0977
+\c 23.3655 13.0977 26.4132 11.9093 25.9275 10.0925
+\c 25.4412 8.2825 23.1873 8.1459 20.2701 8.7264
+\c 17.3537 9.3002 17.1781 11.6839 17.1781 11.6839
+\c 19.0339 11.8615 19.1493 12.9679 18.2375 12.9679
+\c 17.3974 12.9679 17.1781 12.2166 17.1781 12.2166
+\c 14.9679 12.1278 13.8177 13.8968 13.8177 13.8968
+\c 14.5246 14.6482 13.9953 15.0443 13.5527 14.6482
+\c 13.1108 14.2452 13.4209 13.8968 13.4209 13.8968
+\c 12.5357 12.7904 8.5599 12.9201 8.8693 14.4706
+\c 9.178 16.0142 12.5357 16.062 14.8347 16.0142
+\c 17.1324 15.9732 21.199 14.8667 24.5574 13.7193
+\c 27.9165 12.5718 29.5953 12.3942 29.5953 12.3942
+\c 28.9772 11.0692 29.4635 10.4066 29.4635 10.4066
+\c 29.4635 10.4066 28.0934 9.6485 28.1808 8.1049
+\c 28.2696 6.5613 29.1527 6.2061 29.1527 6.2061
+\c 28.2252 5.1884 28.8884 3.9931 28.8884 3.9931
+\c 24.2043 3.2008 20.2701 0.018 17.3974 0.1956
+\c 14.5246 0.3732 14.9679 2.1422 14.9679 2.1422
+\c 15.9398 2.0056 16.8674 1.8758 18.0619 2.4905
+\c 19.2046 3.0847 18.2108 4.1776 16.9999 3.7746
+\c 16.0716 3.4672 14.8784 2.6681 14.8784 2.6681
+\c 12.9339 3.3306 13.2891 5.0108 13.2891 5.0108
+\c 14.6141 4.7445 15.8066 4.9698 16.6898 5.7212
+\c 17.5756 6.4725 17.0887 7.4424 15.5867 7.0872
+\c 14.0827 6.7389 13.3321 5.7212 13.3321 5.7212
+\c 13.3321 5.7212 12.0507 5.7212 11.2106 6.5613
+\c 10.4142 7.3536 11.1232 8.3713 11.1232 8.3713
+\c 11.1232 8.3713 12.9339 8.6376 14.3484 8.986
+\c 15.7643 9.3411 15.2315 10.0037 15.2315 10.0037
+\c 13.5985 11.1989 11.3431 9.0748 11.3431 9.0748
+\c 2.9018 8.6376 0.516 10.4066 0.3828 11.1101
+\c 0.2503 11.8205 1.0023 12.2166 1.9292 12.2576
+\m 13.8177 14.6003
+\c 14.0827 14.5594 13.6415 13.9378 13.6415 13.9378
+\c 13.4646 14.1564 13.5527 14.6482 13.8177 14.6003
+\m 29.4184 3.8156
+\c 29.8166 3.8634 32.8212 4.7035 33.5295 3.5082
+\c 34.2364 2.3129 33.0869 1.9646 31.628 2.2719
+\c 30.169 2.5793 29.4184 3.8156 29.4184 3.8156
+\m 29.7278 6.6023
+\c 30.3917 7.3126 32.5131 7.9273 32.6894 7.135
+\c 32.8663 6.3359 32.2912 6.1173 31.6724 6.1173
+\c 31.0542 6.1173 29.7278 6.6023 29.7278 6.6023
+\m 30.0823 10.4886
+\c 30.0823 10.4886 31.6724 11.1101 32.4681 10.8028
+\c 33.7077 10.3178 33.0418 9.0338 31.893 9.2114
+\c 30.7995 9.3753 30.0823 10.4886 30.0823 10.4886
+\m 30.0372 12.6128
+\c 31.0092 14.334 34.0137 14.7369 34.0588 13.849
+\c 34.1032 12.9679 30.0372 12.6128 30.0372 12.6128
+\m 10.9449 8.46
+\c 10.9449 8.46 10.221 7.4628 10.8131 6.3359
+\c 11.2544 5.4958 13.1559 5.0586 13.1559 5.0586
+\c 13.1559 5.0586 12.3164 3.3306 14.7466 2.2719
+\c 14.7466 2.2719 14.3047 0.2844 16.8674 0.059
+\c 19.4307 -0.1596 21.0665 0.2366 23.2754 1.1245
+\c 25.487 2.0056 28.5059 3.597 29.124 3.6858
+\c 29.124 3.6858 29.9799 2.0466 31.893 1.6982
+\c 33.8382 1.343 34.457 2.4495 33.9256 3.4194
+\c 33.3963 4.3961 31.5843 4.5259 29.1527 3.9931
+\c 29.1527 3.9931 28.5353 5.0996 29.374 6.1583
+\c 29.374 6.1583 30.169 5.8509 30.876 5.7621
+\c 31.5843 5.6734 32.645 5.6734 32.9981 6.4247
+\c 33.3512 7.176 32.3349 8.5898 29.5502 6.7389
+\c 29.5502 6.7389 28.4902 7.2238 28.4458 8.46
+\c 28.4021 9.6963 29.5072 10.2291 29.5072 10.2291
+\c 29.5072 10.2291 29.904 9.0748 31.4955 8.904
+\c 33.0869 8.7264 33.3963 9.5187 33.3963 10.0037
+\c 33.3963 10.4886 32.6894 11.6839 29.9491 10.6662
+\c 29.9491 10.6662 29.4184 11.5951 29.9491 12.3464
+\c 29.9491 12.3464 31.0092 12.039 32.4244 12.3942
+\c 33.8382 12.7494 34.5451 13.5826 34.2801 14.0744
+\c 34.0137 14.5594 33.0152 14.9282 31.4074 14.2042
+\c 30.0372 13.5826 29.639 12.6538 29.639 12.6538
+\c 29.639 12.6538 28.9772 12.483 24.9556 13.808
+\c 20.9333 15.1331 19.6964 16.1918 16.4712 16.4991
+\c 13.2426 16.8133 11.742 16.9021 10.0195 15.9732
+\c 8.2949 15.0443 8.3393 13.6714 9.7954 13.1865
+\c 11.2544 12.7016 12.4927 13.0089 13.5985 13.6714
+\c 13.5985 13.6714 14.1278 12.039 16.7355 11.7727
+\c 16.7355 11.7727 16.9999 11.6429 16.1154 11.6429
+\c 15.2315 11.6429 10.8131 11.9502 7.0572 12.2576
+\c 3.3013 12.5718 0.516 12.8313 0.0304 11.2877
+\c -0.4566 9.7441 4.9802 7.7975 10.9449 8.46
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian155.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian155.pgf
new file mode 100644
index 0000000000..982381c584
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian155.pgf
@@ -0,0 +1,106 @@
+\m 16.9362 12.08
+\c 16.9362 12.08 15.8331 12.1278 15.8762 12.565
+\c 15.9199 13.0089 16.8932 12.6128 16.9362 12.08
+\m 19.2803 2.5793
+\c 19.2803 2.5793 16.8488 2.3607 16.23 2.8457
+\c 15.6112 3.3306 16.4513 4.4371 19.2803 2.5793
+\m 20.826 5.5846
+\c 20.826 5.5846 18.8814 5.366 17.9983 5.9397
+\c 17.1131 6.5135 17.5113 6.9984 18.2619 6.9574
+\c 19.0146 6.9096 20.3397 6.3359 20.826 5.5846
+\m 22.5048 9.1226
+\c 22.5048 9.1226 19.4996 8.986 19.2345 9.6485
+\c 18.9702 10.3178 21.3123 10.5364 22.5048 9.1226
+\m 33.9514 11.1101
+\c 33.8189 10.3998 31.4325 8.6376 22.9911 9.0748
+\c 22.9911 9.0748 20.7372 11.1989 19.102 10.0037
+\c 19.102 10.0037 18.5727 9.3411 19.9865 8.986
+\c 21.4011 8.6376 23.2117 8.3713 23.2117 8.3713
+\c 23.2117 8.3713 23.9207 7.3536 23.1243 6.5613
+\c 22.2849 5.7212 21.0029 5.7212 21.0029 5.7212
+\c 21.0029 5.7212 20.2516 6.732 18.7482 7.0872
+\c 17.2463 7.4424 16.7593 6.4725 17.6438 5.7212
+\c 18.5276 4.9698 19.7222 4.7445 21.0473 5.0108
+\c 21.0473 5.0108 21.4011 3.3306 19.4558 2.6681
+\c 19.4558 2.6681 18.2619 3.4672 17.3344 3.7746
+\c 16.1248 4.1776 15.1296 3.0847 16.275 2.4905
+\c 17.4662 1.8758 18.3951 2.0056 19.367 2.1422
+\c 19.367 2.1422 19.8096 0.3732 16.9362 0.1956
+\c 14.0641 0.018 10.1313 3.2008 5.4459 3.9931
+\c 5.4459 3.9931 6.1098 5.1884 5.1809 6.2061
+\c 5.1809 6.2061 6.0654 6.5613 6.1535 8.1049
+\c 6.2423 9.6485 4.8721 10.3998 4.8721 10.3998
+\c 4.8721 10.3998 5.3584 11.0692 4.7389 12.3942
+\c 4.7389 12.3942 6.4198 12.565 9.7782 13.7193
+\c 13.1366 14.8667 17.2019 15.9732 19.4996 16.0142
+\c 21.7979 16.062 25.157 16.0142 25.4664 14.4706
+\c 25.7751 12.9201 21.7979 12.7904 20.9134 13.8968
+\c 20.9134 13.8968 21.2228 14.2452 20.7816 14.6482
+\c 20.3397 15.0443 19.8096 14.6482 20.5159 13.8968
+\c 20.5159 13.8968 19.367 12.1278 17.1582 12.2166
+\c 17.1582 12.2166 16.9362 12.9679 16.0968 12.9679
+\c 15.1856 12.9679 15.3011 11.8615 17.1582 11.6839
+\c 17.1582 11.6839 16.982 9.3002 14.0641 8.7264
+\c 11.147 8.1459 8.893 8.2825 8.4074 10.0925
+\c 7.9218 11.9024 10.9714 13.0977 10.9714 13.0977
+\c 10.9714 13.0977 10.6607 13.0977 9.9988 12.8313
+\c 9.3349 12.565 7.5243 11.3765 8.2312 9.7851
+\c 8.9381 8.1937 10.8389 7.5311 14.0204 8.0161
+\c 17.178 8.501 17.2886 11.3765 17.3344 11.5882
+\c 17.331 11.5678 17.3467 11.4653 17.7326 11.4653
+\c 18.1745 11.4653 23.3879 11.6839 25.9964 11.9024
+\c 28.6041 12.1278 31.4769 12.3054 32.4037 12.2576
+\c 33.3333 12.2166 34.0839 11.8205 33.9514 11.1101
+\m 20.6935 13.9378
+\c 20.6935 13.9378 20.2516 14.5594 20.5159 14.6003
+\c 20.7816 14.6482 20.8704 14.1564 20.6935 13.9378
+\m 2.7063 2.2719
+\c 1.2481 1.9646 0.0999 2.3129 0.8075 3.5082
+\c 1.5144 4.7035 4.519 3.8634 4.9158 3.8156
+\c 4.9158 3.8156 4.1652 2.5793 2.7063 2.2719
+\m 2.6633 6.1173
+\c 2.0438 6.1173 1.4687 6.3359 1.6449 7.135
+\c 1.8225 7.9273 3.9446 7.3126 4.6058 6.6023
+\c 4.6058 6.6023 3.2807 6.1173 2.6633 6.1173
+\m 2.4406 9.2114
+\c 1.2918 9.0338 0.6286 10.3178 1.8669 10.8028
+\c 2.6633 11.1101 4.2533 10.4886 4.2533 10.4886
+\c 4.2533 10.4886 3.5348 9.3753 2.4406 9.2114
+\m 0.2755 13.849
+\c 0.3198 14.7301 3.3258 14.334 4.297 12.6128
+\c 4.297 12.6128 0.2324 12.9679 0.2755 13.849
+\m 34.3052 11.2877
+\c 33.8189 12.8313 31.0357 12.565 27.2784 12.2576
+\c 23.5211 11.9502 19.102 11.6429 18.2182 11.6429
+\c 17.3344 11.6429 17.6001 11.7727 17.6001 11.7727
+\c 20.2065 12.039 20.7372 13.6714 20.7372 13.6714
+\c 21.8423 13.0089 23.0785 12.7016 24.5388 13.1865
+\c 25.9964 13.6714 26.0415 15.0443 24.3175 15.9732
+\c 22.5943 16.9021 21.091 16.8133 17.8651 16.4991
+\c 14.6379 16.1918 13.4016 15.1331 9.3793 13.808
+\c 5.3584 12.483 4.6952 12.6538 4.6952 12.6538
+\c 4.6952 12.6538 4.297 13.5826 2.9269 14.2042
+\c 1.3198 14.9282 0.3198 14.5594 0.0548 14.0676
+\c -0.2102 13.5826 0.4967 12.7425 1.9113 12.3942
+\c 3.3258 12.039 4.3865 12.3464 4.3865 12.3464
+\c 4.9158 11.5951 4.3865 10.6662 4.3865 10.6662
+\c 1.6449 11.6839 0.9393 10.4886 0.9393 10.0037
+\c 0.9393 9.5187 1.2481 8.7264 2.8395 8.8972
+\c 4.4295 9.0748 4.8277 10.2222 4.8277 10.2222
+\c 4.8277 10.2222 5.9335 9.6963 5.8878 8.46
+\c 5.8447 7.2238 4.784 6.732 4.784 6.732
+\c 1.9987 8.5898 0.9831 7.176 1.3369 6.4247
+\c 1.6907 5.6734 2.75 5.6734 3.4576 5.7621
+\c 4.1652 5.8509 4.9609 6.1583 4.9609 6.1583
+\c 5.799 5.0996 5.1809 3.9931 5.1809 3.9931
+\c 2.75 4.5259 0.9393 4.3961 0.4086 3.4194
+\c -0.1234 2.4495 0.4967 1.343 2.4406 1.6982
+\c 4.3544 2.0466 5.2109 3.6858 5.2109 3.6858
+\c 5.829 3.597 8.8493 2.0056 11.0582 1.1245
+\c 13.2691 0.2366 14.9036 -0.1596 17.4662 0.059
+\c 20.0303 0.2844 19.589 2.2719 19.589 2.2719
+\c 22.0192 3.3306 21.1798 5.0518 21.1798 5.0518
+\c 21.1798 5.0518 23.0785 5.4958 23.5211 6.3359
+\c 24.1147 7.4628 23.3879 8.46 23.3879 8.46
+\c 29.3554 7.7975 34.7915 9.7373 34.3052 11.2877
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian156.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian156.pgf
new file mode 100644
index 0000000000..9185d9b4c7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian156.pgf
@@ -0,0 +1,191 @@
+\m 35.8995 9.76
+\c 35.5061 10.2026 36.6385 10.3017 37.1788 9.8092
+\c 37.1788 9.8092 36.2929 9.3174 35.8995 9.76
+\m 35.4064 11.6315
+\c 35.0491 12.501 36.5395 12.1724 36.9828 11.8289
+\c 36.9828 11.8289 35.752 10.7941 35.4064 11.6315
+\m 34.9645 14.2413
+\c 34.373 14.3888 34.5704 15.3239 36.2929 14.6347
+\c 36.2929 14.6347 35.5546 14.0931 34.9645 14.2413
+\m 6.3585 25.2692
+\l 7.6391 25.2692
+\c 7.4431 24.6784 7.7368 24.6784 7.7368 24.6784
+\c 7.7368 24.6784 8.9184 25.5643 10.1007 24.5794
+\c 10.8575 23.9496 10.7899 22.4135 9.5092 22.3152
+\c 7.4397 22.1554 7.049 23.5952 7.049 23.5952
+\c 7.3434 18.7451 13.5472 21.2067 13.1039 24.6047
+\c 12.6518 28.0682 8.969 27.2623 8.969 27.2623
+\c 13.7685 27.1892 12.5876 22.2414 10.6669 21.5769
+\c 8.747 20.9116 7.9349 22.0932 7.9349 22.0932
+\c 10.8151 21.1336 12.2187 24.0138 10.6669 25.2692
+\c 9.1158 26.5239 8.008 25.6387 8.008 25.6387
+\c 7.4178 26.0813 8.3037 26.7459 8.3037 26.7459
+\l 7.7122 27.1892
+\c 14.0642 29.7737 20.4572 22.9654 23.5165 21.9457
+\c 25.9541 21.1336 28.3911 22.3883 31.7884 21.4286
+\c 35.1851 20.469 36.2198 19.2874 37.0313 18.9916
+\c 37.8447 18.6966 38.5093 18.5484 40.2817 20.0995
+\c 42.0541 21.6506 43.2351 20.9116 43.4564 20.6172
+\c 43.6783 20.3208 44.4174 19.0654 43.0875 17.8838
+\c 41.7584 16.7022 38.9512 17.1461 37.9923 17.3668
+\c 37.0313 17.5887 36.9575 17.3668 36.9575 17.3668
+\c 36.2198 18.5484 35.0375 18.5484 35.0375 18.5484
+\c 37.2532 17.5887 36.4411 15.0035 36.4411 15.0035
+\c 35.9979 15.2255 34.9645 15.3724 34.5943 14.9291
+\c 34.2254 14.4865 34.4474 14.0439 35.112 13.9701
+\c 35.7766 13.8964 36.6624 14.5609 36.6624 14.5609
+\c 36.6624 14.5609 37.6221 14.339 37.6221 13.3049
+\c 37.6221 12.2715 36.883 12.2715 36.883 12.2715
+\c 36.883 12.2715 34.5943 12.7885 34.9645 11.6069
+\c 35.3333 10.4253 37.1788 11.6069 37.1788 11.6069
+\c 38.2866 10.5728 37.2532 10.0565 37.2532 10.0565
+\c 36.7369 10.5728 35.1851 10.4991 35.5546 9.6863
+\c 35.9241 8.8742 37.7703 9.5381 37.7703 9.5381
+\l 41.5357 7.9876
+\l 43.2351 4.0739
+\c 43.5294 3.4831 43.7521 3.3349 44.0478 3.2612
+\c 44.3429 3.1874 43.7521 2.4491 43.7521 2.4491
+\l 44.3429 2.3015
+\c 44.3429 2.3015 45.0075 3.3349 44.6387 3.4831
+\c 44.2685 3.6307 43.9741 3.9257 43.9741 3.9257
+\c 43.4564 5.2556 42.1272 7.8394 42.2747 8.284
+\c 42.423 8.7266 43.2351 8.0621 43.2351 8.7266
+\c 43.2351 9.3912 42.3478 8.9486 42.1272 8.6522
+\c 41.9059 8.3564 41.6839 8.4309 41.6839 8.4309
+\l 37.9178 9.9082
+\c 38.9027 11.0899 37.4014 12.1233 37.4014 12.1233
+\c 37.4014 12.1233 38.2135 12.4935 38.2135 13.3793
+\c 38.2135 14.6347 36.687 14.9291 36.687 14.9291
+\c 37.5729 16.1114 36.9828 16.9979 36.9828 16.9979
+\c 38.6568 17.1946 38.7552 16.013 40.8227 16.2097
+\c 43.6715 16.4809 44.6626 18.5736 44.2685 19.952
+\c 43.8757 21.3303 42.3 21.7244 41.0194 20.9369
+\c 39.7401 20.1494 38.262 19.1644 38.262 19.1644
+\c 37.2532 19.1392 35.8011 20.1494 35.8011 20.1494
+\c 31.8615 22.7585 26.5456 21.9218 24.8716 21.9218
+\c 23.1968 21.9218 21.7201 23.3001 18.8645 25.0725
+\c 16.0081 26.8449 13.3498 28.1249 10.7899 28.1249
+\c 8.2299 28.1249 7.1474 27.14 7.1474 27.14
+\l 7.7368 26.6469
+\c 6.5559 26.7459 6.3585 25.2692 6.3585 25.2692
+\m 6.2601 22.4627
+\c 4.3887 21.8221 5.1277 20.4437 5.1277 20.4437
+\l 5.6208 21.0345
+\c 5.8667 20.7887 6.3585 20.8378 6.3585 20.8378
+\c 5.8168 21.4286 6.4083 22.1677 6.4083 22.1677
+\o
+\m 28.9082 15.9645
+\c 29.0557 17.8838 30.2373 17.8094 30.6068 16.4071
+\c 30.9757 15.0035 30.7537 13.5275 29.7203 12.0495
+\c 29.7203 12.0495 28.76 14.0439 28.9082 15.9645
+\m 23.8129 11.8289
+\c 23.8129 11.8289 22.9994 14.0439 23.2207 16.4071
+\c 23.4427 18.7704 24.2548 19.6562 24.9945 19.6562
+\c 25.7335 19.6562 26.868 18.2253 25.9541 15.078
+\c 25.2896 12.7885 23.8129 11.8289 23.8129 11.8289
+\m 17.8297 18.254
+\c 17.7566 21.5024 19.1431 21.9457 19.8248 21.9457
+\c 20.5624 21.9457 22.6306 18.6228 19.0858 12.936
+\c 19.0858 12.936 17.9178 14.4134 17.8297 18.254
+\m 9.1657 19.2136
+\c 9.1657 19.2136 8.624 19.952 8.969 20.2969
+\c 9.3132 20.6404 9.7073 19.9021 9.1657 19.2136
+\m 4.6851 25.3676
+\c 4.2418 25.2692 4.3402 26.0574 4.9808 26.2043
+\c 4.9808 26.2043 5.1277 25.4652 4.6851 25.3676
+\m 12.5623 19.5094
+\c 13.3498 19.0162 12.1689 18.1795 10.8882 18.6228
+\c 10.8882 18.6228 11.7748 20.0011 12.5623 19.5094
+\m 14.1373 16.653
+\c 14.9747 16.8012 14.5321 15.4229 12.858 15.4229
+\c 12.858 15.4229 13.3006 16.5048 14.1373 16.653
+\m 14.5813 13.5023
+\c 14.4331 12.8138 13.498 13.5508 13.2023 14.0931
+\c 13.2023 14.0931 14.7288 14.1921 14.5813 13.5023
+\m 44.86 2.0795
+\c 44.2685 1.9327 44.3429 1.5632 44.3429 1.5632
+\c 43.7521 0.3816 42.423 0.8979 42.423 0.8979
+\l 42.7918 3.3349
+\c 42.1272 6.3634 40.2073 6.8798 40.2073 6.8798
+\c 31.1239 8.8742 30.0891 11.4587 30.0891 11.4587
+\c 33.1169 14.856 30.8281 17.8838 29.5721 17.8838
+\c 28.318 17.8838 28.0961 16.6284 28.3911 14.6347
+\c 28.6869 12.6403 29.4245 11.6069 29.4245 11.6069
+\c 26.323 9.3912 24.4775 11.1643 24.4775 11.1643
+\c 25.4364 12.1233 27.3577 14.5609 26.9875 17.2192
+\c 26.6187 19.8782 25.142 20.3208 24.403 20.025
+\c 23.718 19.7505 22.6306 19.1392 22.4831 16.1114
+\c 22.3348 13.0829 23.3696 11.6807 23.3696 11.6807
+\c 23.2207 11.1643 22.4093 10.9416 22.4093 10.9416
+\c 20.3411 11.0161 19.3077 12.4197 19.3077 12.4197
+\c 21.3745 14.4865 22.5561 18.7704 21.3014 21.2804
+\c 20.0461 23.7919 16.5012 22.0932 16.9445 17.8838
+\c 17.3871 13.6737 18.6425 12.4935 18.6425 12.4935
+\c 17.7566 11.3118 15.7636 10.9416 13.3997 11.6069
+\c 11.0358 12.2715 8.008 13.6737 5.8667 13.0829
+\c 3.7255 12.4935 2.6907 10.5728 2.6907 10.5728
+\c 2.076 10.3508 2.0261 9.1692 2.0261 9.1692
+\l 0.9183 9.021
+\c 0.9183 9.9827 1.3616 11.6069 1.8048 11.9013
+\c 2.2474 12.197 5.3497 13.8964 5.3497 13.8964
+\c 5.571 14.4134 5.9412 14.4865 6.31 14.5609
+\c 6.6788 14.6347 7.4909 14.0439 8.3782 14.0439
+\c 9.2633 14.0439 11.0358 14.1907 11.7017 14.1907
+\c 12.3649 14.1907 12.8082 14.0439 12.8082 14.0439
+\c 13.916 12.4197 14.9508 12.4935 14.9508 13.4531
+\c 14.9508 14.4134 13.621 14.2645 13.3252 14.339
+\c 13.0308 14.4134 12.9564 15.0035 12.9564 15.0035
+\c 15.2465 15.2993 15.6154 17.3668 14.1373 16.9242
+\c 12.6606 16.4809 12.5138 15.3724 12.5138 15.3724
+\c 10.5194 16.0376 10.8151 18.1795 10.8151 18.1795
+\c 13.4741 17.8094 13.6879 19.6747 12.3649 19.8782
+\c 11.4059 20.025 10.6669 18.7704 10.6669 18.7704
+\c 10.0761 18.6228 9.4115 18.9916 9.4115 18.9916
+\c 9.9293 19.5825 9.7804 21.0598 8.8945 20.6172
+\c 8.008 20.1733 8.969 18.9172 8.969 18.9172
+\c 8.969 18.9172 8.5257 18.9172 8.3037 18.0313
+\c 8.0824 17.1461 7.8611 16.554 7.6391 16.4071
+\c 7.4178 16.2596 6.9746 16.2596 6.8263 16.776
+\c 6.6788 17.293 6.2355 17.3668 5.6454 17.515
+\c 5.0539 17.6625 5.3497 18.4746 5.3497 18.4746
+\c 5.2021 19.4356 3.6025 23.5952 3.6025 23.5952
+\c 4.7835 26.7944 1.9763 26.9918 1.2871 26.0574
+\c 0.5986 25.1217 0.9429 24.4312 0.9429 24.4312
+\c 0.1055 25.2194 0.3534 27.3367 2.3219 27.3367
+\c 4.2917 27.3367 4.6851 26.2534 4.6851 26.2534
+\c 3.7002 25.8593 4.1933 25.0227 4.7835 25.1217
+\c 5.6632 25.2685 5.1775 26.6469 5.1775 26.6469
+\c 5.8667 27.2377 6.8516 27.5334 6.8516 27.5334
+\c 5.6693 27.5334 4.6851 27.041 4.6851 27.041
+\c 4.4877 27.3367 1.0528 28.8448 0.1554 26.1551
+\c -0.6813 23.6443 2.1245 22.7093 2.1245 22.7093
+\c 2.6176 22.7093 2.5193 23.7919 2.5193 23.7919
+\c 0.6485 23.8902 1.337 26.3525 2.815 25.8593
+\c 4.2917 25.3676 3.1094 23.5952 3.1094 23.5952
+\c 4.0943 21.5277 5.0792 18.0805 5.0792 18.0805
+\c 4.9795 15.7173 6.3585 16.1114 6.3585 16.1114
+\c 8.0325 14.9291 8.3283 16.8012 8.5257 17.4897
+\c 8.7217 18.1795 9.2142 18.5736 9.2142 18.5736
+\l 10.4941 18.1795
+\c 10.1991 15.2255 12.6122 14.8806 12.6122 14.8806
+\l 12.759 14.339
+\l 7.245 14.438
+\c 5.9657 15.5206 5.0792 14.1423 5.0792 14.1423
+\c 5.0792 14.1423 3.011 13.0597 1.7317 12.1724
+\c 0.4511 11.2866 0.4511 7.545 0.4511 7.545
+\l 2.7167 8.8243
+\c 2.3219 9.1201 2.7167 9.9082 2.7167 9.9082
+\c 3.4044 10.0059 3.3068 10.7941 3.3068 10.7941
+\c 5.0792 12.9606 6.3585 12.7632 7.8365 12.4682
+\c 9.3132 12.1724 9.2142 11.8774 13.1524 10.8932
+\c 17.092 9.9082 18.8645 12.0748 18.8645 12.0748
+\c 21.966 9.4404 24.1073 10.8679 24.1073 10.8679
+\c 24.1073 10.8679 25.5109 9.76 26.84 9.9827
+\c 28.3857 10.2388 29.6472 11.1643 29.6472 11.1643
+\c 33.2651 6.7322 37.1788 7.767 39.6902 6.6592
+\c 40.7817 6.1769 41.7584 5.0336 42.0541 3.7782
+\c 42.3478 2.5228 42.2017 1.8589 41.9059 0.8249
+\c 41.6102 -0.2099 42.423 -0.0617 43.2351 0.1603
+\c 44.0478 0.3816 45.155 1.7107 45.155 1.7107
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian157.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian157.pgf
new file mode 100644
index 0000000000..89d17fe563
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian157.pgf
@@ -0,0 +1,271 @@
+\m 31.456 25.313
+\c 31.9484 25.313 32.1458 25.4106 32.391 25.7064
+\c 32.6622 26.0322 32.2442 26.1005 32.2442 26.1005
+\l 31.3569 26.1005
+\c 31.0626 26.1005 30.7668 25.9038 30.7668 25.9038
+\c 30.7668 25.9038 30.9628 25.313 31.456 25.313
+\m 29.4868 24.5739
+\c 29.4868 24.5739 29.9294 25.0671 30.176 25.0671
+\c 30.4212 25.0671 30.5209 24.869 30.5209 24.5739
+\c 30.5209 24.2789 30.6691 23.7864 31.3084 23.6874
+\l 31.5045 24.4749
+\c 31.5045 24.4749 31.3569 24.6231 31.2101 24.3766
+\c 31.2101 24.3766 30.6186 24.1798 30.6691 24.8198
+\c 30.6691 24.8198 30.7163 25.9038 29.8809 25.4605
+\c 29.8809 25.4605 29.3878 25.1156 29.0429 25.0165
+\c 28.6993 24.9189 28.3052 25.4605 28.4534 26.2972
+\c 28.5996 27.1346 29.2881 27.1831 29.7334 27.0854
+\c 30.176 26.9864 29.9786 26.1005 29.1911 26.789
+\c 29.1911 26.789 29.2403 26.1988 29.8809 26.2972
+\c 30.5209 26.3955 30.2245 27.6257 29.3386 27.528
+\c 28.4534 27.4303 27.9118 26.6421 28.0088 25.8047
+\c 28.1078 24.968 28.8475 24.4749 29.4868 24.5739
+\m 31.456 28.7588
+\c 30.0278 29.3981 29.3878 27.8237 29.3878 27.8237
+\l 29.8304 27.7739
+\c 30.372 29.0053 31.456 28.7588 31.456 28.7588
+\m 39.4315 4.6832
+\c 37.1666 2.7134 28.7478 -1.6189 14.3226 1.5823
+\c 14.3226 1.5823 15.8491 1.8767 18.0641 4.0924
+\c 20.2805 6.3088 22.7906 9.4097 23.6279 10.049
+\c 24.4646 10.6903 26.5813 12.2654 28.5013 12.3145
+\c 28.5013 12.3145 28.8947 8.7697 26.8777 6.5547
+\c 24.8587 4.339 21.9532 1.385 15.5049 1.8275
+\c 15.5049 1.8275 18.7041 1.04 21.7579 1.9259
+\c 21.7579 1.9259 23.8732 1.2374 26.4843 1.9764
+\c 26.4843 1.9764 28.2554 1.2374 30.6186 2.124
+\c 32.9818 3.0098 34.9509 4.979 35.5909 9.4097
+\c 35.5909 9.4097 35.9365 6.6524 37.7083 6.3573
+\c 39.4807 6.0615 40.6131 7.3422 41.3037 9.2622
+\c 41.9921 11.1821 41.3508 13.7919 39.8741 13.7427
+\c 38.3981 13.6929 36.5772 10.3454 38.8899 7.5881
+\c 38.8899 7.5881 38.1017 10.0995 38.4958 11.8228
+\c 38.8899 13.5453 40.5148 13.8903 40.9089 12.2169
+\c 41.3037 10.5428 40.0715 7.0465 38.4958 6.8497
+\c 36.9208 6.6524 35.4933 9.0156 36.5267 12.3145
+\c 37.5607 15.6135 39.7758 15.9577 40.4649 15.9086
+\c 41.1554 15.8594 42.7796 16.0076 43.1731 13.1027
+\c 43.5658 10.1972 41.6315 6.5963 39.4315 4.6832
+\m 12.1561 1.7299
+\c 12.1561 1.7299 11.5168 1.7299 10.9239 1.4341
+\c 10.9239 1.4341 8.1673 1.3351 7.3797 2.5666
+\c 7.3797 2.5666 8.7096 2.7633 10.9744 4.339
+\c 13.24 5.9147 15.5028 9.4595 18.2608 10.9854
+\c 20.8133 12.3985 21.4676 12.5877 23.0344 12.6861
+\c 23.3261 12.7401 23.4306 12.7086 23.4306 12.7086
+\c 23.2919 12.7011 23.1601 12.6929 23.0344 12.6861
+\c 22.5187 12.5905 21.415 12.2244 19.2464 10.9362
+\c 15.8491 8.9179 13.0419 3.9941 8.5607 2.419
+\c 8.5607 2.419 9.6952 2.2216 12.0078 3.7482
+\c 14.3226 5.274 16.8333 8.3763 17.67 9.213
+\c 18.5067 10.049 22.1984 13.4962 27.517 12.5611
+\c 27.517 12.5611 25.4004 12.2169 22.1984 9.7054
+\c 19.0005 7.1947 17.1284 2.8616 12.1561 1.7299
+\m 28.8475 12.5611
+\c 28.8475 12.5611 32.7353 9.6064 30.7668 5.5206
+\c 30.7668 5.5206 29.0927 1.7791 21.9532 2.1732
+\c 21.9532 2.1732 25.0302 3.0215 27.1229 5.4707
+\c 29.1419 7.834 29.2881 9.6569 28.8475 12.5611
+\m 27.2711 15.3177
+\c 26.7295 16.3511 26.4338 18.321 27.6652 20.1924
+\c 27.6652 20.1924 25.3505 17.78 22.8889 17.9269
+\c 20.428 18.0751 19.4916 18.9616 18.3599 19.4534
+\c 17.2267 19.9465 16.4891 20.1924 16.095 20.1924
+\l 15.6504 20.734
+\c 15.6504 20.734 15.5049 21.2258 15.9973 21.0291
+\c 16.4891 20.8317 16.3409 20.5858 16.8333 20.5858
+\c 17.3258 20.5858 17.8674 20.1924 19.0483 19.9465
+\c 20.23 19.6993 22.2981 19.3052 22.5932 19.3052
+\c 22.8889 19.3052 23.1854 18.8626 23.7748 19.159
+\c 23.7748 19.159 24.1211 19.6016 24.9086 19.896
+\c 25.6954 20.1924 28.797 22.6048 30.2245 23.0474
+\c 30.2245 23.0474 30.4212 22.6533 31.1104 22.5071
+\c 31.1104 22.5071 31.8829 22.3282 32.391 22.7524
+\c 32.6861 22.9982 33.13 23.4914 33.13 23.4914
+\c 33.13 23.4914 33.5234 22.9982 33.2277 22.3098
+\c 32.9326 21.6199 31.6527 21.6684 30.7668 21.9648
+\c 30.7668 21.9648 31.1602 21.4232 32.2442 21.4232
+\c 33.3261 21.4232 34.2611 22.4081 33.3759 23.934
+\l 33.8192 23.934
+\c 33.8192 23.934 34.509 23.4914 35.345 23.6874
+\c 35.345 23.6874 36.6749 23.2933 37.5109 20.8809
+\c 37.5109 20.8809 37.2657 20.6842 36.7725 21.1281
+\c 36.2808 21.5707 36.1824 22.0625 35.7391 22.0625
+\c 35.7391 22.0625 36.8224 20.2416 37.6106 20.2416
+\c 37.6106 20.2416 37.6106 18.1741 39.3817 16.9925
+\c 39.3817 16.9925 37.7083 16.4502 34.8027 21.1766
+\l 34.4093 20.8809
+\c 34.4093 20.8809 34.3116 20.3891 33.8677 20.8809
+\c 33.8677 20.8809 33.7693 20.3891 34.5568 20.2416
+\c 34.5568 20.2416 35.345 19.2075 35.345 18.7649
+\c 35.345 18.321 34.8533 17.2384 33.7693 17.4351
+\c 32.6861 17.6318 31.9969 18.6167 31.6527 19.5026
+\c 31.6527 19.5026 31.3521 17.765 33.1778 16.9925
+\c 34.4592 16.4502 35.2959 17.041 35.2959 17.041
+\c 35.2959 17.041 35.0493 15.7603 34.2611 15.4168
+\c 34.2611 15.4168 32.1936 16.8935 28.8947 16.4017
+\c 28.8947 16.4017 28.3052 17.2384 28.6495 19.3052
+\c 28.6495 19.3052 27.4194 17.4843 29.0429 15.0234
+\c 29.0429 15.0234 29.0927 14.5302 29.437 14.186
+\c 29.7819 13.8418 32.4395 11.5762 33.3261 10.3454
+\c 34.2133 9.1146 34.4592 5.9147 33.0324 4.339
+\c 31.6035 2.7633 28.5996 1.6308 26.9761 2.124
+\c 26.9761 2.124 29.5852 2.5666 31.5045 5.1272
+\c 33.4258 7.6871 31.751 10.3946 30.5209 11.5762
+\c 29.2881 12.7578 27.8128 14.2843 27.2711 15.3177
+\m 34.3601 13.5938
+\c 34.3601 13.5938 34.8533 13.7427 34.6074 14.382
+\c 34.6074 14.382 35.8867 15.7603 36.1332 18.2226
+\c 36.1332 18.2226 36.8224 17.5328 37.364 17.1393
+\c 37.9043 16.7452 38.3981 16.3511 39.8263 16.4502
+\c 39.8263 16.4502 35.6408 15.5636 35.7391 10.1972
+\c 35.7391 10.1972 35.4427 9.9513 35.3956 10.4431
+\c 35.345 10.9362 35.1477 12.2169 34.3601 13.5938
+\m 29.7334 14.9243
+\c 29.7334 14.9243 28.9445 15.6135 29.0429 16.1544
+\c 29.0429 16.1544 32.5392 16.2535 34.1149 14.8745
+\c 34.1149 14.8745 34.1634 14.2843 33.8677 14.2352
+\c 33.8677 14.2352 31.6035 15.7617 29.7334 14.9243
+\m 33.13 14.0385
+\c 34.5568 13.0536 34.9025 9.4097 34.9025 9.2622
+\c 34.9025 9.2622 34.5568 9.1146 34.3601 9.5087
+\c 34.1634 9.9021 32.9326 12.9053 29.9294 14.6778
+\c 29.9294 14.6778 31.7025 15.0234 33.13 14.0385
+\m 33.8677 24.7222
+\c 34.0658 25.1648 35.1975 24.9189 35.9843 24.6231
+\c 36.7725 24.3281 37.1666 24.2789 37.5607 23.8855
+\c 37.9542 23.4914 40.3174 21.8658 41.1056 19.4042
+\c 41.8931 16.942 40.5633 16.6476 39.8741 17.4351
+\c 39.1856 18.2226 38.644 19.5524 38.5456 20.635
+\c 38.4466 21.719 36.8723 24.6231 34.509 24.1798
+\c 34.509 24.1798 33.6717 24.2789 33.8677 24.7222
+\m 5.8546 1.4341
+\c 5.3621 1.5823 4.5842 2.7134 3.5412 2.7134
+\c 3.3431 2.7134 2.7537 2.6157 2.2606 2.7633
+\c 1.7674 2.9115 0.9799 3.8465 0.9799 3.8465
+\c 0.9799 3.8465 1.0298 4.24 1.4232 4.0432
+\c 1.8173 3.8465 2.309 3.6007 2.8507 3.6007
+\c 3.3923 3.6007 4.5247 3.8465 4.6238 3.6007
+\c 4.6238 3.6007 4.4264 2.9607 5.9031 2.4675
+\c 5.9031 2.4675 6.6906 2.3699 6.7398 1.9259
+\c 6.7398 1.9259 6.3457 1.2859 5.8546 1.4341
+\m 15.0616 23.0474
+\l 14.2734 23.2441
+\c 14.2734 23.2441 14.3711 24.1314 13.0419 24.7713
+\l 13.0918 25.5097
+\c 13.0918 25.5097 13.6819 25.3615 13.8294 25.3615
+\c 13.8294 25.3615 14.0275 24.0323 15.2091 23.6382
+\o
+\m 13.9674 22.5488
+\c 13.8042 22.5775 13.561 22.5775 13.436 22.3589
+\c 13.2946 22.1124 13.5555 21.9922 13.7167 21.943
+\c 13.5842 21.6985 13.3985 21.4416 13.1416 21.2258
+\c 12.2544 20.4875 10.7723 21.4901 11.9593 22.4081
+\c 13.0419 23.2441 14.0275 22.8015 14.0275 22.8015
+\c 14.0275 22.8015 14.0104 22.7025 13.9674 22.5488
+\m 11.221 23.2933
+\c 10.3351 22.9497 9.7928 23.6874 10.8262 24.1314
+\c 11.8603 24.5739 12.5502 24.4257 12.5502 24.4257
+\c 12.5502 24.4257 12.1069 23.6382 11.221 23.2933
+\m 12.796 25.9038
+\c 12.796 25.9038 11.2709 26.444 11.5168 27.1831
+\c 11.7626 27.9214 12.8937 26.1988 12.796 25.9038
+\m 15.6504 27.1831
+\c 16.4891 27.3313 16.2432 26.0506 14.4701 25.953
+\c 14.4701 25.953 14.8143 27.0362 15.6504 27.1831
+\m 17.1789 25.0165
+\c 18.1625 25.313 18.6064 23.6874 15.8491 23.8349
+\c 15.8491 23.8349 16.1927 24.7222 17.1789 25.0165
+\m 40.3174 16.2535
+\l 40.2689 16.5492
+\c 40.2689 16.5492 41.7449 16.4017 41.6472 18.4685
+\c 41.5489 20.5373 40.122 21.9157 39.3817 22.5556
+\c 38.644 23.1949 37.5109 24.4749 36.7725 24.7713
+\c 36.0349 25.0671 34.8533 25.2139 34.3601 25.2139
+\c 33.8677 25.2139 33.4736 24.869 33.6717 24.4749
+\l 33.3759 24.3281
+\c 33.3759 24.3281 33.2776 25.4605 33.6211 25.8047
+\c 33.6211 25.8047 34.5568 25.608 34.9025 26.5431
+\c 35.2474 27.4788 34.5568 28.3155 33.0795 28.2178
+\c 33.0795 28.2178 32.5392 28.7096 31.9484 28.8578
+\c 31.9484 28.8578 32.9326 28.4139 32.9818 27.7739
+\c 33.0324 27.1346 32.1458 27.4788 32.4395 27.9214
+\c 32.4395 27.9214 32.1936 27.9214 32.1458 27.4788
+\c 32.0966 27.0362 33.2776 26.6421 33.2776 27.8237
+\c 33.2776 27.8237 34.3601 28.168 34.6552 27.2322
+\c 34.9509 26.2972 33.5733 25.953 33.7202 26.9864
+\c 33.7202 26.9864 33.0324 27.2322 33.2277 26.5923
+\l 33.3261 26.1497
+\c 33.3261 26.1497 33.0324 25.608 33.13 24.869
+\c 33.2277 24.1314 32.6861 23.4415 32.3418 23.2441
+\c 31.9969 23.0474 31.3569 22.9982 30.9628 23.0973
+\c 30.5694 23.1949 30.3242 23.8855 29.8304 23.7373
+\l 30.2245 23.3923
+\c 28.8475 22.9497 27.7137 22.1615 27.222 21.7681
+\c 26.7295 21.374 25.0548 20.1426 24.5145 19.9957
+\c 23.9729 19.8475 23.3807 19.4042 23.3807 19.4042
+\c 22.3965 19.896 19.4424 20.1924 18.5559 20.4875
+\c 17.67 20.7832 16.7848 21.7681 16.4385 22.111
+\c 16.095 22.4566 15.3068 22.9497 15.3068 22.9497
+\l 15.7009 23.4415
+\c 17.6202 23.2933 18.3599 24.0323 18.4589 24.6231
+\c 18.5559 25.2139 17.7199 25.608 16.8333 25.1648
+\c 15.9475 24.7222 15.5049 23.8349 15.5049 23.8349
+\c 14.2734 24.3281 14.076 25.5097 14.076 25.5097
+\c 14.076 25.5097 15.7501 25.7064 16.3907 26.4946
+\c 17.0314 27.2821 16.1435 27.9214 15.1593 27.2821
+\c 14.1744 26.6421 14.1259 25.8047 14.1259 25.8047
+\c 13.8294 25.6565 13.1416 25.8546 13.1416 25.8546
+\c 12.7462 27.2821 11.6144 27.9214 11.221 27.528
+\c 10.8262 27.1346 11.122 26.7398 11.122 26.7398
+\c 12.0584 25.608 12.8937 25.6565 12.8937 25.6565
+\l 12.7462 24.869
+\c 12.7462 24.869 11.8111 24.9189 10.6302 24.4257
+\c 9.4472 23.934 9.5961 22.7524 10.8262 22.8992
+\c 12.0584 23.0474 12.8466 24.4257 12.8466 24.4257
+\c 13.88 24.2789 14.076 23.0973 14.076 23.0973
+\c 11.0721 23.6382 10.7286 20.8809 12.1069 20.6842
+\c 13.4852 20.4875 14.076 21.9157 14.076 21.9157
+\c 14.8635 21.9157 14.3711 22.5071 14.3711 22.5071
+\l 14.5193 22.8015
+\c 15.455 22.6048 15.8983 21.9648 15.8983 21.9648
+\c 14.9626 22.2599 14.7652 21.6684 14.7652 21.6684
+\c 14.4216 21.5222 14.3711 21.1281 14.3711 21.1281
+\l 14.9626 20.5373
+\c 14.9626 20.0934 15.455 20.0449 15.455 20.0449
+\c 15.9475 15.7118 11.9593 14.1361 11.9593 14.1361
+\c 16.5383 15.5636 15.7501 19.5524 15.7501 19.5524
+\l 16.1927 19.6016
+\c 17.3258 19.1085 19.2949 17.9767 19.8352 17.5833
+\c 20.3775 17.1892 20.7709 17.3367 20.7709 17.3367
+\c 23.4306 16.1059 26.5314 18.1236 26.5314 18.1236
+\c 25.8921 15.3177 28.2062 13.2503 28.2062 13.2503
+\c 28.2062 13.0044 27.9118 12.8063 27.9118 12.8063
+\c 25.4004 13.2994 23.6758 12.8569 23.6758 12.8569
+\c 23.0863 13.0044 21.3631 13.0536 18.2608 11.4287
+\c 15.1593 9.8031 14.1259 8.0314 11.2709 5.619
+\c 8.4152 3.2066 7.8237 3.4524 7.4296 3.2066
+\c 7.0362 2.9607 7.084 2.7134 7.084 2.7134
+\c 4.8205 2.5666 4.8205 3.9456 4.8205 3.9456
+\c 7.5771 4.0924 8.6112 5.3731 10.1371 6.7022
+\c 11.6643 8.0314 15.3068 12.1663 20.0831 12.8569
+\c 24.8587 13.5453 26.9249 13.2994 26.9249 13.2994
+\l 27.3196 13.3985
+\c 22.7906 13.8903 18.7533 13.2503 15.5534 11.4778
+\c 12.3528 9.7054 9.7928 6.7022 8.0696 5.4216
+\c 6.3457 4.1423 5.0179 4.1915 4.7208 4.24
+\c 4.4264 4.2891 4.2304 4.1915 4.2304 4.1915
+\c 4.2304 3.7974 3.3923 3.7482 2.8507 4.0924
+\c 2.309 4.4373 0.6357 4.5364 0.2907 4.5364
+\c -0.0542 4.5364 -0.0542 3.9941 0.094 3.6997
+\c 0.2422 3.4033 1.0783 3.1075 1.0783 3.1075
+\c 1.4724 2.3699 2.1615 2.2216 2.1615 2.2216
+\c 3.4415 2.1732 3.589 2.0741 4.3772 1.4341
+\c 5.164 0.7948 5.8546 0.9915 5.8546 0.9915
+\c 6.8388 0.7948 7.1837 1.7299 7.1837 1.7299
+\c 7.4296 1.9259 7.8729 1.7299 7.8729 1.7299
+\c 7.8729 1.7299 10.3351 -0.0432 12.9436 1.5823
+\c 12.9436 1.5823 13.7803 0.4 22.2981 0.1043
+\c 30.8167 -0.1901 35.5411 -0.1416 40.4164 4.1423
+\c 45.2904 8.4248 44.7481 16.5984 40.3174 16.2535
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian158.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian158.pgf
new file mode 100644
index 0000000000..1b2ed5f590
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian158.pgf
@@ -0,0 +1,344 @@
+\m 45.9349 26.9274
+\c 46.0817 26.4104 45.4172 26.2622 44.1993 27.26
+\c 44.1993 27.26 45.7867 27.4445 45.9349 26.9274
+\m 39.0296 24.9699
+\c 39.8663 23.8873 40.3103 23.5923 40.3103 23.5923
+\l 34.9923 22.6074
+\l 35.5333 22.3116
+\c 37.9955 22.3116 40.9011 20.5392 40.9011 20.5392
+\l 37.5536 18.6684
+\c 38.4381 18.8159 41.1463 18.1268 42.7712 18.0783
+\c 44.3961 18.0284 45.1344 18.6186 44.8885 19.3576
+\c 44.6426 20.0966 44.0504 19.751 44.0504 19.751
+\c 44.0504 19.751 44.5436 19.5058 44.2984 19.2094
+\c 44.0504 18.915 42.082 18.4717 40.7529 18.6684
+\c 39.4244 18.8658 38.8329 19.1609 38.8329 19.1609
+\l 41.3437 20.4415
+\c 43.0669 20.0474 43.8046 20.4907 43.9528 20.8841
+\c 44.1003 21.2782 43.7069 21.77 42.9679 21.6716
+\c 42.2295 21.5733 42.2295 21.1785 42.2295 21.1785
+\c 42.7712 21.4749 43.2629 21.4257 43.2629 21.4257
+\c 44.0504 21.229 43.4603 20.7359 42.2295 20.9333
+\c 40.9994 21.13 40.5555 21.6231 39.2263 21.9667
+\c 37.8965 22.3116 36.5195 22.6565 36.5195 22.6565
+\l 40.2597 23.345
+\c 41.6394 22.1634 43.9029 22.4106 43.7069 23.2473
+\c 43.5095 24.084 41.6872 24.0355 41.6872 24.0355
+\l 41.5895 23.7883
+\c 43.0669 23.7883 43.9528 23.2473 43.0669 23.1982
+\c 42.1804 23.1483 41.3928 23.4932 40.7529 24.2322
+\c 40.1129 24.9699 38.3896 26.2506 38.3896 26.2506
+\c 40.9496 26.1023 41.2945 25.6597 41.2945 25.6597
+\c 42.9679 23.7883 44.0504 24.3798 44.1502 24.8224
+\c 44.2485 25.2656 43.9029 25.168 43.9029 25.168
+\c 43.5587 24.2814 41.8853 25.6597 42.3286 25.7574
+\c 42.7712 25.8565 43.3135 25.6597 43.3135 25.6597
+\c 42.6229 26.2014 41.983 26.0538 41.983 26.0538
+\l 40.6538 27.7771
+\c 41.7869 27.6289 43.2629 27.4322 43.2629 27.4322
+\c 44.3462 25.7458 45.8727 25.8565 46.0701 26.6446
+\c 46.3358 27.7054 44.1502 27.383 44.1502 27.383
+\c 43.8551 27.678 43.4111 28.663 43.4111 28.663
+\c 45.8727 28.0715 47.1541 28.4171 48.6294 27.9738
+\c 50.106 27.5312 49.9585 26.5456 49.9585 26.5456
+\c 49.9585 26.5456 48.8766 26.4473 48.5816 26.0538
+\c 48.0106 25.293 48.8268 24.7233 49.27 24.7233
+\c 49.7126 24.7233 50.4032 25.4139 50.4032 25.4139
+\c 49.0726 25.0198 49.0726 25.9049 49.5644 26.1515
+\c 50.0576 26.3988 50.6484 25.9555 50.6484 25.9555
+\c 51.19 25.8073 52.6182 25.6597 52.9146 25.0689
+\c 53.209 24.4781 52.9624 24.2322 52.373 23.9864
+\c 51.7822 23.7398 52.0274 23.2965 52.0274 23.2965
+\l 52.6182 23.2965
+\c 52.7165 22.5575 52.3217 22.4106 52.3217 22.4106
+\l 52.47 22.2126
+\c 52.47 22.2126 52.8641 22.5575 52.8641 22.7549
+\c 52.8641 22.9516 52.9624 23.6906 52.9624 23.6906
+\c 53.504 23.8388 53.6031 24.5266 53.6031 24.5266
+\c 53.6031 24.8224 53.0614 25.3148 53.0614 25.3148
+\c 52.9146 26.2506 50.2058 26.6446 50.2058 26.6446
+\c 50.2549 28.5646 47.4491 28.4171 45.5278 28.6138
+\c 43.6092 28.8105 42.5253 29.4505 42.5253 29.4505
+\c 42.5738 28.663 43.3135 27.8748 43.3135 27.8748
+\c 41.3928 27.678 40.0138 28.4171 39.5221 28.663
+\c 39.031 28.9088 39.0781 28.6138 39.0781 28.6138
+\c 40.2119 27.9239 40.9981 26.1023 40.9981 26.1023
+\c 40.6538 26.2506 36.8631 26.5456 36.8631 26.5456
+\c 36.8631 26.5456 38.1922 26.0538 39.0296 24.9699
+\m 36.1493 24.6748
+\c 36.6678 24.2322 35.7798 23.9365 34.0819 24.4529
+\c 34.0819 24.4529 35.6323 25.1181 36.1493 24.6748
+\m 15.1016 16.7731
+\c 15.1016 16.7731 15.4711 15.5177 14.7321 15.4439
+\c 13.9938 15.3701 14.4377 16.6993 15.1016 16.7731
+\m 28.322 16.9206
+\c 28.322 16.9206 28.8377 16.7731 28.7646 16.1829
+\c 28.6902 15.5914 27.5085 15.9603 28.322 16.9206
+\m 33.0485 18.6186
+\c 33.0485 18.6186 33.6379 18.6186 33.5641 17.954
+\c 33.4911 17.2901 32.3818 17.8071 33.0485 18.6186
+\m 12.6892 12.858
+\c 14.2164 12.858 14.1659 11.1361 12.8374 11.1361
+\c 11.5076 11.1361 10.7194 12.5636 10.7194 12.5636
+\c 10.7194 12.5636 11.1627 12.858 12.6892 12.858
+\m 9.1935 9.5106
+\c 9.1935 9.5106 10.5739 9.822 11.1627 8.5762
+\c 11.6066 7.6405 10.4796 7.5251 9.9326 7.9349
+\c 9.1444 8.5263 9.1935 9.5106 9.1935 9.5106
+\m 6.3379 7.3946
+\c 6.5844 6.7532 5.3529 6.4589 5.3529 7.689
+\c 5.3529 7.689 6.0927 8.0339 6.3379 7.3946
+\m 2.4003 16.0347
+\c 6.5352 12.6381 10.1177 14.1141 10.1177 14.1141
+\c 9.7113 13.3382 10.1177 12.5636 10.1177 12.5636
+\c 8.3077 11.6402 8.4559 9.794 8.4559 9.794
+\c 4.2458 9.6096 4.172 7.2095 4.911 6.5074
+\c 5.6494 5.8059 6.8296 6.0648 6.7927 7.1351
+\c 6.7565 8.206 5.5005 8.0223 5.5005 8.0223
+\l 5.3529 7.9854
+\c 5.3529 7.9854 6.4984 9.4621 8.4928 9.4245
+\c 8.4928 9.4245 8.8616 7.689 10.0808 7.2464
+\c 11.2986 6.8031 11.7412 7.6521 11.7412 8.0961
+\c 11.7412 8.5393 11.4092 9.8302 9.1198 9.8671
+\c 9.1198 9.8671 8.8985 11.2338 10.412 12.1572
+\c 10.412 12.1572 11.2255 10.865 12.7022 10.6437
+\c 14.5005 10.3739 14.8796 12.6381 13.4029 12.9325
+\c 11.9263 13.2282 10.5971 12.7487 10.5971 12.7487
+\c 10.5971 12.7487 9.4763 13.9925 10.4858 14.1885
+\c 11.6305 14.4098 12.8121 15.3701 12.8121 15.3701
+\l 12.3689 16.1829
+\l 12.1483 15.6645
+\c 11.3348 14.4829 8.0126 14.7793 8.0126 14.7793
+\c 2.3252 15.1482 0.7747 18.6186 0.7009 20.7612
+\c 0.6265 22.9024 1.5875 26.1515 4.6153 27.3331
+\c 7.6431 28.5147 9.9326 28.8843 13.8462 28.5147
+\c 17.7606 28.1459 24.0382 25.5614 26.8447 25.3394
+\c 29.6512 25.1181 31.7924 26.3735 31.7924 26.3735
+\c 30.315 24.8968 28.322 24.6748 28.322 24.6748
+\l 30.7583 24.6748
+\c 31.8662 24.6748 33.0485 24.306 33.0485 24.306
+\c 31.496 23.7883 29.4292 23.5677 29.4292 23.5677
+\c 29.7242 23.5677 32.0875 22.4591 32.0875 22.4591
+\c 29.5774 21.9428 25.8843 23.5677 23.3736 24.3798
+\c 20.8621 25.1912 15.3973 27.6289 10.5971 27.6289
+\c 5.7969 27.6289 3.3592 25.4883 2.3252 23.345
+\c 1.2924 21.2038 2.4734 19.3576 2.4734 19.3576
+\c 5.4274 15.9603 9.563 17.2901 11.9263 17.5852
+\c 14.2895 17.8809 14.7321 16.9944 14.7321 16.9944
+\c 13.1823 15.8127 14.5852 15.1482 14.5852 15.1482
+\c 16.0612 15.1482 15.3973 16.8461 15.3973 16.8461
+\c 20.7877 20.0966 27.9518 17.2901 27.9518 17.2901
+\c 26.9177 15.5914 28.7646 14.8531 29.1327 15.7383
+\c 29.5029 16.6255 28.3951 17.2901 28.3951 17.2901
+\c 30.8335 19.2838 32.752 18.693 32.752 18.693
+\c 31.7193 17.1426 33.8592 16.9206 33.9343 17.8071
+\c 34.0074 18.693 33.1953 18.9888 33.1953 18.9888
+\c 33.7861 20.2441 35.4855 19.8746 35.9274 20.2441
+\c 36.3706 20.613 36.4451 21.13 36.4451 21.13
+\c 36.0011 20.6874 35.4855 20.1704 34.5251 20.1704
+\c 33.5641 20.1704 32.9003 19.2094 32.9003 19.2094
+\c 29.281 20.4654 28.1 17.6589 28.1 17.6589
+\c 27.361 17.6589 25.9588 19.2838 21.8225 19.2838
+\c 17.6868 19.2838 15.0272 17.2163 15.0272 17.2163
+\c 13.92 18.3242 11.4092 17.954 10.2276 17.7334
+\c 9.0446 17.5114 7.5693 17.4383 7.5693 17.4383
+\c 2.6953 17.7334 2.1783 20.5392 2.4003 21.9428
+\c 2.6216 23.345 4.3933 26.9643 9.3417 27.1856
+\c 14.2895 27.4069 17.7606 25.8565 22.7828 23.9365
+\c 27.8036 22.0165 30.7583 22.0903 31.7193 22.0903
+\c 32.6783 22.0903 33.4166 21.869 33.4166 21.869
+\c 33.2691 22.3116 31.274 23.345 31.274 23.345
+\c 32.6038 23.345 33.7117 24.084 33.7117 24.084
+\c 35.4117 23.8621 36.2976 23.9365 36.6678 24.2322
+\c 37.0352 24.5266 36.2976 25.3394 35.4117 25.1181
+\c 34.5251 24.8968 33.4166 24.5266 33.4166 24.5266
+\c 33.0485 24.6011 30.9796 24.9699 30.9796 24.9699
+\c 32.457 26.004 33.0485 27.4813 33.0485 27.4813
+\c 26.9922 23.7883 21.6005 27.1125 16.9485 28.2197
+\c 12.2958 29.3275 7.6431 29.2531 3.8025 27.1856
+\c -0.0381 25.1181 -1.7367 19.4313 2.4003 16.0347
+\m 5.5005 0.8588
+\c 5.5005 0.8588 5.0224 0.7844 5.0961 1.1901
+\c 5.1685 1.5958 5.7593 1.0801 5.5005 0.8588
+\m 11.7787 5.5108
+\c 9.6744 5.474 8.8985 5.4371 7.6062 5.1782
+\c 6.3139 4.92 5.3912 3.6271 5.243 2.8888
+\c 5.0961 2.1511 6.204 1.8554 6.941 1.7071
+\c 7.6793 1.5596 7.9006 1.1901 7.4218 0.7468
+\c 6.941 0.3042 6.1295 0.4156 5.8707 0.5624
+\c 5.6118 0.7099 6.0189 0.8588 6.0558 1.0064
+\c 6.0927 1.1532 5.0586 1.8922 4.7635 1.5958
+\c 4.4664 1.3014 5.0586 0.6737 5.0586 0.6737
+\c 5.0586 0.6737 4.8735 0.2305 4.1351 0.378
+\c 3.3961 0.5255 2.1407 1.449 2.7322 1.5958
+\c 3.3223 1.744 3.6181 1.0064 3.6181 1.0064
+\c 3.6181 1.0064 3.3592 2.5937 2.5847 2.0398
+\c 1.8088 1.4858 2.6216 0.5993 2.6216 0.5993
+\c 2.1783 0.0461 0.8109 0.5993 1.3286 3.3327
+\c 1.8457 6.0648 3.9507 7.689 3.9507 7.689
+\c 0.7378 6.1385 0.4066 2.5937 0.6647 1.449
+\c 0.9222 0.3042 2.1032 -0.0653 2.5847 0.0085
+\c 3.0642 0.0823 2.9166 0.5624 2.9166 0.5624
+\c 2.9166 0.5624 3.4706 -0.0284 4.7259 0.0823
+\c 5.6466 0.1642 5.4274 0.6737 5.4274 0.6737
+\c 5.7969 -0.1015 7.0154 0.1929 7.0154 0.1929
+\c 7.6431 0.2305 8.1226 0.9319 7.975 1.5596
+\c 7.8705 2.0043 6.4615 1.966 5.9444 2.3717
+\c 5.4274 2.7774 5.8338 3.8498 7.0154 4.4399
+\c 8.197 5.0314 10.8191 4.6243 12.6639 4.7718
+\c 14.5108 4.92 16.5052 6.3598 16.5052 6.3598
+\c 16.1726 6.3598 15.6931 6.0279 15.6931 6.0279
+\c 14.8796 5.5484 13.8824 5.5484 11.7787 5.5108
+\m 50.8826 1.966
+\c 51.0295 2.0767 51.1777 2.1142 51.1777 2.1142
+\c 51.2139 2.3717 50.8457 2.3717 50.7344 2.2249
+\c 50.6245 2.0767 50.3649 1.966 50.3649 1.966
+\c 50.3649 1.966 50.7344 1.8554 50.8826 1.966
+\m 48.6676 2.3717
+\c 48.9989 2.5199 48.4825 2.7412 48.4825 2.7412
+\c 47.6329 2.5937 47.7435 1.966 47.7435 1.966
+\c 48.0768 2.0029 48.0768 1.744 48.0768 1.744
+\c 48.2612 2.0029 48.0024 2.0029 48.0024 2.1511
+\c 48.0024 2.2979 48.6676 2.3717 48.6676 2.3717
+\m 37.6636 8.0592
+\c 37.848 8.5018 38.8452 8.0592 39.3609 6.4705
+\c 39.3609 6.4705 37.4785 7.6152 37.6636 8.0592
+\m 34.7082 10.8281
+\c 34.7082 10.8281 33.4911 11.714 33.4549 12.2679
+\c 33.4166 12.8218 34.0819 12.7849 34.7082 10.8281
+\m 31.5711 10.6061
+\c 30.55 13.4543 31.4229 14.9638 32.3094 15.2957
+\c 33.1953 15.6276 35.3372 15.6276 36.5926 14.3729
+\c 37.848 13.1176 37.7749 10.0153 35.1897 10.7175
+\c 35.1897 10.7175 34.672 11.9728 34.3038 12.453
+\c 33.8496 13.0411 33.3428 12.9325 33.1953 12.6743
+\c 33.0485 12.4154 32.7889 11.936 34.5251 10.4948
+\c 34.5251 10.4948 35.0784 8.6486 34.1556 7.2833
+\c 34.1556 7.2833 32.457 8.1316 31.5711 10.6061
+\m 20.7638 10.7912
+\c 20.7638 10.7912 19.9763 10.9886 19.7304 11.8253
+\c 19.4838 12.6613 20.3697 12.858 20.7638 10.7912
+\m 18.5488 11.6764
+\c 17.8589 13.6462 18.8923 14.681 20.0254 14.3852
+\c 21.1579 14.0895 21.8477 12.8095 21.8477 11.6764
+\c 21.8477 10.5447 21.3054 10.7427 21.3054 10.7427
+\c 21.3054 10.7427 20.912 12.7604 19.9763 12.8095
+\c 19.0405 12.858 18.7947 11.1361 20.8621 10.2496
+\c 20.8621 10.2496 20.8621 9.4621 20.4687 8.8221
+\c 20.4687 8.8221 19.2372 9.708 18.5488 11.6764
+\m 26.4383 11.4565
+\c 25.9588 12.4154 27.0659 12.7849 27.9887 10.1635
+\c 27.9887 10.1635 26.9177 10.4948 26.4383 11.4565
+\m 42.3163 8.6486
+\c 41.6148 8.8337 40.8389 9.6096 41.2084 10.0522
+\c 41.5773 10.4948 42.9064 9.794 43.6092 8.4649
+\c 43.6092 8.4649 43.017 8.4649 42.3163 8.6486
+\m 42.1319 12.4154
+\c 41.983 12.9694 43.239 12.4154 43.7568 12.0842
+\c 43.7568 12.0842 42.2794 11.8615 42.1319 12.4154
+\m 57.6411 10.6437
+\c 56.6063 11.1361 55.3748 10.6437 54.4391 10.3486
+\c 53.504 10.0522 52.0759 9.3132 50.5507 9.5106
+\c 49.0242 9.708 47.5953 10.5447 46.5134 11.1853
+\c 45.4301 11.8253 44.3462 12.1702 44.3462 12.1702
+\c 47.7435 13.8935 45.5783 16.9944 45.5783 16.9944
+\c 48.1376 17.6842 48.5816 19.5543 48.5816 19.5543
+\c 50.7467 18.6684 52.0759 19.8507 52.3217 20.7851
+\c 52.5683 21.7208 51.8307 22.4591 50.7966 22.2624
+\c 49.7625 22.0657 49.4183 20.9333 49.4183 20.9333
+\l 49.9585 20.6382
+\c 50.6982 21.77 51.4871 21.2782 51.7323 20.8349
+\c 51.9782 20.3917 51.2398 19.3084 49.91 19.5058
+\c 48.5816 19.7025 48.3357 20.8349 48.3357 20.8349
+\l 47.7934 20.5884
+\c 48.0399 20.0474 48.3835 19.7025 48.3835 19.7025
+\c 47.7435 18.5694 44.3961 17.831 44.3961 17.831
+\c 43.5587 16.2062 42.7712 16.6993 42.7712 16.6993
+\l 42.821 14.7793
+\c 42.821 14.7793 43.7568 15.9603 44.3462 16.5518
+\c 44.937 17.1426 45.2321 16.7976 45.2321 16.7976
+\c 46.956 13.6462 43.9029 12.4154 43.9029 12.4154
+\c 43.9029 12.4154 43.6092 12.7119 42.7712 13.106
+\c 41.9345 13.4994 40.9981 12.5636 41.9345 12.0712
+\c 42.8688 11.5787 44.0504 11.9728 44.0504 11.9728
+\c 45.1344 11.9243 49.5173 8.9198 51.289 9.167
+\c 53.0614 9.4122 54.3414 9.9545 55.0797 10.2981
+\c 55.8181 10.6437 56.2607 10.6922 56.9512 10.6437
+\c 57.6411 10.5938 58.1315 10.0037 57.8863 9.708
+\c 57.6411 9.4122 57.0994 9.6096 57.0994 9.6096
+\c 57.0994 9.7578 56.7538 10.1014 56.4089 9.8063
+\c 56.0653 9.5106 56.5072 9.2155 56.5072 9.2155
+\c 56.7538 9.2647 57.2948 8.8706 56.7046 8.428
+\c 56.1125 7.9854 55.5722 8.1316 55.5722 8.1316
+\c 55.523 8.5762 55.1296 9.1165 54.4889 9.068
+\c 53.8503 9.0188 53.9473 8.1316 54.2417 8.0339
+\c 54.5381 7.9349 54.6863 8.2306 54.6863 8.2306
+\c 54.4889 8.1316 54.1939 8.2798 54.2909 8.4772
+\c 54.3906 8.6739 54.784 8.6739 55.0797 8.2306
+\c 55.3748 7.788 55.2266 7.049 53.9473 7.0005
+\c 52.6667 6.95 51.1401 7.1473 49.0726 7.7382
+\c 47.0058 8.329 43.8046 8.5762 43.8046 8.5762
+\c 42.6735 11.0371 40.4578 10.7427 40.8519 9.5604
+\c 41.246 8.3795 43.1653 7.9349 44.1502 7.689
+\c 45.1344 7.4431 46.5619 6.0648 47.5475 5.129
+\c 48.5317 4.1933 48.8766 3.8498 49.27 3.7015
+\c 49.6641 3.5533 51.0916 3.5533 52.373 3.3074
+\c 53.6523 3.0616 53.9965 2.3232 53.7021 1.7809
+\c 53.4057 1.2393 52.5198 1.2891 51.7323 1.535
+\c 50.9448 1.7809 50.9448 1.6832 50.9448 1.6832
+\c 50.8942 0.895 50.3533 0.6492 49.5644 0.796
+\c 48.7776 0.9442 48.8268 1.3383 48.8268 1.3383
+\c 48.8268 1.535 48.5816 1.6832 48.5816 1.6832
+\c 47.8425 0.5016 46.5134 0.9927 45.5783 2.5199
+\c 44.6426 4.0465 43.9528 4.8832 43.017 5.2773
+\c 42.0813 5.6707 39.6197 6.4589 39.6197 6.4589
+\c 38.7339 9.068 37.208 8.7729 37.3555 7.8864
+\c 37.5031 7.0005 38.7339 6.1139 38.7339 6.1139
+\c 36.5195 5.0799 34.4869 6.9875 34.4869 6.9875
+\c 35.6699 8.6623 35.1528 10.4224 35.1528 10.4224
+\c 35.8905 10.0283 38.1922 10.3971 37.8965 12.6613
+\c 37.557 15.2725 34.4507 15.9118 32.9733 15.7636
+\c 31.2597 15.5914 29.925 14.1271 30.7085 10.9886
+\c 31.4229 8.1316 33.5641 6.7293 33.5641 6.7293
+\c 30.3888 5.1782 27.7059 7.1473 27.7059 7.1473
+\c 23.7185 9.2647 21.9939 15.2219 25.3427 15.1728
+\c 28.6902 15.1236 29.6744 11.5787 29.3793 10.7912
+\c 29.0849 10.0037 28.3452 10.2004 28.3452 10.2004
+\c 28.1485 11.4312 26.9177 12.7119 26.2778 12.5636
+\c 25.6385 12.4154 25.3912 11.382 26.8692 10.2981
+\c 28.3452 9.2155 29.8233 9.3637 29.8718 11.382
+\c 29.9216 13.4003 28.0017 15.321 25.5886 15.4186
+\c 23.1762 15.5177 22.1913 13.3013 23.7185 10.3486
+\c 25.245 7.3946 27.2142 6.6187 27.2142 6.6187
+\c 26.7695 6.422 25.3427 6.0648 23.4234 6.6556
+\c 21.5014 7.2464 20.813 8.6254 20.813 8.6254
+\c 21.2071 9.4122 21.2071 10.1506 21.2071 10.1506
+\c 22.1913 10.1506 22.8818 11.8738 21.649 13.6462
+\c 20.4195 15.4186 17.5174 15.0751 17.8097 12.3178
+\c 18.0563 10.0037 19.7789 7.8864 19.7789 7.8864
+\c 19.0405 7.049 18.0065 6.8031 16.9731 7.049
+\c 15.939 7.2956 15.8891 7.8864 16.0865 7.7382
+\c 16.2832 7.5913 16.4799 7.689 16.4799 7.689
+\c 16.874 7.8864 16.4314 8.7231 15.7409 8.1821
+\c 15.0524 7.6405 15.939 6.3107 17.5154 6.4097
+\c 19.0904 6.5074 20.0254 7.6405 20.0254 7.6405
+\c 25.1952 4.4891 27.4723 6.3967 27.4723 6.3967
+\c 31.0534 4.4774 33.9104 6.5074 33.9104 6.5074
+\c 36.3208 4.4891 39.1403 5.8059 39.1403 5.8059
+\c 40.1743 5.1659 42.6735 5.129 44.2984 3.0124
+\c 45.9219 0.895 46.4137 0.6983 47.2517 0.5501
+\c 48.0877 0.4026 48.6294 0.9442 48.6294 0.9442
+\c 48.975 0.6492 49.27 0.4518 50.4032 0.5016
+\c 51.289 0.5399 51.4366 1.1901 51.4366 1.1901
+\c 53.504 0.0577 54.1939 1.1416 54.1939 2.0268
+\c 54.1939 2.914 53.1099 3.3074 52.569 3.4557
+\c 52.0274 3.6025 50.5008 3.6524 49.7625 3.8006
+\c 49.0242 3.9474 48.3357 4.8832 47.3009 5.7683
+\c 46.2668 6.6556 45.0859 7.5414 45.0859 7.5414
+\c 46.7606 7.5913 49.171 7.0982 50.5992 6.7048
+\c 52.0274 6.3107 52.4208 6.2615 53.8483 6.3107
+\c 55.2778 6.3598 55.7682 7.6405 55.7682 7.6405
+\c 56.3105 7.6405 56.8522 7.9854 57.0482 8.3795
+\c 57.2463 8.7729 57.4928 8.9696 57.4928 8.9696
+\c 58.6239 9.1165 58.6738 10.1506 57.6411 10.6437
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian159.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian159.pgf
new file mode 100644
index 0000000000..11d39447b6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian159.pgf
@@ -0,0 +1,182 @@
+\m 5.7956 9.2393
+\c 5.7956 9.2393 4.2438 7.098 6.0893 5.7682
+\c 7.9375 4.4391 10.0781 5.1036 11.9236 5.6207
+\c 13.4993 6.0612 15.8386 6.8023 17.3898 4.144
+\c 17.3898 4.144 16.4294 5.6207 14.5826 5.5469
+\c 12.7371 5.4725 11.8765 3.8244 9.488 3.9958
+\c 6.758 4.1925 2.7671 6.5817 5.7956 9.2393
+\s
+\m 17.3167 2.3709
+\c 17.3167 2.3709 15.2485 3.3305 14.2868 3.183
+\c 13.3279 3.0362 9.7086 0.5247 6.3864 3.183
+\c 6.3864 3.183 8.8227 2.0752 11.703 2.8879
+\c 14.4678 3.6679 15.1003 4.0696 17.3167 2.3709
+\s
+\m 29.6983 12.39
+\c 28.1582 11.3785 24.6277 8.9442 21.2303 8.8944
+\c 17.8324 8.8452 15.3947 10.7228 12.9106 12.3409
+\c 9.8083 14.3598 7.2962 14.6556 7.2962 14.6556
+\c 7.2962 14.6556 9.6109 13.9657 13.0075 11.4051
+\c 16.4049 8.8452 18.2258 7.7121 22.2153 7.9593
+\c 26.2027 8.2059 28.3187 10.7166 29.7475 11.8484
+\c 31.175 12.9808 33.8586 14.1625 36.2218 14.4083
+\c 36.2218 14.4083 34.0314 14.6556 30.8308 16.4765
+\c 27.6302 18.2981 25.1201 20.3656 20.1471 20.0213
+\c 15.1741 19.6764 13.2056 16.7231 8.9709 15.3441
+\c 8.9709 15.3441 10.3991 15.5906 11.4824 16.1316
+\c 12.565 16.6732 16.0606 18.9879 21.2303 19.184
+\c 21.2303 19.184 24.0853 19.184 27.0899 17.8548
+\c 30.0924 16.5257 32.1599 14.8024 35.0149 14.5565
+\c 35.0149 14.5565 32.9973 14.5565 29.6983 12.39
+\s
+\m 10.8902 15.2956
+\c 10.8902 15.2956 16.9465 18.0427 20.5658 18.1014
+\c 25.144 18.1758 30.3882 14.9254 31.6429 14.9254
+\c 31.6429 14.9254 31.5691 14.631 29.7974 15.0736
+\c 28.025 15.5169 24.6277 17.2886 20.4913 17.2148
+\c 16.3557 17.1418 13.4016 15.2956 10.8902 15.2956
+\s
+\m 15.396 15.148
+\c 15.396 15.148 19.0133 16.0325 21.0084 16.0325
+\c 23.0021 16.0325 24.7007 15.2949 26.103 15.0736
+\c 26.103 15.0736 22.6326 15.3693 21.0814 15.3693
+\c 19.5317 15.3693 17.1685 14.9991 15.396 15.148
+\s
+\m 18.6451 10.5691
+\c 18.2784 10.5691 17.9799 10.8662 17.9799 11.2337
+\c 17.9799 11.6005 18.2784 11.8989 18.6451 11.8989
+\c 19.0119 11.8989 19.3097 11.6005 19.3097 11.2337
+\c 19.3097 10.8662 19.0119 10.5691 18.6451 10.5691
+\m 18.7927 12.5622
+\c 18.1404 12.5622 17.6111 12.0335 17.6111 11.3805
+\c 17.6111 10.7289 18.1404 10.1989 18.7927 10.1989
+\c 19.4449 10.1989 19.9743 10.7289 19.9743 11.3805
+\c 19.9743 12.0335 19.4449 12.5622 18.7927 12.5622
+\s
+\m 23.2971 10.5691
+\c 22.9317 10.5691 22.6326 10.8662 22.6326 11.2337
+\c 22.6326 11.6005 22.9317 11.8989 23.2971 11.8989
+\c 23.6639 11.8989 23.9631 11.6005 23.9631 11.2337
+\c 23.9631 10.8662 23.6639 10.5691 23.2971 10.5691
+\m 23.4454 12.4884
+\c 22.7931 12.4884 22.2637 11.9597 22.2637 11.3068
+\c 22.2637 10.6545 22.7931 10.1265 23.4454 10.1265
+\c 24.099 10.1265 24.6277 10.6545 24.6277 11.3068
+\c 24.6277 11.9597 24.099 12.4884 23.4454 12.4884
+\s
+\m 14.8052 20.4646
+\c 14.8052 20.4646 11.9236 19.7256 9.3398 22.6803
+\c 6.7559 25.6337 10.227 30.8034 15.3216 27.4805
+\c 15.3216 27.4805 13.1797 28.1458 11.9236 26.2252
+\c 10.6696 24.3045 11.7768 21.6462 16.872 21.1299
+\l 16.4294 20.8334
+\c 16.4294 20.8334 14.8052 20.6859 12.22 22.459
+\c 9.6355 24.2308 10.8902 27.5543 13.9925 27.8494
+\c 13.9925 27.8494 11.9987 28.8828 10.1519 27.1848
+\c 8.3064 25.4861 9.1185 21.1299 14.8052 20.4646
+\s
+\m 28.098 20.5384
+\c 28.098 20.5384 31.2741 22.0888 31.5691 24.0832
+\c 31.8635 26.0763 29.9449 28.8104 25.6604 26.2245
+\c 25.6604 26.2245 25.7348 27.4061 28.025 28.4402
+\c 30.3131 29.4749 33.0458 28.5877 33.8586 26.1507
+\c 34.6714 23.713 32.0117 20.5384 29.5747 20.2426
+\c 29.5747 20.2426 32.6763 21.8668 33.3415 24.1563
+\c 34.0061 26.4464 31.2741 30.4346 26.7689 27.3323
+\c 26.7689 27.3323 28.3931 28.5139 30.8308 27.1841
+\c 33.2671 25.8563 32.7514 21.498 28.098 20.5384
+\s
+\m 37.2566 11.0862
+\l 37.329 11.3805
+\c 37.329 11.3805 39.766 12.1196 40.727 13.9657
+\c 41.6859 15.8126 40.8 19.7884 36.5162 19.8745
+\c 32.8245 19.9483 31.2741 17.6588 31.2741 17.6588
+\l 30.8308 17.9539
+\c 30.8308 17.9539 31.7173 19.7263 34.4487 20.6128
+\c 37.1821 21.4987 40.4305 20.4646 41.4646 18.1758
+\c 42.4987 15.8864 42.2036 12.4153 37.2566 11.0862
+\m 35.213 13.6843
+\c 36.0709 13.9282 36.6446 13.9234 37.0346 14.0149
+\c 37.8706 14.2116 38.0175 14.6057 38.0175 14.6057
+\c 35.0907 14.9629 33.0731 16.1138 31.3909 17.3528
+\c 32.1005 18.3739 34.2069 19.5726 36.8126 19.283
+\c 39.4709 18.9873 41.1696 16.107 40.2837 14.114
+\c 39.3978 12.1196 37.1821 11.677 37.1821 11.677
+\c 36.9062 12.7746 35.7751 13.4241 35.213 13.6843
+\m 36.7382 10.8635
+\c 36.4431 8.5747 34.0806 8.4279 32.4557 8.8705
+\c 31.2385 9.201 30.1075 9.8636 29.6143 10.1757
+\c 30.0317 10.5753 30.4777 10.9735 30.9783 11.3566
+\c 32.3553 12.4092 33.4495 13.0136 34.3223 13.3729
+\c 34.5641 13.3476 37.0189 13.0409 36.7382 10.8635
+\m 23.3463 7.0735
+\c 20.1956 6.7784 18.2756 6.8023 15.6167 8.697
+\c 9.2086 13.2677 9.0447 13.8182 6.1159 14.7539
+\c 6.1159 14.7539 7.247 14.6563 9.5617 16.0332
+\c 11.8765 17.4122 14.6802 19.8253 17.8822 20.4646
+\c 21.0814 21.1046 24.0368 21.3997 28.3685 18.7906
+\c 32.7016 16.1814 33.095 14.8516 37.4772 14.5074
+\c 37.4772 14.5074 37.329 14.2622 36.1474 14.114
+\c 34.9657 13.9657 34.2766 13.9657 31.7173 12.3415
+\c 29.1567 10.7166 26.4977 7.3692 23.3463 7.0735
+\m 7.9369 9.535
+\c 5.5005 9.6819 5.1304 10.7911 5.1304 10.7911
+\c 5.1304 10.7911 4.8845 13.4241 7.7156 13.7438
+\c 8.2073 13.8005 10.227 12.4153 11.5561 10.9379
+\c 11.5561 10.9379 10.3745 9.3875 7.9369 9.535
+\m 42.7944 17.585
+\c 41.9817 20.6128 38.8063 22.0895 35.4821 21.4987
+\c 32.7063 21.0056 30.8608 18.8643 30.3267 18.1724
+\c 28.9983 19.2277 27.8228 20.2344 26.4486 20.7604
+\c 23.1004 22.0403 21.968 22.1387 20.3431 22.0895
+\c 18.7182 22.0403 17.8324 21.6462 16.0114 20.7112
+\c 14.1898 19.7755 11.1859 17.5113 9.1929 16.4034
+\c 7.1978 15.2956 4.5402 14.631 4.5402 14.631
+\c 6.1638 14.5572 7.0503 13.892 7.0503 13.892
+\c 4.6871 13.3756 4.6871 11.2337 4.6871 11.2337
+\c 2.5465 11.3068 0.8472 15.7388 4.0218 18.1014
+\c 7.1978 20.4646 10.6696 18.1758 10.6696 18.1758
+\l 11.0377 18.3971
+\c 8.1581 20.9079 3.6537 19.5781 2.2494 17.068
+\c 0.8472 14.5572 2.5465 11.8989 2.5465 11.8989
+\c 0.2557 13.4494 -0.3344 17.807 3.3586 19.8
+\c 7.0503 21.7944 10.4476 19.7263 10.4476 19.7263
+\l 10.8895 19.9483
+\c 3.6537 23.7882 -0.9997 18.5447 0.1833 14.8516
+\c 1.3635 11.1599 4.3182 10.4209 4.3182 10.4209
+\c 1.5111 8.3541 0.6996 4.5128 4.6871 1.707
+\c 8.6745 -1.0995 11.0377 0.2303 13.0328 0.968
+\c 15.0265 1.707 15.8393 1.485 15.8393 1.485
+\c 13.5492 2.3716 10.1519 -0.8044 6.0893 1.485
+\c 2.0288 3.7752 2.4714 6.2853 2.8402 7.6144
+\c 3.2104 8.9449 4.9077 10.2734 4.9077 10.2734
+\c 4.9077 10.2734 5.9431 9.0173 8.0113 8.6485
+\c 10.0788 8.2803 11.703 10.5691 11.703 10.5691
+\c 11.703 10.5691 16.814 6.0961 20.1956 5.7682
+\c 25.616 5.243 27.0565 7.7121 29.5658 10.1306
+\c 29.8179 9.8888 30.3213 9.4442 31.2003 8.7967
+\c 32.6032 7.7633 34.226 7.7633 35.5572 8.4279
+\c 36.8864 9.0918 37.0346 10.3465 37.0346 10.3465
+\c 39.2496 9.7563 40.6539 7.2463 40.3568 5.1774
+\c 40.061 3.1099 37.6978 1.19 33.7111 0.8942
+\c 30.242 0.6374 28.1718 2.0014 28.1718 2.0014
+\c 29.3541 0.968 31.4223 -0.2136 35.5572 0.451
+\c 39.6922 1.1155 41.3909 4.661 40.6539 7.2463
+\c 39.9142 9.8308 37.1821 10.7166 37.1821 10.7166
+\c 40.9476 11.455 43.6059 14.5572 42.7944 17.585
+\s
+\m 37.1077 8.9442
+\c 37.1077 8.9442 38.1418 8.6478 38.1418 7.3187
+\c 38.1418 5.9902 36.7382 3.8476 33.7104 4.0696
+\c 30.6826 4.2909 27.9498 7.0236 25.1433 3.7007
+\c 25.1433 3.7007 25.4398 5.3249 27.9498 5.9902
+\c 30.4613 6.6534 32.3081 4.2909 35.6303 5.0292
+\c 38.9532 5.7682 37.7723 8.8705 37.1077 8.9442
+\s
+\m 38.5106 5.7682
+\c 38.5106 5.7682 37.2566 1.8545 33.8579 1.8545
+\c 30.4613 1.8545 28.3931 4.2178 26.4001 2.9624
+\c 26.4001 2.9624 27.4335 4.144 29.1321 3.922
+\c 30.8308 3.7014 32.7507 2.5936 34.2267 2.666
+\c 35.7048 2.7404 37.0346 2.8879 38.5106 5.7682
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian16.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian16.pgf
new file mode 100644
index 0000000000..67a0de0d44
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian16.pgf
@@ -0,0 +1,212 @@
+\m 98.6383 15.491
+\c 98.4191 21.7214 93.8847 26.5806 87.9327 26.579
+\c 87.9327 26.6014 83.7743 27.0078 80.4255 23.9134
+\c 77.0767 20.8174 75.2511 19.8542 73.4239 20.3118
+\c 71.5983 20.7662 69.3151 24.3182 75.1487 26.7534
+\c 71.0399 26.6526 67.4895 23.8094 69.3663 20.3614
+\c 71.2207 16.9534 76.3151 18.1294 79.1055 21.6286
+\c 79.2047 21.755 79.3055 21.875 79.4015 21.995
+\c 78.0575 19.7486 77.4863 17.0622 78.0575 14.6414
+\c 78.6799 12.0078 80.2543 10.0174 82.4927 9.0286
+\c 84.6143 8.0942 86.9487 8.2158 88.8991 9.3006
+\c 91.7407 10.8894 92.7663 14.3182 92.0991 16.7598
+\c 91.6591 18.387 90.6143 19.5246 89.2511 19.9598
+\c 88.9839 20.0622 88.6399 20.1598 88.1855 20.211
+\c 85.4991 20.211 83.5807 17.779 84.5343 15.491
+\c 85.2959 13.6638 88.6431 13.9182 89.0479 15.9486
+\c 89.4111 17.763 88.0319 17.8558 88.2895 18.5854
+\c 88.5263 19.2606 89.4079 18.883 89.7855 18.6862
+\c 90.5615 18.0382 90.9503 17.0814 91.0783 16.6078
+\c 91.6239 14.611 90.8015 11.6286 88.4991 10.3422
+\c 86.8767 9.435 84.7631 9.3598 82.9839 10.1438
+\c 81.1039 10.9726 79.7759 12.6686 79.2431 14.9214
+\c 78.6543 17.4078 79.2703 20.0574 80.9327 22.1982
+\c 82.5967 24.339 85.0223 25.5918 87.5887 25.6382
+\c 92.9615 25.7326 97.3231 21.3998 97.5199 15.7742
+\c 97.6447 12.3182 96.5567 9.0254 94.3103 6.6318
+\c 91.9183 4.0814 88.5487 2.7246 84.2975 2.6046
+\c 73.8607 2.307 67.5455 10.6862 61.5487 23.6622
+\c 58.4367 30.395 55.9023 34.2815 54.2575 36.4175
+\c 60.2895 33.5198 68.9615 31.7918 77.2159 38.7695
+\c 77.2159 38.7695 78.8175 40.7887 78.8191 40.7887
+\c 76.8111 38.2575 71.8479 37.6143 68.9119 37.6863
+\c 62.7743 37.8351 58.2047 41.3599 53.1279 44.2895
+\c 47.8623 47.3279 42.2271 49.7551 36.2351 50.9071
+\c 32.5279 51.6207 28.7199 51.7567 24.9775 51.2079
+\c 12.9807 49.4415 3.0479 40.4223 0.6079 29.9502
+\c 0.0959 28.091 -0.0001 26.6942 -0.0001 25.9918
+\c -0.0001 25.7006 0.0143 25.5262 0.0207 25.4798
+\l 1.2335 25.515
+\c 1.2783 26.7886 1.4543 28.0414 1.7199 29.275
+\c 2.5807 32.6158 4.9423 37.8447 11.3711 43.3375
+\c 16.6399 47.5247 26.5807 50.5199 34.0639 48.2559
+\c 39.0047 46.7647 42.4607 42.6223 43.9519 37.7967
+\c 45.4031 37.8127 47.2991 39.4351 47.2991 40.9263
+\c 47.7295 40.5535 48.3183 40.0783 49.0319 39.5567
+\c 50.2543 38.3135 51.8751 36.5359 53.6207 34.2575
+\c 53.6351 34.1599 58.4367 26.4958 54.3311 14.5726
+\c 51.6639 8.2974 45.1551 1.5838 34.9263 1.691
+\c 28.9679 1.755 22.7231 4.5406 19.0239 8.7886
+\c 15.9103 12.363 14.5999 16.8622 15.2303 21.8062
+\c 15.7615 26.3214 18.1935 30.3614 21.7359 32.619
+\c 23.1327 33.5102 24.9055 34.4831 27.2271 34.7359
+\c 28.7743 34.3695 33.4719 32.9102 33.8063 28.835
+\c 33.9439 27.1422 33.7183 25.6142 32.7887 24.5726
+\c 31.9359 23.6158 30.6271 22.9422 29.2383 22.8974
+\c 28.2239 22.8654 26.9119 23.2974 26.3855 24.1534
+\c 26.3423 24.3134 26.2431 24.9326 27.2575 24.979
+\c 28.4255 25.0286 29.8959 25.8414 29.2895 27.7694
+\c 28.6799 29.6958 25.4831 29.899 24.6207 27.7694
+\c 23.8607 25.891 24.5631 23.9758 26.1967 22.7822
+\c 26.3951 22.6222 26.6335 22.4766 26.9023 22.3422
+\c 26.9023 22.3422 26.9023 22.3422 26.9055 22.3422
+\c 27.4831 22.0526 28.2175 21.8542 29.1551 21.883
+\c 30.5119 21.9246 31.7503 22.3694 32.7439 23.1422
+\c 32.8831 22.8894 33.1231 22.563 33.4543 22.1998
+\c 30.8255 17.227 24.7743 18.3998 24.7743 18.3998
+\c 24.7743 18.3998 23.5551 16.9118 22.8799 14.411
+\c 29.7151 12.3726 33.4095 19.7854 34.1647 21.499
+\c 34.5519 21.147 35.0015 20.795 35.5023 20.4654
+\c 35.0367 13.5662 30.1855 12.1102 30.1855 12.1102
+\c 30.1855 12.1102 29.9839 9.4046 30.9279 6.2254
+\c 38.0271 7.6702 36.8895 17.6622 36.5487 19.8606
+\c 37.1263 19.5726 37.7439 19.3342 38.3919 19.1854
+\c 39.5183 16.7102 39.1647 12.8494 38.9119 8.7934
+\c 40.6703 5.9534 43.1055 5.1438 43.1055 5.1438
+\c 43.1055 5.1438 44.5231 6.7662 44.4575 11.2974
+\c 41.1199 15.0078 40.1007 18.4974 39.8207 19.7742
+\c 40.3743 20.2478 40.8367 20.7886 41.2303 21.3726
+\c 45.1887 11.4798 51.6959 13.5982 51.6959 13.5982
+\c 51.6959 13.5982 51.0863 15.6942 49.5983 17.995
+\c 44.4783 18.3598 42.4335 21.0558 41.7615 22.2718
+\c 42.1151 22.963 42.3839 23.6974 42.5727 24.467
+\c 43.6079 23.2734 46.9055 20.6446 50.2063 21.107
+\c 53.5887 21.579 54.1967 24.8942 54.1967 24.8942
+\c 54.1967 24.8942 51.8991 26.2478 50.8159 26.5838
+\c 47.3727 22.4158 43.5551 24.883 42.7775 25.4574
+\c 42.8735 26.0942 42.9183 26.7438 42.9231 27.395
+\c 43.3711 27.235 43.8239 27.1134 44.2895 27.0622
+\c 46.5519 26.8094 48.2479 27.2398 49.3231 28.3374
+\c 51.6111 30.6622 50.2479 35.4303 46.6895 35.2431
+\c 46.1519 35.2143 45.5983 35.0783 45.1151 34.7759
+\c 44.9119 34.6895 44.6799 34.5119 44.4239 34.1935
+\c 43.8431 33.4782 43.6511 32.5758 43.7487 31.8654
+\c 43.7487 31.8574 43.7455 31.851 43.7455 31.8414
+\c 43.8575 31.1566 44.2319 30.6606 44.7951 30.7102
+\c 45.5007 30.7726 45.4703 31.3886 45.2687 32.5374
+\c 45.1775 33.0606 45.3679 33.4654 45.5999 33.7567
+\c 45.8927 34.0751 46.2751 34.2639 46.7455 34.2767
+\c 50.0719 34.3631 50.2607 30.443 48.5151 28.9534
+\c 45.7423 26.5838 41.2335 29.275 38.9135 31.1102
+\c 37.2143 32.4542 34.9647 34.3631 32.8895 35.1759
+\c 28.2239 37.0015 24.6511 35.9199 21.0815 33.6462
+\c 20.7103 33.4094 20.3551 33.1502 20.0079 32.8814
+\c 21.7183 35.1039 22.4927 37.4255 22.1647 39.4511
+\c 21.9295 40.9071 21.1327 42.1423 19.9199 42.9231
+\c 18.6831 43.7199 17.3455 43.9055 16.2511 43.4287
+\c 16.1839 43.4031 16.1327 43.3599 16.0703 43.3279
+\c 14.9487 42.8911 13.7327 41.6767 13.8143 40.1471
+\c 13.9183 38.2207 16.4527 38.0159 17.1647 39.0303
+\c 17.8927 40.0735 17.0607 40.9583 16.8079 41.5679
+\c 16.5375 42.3519 16.8927 42.7007 17.2271 42.8591
+\c 17.9327 42.9423 18.7199 42.7311 19.4815 42.2415
+\c 20.4975 41.5839 21.1679 40.5487 21.3647 39.3183
+\c 21.6655 37.4479 20.8895 35.2495 19.1839 33.1294
+\c 17.7887 31.4046 16.8511 29.7278 16.3551 28.755
+\c 16.0959 28.3262 15.8543 27.8814 15.6335 27.4286
+\c 16.1567 30.0414 16.6511 34.3071 14.6271 35.4799
+\c 13.4079 35.0735 11.9887 33.0446 11.9887 33.0446
+\c 11.9887 33.0446 14.1423 31.659 14.6015 24.771
+\c 14.3311 23.8574 14.1359 22.9166 14.0239 21.9534
+\c 13.9855 21.6558 13.9551 21.363 13.9295 21.0702
+\c 13.8335 22.627 13.2239 28.0382 9.4191 30.1694
+\c 6.5775 29.4254 6.2399 26.7182 6.2399 26.7182
+\c 6.2399 26.7182 11.5839 26.9902 13.8831 18.1294
+\c 13.8895 18.1486 13.8927 18.1758 13.8991 18.195
+\c 13.9263 17.7806 13.9695 17.3694 14.0239 16.963
+\c 12.7487 19.0878 9.7919 23.3406 6.3071 23.7438
+\c 5.0895 23.4046 3.3983 21.715 3.6015 19.347
+\c 5.6863 19.7502 11.5855 18.9438 14.7135 13.9422
+\c 14.8111 13.635 14.9199 13.331 15.0383 13.0318
+\c 13.5231 14.1182 9.3855 16.8318 5.4959 17.0478
+\c 2.1839 15.5598 3.1295 12.651 4.0079 11.635
+\c 5.7231 13.3502 10.0799 14.411 15.8191 11.3246
+\c 16.4399 10.1486 17.1999 9.0286 18.1071 7.9854
+\c 18.2511 7.8206 18.4079 7.659 18.5647 7.4942
+\c 15.0511 9.7902 12.0671 11.4878 7.4623 10.923
+\c 3.9135 10.4862 2.6271 8.3854 2.1775 7.1726
+\c 1.4623 5.243 1.8383 2.931 3.0911 1.5534
+\c 4.3375 0.1822 6.6239 -0.365 8.5231 0.251
+\c 10.0431 0.7438 11.0079 1.8766 11.1743 3.363
+\c 11.2319 3.8654 11.1775 4.3102 11.0543 4.7038
+\l 11.0751 4.7694
+\c 11.0751 4.7694 10.3999 7.139 8.0671 7.2398
+\c 5.7327 7.3422 5.7327 5.8526 6.0367 5.5822
+\c 6.3423 5.3102 6.7487 5.2446 7.6607 5.6494
+\c 8.5551 6.0478 9.9295 5.3038 10.1775 3.939
+\c 10.1839 3.7934 10.1839 3.6414 10.1663 3.4734
+\c 10.0015 2.0078 8.8703 1.4302 8.2111 1.2158
+\c 6.6959 0.7262 4.8175 1.163 3.8431 2.2366
+\c 2.8479 3.3278 2.5487 5.2574 3.1295 6.819
+\c 3.7679 8.5422 5.3503 9.6414 7.5855 9.915
+\c 12.1919 10.4814 14.9887 8.6382 18.8607 6.0878
+\l 21.4607 4.4078
+\c 26.8927 1.0254 30.4927 0.8846 30.6431 0.8814
+\l 30.6479 0.9502
+\c 32.0607 0.6606 33.4943 0.491 34.9135 0.475
+\c 45.7423 0.3598 52.6303 7.4574 55.4671 14.139
+\c 56.7647 17.9006 57.2223 21.2414 57.2255 24.0878
+\c 57.8815 23.2126 58.8047 21.5502 58.8639 19.0318
+\c 58.9487 15.539 58.8911 10.9982 58.8703 9.6878
+\c 57.2863 9.5854 56.0239 8.275 56.0239 6.6622
+\c 56.0239 4.9838 57.3887 3.6206 59.0671 3.6206
+\c 60.7455 3.6206 62.1103 4.9838 62.1103 6.6622
+\c 62.1103 8.1326 61.0671 9.3598 59.6831 9.6446
+\c 59.7023 10.923 59.7647 15.5182 59.6767 19.0542
+\c 59.5839 22.8974 57.6735 24.907 57.2015 25.3486
+\c 57.1151 27.2126 56.8367 28.827 56.4911 30.1774
+\c 57.8431 28.0782 59.1791 25.7166 60.3855 23.1006
+\c 65.3839 12.2878 71.8031 0.8334 84.1455 1.1854
+\c 88.6703 1.315 92.4271 2.8398 95.0127 5.5934
+\c 95.3375 5.9422 95.6399 6.307 95.9231 6.6814
+\c 96.3999 6.9598 97.1839 7.2238 98.4175 7.0862
+\c 99.8063 6.9278 100.9807 6.0638 101.4095 4.8814
+\c 101.6255 4.2942 101.6063 3.8382 101.3871 3.3902
+\c 101.2159 3.2846 101.0223 3.2158 100.8031 3.2446
+\c 100.0527 3.339 100.6159 4.3662 98.9775 4.459
+\c 97.7151 4.5342 96.7295 3.339 96.9167 2.0254
+\c 97.1039 0.7166 98.6511 0.0622 100.3327 0.435
+\c 102.6095 0.9422 102.9535 3.9438 102.4415 5.1166
+\c 102.4399 5.115 102.4399 5.1134 102.4399 5.1102
+\c 102.4255 5.147 102.4191 5.1854 102.4063 5.2222
+\c 101.8751 6.6878 100.4383 7.7614 98.7407 7.9534
+\c 97.9231 8.0446 97.2543 7.9662 96.6959 7.8222
+\c 98.0511 10.0702 98.7343 12.7038 98.6383 15.491
+\o
+\m 47.3199 42.9135
+\l 46.2911 43.9343
+\l 46.2831 42.4831
+\c 46.2831 42.3823 46.2367 40.2527 44.6895 39.3535
+\c 42.8511 44.4543 39.3263 47.9407 34.4175 49.4223
+\c 34.0703 49.5279 33.7007 49.5695 33.3455 49.6527
+\c 43.8639 48.4431 53.2799 42.8527 58.3487 39.8271
+\c 62.8143 37.1615 67.6111 36.1535 71.8463 36.8111
+\c 59.5519 31.1006 47.8703 42.3663 47.3199 42.9135
+\o
+\m 32.4847 34.0927
+\c 34.3551 33.3534 36.5599 31.7102 38.1887 30.4222
+\c 39.3823 29.4782 40.5359 28.5758 41.7199 27.9342
+\c 41.8207 24.939 41.2399 21.4606 38.6143 20.307
+\c 35.8303 20.635 34.0815 22.7934 33.5231 23.8654
+\c 34.6671 25.1598 35.1855 26.9134 35.0191 28.9342
+\c 34.7807 31.8286 32.8687 33.5198 31.0159 34.4911
+\c 31.4911 34.3871 31.9759 34.2623 32.4847 34.0927
+\o
+\m 61.3007 6.6622
+\c 61.3007 5.4318 60.2991 4.4318 59.0671 4.4318
+\c 57.8383 4.4318 56.8367 5.4318 56.8367 6.6622
+\c 56.8367 7.8942 57.8383 8.8958 59.0671 8.8958
+\c 60.2991 8.8958 61.3007 7.8942 61.3007 6.6622
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian160.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian160.pgf
new file mode 100644
index 0000000000..b3c5897292
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian160.pgf
@@ -0,0 +1,394 @@
+\m 32.7377 29.8356
+\c 32.7377 29.8356 33.3292 30.2782 33.8216 29.6389
+\c 33.8216 29.6389 34.3134 29.8848 34.9541 29.8356
+\c 34.9541 29.8356 34.1174 29.6874 33.9692 29.294
+\c 33.9692 29.294 34.56 28.8514 34.1174 28.6048
+\c 33.6734 28.3596 32.9843 29.0966 33.6249 29.4422
+\c 33.6249 29.4422 33.1311 30.033 32.7377 29.8356
+\s
+\m 17.0079 13.2924
+\c 17.0079 13.2924 15.3823 14.4009 12.8709 14.991
+\c 12.8709 14.991 14.2751 15.1392 15.4568 15.5094
+\c 16.6384 15.8782 18.042 17.0599 18.4108 17.1336
+\l 19.0754 16.0258
+\c 19.0754 16.0258 17.8938 15.435 17.0079 13.2924
+\m 25.3536 22.8935
+\c 26.3133 22.3027 27.4949 21.4899 27.2722 18.9798
+\c 27.0509 16.4684 26.7559 15.213 26.165 14.8442
+\c 26.165 14.8442 25.8693 14.6966 25.3536 14.991
+\c 24.8352 15.2868 20.9216 17.2798 19.0754 14.4009
+\c 19.0754 14.4009 19.52 14.6222 20.3307 15.1392
+\c 21.1428 15.6556 22.8975 15.6071 25.426 14.5477
+\c 28.6027 13.2186 32.4426 8.4935 37.3897 11.3731
+\c 37.3897 11.3731 37.6854 10.1177 36.5038 9.4531
+\c 35.3222 8.7879 32.8852 9.0829 30.9659 10.2646
+\c 30.9659 10.2646 30.5213 10.4128 30.1532 10.4128
+\c 30.1532 10.4128 31.4085 9.4531 32.5164 9.0829
+\c 33.6242 8.7141 34.7314 8.4191 36.5038 9.0099
+\c 36.5038 9.0099 36.2074 7.2374 34.5108 7.4581
+\c 32.8115 7.68 31.4823 7.8282 28.7503 10.4865
+\c 26.0168 13.1462 24.6877 13.8094 24.6877 13.8094
+\c 24.6877 13.8094 25.7949 13.0717 27.1254 10.1915
+\c 28.4545 7.3119 30.3738 5.4657 32.8852 5.6119
+\c 32.8852 5.6119 31.4085 4.9487 29.4879 5.6856
+\c 27.5686 6.4247 27.1991 7.4581 26.0913 10.1915
+\c 24.9834 12.9235 24.0982 14.5477 22.3245 14.5477
+\c 22.3245 14.5477 23.7281 14.3271 24.5395 12.776
+\l 24.0231 13.0717
+\l 24.172 12.6278
+\c 24.172 12.6278 22.1769 14.8442 19.7399 14.474
+\c 19.7399 14.474 22.8422 14.6966 24.2451 10.5603
+\l 23.8018 10.8567
+\l 23.7281 10.4865
+\c 23.7281 10.4865 21.8088 11.4462 21.8088 12.7015
+\c 21.8088 12.7015 21.1428 14.0314 18.9278 14.0314
+\c 18.9278 14.0314 18.042 12.776 18.9278 11.7419
+\c 18.9278 11.7419 17.6725 11.2993 17.6725 12.259
+\c 17.6725 12.259 17.0816 12.4072 17.598 13.8094
+\c 18.1157 15.213 19.1498 15.952 19.7399 16.1726
+\c 20.3307 16.3946 23.3592 17.1336 24.6139 16.9116
+\c 24.6139 16.9116 24.3926 16.3946 24.9834 15.952
+\c 24.9834 15.952 24.5395 17.8726 25.426 18.906
+\c 25.426 18.906 23.95 19.2011 24.7621 20.8253
+\c 24.7621 20.8253 23.7281 19.7175 24.6877 18.7578
+\c 24.6877 18.7578 24.8352 17.2798 24.4664 17.2798
+\l 22.1769 17.2798
+\l 19.7399 16.4684
+\c 19.7399 16.4684 18.9278 17.1336 18.9278 18.0188
+\c 18.9278 18.906 19.6662 19.9394 19.9612 20.3083
+\c 19.9612 20.3083 19.5924 20.5302 19.3711 20.0877
+\c 19.1498 19.6437 18.6328 17.9457 17.3767 17.1336
+\c 16.1213 16.3208 14.2751 16.0258 12.8709 15.5094
+\c 11.4693 14.991 10.7303 15.213 10.7303 15.213
+\l 10.2133 14.8442
+\c 10.2133 14.8442 11.2473 15.0655 13.0935 14.5477
+\c 14.9397 14.0314 17.1561 12.7015 17.1561 12.7015
+\c 17.1561 12.7015 16.7121 11.1518 19.52 10.7085
+\l 19.8875 9.8213
+\c 19.8875 9.8213 17.3029 10.4128 15.3823 8.1233
+\c 15.3823 8.1233 15.5305 7.8282 14.4227 8.4191
+\c 13.3155 9.0099 12.3552 10.3383 11.3949 11.8164
+\c 11.3949 11.8164 10.4352 11.9639 10.2133 11.7419
+\c 9.9927 11.5199 10.8778 10.1915 10.8778 10.1915
+\c 10.8778 10.1915 10.7303 8.4191 9.9927 7.6063
+\c 9.2529 6.7935 7.555 4.2834 7.2592 3.2486
+\c 7.2592 3.2486 6.0039 2.8798 4.8216 3.3224
+\c 4.8216 3.3224 5.5606 4.1352 6.3734 5.7601
+\c 7.1848 7.3843 7.2592 8.7879 7.9238 10.1915
+\c 8.5891 11.5937 8.6628 13.9576 9.77 14.474
+\c 9.77 14.474 9.2529 14.6222 8.8104 14.5477
+\c 8.3671 14.474 8.3671 13.8094 7.9238 13.8094
+\c 7.9238 13.8094 7.6294 13.9576 7.111 12.998
+\c 7.111 12.998 6.6691 12.998 6.3734 11.9639
+\c 6.3734 11.9639 6.1507 12.1107 6.1507 12.4809
+\l 5.7081 11.8164
+\c 5.7081 11.8164 6.0769 15.8782 10.9523 16.3946
+\c 10.9523 16.3946 12.1332 17.1336 13.9063 17.9457
+\c 15.6787 18.7578 16.7121 18.6841 18.2639 21.4161
+\c 18.2639 21.4161 19.2229 22.9679 21.2166 23.1148
+\c 21.2166 23.1148 21.513 22.0069 22.2507 21.8601
+\c 22.9904 21.7119 24.5395 21.7863 24.4664 22.9679
+\c 24.4664 22.9679 24.3926 23.4843 25.3536 22.8935
+\m 29.1191 20.7515
+\c 29.1191 20.7515 28.8971 18.8316 29.4879 18.4621
+\c 29.4879 18.4621 28.4545 17.2798 29.4141 14.8442
+\c 29.4141 14.8442 28.6027 14.1796 28.6027 13.2186
+\l 26.6821 14.4009
+\c 26.6821 14.4009 28.8971 18.6103 27.2722 20.9735
+\c 27.2722 20.9735 28.5283 21.343 29.1191 20.7515
+\m 29.9319 17.7244
+\c 29.9319 17.7244 31.0418 16.5776 33.1816 16.3946
+\c 35.7662 16.1726 36.5038 18.0933 36.5038 18.0933
+\c 36.5038 18.0933 37.3166 15.5825 38.1294 14.5477
+\c 38.1294 14.5477 37.3897 14.5477 37.3166 14.1051
+\c 37.2428 13.6625 36.5776 12.3334 36.874 11.7419
+\c 36.874 11.7419 36.3563 11.4462 36.0612 11.2249
+\c 35.7662 11.0029 33.6242 9.8957 29.1935 12.6278
+\c 29.1935 12.6278 29.4141 14.474 29.9319 14.7704
+\c 29.9319 14.7704 30.2269 14.6966 30.9659 14.474
+\c 31.7036 14.2534 31.9993 13.7349 33.2547 14.0314
+\c 34.5108 14.3271 35.8399 14.6966 35.8399 14.6966
+\c 35.8399 14.6966 33.4767 14.474 32.8852 14.4009
+\c 32.2958 14.3271 30.9659 14.7704 30.3014 15.0655
+\c 29.6354 15.3612 29.4879 16.6166 29.9319 17.7244
+\m 32.4426 5.9076
+\c 29.9319 6.7197 28.3063 8.7879 27.4949 11.0773
+\c 27.4949 11.0773 28.6027 9.9702 29.7843 8.9361
+\c 30.9659 7.9013 33.4029 5.9814 35.3222 7.0892
+\c 35.3222 7.0892 34.4261 5.2663 32.4426 5.9076
+\m 24.7621 12.0383
+\c 24.7621 12.0383 26.2395 10.0439 26.4615 8.2715
+\c 26.4615 8.2715 24.8352 11.0773 24.7621 12.0383
+\m 26.0913 8.2715
+\c 26.0913 8.2715 25.426 8.1971 24.6139 11.2249
+\c 24.6139 11.2249 26.0168 8.8616 26.0913 8.2715
+\m 24.0231 7.1637
+\c 24.0231 7.1637 23.7281 7.0892 23.7281 7.68
+\c 23.7281 8.2715 23.5798 9.6751 23.211 9.7475
+\c 23.211 9.7475 23.5798 9.9702 24.0231 9.6007
+\c 24.4664 9.2305 25.7949 7.7545 26.6821 7.4581
+\c 26.6821 7.4581 25.2054 7.0155 24.0231 7.1637
+\m 7.9238 3.7664
+\c 7.9238 3.7664 8.5891 5.0224 9.6225 6.1296
+\c 10.6559 7.2374 11.2473 8.2715 11.3218 10.0439
+\c 11.3218 10.0439 12.4296 7.9751 14.7184 7.6063
+\c 14.7184 7.6063 14.2751 7.2374 13.3155 6.9417
+\c 12.3552 6.6473 10.0664 4.726 8.2189 3.6181
+\o
+\m 21.2911 6.9417
+\l 19.2973 6.9417
+\c 18.7052 6.9417 17.598 6.6473 16.4902 4.8742
+\c 15.3823 3.1018 13.4637 3.3969 13.4637 3.3969
+\c 13.4637 3.3969 10.8041 1.9939 9.0323 1.9939
+\c 9.0323 1.9939 8.2189 1.6982 7.4068 1.2549
+\c 6.5953 0.8123 5.9294 -0.2224 3.5662 1.772
+\c 3.5662 1.772 2.2377 2.289 1.7951 2.289
+\c 1.3505 2.289 0.5391 2.7323 1.5725 2.8054
+\c 1.5725 2.8054 1.3505 3.1756 1.0561 3.1756
+\c 0.761 3.1756 0.3908 3.5451 0.9079 3.5451
+\c 1.231 3.5451 1.4946 3.5164 1.6496 3.4945
+\c 1.3437 3.5492 0.6538 3.7015 0.5391 3.9877
+\c 0.3908 4.3572 1.4249 4.2834 2.0171 4.1352
+\c 2.6065 3.9877 4.0101 2.9536 5.6343 2.8798
+\c 7.2592 2.8054 8.1458 2.8054 10.9523 4.9487
+\c 13.7581 7.0892 14.7929 7.3119 14.7929 7.3119
+\c 14.7929 7.3119 15.7525 7.9013 16.1958 8.2715
+\c 16.6384 8.6397 17.7455 9.6751 19.9612 9.3787
+\c 19.9612 9.3787 20.6272 7.3119 21.2911 6.9417
+\m 0.9079 1.0336
+\c 0.9079 1.0336 0.9817 1.1074 1.4249 1.3294
+\l 2.0895 1.5507
+\l 3.1243 1.4031
+\l 3.4186 1.0336
+\o
+\m 6.4471 10.8567
+\c 6.4471 10.8567 6.2996 11.6681 6.9642 11.6681
+\c 7.6294 11.6681 7.777 13.2186 7.777 13.2186
+\l 8.3671 13.2924
+\c 8.3671 13.2924 7.555 11.2993 6.8904 9.2305
+\c 6.2251 7.1637 4.6747 3.6926 4.6747 3.6926
+\o
+\m 19.8875 25.8475
+\c 19.8875 25.8475 21.2166 27.1773 21.6606 27.7668
+\c 21.6606 27.7668 21.8832 27.7668 22.2507 27.5462
+\c 22.6202 27.3242 23.211 27.5462 24.0231 26.5852
+\c 24.0231 26.5852 24.2451 26.5852 24.2451 26.0688
+\c 24.2451 25.5518 24.3926 24.3701 23.4316 24.0013
+\c 23.4316 24.0013 23.1372 23.2623 22.6202 23.2623
+\c 22.1032 23.2623 21.513 24.0013 21.513 24.0013
+\c 21.513 24.0013 20.1088 24.6659 19.8875 25.8475
+\m 19.4449 26.2163
+\c 19.4449 26.2163 19.2229 26.9554 19.5924 27.915
+\c 19.9612 28.876 20.7003 29.393 21.4386 29.0966
+\c 21.4386 29.0966 20.8478 28.5058 21.4386 28.5058
+\c 21.4386 28.5058 21.8088 28.5058 21.8088 29.0966
+\c 21.8088 29.0966 23.7281 29.4668 24.4664 28.5058
+\c 25.2054 27.5462 24.909 26.3645 24.4664 26.6596
+\c 24.0231 26.9554 23.4316 27.5462 22.694 27.6937
+\c 21.9556 27.8412 21.6606 28.137 21.6606 28.137
+\c 21.6606 28.137 20.479 26.6596 19.4449 26.2163
+\m 24.3189 23.7793
+\c 24.3189 23.7793 24.7621 22.7459 23.5061 22.3027
+\c 22.2507 21.8601 21.513 22.4509 21.6606 23.1885
+\c 21.6606 23.1885 22.3245 22.0807 24.3189 23.7793
+\m 34.8059 26.8816
+\c 34.7567 26.5367 34.1167 27.0291 34.1167 27.0291
+\c 34.1167 27.0291 34.8612 27.2709 34.8059 26.8816
+\m 35.9875 27.4724
+\c 36.135 27.7668 36.6759 27.3242 36.6759 27.3242
+\c 36.6759 27.3242 35.7894 27.0762 35.9875 27.4724
+\m 35.2983 28.7032
+\c 35.0524 28.7032 35.1002 29.0966 35.5449 29.0966
+\c 35.5449 29.0966 35.5449 28.7032 35.2983 28.7032
+\m 42.683 4.0867
+\c 42.388 5.2676 40.7877 5.8338 40.7877 5.8338
+\c 40.6402 7.0155 41.3785 10.4865 41.4523 12.1107
+\c 41.526 13.7349 41.3785 14.474 40.5657 17.9457
+\c 39.7529 21.4161 38.7195 22.1551 38.7195 22.1551
+\c 38.7195 22.1551 37.3897 22.7459 36.2818 23.4843
+\c 35.1747 24.2233 35.1002 24.8879 35.1002 24.8879
+\c 35.9383 24.4692 36.3317 25.2082 36.3317 25.2082
+\c 37.1199 25.2082 38.0051 25.6508 37.9566 26.6842
+\c 37.9183 27.4779 37.07 27.6199 37.07 27.6199
+\c 37.9566 29.1465 36.5776 29.3432 36.135 29.5897
+\c 35.6917 29.8356 34.9534 29.8356 34.9534 29.8356
+\c 35.6917 29.8356 35.4458 29.393 35.4458 29.393
+\c 35.1508 29.4907 34.9534 29.1956 34.9049 28.9484
+\c 34.8059 28.4573 35.2484 28.3091 35.2484 28.3091
+\c 36.1842 28.3596 35.7901 29.0966 35.7901 29.0966
+\c 37.2681 29.4907 36.8242 27.7183 36.8242 27.7183
+\c 36.8242 27.7183 35.5449 28.1124 35.6419 27.3734
+\c 35.7416 26.6357 37.07 27.2265 37.07 27.2265
+\c 37.07 27.2265 38.0549 26.8324 37.3166 26.1917
+\c 36.5776 25.5518 35.9383 25.7485 35.9383 25.7485
+\c 36.2818 25.5026 35.9875 24.4692 34.6085 25.2567
+\c 33.2301 26.0449 33.9186 26.8324 33.9186 26.8324
+\c 33.9186 26.8324 34.6085 26.3393 34.9049 26.6842
+\c 35.4294 27.2969 34.4111 28.014 33.8209 27.2265
+\c 33.2301 26.4383 33.6242 25.6262 33.6242 25.6262
+\c 33.6242 25.6262 32.6646 25.0347 31.9993 25.0347
+\c 31.3348 25.0347 31.4085 25.4035 31.6292 25.7737
+\c 31.8511 26.1426 31.7036 26.2908 31.7036 26.2908
+\c 31.3348 26.2908 31.6052 26.7334 31.6052 26.7334
+\l 30.8177 26.7334
+\c 30.8177 26.9554 31.0397 27.2504 31.0397 27.2504
+\l 32.0738 27.2504
+\c 32.0738 27.2504 31.9017 27.2504 32.0485 27.4724
+\c 32.1961 27.6937 31.7036 28.0625 31.7036 28.0625
+\c 31.7036 28.2852 31.9993 28.9484 31.9993 28.9484
+\c 32.5164 29.3186 32.2958 29.4668 32.2958 29.4668
+\c 31.6292 29.0966 31.3348 28.2107 31.3348 28.2107
+\l 31.0397 27.5462
+\c 29.7843 26.7334 30.6695 26.4383 31.0397 26.4383
+\c 31.4085 26.4383 31.3348 25.7737 31.3348 25.7737
+\c 31.0397 25.1829 31.1879 24.8879 31.6292 24.8141
+\c 32.0738 24.7403 31.9256 24.3701 31.9256 24.3701
+\c 30.9659 24.4439 29.4879 24.2964 28.3063 24.2233
+\c 27.1254 24.1495 24.6139 24.0751 24.6139 24.0751
+\c 24.0982 24.1495 24.2451 24.4439 24.2451 24.4439
+\c 24.6139 24.8879 24.4664 25.478 24.4664 25.478
+\c 24.6877 25.7737 24.6877 26.3645 24.6877 26.3645
+\c 25.2054 26.5121 25.3536 26.9554 24.9834 28.137
+\c 24.6139 29.3186 22.916 30.0576 21.6606 29.9101
+\c 20.4052 29.7612 19.8137 29.1711 19.8137 29.1711
+\c 17.6725 27.6199 19.1498 25.6262 19.5924 24.961
+\c 20.0357 24.2964 20.4052 24.5184 20.4052 24.5184
+\l 20.774 24.2964
+\l 20.4052 24.1495
+\c 19.8875 24.0751 20.1088 23.8531 20.1088 23.8531
+\l 21.0684 24.0013
+\l 21.2911 23.558
+\c 18.7052 23.1148 18.1895 21.8601 18.1895 21.8601
+\c 17.3029 21.5643 17.9675 22.9679 17.9675 22.9679
+\l 17.5242 22.8197
+\c 16.7121 21.7119 17.7455 20.9735 17.7455 20.9735
+\c 16.5646 18.6841 14.5709 18.4621 13.5375 18.0933
+\c 12.5034 17.7244 11.2473 16.9116 11.2473 16.9116
+\c 7.111 16.3208 6.0769 13.8094 6.0769 13.8094
+\c 5.1911 11.8164 5.8556 10.7085 5.8556 10.7085
+\l 4.2321 3.5451
+\c 3.4938 3.5451 2.0895 4.504 1.3505 4.726
+\c 0.6128 4.9487 0.3908 4.3572 0.3908 4.3572
+\c -0.5681 3.6926 0.5391 2.6592 0.5391 2.6592
+\c 0.761 1.9939 2.0171 1.8464 2.0171 1.8464
+\l 0.6128 1.4776
+\c 0.2433 1.1818 0.5391 0.6648 0.5391 0.6648
+\l 2.164 0.5166
+\c 3.1243 0.5903 4.379 0.6648 4.379 0.6648
+\c 5.5606 -0.5168 6.4471 0.1478 7.2592 0.5903
+\c 8.072 1.0336 8.8104 1.5507 8.8104 1.5507
+\c 8.8104 1.5507 9.548 1.5507 10.6559 1.6982
+\c 11.763 1.8464 13.9063 3.1018 13.9063 3.1018
+\l 15.2348 3.3224
+\c 16.9341 3.4706 17.5242 5.6119 18.7796 6.0558
+\c 20.0357 6.4984 21.7343 6.204 21.7343 6.204
+\c 22.472 5.1693 22.3245 3.9877 22.2507 3.5451
+\c 22.1769 3.1018 22.6202 3.2486 22.6202 3.2486
+\c 22.7684 5.0955 22.0294 6.2771 20.6272 8.9361
+\c 19.2229 11.5937 19.3711 12.776 19.3711 12.776
+\c 19.9612 13.4406 21.8832 11.8164 22.0294 11.5199
+\c 22.1769 11.2249 23.2848 6.7197 23.7281 5.243
+\c 24.172 3.7664 24.909 3.1756 25.1323 2.9536
+\c 25.3536 2.7323 25.2792 2.067 25.2792 2.067
+\c 25.2792 2.067 24.0982 1.9939 23.5798 1.9939
+\c 23.0628 1.9939 21.9556 1.2549 21.9556 1.2549
+\c 21.9556 1.2549 21.2911 1.4031 20.7003 1.1818
+\c 20.1088 0.9592 19.6662 1.1818 19.6662 1.1818
+\c 19.6662 1.1818 20.1825 1.5507 20.6272 1.6982
+\c 21.0684 1.8464 21.2166 1.9939 21.2166 1.9939
+\c 20.3307 1.9939 19.2973 1.3294 19.2973 1.3294
+\c 18.4846 1.3294 19.2229 0.7386 19.2229 0.7386
+\l 19.6662 0.4428
+\c 20.1825 0.5903 21.1428 0.6648 21.5861 0.6648
+\c 22.0294 0.6648 22.0294 0.8123 22.0294 0.8123
+\c 22.9904 1.5507 25.0572 1.4031 25.0572 1.4031
+\c 25.9431 1.5507 25.8693 2.9536 25.8693 2.9536
+\c 24.5395 4.1352 23.7281 6.4984 23.7281 6.4984
+\c 25.3536 6.2771 26.9772 6.8672 26.9772 6.8672
+\c 26.9772 6.8672 28.8247 4.9487 30.744 4.8742
+\c 32.6646 4.7998 33.2547 5.5388 33.2547 5.5388
+\c 35.4704 5.6119 35.618 7.3119 35.618 7.3119
+\c 37.0222 8.1971 37.0222 9.6007 37.0222 9.6007
+\c 38.6458 10.9291 37.5379 12.4809 37.5379 12.4809
+\l 38.0549 13.8838
+\c 38.0549 13.8838 38.4245 13.8094 38.2032 12.3334
+\c 37.9819 10.8567 38.4245 9.8957 38.5706 7.7545
+\c 38.7195 5.6119 37.4635 5.0224 37.0946 4.2834
+\c 36.7258 3.5451 37.0222 2.511 37.4635 2.8054
+\c 37.9081 3.1018 38.5706 3.4706 38.5706 3.4706
+\c 38.5706 3.4706 38.8438 2.1176 39.1874 2.0185
+\c 39.5323 1.9202 39.5808 2.3143 39.5808 2.3143
+\c 39.5808 2.3143 40.4182 2.2651 40.7624 2.3628
+\c 41.1073 2.4611 41.1565 2.8054 41.1565 2.8054
+\l 41.6981 2.4119
+\c 42.0424 2.1661 42.0922 2.8545 42.0922 2.8545
+\c 42.0922 2.8545 42.0424 2.6087 41.6005 2.8545
+\c 41.1565 3.1018 41.1073 3.7418 40.7624 3.6926
+\c 40.7624 3.6926 40.468 3.5936 40.6149 3.2992
+\c 40.6149 3.2992 41.0827 2.9536 40.4926 2.7323
+\c 40.4926 2.7323 40.2713 3.028 40.0487 3.5451
+\c 39.8267 4.0614 39.4579 3.6926 39.4579 3.6926
+\l 39.9749 2.7323
+\c 39.9749 2.7323 39.6061 2.4365 39.5323 2.7323
+\c 39.4579 3.028 38.5706 4.4303 38.5706 4.4303
+\c 38.5706 4.4303 38.4982 3.8408 37.8337 3.6181
+\c 37.1691 3.3969 36.9478 3.9139 37.8337 4.8742
+\c 38.7195 5.8338 39.1635 5.9076 39.1635 7.2374
+\c 39.1635 8.5659 38.4982 10.7823 38.7933 12.0383
+\c 39.089 13.2924 39.0153 14.0314 38.4982 14.6222
+\c 38.4982 14.6222 37.3166 16.6166 37.2428 17.9457
+\c 37.1691 19.2749 37.0946 20.3083 37.0946 20.3083
+\c 37.0946 20.3083 37.0222 20.9735 36.5038 20.6785
+\l 36.5038 18.6841
+\c 36.5038 18.3152 35.9137 17.1336 34.7314 16.9116
+\c 33.5512 16.691 33.1072 17.1336 32.0738 17.5024
+\c 32.0738 17.5024 31.7036 19.9394 32.8852 20.3083
+\c 32.8852 20.3083 32.5164 20.6785 32.0738 20.0877
+\c 31.6292 19.4968 31.7036 17.7244 31.7036 17.7244
+\c 31.7036 17.7244 30.0787 17.7982 29.7843 18.906
+\c 29.4879 20.0132 29.7843 21.7119 28.7503 21.7863
+\l 27.1254 21.8601
+\c 27.1254 21.8601 26.6083 23.1148 24.4664 23.4843
+\l 24.812 23.9276
+\c 24.812 23.9276 27.6178 23.9761 28.6027 24.0266
+\c 29.5863 24.0751 30.1778 24.3701 32.0977 24.0266
+\c 32.0977 24.0266 32.5902 23.1394 33.7233 23.0417
+\c 33.7233 23.0417 34.1167 23.3852 33.7233 23.3852
+\c 33.3292 23.3852 32.541 24.0751 32.3436 24.3701
+\c 32.3436 24.3701 32.6393 24.961 33.5252 25.06
+\c 34.4111 25.1577 34.9049 24.6659 34.9049 24.6659
+\c 34.9049 24.6659 35.4458 23.2391 36.5284 22.8935
+\c 37.6117 22.5492 37.9081 21.8095 38.3015 21.761
+\c 38.3015 21.761 39.6798 20.1853 40.5172 15.4104
+\c 40.5172 15.4104 40.9803 13.722 40.5172 10.0924
+\c 40.2201 7.7784 40.468 5.5142 40.468 5.5142
+\c 40.468 5.2178 40.9598 5.2178 40.9598 5.2178
+\c 42.1899 4.7752 42.683 3.7903 42.2405 3.8408
+\c 41.7965 3.8893 41.4523 4.4808 41.1073 4.726
+\c 40.7624 4.9719 40.7624 4.7752 40.7624 4.7752
+\c 40.8614 4.4808 41.6005 3.5451 41.8464 3.4467
+\c 42.0922 3.3477 42.584 3.4467 42.584 3.4467
+\c 43.1762 3.3477 42.683 4.0867 42.683 4.0867
+\s
+\m 22.1032 24.8879
+\c 22.1032 24.8879 22.9904 25.1829 22.9904 24.7403
+\c 22.9904 24.2964 22.472 24.5177 22.472 24.5177
+\c 22.472 24.5177 21.8088 24.2233 22.1032 24.8879
+\s
+\m 23.4822 25.5518
+\l 22.7923 25.5518
+\l 22.4488 26.0934
+\c 22.4488 26.0934 22.5464 26.2908 22.7431 26.3393
+\c 22.9405 26.3898 23.6796 26.4383 23.4822 25.5518
+\s
+\m 21.5615 26.0449
+\c 21.5615 26.0449 21.8088 25.9957 21.8088 25.6508
+\c 21.8088 25.3059 21.5615 25.3059 21.5615 25.3059
+\l 21.1681 25.1092
+\c 21.1681 25.1092 20.479 25.3059 20.8225 25.6023
+\c 20.8225 25.6023 21.3648 26.0941 21.5615 26.0449
+\s
+\m 19.2973 23.7063
+\l 18.4108 23.4843
+\c 18.4108 23.4843 18.6328 24.1489 19.2973 23.7063
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian161.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian161.pgf
new file mode 100644
index 0000000000..18070ff354
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian161.pgf
@@ -0,0 +1,231 @@
+\m 7.085 14.4043
+\c 7.085 14.4043 6.3262 14.2847 6.223 14.0081
+\c 6.1192 13.7315 6.7401 13.7663 7.1191 13.9378
+\c 7.4982 14.1119 7.585 14.422 7.085 14.4043
+\m 7.223 14.8189
+\c 8.1539 14.8189 8.0849 14.4043 7.3097 13.7663
+\c 6.5331 13.1284 5.7401 13.4385 6.292 14.3872
+\c 6.8432 15.3352 8.1539 15.508 8.1539 15.508
+\c 7.585 15.1453 7.223 14.8189 7.223 14.8189
+\s
+\m 15.792 7.5256
+\c 15.792 7.5256 16.0509 5.0074 17.5337 3.3702
+\c 19.0165 1.7316 21.0512 2.2657 22.4651 3.0936
+\c 23.8782 3.9221 24.5162 5.06 24.1719 5.1631
+\c 23.827 5.2669 22.4815 5.1972 22.4815 5.1972
+\c 22.4815 5.1972 22.2404 4.7663 22.6543 4.4562
+\c 23.0682 4.1461 22.672 3.5075 21.8784 3.5075
+\c 21.0854 3.5075 21.3443 3.5765 20.7405 3.1796
+\c 20.1367 2.7835 19.4988 2.5075 18.2406 3.6625
+\c 16.9819 4.8189 16.8097 8.0932 16.8097 8.0932
+\l 17.223 8.559
+\l 17.4996 6.3174
+\c 17.4996 6.3174 19.2925 7.456 20.6025 9.7147
+\l 21.1885 9.6116
+\c 21.1885 9.6116 20.0684 7.7326 17.6375 5.87
+\c 17.6375 5.87 18.0166 3.9904 18.9646 3.4392
+\c 19.9133 2.8873 20.3614 3.0587 20.7405 3.5075
+\c 21.1202 3.9555 20.8784 4.0416 21.5164 4.0081
+\c 22.1543 3.9726 22.4132 3.8872 22.224 4.2321
+\c 22.0334 4.5771 21.6024 5.6801 22.4815 5.801
+\c 23.3619 5.9212 24.9472 5.801 24.6378 5.0074
+\c 24.3277 4.2144 23.1549 2.4556 20.2753 2.0069
+\c 17.3958 1.5588 15.5851 4.7833 15.1541 7.163
+\o
+\s
+\m 0 0
+\l 44.2485 0
+\l 44.2485 28.6995
+\l 0 28.6995
+\o
+\i
+\m 18.0678 12.8832
+\c 18.0678 12.8832 18.3458 13.9227 18.4503 14.8598
+\c 18.5535 15.7969 18.0344 16.0046 17.7557 15.1727
+\c 17.4784 14.3394 18.0678 12.8832 18.0678 12.8832
+\m 3.2553 18.7803
+\c 2.2151 17.8781 3.0825 16.9765 4.956 17.3235
+\c 6.8289 17.6704 7.0713 18.7455 7.0713 18.7455
+\c 6.7592 19.6129 4.2962 19.6826 3.2553 18.7803
+\m 42.308 17.6424
+\c 41.3764 17.0926 42.0122 16.0353 42.0122 16.0353
+\c 44.3379 16.7115 43.2383 18.1929 42.308 17.6424
+\m 33.5504 16.5844
+\c 33.5504 16.5844 33.0859 13.92 29.9543 12.6933
+\c 29.9543 12.6933 29.6162 12.1858 31.013 12.6503
+\c 32.4091 13.1161 34.1433 13.5389 35.3699 13.0307
+\c 36.5966 12.5239 37.4012 12.5663 38.5849 10.6627
+\c 39.7699 8.7592 40.5738 7.5325 41.8429 6.5592
+\c 43.1112 5.5859 43.8728 5.3741 43.7881 6.051
+\c 43.7041 6.7279 43.9998 7.3207 42.9849 7.3207
+\c 41.9699 7.3207 42.308 7.5741 42.181 7.9976
+\c 42.0539 8.4197 39.9816 9.436 39.9816 10.8745
+\c 39.9816 12.3129 40.1934 12.735 39.5575 13.4542
+\c 38.9243 14.1734 38.5432 13.9624 37.738 13.8353
+\c 36.9354 13.709 35.624 14.4692 34.6507 15.4862
+\c 33.6774 16.5004 33.5504 16.5844 33.5504 16.5844
+\m 27.7188 21.0944
+\c 26.3897 21.0944 25.2818 19.839 25.7989 16.8843
+\c 26.3159 13.9316 27.7188 13.7096 27.7188 13.7096
+\c 30.4516 17.4771 29.565 21.0944 27.7188 21.0944
+\m 18.1184 11.1982
+\c 17.8226 10.6074 17.6013 9.2796 17.6013 9.2796
+\l 18.783 10.5336
+\o
+\m 17.8971 11.6428
+\c 17.2318 12.4543 16.8623 16.1473 18.2659 16.0729
+\c 19.6695 15.9998 18.3397 12.7507 18.3397 12.1578
+\c 18.3397 11.5684 18.9305 11.1244 18.9305 11.1244
+\c 20.1866 13.6359 20.7774 17.3289 20.1866 18.5843
+\c 19.5951 19.839 17.9702 19.0276 16.5673 15.2601
+\c 15.1644 11.4946 15.6807 7.876 15.6807 7.876
+\c 16.641 8.2442 17.2318 8.9832 17.2318 8.9832
+\c 17.2318 9.5747 17.8971 11.6428 17.8971 11.6428
+\m 6.8931 0.3431
+\c 6.8931 0.3431 5.5639 -0.2477 4.6774 0.1211
+\c 4.6774 0.1211 4.7511 1.0821 5.3419 1.5984
+\c 5.9327 2.1155 9.9209 4.4043 10.8067 6.4717
+\c 11.6933 8.5406 11.5451 12.6025 9.8464 13.267
+\l 9.5513 12.8231
+\l 9.4038 13.267
+\c 9.4038 13.267 8.4435 11.8635 8.3697 11.5684
+\c 8.296 11.2726 8.4435 9.796 6.2285 9.1314
+\c 6.2285 9.1314 4.3079 8.3924 3.7915 9.796
+\l 3.422 11.6428
+\c 3.422 11.6428 2.1666 12.8231 2.9787 13.7096
+\l 2.6099 14.7437
+\c 2.6099 14.7437 1.3538 14.3011 0.1729 15.3345
+\l 1.2063 16.7381
+\c 1.2063 16.7381 0.246 17.2545 0.0247 18.1403
+\c -0.1966 19.0276 1.0581 18.6588 1.0581 18.6588
+\c 1.0581 18.6588 -0.4179 17.9935 1.9453 16.8843
+\l 0.7637 15.4083
+\c 0.7637 15.4083 3.1269 15.3345 3.939 15.3345
+\c 3.939 15.3345 3.939 15.1139 4.0128 14.5211
+\c 4.0866 13.9316 3.939 13.4883 3.939 13.4883
+\c 3.939 13.4883 4.6774 13.1933 4.2348 12.0117
+\c 3.7915 10.8294 3.939 10.2392 4.5298 10.2392
+\c 5.12 10.2392 6.7455 9.8691 5.859 10.9038
+\l 6.0072 11.2726
+\c 6.0072 11.2726 6.5973 10.9038 6.5973 10.5336
+\c 6.5973 10.1655 6.2285 9.5747 4.8256 9.7222
+\c 4.8256 9.7222 4.8256 9.352 5.4164 9.352
+\c 6.0072 9.352 7.6314 10.0173 7.6314 10.6074
+\c 7.6314 11.1982 7.4101 11.6428 8.1484 12.4543
+\c 8.8875 13.267 9.4038 13.6359 9.2563 14.4487
+\l 9.6251 14.3749
+\l 9.6996 13.7841
+\c 9.6996 13.7841 10.1422 13.4139 10.5117 13.3394
+\c 10.8812 13.267 11.767 12.3805 11.8408 10.1655
+\c 11.9146 7.9491 12.1359 5.0702 6.1547 1.6715
+\c 6.1547 1.6715 5.3419 1.2289 5.1944 0.7119
+\c 5.1944 0.7119 6.0072 0.5637 6.8193 1.0076
+\c 6.8193 1.0076 7.1881 1.8935 8.296 2.1155
+\c 9.4038 2.3368 12.5054 4.1085 13.3175 7.876
+\c 13.3175 7.876 11.9883 9.2796 12.1359 12.2323
+\c 12.2841 15.187 13.0962 18.9531 18.3397 23.5321
+\c 18.3397 23.5321 14.204 24.3448 8.7392 19.3964
+\l 10.6592 19.322
+\l 9.4776 17.9197
+\c 9.4776 17.9197 11.1762 17.6978 11.3975 17.3289
+\c 11.3975 17.3289 10.4379 15.7771 9.7733 15.7027
+\l 9.1088 15.0395
+\c 9.1088 15.0395 8.8875 16.0729 9.4776 16.2211
+\c 10.0691 16.3686 10.5854 16.8843 10.6592 17.2545
+\l 8.1484 17.3289
+\c 8.1484 17.3289 8.2222 17.9197 8.8875 18.2886
+\c 9.5513 18.6588 9.8464 18.9531 9.8464 18.9531
+\c 9.8464 18.9531 9.0343 19.5439 7.3363 18.3623
+\c 7.3363 18.3623 6.1547 16.8119 5.1944 16.6644
+\c 4.2348 16.5161 3.5695 16.2955 2.5354 17.3289
+\l 1.8715 17.5502
+\c 1.8715 17.5502 1.7233 17.9197 2.3141 17.9935
+\c 2.3141 17.9935 2.6836 18.7318 3.422 19.1744
+\c 4.1603 19.6177 6.376 20.2092 7.4101 18.8794
+\c 7.4101 18.8794 7.8527 18.8794 8.2222 19.3964
+\c 8.5917 19.9128 12.1359 25.1563 18.8574 23.9009
+\c 18.8574 23.9009 24.5435 28.9975 30.2296 25.6733
+\c 30.2296 25.6733 30.7466 27.8152 33.6269 28.5529
+\c 36.5072 29.2919 39.0917 27.0769 39.4619 25.6002
+\c 39.83 24.1229 39.6087 22.793 39.1654 21.0944
+\c 38.7215 19.3964 38.9435 16.0729 41.6031 16.1473
+\c 41.6031 16.1473 41.0854 16.8843 41.8989 17.7715
+\c 42.7103 18.6588 43.9664 17.846 43.7444 17.2545
+\c 43.5224 16.6644 43.0791 15.9998 42.1932 15.7027
+\c 42.1932 15.7027 43.3755 14.5955 43.1536 13.4139
+\c 42.933 12.2323 42.3408 12.0117 42.3408 12.0117
+\c 42.3408 12.0117 42.4883 12.6025 42.6365 13.1933
+\c 42.7847 13.7841 42.4145 15.6303 41.4549 15.6303
+\c 40.4953 15.6303 38.8697 15.9253 37.8363 18.3623
+\c 36.8022 20.7993 38.9435 25.2307 36.4327 26.4861
+\c 33.922 27.7415 32.224 25.969 32.6666 24.3448
+\c 33.1099 22.7193 33.4056 22.2022 33.7744 20.9475
+\c 34.1439 19.6922 34.0695 17.846 33.6269 16.9587
+\c 33.6269 16.9587 33.922 16.8119 34.439 16.3686
+\c 34.956 15.9253 36.2114 14.0785 37.9838 14.0785
+\c 37.9838 14.0785 38.7959 14.5955 39.3874 14.1522
+\c 39.9776 13.7096 40.2733 13.1195 40.2733 12.6025
+\c 40.2733 12.0854 39.7569 9.9428 41.8251 8.9832
+\c 41.8251 8.9832 42.8086 8.7612 42.6126 7.876
+\c 42.6126 7.876 44.0401 8.1704 44.0401 7.359
+\c 44.0401 6.5462 44.2607 5.2901 44.2607 5.2901
+\c 44.2607 5.2901 44.1883 4.9213 43.7444 5.2164
+\c 43.7444 5.2164 43.8926 5.0702 41.972 5.9554
+\c 41.972 5.9554 41.0116 6.2518 40.2733 7.4334
+\c 39.5356 8.6144 37.8363 11.1244 36.8767 11.4946
+\c 35.9164 11.8635 34.1439 12.7507 32.9623 12.3805
+\c 32.9623 12.3805 33.0361 11.7152 32.5928 11.4209
+\c 32.1502 11.1244 30.8942 10.6074 30.3033 10.1655
+\c 29.7125 9.7222 29.7863 9.1314 28.826 8.835
+\c 28.826 8.835 28.7529 8.6874 28.7529 8.098
+\c 28.7529 7.5058 28.6047 7.359 28.0146 7.2845
+\l 27.7926 6.8419
+\c 27.7926 6.8419 28.2359 5.5121 28.2359 5.2901
+\c 28.2359 5.2901 26.1677 4.8475 24.9123 4.9958
+\c 24.9123 4.9958 25.2081 8.9832 30.2296 11.4946
+\c 30.2296 11.4946 27.2018 10.2392 25.3556 5.5859
+\c 25.3556 5.5859 25.3556 5.4383 26.1677 5.5121
+\c 26.9805 5.5859 27.6444 5.8085 27.6444 5.8085
+\c 27.6444 5.8085 27.0543 6.9888 27.3493 7.4334
+\c 27.6444 7.876 28.0146 7.8016 28.2359 8.3924
+\c 28.4572 8.9832 29.0487 10.1655 30.3771 10.7563
+\c 31.7063 11.3464 33.0361 12.3805 32.8148 12.6762
+\c 32.8148 12.6762 30.9686 12.3805 30.0083 12.1578
+\c 30.0083 12.1578 29.4912 11.9379 29.4912 12.3805
+\c 29.4912 12.3805 28.3834 12.0117 28.6047 12.7507
+\c 28.6047 12.7507 29.3437 12.6762 30.3033 13.1195
+\c 31.2637 13.5621 33.0361 15.4827 33.3318 18.5843
+\c 33.6269 21.6852 32.519 22.793 32.2971 23.015
+\c 32.0758 23.237 30.8942 25.1563 32.8879 26.7081
+\c 34.8823 28.2585 36.9504 27.2982 37.7619 25.8953
+\c 38.5746 24.4924 38.2803 23.4576 38.0583 22.793
+\c 37.8363 22.1291 37.1724 18.5105 39.3137 16.7381
+\c 39.3137 16.7381 38.4271 17.9935 38.7959 20.578
+\c 39.1654 23.1625 39.83 25.0825 38.5009 26.7081
+\c 37.1724 28.3323 34.2177 28.9231 32.224 27.2982
+\c 30.2296 25.6733 29.7863 22.8668 31.5587 20.7256
+\c 31.5587 20.7256 29.4175 21.7596 30.0083 25.1563
+\c 30.0083 25.1563 29.2699 26.1897 26.9805 26.3379
+\c 24.691 26.4861 22.254 26.0428 19.3 23.6058
+\c 19.3 23.6058 22.4009 22.3504 22.9924 19.4702
+\c 23.5832 16.5899 23.2144 12.3805 21.515 10.091
+\l 20.8504 10.091
+\c 20.8504 10.091 25.8726 19.3964 19.0043 23.3838
+\c 19.0043 23.3838 15.7552 21.1688 13.687 16.2955
+\c 13.687 16.2955 12.1359 12.306 13.7608 8.098
+\c 13.7608 8.098 14.0565 7.5058 15.1644 7.359
+\c 15.1644 7.359 14.3522 9.2796 15.0168 12.9713
+\c 15.6807 16.6644 17.9702 20.061 19.5951 19.6922
+\c 21.2193 19.322 21.8101 15.4083 19.3738 10.6818
+\c 19.3738 10.6818 19.5951 9.9428 21.8101 9.796
+\c 24.0265 9.6484 26.6854 11.8635 27.4231 13.1195
+\c 27.4231 13.1195 26.0202 13.4883 25.2818 16.5161
+\c 24.4574 19.8936 26.2415 21.6114 27.4975 21.6114
+\c 28.7529 21.6114 30.4516 20.7993 29.8608 16.4424
+\c 29.2699 12.0854 23.4356 6.9888 19.1518 10.313
+\c 19.1518 10.313 15.9765 5.8085 13.6139 7.2845
+\c 13.6139 7.2845 13.6139 4.0348 10.0691 2.1647
+\c 10.0691 2.1647 9.0842 1.5732 8.7884 1.1798
+\c 8.7884 1.1798 7.6068 1.3765 7.4101 0.983
+\c 7.2134 0.5889 6.8931 0.3431 6.8931 0.3431
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian162.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian162.pgf
new file mode 100644
index 0000000000..6b8e3e32e3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian162.pgf
@@ -0,0 +1,215 @@
+\m 0 0
+\l 29.5524 0
+\l 29.5524 43.5304
+\l 0 43.5304
+\o
+\i
+\m 14.8036 5.24
+\c 14.8036 5.24 13.8693 3.6622 13.8693 2.146
+\c 13.8693 0.6228 14.9129 0.254 15.4081 0.8756
+\c 15.9026 1.5039 16.0856 3.2251 14.8036 5.24
+\m 16.0303 7.1046
+\c 15.1882 7.8013 14.7483 8.6824 14.7483 8.6824
+\c 14.7483 8.6824 14.236 7.6579 13.5578 7.1046
+\c 13.5578 7.1046 14.1807 6.6129 14.7667 6.046
+\c 14.7667 6.046 15.1151 6.3738 15.5174 6.688
+\c 15.9204 6.9954 16.0303 7.1046 16.0303 7.1046
+\m 14.7497 22.2197
+\c 14.7497 22.2197 13.3468 19.5013 13.1999 16.38
+\c 13.0531 13.2586 14.792 10.3694 14.792 10.3694
+\c 14.792 10.3694 16.3418 13.1083 16.3629 15.936
+\c 16.3834 18.7637 15.3576 21.366 14.7497 22.2197
+\m 15.6089 42.0339
+\c 15.3999 43.1473 14.1008 43.2702 13.8078 41.87
+\c 13.5141 40.463 14.7504 38.7487 14.7504 38.7487
+\c 15.4839 39.7322 15.8193 40.9275 15.6089 42.0339
+\m 19.8374 6.2577
+\c 21.0819 6.4694 20.976 7.2686 19.8122 7.5281
+\c 18.6469 7.7945 16.9797 7.0568 16.9797 7.0568
+\c 17.6142 6.5241 18.5944 6.046 19.8374 6.2577
+\m 24.4164 24.5488
+\c 24.4164 24.5488 23.6227 22.9847 24.2319 21.8509
+\c 24.8405 20.7103 25.7141 21.3455 25.7933 22.1104
+\c 25.8725 22.8822 25.3698 23.9409 24.4164 24.5488
+\m 26.1635 27.4311
+\c 26.1635 27.4311 27.1955 25.9763 28.414 26.2154
+\c 29.6312 26.4544 28.996 29.125 26.1635 27.4311
+\m 24.9204 29.528
+\c 24.9204 29.528 26.0317 30.5866 25.8999 31.5634
+\c 25.7674 32.5401 23.9936 32.4649 24.9204 29.528
+\m 19.3873 38.0998
+\c 18.5677 38.4481 17.1382 37.0958 17.1382 37.0958
+\c 19.4413 36.2761 20.209 37.7583 19.3873 38.0998
+\m 12.5736 7.0568
+\c 12.5736 7.0568 10.9057 7.7945 9.7411 7.5281
+\c 8.5766 7.2686 8.4707 6.4694 9.7145 6.2577
+\c 10.9583 6.046 11.9377 6.5241 12.5736 7.0568
+\m 3.7593 22.1104
+\c 3.8385 21.3455 4.7121 20.7103 5.3207 21.8509
+\c 5.9292 22.9847 5.1356 24.5488 5.1356 24.5488
+\c 4.1828 23.9409 3.6801 22.8822 3.7593 22.1104
+\m 1.1386 26.2154
+\c 2.3564 25.9763 3.3891 27.4311 3.3891 27.4311
+\c 0.5566 29.125 -0.0786 26.4544 1.1386 26.2154
+\m 3.6534 31.5634
+\c 3.5209 30.5866 4.6322 29.528 4.6322 29.528
+\c 5.559 32.4649 3.7859 32.5401 3.6534 31.5634
+\m 12.4138 37.0958
+\c 12.4138 37.0958 10.9849 38.4481 10.1646 38.0998
+\c 9.3436 37.7583 10.1113 36.2761 12.4138 37.0958
+\m 14.9566 23.2306
+\c 18.6244 27.957 23.8686 25.4777 23.8686 25.4777
+\c 24.4628 26.1812 25.419 27.1579 25.419 27.1579
+\c 24.9273 27.677 24.4109 28.4283 24.4109 28.4283
+\c 21.8796 26.7959 18.5985 28.1141 18.5985 28.1141
+\c 15.4463 29.6168 15.2155 32.8133 15.2155 32.8133
+\c 14.9566 35.1423 16.1703 37.1026 16.1703 37.1026
+\c 15.7831 37.3621 15.1117 37.9837 15.1117 37.9837
+\l 14.7674 38.2774
+\l 14.4409 37.9837
+\c 14.4409 37.9837 13.7689 37.3621 13.3816 37.1026
+\c 13.3816 37.1026 14.596 35.1423 14.3371 32.8133
+\c 14.3371 32.8133 14.1056 29.6168 10.9542 28.1141
+\c 10.9542 28.1141 7.673 26.7959 5.1417 28.4283
+\c 5.1417 28.4283 4.6254 27.677 4.1343 27.1579
+\c 4.1343 27.1579 5.0898 26.1812 5.684 25.4777
+\c 5.684 25.4777 10.9282 27.957 14.596 23.2306
+\l 14.7818 22.9779
+\o
+\m 14.833 0.0013
+\c 14.7538 -0.0055 14.6527 0.015 14.6527 0.015
+\c 13.926 0.1652 13.2566 1.0873 13.273 2.3918
+\c 13.2908 3.8193 14.456 5.5405 14.456 5.5405
+\c 13.9342 6.3602 13.2908 6.688 13.2908 6.688
+\c 12.7519 6.326 11.4821 5.3493 9.8648 5.5405
+\c 8.2474 5.7318 7.69 7.1251 9.2036 7.733
+\c 10.7165 8.3409 13.0469 7.3369 13.0469 7.3369
+\c 14.1438 8.2043 14.6821 9.4201 14.6821 9.4201
+\c 14.0906 10.1304 12.508 12.7395 12.4554 16.2912
+\c 12.4035 19.836 14.4041 22.691 14.4041 22.691
+\c 10.7513 27.6633 6.0023 25.1089 6.0023 25.1089
+\c 6.3336 24.1868 6.6293 22.2949 5.6895 21.3045
+\c 4.7504 20.3073 3.3761 20.8332 3.3413 22.3768
+\c 3.3065 23.9273 4.9245 25.0064 4.9245 25.0064
+\c 4.6117 25.8397 3.8112 26.6047 3.8112 26.6047
+\c 3.8112 26.6047 2.7846 25.6689 1.3933 25.7851
+\c 0.002 25.908 -0.5546 27.356 0.6973 28.0663
+\c 1.95 28.7767 3.5681 27.8614 3.5681 27.8614
+\c 4.0202 28.2371 4.4724 29.1113 4.4724 29.1113
+\c 3.3413 29.9309 3.2368 31.1945 3.2368 31.1945
+\c 2.9766 33.0728 4.82 32.9225 5.3248 31.7341
+\c 5.8288 30.5525 5.2899 28.8176 5.2899 28.8176
+\c 8.7337 26.7618 12.5258 28.763 13.3427 31.8229
+\c 14.1602 34.8828 12.5954 36.7133 12.5954 36.7133
+\c 11.3428 36.4469 10.0376 36.4332 9.4468 37.1641
+\c 8.8559 37.8949 9.4119 38.7623 10.6639 38.6804
+\c 11.9165 38.5916 13.0469 37.4099 13.0469 37.4099
+\c 13.6384 37.7036 14.1254 38.4481 14.1254 38.4481
+\c 14.1254 38.4481 13.0995 39.7527 13.0995 41.4739
+\c 13.0995 43.2019 14.5605 43.4956 14.5605 43.4956
+\c 14.5605 43.4956 14.7237 43.5434 14.7893 43.5366
+\c 14.8555 43.5297 14.9921 43.4956 14.9921 43.4956
+\c 14.9921 43.4956 16.4538 43.2019 16.4538 41.4739
+\c 16.4538 39.7527 15.4265 38.4481 15.4265 38.4481
+\c 15.4265 38.4481 15.9135 37.7036 16.5057 37.4099
+\c 16.5057 37.4099 17.6361 38.5916 18.888 38.6804
+\c 20.1407 38.7623 20.6974 37.8949 20.1059 37.1641
+\c 19.5144 36.4332 18.2098 36.4469 16.9579 36.7133
+\c 16.9579 36.7133 15.3924 34.8828 16.21 31.8229
+\c 17.0275 28.763 20.8189 26.7618 24.2627 28.8176
+\c 24.2627 28.8176 23.7238 30.5525 24.2278 31.7341
+\c 24.7326 32.9225 26.576 33.0728 26.3151 31.1945
+\c 26.3151 31.1945 26.2113 29.9309 25.0802 29.1113
+\c 25.0802 29.1113 25.5324 28.2371 25.9846 27.8614
+\c 25.9846 27.8614 27.6019 28.7767 28.8546 28.0663
+\c 30.1072 27.356 29.5506 25.908 28.1586 25.7851
+\c 26.768 25.6689 25.7414 26.6047 25.7414 26.6047
+\c 25.7414 26.6047 24.9416 25.8397 24.6281 25.0064
+\c 24.6281 25.0064 26.2455 23.9273 26.2113 22.3768
+\c 26.1758 20.8332 24.8023 20.3073 23.8631 21.3045
+\c 22.9233 22.2949 23.2197 24.1868 23.5496 25.1089
+\c 23.5496 25.1089 18.8013 27.6633 15.1486 22.691
+\c 15.1486 22.691 17.1491 19.836 17.0965 16.2912
+\c 17.0446 12.7395 15.4621 10.1304 14.8706 9.4201
+\c 14.8706 9.4201 15.4095 8.2043 16.5057 7.3369
+\c 16.5057 7.3369 18.8361 8.3409 20.349 7.733
+\c 21.8619 7.1251 21.3059 5.7318 19.6879 5.5405
+\c 18.0705 5.3493 16.8008 6.326 16.2619 6.688
+\c 16.2619 6.688 15.6178 6.3602 15.0966 5.5405
+\c 15.0966 5.5405 16.2619 3.8193 16.2789 2.3918
+\c 16.2946 1.1351 15.6724 0.2267 14.9757 0.0354
+\c 14.9757 0.0354 14.9129 0.015 14.833 0.0013
+\s
+
+\m 10.8783 31.174
+\c 10.8783 31.174 8.9639 32.9362 8.2207 34.193
+\c 7.479 35.4497 7.158 35.5453 6.2154 35.7434
+\c 6.2154 35.7434 6.0856 34.5276 7.6839 33.79
+\c 7.6839 33.79 8.9898 33.0796 10.8783 31.174
+\s
+\m 12.0374 32.1917
+\c 12.0374 32.1917 11.2123 33.1889 10.6489 33.6534
+\c 10.0861 34.1178 10.211 34.8077 10.211 34.8077
+\c 10.211 34.8077 10.9992 34.9306 11.2123 33.9402
+\c 11.2123 33.9402 11.4248 33.3187 12.0374 32.1917
+\s
+\m 9.5799 29.8695
+\c 9.5799 29.8695 8.3601 30.3134 7.6402 30.4227
+\c 6.9196 30.5388 6.6785 31.1945 6.6785 31.1945
+\c 6.6785 31.1945 7.2946 31.7068 7.979 30.9623
+\c 7.979 30.9623 8.4796 30.5252 9.5799 29.8695
+\s
+\m 18.5971 31.174
+\c 18.5971 31.174 20.5116 32.9362 21.2533 34.193
+\c 21.9971 35.4497 22.3175 35.5453 23.26 35.7434
+\c 23.26 35.7434 23.3905 34.5276 21.7922 33.79
+\c 21.7922 33.79 20.4849 33.0796 18.5971 31.174
+\s
+\m 17.438 32.1917
+\c 17.438 32.1917 18.2638 33.1889 18.8266 33.6534
+\c 19.3894 34.1178 19.2644 34.8077 19.2644 34.8077
+\c 19.2644 34.8077 18.4762 34.9306 18.2638 33.9402
+\c 18.2638 33.9402 18.0507 33.3187 17.438 32.1917
+\s
+\m 19.8962 29.8695
+\c 19.8962 29.8695 21.116 30.3134 21.8353 30.4227
+\c 22.5558 30.5388 22.7969 31.1945 22.7969 31.1945
+\c 22.7969 31.1945 22.1815 31.7068 21.4965 30.9623
+\c 21.4965 30.9623 20.9958 30.5252 19.8962 29.8695
+\s
+\m 11.8325 23.2033
+\c 11.8325 23.2033 10.3804 21.0518 9.9515 19.6516
+\c 9.5226 18.2582 9.2316 18.0943 8.3608 17.6777
+\c 8.3608 17.6777 7.953 18.8251 9.3341 19.918
+\c 9.3341 19.918 10.4399 20.9152 11.8325 23.2033
+\s
+\m 12.7252 22.7456
+\c 12.7252 22.7456 12.3168 21.5094 11.9589 20.8742
+\c 11.601 20.2458 11.9664 19.6448 11.9664 19.6448
+\c 11.9664 19.6448 12.7464 19.8155 12.5879 20.8127
+\c 12.5879 20.8127 12.5606 21.4752 12.7252 22.7456
+\s
+\m 10.4924 23.7428
+\c 10.4924 23.7428 9.4413 22.9847 8.7794 22.6773
+\c 8.1176 22.3768 8.065 21.6733 8.065 21.6733
+\c 8.065 21.6733 8.7965 21.3591 9.2514 22.2607
+\c 9.2514 22.2607 9.6148 22.8139 10.4924 23.7428
+\s
+\m 18.1545 23.2033
+\c 18.1545 23.2033 19.6059 21.0518 20.0355 19.6516
+\c 20.4644 18.2582 20.7547 18.0943 21.6263 17.6777
+\c 21.6263 17.6777 22.0333 18.8251 20.6523 19.918
+\c 20.6523 19.918 19.5472 20.9152 18.1545 23.2033
+\s
+\m 17.2611 22.7456
+\c 17.2611 22.7456 17.6689 21.5094 18.0275 20.8742
+\c 18.3847 20.2458 18.0193 19.6448 18.0193 19.6448
+\c 18.0193 19.6448 17.2393 19.8155 17.3984 20.8127
+\c 17.3984 20.8127 17.4264 21.4752 17.2611 22.7456
+\s
+\m 19.4939 23.7428
+\c 19.4939 23.7428 20.545 22.9847 21.2069 22.6773
+\c 21.8694 22.3768 21.9206 21.6733 21.9206 21.6733
+\c 21.9206 21.6733 21.1905 21.3591 20.7342 22.2607
+\c 20.7342 22.2607 20.3709 22.8139 19.4939 23.7428
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian163.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian163.pgf
new file mode 100644
index 0000000000..c470e60057
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian163.pgf
@@ -0,0 +1,107 @@
+\m 7.9845 25.7209
+\c 7.9845 25.7209 6.2107 20.9774 7.074 14.5557
+\c 7.074 14.5557 7.7925 8.6613 13.7348 4.0127
+\c 13.7348 4.0127 8.7979 8.9967 7.7925 14.6035
+\c 7.7925 14.6035 6.6908 19.108 7.9845 25.7209
+\s
+\m 10.2842 2.3946
+\c 10.2842 2.3946 7.0064 2.0224 4.6589 2.2785
+\c 2.3107 2.534 1.5669 4.277 5.7039 4.8351
+\c 9.8423 5.3938 13.1194 4.3242 13.2587 3.0913
+\c 13.3987 1.8592 9.261 0.9303 5.4956 1.1393
+\c 1.7294 1.3483 0.2651 2.3482 1.125 3.9048
+\c 1.9856 5.4634 6.4716 6.7871 9.3307 5.5556
+\c 9.3307 5.5556 8.5862 6.4162 5.8439 6.2762
+\c 3.1009 6.1369 0.3812 4.4164 0.0328 3.0681
+\c -0.3162 1.7205 2.1017 0 7.9824 0
+\c 13.8639 0 15.6534 3.0681 12.4691 4.4164
+\c 9.2842 5.7646 4.8447 5.3692 3.0545 4.4403
+\c 1.2643 3.51 2.3339 1.9766 6.0297 1.9288
+\c 6.0297 1.9288 8.8656 1.8831 10.2842 2.3946
+\s
+\m 37.9988 25.7209
+\c 37.9988 25.7209 39.7712 20.9774 38.9093 14.5557
+\c 38.9093 14.5557 38.1901 8.6613 32.2485 4.0127
+\c 32.2485 4.0127 37.184 8.9967 38.1901 14.6035
+\c 38.1901 14.6035 39.2924 19.108 37.9988 25.7209
+\s
+\m 35.6991 2.3946
+\c 35.6991 2.3946 38.9769 2.0224 41.3244 2.2785
+\c 43.6719 2.534 44.4164 4.277 40.278 4.8351
+\c 36.141 5.3938 32.8632 4.3242 32.7239 3.0913
+\c 32.5846 1.8592 36.7223 0.9303 40.4877 1.1393
+\c 44.2539 1.3483 45.7182 2.3482 44.8576 3.9048
+\c 43.9977 5.4634 39.511 6.7871 36.6526 5.5556
+\c 36.6526 5.5556 37.3957 6.4162 40.1387 6.2762
+\c 42.8824 6.1369 45.6014 4.4164 45.9505 3.0681
+\c 46.2995 1.7205 43.8816 0 38.0009 0
+\c 32.1194 0 30.3299 3.0681 33.5142 4.4164
+\c 36.6984 5.7646 41.1386 5.3692 42.9281 4.4403
+\c 44.7183 3.51 43.6494 1.9766 39.9529 1.9288
+\c 39.9529 1.9288 37.1177 1.8831 35.6991 2.3946
+\s
+\m 2.7505 24.5782
+\c 2.8988 23.2744 5.2353 22.3885 5.2353 22.3885
+\c 4.8904 26.2257 2.6037 25.8814 2.7505 24.5782
+\s
+\m 22.4377 17.3513
+\c 22.5859 16.0959 23.3243 16.281 23.5831 17.2031
+\c 23.8413 18.1272 23.398 19.2904 22.9732 20.3053
+\c 22.9732 20.3053 22.2902 18.6067 22.4377 17.3513
+\s
+\m 23.5825 17.2037
+\c 23.3243 16.2803 22.5853 16.0959 22.437 17.3513
+\c 22.2895 18.6073 22.9725 20.3053 22.9725 20.3053
+\c 23.3974 19.2904 23.8406 18.1279 23.5825 17.2037
+\m 2.7505 24.5782
+\c 2.6037 25.8821 4.8904 26.225 5.2353 22.3885
+\c 5.2353 22.3885 2.8988 23.2744 2.7505 24.5782
+\m 43.2314 24.5782
+\c 43.0839 23.2744 40.7473 22.3885 40.7473 22.3885
+\c 41.0922 26.225 43.3789 25.8821 43.2314 24.5782
+\m 41.5587 10.2404
+\c 40.0595 13.6835 39.8614 17.8396 40.526 21.823
+\c 40.526 21.823 43.8454 23.2983 43.6002 24.8986
+\c 43.3543 26.4968 40.5997 26.2018 40.4522 22.34
+\c 40.4522 22.34 39.0998 21.1843 35.6322 22.4629
+\c 32.1638 23.7422 27.91 25.7107 23.1146 20.8893
+\l 23.0039 20.7575
+\l 22.868 20.8893
+\c 18.0726 25.7107 13.8174 23.7422 10.3498 22.4629
+\c 6.8828 21.1843 5.5297 22.34 5.5297 22.34
+\c 5.3829 26.2018 2.6276 26.4968 2.3817 24.8986
+\c 2.1358 23.2983 5.4566 21.823 5.4566 21.823
+\c 6.1198 17.8396 5.9238 13.6835 4.4232 10.2404
+\c 2.9233 6.7967 0.0704 3.872 0.0704 3.872
+\c 3.4151 6.5023 5.8009 11.224 6.0222 15.0604
+\c 6.2435 18.8963 5.6779 21.7253 5.6779 21.7253
+\c 8.6286 20.4959 11.1612 20.9624 15.5885 22.7341
+\c 20.0151 24.5045 22.7943 20.4959 22.7943 20.4959
+\c 21.2315 17.1969 22.3462 16.2585 22.9008 16.0085
+\l 23.0012 15.9586
+\l 23.0893 16.0105
+\c 23.646 16.2673 24.7429 17.2126 23.1877 20.4959
+\c 23.1877 20.4959 25.9669 24.5045 30.3935 22.7341
+\c 34.8208 20.9624 37.3534 20.4959 40.304 21.7253
+\c 40.304 21.7253 39.7391 18.8963 39.9604 15.0604
+\c 40.1817 11.224 42.5675 6.5023 45.9115 3.872
+\c 45.9115 3.872 43.0593 6.7967 41.5587 10.2404
+\s
+\m 23.6535 28.0165
+\c 23.2847 29.0533 22.1461 28.8758 21.8237 27.4503
+\c 21.5013 26.0242 22.713 23.5018 22.713 23.5018
+\c 24.3802 25.2237 24.0285 26.9599 23.6535 28.0165
+\m 24.6643 27.6996
+\c 24.747 26.2468 24.5414 24.7135 23.1966 23.1255
+\c 23.1966 23.1255 24.2457 21.5921 26.0741 20.5437
+\c 26.0741 20.5437 26.7202 20.2746 26.4784 19.9256
+\c 26.236 19.5752 25.5099 20.3019 24.9451 20.92
+\l 22.7396 23.0176
+\l 20.6421 20.92
+\c 20.0772 20.3019 19.3512 19.5752 19.1087 19.9256
+\c 18.8669 20.2746 19.5124 20.5437 19.5124 20.5437
+\c 21.3415 21.5921 22.3906 23.1255 22.3906 23.1255
+\c 21.0457 24.7135 20.8559 26.2933 20.9365 27.7461
+\c 20.9365 27.7461 21.0164 29.4748 22.6973 29.4543
+\c 22.6973 29.4543 24.5544 29.6257 24.6643 27.6996
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian164.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian164.pgf
new file mode 100644
index 0000000000..ed47261991
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian164.pgf
@@ -0,0 +1,133 @@
+\m 2.4097 25.9714
+\c 2.4097 25.9714 2.5681 25.4632 2.3462 24.7324
+\c 2.1235 24.0009 2.187 23.8431 2.7266 23.7789
+\c 2.7266 23.7789 1.8059 23.4292 2.1556 22.7632
+\c 2.5053 22.0953 2.3776 21.1424 2.2512 20.4123
+\c 2.1235 19.6815 2.4418 19.0456 3.5858 19.0456
+\c 4.7292 19.0456 5.3323 18.4104 6.6348 17.7745
+\c 7.9373 17.1393 14.0359 15.6155 15.6246 22.9845
+\c 15.6246 22.9845 14.7032 19.7757 11.0177 18.5374
+\c 7.3328 17.2984 6.253 19.299 4.57 19.5538
+\c 2.8864 19.8078 2.4418 19.4896 2.6638 20.8884
+\c 2.8864 22.2858 2.187 22.9845 2.7273 23.2707
+\c 3.2675 23.5569 4.3788 23.3021 4.57 22.3486
+\c 4.57 22.3486 4.792 23.3978 3.7757 23.8117
+\c 2.7594 24.2235 2.5681 24.0009 2.6952 24.7638
+\c 2.8222 25.5267 2.6323 25.7166 3.299 26.0342
+\c 3.9663 26.3525 4.1568 26.9235 4.0933 27.433
+\c 4.0298 27.9398 3.077 28.2267 2.7273 27.4644
+\c 2.7273 27.4644 3.5209 27.655 3.5845 27.0191
+\c 3.6487 26.3839 2.4411 26.0663 2.3147 26.4795
+\c 2.187 26.8921 0.5669 26.3525 0.5997 27.0512
+\c 0.6311 27.7499 1.8059 30.8952 2.5681 31.8794
+\c 3.3311 32.8643 3.4895 33.4367 3.2354 34.1347
+\c 2.9814 34.8341 3.4581 39.1228 8.0008 41.9184
+\c 12.5429 44.7132 17.8478 43.2837 20.1346 41.0284
+\c 22.422 38.7724 22.9622 35.7548 22.676 31.4341
+\c 22.3905 27.1147 22.6132 24.6996 24.583 21.3644
+\c 24.583 21.3644 23.4397 24.6688 23.8201 29.3379
+\c 24.2012 34.0077 23.4069 40.3925 18.261 42.6164
+\c 13.1152 44.8396 7.8731 43.2195 5.3958 40.234
+\c 2.9185 37.2479 2.3147 34.5159 2.6323 33.6259
+\c 2.9499 32.7359 2.6952 32.9278 1.838 31.2756
+\c 0.9801 29.6241 -0.0048 27.114 0.1537 26.5731
+\c 0.3128 26.0335 0.948 26.192 1.3927 26.192
+\c 1.838 26.192 2.1549 26.2903 2.4097 25.9714
+\s
+\m 8.7501 16.8804
+\c 8.7501 16.8804 11.2738 14.8471 10.3565 10.3911
+\c 9.4386 5.9352 6.0959 2.7885 0.1646 1.249
+\c 0.1646 1.249 5.3425 1.6417 9.2419 5.9679
+\c 13.1412 10.2928 11.6338 15.0124 8.7501 16.8804
+\s
+\m 21.3674 5.0841
+\c 21.3674 5.0841 23.4642 5.8368 23.497 6.7548
+\c 23.5298 7.6721 21.3011 8.032 21.3674 5.0841
+\m 0 0.7251
+\c 0 0.7251 5.473 1.2169 9.9631 4.9195
+\c 14.4526 8.6228 17.369 11.6704 22.7765 11.736
+\c 28.1832 11.8016 29.2651 8.0648 28.4455 6.0663
+\c 27.6265 4.0678 23.8249 2.3302 21.3674 4.5917
+\c 21.3674 4.5917 19.1387 3.5426 16.3199 3.6088
+\c 13.5025 3.6737 11.6017 2.4941 9.5041 -0.0289
+\c 9.5041 -0.0289 10.5532 2.6246 14.1575 3.936
+\c 17.7624 5.2467 21.0395 5.0841 21.0395 5.0841
+\c 21.0395 5.0841 20.6796 6.7876 22.0559 7.5737
+\c 23.4315 8.3612 25.5946 6.3935 21.6946 4.6572
+\c 21.6946 4.6572 23.5961 2.9859 26.1512 4.3301
+\c 28.7077 5.6736 28.8068 8.7539 27.0036 10.0981
+\c 25.2012 11.4402 22.4814 11.8016 18.2535 9.508
+\c 14.0264 7.2131 8.7501 1.053 0 0.7251
+\s
+\m 28.0008 21.5311
+\c 26.88 21.9791 25.7592 19.7149 25.7592 19.7149
+\c 28.6954 19.3338 29.1216 21.083 28.0008 21.5311
+\m 25.2667 18.0798
+\c 25.2667 18.0798 25.4457 15.5233 26.7229 13.9776
+\c 28.0008 12.4306 29.1886 14.0671 28.7631 15.2556
+\c 28.3369 16.4433 26.4545 18.0122 25.2667 18.0798
+\m 20.8729 15.7705
+\c 22.5545 16.1059 22.5545 18.6167 22.5545 18.6167
+\c 19.1695 18.2806 19.1927 15.4345 20.8729 15.7705
+\m 23.2266 18.9541
+\c 23.9663 18.8414 24.706 18.7738 24.706 18.7738
+\c 25.042 20.3201 26.141 21.2845 26.141 21.2845
+\c 27.5077 22.7188 29.6148 21.7093 28.8751 20.3201
+\c 28.1354 18.9302 25.6028 19.4909 25.6028 19.4909
+\c 25.3562 19.0422 25.3111 18.5941 25.3111 18.5941
+\c 26.88 18.0784 28.942 16.7336 29.1667 14.8744
+\c 29.3908 13.0132 27.4626 12.0946 25.8937 13.798
+\c 24.3248 15.5008 24.7285 18.2581 24.7285 18.2581
+\c 24.1234 18.5279 23.092 18.5046 23.092 18.5046
+\c 23.0032 16.9808 22.1952 15.5916 20.9856 15.3225
+\c 19.7753 15.0527 18.4755 16.1284 19.5731 17.5635
+\c 20.6714 18.9978 22.4869 18.9302 22.4869 18.9302
+\c 22.1952 23.4585 17.8471 23.1676 17.8471 23.1676
+\c 23.1596 24.0412 23.2266 18.9541 23.2266 18.9541
+\s
+\m 12.4616 41.6363
+\c 12.4616 41.6363 19.7958 42.7366 21.1038 33.0617
+\c 21.1038 33.0617 21.586 43.2188 12.4616 41.6363
+\s
+\m 12.0484 40.7408
+\c 12.0484 40.7408 15.9743 39.7764 17.145 35.0254
+\c 18.315 30.2737 19.3832 28.4828 21.3114 27.5867
+\c 21.3114 27.5867 19.0376 29.2061 18.384 33.2345
+\c 17.7303 37.2629 15.8357 40.1207 12.0484 40.7408
+\s
+\m 12.5654 36.5745
+\c 12.5654 36.5745 13.943 35.1961 14.1493 32.2694
+\c 14.3556 29.3427 15.4231 22.4217 22.8256 24.66
+\c 22.8256 24.66 18.0398 23.4893 16.1109 27.0362
+\c 14.1835 30.5824 15.5959 34.2324 12.5654 36.5745
+\s
+\m 15.9053 30.4109
+\c 15.9053 30.4109 18.1429 28.6208 17.4544 26.1073
+\c 16.7653 23.5931 13.7702 24.2816 14.0455 25.2453
+\c 14.0455 25.2453 14.1917 25.7214 14.499 25.3491
+\c 14.499 25.3491 14.7531 25.6483 14.4184 25.8026
+\c 14.0831 25.957 13.5018 25.6025 13.7928 24.7324
+\c 14.0831 23.8622 16.4121 23.4189 17.5821 24.7774
+\c 17.5821 24.7774 19.9829 27.4958 15.9053 30.4109
+\s
+\m 6.5836 32.0707
+\c 5.8698 32.3411 5.7961 31.529 5.7961 31.529
+\c 5.7961 31.529 5.9436 31.7018 6.5351 31.3808
+\c 7.1252 31.0605 7.7406 31.0864 7.7406 31.0864
+\c 7.7406 31.0864 7.2973 31.7995 6.5836 32.0707
+\m 5.4518 30.1248
+\c 5.3036 31.012 4.5653 30.568 4.0974 31.7018
+\c 3.6295 32.8329 4.6636 34.6791 6.7318 34.1129
+\c 8.7993 33.5473 9.6858 31.2586 9.9071 30.2484
+\c 10.1284 29.2389 9.0212 29.4855 7.7652 30.273
+\c 6.5098 31.0605 6.2878 30.2982 6.2878 30.2982
+\c 5.3282 31.1097 5.0823 31.8733 5.6731 32.3903
+\c 6.2639 32.9074 7.494 32.3903 7.815 31.2831
+\c 8.1347 30.1753 8.5288 30.1015 9.2671 29.9041
+\c 10.0055 29.7074 9.6858 30.79 8.8239 32.0454
+\c 7.9626 33.3015 5.5993 33.9169 4.8364 33.1047
+\c 4.0728 32.2913 4.5407 31.2831 5.0823 31.0864
+\c 5.6239 30.8891 5.6977 30.9628 5.8213 30.0025
+\c 5.9436 29.0422 7.0275 28.8455 7.0275 28.8455
+\c 5.9928 28.8701 5.5993 29.2389 5.4518 30.1248
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian165.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian165.pgf
new file mode 100644
index 0000000000..e796bd3f14
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian165.pgf
@@ -0,0 +1,91 @@
+\m 43.5411 22.4555
+\c 43.5411 22.4555 11.8178 23.8134 10.5563 18.4292
+\c 10.5563 18.4292 9.4409 21.1455 17.7846 22.6495
+\c 26.1276 24.1528 40.4368 23.3298 43.5411 22.4555
+\s
+\m 42.1826 19.9339
+\c 42.1826 19.9339 34.8101 17.5092 25.0116 16.8774
+\c 15.2131 16.247 11.4777 17.7994 11.4777 17.7994
+\c 11.4777 17.7994 13.7091 15.8105 24.0417 16.3439
+\c 34.3737 16.8774 40.4368 19.1586 42.1826 19.9339
+\s
+\m 44.5601 19.8847
+\c 44.5601 19.8847 35.392 15.2286 23.4106 14.161
+\c 11.4299 13.0935 1.0003 14.743 1.1457 18.4285
+\c 1.2912 22.1168 10.8473 24.8802 20.0632 25.1726
+\c 29.2804 25.4629 40.2913 24.4452 44.3177 23.1836
+\c 44.3177 23.1836 37.7696 25.5113 24.4782 25.5113
+\c 11.1867 25.5113 2.0186 22.892 0.8541 18.9626
+\c 0.8541 18.9626 -0.3583 15.6158 6.3844 14.0155
+\c 13.1272 12.4139 29.96 10.231 44.5601 19.8847
+\s
+\m 40.7182 6.1705
+\c 40.7182 6.1705 41.1976 8.0228 40.7831 9.8956
+\c 40.3698 11.7691 39.236 12.489 38.648 11.3996
+\c 38.0592 10.3102 39.1274 7.7387 40.7182 6.1705
+\m 35.4665 4.8632
+\c 35.4665 4.8632 35.8374 7.3903 35.1181 9.0685
+\c 34.3989 10.746 33.3963 10.2658 33.3963 8.9592
+\c 33.3963 7.6512 34.5731 5.5824 35.4665 4.8632
+\m 29.4307 5.1459
+\c 29.4307 5.1459 29.8665 6.9764 29.5181 8.4142
+\c 29.1691 9.8526 28.3631 10.0923 28.4069 8.632
+\c 28.4506 7.1724 29.4307 5.1459 29.4307 5.1459
+\m 23.983 3.4678
+\c 23.983 3.4678 24.5068 5.1248 24.3101 6.8671
+\c 24.1134 8.6095 23.2207 9.0459 22.9373 7.6075
+\c 22.6545 6.1698 23.983 3.4678 23.983 3.4678
+\m 17.7949 2.9241
+\c 17.7949 2.9241 18.6883 5.2982 18.5141 6.9539
+\c 18.3392 8.6095 17.2505 8.8725 16.7055 7.6943
+\c 16.1604 6.5195 17.1412 4.2525 17.7949 2.9241
+\m 10.779 3.5982
+\c 10.779 3.5982 11.8895 5.6473 11.7591 7.6943
+\c 11.6286 9.7433 10.1895 10.1135 9.8193 8.1758
+\c 9.4491 6.236 10.779 3.5982 10.779 3.5982
+\m 5.418 4.1002
+\c 5.418 4.1002 6.1153 6.8234 5.9623 8.3711
+\c 5.8107 9.9175 4.8729 10.4181 4.5676 8.5453
+\c 4.263 6.6711 5.418 4.1002 5.418 4.1002
+\m 0.9518 18.768
+\c 0.9518 18.768 -0.8432 15.2286 2.4073 12.4139
+\c 2.4073 12.4139 0.2243 10.231 0.6615 6.5926
+\c 1.0972 2.9548 2.7959 1.5485 4.7357 3.3435
+\c 4.7357 3.3435 3.5233 5.7695 4.1052 8.4367
+\c 4.6872 11.1045 6.0942 10.3286 6.1905 7.9518
+\c 6.2881 5.5749 5.56 3.6836 5.56 3.6836
+\c 5.56 3.6836 7.4035 -0.8291 10.1677 2.7124
+\c 10.1677 2.7124 8.8098 6.3986 9.5864 8.8246
+\c 10.3623 11.25 14 9.6497 10.9927 3.1488
+\c 10.9927 3.1488 14.5342 -1.9444 17.2027 2.1796
+\c 17.2027 2.1796 15.4562 5.2347 16.2321 7.6109
+\c 17.008 9.9885 20.4525 8.7277 18.0264 2.5184
+\c 18.0264 2.5184 21.5672 -1.508 23.5083 2.616
+\c 23.5083 2.616 21.8854 4.9035 22.4004 7.5092
+\c 22.9161 10.1135 24.4905 8.8834 24.6339 6.8794
+\c 24.778 4.8748 24.2616 3.1563 24.2616 3.1563
+\c 24.2616 3.1563 27.297 -0.3072 28.9294 4.1597
+\c 28.9294 4.1597 27.6118 5.6186 28.0121 8.7113
+\c 28.4137 11.8039 30.7899 9.1702 29.6165 4.8748
+\c 29.6165 4.8748 32.05 0.7501 34.9986 3.9015
+\c 34.9986 3.9015 32.9086 5.3044 32.9947 8.253
+\c 33.08 11.2015 34.3976 11.0014 35.2568 9.4844
+\c 36.116 7.9675 35.9145 5.6473 35.6284 4.4452
+\c 35.6284 4.4452 38.0906 2.125 40.2387 5.2176
+\c 40.2387 5.2176 38.1487 6.5065 37.9479 9.5705
+\c 37.7477 12.6338 39.5516 13.2062 40.8111 11.0014
+\c 40.8111 11.0014 41.8991 8.8834 40.9545 5.7333
+\c 40.9545 5.7333 42.9871 4.6173 43.8177 7.5939
+\c 44.6475 10.5718 44.1612 13.7785 40.8111 16.7285
+\c 40.8111 16.7285 42.7296 15.7258 43.9037 12.8626
+\c 45.0772 9.9994 44.6762 4.1597 40.5249 4.9895
+\c 40.5249 4.9895 38.3782 1.7828 35.2274 3.7007
+\c 35.2274 3.7007 32.6224 -0.3646 29.1295 3.8441
+\c 29.1295 3.8441 27.3543 -0.937 23.7753 2.2691
+\c 23.7753 2.2691 21.9141 -1.9677 17.5053 1.8968
+\c 17.5053 1.8968 14.2978 -2.6274 10.3466 2.2971
+\c 10.3466 2.2971 8.0558 -1.3953 4.9064 3.0409
+\c 4.9064 3.0409 2.8164 0.6367 0.9265 3.4712
+\c -0.9634 6.3057 0.3828 10.4857 1.8998 12.3183
+\c 1.8998 12.3183 -1.1991 14.7689 0.9518 18.768
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian166.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian166.pgf
new file mode 100644
index 0000000000..7871a8bab4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian166.pgf
@@ -0,0 +1,93 @@
+\m 10.136 18.7157
+\c 9.6832 20.4136 10.5889 20.9505 11.9747 20.0448
+\c 13.3605 19.1419 15.4547 16.8224 15.4547 16.8224
+\c 16.275 17.4166 16.0475 21.2619 12.9651 23.9776
+\c 9.8813 26.6939 4.9588 28.4192 2.6106 28.3906
+\c 0.2631 28.3632 0.0937 27.9384 0.6879 25.4768
+\c 1.2814 23.0159 5.2696 18.2922 9.994 15.7179
+\c 14.7184 13.1443 16.8405 15.1524 16.8405 15.1524
+\l 15.596 16.1974
+\c 13.1631 15.5472 10.5889 17.0204 10.136 18.7157
+\m 15.1712 16.7076
+\c 15.1712 16.7076 13.0218 18.829 11.946 19.65
+\c 10.8716 20.4696 10.2207 20.0448 10.7869 18.801
+\c 11.3525 17.5559 13.4179 16.2541 15.1712 16.7076
+\m 37.5781 7.6959
+\c 37.5781 7.6959 36.833 6.6065 37.0912 5.1162
+\c 37.0912 5.1162 38.8397 5.5185 39.7283 5.9187
+\c 39.7283 5.9187 39.1832 5.2603 37.1485 4.5431
+\c 37.1485 4.5431 38.3233 1.3337 40.8737 1.0174
+\c 43.4254 0.7026 45.0872 4.7446 37.5781 7.6959
+\m 17.1431 14.9748
+\l 16.3979 14.4892
+\c 16.3979 14.4892 18.4046 12.3671 24.0224 9.1289
+\c 29.6395 5.89 34.2252 5.1742 36.5461 5.0588
+\c 36.5461 5.0588 36.2886 6.349 37.2339 7.81
+\c 37.2339 7.81 36.1739 8.1535 30.6995 9.2436
+\c 25.2258 10.333 20.4113 12.5685 17.1431 14.9748
+\m 17.3439 15.205
+\c 22.1591 11.5652 28.464 10.0469 31.9317 9.4451
+\c 35.4 8.8434 37.4921 8.1822 37.4921 8.1822
+\c 38.7249 9.2723 40.468 8.8434 40.468 8.8434
+\c 43.1597 8.0299 43.4131 4.8314 43.4131 4.8314
+\c 41.6359 10.5188 37.8274 7.9288 37.8274 7.9288
+\c 45.9519 4.7296 43.6167 -0.1963 40.2651 0.3624
+\c 36.9136 0.9204 36.609 4.5267 36.609 4.5267
+\c 29.0931 3.4093 19.5473 11.4819 19.5473 11.4819
+\c 17.8199 12.8035 16.1957 14.3266 16.1957 14.3266
+\c 7.3603 12.6512 1.8757 20.6226 0.6066 24.1784
+\c -0.6631 27.7314 0.4543 28.3407 0.4543 28.3407
+\c 6.4464 29.6616 12.1844 24.9898 12.1844 24.9898
+\c 17.9729 20.1657 15.8904 16.459 15.8904 16.459
+\l 17.0584 15.3935
+\c 18.938 18.2867 15.6876 22.908 15.6876 22.908
+\c 19.7344 18.1734 17.3439 15.205 17.3439 15.205
+\s
+\m 3.8161 5.4181
+\c 3.8161 5.4181 6.3112 8.2874 8.9305 8.995
+\c 11.5499 9.7013 12.8804 8.9527 12.8804 8.9527
+\c 12.8804 8.9527 10.7603 8.5784 6.1445 6.5
+\c 1.5287 4.4209 -0.3004 1.8432 0.0739 0.7196
+\c 0.4482 -0.4026 3.5251 -0.2359 7.8076 1.3849
+\c 12.0908 3.007 14.1282 7.0826 14.1282 7.0826
+\c 14.1282 7.0826 18.4107 7.9548 21.7377 10.1165
+\l 21.4467 10.3255
+\c 21.4467 10.3255 18.3691 8.745 14.2526 7.5381
+\c 14.2526 7.5381 14.3065 8.0204 13.8052 8.8564
+\l 13.7116 7.5737
+\c 13.7116 7.5737 11.9658 7.2021 11.3709 5.8272
+\l 12.8572 6.571
+\c 12.8572 6.571 12.6898 5.4556 8.0446 2.8718
+\c 3.3995 0.29 1.1325 -0.2311 0.5008 0.8289
+\c -0.131 1.8889 2.099 4.0807 5.6848 5.8456
+\c 9.2713 7.6105 13.6194 9.0046 13.6194 9.0046
+\c 13.6194 9.0046 12.8572 10.1568 9.8102 9.6179
+\c 6.7626 9.0783 4.6596 7.0355 3.8161 5.4181
+\s
+\m 14.1207 9.1904
+\c 14.1207 9.1904 18.0419 10.4164 19.5842 11.2162
+\l 19.8628 11.0673
+\c 19.8628 11.0673 17.6143 9.8413 14.2143 8.9855
+\o
+\s
+\m 44.1289 27.3756
+\c 44.1289 27.3756 38.3718 26.668 30.843 21.2203
+\c 30.843 21.2203 29.9571 21.1752 30.7104 21.8405
+\c 31.4631 22.5043 39.6115 27.3756 44.1289 27.3756
+\s
+\m 43.6863 25.1169
+\c 43.6863 25.1169 37.0427 23.8328 31.9057 18.8284
+\c 26.7688 13.8239 25.484 12.363 23.9343 11.5652
+\l 23.3585 11.6984
+\c 23.3585 11.6984 24.1112 11.6103 28.1409 16.2602
+\c 32.1714 20.9095 37.2646 24.0992 43.6863 25.1169
+\s
+\m 43.465 29.1466
+\c 43.465 29.1466 35.5817 27.3319 31.0642 23.9653
+\c 26.5475 20.5994 27.4777 18.829 25.219 15.817
+\c 25.219 15.817 23.4029 13.7358 22.3845 13.0268
+\l 21.9856 13.2475
+\c 21.9856 13.2475 24.7313 15.3744 26.0605 17.6775
+\c 27.389 19.9792 26.7244 21.6185 31.8176 24.8068
+\c 36.9108 27.9951 43.465 29.1466 43.465 29.1466
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian167.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian167.pgf
new file mode 100644
index 0000000000..57170ab2f5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian167.pgf
@@ -0,0 +1,48 @@
+\m 43.7836 23.5813
+\c 43.7836 23.5813 44.0124 27.4328 31.3104 27.9368
+\c 18.6084 28.4409 10.1712 27.5701 4.5766 25.965
+\c -1.018 24.3599 -1.6135 21.1497 6.181 19.8206
+\c 13.9776 18.4894 39.3816 17.482 42.5453 23.1687
+\c 42.5453 23.1687 42.5453 19.087 27.0915 17.5277
+\c 11.6383 15.9691 0.6787 19.6369 0.0831 22.0677
+\c -0.5132 24.4979 1.779 27.0202 16.5451 28.2128
+\c 31.3104 29.4046 44.563 27.4785 43.7836 23.5813
+\s
+\m 41.4908 24.3599
+\c 41.4908 24.3599 38.9226 26.9745 22.8732 26.6528
+\c 6.823 26.3331 -1.7973 22.2965 12.0051 21.1969
+\c 12.0051 21.1969 22.0474 20.326 29.5681 21.2433
+\c 37.0887 22.1585 41.2155 23.8108 31.1732 25.0491
+\c 21.1308 26.2867 11.1342 24.2691 12.6013 23.3053
+\c 14.0691 22.343 23.2857 22.0219 31.4935 23.765
+\c 31.4935 23.765 28.8345 22.2514 21.2223 21.7938
+\c 13.6101 21.3341 9.3919 23.4433 14.0691 24.6816
+\c 18.7464 25.9192 28.284 25.9192 33.4203 25.0948
+\c 38.5552 24.2691 39.6562 22.4809 32.3193 20.9674
+\c 24.9823 19.4538 10.2627 19.9592 5.9522 21.8847
+\c 1.6417 23.8108 7.9234 25.9663 18.241 26.7914
+\c 28.5586 27.6172 41.5358 26.3331 41.4908 24.3599
+\s
+\m 20.4881 16.7491
+\c 20.4881 16.7491 22.001 5.9267 12.6922 3.3142
+\c 12.6922 3.3142 17.7834 3.405 19.8003 7.486
+\c 21.8179 11.5677 20.4881 16.7491 20.4881 16.7491
+\s
+\m 23.9278 17.482
+\c 23.9278 17.482 22.9647 13.5389 25.1203 8.8616
+\c 27.2745 4.1837 31.264 4.1837 34.6121 4.1837
+\c 34.6121 4.1837 28.284 4.2308 26.0827 8.8159
+\c 23.882 13.4016 23.9278 17.482 23.9278 17.482
+\s
+\m 19.2505 7.4403
+\c 19.2505 7.4403 9.62 6.1569 9.1617 3.7725
+\c 8.7034 1.3881 17.9657 0.7003 25.1196 1.3417
+\c 32.2728 1.9837 36.0328 2.9474 36.0328 4.8722
+\c 36.0328 6.7989 30.2552 7.6705 26.6332 7.5783
+\l 26.3122 7.8528
+\c 26.3122 7.8528 32.5481 7.9915 35.2999 6.3857
+\c 38.0504 4.7813 36.5833 1.9379 27.8708 0.563
+\c 19.1583 -0.8133 9.2997 0.4244 8.7949 3.2684
+\c 8.2908 6.1111 16.8196 7.3037 19.3878 7.7613
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian168.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian168.pgf
new file mode 100644
index 0000000000..e4d7e13937
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian168.pgf
@@ -0,0 +1,157 @@
+\m 9.1902 17.7441
+\c 9.1902 17.7441 16.1597 21.013 30.2229 18.6088
+\c 44.2869 16.2026 51.1334 15.092 56.1296 19.6566
+\c 56.1296 19.6566 54.0321 14.8461 41.2024 16.2654
+\c 28.3727 17.6826 22.1429 20.6428 9.1902 17.7441
+\s
+\m 6.829 26.9839
+\c 10.4982 27.8691 12.2426 25.8119 12.2426 25.8119
+\c 20.4156 26.2811 23.9823 25.7087 29.5529 24.7457
+\c 35.1222 23.7826 43.4263 22.142 49.6205 22.5061
+\c 55.8155 22.8715 58.2627 25.8119 57.7429 27.3739
+\c 57.2218 28.936 54.1236 30.2638 50.4545 29.0931
+\c 46.784 27.9203 47.3311 26.1247 47.3311 26.1247
+\c 51.3124 26.1247 53.9939 27.0365 53.9939 27.0365
+\c 51.8335 26.0202 47.4089 25.6828 47.4089 25.6828
+\c 48.6848 24.6671 50.4545 24.4855 53.0568 25.1357
+\c 55.6604 25.7873 55.7116 27.5303 53.6291 27.8691
+\c 51.548 28.2072 49.4122 26.8541 49.4122 26.8541
+\c 51.0781 28.4674 53.8122 28.5972 54.9057 27.7919
+\c 55.9985 26.9839 55.6345 24.3557 51.7297 23.8871
+\c 47.8256 23.4172 46.8612 25.6568 46.8612 25.6568
+\c 43.7118 25.4997 39.7032 25.9956 39.7032 25.9956
+\c 31.5043 26.9839 26.7416 28.3902 17.6828 29.0145
+\c 8.6247 29.6408 2.899 28.4422 1.3096 25.7613
+\c -0.277 23.0805 1.5193 20.8409 1.5193 20.8409
+\l 3.4714 22.976
+\c 3.1319 24.0183 3.1585 26.0987 6.829 26.9839
+\m 3.8094 23.2103
+\c 3.8094 23.2103 6.6726 24.954 11.8786 25.7354
+\c 11.8786 25.7354 10.1867 27.4265 6.8543 26.6977
+\c 3.5226 25.9696 3.5492 23.6788 3.8094 23.2103
+\m 3.7309 22.4036
+\c 3.7309 22.4036 2.5083 21.2575 1.9346 20.4775
+\c 1.9346 20.4775 4.3039 18.8103 8.4171 20.3471
+\c 12.5295 21.8818 12.6599 24.4335 12.5295 25.0585
+\l 10.9155 24.799
+\c 10.9155 24.799 10.9934 23.366 8.7026 22.1687
+\c 6.4124 20.9714 4.069 21.9098 3.7309 22.4036
+\m 10.5774 24.7457
+\c 10.5774 24.7457 7.0367 24.3297 4.069 22.7404
+\c 4.069 22.7404 5.4227 21.7527 7.8959 22.4296
+\c 10.3684 23.1065 10.5774 24.7457 10.5774 24.7457
+\m 53.2692 14.7286
+\c 45.6365 11.3511 35.5026 14.4213 29.3186 15.3864
+\c 23.1333 16.3521 11.3779 17.4921 8.1316 14.7716
+\c 4.8866 12.0526 6.465 9.3779 8.5707 7.5337
+\c 10.6765 5.6923 11.0706 3.4985 9.7107 2.226
+\c 8.3515 0.9543 6.9035 2.2691 6.9035 2.2691
+\c 8.1753 2.8401 8.4826 4.2881 7.2552 4.6842
+\c 6.0272 5.0776 4.36 4.0695 5.1051 2.0082
+\c 5.8503 -0.0545 10.7195 -0.2738 12.1231 2.0949
+\c 13.5267 4.4629 12.3423 6.3938 11.1143 8.4995
+\c 9.8862 10.6046 11.1587 11.8326 11.1587 11.8326
+\c 11.0269 10.386 13.177 9.9905 14.0546 11.1749
+\c 14.9303 12.3592 14.3169 14.7286 11.4216 14.5968
+\c 8.527 14.4657 7.3864 11.5697 7.3864 11.5697
+\c 7.8693 14.508 10.895 14.9909 10.895 14.9909
+\c 13.5267 15.3413 15.7642 13.9384 15.0621 11.3948
+\c 14.3606 8.8499 11.2898 9.7713 11.2898 9.7713
+\c 11.0706 8.6307 13.6155 6.7893 13.2644 4.2
+\c 12.9133 1.6127 10.6765 0.5165 10.6765 0.5165
+\c 6.8161 -1.1071 4.0089 1.4365 4.4037 3.4555
+\c 4.7978 5.4738 7.0353 5.9102 8.0441 4.5954
+\c 9.0536 3.2799 7.5182 2.2691 7.5182 2.2691
+\c 8.5707 1.6564 10.018 2.5334 9.9743 3.9814
+\c 9.9306 5.428 8.79 5.9553 7.1234 7.3589
+\c 5.4562 8.7625 5.588 11.0875 5.588 11.0875
+\c 5.8954 16.0004 12.8696 16.9218 12.8696 16.9218
+\c 27.7395 18.1061 30.4149 15.6056 41.382 14.4213
+\c 52.3471 13.2362 57.3481 16.8343 57.8741 19.772
+\c 58.4007 22.711 55.7253 23.3694 55.7253 23.3694
+\c 48.0926 19.1149 31.2051 22.7998 23.748 24.2908
+\c 16.2915 25.7818 12.7815 25.081 12.7815 25.081
+\c 13.1326 23.4568 12.3423 20.2112 7.956 19.2017
+\c 3.5697 18.1935 1.772 20.2112 1.772 20.2112
+\c 1.2017 19.5521 0.1929 17.9743 0.4989 16.0004
+\c 0.8062 14.0258 3.3955 12.7977 5.8073 14.1146
+\c 8.2197 15.4301 8.4389 18.0624 6.2014 18.2373
+\c 3.9645 18.4128 3.0882 16.8343 3.6585 15.956
+\c 4.2281 15.0783 5.9828 16.2189 5.9828 16.2189
+\c 5.588 14.6849 4.0526 14.2457 3.1756 14.9909
+\c 2.2979 15.7367 2.2098 17.7994 4.7554 18.4128
+\c 7.299 19.0268 9.0085 17.7106 7.6931 15.2982
+\c 6.3783 12.8858 1.8588 12.1844 0.4552 14.9479
+\c -0.9471 17.7106 1.3335 20.4741 1.3335 20.4741
+\c -0.0714 21.7896 -0.9921 26.1336 3.8334 28.1505
+\c 8.6588 30.1695 20.0631 29.5985 31.688 27.5372
+\c 43.3122 25.4745 46.7327 26.0892 46.7327 26.0892
+\c 46.6009 28.9408 51.2072 29.6422 51.2072 29.6422
+\c 57.4363 30.3874 58.1384 27.7113 58.1384 27.7113
+\c 58.8836 25.2566 56.2519 23.7649 56.2519 23.7649
+\c 58.357 23.1509 60.9019 18.1061 53.2692 14.7286
+\s
+\m 31.3991 3.0559
+\l 29.8364 1.9344
+\c 29.8364 1.9344 30.8602 1.3962 31.3848 0.9953
+\c 31.3848 0.9953 32.5049 1.8238 33.0165 2.0737
+\c 33.0165 2.0737 31.994 2.627 31.3991 3.0559
+\m 36.2519 2.8203
+\c 35.4644 3.2349 33.9153 2.2117 33.9153 2.2117
+\c 35.2014 1.7281 37.0401 2.405 36.2519 2.8203
+\m 28.8829 2.0314
+\c 28.8829 2.0314 28.0947 2.5163 27.2238 2.4603
+\c 26.3523 2.405 26.228 1.0916 28.8829 2.0314
+\m 31.7802 13.2417
+\c 31.7802 13.2417 29.1253 11.6038 29.2244 8.7857
+\c 29.3221 5.9676 30.5679 4.3611 31.4852 3.6406
+\c 31.4852 3.6406 34.2377 4.7873 34.599 7.5085
+\c 34.959 10.2282 33.6155 11.9651 31.7802 13.2417
+\m 26.5695 14.5872
+\c 24.8654 13.9636 24.6359 11.735 26.1761 11.2118
+\c 27.7163 10.6872 28.6991 11.8996 28.1104 12.6864
+\c 27.5196 13.4732 26.0122 12.849 26.0122 12.849
+\c 27.4868 14.7498 29.2893 13.0791 29.0932 11.8996
+\c 28.8959 10.72 26.9301 9.8341 25.4883 11.08
+\c 24.0458 12.3258 24.7342 14.98 27.1917 15.0455
+\c 29.6499 15.1111 31.7474 13.7014 31.7474 13.7014
+\c 34.8934 14.1276 36.2697 13.7014 36.2697 13.7014
+\c 39.6451 12.948 39.5468 10.0636 37.8099 9.7358
+\c 36.073 9.4086 34.9917 11.1127 35.6802 12.1284
+\c 36.368 13.144 37.6132 12.1946 37.6132 12.1946
+\c 35.8762 12.2274 35.8441 10.2938 37.0893 10.0964
+\c 38.3344 9.9004 39.5795 11.8347 37.4492 13.0463
+\c 35.3196 14.2587 32.1729 13.3735 32.1729 13.3735
+\c 32.5991 13.0791 36.1713 10.3915 35.3845 7.475
+\c 34.599 4.5592 31.6163 3.3462 31.6163 3.3462
+\c 32.4031 2.7889 33.6483 2.3299 33.6483 2.3299
+\c 35.3524 3.7061 37.5804 3.0511 36.5968 2.1332
+\c 35.6147 1.2159 33.386 1.8722 33.386 1.8722
+\c 32.4031 1.3798 31.3861 0.4611 31.3861 0.4611
+\c 30.436 1.3798 29.3221 1.8722 29.3221 1.8722
+\c 25.9473 0.6585 25.7827 2.5921 27.0613 2.7889
+\c 28.3392 2.9856 29.5515 2.0348 29.5515 2.0348
+\l 31.1245 3.2472
+\c 28.1753 5.3126 28.1753 8.1949 28.1753 8.1949
+\c 28.0441 11.7022 31.2557 13.603 31.2557 13.603
+\c 30.3049 14.2587 28.2736 15.2095 26.5695 14.5872
+\s
+\m 55.8114 8.8636
+\c 57.1316 11.1264 56.2205 13.7977 53.4871 13.9534
+\c 50.753 14.1118 49.4648 11.7862 50.4702 10.2781
+\c 51.4756 8.77 53.9898 10.2153 53.9898 10.2153
+\c 52.8587 8.8957 51.0364 5.9109 52.4188 3.1146
+\c 53.8013 0.3184 57.3201 0.6326 58.2306 2.1407
+\c 59.1424 3.6481 57.2573 4.7798 56.4718 3.9001
+\c 55.6857 3.0197 56.5347 2.2349 56.5347 2.2349
+\c 52.3874 3.9937 54.4925 6.6021 55.8114 8.8636
+\m 55.6857 3.1775
+\c 55.6857 3.1775 55.937 4.7477 57.5708 4.5592
+\c 59.2046 4.3714 59.7387 1.6373 56.8803 0.7261
+\c 54.0212 -0.1843 51.1935 2.0464 51.0986 4.5592
+\c 51.005 7.0727 52.2611 8.1095 52.7952 8.9906
+\c 52.7952 8.9906 50.156 8.1409 49.5597 10.3088
+\c 48.9628 12.4774 50.8472 14.8645 54.2725 14.1112
+\c 57.6965 13.3564 57.7286 9.3977 56.3776 7.5126
+\c 55.0259 5.6281 54.1154 4.3079 55.6857 3.1775
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian169.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian169.pgf
new file mode 100644
index 0000000000..487524aa79
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian169.pgf
@@ -0,0 +1,103 @@
+\m 28.8185 23.4854
+\c 28.8185 23.4854 17.6922 18.3471 5.719 27.2679
+\c 5.719 27.2679 12.6652 21.338 18.9346 20.9999
+\c 25.204 20.6612 28.8185 23.4854 28.8185 23.4854
+\s
+\m 4.8939 22.3427
+\c 4.8939 22.3427 3.9349 21.6515 4.0244 20.5594
+\c 4.1132 19.4666 6.0755 18.5076 7.3917 19.8675
+\c 8.7078 21.2274 7.0782 24.4833 4.426 24.6623
+\c 1.7732 24.8392 0.3676 22.1419 0.6797 19.7999
+\c 0.9918 17.4599 2.3299 16.1662 4.8276 14.5161
+\c 7.3247 12.8666 10.0896 10.7254 10.7582 7.2686
+\c 11.4269 3.8126 8.953 0 5.0284 0
+\c 1.1032 0 0.0103 3.7019 0.7692 5.7086
+\c 1.5273 7.7153 4.0476 8.8525 6.0536 7.6477
+\c 8.0603 6.4435 8.1054 3.4547 6.2101 2.6084
+\c 4.3147 1.7615 3.2226 3.5674 3.2663 4.2374
+\c 3.2663 4.2374 4.872 3.0094 6.098 4.5256
+\c 7.3247 6.0426 5.5626 8.0944 3.3332 7.5364
+\c 1.1032 6.979 0.4563 4.0796 1.6837 2.2512
+\c 2.909 0.4235 6.5884 -0.5573 8.729 2.118
+\c 10.8703 4.7941 9.6449 8.9413 6.7455 11.4166
+\c 3.8461 13.8918 0.6134 15.9217 0.0998 19.0212
+\c -0.4131 22.1201 1.0813 24.4396 3.6686 24.93
+\c 6.2538 25.4204 8.3732 23.355 8.4538 21.4712
+\c 8.5262 19.7282 6.9238 17.9079 4.493 18.664
+\c 2.0621 19.4222 2.5976 22.4991 4.8939 22.3427
+\s
+\m 28.8759 23.4854
+\c 28.8759 23.4854 40.0015 18.3471 51.974 27.2679
+\c 51.974 27.2679 45.0278 21.338 38.7591 20.9999
+\c 32.4904 20.6612 28.8759 23.4854 28.8759 23.4854
+\s
+\m 52.7991 22.3427
+\c 52.7991 22.3427 53.7574 21.6515 53.6686 20.5594
+\c 53.5798 19.4666 51.6182 18.5076 50.3013 19.8675
+\c 48.9865 21.2274 50.6141 24.4833 53.2676 24.6623
+\c 55.9205 24.8392 57.3254 22.1419 57.0133 19.7999
+\c 56.7011 17.4599 55.3624 16.1662 52.8667 14.5161
+\c 50.3682 12.8666 47.6041 10.7254 46.9347 7.2686
+\c 46.2667 3.8126 48.7413 0 52.6659 0
+\c 56.5898 0 57.682 3.7019 56.9238 5.7086
+\c 56.1657 7.7153 53.6453 8.8525 51.6393 7.6477
+\c 49.6326 6.4435 49.5882 3.4547 51.4822 2.6084
+\c 53.3783 1.7615 54.4711 3.5674 54.4274 4.2374
+\c 54.4274 4.2374 52.8209 3.0094 51.5943 4.5256
+\c 50.3682 6.0426 52.1304 8.0944 54.3591 7.5364
+\c 56.5898 6.979 57.2366 4.0796 56.0099 2.2512
+\c 54.7839 0.4235 51.1045 -0.5573 48.964 2.118
+\c 46.8234 4.7941 48.0494 8.9413 50.9488 11.4166
+\c 53.8468 13.8918 57.0802 15.9217 57.5938 19.0212
+\c 58.1061 22.1201 56.6117 24.4396 54.0258 24.93
+\c 51.4392 25.4204 49.3191 23.355 49.2385 21.4712
+\c 49.1661 19.7282 50.7699 17.9079 53.1993 18.664
+\c 55.6309 19.4222 55.0947 22.4991 52.7991 22.3427
+\s
+\m 29.8013 28.2727
+\c 29.2877 29.1688 27.5645 28.8867 27.4975 27.5924
+\c 27.432 26.2994 28.8895 25.5372 28.8895 25.5372
+\c 29.7686 26.1676 30.3163 27.3772 29.8013 28.2727
+\m 29.1668 29.2446
+\c 29.1668 29.2446 30.6128 29.1524 30.7931 27.8
+\c 30.9734 26.4436 29.7091 25.4518 29.2276 25.2408
+\c 29.2276 25.2408 32.1775 22.7116 37.4757 25.5713
+\c 42.7738 28.4304 49.4257 30.7185 57.4648 24.5475
+\c 57.4648 24.5475 52.8578 27.7392 47.9811 27.4968
+\c 43.1044 27.257 40.5759 25.4505 36.5727 24.1869
+\c 32.5696 22.9219 30.2207 23.9758 29.1074 24.6377
+\l 28.8895 24.8084
+\l 28.5856 24.6377
+\c 27.4723 23.9758 25.1241 22.9219 21.1209 24.1869
+\c 17.1171 25.4505 14.5886 27.257 9.7119 27.4968
+\c 4.8345 27.7392 0.2289 24.5475 0.2289 24.5475
+\c 8.2666 30.7185 14.9192 28.4304 20.2173 25.5713
+\c 25.5147 22.7116 28.466 25.2408 28.466 25.2408
+\c 27.9852 25.4518 26.7203 26.4436 26.8999 27.8
+\c 27.0809 29.1524 28.5255 29.2446 28.5255 29.2446
+\o
+\s
+\m 29.5841 15.7032
+\c 42.6639 15.6861 49.2836 11.5286 49.2836 11.5286
+\c 43.3291 15.9709 33.1659 16.7454 29.6395 16.8827
+\l 28.257 16.8827
+\c 24.7436 16.7482 14.5619 15.9771 8.5972 11.5286
+\c 8.5972 11.5286 15.2347 15.6963 28.3486 15.7032
+\o
+\s
+\m 29.9352 10.7547
+\c 39.9407 10.4931 47.1991 7.8813 47.1991 7.8813
+\c 41.5963 10.4849 33.6098 11.5942 30.1217 11.8462
+\c 29.1101 11.9186 28.02 11.8496 28.02 11.8496
+\c 24.5524 11.5122 16.5318 10.4918 10.9133 7.8813
+\c 10.9133 7.8813 18.1491 10.4843 28.128 10.7527
+\o
+\s
+\m 29.787 8.6866
+\c 39.7139 8.425 46.919 5.8138 46.919 5.8138
+\c 41.3572 8.4161 33.4343 9.526 29.9735 9.778
+\c 28.9694 9.8504 27.8869 9.7814 27.8869 9.7814
+\c 24.4479 9.4454 16.4887 8.4243 10.9133 5.8138
+\c 10.9133 5.8138 18.0924 8.4161 27.9941 8.6838
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian17.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian17.pgf
new file mode 100644
index 0000000000..024bfab119
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian17.pgf
@@ -0,0 +1,62 @@
+\m 65.7168 28.8812
+\c 64.52 28.8812 63.4848 28.6652 62.5856 28.2876
+\c 56.4736 26.6668 56.5184 19.366 60.232 17.5804
+\c 64.392 15.5804 68.0768 19.5372 66.8512 22.7148
+\c 65.6208 25.8988 61.9808 25.35 61.9808 25.35
+\c 61.8944 25.5036 61.872 25.67 61.88 25.8396
+\c 61.9312 25.894 61.9696 25.9516 62.0224 26.006
+\c 62.8544 26.8316 64.096 27.2492 65.7168 27.2492
+\c 67.5408 27.2492 69.0672 26.5372 70.2528 25.1244
+\c 72.3456 22.6268 73.016 18.2876 72.0016 13.8044
+\c 70.376 6.6092 62.936 1.9452 52.592 1.6396
+\c 42.1664 1.3276 34.9232 6.8588 26.5344 14.1276
+\l 24.352 16.0236
+\c 17.1808 22.2636 10.9888 27.6508 5.704 29.4796
+\c 5.704 29.4796 5.3696 29.5804 5.2448 29.614
+\c 5.3792 29.662 5.7184 29.7884 5.7184 29.7884
+\c 10.9888 31.6108 17.1808 36.998 24.352 43.2396
+\l 26.5344 45.1356
+\c 34.9232 52.4012 42.1664 57.9372 52.592 57.6268
+\c 62.936 57.3164 70.376 52.6572 72.0016 45.462
+\c 73.016 40.9756 72.3456 36.6396 70.2528 34.142
+\c 69.0672 32.7292 67.5408 32.014 65.7168 32.014
+\c 64.096 32.014 62.8544 32.4332 62.0224 33.2588
+\c 61.9824 33.3004 61.9536 33.342 61.9184 33.3836
+\c 61.9312 33.4796 61.9296 33.5804 61.9808 33.67
+\c 61.9808 33.67 65.6208 33.1244 66.8512 36.3052
+\c 68.0768 39.486 64.392 43.4396 60.232 41.4412
+\c 56.0688 39.4412 56.4944 30.4908 65.0544 30.398
+\l 64.992 30.4396
+\c 65.232 30.4204 65.4608 30.3852 65.7168 30.3852
+\c 68.0464 30.3852 70.0704 31.3308 71.5728 33.1164
+\c 73.9792 35.99 74.7792 40.8524 73.6592 45.8092
+\c 71.8576 53.7692 63.8048 58.9212 52.6448 59.254
+\c 41.6064 59.582 33.776 53.6044 25.4 46.3468
+\l 23.2112 44.4476
+\c 16.176 38.3244 10.0976 33.0364 5.1296 31.3148
+\l 0.0 29.438
+\l 5.1728 27.9356
+\c 10.0976 26.2284 16.176 20.9404 23.2112 14.8172
+\l 25.4 12.9164
+\c 33.776 5.662 41.6064 -0.3188 52.6448 0.0124
+\c 63.8048 0.342 71.8576 5.4956 73.6592 13.4572
+\c 74.7792 18.4124 73.9792 23.2748 71.5728 26.1452
+\c 70.0704 27.9324 68.0464 28.8812 65.7168 28.8812
+\o
+\s
+\m 34.1424 14.7484
+\l 43.0416 8.9756
+\c 43.0416 8.9756 44.896 21.3036 56.3888 29.142
+\c 56.3888 29.142 45.7104 35.062 44.7456 51.4492
+\l 34.8864 46.7452
+\c 42.5968 34.7036 54.0896 29.7836 54.0896 29.7836
+\l 48.5296 29.7836
+\c 33.1072 29.7836 23.5408 36.8396 23.5408 36.8396
+\c 23.5408 36.8396 20.4272 32.7772 14.9392 30.0716
+\c 14.9392 30.0716 20.1312 27.4348 23.5408 22.9452
+\c 23.5408 22.9452 32.4384 28.9292 48.5296 28.9292
+\l 54.2384 28.9292
+\c 54.2384 28.9292 40.6688 22.0172 34.1424 14.7484
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian170.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian170.pgf
new file mode 100644
index 0000000000..da7c8f2f5e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian170.pgf
@@ -0,0 +1,30 @@
+\m 14.0334 8.0432
+\c 14.0334 8.0432 22.7896 12.6699 35.7457 10.1072
+\c 48.7011 7.5453 55.1084 7.617 57.9539 10.9624
+\c 60.802 14.3078 54.3961 17.4394 50.5514 12.812
+\c 50.5514 12.812 53.6133 15.376 56.3181 14.5209
+\c 59.0235 13.6671 58.3828 10.25 54.5381 9.6093
+\c 50.6948 8.9693 45.8529 10.1796 39.1614 11.2465
+\c 32.47 12.3147 21.011 12.243 14.0334 8.0432
+\s
+\m 4.9923 29.399
+\c 4.9923 29.399 19.7283 21.4979 29.8363 6.4777
+\c 29.8363 6.4777 21.9352 22.6358 4.9923 29.399
+\s
+\m 1.6579 19.8839
+\c 4.0361 19.0991 7.5939 19.4918 7.5939 19.4918
+\c -0.4028 23.9567 -0.7224 20.668 1.6579 19.8839
+\m 47.9177 0.4262
+\c 32.612 5.3384 30.3349 0 30.3349 0
+\c 19.158 14.1643 8.4812 19.0055 8.4812 19.0055
+\c 1.5766 18.5787 -1.3433 20.5 0.5794 22.1378
+\c 2.5021 23.7743 9.6915 20.0724 9.6915 20.0724
+\c 16.0974 22.4944 18.8732 25.1991 18.1615 27.5466
+\c 17.4498 29.8976 13.6072 29.2569 13.6072 29.2569
+\c 16.0974 30.252 20.0842 29.1845 18.7318 25.6977
+\c 17.3795 22.2082 10.0466 19.6462 10.0466 19.6462
+\c 19.4428 14.3788 30.3349 0.9255 30.3349 0.9255
+\c 34.9616 5.3384 43.6461 2.5627 43.6461 2.5627
+\c 33.6809 7.4742 33.112 17.2256 33.112 17.2256
+\c 35.9595 6.0501 47.9177 0.4262 47.9177 0.4262
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian171.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian171.pgf
new file mode 100644
index 0000000000..75cde01696
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian171.pgf
@@ -0,0 +1,57 @@
+\m 6.9441 8.5143
+\c 6.9441 8.5143 15.3964 5.352 24.0229 9.032
+\c 24.0229 9.032 16.6053 3.1089 6.9441 8.5143
+\s
+\m 2.8604 25.076
+\c 2.8604 25.076 6.7139 14.4955 4.4142 6.6743
+\c 4.4142 6.6743 6.1955 8.8592 5.8506 14.1499
+\c 5.5064 19.4398 2.8604 25.076 2.8604 25.076
+\s
+\m 8.1182 1.8344
+\c 9.1714 1.2334 10.3264 1.2566 10.3264 1.2566
+\c 10.4507 1.734 10.4773 2.988 8.3682 3.4662
+\c 6.2604 3.9422 4.0263 3.0891 4.378 2.3351
+\c 4.7298 1.5831 7.1135 1.2067 7.3648 1.76
+\c 7.6148 2.3105 6.8881 2.6629 6.8881 2.6629
+\c 8.5198 2.9382 8.1182 1.8344 8.1182 1.8344
+\m 3.8507 2.8398
+\c 4.5529 4.2188 7.6408 3.8924 7.6408 3.8924
+\c 11.6562 3.4416 10.7027 1.2067 10.7027 1.2067
+\c 17.2023 0.3038 18.5068 1.1822 18.5068 1.1822
+\c 18.5068 1.1822 13.4375 2.7128 11.3052 3.4914
+\c 9.1714 4.2687 5.7584 5.6996 2.8973 4.6956
+\c 0.0375 3.6922 -0.5403 2.0865 2.9471 0.9069
+\c 6.436 -0.2727 9.5239 0.8803 9.5239 0.8803
+\c 8.7445 1.1323 7.7152 1.5831 7.7152 1.5831
+\c 6.8116 0.756 3.1486 1.4581 3.8507 2.8398
+\m 25.4032 7.4782
+\c 25.4032 7.4782 25.2878 3.9716 16.8922 2.9368
+\c 16.8922 2.9368 22.872 0.1187 26.6675 1.8433
+\c 30.4637 3.5693 29.1414 6.9031 25.4032 7.4782
+\m 19.3654 24.3288
+\c 17.8689 23.0625 12.6944 23.3494 9.6461 24.6157
+\c 6.5985 25.8799 9.1291 28.2951 15.9148 28.0082
+\c 22.7006 27.7207 26.1505 24.9599 23.8501 23.1199
+\c 21.5497 21.2798 14.822 20.993 10.0491 21.9704
+\c 5.2755 22.9471 0.2731 25.2475 5.6778 27.7773
+\c 11.0845 30.3086 20.6303 29.2165 24.4258 27.3757
+\c 28.2214 25.5357 27.1285 25.4776 25.7482 19.5545
+\c 24.3685 13.6314 25.3465 7.8252 25.3465 7.8252
+\c 29.0826 7.5943 31.383 3.9142 27.9338 1.6138
+\c 24.4825 -0.6859 18.9631 1.0954 18.9631 1.0954
+\c 17.5254 -0.2836 10.2793 0.8646 10.2793 0.8646
+\c 9.5321 0.4063 7.5192 -0.3416 4.4142 0.1747
+\c 1.3086 0.6931 -2.3148 2.764 1.941 4.949
+\c 6.1962 7.1339 13.0967 4.2011 13.0967 4.2011
+\c 24.7708 3.2811 24.8288 7.4222 24.8288 7.4222
+\c 23.8501 17.4843 25.4032 22.0277 26.4387 23.8678
+\c 27.4735 25.7078 25.1157 26.9734 20.3435 28.2377
+\c 15.5699 29.5026 6.8861 28.8135 4.5857 26.6278
+\c 2.2853 24.4429 6.6566 23.2353 14.5358 22.6028
+\c 22.413 21.9704 25.2878 24.0973 23.0462 25.8232
+\c 20.8025 27.5472 13.5577 28.4679 10.5094 27.1456
+\c 7.4618 25.8232 8.7275 24.6717 13.846 24.2134
+\c 18.9631 23.7523 20.573 25.1334 18.3866 25.8232
+\c 16.2024 26.5131 12.9813 25.7659 12.9813 25.7659
+\c 17.5827 27.3757 20.8605 25.5917 19.3654 24.3288
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian172.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian172.pgf
new file mode 100644
index 0000000000..870d5d1d34
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian172.pgf
@@ -0,0 +1,46 @@
+\m 24.3201 3.1375
+\c 24.3201 3.1375 23.7238 2.0187 22.2697 1.6656
+\c 20.8155 1.3104 19.8654 2.0392 19.8654 2.0392
+\c 19.8654 2.0392 22.3625 1.1984 23.8911 3.1006
+\c 23.8911 3.1006 23.2573 3.38 20.5177 2.7468
+\c 17.7768 2.1123 16.154 1.889 16.154 1.889
+\c 16.154 1.889 17.5152 1.6841 20.0328 1.0509
+\c 22.5497 0.4164 26.3534 0.1001 28.384 1.6656
+\c 28.384 1.6656 27.1915 2.6717 24.3201 3.1375
+\m 25.1964 4.8901
+\c 25.1964 4.8901 24.8795 4.0889 24.4328 3.5296
+\c 24.4328 3.5296 26.7434 3.2878 28.6271 1.9272
+\c 28.6271 1.9272 30.6215 4.2938 25.1964 4.8901
+\m 13.5817 3.1758
+\l 15.1861 2.3548
+\c 15.1861 2.3548 20.6291 4.2576 24.0038 3.5856
+\c 24.0038 3.5856 24.3754 4.0521 24.6937 4.8915
+\c 24.6937 4.8915 23.3884 5.2268 20.1994 4.6866
+\c 17.0118 4.1456 13.5817 3.1758 13.5817 3.1758
+\m 0.6994 2.5044
+\c 0.9979 1.2551 3.0483 0.4717 5.8637 0.4908
+\c 8.6797 0.5086 14.8678 2.1874 14.8678 2.1874
+\c 13.9745 2.6348 13.023 2.9517 13.023 2.9517
+\c 13.023 2.9517 9.5362 1.8329 6.964 2.337
+\c 4.3904 2.839 3.9246 4.6675 3.9246 4.6675
+\c 2.1351 4.3874 0.4009 3.7529 0.6994 2.5044
+\m 8.3983 2.6717
+\c 9.5738 2.839 11.2868 3.5227 11.2868 3.5227
+\c 8.2296 4.4612 4.4444 4.7385 4.4444 4.7385
+\c 4.7237 3.0576 7.2249 2.5044 8.3983 2.6717
+\m 4.4444 5.0172
+\c 4.4444 5.0172 8.1258 4.9468 12.0852 3.6272
+\c 12.0852 3.6272 14.2716 4.4612 17.4319 5.19
+\c 20.5915 5.9181 24.8282 5.6059 24.8282 5.6059
+\c 24.8282 5.6059 25.8015 10.9539 19.4816 12.9333
+\c 13.161 14.9127 3.9594 12.9681 4.4444 5.0172
+\m 20.28 13.4544
+\c 26.391 10.5373 25.35 5.5369 25.35 5.5369
+\c 27.4332 5.2589 30.2111 4.1477 29.1346 2.0993
+\c 28.0575 0.051 23.301 -0.0187 20.905 0.5024
+\c 18.509 1.0222 15.6957 1.7175 15.6957 1.7175
+\c 15.6957 1.7175 12.814 0.3631 8.0555 0.051
+\c 3.299 -0.2619 -0.0348 0.8842 0 2.7584
+\c 0.0342 4.634 3.8201 4.9816 3.8201 4.9816
+\c 3.8549 13.6983 14.1677 16.3716 20.28 13.4544
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian173.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian173.pgf
new file mode 100644
index 0000000000..043afce863
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian173.pgf
@@ -0,0 +1,107 @@
+\m 3.3856 36.7189
+\c 3.3856 36.7189 6.1553 34.8235 5.572 29.5288
+\c 4.99 24.2327 3.3856 21.0259 3.3856 21.0259
+\c 3.3856 21.0259 5.4757 23.4062 6.3014 29.0425
+\c 7.1272 34.6794 3.8235 36.4272 3.3856 36.7189
+\s
+\m 2.9 35.6499
+\c 2.9 35.6499 3.1917 34.3379 2.1228 34.1924
+\c 1.0538 34.0462 -0.306 35.5523 1.0538 37.3998
+\c 2.4137 39.2453 4.8924 37.7878 6.5924 34.5325
+\c 8.2931 31.2773 7.662 24.8153 6.2523 20.3463
+\c 4.8432 15.876 3.4348 14.467 1.7341 15.3911
+\c 0.0327 16.3131 0.9568 19.0336 2.3167 19.6162
+\c 3.6773 20.2002 4.2838 19.136 4.1895 18.2645
+\c 4.0953 17.393 3.3884 16.9682 2.8454 17.6279
+\c 2.3037 18.287 3.0817 19.6087 3.0817 19.6087
+\c 3.0817 19.6087 1.9267 18.7597 2.4451 17.4401
+\c 2.9635 16.1192 4.4252 16.7332 4.5666 18.2181
+\c 4.708 19.7016 3.2941 20.8579 1.715 19.6312
+\c 0.1352 18.4059 0.0416 15.79 1.6911 15.0352
+\c 3.3412 14.2812 4.9436 15.3658 6.4524 18.2877
+\c 6.4524 18.2877 9.0191 23.172 8.8224 28.6873
+\c 8.6257 34.2006 5.1786 38.7795 2.4219 38.5814
+\c -0.3347 38.3847 -0.7288 34.4465 1.1911 33.6098
+\c 3.1111 32.7724 4.0181 34.9819 2.9 35.6499
+\s
+\m 5.2776 40.3545
+\c 5.2776 40.3545 11.924 36.7107 19.1612 42.6187
+\c 19.1612 42.6187 13.3515 34.7907 5.2776 40.3545
+\s
+\m 21.6726 43.3079
+\c 21.6726 43.3079 18.2255 37.1054 11.0381 36.9572
+\c 3.8494 36.8097 1.8318 41.2411 2.9144 42.6686
+\c 3.9976 44.0961 6.1635 43.4561 6.5569 42.226
+\c 6.951 40.9952 4.9327 40.207 4.096 41.7834
+\c 4.096 41.7834 4.4402 40.5021 5.7694 40.6496
+\c 5.7694 40.6496 7.1975 40.6995 6.951 42.226
+\c 6.7051 43.7525 4.195 44.3918 2.9144 43.0627
+\c 1.6344 41.7329 2.3236 38.3861 7.7883 36.6628
+\c 13.2531 34.9389 19.6537 37.4995 21.6726 43.3079
+\s
+\m 28.9099 35.9723
+\c 28.9099 35.9723 28.1708 31.2459 20.1454 23.8618
+\c 12.1207 16.4757 5.8192 14.9498 3.6527 8.2536
+\c 3.6527 8.2536 2.6186 5.1028 4.4901 2.4937
+\c 6.3602 -0.1161 10.2991 0.0315 11.7758 2.3947
+\c 13.2531 4.7579 11.2348 7.1218 10.1516 7.072
+\c 10.1516 7.072 8.3792 7.171 8.1824 5.3972
+\c 7.9851 3.6262 9.0191 2.7396 9.0191 2.7396
+\c 9.0191 2.7396 5.2284 3.9704 7.9359 9.4352
+\c 10.6433 14.9 17.093 18.2973 21.7218 22.1864
+\c 26.3492 26.0768 29.8941 31.1475 28.9099 35.9723
+\m 26.7918 35.7749
+\c 24.3801 30.6557 20.6877 27.7994 11.5791 20.9563
+\c 2.4711 14.1125 0.4521 10.3716 0.8954 5.3501
+\c 1.3387 0.3272 6.8034 0.4256 6.8034 0.4256
+\c 3.0127 1.8537 2.5694 5.5454 3.357 8.8936
+\c 4.1452 12.2417 7.8375 16.4757 14.0905 20.9563
+\c 20.3428 25.4362 23.2477 27.4545 26.4968 31.9357
+\c 29.7465 36.4156 28.9584 40.3054 27.7282 42.0771
+\c 26.4968 43.8495 23.247 44.4895 22.411 42.2745
+\c 21.5736 40.0581 23.6903 38.5329 25.0201 39.9611
+\c 26.3492 41.3886 24.5775 42.7171 24.5775 42.7171
+\c 28.8607 40.944 26.7918 35.7749 26.7918 35.7749
+\m 25.7523 41.614
+\c 25.7523 41.614 26.3014 39.802 24.5959 38.8731
+\c 22.8905 37.9449 21.0784 39.4215 21.5354 41.6284
+\c 21.9916 43.8365 24.7018 44.7504 26.8793 43.3495
+\c 26.8793 43.3495 29.9433 41.4378 29.1072 36.4655
+\c 29.1072 36.4655 31.2239 33.019 25.2667 24.5004
+\c 25.2667 24.5004 22.1152 20.513 15.8623 16.0823
+\c 9.6099 11.6509 5.8192 6.8746 7.7385 4.5619
+\c 7.7385 4.5619 7.2959 6.5317 9.0683 7.3677
+\c 10.8407 8.2051 13.1056 5.9388 12.4656 3.2812
+\c 11.8256 0.6236 7.69 -1.4937 2.6678 1.3606
+\c 2.6678 1.3606 -0.4338 3.7737 0.7478 9.3362
+\c 1.9295 14.9 11.5306 21.3989 14.9272 23.9096
+\c 18.3245 26.4211 31.0156 35.4396 25.7523 41.614
+\s
+\m 8.97 36.7107
+\c 8.97 36.7107 12.8105 31.6891 9.8565 19.9714
+\c 9.8565 19.9714 14.3863 28.7337 8.97 36.7107
+\s
+\m 12.1214 36.6622
+\c 12.1214 36.6622 14.8787 32.3298 13.1056 22.3346
+\c 13.1056 22.3346 16.3055 30.9016 12.1214 36.6622
+\s
+\m 14.2872 37.0563
+\c 14.2872 37.0563 17.2904 32.2806 15.6164 24.2552
+\c 15.6164 24.2552 18.5704 30.9016 14.2872 37.0563
+\s
+\m 16.5528 37.893
+\c 16.5528 37.893 19.3101 33.215 18.0786 26.1759
+\c 18.0786 26.1759 20.5402 32.379 16.5528 37.893
+\s
+\m 18.5212 38.927
+\c 18.5212 38.927 20.8353 36.2687 20.3428 27.9483
+\c 20.3428 27.9483 22.2136 34.8419 18.5212 38.927
+\s
+\m 20.6877 40.7978
+\c 20.6877 40.7978 22.5093 35.6288 22.6576 30.4584
+\c 22.6576 30.4584 24.0359 34.1514 20.6877 40.7978
+\s
+\m 23.4451 38.8273
+\c 23.4451 38.8273 24.4785 36.5638 24.5283 32.6734
+\c 24.5283 32.6734 25.7093 35.7271 23.4451 38.8273
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian174.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian174.pgf
new file mode 100644
index 0000000000..57a534180b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian174.pgf
@@ -0,0 +1,45 @@
+\m 11.8558 5.9096
+\c 11.8558 5.9096 15.4409 6.8125 17.7597 6.3918
+\c 20.0792 5.971 20.7418 3.5306 16.1034 3.1092
+\c 11.4651 2.6871 7.2174 4.4042 9.2958 6.6629
+\c 11.3742 8.921 15.6212 9.5548 19.8081 8.2892
+\c 23.995 7.0242 25.0488 4.5545 21.5552 2.627
+\c 18.0609 0.6995 9.5663 -0.2048 7.0064 3.1092
+\c 7.0064 3.1092 5.8616 4.3134 5.1691 7.0857
+\c 4.4765 9.856 2.157 23.351 1.4343 28.5323
+\c 0.711 33.7123 -0.1325 37.3569 1.5245 39.8267
+\c 3.1808 42.2971 8.8737 43.4418 16.1635 42.9897
+\c 23.4526 42.5389 27.1566 40.2187 27.6388 38.2304
+\c 28.121 36.2429 25.2592 32.78 16.7653 32.78
+\c 8.2713 32.78 2.1262 34.9486 2.3673 37.5092
+\c 2.6084 40.0684 6.0119 41.7855 13.8734 41.5151
+\c 21.7349 41.2432 25.3801 39.3765 25.0488 37.5092
+\c 24.7176 35.6411 20.7411 34.9486 12.6385 35.219
+\c 4.5359 35.4902 2.8489 37.9306 6.464 39.6176
+\c 6.464 39.6176 4.2046 39.1949 4.0844 37.6287
+\c 3.9635 36.0619 7.6388 33.924 15.6813 33.924
+\c 23.7231 33.924 25.5003 36.4546 25.5304 37.7196
+\c 25.5604 38.9845 23.9034 40.8211 16.6143 41.6353
+\c 9.3252 42.4481 4.5666 41.123 2.8195 39.5862
+\c 1.0723 38.0508 1.0723 33.9842 9.416 32.3278
+\c 17.7597 30.6709 25.139 32.6584 27.8499 36.4847
+\c 27.8499 36.4847 30.3798 40.8505 20.2288 42.7786
+\c 10.0779 44.7054 3.9635 42.4467 2.0955 41.0916
+\c 0.2281 39.7365 -0.2834 37.8391 0.138 34.3147
+\c 0.5594 30.7911 2.9397 15.2771 4.4457 8.3793
+\c 5.9518 1.4816 8.3915 0.3676 13.5121 0.0363
+\c 18.6326 -0.2949 22.9697 1.6619 23.7832 4.1617
+\c 24.5967 6.6629 21.8558 8.5603 17.3369 9.1327
+\c 12.8195 9.7051 8.9632 8.1697 8.3615 5.7579
+\c 7.7584 3.3483 12.6385 1.4816 16.6744 2.2643
+\c 20.7103 3.0484 21.5238 5.6985 17.578 6.7517
+\c 17.578 6.7517 14.7189 7.5071 11.8558 5.9096
+\s
+\m 27.7597 37.1752
+\c 27.7597 37.1752 27.8499 34.885 27.3977 30.9406
+\c 26.9469 26.9949 23.9041 6.1807 23.9041 6.1807
+\c 23.9041 6.1807 24.2361 5.4868 24.2955 6.3617
+\c 24.3556 7.2346 27.6996 27.5672 28.091 31.483
+\c 28.4824 35.398 28.0616 38.199 28.0616 38.199
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian175.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian175.pgf
new file mode 100644
index 0000000000..1f74eccb5a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian175.pgf
@@ -0,0 +1,69 @@
+\m 0 0
+\l 28.5297 0
+\l 28.5297 42.0613
+\l 0 42.0613
+\o
+\i
+\m 19.3186 34.1896
+\c 19.3582 33.1262 22.2317 30.5676 22.2317 30.5676
+\c 21.4831 34.8583 19.2797 35.2531 19.3186 34.1896
+\m 17.469 30.3716
+\c 17.469 30.3716 17.5865 33.7566 16.8393 34.8583
+\c 16.0907 35.9613 14.6352 34.5441 17.469 30.3716
+\m 11.4462 31.1188
+\c 11.4462 31.1188 12.6668 33.7955 12.3908 34.9368
+\c 12.1156 36.0795 10.462 34.8583 11.4462 31.1188
+\m 5.8571 30.6858
+\c 5.8571 30.6858 7.8638 32.9301 8.1787 34.2292
+\c 8.4935 35.5276 6.3291 35.7243 5.8571 30.6858
+\m 6.172 34.2688
+\c 7.1951 35.9217 8.8876 35.9217 8.5728 34.2292
+\c 8.2579 32.5367 5.9746 29.8204 5.9746 29.8204
+\c 5.896 28.0493 6.6829 25.6075 6.6829 25.6075
+\c 9.2025 27.8512 11.0132 30.1742 11.0132 30.1742
+\c 11.0132 30.1742 10.1867 32.8905 10.6983 34.4642
+\c 11.2099 36.0392 12.5479 36.5522 12.9024 34.7804
+\c 13.2569 33.0087 11.6819 30.3716 11.6819 30.3716
+\c 12.2727 28.8758 14.2015 26.0406 14.2015 26.0406
+\l 17.1139 29.3873
+\c 13.3354 35.4484 16.0907 36.906 17.3113 35.0557
+\c 18.5318 33.2061 17.9806 29.8996 17.9806 29.8996
+\c 19.4757 27.6559 22.2317 25.3719 22.2317 25.3719
+\l 22.468 29.3088
+\c 17.5865 32.9295 18.3351 36.5522 20.421 35.0946
+\c 22.5063 33.6377 22.7439 30.3326 22.7439 30.3326
+\c 25.1843 28.2064 27.9786 27.4974 27.9786 27.4974
+\c 27.9786 27.4974 26.6405 32.7717 22.9789 35.4498
+\c 19.3186 38.1265 13.7295 39.7787 7.7853 36.8663
+\c 1.841 33.9526 1.4879 27.104 1.4879 27.104
+\c 3.2193 28.1675 4.8333 29.7022 4.8333 29.7022
+\c 4.8333 29.7022 5.1475 32.6153 6.172 34.2688
+\m 14.6352 39.0704
+\c 28.4116 37.102 28.5297 25.5297 28.5297 25.5297
+\c 26.0893 26.4347 23.2944 28.7965 23.2944 28.7965
+\l 22.468 24.4273
+\c 19.6335 26.1984 17.5865 28.9939 17.5865 28.9939
+\c 15.9336 26.7099 13.9659 25.0181 13.9659 25.0181
+\c 12.5479 26.8288 11.2099 29.6223 11.2099 29.6223
+\c 8.8084 26.4736 6.172 24.5851 6.172 24.5851
+\c 5.5026 25.8842 4.7937 28.8362 4.7937 28.8362
+\c 2.6292 27.0644 -0.0086 25.3726 -0.0086 25.3726
+\c -0.0086 25.3726 0.6997 31.7485 4.9118 35.488
+\c 9.124 39.2275 13.6114 38.9523 13.6114 38.9523
+\l 14.0833 42.0613
+\o
+\s
+\m 14.1223 25.6465
+\l 14.2794 6.4777
+\c 14.2794 6.4777 13.7288 -0.4508 18.2948 0.0219
+\c 18.2948 0.0219 19.9088 0.416 19.8698 2.6597
+\c 19.8302 4.9034 17.1139 5.4156 16.327 4.1165
+\c 15.5395 2.8174 16.6808 1.2021 17.7047 1.2021
+\c 18.7278 1.2021 19.2005 2.2259 18.6103 3.1719
+\c 18.6103 3.1719 18.6882 1.5183 17.5858 1.9118
+\c 16.4841 2.3059 17.3502 4.706 18.8467 3.9185
+\c 20.3418 3.1316 19.6335 0.1796 17.4287 0.4549
+\c 15.2246 0.7301 14.6345 3.6835 14.752 6.516
+\c 14.8708 9.3511 14.6735 25.9231 14.6735 25.9231
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian176.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian176.pgf
new file mode 100644
index 0000000000..a249b4df10
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian176.pgf
@@ -0,0 +1,105 @@
+\m 25.0687 29.7821
+\c 25.0687 29.7821 28.1115 30.1024 28.4318 31.2232
+\c 28.7522 32.3441 27.2707 32.4636 25.0687 29.7821
+\m 23.3468 34.0652
+\c 23.3468 34.0652 25.5092 35.1062 25.9498 36.5077
+\c 26.3896 37.9086 25.3091 38.3491 24.2682 36.9079
+\c 23.2266 35.4668 23.3468 34.0652 23.3468 34.0652
+\m 19.7036 36.7071
+\c 19.7036 36.7071 21.545 38.3491 21.6652 39.75
+\c 21.7854 41.1515 20.6646 41.3113 20.0239 40.1106
+\c 19.3833 38.9099 19.7036 36.7071 19.7036 36.7071
+\m 14.579 38.4283
+\c 14.579 38.4283 15.7797 40.3114 15.6991 41.8714
+\c 15.6199 43.4335 12.7772 42.6726 14.579 38.4283
+\m 10.5751 37.7481
+\c 10.5751 37.7481 10.5348 40.3497 9.4939 41.8714
+\c 8.453 43.3932 6.8117 41.5511 10.5751 37.7481
+\m 6.3309 35.5064
+\c 6.3309 35.5064 5.7305 38.1476 4.1692 39.1885
+\c 2.6078 40.2301 2.5286 37.2283 6.3309 35.5064
+\m 3.6494 29.9016
+\c 3.6494 29.9016 1.8469 32.5845 0.9665 32.3031
+\c 0.0854 32.023 0.3265 30.1816 3.6494 29.9016
+\m 3.0087 37.3478
+\c 1.6878 39.7903 3.0087 40.7519 4.6903 39.3504
+\c 6.3712 37.9489 7.0119 35.266 7.0119 35.266
+\c 9.0937 34.9853 10.4153 36.3069 10.4153 36.3069
+\c 5.1704 41.5921 8.2133 44.3139 9.8149 42.4328
+\c 11.4166 40.5505 11.0157 37.427 11.0157 37.427
+\c 12.657 36.3465 13.939 37.509 13.939 37.509
+\c 11.6563 42.7518 15.7797 44.6349 16.1799 42.3126
+\c 16.5809 39.9911 14.8993 38.0684 14.8993 38.0684
+\c 15.861 35.1062 18.8232 36.2277 18.8232 36.2277
+\c 17.7427 42.5524 22.0662 42.2723 22.1857 40.1905
+\c 22.3066 38.108 19.8238 36.0678 19.8238 36.0678
+\c 20.7042 33.7456 22.547 33.9464 22.547 33.9464
+\c 23.0272 40.0307 26.99 39.0697 26.6301 36.9476
+\c 26.2694 34.8261 23.5469 33.5837 23.5469 33.5837
+\c 23.5872 31.6228 24.5482 30.5819 24.5482 30.5819
+\c 26.9504 33.6254 29.7931 33.1042 28.9926 31.3031
+\c 28.1914 29.5014 24.9089 29.3408 24.9089 29.3408
+\c 20.3047 23.7367 19.9037 17.4106 20.2241 12.0066
+\c 20.5444 6.6006 23.0272 1.075 23.0272 1.075
+\c 23.1071 0.4343 22.6658 0.5949 22.6658 0.5949
+\c 20.7445 4.9197 18.8232 11.8461 19.8238 19.0929
+\c 20.8251 26.339 24.1876 29.862 24.1876 29.862
+\c 23.1474 31.5839 23.0818 32.4889 23.0818 32.4889
+\c 19.6353 27.8601 18.552 24.1178 18.257 16.4394
+\c 17.9612 8.7582 20.7186 0.7813 20.7186 0.7813
+\c 20.3245 0.3879 20.0301 0.4863 20.0301 0.4863
+\c 15.1069 16.5364 19.0684 26.6689 19.0684 26.6689
+\c 20.192 30.1926 22.6938 33.2299 22.6938 33.2299
+\c 20.5492 33.4854 19.86 34.6055 19.86 34.6055
+\c 16.6191 28.3156 15.7298 23.359 15.8569 15.4811
+\c 15.9839 7.6019 17.8902 0.3606 17.8902 0.3606
+\c 17.6354 -0.0854 17.2543 0.17 17.2543 0.17
+\c 17.2543 0.17 14.6493 8.9372 15.2852 19.6748
+\c 15.9204 30.4111 19.4147 35.1137 19.4147 35.1137
+\l 19.2241 35.6218
+\c 15.2852 34.6677 14.3317 37.0828 14.3317 37.0828
+\c 12.9978 36.0023 10.9651 36.1293 10.9651 36.1293
+\c 13.3789 31.9363 14.2054 19.3572 13.5059 12.3044
+\c 12.8072 5.2523 11.3463 0.1693 11.3463 0.1693
+\c 10.8374 -0.2118 10.6469 0.1693 10.6469 0.1693
+\c 13.1883 9.7001 13.2519 15.9251 12.7437 24.3118
+\c 12.2355 32.6985 10.3928 35.6218 10.3928 35.6218
+\c 8.9953 34.2237 7.0897 34.2237 7.0897 34.2237
+\c 7.0897 34.2237 11.3463 26.3451 11.7274 21.5156
+\c 12.1078 16.688 11.2172 11.6139 11.2172 11.6139
+\c 10.1332 5.2127 8.6074 0.142 8.6074 0.142
+\c 8.0657 -0.1046 8.0166 0.2411 8.0166 0.2411
+\c 9.789 5.1642 11.2663 14.863 11.0198 20.4753
+\c 10.7739 26.0876 7.005 32.7436 7.005 32.7436
+\c 6.5508 30.308 4.6479 29.2357 4.6479 29.2357
+\c 9.2993 22.8331 9.791 16.6498 8.8615 10.5764
+\c 7.9305 4.5024 6.4538 0.1249 6.4538 0.1249
+\c 6.1253 -0.039 5.8746 0.2656 5.8746 0.2656
+\c 7.7215 5.4347 8.7549 12.0811 8.4598 17.7685
+\c 8.1641 23.4539 4.2183 28.9365 4.2183 28.9365
+\c 3.1897 28.9365 1.573 29.2302 0.6332 30.4063
+\c -0.3073 31.5811 -0.278 33.1104 1.25 32.6685
+\c 2.7779 32.2286 4.1596 30.0525 4.1596 30.0525
+\c 6.7455 30.377 6.3637 34.2852 6.3637 34.2852
+\c 6.3637 34.2852 4.3297 34.9054 3.0087 37.3478
+\s
+\m 7.5009 20.7431
+\c 7.5009 20.7431 5.8466 19.1195 6.5078 16.6218
+\c 7.1703 14.1247 11.1113 12.3789 15.3842 12.6808
+\c 19.6565 12.9813 22.3639 14.6957 22.9657 16.8922
+\c 23.5674 19.0895 22.5443 20.8646 21.0703 21.0743
+\c 21.0703 21.0743 22.5443 20.0512 22.1235 18.1264
+\c 21.7021 16.201 18.2727 13.1015 12.646 14.096
+\c 7.0194 15.0877 6.0563 18.457 7.5009 20.7431
+\m 8.1935 20.8646
+\c 6.3275 18.457 7.9223 16.9831 7.9223 16.9831
+\c 11.3825 13.6138 19.5663 15.1185 21.2807 17.1941
+\c 22.9964 19.2698 20.4385 21.0149 20.4385 21.0149
+\l 20.5888 21.616
+\c 22.3947 21.5559 24.29 19.9624 23.5982 17.0138
+\c 22.9056 14.0646 19.2952 11.7471 14.6923 11.7471
+\c 10.0888 11.7471 6.0269 14.3357 5.9361 17.4346
+\c 5.8466 20.5334 7.9524 21.6774 7.9524 21.6774
+\o
+\s
+} def \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian177.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian177.pgf
new file mode 100644
index 0000000000..eac7fa5785
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian177.pgf
@@ -0,0 +1,70 @@
+\m 19.4802 34.4539
+\c 19.4802 34.4539 17.5309 29.92 16.7359 26.0234
+\c 15.9415 22.1261 16.3384 19.0642 17.4906 21.37
+\c 18.6442 23.6779 20.0758 28.3293 19.4802 34.4539
+\m 13.0476 21.37
+\c 14.1999 19.0642 14.5967 22.1261 13.8023 26.0234
+\c 13.0073 29.92 11.058 34.4539 11.058 34.4539
+\c 10.4624 28.3293 11.8933 23.6779 13.0476 21.37
+\m 15.3391 42.9171
+\l 14.5994 42.7033
+\c 14.5994 42.7033 12.3291 42.0531 11.2629 36.3055
+\c 11.2629 36.3055 14.2292 30.0033 14.8774 25.184
+\c 15.5256 20.3626 13.8112 16.701 11.4944 23.236
+\c 9.177 29.7718 10.6598 35.9353 10.6598 35.9353
+\c 10.6598 35.9353 6.9517 43.0277 1.4364 43.4437
+\c 1.4364 43.4437 4.0325 41.5893 6.1642 35.0091
+\c 8.2959 28.4269 9.3627 15.7284 15.1561 15.9135
+\l 15.3821 15.9135
+\c 21.1748 15.7284 22.2417 28.4269 24.3747 35.0091
+\c 26.5078 41.5893 29.1018 43.4437 29.1018 43.4437
+\c 23.5865 43.0277 19.8777 35.9353 19.8777 35.9353
+\c 19.8777 35.9353 21.3612 29.7718 19.0438 23.236
+\c 16.727 16.701 15.012 20.3626 15.6608 25.184
+\c 16.309 30.0033 19.2753 36.3055 19.2753 36.3055
+\c 18.2091 42.0531 15.9381 42.7033 15.9381 42.7033
+\o
+\m 15.8917 44.279
+\c 15.8917 44.279 18.4414 43.1671 19.7849 37.2337
+\c 19.7849 37.2337 23.7709 44.2312 30.5382 43.9074
+\c 30.5382 43.9074 27.2481 42.2846 24.7913 34.0809
+\c 22.3352 25.8779 21.4535 15.2168 15.2899 14.8466
+\c 9.0848 15.2168 8.2037 25.8779 5.7476 34.0809
+\c 3.2908 42.2846 0 43.9074 0 43.9074
+\c 6.7673 44.2312 10.7534 37.2337 10.7534 37.2337
+\c 12.0962 43.1671 14.6465 44.279 14.6465 44.279
+\c 14.6465 44.279 14.9976 44.4197 15.2592 44.4989
+\o
+\s
+\m 17.4121 6.4202
+\c 17.4121 6.4202 18.621 2.4526 23.4772 0.8339
+\c 28.3348 -0.7849 30.3408 1.5394 29.7247 2.4526
+\c 29.1087 3.3644 26.7612 3.9115 24.9136 1.883
+\c 24.9136 1.883 21.8366 5.4845 17.4121 6.4202
+\m 5.6793 1.883
+\c 3.8324 3.9115 1.4835 3.3644 0.8681 2.4526
+\c 0.252 1.5394 2.2587 -0.7849 7.1156 0.8339
+\c 11.9719 2.4526 13.1794 6.4202 13.1794 6.4202
+\c 8.7569 5.4845 5.6793 1.883 5.6793 1.883
+\m 15.3425 6.8342
+\c 14.9826 6.8342 14.4116 6.716 14.4116 6.716
+\c 12.6788 1.5169 7.2522 -0.2828 3.5134 0.0348
+\c -0.2268 0.3551 -0.5457 2.704 1.6433 3.5236
+\c 3.8324 4.3453 5.6793 2.5899 5.6793 2.5899
+\c 9.9201 6.716 13.271 6.8533 13.271 6.8533
+\c 13.7955 7.832 14.1609 10.364 13.2949 12.8945
+\c 12.4288 15.4251 9.3272 17.5684 9.3272 17.5684
+\c 10.6728 16.8628 13.1118 15.3117 14.0926 12.4854
+\c 15.0727 9.657 14.4806 7.149 14.4806 7.149
+\c 14.4806 7.149 14.9628 7.2132 15.3227 7.2132
+\c 15.682 7.2132 16.113 7.149 16.113 7.149
+\c 16.113 7.149 15.5194 9.657 16.5002 12.4854
+\c 17.481 15.3117 19.9201 16.8628 21.2663 17.5684
+\c 21.2663 17.5684 18.1654 15.4251 17.298 12.8945
+\c 16.4313 10.364 16.7967 7.832 17.3205 6.8533
+\c 17.3205 6.8533 20.6721 6.716 24.9136 2.5899
+\c 24.9136 2.5899 26.7612 4.3453 28.9502 3.5236
+\c 31.1379 2.704 30.8196 0.3551 27.0801 0.0348
+\c 23.3399 -0.2828 17.9134 1.5169 16.1806 6.716
+\c 16.1806 6.716 15.7018 6.8342 15.3425 6.8342
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian178.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian178.pgf
new file mode 100644
index 0000000000..1a65152180
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian178.pgf
@@ -0,0 +1,109 @@
+\m 14.6586 7.5387
+\c 14.1607 8.8481 12.9565 8.245 12.9565 6.5006
+\c 12.9565 4.7562 13.9742 3.5506 13.9742 3.5506
+\c 13.9742 3.5506 15.1572 6.2308 14.6586 7.5387
+\m 16.9193 38.8809
+\c 17.7526 39.9942 16.5717 42.046 16.5717 42.046
+\c 14.1361 39.1944 16.084 37.7682 16.9193 38.8809
+\m 20.9642 16.4958
+\c 21.1964 18.286 19.9369 19.4136 18.5436 17.325
+\c 17.1509 15.2363 17.616 11.8527 17.616 11.8527
+\c 19.5046 12.5835 20.7319 14.7049 20.9642 16.4958
+\m 18.2123 17.6562
+\c 19.6043 19.5461 21.6274 19.5461 21.2633 16.2308
+\c 20.8972 12.9154 17.8141 11.3896 17.8141 11.3896
+\c 18.6767 8.8037 20.7319 8.8037 21.9914 10.3275
+\c 23.2516 11.8527 24.578 16.297 23.1853 19.7449
+\c 21.7933 23.1927 18.1119 23.6907 16.123 20.1089
+\c 14.1333 16.5286 14.6975 11.1574 14.6975 11.1574
+\c 15.8245 11.2564 17.1844 11.5883 17.1844 11.5883
+\c 16.9842 13.0479 16.8189 15.7656 18.2123 17.6562
+\m 11.3617 42.046
+\c 11.3617 42.046 10.178 39.9942 11.0133 38.8809
+\c 11.848 37.7682 13.7952 39.1944 11.3617 42.046
+\m 14.0316 8.6541
+\c 15.0069 8.6193 15.597 7.3332 15.3539 5.8729
+\c 15.1094 4.4112 14.4147 3.3341 14.4147 3.3341
+\c 14.4147 3.3341 17.3012 0.5508 20.5707 0.8637
+\c 23.839 1.1772 24.7105 2.8813 24.7105 2.8813
+\c 19.9444 0.7592 18.4841 4.8641 18.4841 4.8641
+\c 14.9721 6.7758 14.328 10.613 14.328 10.613
+\l 13.7071 10.613
+\c 13.7071 10.613 12.9613 6.7758 9.4485 4.8641
+\c 9.4485 4.8641 7.9869 0.7592 3.2229 2.8813
+\c 3.2229 2.8813 4.0917 1.1772 7.3619 0.8637
+\c 10.6308 0.5508 13.5179 3.3341 13.5179 3.3341
+\c 13.5179 3.3341 12.822 4.4112 12.5781 5.8729
+\c 12.3356 7.3332 12.9265 8.6193 13.9004 8.6541
+\o
+\m 10.3173 11.8527
+\c 10.3173 11.8527 10.7804 15.2363 9.3878 17.325
+\c 7.9965 19.4136 6.7356 18.286 6.9678 16.4958
+\c 7.2007 14.7049 8.4268 12.5835 10.3173 11.8527
+\m 10.7476 11.5883
+\c 10.7476 11.5883 12.1082 11.2564 13.2352 11.1574
+\c 13.2352 11.1574 13.7987 16.5286 11.8097 20.1089
+\c 9.8194 23.6907 6.1387 23.1927 4.746 19.7449
+\c 3.3533 16.297 4.6811 11.8527 5.9406 10.3275
+\c 7.2007 8.8037 9.2559 8.8037 10.1186 11.3896
+\c 10.1186 11.3896 7.0348 12.9154 6.67 16.2308
+\c 6.3046 19.5461 8.3277 19.5461 9.7211 17.6562
+\c 11.1137 15.7656 10.9464 13.0479 10.7476 11.5883
+\m 14.0555 43.5049
+\c 13.1764 43.5049 11.7421 42.3253 11.7421 42.3253
+\c 11.7421 42.3253 13.1355 40.7674 12.9032 39.2087
+\c 12.6717 37.6514 10.2846 37.7505 10.1514 39.7401
+\c 10.1514 39.7401 9.9861 40.9012 10.9136 42.4933
+\c 10.9136 42.4933 9.6207 43.8853 7.6317 43.8853
+\c 5.6414 43.8853 4.6811 41.9292 4.6811 41.9292
+\c 4.6811 41.9292 8.228 42.1272 9.5209 38.8447
+\c 10.8139 35.5621 9.1234 31.0522 7.101 27.8359
+\c 5.0779 24.6196 2.6246 21.7673 1.1663 16.827
+\c -0.294 11.8868 2.2598 6.1502 6.0403 5.3873
+\c 9.8194 4.6236 12.3732 6.8455 13.1689 10.6922
+\c 13.1689 10.6922 12.2735 10.7585 10.6151 11.2236
+\c 10.6151 11.2236 9.4882 7.8079 6.67 9.1343
+\c 3.8519 10.46 2.2264 15.6331 4.1825 19.9436
+\c 6.1387 24.2555 9.786 23.3594 11.4115 21.337
+\c 13.0357 19.3139 14.1538 15.224 13.6887 11.1116
+\l 14.2228 11.1116
+\c 13.759 15.224 14.8956 19.3139 16.5212 21.337
+\c 18.1454 23.3594 21.7933 24.2555 23.7495 19.9436
+\c 25.7056 15.6331 24.0807 10.46 21.2633 9.1343
+\c 18.4445 7.8079 17.3175 11.2236 17.3175 11.2236
+\c 15.6592 10.7585 14.7638 10.6922 14.7638 10.6922
+\c 15.5588 6.8455 18.1119 4.6236 21.8931 5.3873
+\c 25.6728 6.1502 28.2253 11.8868 26.7664 16.827
+\c 25.3088 21.7673 22.8534 24.6196 20.8316 27.8359
+\c 18.8079 31.0522 17.1174 35.5621 18.4111 38.8447
+\c 19.7054 42.1272 23.2516 41.9292 23.2516 41.9292
+\c 23.2516 41.9292 22.2899 43.8853 20.3016 43.8853
+\c 18.312 43.8853 17.0184 42.4933 17.0184 42.4933
+\c 17.9459 40.9012 17.7806 39.7401 17.7806 39.7401
+\c 17.6481 37.7505 15.261 37.6514 15.0281 39.2087
+\c 14.7972 40.7674 16.1892 42.3253 16.1892 42.3253
+\c 16.1892 42.3253 14.9345 43.5049 14.0555 43.5049
+\m 16.6735 42.8697
+\c 16.6735 42.8697 18.5176 44.5458 21.1329 44.4775
+\c 23.7474 44.4099 25.054 40.488 25.054 40.488
+\c 25.054 40.488 23.311 42.1983 20.7299 40.9245
+\c 18.1488 39.6513 17.7806 34.9249 20.1596 30.7353
+\c 22.5405 26.5436 26.8306 22.5562 27.7356 17.0258
+\c 28.6412 11.4941 26.5287 4.3552 18.954 4.623
+\c 18.954 4.623 21.6021 0.4668 25.7589 4.2876
+\c 25.7589 4.2876 24.9878 0.6007 20.6636 0.0638
+\c 16.3395 -0.4723 14.2952 2.5446 14.2952 2.5446
+\l 13.9277 2.9516
+\l 13.6382 2.5446
+\c 13.6382 2.5446 11.5925 -0.4723 7.2684 0.0638
+\c 2.9449 0.6007 2.1738 4.2876 2.1738 4.2876
+\c 6.3306 0.4668 8.9786 4.623 8.9786 4.623
+\c 1.4033 4.3552 -0.7085 11.4941 0.1958 17.0258
+\c 1.1008 22.5562 5.3928 26.5436 7.7717 30.7353
+\c 10.1514 34.9249 9.7832 39.6513 7.2028 40.9245
+\c 4.621 42.1983 2.878 40.488 2.878 40.488
+\c 2.878 40.488 4.1846 44.4099 6.8005 44.4775
+\c 9.4137 44.5458 11.2578 42.8697 11.2578 42.8697
+\c 11.2578 42.8697 12.7769 44.4372 14.0425 44.4372
+\c 15.3074 44.4372 16.6735 42.8697 16.6735 42.8697
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian179.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian179.pgf
new file mode 100644
index 0000000000..4313b2f816
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian179.pgf
@@ -0,0 +1,81 @@
+\m 25.6037 35.7419
+\c 25.6037 35.7419 24.2684 35.7242 23.3593 34.8519
+\c 22.4482 33.9804 23.0288 33.419 23.8819 33.6895
+\c 24.7336 33.9606 25.6037 35.7419 25.6037 35.7419
+\m 21.8294 39.6146
+\c 21.8294 39.6146 20.1444 38.627 19.8541 37.5034
+\c 19.5638 36.3805 20.5324 36.4393 21.1314 36.8655
+\c 21.7324 37.2917 22.1395 38.6857 21.8294 39.6146
+\m 15.0341 41.512
+\c 15.0341 41.512 14.2008 40.0408 14.8019 38.7246
+\c 15.4016 37.4071 16.564 37.9296 16.5053 39.0921
+\c 16.4466 40.2525 15.0341 41.512 15.0341 41.512
+\m 7.8707 38.9944
+\c 7.8707 38.9944 8.3167 36.6722 9.6526 36.149
+\c 10.9879 35.6258 12.7494 38.2397 7.8707 38.9944
+\m 9.5529 30.6029
+\c 9.5529 30.6029 13.4878 32.4457 17.8604 31.2586
+\c 22.2351 30.0709 24.3907 29.0409 26.5777 30.2594
+\c 28.7634 31.4772 29.0769 34.7263 26.422 35.4141
+\c 26.422 35.4141 25.5143 33.4142 23.7343 33.2578
+\c 21.9544 33.1014 21.9223 35.5391 25.7028 36.1312
+\c 25.7028 36.1312 26.5156 40.4438 22.5466 39.7239
+\c 22.5466 39.7239 22.8908 37.0376 21.0795 36.3197
+\c 19.2674 35.6019 18.2046 37.8504 21.7358 39.9424
+\c 21.7358 39.9424 20.4545 45.4414 15.6754 42.223
+\c 15.6754 42.223 17.1747 40.2553 16.9875 38.6304
+\c 16.799 37.0075 14.6441 37.3811 14.2691 39.0682
+\c 13.8935 40.7559 14.7691 41.8487 14.7691 41.8487
+\c 14.7691 41.8487 12.925 43.4723 10.7393 42.8173
+\c 8.5523 42.1616 8.0216 39.9745 8.0216 39.9745
+\c 8.0216 39.9745 11.2393 39.4753 11.52 37.319
+\c 11.8014 35.1634 8.1159 34.757 7.4595 39.006
+\c 7.4595 39.006 5.366 39.0368 4.3661 37.2883
+\c 3.3669 35.5391 3.9297 33.1642 6.0839 32.0393
+\c 6.0839 32.0393 7.8024 31.915 9.5529 30.6029
+\m 9.7291 18.1051
+\c 10.9428 19.4486 10.3794 21.79 8.0373 20.4028
+\c 5.6966 19.0149 4.9596 16.6305 4.9596 16.6305
+\c 5.7396 16.2842 8.5147 16.761 9.7291 18.1051
+\m 10.2489 24.0877
+\c 11.4189 26.7323 9.4252 30.0265 9.4252 30.0265
+\c 4.9596 24.7379 9.0782 21.4423 10.2489 24.0877
+\m 5.1325 17.9303
+\c 8.0373 22.9163 13.0233 21.5284 11.0289 18.017
+\c 9.0345 14.5063 4.7001 15.5903 4.7001 15.5903
+\c 2.662 11.6875 3.7466 3.3637 11.6361 1.2832
+\c 19.527 -0.7986 25.769 4.4046 26.6378 8.8701
+\c 27.5032 13.3357 24.5123 17.0635 23.1688 21.3993
+\c 21.8233 25.7344 25.8127 29.463 25.8127 29.463
+\c 22.9502 28.7253 21.5651 29.6795 17.3154 30.8925
+\c 13.0677 32.1069 9.6854 30.3283 9.6854 30.3283
+\c 10.8561 29.2451 12.1135 26.0377 10.9428 23.8267
+\c 9.7722 21.6151 6.6508 22.18 6.8666 25.6046
+\c 7.0852 29.0286 9.1212 30.2867 9.1212 30.2867
+\c 8.5584 30.8495 7.648 31.1971 7.648 31.1971
+\c -0.8931 26.2965 5.1325 17.9303 5.1325 17.9303
+\m 2.4885 25.9509
+\c 3.6599 29.7225 7.3003 31.456 7.3003 31.456
+\c 4.0055 32.4102 0.755 29.3325 0.6669 24.0433
+\c 0.5808 18.754 4.5696 16.6735 4.5696 16.6735
+\l 4.8736 17.4542
+\c 3.8334 18.4521 1.3178 22.18 2.4885 25.9509
+\m 11.1163 43.5085
+\c 13.6742 43.9866 15.4521 42.4245 15.4521 42.4245
+\c 15.4521 42.4245 17.7067 44.2031 19.7865 43.3794
+\c 21.8676 42.5557 22.4742 40.0408 22.4742 40.0408
+\c 22.4742 40.0408 24.3832 40.9513 25.7267 39.3906
+\c 27.0702 37.8306 26.506 35.8362 26.506 35.8362
+\c 26.506 35.8362 28.7176 35.4878 28.8057 33.2339
+\c 28.8918 30.9793 26.6378 29.8086 26.6378 29.8086
+\c 26.6378 29.8086 24.166 27.3818 23.5151 24.7379
+\c 22.8642 22.0926 24.166 19.9254 27.0271 14.9824
+\c 29.8876 10.0401 28.3706 2.1923 20.6539 0.5018
+\c 12.9359 -1.1893 6.5654 1.5434 4.3524 6.442
+\c 2.1415 11.3399 4.2664 15.8054 4.2664 15.8054
+\c 2.315 17.1503 -0.8931 20.8782 0.2339 26.2965
+\c 1.3615 31.7155 5.6529 31.9327 5.6529 31.9327
+\c 4.4406 32.7565 2.7918 34.3171 3.5294 37.1359
+\c 4.2664 39.9541 7.6473 39.9964 7.6473 39.9964
+\c 7.6897 40.6036 8.5584 43.0324 11.1163 43.5085
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian18.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian18.pgf
new file mode 100644
index 0000000000..b0052c78e0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian18.pgf
@@ -0,0 +1,68 @@
+\m -0.6207 -0.3181
+\l 74.155 -0.3181
+\l 74.155 59.5814
+\l -0.6207 59.5814
+\o
+\i
+\m 8.4407 28.8812
+\c 9.6375 28.8812 10.6711 28.6652 11.5719 28.2876
+\c 17.6807 26.6668 17.6375 19.366 13.9239 17.5804
+\c 9.7655 15.5804 6.0775 19.5372 7.3063 22.7148
+\c 8.5335 25.8988 12.1751 25.35 12.1751 25.35
+\c 12.2615 25.5036 12.2839 25.67 12.2743 25.8396
+\c 12.2247 25.894 12.1879 25.9516 12.1335 26.006
+\c 11.3031 26.8316 10.0583 27.2492 8.4407 27.2492
+\c 6.6151 27.2492 5.0871 26.5372 3.9031 25.1244
+\c 1.8087 22.6268 1.1399 18.2876 2.1527 13.8044
+\c 3.7815 6.6092 11.2183 1.9452 21.5655 1.6396
+\c 31.9911 1.3276 39.2343 6.8588 47.6215 14.1276
+\l 49.8023 16.0236
+\c 56.9751 22.2636 63.1687 27.6508 68.4535 29.4796
+\c 68.4535 29.4796 68.7879 29.5804 68.9127 29.614
+\c 68.7783 29.662 68.4375 29.7884 68.4375 29.7884
+\c 63.1687 31.6108 56.9751 36.998 49.8023 43.2396
+\l 47.6215 45.1356
+\c 39.2343 52.4012 31.9911 57.9372 21.5655 57.6268
+\c 11.2183 57.3164 3.7815 52.6572 2.1527 45.462
+\c 1.1399 40.9756 1.8087 36.6396 3.9031 34.142
+\c 5.0871 32.7292 6.6151 32.014 8.4407 32.014
+\c 10.0583 32.014 11.3031 32.4332 12.1335 33.2588
+\c 12.1751 33.3004 12.2023 33.342 12.2375 33.3836
+\c 12.2247 33.4796 12.2279 33.5804 12.1751 33.67
+\c 12.1751 33.67 8.5335 33.1244 7.3063 36.3052
+\c 6.0775 39.486 9.7655 43.4396 13.9239 41.4412
+\c 18.0871 39.4412 17.6615 30.4908 9.1031 30.398
+\l 9.1655 30.4396
+\c 8.9239 30.4204 8.6967 30.3852 8.4407 30.3852
+\c 6.1095 30.3852 4.0839 31.3308 2.5847 33.1164
+\c 0.1783 35.99 -0.6217 40.8524 0.4967 45.8092
+\c 2.2999 53.7692 10.3495 58.9212 21.5127 59.254
+\c 32.5495 59.582 40.3815 53.6044 48.7559 46.3468
+\l 50.9431 44.4476
+\c 57.9815 38.3244 64.0583 33.0364 69.0279 31.3148
+\l 74.1559 29.438
+\l 68.9847 27.9356
+\c 64.0583 26.2284 57.9815 20.9404 50.9431 14.8172
+\l 48.7559 12.9164
+\c 40.3815 5.662 32.5495 -0.3188 21.5127 0.0124
+\c 10.3495 0.342 2.2999 5.4956 0.4967 13.4572
+\c -0.6217 18.4124 0.1783 23.2748 2.5847 26.1452
+\c 4.0839 27.9324 6.1095 28.8812 8.4407 28.8812
+\o
+\s
+\m 40.0119 14.7484
+\l 31.1159 8.9756
+\c 31.1159 8.9756 29.2583 21.3036 17.7687 29.142
+\c 17.7687 29.142 28.4471 35.062 29.4087 51.4492
+\l 39.2679 46.7452
+\c 31.5591 34.7036 20.0647 29.7836 20.0647 29.7836
+\l 25.6279 29.7836
+\c 41.0503 29.7836 50.6151 36.8396 50.6151 36.8396
+\c 50.6151 36.8396 53.7271 32.7772 59.2151 30.0716
+\c 59.2151 30.0716 54.0247 27.4348 50.6151 22.9452
+\c 50.6151 22.9452 41.7191 28.9292 25.6279 28.9292
+\l 19.9191 28.9292
+\c 19.9191 28.9292 33.4871 22.0172 40.0119 14.7484
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian180.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian180.pgf
new file mode 100644
index 0000000000..54675fd870
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian180.pgf
@@ -0,0 +1,72 @@
+\m 24.3437 22.0737
+\c 24.3437 22.0737 22.4231 25.3979 21.5379 27.6867
+\c 20.6507 29.9761 20.6507 32.5613 21.6848 35.4054
+\c 21.6848 35.4054 20.1336 33.4472 20.6138 29.718
+\c 21.0933 25.9887 22.7188 24.5482 23.3834 22.3325
+\c 23.3834 22.3325 19.3215 23.2553 18.2874 28.5746
+\c 17.2534 33.8898 19.3946 37.4722 21.8692 37.324
+\c 24.3437 37.1771 26.5219 33.9267 25.7459 28.6839
+\c 25.7459 28.6839 26.5219 30.3456 26.1161 33.3734
+\c 25.7091 36.4019 23.6791 37.6204 21.6486 37.7311
+\c 21.6486 37.7311 23.3458 38.5425 23.3834 40.5007
+\c 23.4196 42.4575 19.8754 43.1576 17.474 40.9057
+\c 17.474 40.9057 19.5797 42.4575 21.5741 41.8667
+\c 23.5678 41.2759 23.0883 38.4694 20.945 37.9155
+\c 20.945 37.9155 16.8497 37.2413 15.0021 39.2405
+\c 15.0021 39.2405 16.2637 42.2663 19.1262 43.4014
+\c 21.9907 44.5359 24.927 42.2116 26.7643 39.3484
+\c 26.7643 39.3484 29.439 34.3713 28.8851 29.3853
+\c 28.3312 24.4007 26.8538 22.407 24.3437 22.0737
+\m 21.7565 7.9073
+\c 21.7565 7.9073 13.9933 11.933 7.3442 6.0748
+\c 7.3442 6.0748 6.2657 6.5775 5.4393 7.6566
+\c 5.4393 7.6566 7.9193 9.955 11.6929 10.6387
+\c 11.6929 10.6387 8.4575 10.5663 5.2228 7.9435
+\c 5.2228 7.9435 2.2045 11.2493 2.6717 16.783
+\c 3.1382 22.3182 5.763 26.0563 6.9125 29.8655
+\c 8.0634 33.6746 6.7329 36.6943 6.0506 37.8444
+\c 6.0506 37.8444 7.6638 38.6839 7.9712 40.3299
+\c 7.9712 40.3299 7.3886 38.9065 5.8341 38.2385
+\c 5.8341 38.2385 3.979 40.9761 1.5454 41.5935
+\c 1.5454 41.5935 2.6615 41.0143 3.8178 39.998
+\c 4.9748 38.9823 5.3819 38.0746 5.3819 38.0746
+\c 4.8614 37.9223 4.2501 37.8547 3.5371 37.9339
+\c 0.2347 38.2946 -0.309 42.3216 2.1349 43.6787
+\c 4.578 45.0366 7.7451 43.0907 10.4137 40.8729
+\c 13.0836 38.6572 14.1696 38.1136 14.1696 38.1136
+\c 14.1696 38.1136 10.2777 26.6219 18.7847 19.2931
+\c 18.7847 19.2931 10.8665 26.6164 14.7064 37.9155
+\c 14.7064 37.9155 16.2568 37.2345 17.838 37.3417
+\c 19.4199 37.4503 20.6425 37.4135 20.6425 37.4135
+\c 20.6425 37.4135 18.3421 36.7311 17.5505 32.31
+\c 16.7602 27.8909 19.635 22.4992 23.7331 21.78
+\c 23.7331 21.78 26.7882 12.8666 21.7565 7.9073
+\m 7.545 5.9211
+\c 14.5548 11.4391 21.3897 7.462 21.3897 7.462
+\c 14.7283 2.0942 7.545 5.9211 7.545 5.9211
+\m 22.5576 3.8092
+\c 21.5884 1.2739 14.106 0.7261 11.6205 0.8012
+\c 9.1351 0.875 1.4068 2.7389 5.1101 7.5111
+\c 5.1101 7.5111 5.8559 6.393 7.073 5.6219
+\c 7.073 5.6219 6.1045 3.3611 9.8071 2.1672
+\c 13.5104 0.9747 19.7737 2.019 21.8118 6.0959
+\c 21.8118 6.0959 20.0967 3.7334 15.5725 3.2122
+\c 11.0495 2.6897 7.2233 3.411 7.4951 5.4484
+\c 7.4951 5.4484 10.2299 3.9321 14.8027 4.3556
+\c 19.3768 4.7784 21.986 7.0399 21.986 7.0399
+\c 21.986 7.0399 23.5262 6.3439 22.5576 3.8092
+\m 29.398 35.4402
+\c 27.9514 40.3798 23.8212 44.5516 20.0319 43.9991
+\c 16.2432 43.4452 14.6251 39.4441 14.6251 39.4441
+\c 12.7106 40.125 11.3057 42.0395 7.7274 43.9561
+\c 4.1525 45.8726 -0.6156 44.51 0.0653 40.5499
+\c 0.7463 36.5904 5.7275 37.6129 5.7275 37.6129
+\c 7.1325 35.3139 6.7069 31.4808 4.3656 27.1812
+\c 2.0242 22.881 1.682 18.8785 1.682 18.8785
+\c 1.1301 11.8121 4.8758 7.7686 4.8758 7.7686
+\c 1.8535 4.3611 4.8341 2.1058 4.8341 2.1058
+\c 8.2389 -0.8763 18.713 -0.5771 21.8207 2.2758
+\c 24.927 5.1281 22.5447 7.4264 22.5447 7.4264
+\c 28.7171 12.9609 24.3751 21.7745 24.3751 21.7745
+\c 28.7601 21.6475 30.8467 30.5021 29.398 35.4402
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian181.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian181.pgf
new file mode 100644
index 0000000000..6e1f53abcf
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian181.pgf
@@ -0,0 +1,107 @@
+\m 21.8584 19.4822
+\c 24.1677 19.4822 29.308 19.6707 34.9033 21.0996
+\c 40.4978 22.5278 42.8549 24.837 42.8549 26.074
+\c 42.8549 27.3123 39.8551 28.5492 36.6661 28.0028
+\c 33.4758 27.455 32.6657 26.3602 32.6657 25.7168
+\c 32.6657 25.0747 33.57 24.5269 34.2612 25.0262
+\c 34.9511 25.5276 34.2366 26.6689 34.2366 26.6689
+\c 34.2366 26.6689 35.2373 26.145 34.7612 25.1464
+\c 34.2851 24.1458 32.4984 24.2414 32.286 25.5276
+\c 32.0708 26.8116 33.7128 27.5745 33.7128 27.5745
+\c 33.7128 27.5745 32.1418 29.0505 29.2151 28.7876
+\c 26.285 28.5253 24.7147 27.6456 24.5016 26.7645
+\c 24.2872 25.8841 25.3117 25.5993 25.6915 26.1696
+\c 26.0726 26.7413 25.5473 27.2399 25.5473 27.2399
+\c 25.8103 27.2166 26.382 26.9544 26.1675 26.1696
+\c 25.9531 25.3848 24.5016 25.1936 24.1916 26.2413
+\c 23.8822 27.2897 25.1935 28.1012 25.1935 28.1012
+\c 23.9498 28.985 21.8229 29.0246 21.8229 29.0246
+\l 21.4383 29.0246
+\c 21.4383 29.0246 19.3121 28.985 18.0683 28.1012
+\c 18.0683 28.1012 19.3797 27.2897 19.0696 26.2413
+\c 18.7609 25.1936 17.3095 25.3848 17.093 26.1696
+\c 16.8806 26.9544 17.4523 27.2166 17.7139 27.2399
+\c 17.7139 27.2399 17.1893 26.7413 17.5711 26.1696
+\c 17.9509 25.5993 18.9754 25.8841 18.7609 26.7645
+\c 18.5465 27.6456 16.9748 28.5253 14.0468 28.7876
+\c 11.1194 29.0505 9.5477 27.5745 9.5477 27.5745
+\c 9.5477 27.5745 11.1911 26.8116 10.9766 25.5276
+\c 10.7628 24.2414 8.9767 24.1458 8.5 25.1464
+\c 8.0239 26.145 9.0246 26.6689 9.0246 26.6689
+\c 9.0246 26.6689 8.3108 25.5276 9.0013 25.0262
+\c 9.6905 24.5269 10.5955 25.0747 10.5955 25.7168
+\c 10.5955 26.3602 9.7861 27.455 6.5958 28.0028
+\c 3.4054 28.5492 0.4077 27.3123 0.4077 26.074
+\c 0.4077 24.837 2.7641 22.5278 8.3579 21.0996
+\c 13.9525 19.6707 19.0929 19.4822 21.4035 19.4822
+\o
+\m 21.3174 18.3942
+\c 15.6621 18.3942 8.4413 19.556 3.7469 22.1241
+\c -0.9468 24.6922 -1.0656 27.2597 2.4635 28.4625
+\c 5.9933 29.6659 9.2431 27.7815 9.2431 27.7815
+\c 13.2148 31.3919 17.8682 28.2617 17.8682 28.2617
+\c 19.4726 29.7076 21.5592 29.7076 21.5592 29.7076
+\l 21.7027 29.7076
+\c 21.7027 29.7076 23.7886 29.7076 25.3937 28.2617
+\c 25.3937 28.2617 30.0457 31.3919 34.0188 27.7815
+\c 34.0188 27.7815 37.2679 29.6659 40.7983 28.4625
+\c 44.3275 27.2597 44.208 24.6922 39.5143 22.1241
+\c 34.8206 19.556 27.5998 18.3942 21.9438 18.3942
+\o
+\s
+\m 9.8913 24.2715
+\c 9.8913 24.2715 13.8876 21.1023 22.0892 21.1023
+\c 30.2902 21.1023 33.1322 24.2414 33.1322 24.2414
+\c 33.1322 24.2414 29.7875 20.3626 21.9998 20.3626
+\c 14.212 20.3626 9.8913 24.2715 9.8913 24.2715
+\s
+\m 17.2638 24.2414
+\c 17.2638 24.2414 19.1577 22.8508 21.7935 22.8508
+\c 24.4272 22.8508 26.7071 24.5672 26.7071 24.5672
+\c 26.7071 24.5672 25.197 21.9615 21.7033 21.9615
+\c 21.7033 21.9615 19.4241 21.784 17.2638 24.2414
+\s
+\m 28.6011 3.6896
+\c 28.6011 3.6896 31.3707 1.2157 35.2099 0.8455
+\c 39.0512 0.476 38.4215 2.6179 35.9114 3.6158
+\c 33.402 4.613 28.6011 3.6896 28.6011 3.6896
+\m 7.4557 3.6158
+\c 4.9436 2.6179 4.3179 0.476 8.1571 0.8455
+\c 11.9964 1.2157 14.7673 3.6896 14.7673 3.6896
+\c 14.7673 3.6896 9.9671 4.613 7.4557 3.6158
+\m 21.7054 0.0976
+\l 21.4131 0.2909
+\c 19.0129 1.9158 16.6497 3.1343 16.6497 3.1343
+\c 14.1752 0.1809 7.6039 -0.6681 5.8315 0.5142
+\c 4.0577 1.6952 5.757 3.0974 5.757 3.0974
+\c 8.8224 5.6088 15.087 4.0338 15.087 4.0338
+\c 15.087 4.0338 16.9086 5.0925 17.9925 7.7999
+\c 19.0751 10.5067 19.0997 15.1109 17.3266 16.9831
+\c 15.5549 18.8525 12.5025 18.4099 11.8618 17.3765
+\c 11.2225 16.3417 11.4923 14.8159 12.8214 14.6676
+\c 14.1513 14.5201 14.6936 15.9237 14.6936 15.9237
+\c 14.7421 15.1109 13.6595 13.8801 12.2559 14.4955
+\c 10.853 15.1109 11.1235 16.4892 11.1235 16.4892
+\c 11.4185 18.8525 14.3691 18.6544 14.3691 18.6544
+\c 19.2329 18.485 20.7321 12.3399 19.6208 8.638
+\c 18.5075 4.9367 16.8615 3.3638 16.8615 3.3638
+\c 18.8695 2.5168 21.5804 0.7267 21.5804 0.7267
+\l 21.7054 0.6584
+\l 21.7874 0.7267
+\c 21.7874 0.7267 24.4962 2.5168 26.5056 3.3638
+\c 26.5056 3.3638 24.8595 4.9367 23.749 8.638
+\c 22.6343 12.3399 24.1356 18.485 28.9979 18.6544
+\c 28.9979 18.6544 31.9479 18.8525 32.2436 16.4892
+\c 32.2436 16.4892 32.5141 15.1109 31.1119 14.4955
+\c 29.7083 13.8801 28.6243 15.1109 28.6742 15.9237
+\c 28.6742 15.9237 29.2151 14.5201 30.545 14.6676
+\c 31.8734 14.8159 32.1459 16.3417 31.5053 17.3765
+\c 30.8646 18.4099 27.8136 18.8525 26.0398 16.9831
+\c 24.2681 15.1109 24.292 10.5067 25.3752 7.7999
+\c 26.4585 5.0925 28.2808 4.0338 28.2808 4.0338
+\c 28.2808 4.0338 34.546 5.6088 37.61 3.0974
+\c 37.61 3.0974 39.3087 1.6952 37.5356 0.5142
+\c 35.7632 -0.6681 29.1912 0.1809 26.7173 3.1343
+\c 26.7173 3.1343 24.3541 1.9158 21.954 0.2909
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian182.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian182.pgf
new file mode 100644
index 0000000000..807160c1eb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian182.pgf
@@ -0,0 +1,67 @@
+\m 15.1213 3.0328
+\c 15.1213 3.0328 18.7187 4.5367 21.295 7.3289
+\c 23.8727 10.1211 22.4773 11.9994 19.3095 10.0664
+\c 16.1424 8.1342 14.2088 5.2362 15.1213 3.0328
+\m 16.0345 9.0474
+\c 19.6319 12.5902 24.8925 12.4297 23.0142 8.8322
+\c 21.1339 5.2341 15.4983 2.4966 15.4983 2.4966
+\c 19.7931 -0.51 27.8451 3.0874 27.8451 3.0874
+\c 37.5637 7.3815 41.5908 14.6836 41.5908 14.6836
+\c 46.0461 21.8245 43.9533 27.4628 36.167 27.9989
+\c 28.3827 28.5351 17.2147 24.9384 8.4633 17.6902
+\c -0.2882 10.4428 -1.4698 2.3887 3.1487 0.8314
+\c 7.7659 -0.7252 14.6917 2.819 14.6917 2.819
+\c 13.189 6.3078 16.0345 9.0474 16.0345 9.0474
+\m 0.4638 2.7111
+\c -1.254 6.7907 2.3435 12.0526 2.3435 12.0526
+\c 4.4362 14.6836 13.2423 26.066 27.9537 28.5898
+\c 42.6645 31.1121 47.1751 24.241 43.0401 16.0264
+\c 38.9066 7.8118 29.8313 3.4624 29.8313 3.4624
+\c 19.1477 -1.5851 15.1213 2.3354 15.1213 2.3354
+\c 10.1817 -0.2956 2.1823 -1.3693 0.4638 2.7111
+\s
+\m 11.7752 11.0582
+\c 11.7752 11.0582 8.6231 11.3956 5.8364 9.1997
+\c 3.049 7.0045 3.9772 4.3865 5.8644 4.6679
+\c 7.7495 4.9493 9.7207 6.497 9.9454 7.7367
+\c 10.1708 8.975 7.018 9.5098 5.8644 6.0189
+\c 5.8644 6.0189 5.6943 7.7087 7.4681 8.835
+\c 9.2419 9.9599 11.6352 8.5809 9.7774 6.4137
+\c 7.9189 4.2451 4.3433 3.3162 3.7518 5.4848
+\c 3.1624 7.652 5.0755 10.6934 8.3697 11.4529
+\c 8.3697 11.4529 10.3122 11.9304 11.7752 11.0582
+\s
+\m 20.7445 18.613
+\c 20.7445 18.613 17.8492 19.7188 14.997 18.1936
+\c 12.1454 16.6684 12.3892 14.2144 14.2238 14.0156
+\c 16.0584 13.8175 18.3574 15.0989 18.6231 16.2484
+\c 18.8874 17.3986 16.4334 17.9061 14.5551 15.4527
+\c 14.5551 15.4527 14.6657 16.7128 16.1909 17.4867
+\c 17.7161 18.2592 20.1264 17.3091 18.6661 15.4977
+\c 17.2079 13.6843 13.7587 13.043 12.8755 14.2813
+\c 11.991 15.5196 12.6536 17.9498 15.1083 19.1444
+\c 17.5603 20.3376 20.1483 19.3657 20.7445 18.613
+\s
+\m 25.3644 21.356
+\c 25.3644 21.356 26.8896 22.6817 28.4366 22.5492
+\c 29.9843 22.4167 29.6756 21.0022 27.6628 20.272
+\c 25.652 19.5439 23.9281 20.3833 24.3918 21.9085
+\c 24.8563 23.4344 27.9066 25.3782 31.9733 23.0792
+\c 31.9733 23.0792 30.4051 25.4896 27.0228 24.5839
+\c 23.6412 23.6762 23.1979 21.0022 24.5906 20.0739
+\c 25.9833 19.145 29.1886 19.9845 29.6531 21.3778
+\c 30.1175 22.7698 28.548 23.2561 27.2209 22.9918
+\c 25.8951 22.7268 25.3644 21.356 25.3644 21.356
+\s
+\m 34.1173 21.4004
+\c 34.1173 21.4004 35.5543 22.3067 37.0583 22.0192
+\c 38.5603 21.7309 38.0746 20.5158 36.1957 20.007
+\c 34.3167 19.4988 32.3052 20.5158 32.9671 21.9966
+\c 33.631 23.4774 37.7878 24.1843 39.8648 23.2793
+\c 41.9432 22.3723 41.0799 20.5158 38.7604 19.5214
+\c 38.7604 19.5214 41.3026 19.8513 41.5669 21.6872
+\c 41.8319 23.5218 39.0029 25.2232 35.5543 24.1625
+\c 32.1058 23.1011 32.0388 21.0903 33.4103 20.2283
+\c 34.7805 19.3663 37.6764 19.4988 38.2953 21.2009
+\c 38.9147 22.9023 35.5318 23.5443 34.1173 21.4004
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian183.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian183.pgf
new file mode 100644
index 0000000000..89792abacc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian183.pgf
@@ -0,0 +1,92 @@
+\m 3.4091 17.8502
+\c 3.4091 17.8502 4.1693 15.9692 6.051 14.7684
+\c 7.9334 13.567 9.8554 13.9666 8.7735 15.808
+\c 7.6923 17.6507 5.4117 18.0107 3.4091 17.8502
+\m 10.0952 24.4959
+\c 10.0952 24.4959 9.6553 22.2952 10.2557 20.253
+\c 10.856 18.2101 12.9782 18.4109 13.5785 19.3309
+\c 14.1796 20.253 13.3784 23.095 10.0952 24.4959
+\m 20.2652 24.2965
+\c 20.2652 24.2965 19.8643 21.2939 21.2256 20.0529
+\c 22.5861 18.8112 23.7472 20.0932 23.2664 21.0945
+\c 22.7869 22.0951 21.2658 23.5349 20.2652 24.2965
+\m 38.7209 14.0069
+\c 40.8827 13.5267 41.0043 10.8042 38.1616 10.2844
+\c 35.3175 9.7626 32.957 11.1642 32.8771 13.1265
+\c 32.7951 15.0874 34.7178 16.2895 34.7178 16.2895
+\c 33.0765 17.0497 31.5951 18.3297 29.9135 20.2127
+\c 28.2333 22.0951 26.7907 24.9371 24.028 25.4972
+\c 21.2658 26.058 20.3848 24.6154 20.3848 24.6154
+\c 20.3848 24.6154 22.1872 23.4953 23.3873 21.6935
+\c 24.5887 19.8924 22.4666 18.2914 20.9052 19.7722
+\c 19.3438 21.2529 20.0241 24.5362 20.0241 24.5362
+\c 18.7838 25.5375 16.2614 26.8987 13.819 26.6986
+\c 11.3765 26.4985 10.2167 24.8162 10.2167 24.8162
+\c 17.5024 21.0521 13.2589 16.9705 10.9366 18.5305
+\c 8.6144 20.0932 9.7352 24.5772 9.7352 24.5772
+\c 8.2538 25.0177 4.9309 25.2165 3.4897 22.8949
+\c 2.0479 20.5727 3.25 18.1705 3.25 18.1705
+\c 4.6495 18.3713 6.6938 18.2504 8.053 17.0497
+\c 9.4156 15.8476 10.5364 13.4072 7.5735 13.7261
+\c 4.6112 14.0465 3.0492 17.8099 3.0492 17.8099
+\c -0.2334 16.5285 -0.1138 13.0862 2.3286 10.1232
+\c 4.7711 7.161 11.817 2.4359 19.8643 1.3554
+\c 27.9116 0.2749 36.8802 2.5971 40.9619 6.0402
+\c 45.047 9.4819 44.4473 14.0861 41.6053 15.8476
+\c 38.7612 17.6091 34.7178 16.8489 33.4768 14.2869
+\c 32.2357 11.7249 35.118 10.684 37.4014 10.9647
+\c 39.6819 11.2434 40.6436 12.6046 39.1212 13.2856
+\c 37.6008 13.9659 35.5579 13.0049 35.5579 13.0049
+\c 35.5579 13.0049 36.5592 14.4877 38.7209 14.0069
+\m 35.1768 16.5176
+\c 35.1768 16.5176 39.3227 18.3652 42.4242 15.5771
+\c 45.5251 12.7897 44.8284 8.4704 41.065 5.1612
+\c 41.065 5.1612 35.1153 -0.4177 22.4625 0.0249
+\c 22.4625 0.0249 10.7939 0.419 3.2609 7.4581
+\c 3.2609 7.4581 -0.5298 11.2994 0.0617 15.0409
+\c 0.0617 15.0409 0.3561 17.1569 2.916 18.0442
+\c 2.916 18.0442 1.3902 21.2441 3.6543 23.7057
+\c 5.9206 26.1679 9.9073 24.8395 9.9073 24.8395
+\c 9.9073 24.8395 10.7939 26.463 13.2063 26.8578
+\c 15.6194 27.2505 18.5235 26.1679 20.1983 24.7404
+\c 20.1983 24.7404 21.134 26.3154 23.6926 25.9712
+\c 26.2532 25.6263 28.0755 23.6073 29.7496 21.4415
+\c 31.4229 19.2749 33.3176 17.3065 35.1768 16.5176
+\s
+\m 4.6884 14.5744
+\c 4.6884 14.5744 12.0008 6.8195 20.5664 5.3421
+\c 20.5664 5.3421 32.3088 1.8711 40.4326 9.5516
+\c 40.4326 9.5516 40.8649 9.7114 40.604 9.152
+\c 40.3424 8.5919 36.385 4.8955 28.0611 4.0752
+\c 28.0611 4.0752 13.4658 2.2877 4.6884 14.5744
+\s
+\m 9.6649 15.321
+\c 9.6649 15.321 14.9097 8.7941 22.6585 7.105
+\c 22.6585 7.105 32.3908 4.541 39.5009 9.9607
+\c 39.5009 9.9607 39.7919 9.9019 39.5576 9.611
+\c 39.3254 9.3193 32.916 4.4249 22.4857 6.7553
+\c 22.4857 6.7553 14.9671 8.0961 9.6649 15.321
+\s
+\m 10.2461 19.8671
+\c 10.2461 19.8671 10.7133 16.7205 16.0736 13.0493
+\c 21.4359 9.3788 30.0016 6.814 37.1685 10.3684
+\l 37.8672 10.544
+\c 37.8672 10.544 33.4973 7.3393 25.4561 8.3877
+\c 17.4143 9.4368 10.8881 15.6126 10.2461 19.8671
+\s
+\m 15.2007 22.4892
+\c 15.2007 22.4892 16.3652 17.6521 20.2113 14.3893
+\c 24.0566 11.1266 29.4183 9.9607 34.3135 11.1266
+\l 34.9548 10.8923
+\c 34.9548 10.8923 29.3602 8.9696 22.8334 12.0589
+\c 16.3072 15.1468 15.2007 22.4892 15.2007 22.4892
+\s
+\m 20.5617 20.6239
+\c 20.5617 20.6239 23.8244 12.466 32.916 12.8737
+\c 32.916 12.8737 24.6406 10.0194 20.5617 20.6239
+\s
+\m 23.9405 21.9059
+\c 23.9405 21.9059 26.9137 15.1468 33.2637 14.2145
+\l 33.1476 13.9228
+\c 33.1476 13.9228 26.7388 14.3893 23.9405 21.9059
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian184.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian184.pgf
new file mode 100644
index 0000000000..4dd94d520e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian184.pgf
@@ -0,0 +1,128 @@
+\m 6.5329 0
+\c 6.5329 0 20.1502 6.4654 33.9723 0.138
+\c 33.9723 0.138 23.794 8.4584 6.5329 0
+\s
+\m 11.4643 13.3891
+\c 11.9513 15.0051 10.3933 15.1807 9.1659 13.6234
+\c 7.9386 12.0641 8.5615 10.4665 8.5615 10.4665
+\c 8.5615 10.4665 10.978 11.7724 11.4643 13.3891
+\m 18.3409 19.7384
+\c 17.6592 20.2445 16.6067 20.0512 16.4318 18.3758
+\c 16.257 16.7004 17.3088 16.1355 17.3088 16.1355
+\c 19.0621 17.285 19.0225 19.233 18.3409 19.7384
+\m 24.1458 19.1742
+\c 23.8924 20.071 22.2764 20.1871 21.4575 18.5513
+\c 20.6392 16.9141 21.0285 15.8616 21.0285 15.8616
+\c 23.6588 17.0316 24.3985 18.2774 24.1458 19.1742
+\m 29.1134 14.986
+\c 29.3278 16.2318 27.8074 16.895 26.9701 15.2394
+\c 26.1327 13.5838 26.5999 12.2382 26.5999 12.2382
+\c 27.5738 12.6084 28.8989 13.7395 29.1134 14.986
+\m 33.6513 13.3297
+\c 32.6001 14.1097 31.7238 13.6616 32.191 12.103
+\c 32.6582 10.5444 34.5474 9.3764 34.5474 9.3764
+\c 35.1321 10.6031 34.7038 12.5504 33.6513 13.3297
+\m 39.9821 15.8241
+\c 39.9821 15.8241 38.7165 17.2454 36.7098 17.3424
+\c 34.7038 17.4401 35.0153 15.7653 35.7748 15.279
+\c 36.535 14.7913 38.7944 14.7128 39.9821 15.8241
+\m 35.7167 22.2512
+\c 35.7167 22.2512 33.3596 22.0777 32.0742 20.9849
+\c 30.7881 19.8935 31.5094 18.843 32.833 18.901
+\c 34.1581 18.9591 35.7167 20.4604 35.7167 22.2512
+\m 27.7883 26.3807
+\c 27.7883 26.3807 26.0746 25.8746 25.4312 24.1609
+\c 24.7885 22.4472 26.4838 21.9787 27.302 22.5832
+\c 28.1196 23.1863 28.4112 25.1547 27.7883 26.3807
+\m 20.756 27.3356
+\c 20.756 27.3356 19.6461 25.8562 20.2499 24.3747
+\c 20.8537 22.8953 22.6261 23.0886 22.6459 24.57
+\c 22.665 26.0508 21.6917 27.0432 20.756 27.3356
+\m 12.0489 26.6929
+\c 12.0489 26.6929 11.9909 25.1151 13.0229 23.148
+\c 14.055 21.1796 15.5357 21.3947 15.7311 22.5053
+\c 15.9257 23.6159 14.6594 25.3289 12.0489 26.6929
+\m 5.4456 23.3618
+\c 5.4456 23.3618 6.0104 21.6481 7.608 20.2445
+\c 9.2049 18.843 10.9192 19.0171 10.7048 20.4788
+\c 10.4903 21.9398 7.8996 23.5763 5.4456 23.3618
+\m 2.8242 16.2393
+\c 2.8242 16.2393 5.7338 14.986 7.3109 15.5925
+\c 8.8873 16.199 7.8607 17.7522 6.2051 17.7713
+\c 4.5488 17.7911 3.4949 17.1812 2.8242 16.2393
+\m 18.918 14.0967
+\c 18.918 14.0967 17.6162 7.4571 22.0865 4.1152
+\c 22.0865 4.1152 17.399 5.5044 18.2671 12.1884
+\c 18.2671 12.1884 13.71 4.29 8.4583 9.1927
+\c 8.4583 9.1927 4.3787 7.7174 1.9485 9.5397
+\c -0.4823 11.3626 0.603 14.6185 1.5585 15.7462
+\c 1.5585 15.7462 -0.5253 17.3526 0.1256 20.1742
+\c 0.7772 22.9943 4.5959 23.689 4.5959 23.689
+\c 4.5959 23.689 5.0733 29.0274 11.6262 27.2912
+\c 11.6262 27.2912 14.1437 31.3285 20.2629 28.2023
+\c 20.2629 28.2023 23.4744 31.1543 27.511 27.7263
+\c 27.511 27.7263 30.549 28.8546 33.4573 26.9012
+\c 33.4573 26.9012 35.3663 25.4259 35.8875 23.5599
+\c 35.8875 23.5599 39.4897 23.8631 41.3994 20.739
+\c 41.3994 20.739 42.8754 18.5261 40.7485 16.268
+\c 40.7485 16.268 42.398 14.5325 41.8768 11.9712
+\c 41.3564 9.4106 38.3176 7.9359 35.3663 8.9338
+\c 35.3663 8.9338 34.2817 6.7632 30.853 7.4141
+\c 27.4243 8.065 26.6866 11.0163 26.6866 11.0163
+\c 26.6866 11.0163 22.65 9.2378 20.9145 14.9225
+\c 20.9145 14.9225 19.0908 14.7497 17.7897 15.531
+\c 17.7897 15.531 13.7531 12.2751 11.3222 18.6545
+\c 11.3222 18.6545 13.4928 14.4888 16.9653 15.9641
+\c 16.9653 15.9641 15.6191 17.1798 16.2706 19.0895
+\c 16.9216 20.9986 18.8743 20.3477 19.0478 19.0451
+\c 19.2213 17.7447 18.7008 16.4852 17.8327 15.9641
+\c 17.8327 15.9641 18.9173 15.4006 20.784 15.8336
+\c 20.784 15.8336 20.394 17.701 21.5217 19.2193
+\c 22.65 20.739 25.2974 20.2172 25.1239 18.2645
+\c 24.9504 16.311 22.9539 15.1397 21.2614 14.9225
+\c 21.2614 14.9225 21.9123 10.9733 26.3396 12.1453
+\c 26.3396 12.1453 25.8622 13.9676 26.9468 15.7032
+\c 28.0315 17.4401 30.1153 16.3548 29.2903 13.9676
+\c 28.4659 11.5812 26.9031 11.0163 26.9031 11.0163
+\c 26.9031 11.0163 27.7712 8.6292 30.3325 7.9359
+\c 32.8925 7.2406 34.4989 9.1066 34.4989 9.1066
+\c 34.4989 9.1066 31.9376 10.5833 31.7641 12.6651
+\c 31.5906 14.7483 33.6738 14.2716 34.7154 12.883
+\c 35.757 11.4951 35.4968 10.0178 35.4968 9.1927
+\c 35.4968 9.1927 38.6216 8.4127 40.575 10.278
+\c 42.5271 12.1453 40.8783 15.0523 40.0969 15.5304
+\c 40.0969 15.5304 37.3191 13.7935 35.5405 15.2264
+\c 33.7606 16.658 35.8875 19.7398 40.575 16.5713
+\c 40.575 16.5713 42.441 18.3075 40.965 20.347
+\c 39.4897 22.3865 36.0173 22.3448 36.0173 22.3448
+\c 36.0173 22.3448 36.1914 19.7398 33.4573 18.7836
+\c 30.7225 17.8308 30.6788 20.2609 31.7211 21.6058
+\c 32.7627 22.9513 35.5405 23.4724 35.5405 23.4724
+\c 35.5405 23.4724 34.3254 28.593 28.1626 26.6833
+\c 28.1626 26.6833 29.2035 23.0804 27.164 22.1699
+\c 25.1246 21.2581 23.0407 24.3843 27.164 27.5084
+\c 27.164 27.5084 24.8643 30.5034 21.0012 27.6395
+\c 21.0012 27.6395 22.9539 26.9012 22.9109 24.514
+\c 22.8672 22.1269 19.8291 22.8215 19.265 24.514
+\c 18.7008 26.2072 19.9159 27.9865 19.9159 27.9865
+\c 19.9159 27.9865 14.7947 31.1106 12.1043 26.9886
+\c 12.1043 26.9886 14.9681 25.8589 15.8363 23.689
+\c 16.7044 21.5197 14.7079 20.0881 12.581 22.5613
+\c 12.581 22.5613 11.019 24.514 11.4964 26.9886
+\c 11.4964 26.9886 5.7679 28.8546 5.3336 23.7334
+\c 5.3336 23.7334 8.2411 23.9062 9.9774 22.1269
+\c 11.7136 20.3477 11.019 17.701 7.6777 19.1326
+\c 7.6777 19.1326 5.3766 20.39 4.5959 23.2552
+\c 4.5959 23.2552 1.8181 22.8215 0.8632 20.739
+\c -0.0909 18.6545 1.1672 16.9626 2.426 16.4422
+\c 2.426 16.4422 3.4676 17.9605 5.854 18.0479
+\c 8.2411 18.134 9.3265 16.7017 7.8074 15.0523
+\c 6.2877 13.4028 2.3385 14.7053 1.8181 15.4429
+\c 1.8181 15.4429 0.4725 14.1855 1.0367 12.0142
+\c 1.6016 9.8456 5.7679 9.4106 8.1981 10.4084
+\c 8.1981 10.4084 7.5472 12.4049 9.2397 14.3146
+\c 10.9322 16.2243 12.4512 15.0523 11.7136 13.0128
+\c 10.9752 10.9733 8.8921 9.498 8.8921 9.498
+\c 8.8921 9.498 9.586 7.8041 13.0584 8.8908
+\c 16.5309 9.9754 17.6162 11.5354 18.918 14.0967
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian185.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian185.pgf
new file mode 100644
index 0000000000..4a27f43ab5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian185.pgf
@@ -0,0 +1,140 @@
+\m 0.5464 23.1378
+\c 0.5464 23.1378 10.4761 19.9037 16.7154 29.2863
+\c 16.7154 29.2863 12.7532 18.5377 0.5464 23.1378
+\s
+\m 0 22.8181
+\c 0 22.8181 6.6956 18.8553 13.7094 22.0893
+\c 13.7094 22.0893 7.9708 16.6245 0 22.8181
+\s
+\m 13.9376 22.4097
+\c 13.9376 22.4097 18.0363 20.4515 22.5005 21.9992
+\c 26.9633 23.5483 27.7829 28.6948 27.7829 28.6948
+\c 27.7829 28.6948 28.0568 23.5483 22.6371 21.2711
+\c 22.6371 21.2711 17.4442 19.358 13.9376 22.4097
+\s
+\m 18.2187 29.4693
+\c 18.2187 29.4693 16.6239 24.1862 9.8832 21.6816
+\c 9.8832 21.6816 16.9435 22.7286 18.2187 29.4693
+\s
+\m 20.1318 29.4229
+\c 20.1318 29.4229 19.039 25.2783 14.848 22.728
+\c 14.848 22.728 19.7671 24.3686 20.1318 29.4229
+\s
+\m 22.0443 29.0588
+\c 22.0443 29.0588 21.4521 24.9143 16.2598 22.2724
+\c 16.2598 22.2724 21.7253 23.4103 22.0443 29.0588
+\s
+\m 24.0947 29.1961
+\c 24.0947 29.1961 23.6391 24.8228 18.9475 22.3632
+\c 18.9475 22.3632 24.1404 23.5018 24.0947 29.1961
+\s
+\m 25.6881 28.4209
+\c 25.6881 28.4209 25.0509 24.3221 20.0403 21.8619
+\c 20.0403 21.8619 25.6431 23.1828 25.6881 28.4209
+\s
+\m 26.2352 27.0098
+\c 26.2352 27.0098 27.3738 23.9581 31.2909 22.5907
+\c 35.208 21.2246 36.893 21.4979 40.5819 23.5483
+\c 40.5819 23.5483 37.4851 20.2227 32.7942 21.0887
+\c 32.7942 21.0887 27.2372 22.2724 26.2352 27.0098
+\s
+\m 38.0766 22.0907
+\c 38.0766 22.0907 35.1165 18.5384 35.1165 13.4362
+\c 35.1165 8.3348 38.1224 4.0086 38.1224 4.0086
+\c 38.1224 4.0086 34.1602 8.1982 34.1152 13.1637
+\c 34.0687 18.1279 36.893 21.0887 38.0766 22.0907
+\s
+\m 7.7426 19.0841
+\c 7.7426 19.0841 11.1584 11.1126 6.8766 3.1876
+\c 6.8766 3.1876 9.61 5.8753 9.7473 11.2042
+\c 9.8832 16.5323 7.7426 19.0841 7.7426 19.0841
+\s
+\m 9.61 19.4017
+\c 9.61 19.4017 11.2492 16.6245 11.2042 11.7506
+\c 11.1584 6.8773 9.0629 3.9164 9.0629 3.9164
+\c 9.0629 3.9164 11.6146 6.421 11.8414 11.7048
+\c 12.0695 16.9886 9.61 19.4017 9.61 19.4017
+\s
+\m 11.1584 19.9495
+\c 11.1584 19.9495 13.3447 16.4886 13.3905 11.3414
+\c 13.4356 6.1936 10.6577 2.5504 10.6577 2.5504
+\c 10.6577 2.5504 13.9827 6.1936 14.1193 11.1591
+\c 14.2559 16.1232 11.1584 19.9495 11.1584 19.9495
+\s
+\m 12.5251 20.8148
+\c 12.5251 20.8148 15.3944 17.2625 15.3494 11.6604
+\c 15.3036 6.059 12.4343 2.1412 12.4343 2.1412
+\c 12.4343 2.1412 15.8965 5.3753 15.9409 11.5689
+\c 15.9873 17.7638 12.5251 20.8148 12.5251 20.8148
+\s
+\m 14.3925 21.5887
+\c 14.3925 21.5887 17.216 17.4448 17.3076 11.6597
+\c 17.3984 5.8753 14.0735 1.5942 14.0735 1.5942
+\c 14.0735 1.5942 17.5815 4.6001 17.9455 11.7048
+\c 17.9455 11.7048 18.0357 17.171 14.3925 21.5887
+\s
+\m 16.8978 20.1769
+\c 16.8978 20.1769 19.4024 17.535 19.2658 11.3401
+\c 19.1298 5.1458 15.7592 1.0464 15.7592 1.0464
+\c 15.7592 1.0464 19.6763 4.053 19.9952 11.2042
+\c 19.9952 11.2042 20.3593 16.4415 16.8978 20.1769
+\s
+\m 0.7281 0
+\c 0.7281 0 4.4177 3.2791 9.1094 1.6392
+\c 13.8003 0 19.6305 -0.7752 23.0462 3.0053
+\c 23.0462 3.0053 20.8599 0.1366 15.4402 1.4576
+\c 10.0198 2.7785 5.3282 3.9164 0.7281 0
+\s
+\m 45.4108 0
+\c 45.4108 0 41.7212 3.2791 37.0296 1.6392
+\c 32.3386 0 26.5084 -0.7752 23.0927 3.0053
+\c 23.0927 3.0053 25.279 0.1366 30.6987 1.4576
+\c 36.1191 2.7785 40.8107 3.9164 45.4108 0
+\s
+\m 26.3746 21.9958
+\c 26.3746 21.9958 28.1729 20.4815 28.1968 19.1073
+\c 28.2208 17.7351 26.8479 17.2379 26.1615 18.0664
+\c 25.475 18.8949 25.9716 19.7937 26.4695 19.7473
+\c 26.9654 19.7008 26.895 18.5404 26.895 18.5404
+\c 26.895 18.5404 27.4872 18.9905 27.0139 19.8661
+\c 26.5405 20.7397 25.4511 20.1735 25.6171 18.8471
+\c 25.7824 17.5213 27.5104 16.7646 28.386 18.162
+\c 29.2617 19.5574 27.7946 21.4985 26.3746 21.9958
+\s
+\m 29.1667 15.9354
+\c 29.1667 15.9354 29.9242 17.4278 31.321 16.6703
+\c 32.7177 15.9128 32.8366 13.2853 31.7472 12.338
+\c 30.6584 11.392 29.7589 13.1193 29.7821 14.6342
+\c 29.806 16.1492 31.0136 16.2434 31.2977 15.1076
+\c 31.5812 13.971 30.7759 12.954 30.7759 12.954
+\c 30.7759 12.954 31.9363 13.3324 31.7711 14.8713
+\c 31.6051 16.4094 30.3265 16.9538 29.5697 15.4149
+\c 28.8122 13.8768 30.0902 11.6761 31.1789 11.7232
+\c 32.2676 11.7697 33.3556 13.4035 32.9069 15.2961
+\c 32.4568 17.1908 29.9727 18.3273 29.1667 15.9354
+\s
+\m 22.422 16.8363
+\c 22.422 16.8363 24.2442 17.2843 25.0017 15.7223
+\c 25.7585 14.1609 25.238 12.7416 24.3624 12.0081
+\c 23.4868 11.2731 22.1611 12.411 22.2321 14.3044
+\c 22.3031 16.1963 23.6999 15.7223 23.9362 14.9894
+\c 24.1732 14.2559 23.9362 12.8366 23.9362 12.8366
+\c 23.9362 12.8366 24.93 13.7122 24.5284 15.1083
+\c 24.1261 16.5037 22.019 16.4804 21.8066 14.3044
+\c 21.5935 12.1262 23.2737 10.9187 24.5755 11.5108
+\c 25.8773 12.1003 26.1369 14.2087 25.5222 15.7694
+\c 24.9068 17.3328 23.5339 17.2843 22.422 16.8363
+\s
+\m 25.712 9.8299
+\c 25.712 9.8299 27.2495 10.8244 28.6463 9.166
+\c 30.043 7.5104 29.6872 4.1015 28.718 2.6105
+\c 27.7467 1.1201 26.1376 1.8059 25.7592 4.7169
+\c 25.3808 7.6279 25.9716 8.8587 26.9654 8.7398
+\c 27.9605 8.6217 28.4339 6.587 28.2679 4.8829
+\c 28.1019 3.1781 27.2263 2.5633 27.2263 2.5633
+\c 27.2263 2.5633 28.9072 3.0599 28.9543 5.8063
+\c 29.0014 8.5513 26.9189 10.2554 25.807 8.6463
+\c 24.6944 7.0364 25.2858 2.6344 26.753 1.6174
+\c 28.2208 0.5983 30.1373 2.7771 30.5164 5.2852
+\c 30.8948 7.7939 28.6709 12.2198 25.712 9.8299
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian186.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian186.pgf
new file mode 100644
index 0000000000..b088d81d46
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian186.pgf
@@ -0,0 +1,65 @@
+\m 21.5835 9.5998
+\c 21.5835 9.5998 20.2065 8.2768 20.0986 6.3869
+\c 19.99 4.4983 21.3676 3.6077 22.4202 4.2818
+\c 23.4734 4.958 23.5813 7.3055 21.5835 9.5998
+\m 39.1574 8.5547
+\c 39.1574 8.5547 37.3454 8.8136 36.5353 7.8745
+\c 35.7266 6.936 38.1705 5.8186 39.1574 8.5547
+\m 39.2722 8.8785
+\c 39.2722 8.8785 39.1089 10.935 33.8531 11.4255
+\c 28.5987 11.9152 24.3558 9.8907 24.1919 7.8342
+\c 24.0293 5.7776 27.4888 4.4724 31.3075 4.0475
+\c 35.1269 3.6234 40.2188 5.2558 41.0992 7.8014
+\c 41.0992 7.8014 40.8711 8.0958 39.3705 8.4878
+\c 39.3705 8.4878 38.848 6.4306 36.9875 6.6266
+\c 35.1269 6.8226 35.7471 9.0745 39.2722 8.8785
+\m 6.7149 7.8745
+\c 5.9056 8.8136 4.0922 8.5547 4.0922 8.5547
+\c 5.0798 5.8186 7.525 6.936 6.7149 7.8745
+\m 6.2635 6.6266
+\c 4.4029 6.4306 3.8811 8.4878 3.8811 8.4878
+\c 2.3792 8.0958 2.1504 7.8014 2.1504 7.8014
+\c 3.0321 5.2558 8.124 3.6234 11.9427 4.0475
+\c 15.7621 4.4724 19.2216 5.7776 19.0584 7.8342
+\c 18.8944 9.8907 14.6522 11.9152 9.3971 11.4255
+\c 4.142 10.935 3.9788 8.8785 3.9788 8.8785
+\c 7.5038 9.0745 8.124 6.8226 6.2635 6.6266
+\m 21.94 10.2165
+\c 26.4117 15.1451 34.4084 14.7859 38.1623 12.7949
+\c 41.9161 10.8046 41.4913 8.1606 41.4913 8.1606
+\c 43.1558 7.3438 43.2213 5.7127 43.2213 5.7127
+\c 43.5806 3.0681 40.7078 0 34.4412 0
+\c 28.1746 0 24.4863 1.5019 24.4863 1.5019
+\c 24.4863 1.5019 27.4232 0.4897 32.8744 0.2616
+\c 38.3248 0.0335 42.5684 2.0566 42.8293 4.7005
+\c 43.0909 7.3444 41.328 7.6388 41.328 7.6388
+\c 39.5659 3.5578 33.2985 3.0681 33.2985 3.0681
+\c 29.5119 2.7751 23.9638 4.5379 23.9638 7.6716
+\c 23.9638 10.8046 29.0556 12.6638 34.2131 12.0115
+\c 39.3705 11.3599 39.4354 8.8457 39.4354 8.8457
+\c 40.4469 8.6832 41.0664 8.4216 41.0664 8.4216
+\c 41.2631 11.5545 36.2689 13.7094 30.5241 13.1542
+\c 24.78 12.5996 22.1032 9.9556 22.1032 9.9556
+\c 22.1032 9.9556 23.5396 8.0958 23.6701 5.6799
+\c 23.8012 3.2648 21.7119 3.036 21.7119 3.036
+\l 21.5391 3.036
+\c 21.5391 3.036 19.4497 3.2648 19.5802 5.6799
+\c 19.7106 8.0958 21.147 9.9556 21.147 9.9556
+\c 21.147 9.9556 18.471 12.5996 12.7268 13.1542
+\c 6.9813 13.7094 1.9885 11.5545 2.1838 8.4216
+\c 2.1838 8.4216 2.8033 8.6832 3.8156 8.8457
+\c 3.8156 8.8457 3.8811 11.3599 9.0379 12.0115
+\c 14.1946 12.6638 19.2865 10.8046 19.2865 7.6716
+\c 19.2865 4.5379 13.7384 2.7751 9.9524 3.0681
+\c 9.9524 3.0681 3.6844 3.5578 1.9229 7.6388
+\c 1.9229 7.6388 0.1601 7.3444 0.4217 4.7005
+\c 0.6826 2.0566 4.9255 0.0335 10.3766 0.2616
+\c 15.827 0.4897 18.7654 1.5019 18.7654 1.5019
+\c 18.7654 1.5019 15.0764 0 8.8098 0
+\c 2.5424 0 -0.3297 3.0681 0.0296 5.7127
+\c 0.0296 5.7127 0.0952 7.3438 1.7597 8.1606
+\c 1.7597 8.1606 1.3355 10.8046 5.0887 12.7949
+\c 8.8425 14.7859 16.8386 15.1451 21.3103 10.2165
+\l 21.5835 9.8975
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian187.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian187.pgf
new file mode 100644
index 0000000000..42d86ac222
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian187.pgf
@@ -0,0 +1,87 @@
+\m 20.6733 5.8024
+\c 20.6733 5.8024 19.3476 5.2901 19.1966 4.3878
+\c 19.0464 3.4828 20.9738 3.6645 20.6733 5.8024
+\m 8.6939 4.3878
+\c 8.5444 5.2901 7.2179 5.8024 7.2179 5.8024
+\c 6.9167 3.6645 8.8449 3.4828 8.6939 4.3878
+\m 14.4367 24.3305
+\c 20.1611 24.3305 23.3248 19.1491 23.4149 14.3585
+\c 23.5051 9.5692 21.0947 6.5564 21.0947 6.5564
+\c 21.0947 6.5564 21.6978 5.4117 21.0046 4.1761
+\c 20.3113 2.9405 18.6243 3.2411 18.8947 4.4473
+\c 19.1666 5.6507 20.6433 6.0735 20.6433 6.0735
+\c 19.0464 7.4607 17.0574 6.0735 16.274 4.4473
+\c 15.492 2.821 16.274 0.591 18.6851 0.4393
+\c 21.0947 0.2898 22.958 2.7595 22.958 2.7595
+\c 26.2201 6.7613 29.1748 14.8871 25.6661 21.2897
+\c 22.1575 27.6909 14.1546 28.0597 14.1546 28.0597
+\l 13.7366 28.0597
+\c 13.7366 28.0597 5.7338 27.6909 2.2251 21.2897
+\c -1.2828 14.8871 1.6712 6.7613 4.934 2.7595
+\c 4.934 2.7595 6.7965 0.2898 9.2069 0.4393
+\c 11.6166 0.591 12.4 2.821 11.6166 4.4473
+\c 10.8331 6.0735 8.8449 7.4607 7.248 6.0735
+\c 7.248 6.0735 8.7247 5.6507 8.9958 4.4473
+\c 9.2663 3.2411 7.5799 2.9405 6.8867 4.1761
+\c 6.1934 5.4117 6.7965 6.5564 6.7965 6.5564
+\c 6.7965 6.5564 4.3862 9.5692 4.4763 14.3585
+\c 4.5665 19.1491 7.7302 24.3305 13.4545 24.3305
+\o
+\m 13.4894 23.4419
+\c 13.4894 23.4419 7.0875 23.3818 5.3643 16.4253
+\c 5.3643 16.4253 3.8876 11.0704 7.2111 6.8829
+\c 7.2111 6.8829 9.2424 7.8685 11.2122 5.9601
+\c 13.182 4.0518 12.6281 0.5432 9.6734 0.0507
+\c 6.7187 -0.4418 3.4559 2.6359 1.5483 7.5611
+\c -0.3608 12.4856 -1.4071 18.7031 3.949 24.7369
+\c 3.949 24.7369 7.5192 28.9832 13.8589 28.9832
+\l 14.0317 28.9832
+\c 20.3721 28.9832 23.9429 24.7369 23.9429 24.7369
+\c 29.2977 18.7031 28.2514 12.4856 26.343 7.5611
+\c 24.4354 2.6359 21.1726 -0.4418 18.2186 0.0507
+\c 15.2632 0.5432 14.7092 4.0518 16.6791 5.9601
+\c 18.6489 7.8685 20.6808 6.8829 20.6808 6.8829
+\c 24.0044 11.0704 22.527 16.4253 22.527 16.4253
+\c 20.8031 23.3818 14.4012 23.4419 14.4012 23.4419
+\o
+\s
+\m 1.8645 13.1926
+\l 2.305 13.239
+\c 2.4102 12.248 2.6418 11.2016 3.0413 10.1115
+\l 2.6254 9.9592
+\c 2.2135 11.0827 1.9745 12.1667 1.8645 13.1926
+\s
+\m 1.8467 15.76
+\c 1.9608 16.9867 2.2395 18.0911 2.5803 19.0453
+\l 2.9983 18.8957
+\c 2.6677 17.9723 2.3986 16.9034 2.288 15.7177
+\o
+\s
+\m 3.322 20.7583
+\c 4.0194 22.1168 4.6908 22.8934 4.6997 22.9036
+\l 5.0344 22.6127
+\c 5.0344 22.6127 4.9975 22.5697 4.9271 22.4802
+\c 4.8568 22.3907 4.755 22.2582 4.6321 22.0813
+\c 4.3855 21.7309 4.0542 21.2146 3.7168 20.5561
+\o
+\s
+\m 26.3539 13.1926
+\l 25.9134 13.239
+\c 25.8075 12.248 25.576 11.2016 25.1764 10.1115
+\l 25.5924 9.9592
+\c 26.0042 11.0827 26.2447 12.1667 26.3539 13.1926
+\s
+\m 26.371 15.76
+\c 26.2576 16.9867 25.9783 18.0911 25.6381 19.0453
+\l 25.2208 18.8957
+\c 25.5507 17.9723 25.8198 16.9034 25.9298 15.7177
+\o
+\s
+\m 24.8957 20.7583
+\c 24.1983 22.1168 23.5263 22.8934 23.5181 22.9036
+\l 23.1827 22.6127
+\c 23.1827 22.6127 23.2203 22.5697 23.2906 22.4802
+\c 23.361 22.3907 23.4634 22.2582 23.5864 22.0813
+\c 23.8323 21.7309 24.1642 21.2146 24.5009 20.5561
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian188.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian188.pgf
new file mode 100644
index 0000000000..89888a6147
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian188.pgf
@@ -0,0 +1,71 @@
+\m 18.7835 5.7073
+\c 16.1758 3.9144 15.3281 0.5567 15.3281 0.5567
+\c 15.3281 0.5567 19.9248 0.3934 22.6965 1.8926
+\c 25.4675 3.3925 26.5111 6.4244 26.5111 6.4244
+\c 23.902 7.5336 21.3926 7.5009 18.7835 5.7073
+\m 21.3598 16.5644
+\c 21.3598 16.5644 21.978 11.1843 26.5111 8.8368
+\c 26.5111 8.8368 26.8376 14.6083 21.3598 16.5644
+\m 14.7728 22.6276
+\c 16.436 22.4971 16.6969 24.3556 16.6969 24.3556
+\c 12.8167 25.5297 13.1104 22.758 14.7728 22.6276
+\m 14.2845 21.2581
+\c 12.23 20.7042 9.9153 23.5394 7.4373 25.0721
+\c 4.96 26.6047 1.3735 25.9852 1.3735 25.9852
+\c 5.1225 18.6825 14.2845 21.2581 14.2845 21.2581
+\m 0.0034 29.5041
+\c 0.0034 29.5041 0.8844 27.0282 5.8076 28.0377
+\c 10.7301 29.0486 16.9906 29.6681 17.3492 24.1582
+\c 17.3492 24.1582 19.1749 23.3761 20.7724 18.8116
+\c 20.7724 18.8116 20.7069 27.4838 29.3135 28.6251
+\c 29.3135 28.6251 27.619 26.4729 28.1087 23.9635
+\c 28.5977 21.4528 29.3135 19.138 27.2611 17.4756
+\c 25.2066 15.8124 22.2068 16.9538 21.8803 19.3013
+\c 21.5552 21.6481 23.8692 22.2683 25.0119 22.0402
+\c 25.0119 22.0402 24.9463 25.3002 27.2932 27.4203
+\c 27.2932 27.4203 24.7503 24.0933 26.0214 20.474
+\c 26.0214 20.474 24.0325 22.0395 22.8269 20.7684
+\c 21.6201 19.4959 23.2825 16.8882 25.0433 17.1491
+\c 26.8048 17.41 27.9127 19.0069 27.2932 21.3223
+\c 26.6744 23.637 26.8048 25.6902 28.3368 28.0056
+\c 28.3368 28.0056 26.7392 28.2023 24.3589 25.8548
+\c 21.978 23.5073 20.9029 19.8894 21.2943 17.02
+\c 21.2943 17.02 26.9346 15.6513 26.8697 8.8034
+\c 26.8697 8.8034 28.2712 7.9564 30.2274 7.6299
+\c 30.2274 7.6299 28.8579 7.4339 26.9346 8.2829
+\c 26.9346 8.2829 26.9011 6.88 26.9011 6.7174
+\c 26.9011 6.7174 29.444 5.0871 29.5423 0
+\l 28.9884 0.0328
+\c 28.9884 0.0328 29.0212 4.2067 26.8697 6.1628
+\c 26.8697 6.1628 24.8814 -0.6823 14.8056 0.2288
+\c 14.8056 0.2288 15.5235 3.6186 18.0336 6.3261
+\c 20.5443 9.0315 23.9669 8.4776 26.6088 6.7816
+\l 26.6088 8.4448
+\c 26.6088 8.4448 22.1084 9.7487 20.935 16.5959
+\c 20.935 16.5959 15.7844 18.4537 11.0238 14.0202
+\c 6.2639 9.5868 7.6982 4.3706 7.6982 4.3706
+\c 7.6982 4.3706 9.0676 8.5752 12.4916 9.2596
+\c 15.9142 9.9447 17.8054 8.9331 19.4358 10.9876
+\c 21.0661 13.0415 20.0546 15.4552 20.0546 15.4552
+\c 20.0546 15.4552 13.6971 15.8801 9.2309 8.218
+\c 9.2309 8.218 11.6761 16.4661 20.0225 15.7168
+\c 20.0225 15.7168 21.7833 14.3788 20.642 11.8038
+\c 19.5013 9.2268 16.5016 8.7385 13.8931 8.4789
+\c 11.2847 8.218 8.1872 7.1416 7.8286 1.8926
+\c 7.8286 1.8926 5.6444 5.8705 8.1223 11.4774
+\c 10.6003 17.0856 17.2187 18.7487 20.838 17.2809
+\c 20.838 17.2809 18.9467 22.8243 17.121 23.7361
+\c 17.121 23.7361 16.1758 21.8455 14.0229 22.4315
+\c 11.8714 23.0196 12.8495 25.7906 16.6648 24.6814
+\c 16.6648 24.6814 15.7181 28.0063 10.8933 27.8765
+\c 6.0678 27.7461 2.0906 26.3445 0.5252 28.4318
+\c 0.5252 28.4318 0.7212 26.8984 1.243 26.182
+\c 1.243 26.182 5.449 27.3219 8.1872 25.8548
+\c 10.9261 24.3884 11.8393 20.7691 17.0234 22.2027
+\c 17.0234 22.2027 13.176 19.3341 7.5349 20.737
+\c 1.8946 22.1385 -0.0943 25.9169 0.0034 29.5041
+\s
+\m 24.5536 5.8889
+\c 24.5536 5.8889 19.9596 4.9703 17.7556 2.0012
+\c 17.7556 2.0012 19.3784 6.1034 24.5536 5.8889
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian189.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian189.pgf
new file mode 100644
index 0000000000..9911d5a7c5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian189.pgf
@@ -0,0 +1,207 @@
+\m 15.9235 7.5531
+\c 14.5807 7.5175 13.5139 6.5538 13.5139 6.5538
+\c 17.1981 6.2103 17.2677 7.5865 15.9235 7.5531
+\m 9.3133 9.2046
+\c 7.9699 8.861 7.4193 7.4486 7.4193 7.4486
+\c 10.4847 7.8966 10.6568 9.5495 9.3133 9.2046
+\m 2.9422 1.9749
+\c 2.9422 1.9749 2.3227 5.797 7.0744 7.3454
+\c 7.0744 7.3454 7.2814 8.7237 9.0026 9.4129
+\c 10.7245 10.1007 10.7934 9.2408 10.0715 8.1049
+\c 9.3482 6.9677 6.5929 5.9698 6.5929 5.9698
+\c 6.5929 5.9698 6.5588 4.9023 6.9371 4.2138
+\c 6.9371 4.2138 8.2806 7.312 13.0645 6.6242
+\c 13.0645 6.6242 14.5473 8.036 16.3709 7.7948
+\c 18.1966 7.5531 16.5779 6.3482 15.4072 5.8312
+\c 14.2365 5.3162 12.378 5.5559 12.378 5.5559
+\c 12.378 5.5559 11.6199 4.2473 12.3432 2.8013
+\c 12.3432 2.8013 13.8574 4.3511 15.6831 4.7643
+\c 17.5081 5.1769 19.8488 4.6257 21.0543 0.46
+\l 21.6738 0.7004
+\c 21.6738 0.7004 22.1902 3.7651 19.4028 7.2778
+\c 16.6127 10.7892 11.861 11.2379 7.9371 10.4101
+\c 4.0111 9.585 0.2224 5.5921 2.9422 1.9749
+\m 6.6954 12.6839
+\c 6.3853 13.304 3.4599 12.2358 3.4599 12.2358
+\c 5.3191 11.3069 7.0054 12.0637 6.6954 12.6839
+\m 11.792 13.6838
+\c 11.8951 14.4051 10.0715 14.8538 10.0715 14.8538
+\c 10.3461 13.7166 11.6882 12.9598 11.792 13.6838
+\m 18.2656 11.2714
+\c 18.3339 11.9264 17.4398 12.9243 17.4398 12.9243
+\c 16.6127 11.1683 18.1966 10.6177 18.2656 11.2714
+\m 18.8168 14.5096
+\l 17.6454 13.442
+\c 17.6454 13.442 18.8168 11.9605 18.5409 11.1348
+\c 18.2656 10.3083 16.3368 10.4798 17.2322 13.2344
+\c 17.2322 13.2344 15.718 14.9228 14.2024 15.0601
+\c 12.6867 15.1973 11.0004 16.0245 9.8987 17.676
+\c 9.8987 17.676 9.5544 16.8858 9.829 15.4043
+\c 9.829 15.4043 11.9996 14.7841 12.0679 13.8894
+\c 12.1362 12.9939 10.5523 12.4421 9.6924 15.0252
+\c 9.6924 15.0252 8.5907 15.6468 6.5239 15.0601
+\c 4.4585 14.4747 2.4962 14.612 1.1534 15.129
+\c 1.1534 15.129 1.5325 13.442 2.9436 12.5117
+\c 2.9436 12.5117 6.3176 13.6838 7.0075 12.7522
+\c 7.6953 11.8233 4.871 10.9278 3.046 12.0985
+\c 3.046 12.0985 -1.7057 8.9307 1.6691 3.3184
+\c 1.6691 3.3184 0.6008 6.6242 4.6306 9.8261
+\c 8.6583 13.0288 15.5452 11.9947 18.3687 9.4129
+\c 18.3687 9.4129 22.0181 6.3824 21.9846 1.2857
+\c 21.9846 1.2857 23.087 3.7658 22.4661 6.5552
+\c 21.846 9.3439 19.4028 11.031 18.8168 14.5096
+\m 22.5365 8.5871
+\c 23.6368 5.5559 22.7414 2.8362 22.7414 2.8362
+\c 25.4284 5.797 24.2911 8.8282 22.88 10.8937
+\c 21.4676 12.9598 22.1226 14.5096 22.1226 14.5096
+\c 22.1226 14.5096 20.6063 14.6824 20.0216 15.0252
+\c 19.4363 15.3695 19.1255 15.3695 19.1255 15.3695
+\c 19.0914 12.9605 21.4321 11.617 22.5365 8.5871
+\m 28.2506 4.5396
+\c 28.7266 4.1728 30.1548 6.0231 30.1548 6.0231
+\c 28.7089 5.8387 27.7752 4.9057 28.2506 4.5396
+\m 36.6154 16.1816
+\c 37.3668 15.7048 39.088 17.3345 39.088 17.3345
+\c 36.9269 17.3885 35.8648 16.6563 36.6154 16.1816
+\m 33.1013 16.2171
+\c 33.9059 16.5654 34.7672 19.4382 34.7672 19.4382
+\c 31.7278 17.1508 32.2961 15.8701 33.1013 16.2171
+\m 22.2284 25.9541
+\c 21.8815 26.8339 20.2149 27.5654 20.2149 27.5654
+\c 20.984 24.7466 22.5761 25.0758 22.2284 25.9541
+\m 24.6811 22.8061
+\c 24.8102 21.8909 25.7432 21.7625 25.8716 22.6784
+\c 25.9994 23.593 25.1941 25.1857 25.1941 25.1857
+\c 25.1941 25.1857 24.5534 23.7214 24.6811 22.8061
+\m 27.097 18.8897
+\c 27.7568 18.6513 28.2144 20.7011 28.2144 20.7011
+\c 27.2083 20.5925 26.4392 19.1274 27.097 18.8897
+\m 28.4698 12.4844
+\c 29.4957 12.6299 29.5497 16.034 29.5497 16.034
+\c 28.2328 15.3387 27.4446 12.3369 28.4698 12.4844
+\m 24.022 15.6871
+\c 23.4189 16.0163 22.4293 14.9173 22.4293 14.9173
+\c 23.8212 14.2766 24.6272 15.3565 24.022 15.6871
+\m 20.7463 20.1895
+\c 19.6842 19.8951 19.2259 18.6882 19.2259 18.6882
+\c 22.906 19.0366 21.8063 20.4825 20.7463 20.1895
+\m 15.5663 22.8765
+\c 14.5848 22.5855 14.5848 20.8056 14.5848 20.8056
+\c 16.8012 21.533 16.5471 23.1661 15.5663 22.8765
+\m 14.6572 20.4791
+\c 14.6572 20.4791 15.7466 18.4437 18.726 18.6261
+\c 18.726 18.6261 19.4151 20.5153 21.2681 20.5153
+\c 23.1211 20.5153 22.1035 18.4437 18.9432 18.1541
+\c 18.9432 18.1541 18.435 15.1386 22.1403 14.9207
+\c 22.1403 14.9207 22.6123 15.9015 23.5931 16.0115
+\c 24.5746 16.1201 25.1907 14.3409 22.4299 14.4488
+\c 22.4299 14.4488 22.1403 13.0322 23.2659 11.7973
+\c 24.3922 10.5624 26.6441 6.0586 22.5406 2.2085
+\l 22.1403 1.1553
+\c 22.1403 1.1553 23.9927 2.0992 25.2276 6.6761
+\c 26.4631 11.2523 25.6271 17.3912 22.3575 21.1334
+\c 19.0893 24.8736 14.4025 25.0198 11.6793 24.0021
+\c 8.9548 22.9851 7.683 22.6224 6.6653 22.8027
+\c 6.6653 22.8027 8.0102 22.8403 10.0797 24.0021
+\c 12.1519 25.1646 15.7835 26.1085 19.8522 24.3654
+\c 23.9203 22.6224 25.9174 17.6084 26.2808 14.0499
+\c 26.6441 10.4893 26.39 5.4043 22.3575 0.6457
+\c 22.3575 0.6457 24.3554 1.6996 26.317 5.8032
+\c 28.2793 9.9088 30.3857 13.7958 33.4729 14.739
+\c 36.5608 15.6837 42.0092 14.3409 42.2995 9.182
+\c 42.2995 9.182 42.337 7.2198 40.9915 5.8401
+\c 40.9915 5.8401 42.6997 8.4191 41.5372 10.8527
+\c 40.3748 13.2876 37.1052 14.7752 33.4367 13.468
+\c 29.7676 12.1607 28.3161 8.5277 27.2623 6.5299
+\c 26.2084 4.5321 24.5008 1.8451 22.5406 0.5371
+\c 22.5406 0.5371 24.8642 -0.3719 27.4801 1.772
+\c 30.0947 3.9146 31.766 5.4043 34.7447 5.4043
+\c 34.7447 5.4043 32.8923 6.3837 31.0755 6.1672
+\c 31.0755 6.1672 29.478 3.9515 28.1707 4.1318
+\c 26.8627 4.3149 28.3161 6.0948 30.6398 6.5675
+\c 30.6398 6.5675 31.5468 9.8364 34.2003 11.4339
+\c 36.8511 13.0322 40.3017 11.6887 40.7743 9.2544
+\c 41.2463 6.8202 39.103 5.4043 36.6694 5.6946
+\c 36.6694 5.6946 39.3222 4.1325 41.501 5.5498
+\c 43.6799 6.967 44.843 10.7803 40.9198 14.123
+\l 43.6068 15.3572
+\c 43.6068 15.3572 42.1192 16.3025 40.1562 17.0647
+\c 40.1562 17.0647 39.6835 16.9561 38.7041 16.3025
+\c 37.7233 15.6481 35.9058 15.6119 35.9058 16.338
+\c 35.9058 17.0647 37.323 17.6828 39.1767 17.5729
+\c 39.1767 17.5729 40.7381 18.1186 41.4642 20.516
+\c 41.4642 20.516 38.7041 19.8978 35.7255 20.0064
+\c 35.7255 20.0064 34.5261 16.4835 33.4005 15.8291
+\c 32.2735 15.1755 31.5851 16.5921 32.6745 17.9
+\c 33.7639 19.2073 34.9619 19.8978 34.9619 19.8978
+\l 35.761 21.8601
+\c 35.761 21.8601 32.4552 21.0972 30.6029 17.4643
+\c 30.6029 17.4643 30.6029 14.2316 29.1863 12.6333
+\c 27.7691 11.0344 27.3715 13.1053 27.8435 14.3409
+\c 28.3161 15.5751 29.5135 16.4466 29.5135 16.4466
+\c 29.5135 16.4466 29.4411 19.68 31.2579 22.4031
+\c 31.2579 22.4031 30.0223 22.2945 28.896 21.4592
+\c 28.896 21.4592 28.1324 18.4082 27.1885 18.482
+\c 26.2439 18.5523 26.317 20.3705 28.2055 21.0235
+\c 28.2055 21.0235 28.4254 22.4414 27.7342 23.5663
+\c 27.0437 24.6926 27.0799 27.3079 27.0799 27.3079
+\c 27.0799 27.3079 26.5355 26.4357 25.4448 25.601
+\c 25.4448 25.601 26.5717 23.7849 26.2439 22.5855
+\c 25.9174 21.3875 23.339 21.1334 24.9728 25.4924
+\c 24.9728 25.4924 23.5207 28.1801 20.0339 28.9792
+\l 20.105 28.1077
+\c 20.105 28.1077 22.2127 27.2717 22.5761 25.7827
+\c 22.9388 24.2937 20.6521 24.474 19.9608 27.7081
+\c 19.9608 27.7081 17.6352 29.1609 14.3301 28.0346
+\c 11.0243 26.9083 7.3565 22.0043 4.9953 23.2392
+\c 4.9953 23.2392 8.9179 18.4437 14.1484 20.5877
+\c 14.1484 20.5877 14.076 22.259 15.0937 23.0575
+\c 16.11 23.8573 18.2164 22.1129 14.6572 20.4791
+\m 12.0413 5.586
+\c 6.9569 6.0586 7.2103 3.5151 7.2103 3.5151
+\c 6.1216 4.2418 6.3019 5.8763 6.3019 5.8763
+\c 0.999 3.8784 4.4872 0.2455 4.4872 0.2455
+\c 2.8514 0.9722 -0.2721 3.7685 0.0189 7.4376
+\c 0.3092 11.1061 2.7428 12.3055 2.7428 12.3055
+\c 0.9635 13.5759 0.3461 15.7923 0.3461 15.7923
+\c 1.3631 15.211 3.7598 15.3203 6.013 15.8285
+\c 8.2642 16.3366 9.4984 15.5027 9.4984 15.5027
+\c 9.353 17.0278 9.6801 18.4799 9.6801 18.4799
+\c 10.2614 17.5715 11.1329 16.5559 13.5672 16.047
+\c 16.0014 15.5382 17.3449 13.6852 17.3449 13.6852
+\l 18.6891 14.8476
+\l 18.6891 15.7561
+\l 19.161 15.8285
+\c 18.5798 16.519 18.5074 18.0803 18.5074 18.0803
+\c 15.0199 17.6084 14.2584 20.2236 14.2584 20.2236
+\c 6.5936 16.8823 3.9414 23.929 3.9414 23.929
+\c 7.5013 22.4393 8.409 25.3818 12.4053 27.7067
+\c 16.4003 30.031 19.816 28.288 19.816 28.288
+\l 19.7061 29.4505
+\c 23.4483 28.833 25.3 25.9268 25.3 25.9268
+\c 26.4624 26.7628 27.9869 28.6869 27.9869 28.6869
+\c 27.9869 28.6869 27.4071 26.7628 28.2055 24.8736
+\c 29.0053 22.9851 29.0053 21.8963 29.0053 21.8963
+\c 30.4226 22.6572 31.9846 22.8403 31.9846 22.8403
+\c 29.913 19.7517 30.4574 17.9718 30.4574 17.9718
+\c 30.4574 17.9718 31.7292 20.1874 33.8725 21.3131
+\c 36.0151 22.4393 37.2138 23.0206 37.2138 23.0206
+\l 35.7972 20.3336
+\c 40.9915 20.2598 42.6628 21.3506 42.6628 21.3506
+\c 42.0823 18.9519 40.2286 17.3912 40.2286 17.3912
+\c 41.5734 16.9554 44.2611 15.4651 44.2611 15.4651
+\l 41.682 13.9399
+\c 45.9324 9.6902 43.0269 4.8593 39.3584 4.3866
+\c 35.6886 3.9146 34.8902 7.5462 34.8902 7.5462
+\c 36.4515 5.7663 39.4663 5.4767 40.3741 7.6193
+\c 41.2825 9.7626 39.4288 11.6143 36.052 11.0337
+\c 32.6731 10.4525 31.221 6.6016 31.221 6.6016
+\c 34.5261 6.7109 35.6517 5.0403 35.6517 5.0403
+\c 33.0727 4.8955 32.0563 3.6599 29.0053 1.5535
+\c 25.9536 -0.5536 22.1035 0.1 22.1035 0.1
+\l 22.2851 0.4634
+\l 20.7948 -0.0455
+\c 20.7948 -0.0455 19.7061 4.1687 16.8374 4.2049
+\c 13.9667 4.2404 12.2605 2.2433 12.2605 2.2433
+\c 11.0612 4.2042 12.0413 5.586 12.0413 5.586
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian19.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian19.pgf
new file mode 100644
index 0000000000..6dce0cbde1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian19.pgf
@@ -0,0 +1,146 @@
+\r 0 0 81 81
+\i
+\m 80.3984 43.5098
+\c 81.168 45.7642 77.7904 47.945 77.7904 47.945
+\c 77.7904 47.945 80.9616 52.8442 76.928 54.4266
+\c 72.896 56.0058 71.5392 50.793 71.5392 50.793
+\c 71.5392 50.793 69.3824 52.977 66.8336 50.7866
+\c 64.2832 48.6042 66.8432 45.4698 66.8432 45.4698
+\c 66.8432 45.4698 63.1328 43.8442 64.2208 40.8506
+\c 65.1744 38.2346 68.2304 37.9098 68.9808 37.8698
+\c 66.6832 33.8106 66.5808 28.9914 66.6736 26.7978
+\c 64.7824 28.6042 62.6592 30.4202 60.3056 32.2298
+\c 58.6832 33.7322 57.4144 35.9482 56.3456 38.5098
+\c 53.9184 47.1946 60.5872 52.1178 60.5872 52.1178
+\l 59.9824 53.2074
+\c 55.8368 50.0186 54.2112 46.6442 53.8736 45.8666
+\c 53.3152 50.2922 53.8 55.929 56.3488 60.1082
+\c 58.7152 63.9914 61.6656 65.4266 62.8448 65.8666
+\c 63.3056 63.113 65.6368 61.3258 68.392 61.6762
+\c 71.2368 62.0362 71.4176 65.577 71.4176 65.577
+\c 71.4176 65.577 75.2368 64.1194 77.192 66.0266
+\c 79.1488 67.9322 76.8448 71.9306 76.8448 71.9306
+\c 76.8448 71.9306 82.624 75.2842 79.3376 79.0106
+\c 76.056 82.737 71.9616 78.1098 71.9616 78.1098
+\c 71.9616 78.1098 70.9008 81.473 67.168 80.5658
+\c 63.4352 79.6634 64.408 75.1194 64.408 75.1194
+\c 64.408 75.1194 59.7872 75.3978 59.3408 71.7658
+\c 59.04 69.3162 60.7152 67.6138 61.8384 66.7578
+\c 54.0112 63.3914 51.9392 56.7322 51.424 54.209
+\c 51.2928 54.6106 51.1568 55.0042 51.0208 55.385
+\c 48.8832 61.3322 45.1872 64.7722 43.5808 66.057
+\c 45.6064 67.3738 46.4176 69.8106 45.464 72.1258
+\c 44.3712 74.777 40.9056 74.0266 40.9056 74.0266
+\c 40.9056 74.0266 41.3152 78.0922 38.9616 79.4826
+\c 36.6128 80.873 33.3552 77.6042 33.3552 77.6042
+\c 33.3552 77.6042 28.608 82.3034 25.8672 78.161
+\c 23.1312 74.017 28.6656 71.2762 28.6656 71.2762
+\c 28.6656 71.2762 25.6992 69.3722 27.5456 66.0074
+\c 29.3968 62.6394 33.5264 64.7658 33.5264 64.7658
+\c 33.5264 64.7658 34.4656 60.2346 38.0896 60.7514
+\c 40.6224 61.113 41.8272 63.3194 42.3248 64.6154
+\c 49.2144 58.4762 49.8656 52.3882 52.1088 43.7626
+\c 53.1904 39.6074 54.2992 37.2442 55.1712 35.9066
+\c 50.6368 38.937 46.7328 41.0058 43.1728 42.7018
+\l 43.1488 42.7642
+\c 36.7024 45.8506 36.1552 50.937 38.1552 52.9354
+\c 40.152 54.9322 43.1488 54.7514 43.1488 54.7514
+\l 43.0592 55.6602
+\c 43.0592 55.6602 38.4272 56.2954 36.248 52.9354
+\c 34.4784 50.2106 34.9808 47.489 35.36 46.2602
+\c 32.4 47.6266 29.536 49.0698 26.5488 51.0602
+\c 19.5472 55.729 16.6656 60.2506 15.6832 62.153
+\c 18.1952 62.7898 19.7776 65.0698 19.4432 67.737
+\c 19.0816 70.6442 15.5392 70.8266 15.5392 70.8266
+\c 15.5392 70.8266 16.9936 74.7322 15.0832 76.7306
+\c 13.1776 78.729 9.1824 76.3674 9.1824 76.3674
+\c 9.1824 76.3674 5.8208 82.2714 2.0976 78.9098
+\c -1.6272 75.5514 3.0048 71.3722 3.0048 71.3722
+\c 3.0048 71.3722 -0.3552 70.281 0.552 66.4666
+\c 1.4624 62.6522 6.0016 63.6506 6.0016 63.6506
+\c 6.0016 63.6506 5.7312 58.929 9.3648 58.4762
+\c 12.08 58.1354 13.8832 60.2842 14.6176 61.3882
+\c 18.496 53.033 26.8 48.3082 35.1792 44.1946
+\c 34.6352 44.1194 32.7856 43.7514 31.2528 42.217
+\c 29.4352 40.4026 29.6176 38.4042 29.6176 38.4042
+\l 30.7968 38.2218
+\c 30.7968 38.2218 31.6144 41.401 35.7024 41.5818
+\c 38.7184 41.7162 40.7392 41.305 41.5968 41.0826
+\c 44.136 39.8314 46.5728 38.5642 48.768 37.1882
+\c 51.4656 35.5018 53.9744 33.785 56.3088 32.0442
+\c 56.2384 32.073 56.176 32.1066 56.1072 32.1354
+\c 49.8096 34.7994 39.3952 33.105 29.5872 32.017
+\c 22.592 31.2378 18.752 32.3034 17.1152 32.9818
+\c 19.24 34.153 20.1488 36.5658 19.2336 38.881
+\c 18.2304 41.4154 14.9392 40.7498 14.9392 40.7498
+\c 14.9392 40.7498 15.3744 44.6154 13.1632 45.969
+\c 10.9536 47.3258 7.8336 44.2602 7.8336 44.2602
+\c 7.8336 44.2602 3.3904 48.7978 0.7472 44.8954
+\c -1.8944 40.9914 3.3168 38.3066 3.3168 38.3066
+\c 3.3168 38.3066 0.4848 36.537 2.1968 33.3082
+\c 3.9088 30.0794 7.8464 32.0442 7.8464 32.0442
+\c 7.8464 32.0442 8.6832 27.7226 12.12 28.161
+\c 14.6048 28.481 15.768 30.697 16.2224 31.9002
+\c 20.5424 29.0186 25.3488 29.2298 25.3488 29.2298
+\c 20.1264 25.8346 16.0432 21.3914 14.152 19.1498
+\c 12.9696 20.6474 11.0272 21.2874 9.056 20.6762
+\c 6.4528 19.8698 6.8672 16.5386 6.8672 16.5386
+\c 6.8672 16.5386 3.0464 17.2602 1.5296 15.161
+\c 0.008 13.0602 2.832 9.713 2.832 9.713
+\c 2.832 9.713 -2.0272 5.6282 1.6656 2.697
+\c 5.3568 -0.2294 8.4272 4.7642 8.4272 4.7642
+\c 8.4272 4.7642 9.9792 1.8058 13.328 3.2698
+\c 16.6768 4.7322 15.0112 8.8074 15.0112 8.8074
+\c 15.0112 8.8074 19.3872 9.3162 19.2048 12.777
+\c 19.072 15.3418 16.8496 16.6698 15.7056 17.1882
+\c 25.792 28.5018 35.9248 30.8442 43.6656 30.8602
+\c 38.2368 26.4058 36.984 21.4074 36.696 19.4394
+\c 34.7744 21.3066 31.9488 21.3386 30.0384 19.4762
+\c 28.0832 17.577 29.9648 14.7946 29.9648 14.7946
+\c 29.9648 14.7946 26.2336 13.7066 25.832 11.1434
+\c 25.4304 8.585 29.4656 6.881 29.4656 6.881
+\c 29.4656 6.881 26.9872 1.0346 31.6064 0.1002
+\c 36.224 -0.8342 36.696 5.009 36.696 5.009
+\c 36.696 5.009 39.4208 3.0794 41.7392 5.9018
+\c 44.0592 8.7226 40.7296 11.5978 40.7296 11.5978
+\c 40.7296 11.5978 44.4 14.0378 42.6672 17.0394
+\c 41.6432 18.8186 39.7872 19.2842 38.44 19.3738
+\c 39.584 26.1658 46.288 29.5226 48.832 30.561
+\c 49.5136 30.4842 50.1664 30.4042 50.7776 30.3194
+\c 51.488 30.2218 52.1824 30.0922 52.8656 29.9466
+\c 46.84 27.105 47.7488 20.2698 47.7488 20.2698
+\l 49.2016 20.2698
+\c 49.008 27.5978 54.8816 28.6154 57.1584 28.7386
+\c 60.088 27.713 62.48 26.4842 63.9248 25.6602
+\c 65.0432 24.601 66.096 23.5322 67.0816 22.457
+\c 65.3696 22.401 61.2144 21.7786 59.1216 17.353
+\c 59.072 17.3482 59.0368 17.3418 59.0368 17.3418
+\c 57.368 19.0698 54.8464 19.129 53.1536 17.481
+\c 51.4592 15.8362 53.0896 13.4266 53.0896 13.4266
+\c 53.0896 13.4266 49.856 12.481 49.5088 10.2602
+\c 49.1616 8.0442 52.656 6.569 52.656 6.569
+\c 52.656 6.569 50.5088 1.505 54.5152 0.6922
+\c 58.5136 -0.119 58.9216 4.945 58.9216 4.945
+\c 58.9216 4.945 61.2832 3.273 63.2944 5.7162
+\c 65.3024 8.1642 62.416 10.6538 62.416 10.6538
+\c 62.416 10.6538 65.5968 12.769 64.0976 15.369
+\c 63.2736 16.7994 61.8288 17.2506 60.6912 17.3706
+\c 62.0672 18.913 65.7264 22.081 70.2752 18.5722
+\c 71.224 17.409 72.0736 16.193 72.8336 14.9658
+\c 77.6208 7.233 75.6592 1.585 75.6592 1.0954
+\c 75.6592 0.601 79.8304 1.4634 80.0768 1.8298
+\c 80.3216 2.201 80.6768 4.7242 77.4976 12.1434
+\c 76.7616 13.8602 75.8048 15.6378 74.6112 17.4602
+\c 74.536 18.3162 74.3328 21.5546 75.4816 23.5386
+\c 76.8128 25.841 78.632 25.4762 78.632 25.4762
+\l 78.8736 26.8106
+\c 74.08 26.7178 72.7328 22.6442 72.3552 20.585
+\c 71.704 21.4202 71.008 22.257 70.2592 23.1002
+\l 70.2752 23.1738
+\c 68.056 28.073 69.152 34.3786 69.7968 37.089
+\c 71.2832 35.6474 73.48 35.4186 75.2656 36.6378
+\c 77.3392 38.0474 76.0784 40.865 76.0784 40.865
+\c 76.0784 40.865 79.6304 41.257 80.3984 43.5098
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian190.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian190.pgf
new file mode 100644
index 0000000000..8c24862b4d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian190.pgf
@@ -0,0 +1,154 @@
+\m 0 0
+\l 44.0288 0
+\l 44.0288 28.7904
+\l 0 28.7904
+\o
+\i
+\m 39.783 27.4477
+\c 39.783 27.4477 40.4852 27.7804 41.1135 28.0768
+\c 41.7426 28.3725 44.073 28.8158 44.073 28.8158
+\c 44.073 28.8158 41.7426 26.9669 41.41 25.2279
+\c 41.41 25.2279 41.0773 25.5606 40.522 25.0797
+\c 40.522 25.0797 40.9653 26.8562 43.2227 28.2988
+\c 43.2227 28.2988 42.039 28.4456 40.115 27.4108
+\o
+\s
+\m 24.6556 11.8081
+\c 24.6556 11.8081 27.2367 12.1639 27.8911 13.3216
+\c 28.5434 14.478 25.8441 14.8939 24.6556 11.8081
+\m 25.2205 16.7927
+\c 25.0422 16.1691 26.8829 16.6151 26.8829 16.6151
+\c 26.8235 18.365 25.3988 17.4163 25.2205 16.7927
+\m 8.1895 11.5704
+\c 8.1895 11.5704 11.7795 11.3033 16.4677 12.6386
+\c 16.4677 12.6386 18.1595 14.0934 19.9101 14.4192
+\c 21.6599 14.7464 22.3122 14.4192 21.0958 13.4098
+\c 19.8793 12.4009 17.6547 11.6004 14.2417 11.1251
+\l 13.2329 10.0282
+\l 18.8111 10.9181
+\c 18.8111 10.9181 22.3423 12.3115 25.4582 15.8426
+\l 25.8133 15.7839
+\c 25.8133 15.7839 23.2329 12.668 19.2264 10.9181
+\c 19.2264 10.9181 21.3048 10.858 24.3305 11.7186
+\c 24.3305 11.7186 24.5388 13.3804 26.2887 14.3298
+\c 28.04 15.2785 29.1369 13.9732 28.307 12.8763
+\c 27.4772 11.778 24.7157 11.4516 24.7157 11.4516
+\c 24.7157 11.4516 26.6145 9.7905 31.5698 11.6298
+\c 36.5244 13.4699 37.5045 16.1111 37.148 18.0385
+\c 36.7928 19.9674 34.4781 20.6797 32.6086 20.6797
+\c 32.6086 20.6797 31.2433 18.2168 28.2469 16.8221
+\c 25.2499 15.4281 24.4186 16.2292 25.0422 17.238
+\c 25.6658 18.2475 27.2982 18.3951 27.0892 16.7633
+\c 27.0892 16.7633 30.5617 17.5638 31.8375 20.7679
+\c 31.8375 20.7679 27.5646 20.7679 22.6093 18.4839
+\c 17.6547 16.1992 12.8176 12.9945 8.1895 11.5704
+\m 20.2659 14.241
+\c 18.9894 14.0327 17.0312 12.7575 17.0312 12.7575
+\c 23.0847 13.8544 21.5418 14.4486 20.2659 14.241
+\m 5.088 1.7937
+\c 3.278 1.2391 3.0389 1.4987 3.0389 1.4987
+\c 5.881 2.1264 9.1116 4.2861 9.1116 4.2861
+\c 6.1951 4.0825 2.0035 1.776 2.2617 0.7597
+\c 2.5205 -0.2553 5.3277 0.649 7.9116 2.0342
+\c 10.4968 3.4179 12.3792 4.9691 12.3792 4.9691
+\l 9.7953 4.4903
+\c 9.7953 4.4903 6.8966 2.347 5.088 1.7937
+\m 12.0472 6.0592
+\l 16.3304 6.7606
+\l 17.4744 7.5905
+\l 13.1735 6.9997
+\o
+\m 1.3 4.0873
+\c 1.3 4.0873 -1.1903 1.7678 2.2617 1.7398
+\c 2.2617 1.7398 5.062 4.5961 11.6804 5.9547
+\l 12.9542 7.057
+\c 12.9542 7.057 8.9374 6.8597 6.9007 6.0674
+\l 4.3831 4.3168
+\o
+\m 6.6746 6.0394
+\c 3.5908 5.9547 1.6955 4.2847 1.6955 4.2847
+\l 4.157 4.4261
+\c 5.5818 5.3843 6.6746 6.0394 6.6746 6.0394
+\m 10.0132 7.7933
+\l 14.5382 8.1321
+\l 16.5469 9.4052
+\l 11.2283 8.8964
+\o
+\m 1.4701 6.3781
+\c 0.1115 5.049 1.272 4.3701 1.272 4.3701
+\c 4.157 6.8877 9.5317 7.736 9.5317 7.736
+\l 10.6914 8.8684
+\c 6.5619 8.8397 2.8272 7.708 1.4701 6.3781
+\m 34.3811 3.6782
+\c 33.3723 3.8209 32.0786 2.9173 32.0786 2.9173
+\c 34.9671 2.3852 35.3912 3.5368 34.3811 3.6782
+\m 31.9557 0.8635
+\c 32.1852 1.3409 31.0705 1.7302 31.0705 1.7302
+\c 30.255 0.4735 31.7262 0.384 31.9557 0.8635
+\m 26.9984 1.2699
+\c 27.7948 1.0752 28.8391 2.5451 28.8391 2.5451
+\c 26.7839 2.7226 26.2013 1.4645 26.9984 1.2699
+\m 21.1538 4.2451
+\c 22.0213 4.2451 23.4194 5.4492 23.4194 5.4492
+\c 21.6845 5.7511 20.2864 4.2451 21.1538 4.2451
+\m 29.9073 9.214
+\c 28.2818 9.0289 26.6903 7.6239 26.6903 7.6239
+\c 30.6477 7.9197 31.5343 9.3991 29.9073 9.214
+\m 41.3731 25.006
+\c 41.3731 25.006 39.8582 24.6364 40.5965 22.8975
+\c 41.3362 21.1599 43.0007 18.2011 41.8546 14.2075
+\c 40.7071 10.2132 36.5285 6.7729 27.1719 5.4786
+\c 27.1719 5.4786 28.7633 4.2581 30.2044 3.3339
+\c 31.6463 2.4091 34.198 2.2247 35.0859 2.9262
+\c 35.9745 3.629 34.3831 4.6651 31.7938 3.0368
+\c 31.7938 3.0368 30.3144 3.3339 28.0967 5.1829
+\c 28.0967 5.1829 34.0129 5.9594 38.3781 8.9551
+\c 42.7412 11.9502 43.4447 16.6479 42.5567 19.6074
+\c 41.6695 22.5662 40.5965 24.2663 41.3731 25.006
+\m 4.0512 11.2945
+\c 4.0512 11.2945 7.4171 10.7808 15.2314 15.2307
+\c 23.0478 19.6791 28.0666 20.8771 31.8901 20.9912
+\c 31.8901 20.9912 32.6879 22.7028 33.7151 24.9848
+\c 34.7431 27.2674 37.3078 28.0085 38.848 27.3808
+\c 40.3895 26.7538 39.6471 25.1569 38.792 25.3277
+\c 37.9362 25.4984 38.3719 26.2053 38.3719 26.2053
+\c 38.3719 26.2053 38.766 25.2956 39.2626 25.73
+\c 39.7584 26.1643 39.4688 27.5912 37.3173 27.1779
+\c 35.1665 26.764 34.6297 24.8823 33.4911 22.2548
+\l 32.8299 20.9748
+\c 32.8299 20.9748 36.2703 21.0855 37.3802 18.6082
+\c 38.488 16.1295 35.937 12.1352 31.7945 10.6203
+\c 27.6527 9.1034 24.5457 10.1757 24.3599 11.47
+\c 24.3599 11.47 22.3641 10.6572 17.3706 9.6948
+\l 15.0026 8.1792
+\c 15.0026 8.1792 17.2224 8.2523 24.6932 9.8062
+\c 24.6932 9.8062 21.1422 8.8069 19.5166 8.2523
+\c 17.8883 7.697 16.7033 6.7353 16.7033 6.7353
+\c 16.7033 6.7353 20.367 7.1049 23.0656 7.3644
+\c 25.7662 7.6239 26.1733 7.5495 26.1733 7.5495
+\c 26.1733 7.5495 27.6527 9.0658 29.5754 9.3991
+\c 31.4994 9.7324 31.425 8.8069 30.3895 8.0665
+\c 29.3527 7.3275 25.5804 6.9573 25.5804 6.9573
+\l 24.1386 5.7737
+\c 24.1386 5.7737 25.3591 5.5517 27.2456 4.6276
+\c 29.1328 3.7034 29.0952 2.8524 29.0952 2.8524
+\c 29.0952 2.8524 31.7569 2.1865 32.2378 1.2992
+\c 32.7193 0.4113 31.2399 -0.1802 30.6477 0.634
+\c 30.6477 0.634 30.2775 1.2255 30.7959 1.8545
+\c 30.7959 1.8545 30.0193 2.2971 29.0583 2.5191
+\c 29.0583 2.5191 28.5775 1.4099 27.2832 1.0404
+\c 25.9875 0.6702 25.2478 2.7786 28.725 2.9262
+\c 28.725 2.9262 28.4293 4.4432 23.9535 5.5517
+\c 23.9535 5.5517 22.4748 4.1467 21.2542 4.0361
+\c 20.033 3.9247 20.2925 4.48 21.3649 5.2197
+\c 22.4379 5.9588 23.8053 5.8112 23.8053 5.8112
+\l 25.0627 6.8836
+\c 25.0627 6.8836 18.8125 6.4765 12.8955 5.1084
+\c 12.8955 5.1084 11.1941 3.407 7.5694 1.485
+\c 3.9446 -0.439 1.2822 -0.5504 2.1701 1.485
+\c 2.1701 1.485 -1.7886 1.3744 0.9865 4.2956
+\c 0.9865 4.2956 -0.4929 5.2197 1.6517 6.9942
+\c 3.7971 8.7707 7.2361 9.2884 12.7842 9.9906
+\l 13.8203 11.0643
+\c 13.8203 11.0643 6.0811 10.1934 4.0512 11.2945
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian191.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian191.pgf
new file mode 100644
index 0000000000..46aa5bf48a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian191.pgf
@@ -0,0 +1,407 @@
+\m 69.7823 3.0284
+\c 70.4933 2.318 71.7323 1.9922 72.4638 2.318
+\c 73.1953 2.6425 73.2055 3.445 71.9563 3.5871
+\c 70.7064 3.7298 69.7823 2.9976 69.7823 2.9976
+\m 72.2302 10.769
+\c 72.9002 11.0428 72.8401 11.926 71.763 12.1398
+\c 70.6866 12.3529 69.5084 11.5817 69.5084 11.5817
+\c 70.371 10.7573 71.5595 10.4937 72.2302 10.769
+\m 71.8846 17.5841
+\c 72.545 17.8689 72.7076 18.8736 71.6209 18.9959
+\c 70.5336 19.1181 69.3451 18.2951 69.3451 18.2951
+\c 70.1579 17.6346 71.2241 17.2999 71.8846 17.5841
+\m 72.25 25.8205
+\c 72.698 26.2078 72.7281 26.9277 71.6407 26.9181
+\c 70.5541 26.9079 69.5084 26.0548 69.5084 26.0548
+\c 70.2699 25.5166 71.804 25.4353 72.25 25.8205
+\m 71.9051 32.9512
+\c 72.4843 33.419 72.4132 34.059 71.4071 34.1294
+\c 70.4017 34.2004 68.837 33.4901 68.837 33.4901
+\c 69.6504 32.8194 71.3259 32.4847 71.9051 32.9512
+\m 71.7527 40.254
+\c 72.5047 40.7314 72.0068 41.301 71.0622 41.3925
+\c 70.1169 41.4841 68.6956 40.7416 68.6956 40.7416
+\c 69.6907 39.8886 71.0014 39.7765 71.7527 40.254
+\m 72.0471 46.6531
+\c 72.5553 47.0602 72.0881 47.9433 71.1435 47.873
+\c 70.1989 47.8013 68.9387 47.0807 68.9387 47.0807
+\c 70.2289 46.1047 71.5396 46.2474 72.0471 46.6531
+\m 68.1464 52.3822
+\l 67.4969 51.9451
+\l 68.2079 51.0217
+\l 68.7666 51.6712
+\o
+\m 71.3689 51.3222
+\c 72.4658 51.4909 73.0566 52.5878 71.7903 52.9259
+\c 70.5247 53.2633 69.2024 52.193 69.2024 52.193
+\c 69.5118 51.8003 70.2713 51.1521 71.3689 51.3222
+\m 67.1486 52.053
+\c 67.1486 52.053 66.3604 52.7278 65.4321 52.7278
+\c 64.5039 52.7278 63.7444 52.3904 64.0818 51.7436
+\c 64.4199 51.0968 65.9389 51.1521 67.1486 52.053
+\m 69.2584 56.7795
+\c 69.2024 57.8204 67.9361 58.6926 67.514 57.2016
+\c 67.0925 55.7099 68.3589 53.6574 68.3589 53.6574
+\c 68.3589 53.6574 69.3151 55.7386 69.2584 56.7795
+\m 66.2299 51.1023
+\c 65.4123 50.5627 64.0217 50.7587 63.743 51.4124
+\c 63.4651 52.0674 63.6454 52.6725 64.676 52.9341
+\c 65.7067 53.195 66.5093 52.6725 67.016 52.3945
+\c 67.5222 52.1159 68.046 52.5257 68.046 52.5257
+\c 65.8863 54.5208 66.6554 57.0896 66.6554 57.0896
+\c 67.4737 59.5108 69.7645 58.3661 69.4858 56.4025
+\c 69.2078 54.4395 68.4886 53.195 68.4886 53.195
+\c 68.7338 52.7046 68.9954 52.5086 68.9954 52.5086
+\c 72.5792 54.2434 73.4459 52.0674 72.0061 51.1173
+\c 70.5657 50.1693 68.979 51.577 68.979 51.577
+\c 67.1137 49.3503 68.7502 47.3716 68.7502 47.3716
+\c 71.9734 49.0566 73.4459 47.3054 72.0389 46.0951
+\c 70.6319 44.8848 68.5863 46.3403 68.5863 46.3403
+\c 66.6554 43.4457 68.505 40.9759 68.505 40.9759
+\c 68.505 40.9759 69.5357 41.7272 71.1715 41.5975
+\c 72.8073 41.4663 72.9876 39.9118 71.3026 39.2417
+\c 69.6176 38.5697 68.1451 40.0258 68.1451 40.0258
+\c 66.0175 37.0493 68.6191 33.7448 68.6191 33.7448
+\c 72.2513 35.4134 73.4459 33.8261 71.9734 32.4355
+\c 70.5008 31.0449 68.2919 32.6158 68.2919 32.6158
+\c 68.2919 32.6158 67.2449 30.6856 67.6861 28.9016
+\c 68.1287 27.1182 69.2898 26.2679 69.2898 26.2679
+\c 71.7773 28.1988 73.6747 26.858 72.4481 25.5979
+\c 71.2207 24.3377 69.0118 25.3356 69.0118 25.3356
+\c 68.3247 24.615 67.8664 23.3719 67.9484 21.4089
+\c 68.031 19.446 69.1593 18.4809 69.1593 18.4809
+\c 71.2043 20.1167 73.5935 18.9064 72.3661 17.5977
+\c 71.1387 16.2884 68.7502 17.7118 68.7502 17.7118
+\c 68.7502 17.7118 67.8179 16.2727 67.932 14.4074
+\c 68.046 12.5414 69.3397 11.7894 69.3397 11.7894
+\c 71.9078 13.4095 73.8551 11.495 72.5457 10.5791
+\c 71.2371 9.6625 69.1204 10.9506 69.1204 10.9506
+\c 69.1204 10.9506 67.8623 8.3634 67.9716 6.4223
+\c 68.0788 4.4825 69.5159 3.2237 69.5159 3.2237
+\c 72.3558 4.8773 73.6495 3.0796 73.3981 2.4335
+\c 73.1461 1.7873 71.3846 0.8878 69.2652 2.4335
+\c 67.1438 3.9784 67.2114 6.4462 67.2114 6.4462
+\c 67.18 9.2212 68.7379 11.118 68.7379 11.118
+\c 68.7379 11.118 67.3965 11.8119 67.2264 14.3268
+\c 67.057 16.8403 68.4606 17.9358 68.4606 17.9358
+\c 68.4606 17.9358 67.2729 19.185 67.3043 21.7744
+\c 67.3343 24.3664 68.7072 25.5378 68.7072 25.5378
+\c 68.7072 25.5378 66.9334 27.3115 66.749 29.3005
+\c 66.5639 31.2908 67.9825 32.8009 67.9825 32.8009
+\c 67.9825 32.8009 66.4088 34.2202 66.471 36.6572
+\c 66.5325 39.0935 67.7974 40.2963 67.7974 40.2963
+\c 65.6698 43.9518 68.2748 46.5418 68.2748 46.5418
+\c 66.3474 48.6858 67.9975 50.8762 67.9975 50.8762
+\c 67.7052 51.4001 67.4115 51.6466 67.4115 51.6466
+\c 67.4115 51.6466 67.0481 51.6419 66.2299 51.1023
+\s
+\m 50.8184 43.6164
+\c 50.8184 43.6164 51.584 43.3876 52.0048 43.5399
+\c 52.4262 43.6929 52.808 44.5358 52.808 44.5358
+\c 52.808 44.5358 52.8469 43.3125 53.1522 43.234
+\c 53.4582 43.1588 54.8741 43.081 54.8741 43.081
+\c 54.8741 43.081 52.1195 42.6985 53.3442 40.978
+\c 53.3442 40.978 52.3108 42.01 51.89 41.9335
+\c 51.4693 41.8577 50.8566 41.6268 50.8566 41.6268
+\c 50.8566 41.6268 52.1578 42.9669 50.8184 43.6164
+\s
+\m 56.2518 43.3883
+\c 56.2518 43.3883 57.8964 42.3542 58.0877 43.5789
+\c 58.0877 43.5789 58.2031 42.9286 58.6232 42.8904
+\c 59.0446 42.8528 59.9632 42.8132 59.9632 42.8132
+\c 59.9632 42.8132 58.5091 42.2402 58.5856 41.7429
+\c 58.6621 41.245 58.8151 40.4035 58.8151 40.4035
+\c 58.8151 40.4035 58.2414 41.3598 57.5905 41.245
+\c 56.9402 41.131 56.0988 40.8243 56.0988 40.8243
+\c 56.0988 40.8243 57.667 41.9724 56.2518 43.3883
+\s
+\m 63.0996 44.1909
+\c 63.0996 44.1909 63.8264 42.7367 62.2199 42.7367
+\c 62.2199 42.7367 63.2909 42.4314 62.9849 41.8959
+\c 62.6789 41.3591 62.6407 41.131 62.6407 41.131
+\c 62.6407 41.131 64.0559 42.163 64.592 41.2068
+\c 64.592 41.2068 64.3243 42.1254 64.4001 42.469
+\c 64.4773 42.8125 64.7833 43.3118 64.7833 43.3118
+\c 64.7833 43.3118 63.7123 42.928 63.0996 44.1909
+\s
+\m 55.219 39.1789
+\c 55.219 39.1789 55.2955 38.0704 53.4972 38.2999
+\c 53.4972 38.2999 54.2239 37.649 54.2239 37.1142
+\c 54.2239 36.5773 52.9999 35.9271 52.9999 35.9271
+\c 52.9999 35.9271 53.9561 36.6162 54.7976 36.3471
+\c 55.6398 36.0801 56.0223 35.7372 56.0223 35.7372
+\c 56.0223 35.7372 55.1808 36.7303 55.9458 37.19
+\l 56.7114 37.649
+\c 56.7114 37.649 55.219 37.496 55.219 39.1789
+\s
+\m 58.7769 38.2609
+\c 58.7769 38.2609 60.3068 37.8784 60.7665 38.7588
+\c 60.7665 38.7588 60.7665 37.9932 61.1865 37.9556
+\c 61.6079 37.9167 62.4877 37.8784 62.4877 37.8784
+\c 62.4877 37.8784 61.6079 37.6114 61.2637 37.1906
+\c 60.9188 36.7685 61.2248 35.6983 61.2248 35.6983
+\c 61.2248 35.6983 60.7275 36.425 60.2303 36.3102
+\c 59.7331 36.1962 58.8909 35.966 58.8909 35.966
+\c 58.8909 35.966 59.6183 36.3116 59.6955 37.0752
+\c 59.7713 37.8409 58.7769 38.2609 58.7769 38.2609
+\s
+\m 63.4664 34.9702
+\c 63.4664 34.9702 63.3892 34.0611 63.0033 33.906
+\c 62.6174 33.7517 61.9385 33.7667 61.9385 33.7667
+\c 61.9385 33.7667 62.5403 33.3965 62.6331 32.9177
+\c 62.7254 32.4396 61.985 31.6364 61.985 31.6364
+\c 61.985 31.6364 63.0498 32.2231 63.4664 32.038
+\c 63.8831 31.8536 64.4698 31.4212 64.4698 31.4212
+\c 64.4698 31.4212 63.9145 32.5161 63.9609 33.0256
+\c 64.0067 33.5352 65.3338 34.2305 65.3338 34.2305
+\c 65.3338 34.2305 64.0531 34.014 63.9145 34.2612
+\c 63.7758 34.5078 63.4664 34.9702 63.4664 34.9702
+\s
+\m 60.858 30.2943
+\c 60.858 30.2943 60.4564 29.5382 60.2255 29.5846
+\c 59.9933 29.6297 58.8206 30.0477 58.8206 30.0477
+\c 58.8206 30.0477 59.9325 29.2151 60.0397 28.6578
+\c 60.1483 28.1025 59.6231 27.4236 59.6231 27.4236
+\c 59.6231 27.4236 60.3949 28.0724 60.9202 27.9181
+\c 61.4447 27.7637 62.3401 27.192 62.3401 27.192
+\c 62.3401 27.192 61.3518 28.3176 61.5991 28.767
+\c 61.8463 29.2151 62.9576 29.5996 62.9576 29.5996
+\c 62.9576 29.5996 61.5533 29.3995 61.2903 29.5696
+\c 61.0281 29.739 60.858 30.2943 60.858 30.2943
+\s
+\m 61.5219 26.0657
+\c 61.5219 26.0657 62.4016 25.7263 62.7875 26.0958
+\c 63.1734 26.466 63.4043 27.3457 63.4043 27.3457
+\c 63.4043 27.3457 63.2349 26.2959 63.4972 26.0186
+\c 63.7594 25.7406 65.1951 25.7099 65.1951 25.7099
+\c 65.1951 25.7099 63.8059 25.2782 63.698 24.7994
+\c 63.5901 24.3199 64.3311 23.7339 64.3311 23.7339
+\c 64.3311 23.7339 63.297 24.3978 62.9268 24.1506
+\c 62.556 23.9047 62.1851 23.6567 62.1851 23.6567
+\c 62.1851 23.6567 62.5403 24.49 62.4938 24.9538
+\c 62.4474 25.4169 61.5219 26.0657 61.5219 26.0657
+\s
+\m 57.5242 26.1115
+\c 57.5242 26.1115 57.6786 24.9381 57.9873 24.8616
+\c 58.2953 24.7844 59.3144 25.1081 59.3144 25.1081
+\c 59.3144 25.1081 58.3267 24.5221 58.2646 24.1669
+\c 58.2031 23.8118 58.6512 23.3023 58.6819 23.2565
+\c 58.7127 23.21 57.9873 23.5809 57.3849 23.2415
+\c 56.7831 22.902 56.3979 22.5462 56.3979 22.5462
+\c 56.3979 22.5462 56.5673 23.3958 56.598 23.7961
+\c 56.6288 24.1977 55.4403 24.8766 55.4403 24.8766
+\c 55.4403 24.8766 56.3508 24.8302 56.8603 25.1389
+\c 57.3692 25.4476 57.5242 26.1115 57.5242 26.1115
+\s
+\m 51.9365 26.2959
+\c 51.9365 26.2959 51.9515 25.1232 52.2916 24.9688
+\c 52.6311 24.8151 53.6802 24.9688 53.6802 24.9688
+\c 53.6802 24.9688 52.9091 24.4135 52.5689 24.059
+\c 52.2295 23.7032 52.7233 22.8699 52.7233 22.8699
+\c 52.7233 22.8699 51.8593 23.5652 51.3655 23.3016
+\c 50.871 23.0393 50.2692 22.9478 50.2692 22.9478
+\c 50.2692 22.9478 50.8252 23.3788 50.8095 23.9197
+\c 50.7938 24.46 49.2816 24.8923 49.2816 24.8923
+\c 49.2816 24.8923 50.5937 24.8151 51.0561 25.1081
+\c 51.5192 25.4018 51.9365 26.2959 51.9365 26.2959
+\s
+\m 53.0935 30.2478
+\c 53.0935 30.2478 53.9268 30.0012 54.4363 30.0627
+\c 54.9458 30.1249 55.146 30.9582 55.146 30.9582
+\c 55.146 30.9582 55.146 30.1085 55.579 29.8783
+\c 56.0106 29.6461 56.5974 29.6461 56.5974 29.6461
+\c 56.5974 29.6461 55.7491 29.1837 55.7641 28.7821
+\c 55.7791 28.3811 56.0728 27.9324 56.0728 27.9324
+\c 56.0728 27.9324 55.4397 28.5505 54.9609 28.2719
+\c 54.4827 27.9946 54.1891 27.6872 54.1891 27.6872
+\c 54.1891 27.6872 54.4363 28.5662 54.1583 29.1051
+\c 53.8803 29.6461 53.0935 30.2478 53.0935 30.2478
+\s
+\m 51.9822 35.5733
+\c 51.9822 35.5733 52.0444 34.2776 52.5532 34.1376
+\c 53.0628 33.9982 53.881 33.9067 53.881 33.9067
+\c 53.881 33.9067 52.9548 33.6287 52.8626 33.1657
+\c 52.7698 32.7033 52.9091 32.3938 52.9091 32.3938
+\c 52.9091 32.3938 52.2295 33.027 51.8593 32.8262
+\c 51.4884 32.6261 51.1804 32.2245 51.1804 32.2245
+\c 51.1804 32.2245 51.2883 32.9806 51.1025 33.3822
+\c 50.9174 33.7838 50.1606 34.2776 50.1606 34.2776
+\c 50.1606 34.2776 51.1025 33.9375 51.4577 34.2776
+\c 51.8128 34.6171 51.9822 35.5733 51.9822 35.5733
+\s
+\m 56.2429 33.9689
+\c 56.2429 33.9689 57.1383 33.5522 57.6014 33.613
+\c 58.0645 33.6745 58.3267 34.9244 58.3267 34.9244
+\c 58.3267 34.9244 58.2496 33.8917 58.5269 33.7066
+\c 58.8049 33.5215 59.5924 33.7066 59.5924 33.7066
+\c 59.5924 33.7066 58.4961 33.2428 58.4961 32.6568
+\c 58.4961 32.0701 59.1136 31.1439 59.1136 31.1439
+\c 59.1136 31.1439 57.9866 32.1008 57.6164 32.0093
+\c 57.2462 31.9151 56.598 31.7457 56.598 31.7457
+\c 56.598 31.7457 57.1841 32.2094 57.0297 32.7955
+\c 56.8753 33.3828 56.2429 33.9689 56.2429 33.9689
+\s
+\m 68.1635 50.6494
+\c 68.1635 50.6494 68.714 50.3189 68.5672 49.4371
+\c 68.4203 48.5574 67.5024 47.3279 64.732 46.3908
+\c 61.9604 45.4551 55.7579 45.5828 52.8032 46.0425
+\c 49.8492 46.5015 44.3257 48.5929 37.7189 49.2711
+\c 31.1114 49.9507 25.0742 49.4917 19.1648 47.6749
+\c 13.2554 45.8581 11.4392 45.1621 7.0898 46.2809
+\c 2.7404 47.4003 1.0151 47.5287 0.1893 46.0596
+\c -0.6364 44.5918 1.2541 43.2333 5.383 42.5912
+\c 9.5118 41.9492 14.467 41.6179 21.2576 43.5468
+\c 28.0467 45.4722 33.993 45.3267 39.3881 44.628
+\c 44.7833 43.9313 48.2885 42.6466 48.2885 41.5455
+\c 48.2885 40.4445 47.096 39.8933 42.2513 40.7375
+\c 37.406 41.5817 32.7267 42.9218 27.1841 42.0592
+\c 21.6428 41.1958 17.5133 39.5812 14.926 39.1967
+\c 12.3388 38.8101 8.3192 39.0307 4.8509 39.9295
+\c 1.3825 40.8297 0.7767 40.8106 0.1893 39.3244
+\c -0.3974 37.8381 0.9966 36.4612 4.9971 35.856
+\c 8.9975 35.2495 15.0906 35.0487 21.2938 36.4434
+\c 27.4962 37.8381 34.562 38.4249 40.177 37.3607
+\c 45.7928 36.2973 48.2154 35.5077 48.0863 34.0945
+\c 47.9579 32.6807 45.775 32.9744 42.6543 34.0385
+\c 39.535 35.1027 34.4336 35.9844 29.2031 35.1942
+\c 23.9732 34.4053 16.2839 32.7538 14.0634 32.3877
+\c 11.8429 32.0196 6.8508 32.5707 4.5019 33.0475
+\c 2.153 33.5256 0.3177 33.2688 0.3362 31.6897
+\c 0.3546 30.1112 2.1714 29.028 7.5488 28.2193
+\c 12.9255 27.4126 18.9818 28.9542 23.6618 30.1112
+\c 28.3404 31.2669 34.3967 31.3591 38.4709 30.8632
+\c 42.5457 30.368 46.7476 29.3579 47.7571 28.1284
+\c 48.7666 26.899 48.2154 24.8069 44.4541 25.6327
+\c 40.6913 26.4585 36.581 28.0745 31.9201 28.3122
+\c 27.2578 28.5505 23.1843 27.358 18.615 26.44
+\c 14.0456 25.5227 11.5492 25.0077 6.9252 25.7795
+\c 2.3005 26.5507 1.4386 26.6224 0.888 25.3759
+\c 0.3369 24.1273 0.9789 22.5304 5.7682 21.7224
+\c 10.5588 20.9158 18.5412 21.76 23.3134 22.6957
+\c 28.0843 23.6315 33.4978 23.9791 39.2058 23.0618
+\c 44.9124 22.1452 48.546 20.5845 53.4821 20.2724
+\c 58.419 19.9603 62.7684 21.0258 65.6125 22.0523
+\c 68.4579 23.081 68.9893 23.2824 69.632 22.6957
+\c 70.274 22.1083 70.2925 20.4193 68.2011 19.6311
+\c 66.1083 18.8408 61.8327 17.7951 58.199 17.3546
+\c 54.5647 16.9147 48.3991 17.3546 44.3803 18.4925
+\c 40.3608 19.6311 32.25 21.6862 28.2673 21.2279
+\c 24.2854 20.769 18.3213 18.7493 15.0544 18.4009
+\c 11.7883 18.0512 8.0624 18.1441 4.8693 19.1338
+\c 1.6762 20.1262 1.3279 19.6488 0.8505 18.6578
+\c 0.373 17.6667 0.9789 15.923 5.0708 15.0795
+\c 9.1634 14.2352 13.532 13.4648 19.5507 14.8042
+\c 25.5694 16.1429 30.5247 16.8034 36.7271 16.0152
+\c 42.9303 15.227 46.0503 14.4729 50.4359 13.8316
+\c 54.8222 13.1889 60.6025 13.1889 64.4568 14.5105
+\c 68.3104 15.8308 69.4489 16.7672 70.1279 15.923
+\c 70.8068 15.0795 70.8805 13.85 67.7236 12.3993
+\c 64.5661 10.9506 59.2816 10.4363 54.6207 10.3626
+\c 49.9591 10.2881 47.0413 11.5373 42.2882 12.4184
+\c 37.5351 13.2988 30.8553 14.4729 25.9184 13.3542
+\c 20.9816 12.234 12.7793 10.7293 8.5214 11.2614
+\c 4.2642 11.7942 3.071 12.9129 1.6762 12.2723
+\c 1.6762 12.2723 0.8689 11.775 1.052 10.6009
+\c 1.2357 9.4268 2.8695 8.3074 6.5024 7.664
+\c 10.136 7.0219 14.228 6.6545 21.7159 8.0137
+\c 29.2031 9.3708 32.4883 10.0313 37.7919 9.3899
+\c 43.0955 8.7472 47.3166 7.7924 51.9044 6.9666
+\c 56.4922 6.1409 59.7037 6.3977 63.5757 7.4987
+\c 67.4484 8.6004 69.3021 9.7752 70.1463 8.711
+\c 70.9898 7.6469 69.981 6.399 66.8426 5.2789
+\c 63.7048 4.1601 55.8133 3.2783 51.0233 3.8828
+\c 46.234 4.4893 39.1689 6.3246 36.3242 6.7822
+\c 33.4794 7.2419 29.1307 7.3163 25.2948 6.453
+\c 21.4597 5.5897 16.1746 4.7455 12.7602 4.434
+\c 9.3472 4.1219 5.5305 4.8739 3.7506 5.2222
+\c 1.9706 5.5719 1.4748 4.9661 1.4563 4.0297
+\c 1.4379 3.0939 2.7219 1.5155 7.072 0.8366
+\c 11.4215 0.1577 15.2566 0.213 20.707 1.3324
+\c 26.1575 2.4526 32.0662 3.0202 37.5167 1.9936
+\c 42.9671 0.9663 51.2623 -0.1176 56.3276 0.0101
+\c 61.3921 0.1392 64.7874 0.7819 68.9893 3.0031
+\l 68.6963 3.2415
+\c 68.6963 3.2415 66.0537 1.6077 61.9979 0.855
+\c 57.9422 0.103 50.9686 0.7819 46.3248 1.5715
+\c 41.6824 2.3604 37.2046 3.3883 32.1031 3.4068
+\c 27.001 3.4245 23.019 2.4703 18.964 1.6077
+\c 14.9069 0.7464 11.054 0.2669 6.9245 1.0948
+\c 2.7957 1.9205 1.3825 3.443 1.7131 4.2872
+\c 2.043 5.1314 2.6666 5.2236 4.5941 4.8739
+\c 6.5209 4.5262 8.4476 3.7004 15.495 4.2694
+\c 22.5416 4.8377 27.35 6.5083 32.7267 6.1593
+\c 38.1041 5.8116 41.5724 5.0583 46.3071 4.1779
+\c 51.0417 3.2975 55.0981 2.9846 60.6217 3.5358
+\c 66.1452 4.0857 69.0262 5.7556 70.274 6.7658
+\c 71.5219 7.776 70.623 9.7752 68.77 9.3346
+\c 66.9163 8.8934 65.8515 8.4542 63.1543 7.8122
+\c 60.4564 7.1695 55.3365 6.6927 50.1975 7.6107
+\c 45.0592 8.528 38.2325 9.9405 34.7273 10.3441
+\c 31.2227 10.7485 26.6158 10.0149 21.4959 8.8394
+\c 16.3761 7.6647 10.3013 6.968 5.9157 8.0683
+\c 1.5294 9.1707 1.1264 10.3257 1.401 11.299
+\c 1.6762 12.2723 2.6666 12.3269 4.0258 11.9594
+\c 5.3836 11.592 8.5214 10.3086 15.0544 10.9875
+\c 21.5881 11.6664 27.4238 12.6752 31.7725 12.8412
+\c 36.122 13.0065 39.8656 12.5851 46.1056 11.1706
+\c 52.3449 9.7574 55.2443 9.5382 60.7685 10.1618
+\c 66.2921 10.7847 69.6504 12.7852 70.4953 13.9798
+\c 71.3382 15.1723 70.623 17.0807 68.5679 16.4011
+\c 66.5127 15.7222 63.6495 14.4367 58.0337 13.9607
+\c 52.418 13.4839 46.8029 14.6765 43.1693 15.3745
+\c 39.5357 16.0705 33.6631 17.2453 29.8826 17.1544
+\c 26.1022 17.0629 23.7348 16.5855 18.3397 15.4107
+\c 12.9439 14.2359 8.2823 14.768 5.1077 15.3916
+\c 1.9331 16.0159 0.8136 17.5028 1.1073 18.2732
+\c 1.4003 19.0443 1.7493 19.7041 3.603 19.2288
+\c 5.456 18.7507 8.0624 17.7774 12.7417 17.8511
+\c 17.4218 17.9242 22.1748 19.4678 27.8821 20.0538
+\c 33.5894 20.6412 36.8193 19.7246 41.4809 18.7896
+\c 46.1418 17.8511 50.9502 16.5295 56.9874 16.97
+\c 63.0259 17.4106 68.182 18.8975 69.7788 20.1829
+\c 71.3757 21.467 70.2925 24.1103 67.7236 23.1923
+\c 65.1542 22.275 61.4106 20.9896 57.0427 20.7519
+\c 57.0427 20.7519 51.5929 20.4404 45.9396 21.8707
+\c 40.2877 23.3029 35.2047 24.2564 30.8191 24.5508
+\c 26.4321 24.8459 20.8163 23.1561 17.4948 22.5509
+\c 14.1733 21.9451 7.7872 21.2471 4.3557 22.275
+\c 0.9236 23.3029 0.8689 24.3671 1.0704 25.0098
+\c 1.2719 25.6518 1.6209 26.257 3.7499 26.0555
+\c 5.8788 25.854 8.9066 24.8076 13.9903 25.0644
+\c 19.0733 25.3226 25.6801 27.2856 30.0664 27.3033
+\c 34.452 27.3225 37.2961 27.0103 41.4256 26.0753
+\c 45.5551 25.1382 47.2059 24.7161 48.1423 25.854
+\c 49.0787 26.9919 48.4914 28.5512 46.4539 29.2499
+\c 44.4172 29.9459 39.5541 31.4697 33.9753 31.8734
+\c 28.3964 32.2771 24.506 31.2505 20.0097 30.0935
+\c 15.5134 28.9378 8.7973 28.0383 5.5851 28.8456
+\c 2.3736 29.6543 0.2631 30.6255 0.6667 31.9294
+\c 1.0704 33.2312 2.9425 33.1213 4.7594 32.7176
+\c 6.5762 32.3146 10.7412 31.5073 16.706 32.3331
+\c 22.6707 33.1588 30.3416 34.9401 34.2498 34.9941
+\c 38.1594 35.0494 41.9214 33.9115 44.2696 33.2326
+\c 46.6192 32.5537 47.904 32.6636 48.3991 33.5618
+\c 48.895 34.4634 48.3261 35.8014 45.4813 36.5172
+\c 42.6366 37.233 36.6725 38.6284 31.9563 38.6653
+\c 27.2394 38.7022 21.0738 37.3068 17.0734 36.3704
+\c 13.0723 35.4353 8.5398 35.5091 4.6856 36.2426
+\c 0.832 36.9762 0.3177 38.0403 0.4653 39.0136
+\c 0.6121 39.9862 1.4187 40.4637 3.2178 40.0047
+\c 5.0162 39.5457 8.4661 38.6468 12.8155 38.7022
+\c 17.1649 38.7568 23.8079 40.6665 27.7353 41.161
+\c 31.6626 41.6582 37.0024 41.2894 40.6005 40.758
+\c 44.1966 40.2253 46.6192 39.6932 47.738 40.2068
+\c 48.8574 40.7218 49.4455 42.3734 46.4908 43.3467
+\c 43.5361 44.3172 38.8199 45.2721 34.3045 45.9339
+\c 29.7904 46.5937 23.4405 45.4558 19.6238 44.3001
+\c 15.8064 43.1438 10.5766 42.2449 6.5386 42.7955
+\c 2.5013 43.3467 0.4461 44.337 0.5383 45.3288
+\c 0.6299 46.3184 1.4003 47.0718 3.823 46.6306
+\c 6.2456 46.1907 8.9613 45.1635 12.2466 45.4387
+\c 15.5312 45.7133 21.2015 48.3381 28.0652 48.8709
+\c 34.9288 49.4022 44.1781 47.2542 48.1055 46.3184
+\c 52.0321 45.3827 57.501 44.6123 61.9973 45.4387
+\c 66.4935 46.2638 67.9798 47.7132 68.5487 48.6496
+\c 69.1177 49.5853 68.8609 50.3919 68.3472 50.797
+\o
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian192.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian192.pgf
new file mode 100644
index 0000000000..cd3cb05940
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian192.pgf
@@ -0,0 +1,103 @@
+\m 21.6617 1.8363
+\c 21.6617 1.8363 22.3741 2.1907 22.3051 2.6798
+\c 22.2388 3.1688 21.562 3.0957 21.4752 2.7419
+\c 21.3871 2.3888 21.6617 1.8363 21.6617 1.8363
+\m 24.083 9.1165
+\c 23.6035 8.7791 23.9013 8.2375 24.4327 8.275
+\c 24.962 8.3112 25.4784 9.1404 25.4784 9.1404
+\c 25.4784 9.1404 24.5625 9.4525 24.083 9.1165
+\m 22.1384 16.6331
+\c 21.814 16.3776 21.9814 15.7349 22.7115 15.5853
+\c 23.441 15.4357 24.0953 16.2834 24.0953 16.2834
+\c 23.7831 16.5395 22.4629 16.8878 22.1384 16.6331
+\m 21.0285 24.4857
+\c 20.4671 24.3484 20.1994 23.5513 20.9042 23.3894
+\c 21.6071 23.2269 22.5626 24.3299 22.5626 24.3299
+\c 22.5626 24.3299 21.5907 24.6223 21.0285 24.4857
+\m 20.5586 30.6738
+\c 16.9913 31.4907 16.1149 35.3599 16.1149 35.3599
+\c 16.1149 35.3599 12.6077 37.1733 10.5525 38.383
+\c 8.4966 39.5912 7.4086 41.3759 7.4086 41.3759
+\c 2.9342 37.355 4.99 29.3433 5.8062 24.2951
+\c 6.6224 19.2476 6.1088 11.3568 4.5065 7.3065
+\c 2.9034 3.2562 1.06 1.2304 1.06 1.2304
+\c 4.4771 3.1039 8.8292 2.1668 13.7866 1.0795
+\c 18.7446 -0.0086 21.495 1.7133 21.495 1.7133
+\c 20.4972 3.468 22.3413 3.5581 22.5537 2.8628
+\c 22.7648 2.1668 21.7963 1.6532 21.7963 1.6532
+\c 25.0324 -1.4299 27.8443 1.1396 28.1155 4.5553
+\c 28.388 7.9718 25.6662 9.0298 25.6662 9.0298
+\c 24.7298 7.3673 23.1869 8.2443 23.7019 9.0598
+\c 24.2162 9.876 25.6068 9.3631 25.6068 9.3631
+\c 27.147 13.1108 24.1854 16.0129 24.1854 16.0129
+\c 23.0981 14.5915 21.3434 15.6509 21.8263 16.5873
+\c 22.3112 17.5244 24.1854 16.4965 24.1854 16.4965
+\c 26.0596 21.3336 22.7648 24.1148 22.7648 24.1148
+\c 21.5251 22.8157 20.1645 22.9352 20.3162 24.0533
+\c 20.4671 25.1721 22.6432 24.5676 22.6432 24.5676
+\c 24.0338 28.7094 21.5251 33.5766 18.4413 37.2956
+\c 15.3582 41.0132 11.1563 43.9761 9.1912 44.1257
+\c 7.2262 44.2787 6.6525 43.2808 8.2241 41.4668
+\c 9.795 39.6534 13.9074 37.6269 13.9074 37.6269
+\c 12.6678 39.5017 10.3708 41.3759 10.3708 41.3759
+\c 13.3344 39.4717 14.5119 37.2341 14.5119 37.2341
+\c 18.4112 35.0881 20.7082 32.216 20.7082 32.216
+\c 18.9249 33.8177 16.5671 34.9672 16.5671 34.9672
+\c 17.4748 31.7331 20.5586 30.6738 20.5586 30.6738
+\m 4.1137 7.6999
+\c 5.684 11.992 5.4729 17.2532 5.3821 20.3965
+\c 5.2912 23.5397 3.5994 30.6745 4.1738 35.39
+\c 4.7476 40.1062 7.1968 41.5876 7.1968 41.5876
+\c 6.2283 43.0377 7.1053 43.8846 7.1053 43.8846
+\c 8.4065 45.2759 11.9732 43.8252 14.7551 41.4367
+\c 17.5356 39.0482 20.7997 35.5416 22.6439 31.2789
+\c 24.4887 27.0162 22.9758 24.4768 22.9758 24.4768
+\c 27.1169 20.7592 24.3972 16.3763 24.3972 16.3763
+\c 28.5683 12.4155 25.8786 9.2715 25.8786 9.2715
+\c 30.9876 6.0067 29.0533 1.3821 26.3014 0.292
+\c 23.5509 -0.7961 21.6166 1.503 21.6166 1.503
+\c 17.5056 -1.2482 12.245 0.7475 7.1668 1.533
+\c 2.0879 2.3185 -0.0281 0.2325 -0.0281 0.2325
+\c -0.0281 0.2325 2.5414 3.4079 4.1137 7.6999
+\s
+\m 21.9943 4.9351
+\c 21.9943 4.9351 23.2197 5.1646 23.372 4.681
+\c 23.525 4.1954 22.913 3.9147 21.9943 4.9351
+\m 8.5478 32.0337
+\c 8.5478 32.0337 10.2322 34.5342 11.8646 34.4584
+\c 13.4976 34.3812 14.1608 31.6505 13.4211 29.8391
+\c 12.6801 28.0271 9.4665 27.5435 8.5478 32.0337
+\m 8.2917 16.4439
+\c 8.2917 16.4439 8.5478 17.9998 9.5696 18.2798
+\c 10.5894 18.5605 10.9199 17.2334 10.5129 16.6986
+\c 10.1037 16.1625 9.1858 16.0853 8.2917 16.4439
+\m 18.5103 3.3409
+\c 17.3136 2.5002 15.4094 2.6777 12.3092 6.088
+\c 9.2097 9.4976 8.2343 13.8812 8.2787 16.0955
+\c 8.2787 16.0955 9.5696 15.6263 10.4603 16.213
+\c 11.3543 16.8004 11.0982 18.2545 10.2322 18.637
+\c 9.3647 19.0202 8.4707 18.4588 8.0363 17.6931
+\c 8.0363 17.6931 7.2207 19.8624 7.3232 24.4037
+\c 7.425 28.9451 8.3177 30.7059 8.3177 30.7059
+\c 8.3177 30.7059 9.7465 27.9766 11.7887 28.0783
+\c 13.8296 28.1801 14.7482 30.6806 14.0843 32.8499
+\c 13.4211 35.0191 11.4793 36.5293 8.3675 32.4831
+\c 8.3675 32.4831 8.0588 34.8743 10.185 35.9378
+\c 12.3092 36.9992 14.6567 34.8299 15.7639 32.3048
+\c 16.8717 29.7811 16.3847 27.4342 16.2065 23.7139
+\c 16.0296 19.9942 16.5166 12.1989 21.3885 5.1571
+\c 21.3885 5.1571 19.7042 4.1831 18.5103 3.3409
+\m 21.7423 5.1584
+\c 21.7423 5.1584 18.7316 9.4539 17.6681 15.6536
+\c 16.6047 21.854 17.0486 25.7513 17.0923 28.4526
+\c 17.1367 31.1546 15.6751 35.183 12.4875 36.4685
+\c 9.2992 37.7518 7.1279 34.1653 8.1913 31.8178
+\c 8.1913 31.8178 6.242 27.6993 6.5084 23.0937
+\c 6.7747 18.4881 7.8812 17.4698 7.8812 17.4698
+\c 7.8812 17.4698 6.8615 14.3252 9.2097 9.8521
+\c 11.5565 5.3791 14.8787 3.1647 16.2953 2.5889
+\c 17.7125 2.0138 18.8641 3.1647 19.8825 3.83
+\c 20.9022 4.4939 21.5654 4.8921 21.5654 4.8921
+\c 21.5654 4.8921 22.7614 3.7419 23.3808 4.0076
+\c 24.001 4.2726 24.1786 5.6017 21.7423 5.1584
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian193.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian193.pgf
new file mode 100644
index 0000000000..b68173eb86
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian193.pgf
@@ -0,0 +1,77 @@
+\m 16.3759 10.2313
+\c 12.2225 10.8125 8.4496 10.4772 4.1391 9.1822
+\c -0.1708 7.8872 0.3196 6.9262 0.8565 6.7035
+\c 1.3927 6.4795 5.5228 6.6591 8.5377 6.6352
+\c 11.5532 6.6141 12.2669 5.9659 10.6816 5.2077
+\c 9.0964 4.4475 6.6177 4.5821 4.8986 4.7385
+\c 3.1801 4.8949 2.6433 4.9844 2.5545 4.716
+\c 2.465 4.4475 5.0557 3.3977 10.1455 3.2427
+\c 15.2373 3.0856 18.3635 4.3362 24.6814 5.0732
+\c 31.0013 5.8101 37.2543 5.386 37.2543 5.386
+\l 37.9462 6.4132
+\c 36.5842 7.2615 36.6075 8.4896 36.6075 8.4896
+\c 31.8284 7.3736 20.53 9.65 16.3759 10.2313
+\m 39.6209 1.9921
+\c 41.1174 1.9033 41.3858 2.7523 40.8722 3.4203
+\c 40.3586 4.091 37.6777 4.7173 37.6777 4.7173
+\c 37.7665 3.7795 38.1251 2.0809 39.6209 1.9921
+\m 43.1712 5.7446
+\c 44.1541 6.3238 44.1978 7.3503 41.6078 7.1495
+\c 39.0178 6.9494 37.9018 5.2521 37.9018 5.2521
+\c 39.5991 4.9844 42.1891 5.1626 43.1712 5.7446
+\m 40.8941 9.8973
+\c 41.4965 10.4772 41.9657 11.4593 40.1345 11.1691
+\c 38.3034 10.8795 37.3663 8.7799 37.3663 8.7799
+\c 38.7282 8.7136 40.2916 9.3154 40.8941 9.8973
+\m 36.5945 8.7321
+\c 36.5945 8.7321 37.0685 10.9054 39.2009 11.6158
+\c 41.336 12.3275 42.6002 10.945 41.2567 9.8386
+\c 39.9126 8.7321 37.3841 8.4165 37.3841 8.4165
+\c 37.3841 8.4165 36.9893 7.2691 38.2938 6.7165
+\c 38.2938 6.7165 39.8347 8.2574 42.3632 8.0996
+\c 44.8917 7.9418 45.9183 4.3061 37.7392 4.9782
+\c 37.7392 4.9782 41.6119 4.1491 41.6119 2.686
+\c 41.6119 1.2244 37.0289 0.5134 37.2256 5.0964
+\c 37.2256 5.0964 31.2602 5.0964 25.6103 4.0302
+\c 19.9597 2.9627 14.7428 1.738 8.1067 2.7257
+\c 1.4692 3.714 1.4289 4.8997 2.4561 5.0185
+\c 3.484 5.1367 5.6171 4.7016 7.9878 4.9386
+\c 10.3586 5.1763 12.0579 5.847 9.3703 5.847
+\c 6.6846 5.847 3.7217 5.3334 1.5873 5.9269
+\c -0.5457 6.5191 -0.6653 7.7841 2.0613 8.8113
+\c 4.7879 9.8386 9.6079 11.3794 16.9572 10.4314
+\c 24.305 9.482 31.3776 7.9029 36.5945 8.7321
+\s
+\m 5.542 8.5511
+\c 5.1424 8.5511 4.818 8.2813 4.818 7.9452
+\c 4.818 7.6099 5.1424 7.3387 5.542 7.3387
+\c 5.9415 7.3387 6.266 7.6099 6.266 7.9452
+\c 6.266 8.2813 5.9415 8.5511 5.542 8.5511
+\m 6.6573 7.9275
+\c 6.6573 7.4248 6.1621 7.0177 5.5522 7.0177
+\c 4.9402 7.0177 4.4444 7.4248 4.4444 7.9275
+\c 4.4444 8.4302 4.9402 8.8379 5.5522 8.8379
+\c 6.1621 8.8379 6.6573 8.4302 6.6573 7.9275
+\s
+\m 23.7265 10.6056
+\c 23.7265 10.6056 21.7444 11.6588 20.4583 10.8378
+\c 19.1735 10.0161 19.3703 8.9623 21.1372 8.6057
+\c 22.9042 8.2485 25.2981 8.9452 25.529 10.5161
+\c 25.7612 12.0877 22.7088 13.4428 18.8874 12.587
+\c 15.0666 11.7298 13.6739 9.676 13.1384 7.3196
+\c 13.1384 7.3196 12.3707 4.606 13.9949 2.8028
+\c 15.6205 1.0004 19.4413 0.5359 22.3154 1.2852
+\c 25.1909 2.0358 26.1901 5.2487 23.3331 5.7309
+\c 20.4767 6.2138 19.4597 4.606 19.4235 4.0172
+\c 19.3873 3.4285 19.8511 1.8924 23.1193 2.8028
+\c 23.1193 2.8028 21.6905 1.7326 19.9406 2.5173
+\c 18.1907 3.3035 18.8696 5.302 21.3872 5.8921
+\c 23.9055 6.4822 25.5652 5.4283 25.4764 3.8028
+\c 25.3876 2.1786 22.6556 -0.0528 19.2808 0.0004
+\c 15.906 0.0537 12.6207 2.1956 12.7464 5.7856
+\c 12.8707 9.3734 14.4061 11.4088 17.8171 13.0153
+\c 21.2267 14.6224 24.9409 13.2659 25.6724 11.6226
+\c 26.4046 9.9806 24.7968 8.2833 22.2799 8.2833
+\c 19.7616 8.2833 18.6381 9.4267 19.638 10.7668
+\c 20.6379 12.1048 22.7259 11.9081 23.7265 10.6056
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian194.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian194.pgf
new file mode 100644
index 0000000000..573f546e8d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian194.pgf
@@ -0,0 +1,404 @@
+\m 29.1804 15.9438
+\c 29.1804 15.9438 27.8239 15.114 28.0302 14.2281
+\c 28.2358 13.3442 28.5295 13.2528 28.9277 12.5711
+\c 29.3266 11.8888 29.931 10.3213 28.3874 8.8911
+\c 26.8438 7.4621 25.3057 7.8187 24.0954 8.8692
+\c 23.183 9.6601 23.5749 11.8075 25.2387 11.0794
+\c 26.5146 10.522 27.3103 9.2572 27.3103 9.2572
+\c 27.3103 9.2572 25.4327 11.1348 24.486 10.8103
+\c 23.5387 10.4866 24.5106 8.807 26.488 8.639
+\c 28.4653 8.473 28.6668 10.0385 28.3587 11.2173
+\c 27.9523 12.7801 26.6997 15.3046 29.1804 15.9438
+\s
+\m 23.4004 3.7997
+\c 23.4004 3.7997 22.8464 1.11 20.3534 1.6345
+\c 17.5079 2.23 16.2956 4.3413 15.9165 5.4429
+\c 15.5375 6.5468 16.1098 7.602 17.2969 6.2995
+\c 18.4827 4.9962 18.1431 2.8331 18.1431 2.8331
+\c 19.2162 4.8686 17.4308 7.3432 16.5524 7.3179
+\c 15.674 7.2933 15.0846 6.0236 15.8564 4.3283
+\c 16.4582 3.0081 17.1965 2.5088 17.1965 2.5088
+\c 17.1965 2.5088 16.6993 1.2335 14.5724 1.6195
+\c 12.4462 2.0046 12.3512 3.7833 12.3512 3.7833
+\c 11.2126 7.1676 10.0215 8.8417 9.1322 9.7821
+\c 8.2429 10.722 7.5701 11.8913 4.3326 13.3591
+\c 1.0951 14.8269 0.5037 15.3296 0.3452 16.3651
+\c 0.1861 17.4005 0.8356 18.0869 0.8356 18.0869
+\l 0.5405 18.3007
+\c 0.0331 17.9893 -0.3856 16.2701 0.5843 14.7375
+\c 1.5535 13.2055 2.8 13.0182 4.9316 12.1878
+\c 7.0647 11.3565 7.9491 10.7869 9.0646 9.3341
+\c 10.1799 7.88 10.4934 6.1807 11.1751 4.1958
+\c 11.8581 2.2103 12.3642 2.67 12.8109 2.088
+\c 13.2569 1.5068 13.6982 1.2971 13.6982 1.2971
+\l 12.9721 0.9044
+\c 13.9256 0.6339 14.651 1.2493 14.651 1.2493
+\c 16.4875 0.6332 17.4192 2.2184 17.4192 2.2184
+\c 22.8027 -1.1938 23.6944 3.659 23.6944 3.659
+\c 28.9693 3.1399 27.8137 7.9346 27.8137 7.9346
+\c 27.8137 7.9346 27.91 6.0051 27.1163 5.0933
+\c 26.3227 4.1794 23.915 3.5913 21.6218 5.6799
+\c 19.3282 7.7694 20.044 9.0506 21.5856 8.5753
+\c 23.1292 8.0999 23.9629 5.6718 23.9731 4.7811
+\c 23.9731 4.7811 24.329 5.6076 23.579 7.1458
+\c 22.8286 8.6845 20.7659 9.8881 19.6841 8.522
+\c 18.6041 7.1526 20.9784 4.3987 23.4004 3.7997
+\s
+\m 11.3446 8.3593
+\c 11.3446 8.3593 11.7119 8.2221 12.8881 7.8088
+\c 14.0636 7.3963 16.5839 4.7196 14.0438 3.0141
+\c 14.0438 3.0141 14.7555 4.6676 14.1579 5.6908
+\c 13.4755 6.8574 13.0398 7.3669 12.2304 7.7159
+\c 11.421 8.0643 11.3446 8.3593 11.3446 8.3593
+\s
+\m 9.8631 3.7877
+\c 9.8631 3.7877 8.37 6.2697 6.7485 7.1883
+\c 5.1277 8.1077 0.9313 10.2162 1.406 13.3505
+\c 1.406 13.3505 1.5808 10.9784 3.5664 10.1431
+\c 5.5519 9.3085 9.4437 8.2313 9.8631 3.7877
+\s
+\m 7.7931 11.601
+\c 7.7931 11.601 7.3955 14.1882 5.4776 15.4703
+\c 3.5597 16.753 1.8269 14.848 1.8269 14.848
+\c 1.8269 14.848 2.6069 16.8752 5.2482 16.2809
+\c 7.804 15.7079 7.7931 11.601 7.7931 11.601
+\s
+\m 2.0051 24.2848
+\c 2.0051 24.2848 -0.0242 22.6668 1.0311 20.0972
+\c 2.0871 17.527 5.6018 17.3304 5.8074 18.4505
+\c 6.0137 19.5699 3.5876 20.4668 1.9197 19.2318
+\l 1.6233 19.5194
+\c 1.6233 19.5194 2.9257 20.7448 5.0581 19.9155
+\c 7.1898 19.0837 6.1947 16.6788 4.1443 16.8427
+\c 2.4675 16.9779 0.7626 18.085 0.2245 20.2229
+\c -0.3138 22.3621 1.1301 24.0368 2.0051 24.2848
+\s
+\m 14.5214 29.9866
+\c 11.9943 27.1668 10.1331 29.8609 8.8927 29.5296
+\c 6.7057 28.9434 7.2432 26.7345 7.6947 25.7817
+\c 8.1831 24.7489 9.8366 24.1342 9.894 25.473
+\c 9.95 26.813 7.8129 28.0869 7.8129 28.0869
+\c 9.1359 27.606 9.8775 26.8103 10.1064 25.9975
+\c 10.3359 25.1889 9.8421 23.6152 8.0751 24.5304
+\c 6.3082 25.4456 6.7153 28.0568 6.7153 28.0568
+\c 5.1723 28.6059 3.4935 28.1886 3.2326 25.6553
+\c 2.9696 23.1227 5.1122 21.4752 6.2132 21.1358
+\c 7.3156 20.795 8.3279 21.7894 7.1394 23.2409
+\c 5.9517 24.6922 3.6103 24.626 3.6103 24.626
+\l 3.6069 24.9231
+\c 3.6069 24.9231 5.3636 24.8993 6.5425 24.1896
+\c 7.722 23.4799 8.6174 22.0204 7.6066 20.9527
+\c 6.5951 19.8832 4.1676 20.9282 3.1192 22.9048
+\c 2.0707 24.8794 2.6288 27.1238 3.8622 27.9748
+\c 5.0965 28.8273 6.8581 28.3566 6.8581 28.3566
+\c 6.8581 28.3566 7.7111 30.4619 10.0586 29.934
+\c 11.6821 29.5699 12.1165 29.2494 13.0652 29.4249
+\c 14.0139 29.6013 14.5214 29.9866 14.5214 29.9866
+\s
+\m 12.5811 0.9182
+\c 12.5811 0.9182 7.5138 0.3787 3.5688 3.9297
+\c -0.377 7.482 -0.0498 12.7399 0.3238 14.037
+\c 0.3238 14.037 -0.1257 2.8355 12.5811 0.9182
+\s
+\m 16.8036 16.757
+\c 16.8036 16.757 17.3091 11.2758 22.502 11.4977
+\l 22.1407 11.1153
+\c 22.1407 11.1153 18.1288 10.0361 16.6842 14.5993
+\c 16.6842 14.5993 16.5926 16.0829 16.8036 16.757
+\s
+\m 16.3384 18.9714
+\c 16.3384 18.9714 13.6487 17.4851 12.3264 17.8929
+\c 11.004 18.3014 9.2214 20.5526 9.8525 22.7982
+\c 9.8525 22.7982 10.237 21.2499 11.2035 20.0137
+\c 12.1693 18.7801 13.4895 18.5206 14.5127 18.6231
+\c 15.5358 18.7262 16.3384 18.9714 16.3384 18.9714
+\s
+\m 18.981 16.2494
+\c 18.981 16.2494 19.9864 13.8021 22.5272 13.4285
+\c 22.5272 13.4285 21.8504 12.9641 20.5246 13.6696
+\c 19.1988 14.3745 18.4968 15.9393 18.6881 16.2904
+\o
+\m 21.2794 15.7705
+\c 21.9214 15.1442 21.2445 14.6306 21.2445 14.6306
+\l 21.095 14.873
+\c 21.095 14.873 21.3852 15.1292 21.0383 15.5165
+\c 20.6927 15.9023 20.3546 15.5957 20.3546 15.5957
+\l 20.1585 15.7378
+\c 20.1585 15.7378 20.6373 16.3962 21.2794 15.7705
+\m 18.6354 16.5867
+\c 17.6874 16.263 18.811 14.1409 20.5765 13.3745
+\c 22.3421 12.6061 23.2861 13.227 23.2861 13.227
+\c 22.8407 13.7344 22.4637 14.69 22.4637 14.69
+\c 22.4637 14.69 22.0013 14.5452 22.2499 14.2386
+\c 22.6208 13.7782 22.4016 13.7228 22.4016 13.7228
+\c 21.7418 13.852 21.5171 14.2918 21.5171 14.2918
+\c 21.5171 14.2918 22.0976 15.2631 21.4972 15.9242
+\c 20.929 16.5513 20.6162 16.1974 20.1046 16.1811
+\c 19.5923 16.1674 19.3643 16.8299 19.3643 16.8299
+\c 19.3608 17.1264 19.8027 16.918 19.8027 16.918
+\c 20.1708 16.7036 20.2391 17.0771 20.2391 17.0771
+\c 20.0902 17.2957 19.5049 17.3537 19.5049 17.3537
+\c 18.9161 17.5594 18.841 17.7055 18.841 17.7055
+\c 18.3322 17.4692 18.6354 16.5867 18.6354 16.5867
+\s
+\m 14.6408 20.1367
+\c 14.6408 20.1367 13.9613 19.8696 13.0733 20.7364
+\c 12.184 21.6025 12.1655 23.1365 12.1655 23.1365
+\c 12.1655 23.1365 12.4292 21.5088 14.6408 20.1367
+\m 14.5644 22.4616
+\c 15.1046 22.1304 15.3566 21.4433 14.8731 21.1332
+\l 14.6265 21.3743
+\c 14.6265 21.3743 14.7679 21.7739 14.4714 22.0628
+\c 14.1751 22.351 13.8861 22.0464 13.8861 22.0464
+\l 13.589 22.3845
+\c 13.589 22.3845 14.0241 22.7929 14.5644 22.4616
+\m 15.651 21.3538
+\l 15.8074 20.4666
+\c 15.8074 20.4666 15.5157 20.4085 15.2685 20.6988
+\c 15.2685 20.6988 15.3607 21.1475 15.3573 21.3941
+\o
+\m 11.9635 23.7737
+\c 11.7674 23.7689 11.5748 23.6153 11.5748 23.6153
+\c 12.2428 20.8115 13.1293 20.0943 14.4011 19.7829
+\c 15.6735 19.4728 16.64 20.2425 16.64 20.2425
+\l 16.4412 20.485
+\c 16.0458 21.0178 15.8907 21.6584 15.8907 21.6584
+\l 15.3546 21.6414
+\c 15.1879 23.271 13.3404 22.7724 13.3404 22.7724
+\c 12.85 23.0558 12.7953 23.4998 12.7953 23.4998
+\c 13.2851 23.3666 14.0165 23.3871 14.0165 23.3871
+\c 13.9148 23.7307 13.5726 23.8202 13.5726 23.8202
+\c 12.9381 23.8024 11.667 24.0633 11.667 24.0633
+\c 11.9607 23.9219 11.9635 23.7737 11.9635 23.7737
+\s
+\m 17.6577 18.7126
+\c 17.6577 18.7126 18.8209 19.4127 19.4697 20.1749
+\c 19.4697 20.1749 19.62 19.8826 19.1146 19.3478
+\c 18.6084 18.8123 17.6645 18.1928 17.6577 18.7126
+\s
+\m 18.6709 21.6875
+\c 18.6709 21.6875 17.7761 21.0926 17.6341 20.7163
+\c 17.4927 20.3412 17.0563 20.107 17.0563 20.107
+\c 17.0563 20.107 16.8233 20.4095 17.1225 20.6267
+\c 17.6545 21.0147 17.9366 21.9641 18.6709 21.6875
+\s
+\m 18.2727 22.3684
+\c 18.2727 22.3684 17.9318 22.3091 17.9278 22.656
+\c 17.9237 23.0023 18.1648 23.2078 18.2105 23.4565
+\c 18.257 23.7044 18.3519 23.906 18.8894 23.7728
+\c 19.4283 23.6396 19.9181 23.4558 20.3081 23.4647
+\c 20.6987 23.4763 21.0901 23.3391 21.3421 22.6532
+\c 21.5949 21.9682 21.8858 22.1247 22.0859 21.6841
+\c 22.2861 21.2442 22.056 20.1487 21.3749 19.9314
+\c 20.6953 19.7136 20.5923 20.1576 20.5923 20.1576
+\c 20.5923 20.1576 21.2226 20.4718 21.2185 20.8187
+\c 21.2143 21.165 20.8258 21.0051 20.7793 20.8058
+\c 20.7336 20.607 20.3005 20.0988 20.0089 20.0913
+\c 20.0089 20.0913 19.7131 20.2307 19.7111 20.4287
+\c 19.7111 20.4287 20.2889 21.04 20.3791 21.6356
+\c 20.4699 22.2332 20.0765 22.4695 19.7323 22.658
+\c 19.3894 22.8465 18.9489 22.9319 18.6538 23.1716
+\c 18.358 23.41 18.2214 22.5638 18.2727 22.3684
+\s
+\m 21.6164 24.196
+\c 21.6198 23.948 21.1314 23.9836 21.128 24.2315
+\c 21.126 24.4794 21.3199 24.5341 21.3199 24.5341
+\c 21.3199 24.5341 21.6136 24.444 21.6164 24.196
+\m 20.1192 27.0258
+\c 20.1294 26.1843 19.6008 25.5252 19.6008 25.5252
+\c 19.7989 25.2834 20.1876 25.3926 20.1876 25.3926
+\c 20.1356 25.6897 20.18 25.9868 20.18 25.9868
+\c 20.1841 25.6905 20.6321 24.9111 20.6321 24.9111
+\c 20.9751 24.8217 20.8801 24.5724 20.8829 24.3244
+\c 20.8862 24.0765 21.4292 23.597 21.4292 23.597
+\c 21.4251 23.8941 21.7181 23.9023 21.7181 23.9023
+\c 21.7181 23.9023 22.0637 23.515 22.212 23.3716
+\c 22.3602 23.2268 22.1669 23.0725 22.1669 23.0725
+\c 22.1669 23.0725 22.121 22.8239 22.4148 22.7337
+\c 22.7092 22.6429 23.0029 22.5028 23.0029 22.5028
+\c 23.4936 22.3184 23.734 22.5732 23.734 22.5732
+\c 23.734 22.5732 23.5906 22.3703 23.5933 22.0739
+\c 23.5974 21.7768 23.4526 21.6237 23.4526 21.6237
+\c 23.8946 21.4393 24.3781 21.7495 24.4731 21.9988
+\c 24.5666 22.2501 25.3938 22.4215 25.3938 22.4215
+\c 24.7101 22.5507 23.7265 23.1674 23.482 23.2583
+\c 23.2365 23.3511 22.839 23.9829 22.589 24.4713
+\c 22.3391 24.959 21.7557 24.7944 21.7557 24.7944
+\c 21.7489 25.3886 21.4067 25.478 21.2571 25.672
+\c 21.1089 25.8652 20.6171 26.1986 20.6171 26.1986
+\c 20.7032 27.0913 20.1192 27.0258 20.1192 27.0258
+\s
+\m 21.6464 25.7816
+\l 21.4968 26.0746
+\c 21.4968 26.0746 22.268 26.8381 23.3553 25.6327
+\c 24.4437 24.4251 24.8842 24.2393 24.6527 23.1936
+\c 24.6527 23.1936 24.2634 23.1321 24.3105 23.3322
+\c 24.3563 23.5317 24.2067 23.8725 23.9594 24.1635
+\c 23.7108 24.4545 23.0664 25.3267 22.6238 25.6108
+\c 22.1812 25.8956 21.6464 25.7816 21.6464 25.7816
+\s
+\m 23.3487 26.2257
+\l 24.1623 25.4321
+\c 24.1623 25.4321 23.6022 25.3911 23.3487 26.2257
+\s
+\m 24.3699 26.4032
+\c 24.3699 26.4032 25.2592 25.5364 25.5031 25.4948
+\c 25.7483 25.4518 26.0911 25.3124 26.7147 26.2223
+\c 26.7147 26.2223 26.7659 25.9764 26.5262 25.6225
+\c 26.2865 25.2695 25.6076 25.0023 25.2128 25.337
+\c 24.818 25.6737 24.1787 26.1505 24.1787 26.1505
+\o
+\s
+\m 10.1066 25.9977
+\l 10.1714 26.669
+\c 10.1714 26.669 12.1966 28.658 16.7154 30.1218
+\c 21.2342 31.5869 24.7961 30.5248 26.8288 28.8493
+\c 29.2678 26.8391 31.6871 20.4468 26.0023 12.4877
+\c 26.0023 12.4877 27.7201 15.6548 28.2597 19.4591
+\c 28.7993 23.2601 28.0234 28.0324 23.5285 29.4982
+\c 19.3408 30.8656 11.9097 28.1294 10.1066 25.9977
+\s
+\m 23.8433 44.8107
+\c 23.8433 44.8107 23.6459 42.9406 23.1537 41.955
+\c 22.6619 40.9715 21.6777 40.4776 21.2829 40.7741
+\c 20.8895 41.0691 21.4802 43.0389 23.8433 44.8107
+\m 18.5263 46.7805
+\c 17.5414 44.713 15.6706 45.8946 17.0496 48.0611
+\c 18.4279 50.2277 18.9203 50.6211 18.9203 50.6211
+\c 18.9203 50.6211 19.5112 48.8487 18.5263 46.7805
+\m 14.9814 56.9232
+\c 14.9814 56.9232 14.2923 54.5593 13.5041 53.7725
+\c 12.7166 52.9843 11.5349 53.2794 12.1258 55.0518
+\c 12.7166 56.8242 14.9814 56.9232 14.9814 56.9232
+\m 11.0425 67.3604
+\c 11.0425 67.3604 11.0425 64.9971 10.6491 63.7179
+\c 10.255 62.4372 8.6793 61.6497 9.0733 64.0129
+\c 9.4675 66.3761 11.0425 67.3604 11.0425 67.3604
+\m 28.1757 37.1316
+\c 28.1757 37.1316 27.2891 35.9493 25.6158 35.5558
+\c 23.9417 35.1617 23.7498 36.8071 25.5174 36.9335
+\c 26.895 37.0325 28.1757 37.1316 28.1757 37.1316
+\m 28.7672 37.4259
+\c 28.7672 37.4259 25.32 38.1165 24.2374 36.8351
+\c 23.1537 35.5558 25.5167 33.8825 28.5698 36.8351
+\c 28.5698 36.8351 29.8498 36.4417 29.358 34.4719
+\c 28.8648 32.5021 23.3504 30.632 18.9203 33.3893
+\c 18.9203 33.3893 19.5112 35.1617 19.0187 36.5407
+\c 18.5263 37.9191 17.7388 38.3125 16.8522 37.624
+\c 15.9663 36.9342 16.2607 35.1617 18.3296 33.0943
+\c 18.3296 33.0943 14.5873 29.2535 8.7776 33.1926
+\c 2.9679 37.1316 3.3627 48.1602 4.446 54.2636
+\c 5.5285 60.3697 7.1042 66.3761 6.9068 75.0409
+\c 6.7101 83.7056 3.6571 87.8419 3.6571 87.8419
+\c 3.6571 87.8419 7.8918 84.7888 9.6642 77.5031
+\c 11.4366 70.216 10.9441 67.8528 10.9441 67.8528
+\c 10.9441 67.8528 9.0733 66.1781 8.7776 64.2096
+\c 8.4826 62.2412 9.2701 61.3546 10.3533 62.1415
+\c 11.4366 62.929 11.5349 67.6554 11.5349 67.6554
+\c 11.5349 67.6554 13.7998 68.346 14.784 65.1952
+\c 15.769 62.0431 14.8831 57.5147 14.8831 57.5147
+\c 14.8831 57.5147 13.209 57.415 12.3224 55.8393
+\c 11.4366 54.2636 11.634 52.9843 12.5199 52.6886
+\c 13.4057 52.3942 15.3755 54.6584 15.4739 57.1199
+\c 15.4739 57.1199 18.822 57.5147 19.1171 51.2119
+\c 19.1171 51.2119 17.443 50.0303 16.6555 48.2578
+\c 15.8672 46.4854 16.163 44.6153 17.8371 45.3038
+\c 19.5105 45.9923 20.1996 49.3418 20.1013 51.1135
+\c 20.1013 51.1135 21.8737 52.0984 23.1537 49.5371
+\c 24.4341 46.9786 23.7443 45.1071 23.7443 45.1071
+\c 23.7443 45.1071 21.7761 44.0232 21.1852 42.4488
+\c 20.5944 40.8731 20.3971 39.5918 22.2678 40.3807
+\c 24.1384 41.1682 24.9259 45.2041 24.8276 45.5012
+\c 24.8276 45.5012 28.4714 47.372 30.4406 45.4022
+\c 32.4097 43.4337 31.6229 39.1014 28.7672 37.4259
+\m 18.5263 33.586
+\c 18.5263 33.586 17.2463 34.8653 16.9506 36.2443
+\c 16.6555 37.624 17.9354 38.0174 18.4279 36.9335
+\c 18.9203 35.8509 18.723 34.0785 18.5263 33.586
+\m 31.5238 45.2061
+\c 29.0616 48.0611 24.8282 45.993 24.8282 45.993
+\c 25.0243 52.6892 19.8062 51.8027 19.8062 51.8027
+\c 19.6095 57.6131 15.4739 57.5147 15.4739 57.5147
+\c 15.4739 57.5147 17.1479 59.9763 15.769 64.5047
+\c 14.3906 69.0358 11.3382 68.0495 11.3382 68.0495
+\c 13.3074 81.7371 1.3929 90.4011 1.3929 90.4011
+\c 1.3929 90.4011 5.7252 86.8584 6.217 76.7149
+\c 6.7101 66.5735 1.5896 54.9541 3.0669 45.0088
+\c 4.642 34.407 8.5809 31.8143 12.8156 31.1238
+\c 17.0496 30.4353 18.723 32.9952 18.723 32.9952
+\c 24.2367 29.1559 29.1606 31.6169 29.8498 33.9801
+\c 30.5389 36.3434 29.0616 37.0325 29.0616 37.0325
+\c 31.2281 37.9191 33.9854 42.3498 31.5238 45.2061
+\s
+\m 44.3085 22.4038
+\c 44.3085 22.4038 42.4377 22.2065 41.4528 21.714
+\c 40.4679 21.2216 39.9768 20.2373 40.2712 19.8439
+\c 40.5669 19.4505 42.536 20.0406 44.3085 22.4038
+\m 46.2783 17.0873
+\c 44.2101 16.101 45.3917 14.2309 47.5582 15.6092
+\c 49.7248 16.9876 50.1182 17.4807 50.1182 17.4807
+\c 50.1182 17.4807 48.3458 18.0708 46.2783 17.0873
+\m 56.4197 13.541
+\c 56.4197 13.541 54.0571 12.8526 53.2696 12.0637
+\c 52.4814 11.2768 52.7765 10.0953 54.5496 10.686
+\c 56.3213 11.2768 56.4197 13.541 56.4197 13.541
+\m 66.8582 9.6035
+\c 66.8582 9.6035 64.4949 9.6035 63.215 9.2101
+\c 61.935 8.8146 61.1468 7.2402 63.5107 7.6337
+\c 65.8739 8.0277 66.8582 9.6035 66.8582 9.6035
+\m 36.6287 26.7355
+\c 36.6287 26.7355 35.4464 25.8497 35.0529 24.177
+\c 34.6595 22.5028 36.3056 22.3089 36.432 24.0773
+\c 36.5303 25.4562 36.6287 26.7355 36.6287 26.7355
+\m 36.9237 27.3283
+\c 36.9237 27.3283 37.6136 23.8812 36.3329 22.7972
+\c 35.0529 21.714 33.3796 24.0773 36.3329 27.1303
+\c 36.3329 27.1303 35.9395 28.4102 33.9697 27.9171
+\c 32.0006 27.4261 30.1298 21.9114 32.8871 17.4807
+\c 32.8871 17.4807 34.6595 18.0714 36.0379 17.5791
+\c 37.4169 17.0873 37.8103 16.299 37.1211 15.4125
+\c 36.432 14.526 34.6595 14.8217 32.5914 16.8892
+\c 32.5914 16.8892 28.7508 13.1476 32.6897 7.3372
+\c 36.6287 1.5289 47.6573 1.923 53.7621 3.0049
+\c 59.8668 4.0889 65.8739 5.6645 74.5386 5.4664
+\c 83.204 5.2704 87.339 2.2173 87.339 2.2173
+\c 87.339 2.2173 84.2866 6.452 77.0002 8.2244
+\c 69.7138 9.9969 67.3506 9.5051 67.3506 9.5051
+\c 67.3506 9.5051 65.6765 7.6337 63.7074 7.3372
+\c 61.7376 7.0428 60.8517 7.8303 61.6399 8.9136
+\c 62.4268 9.9969 67.1532 10.0953 67.1532 10.0953
+\c 67.1532 10.0953 67.8431 12.3601 64.6923 13.345
+\c 61.5409 14.3299 57.0112 13.4433 57.0112 13.4433
+\c 57.0112 13.4433 56.9128 11.7686 55.3371 10.8828
+\c 53.7621 9.9969 52.4814 10.1929 52.1863 11.0794
+\c 51.8906 11.9667 54.1555 13.9365 56.6177 14.0335
+\c 56.6177 14.0335 57.0112 17.381 50.709 17.676
+\c 50.709 17.676 49.5281 16.0033 47.7556 15.2158
+\c 45.9832 14.4269 44.1118 14.724 44.8016 16.3967
+\c 45.4908 18.0714 48.8389 18.76 50.6113 18.6623
+\c 50.6113 18.6623 51.5955 20.4341 49.0356 21.714
+\c 46.4757 22.9954 44.6049 22.3048 44.6049 22.3048
+\c 44.6049 22.3048 43.5216 20.3364 41.9466 19.7441
+\c 40.3702 19.1547 39.0902 18.9574 39.8778 20.8274
+\c 40.666 22.6995 44.7032 23.4864 44.9983 23.3887
+\c 44.9983 23.3887 46.8698 27.0312 44.9 29.001
+\c 42.9301 30.9708 38.5985 30.1826 36.9237 27.3283
+\m 33.0838 17.0873
+\c 33.0838 17.0873 34.3638 15.8066 35.7421 15.5109
+\c 37.1204 15.2158 37.5145 16.4964 36.432 16.9876
+\c 35.348 17.4807 33.5756 17.2826 33.0838 17.0873
+\m 44.7032 30.0835
+\c 47.5589 27.6227 45.4908 23.3887 45.4908 23.3887
+\c 52.187 23.5847 51.3005 18.3665 51.3005 18.3665
+\c 57.1102 18.1698 57.0112 14.0335 57.0112 14.0335
+\c 57.0112 14.0335 59.4734 15.7075 64.0032 14.3299
+\c 68.5322 12.9496 67.548 9.8979 67.548 9.8979
+\c 81.2342 11.8677 89.8996 -0.0469 89.8996 -0.0469
+\c 89.8996 -0.0469 86.3548 4.2863 76.2127 4.778
+\c 66.0706 5.2704 54.4512 0.1505 44.5065 1.6265
+\c 33.9041 3.2022 31.3114 7.1412 30.6216 11.3752
+\c 29.9331 15.6092 32.493 17.2826 32.493 17.2826
+\c 28.6531 22.7972 31.1147 27.7218 33.4779 28.4102
+\c 35.8411 29.0994 36.5303 27.6213 36.5303 27.6213
+\c 37.4169 29.7892 41.8476 32.5458 44.7032 30.0835
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian195.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian195.pgf
new file mode 100644
index 0000000000..0ac51c8b9b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian195.pgf
@@ -0,0 +1,417 @@
+\m 60.6762 15.9329
+\c 60.6762 15.9329 62.0319 15.1031 61.827 14.2172
+\c 61.6194 13.3334 61.325 13.2419 60.9275 12.5602
+\c 60.5286 11.8779 59.9235 10.3104 61.4691 8.8802
+\c 63.0128 7.4513 64.5509 7.8078 65.7605 8.8583
+\c 66.673 9.6492 66.281 11.7966 64.6172 11.0686
+\c 63.3433 10.5112 62.5463 9.2463 62.5463 9.2463
+\c 62.5463 9.2463 64.4218 11.1239 65.3705 10.7994
+\c 66.3179 10.4757 65.3466 8.7961 63.3693 8.6281
+\c 61.3906 8.4621 61.1898 10.0277 61.4971 11.2065
+\c 61.9035 12.7693 63.1555 15.2937 60.6762 15.9329
+\s
+\m 66.4565 3.7888
+\c 66.4565 3.7888 67.0097 1.0991 69.5041 1.6236
+\c 72.3495 2.2192 73.5598 4.3304 73.9396 5.4321
+\c 74.32 6.5359 73.7477 7.5911 72.5606 6.2886
+\c 71.3728 4.9854 71.7123 2.8223 71.7123 2.8223
+\c 70.6393 4.8577 72.426 7.3323 73.3044 7.307
+\c 74.1828 7.2824 74.7722 6.0127 73.9997 4.3175
+\c 73.398 2.9972 72.661 2.4979 72.661 2.4979
+\c 72.661 2.4979 73.1576 1.2227 75.2831 1.6086
+\c 77.4107 1.9938 77.5056 3.7724 77.5056 3.7724
+\c 78.6435 7.1567 79.8354 8.8308 80.7233 9.7712
+\c 81.6139 10.7111 82.286 11.8804 85.5242 13.3483
+\c 88.7596 14.8161 89.3539 15.3188 89.5109 16.3542
+\c 89.668 17.3896 89.0192 18.076 89.0192 18.076
+\l 89.3129 18.2899
+\c 89.8251 17.9784 90.2418 16.2593 89.2719 14.7266
+\c 88.302 13.1946 87.0521 13.0074 84.9231 12.1769
+\c 82.7921 11.3457 81.9076 10.776 80.7923 9.3233
+\c 79.6769 7.8691 79.3634 6.1698 78.6797 4.1849
+\c 77.9981 2.1994 77.492 2.6591 77.0466 2.0771
+\c 76.6006 1.4959 76.158 1.2862 76.158 1.2862
+\l 76.8854 0.8935
+\c 75.9306 0.623 75.2066 1.2384 75.2066 1.2384
+\c 73.3693 0.6223 72.437 2.2076 72.437 2.2076
+\c 67.0548 -1.2047 66.1608 3.6481 66.1608 3.6481
+\c 60.8879 3.129 62.0422 7.9238 62.0422 7.9238
+\c 62.0422 7.9238 61.9459 5.9943 62.7402 5.0824
+\c 63.5353 4.1686 65.9415 3.5804 68.2351 5.6691
+\c 70.5286 7.7585 69.8122 9.0397 68.2692 8.5644
+\c 66.7277 8.0891 65.893 5.6609 65.8821 4.7702
+\c 65.8821 4.7702 65.5269 5.5967 66.2776 7.1349
+\c 67.0268 8.6736 69.0909 9.8772 70.1714 8.5111
+\c 71.2526 7.1417 68.8778 4.3878 66.4565 3.7888
+\s
+\m 78.511 8.3485
+\c 78.511 8.3485 78.1449 8.2112 76.9681 7.798
+\c 75.7933 7.3854 73.2723 4.7087 75.8131 3.0032
+\c 75.8131 3.0032 75.1 4.6568 75.699 5.6799
+\c 76.38 6.8465 76.8178 7.356 77.6251 7.7051
+\c 78.4345 8.0534 78.511 8.3485 78.511 8.3485
+\s
+\m 79.9918 3.7768
+\c 79.9918 3.7768 81.4862 6.2589 83.1077 7.1774
+\c 84.7278 8.0968 88.9236 10.2053 88.4523 13.3397
+\c 88.4523 13.3397 88.2747 10.9675 86.294 10.1322
+\c 84.3036 9.2976 80.4118 8.2205 79.9918 3.7768
+\s
+\m 82.064 11.5901
+\c 82.064 11.5901 82.4602 14.1774 84.3781 15.4594
+\c 86.294 16.7421 88.0288 14.8371 88.0288 14.8371
+\c 88.0288 14.8371 87.2502 16.8643 84.6083 16.2701
+\c 82.0524 15.6971 82.064 11.5901 82.064 11.5901
+\s
+\m 87.8512 24.2739
+\c 87.8512 24.2739 89.8798 22.6559 88.8279 20.0863
+\c 87.7693 17.5161 84.2552 17.3195 84.0496 18.4396
+\c 83.8433 19.559 86.2666 20.4559 87.94 19.2209
+\l 88.2337 19.5085
+\c 88.2337 19.5085 86.9292 20.7339 84.7982 19.9046
+\c 82.6665 19.0728 83.6609 16.6679 85.712 16.8318
+\c 87.3868 16.967 89.0943 18.0742 89.6339 20.212
+\c 90.1735 22.3513 88.7255 24.0259 87.8512 24.2739
+\s
+\m 75.335 29.9757
+\c 77.8621 27.1559 79.724 29.85 80.963 29.5187
+\c 83.15 28.9325 82.6125 26.7236 82.1624 25.7708
+\c 81.6734 24.7381 80.0191 24.1233 79.9624 25.4621
+\c 79.905 26.8021 82.0436 28.076 82.0436 28.076
+\c 80.7212 27.5951 79.9795 26.7995 79.75 25.9866
+\c 79.5198 25.178 80.015 23.6043 81.7813 24.5196
+\c 83.5482 25.4347 83.1418 28.0459 83.1418 28.0459
+\c 84.6841 28.595 86.3623 28.1777 86.6218 25.6444
+\c 86.8882 23.1119 84.7442 21.4644 83.6418 21.1249
+\c 82.5408 20.7842 81.5286 21.7786 82.7177 23.23
+\c 83.9055 24.6814 86.2461 24.6151 86.2461 24.6151
+\l 86.2461 24.9122
+\c 86.2461 24.9122 84.4928 24.8884 83.3133 24.1787
+\c 82.1337 23.469 81.2383 22.0095 82.2498 20.9419
+\c 83.2607 19.8723 85.6888 20.9173 86.7379 22.8939
+\c 87.7829 24.8685 87.2297 27.113 85.9941 27.9639
+\c 84.7606 28.8164 82.9984 28.3457 82.9984 28.3457
+\c 82.9984 28.3457 82.146 30.4511 79.7971 29.9231
+\c 78.1743 29.559 77.7399 29.2385 76.7919 29.414
+\c 75.8432 29.5905 75.335 29.9757 75.335 29.9757
+\s
+\m 77.2748 0.9074
+\c 77.2748 0.9074 82.3427 0.3679 86.2871 3.9188
+\c 90.2349 7.4711 89.9071 12.729 89.5314 14.0261
+\c 89.5314 14.0261 89.9822 2.8246 77.2748 0.9074
+\s
+\m 73.0531 16.7461
+\c 73.0531 16.7461 72.5476 11.2649 67.3533 11.4868
+\l 67.7146 11.1044
+\c 67.7146 11.1044 71.728 10.0253 73.1726 14.5884
+\c 73.1726 14.5884 73.2634 16.072 73.0531 16.7461
+\s
+\m 73.5182 18.9605
+\c 73.5182 18.9605 76.2079 17.4742 77.5295 17.882
+\c 78.8525 18.2905 80.6359 20.5417 80.0041 22.7874
+\c 80.0041 22.7874 79.6195 21.239 78.6538 20.0028
+\c 77.6873 18.7693 76.367 18.5097 75.3439 18.6122
+\c 74.3207 18.7153 73.5182 18.9605 73.5182 18.9605
+\s
+\m 71.1679 16.2791
+\c 71.3592 15.9281 70.657 14.3633 69.332 13.6584
+\c 68.0063 12.9535 67.3294 13.418 67.3294 13.418
+\c 69.8688 13.7909 70.8756 16.2382 70.8756 16.2382
+\o
+\m 69.6988 15.7266
+\l 69.5014 15.5845
+\c 69.5014 15.5845 69.1633 15.8919 68.8177 15.5053
+\c 68.4707 15.1187 68.7617 14.8626 68.7617 14.8626
+\l 68.6114 14.6194
+\c 68.6114 14.6194 67.9345 15.133 68.5759 15.7594
+\c 69.2186 16.385 69.6988 15.7266 69.6988 15.7266
+\m 71.0149 17.6943
+\c 71.0149 17.6943 70.9391 17.5482 70.3517 17.3433
+\c 70.3517 17.3433 69.765 17.2852 69.6168 17.0659
+\c 69.6168 17.0659 69.6865 16.6924 70.0533 16.9068
+\c 70.0533 16.9068 70.4958 17.1158 70.4917 16.8187
+\c 70.4917 16.8187 70.265 16.1562 69.7527 16.1705
+\c 69.2405 16.1862 68.9283 16.5407 68.3587 15.9137
+\c 67.7583 15.2519 68.3396 14.2806 68.3396 14.2806
+\c 68.3396 14.2806 68.1149 13.8415 67.4544 13.7117
+\c 67.4544 13.7117 67.2358 13.7669 67.6067 14.2274
+\c 67.854 14.534 67.3929 14.6788 67.3929 14.6788
+\c 67.3929 14.6788 67.0152 13.724 66.5699 13.2165
+\c 66.5699 13.2165 67.5145 12.595 69.2794 13.3634
+\c 71.045 14.1304 72.1679 16.2518 71.2198 16.5762
+\c 71.2198 16.5762 71.5238 17.4587 71.0149 17.6943
+\s
+\m 77.6907 23.1253
+\c 77.6907 23.1253 77.6723 21.5913 76.7823 20.7252
+\c 75.8951 19.8592 75.2162 20.1255 75.2162 20.1255
+\c 77.4264 21.4977 77.6907 23.1253 77.6907 23.1253
+\m 76.2666 22.3733
+\l 75.9695 22.0352
+\c 75.9695 22.0352 75.682 22.3405 75.3855 22.0523
+\c 75.0891 21.7635 75.2291 21.3632 75.2291 21.3632
+\l 74.9832 21.122
+\c 74.4997 21.4321 74.7503 22.1192 75.292 22.4513
+\c 75.8329 22.7818 76.2666 22.3733 76.2666 22.3733
+\m 74.4983 21.3829
+\c 74.4956 21.137 74.5878 20.6883 74.5878 20.6883
+\c 74.3412 20.3981 74.0489 20.4561 74.0489 20.4561
+\l 74.206 21.3434
+\o
+\m 78.19 24.0522
+\c 78.19 24.0522 76.9175 23.792 76.2837 23.809
+\c 76.2837 23.809 75.9415 23.7195 75.8404 23.376
+\c 75.8404 23.376 76.5713 23.3555 77.061 23.4887
+\c 77.061 23.4887 77.007 23.0454 76.5146 22.762
+\c 76.5146 22.762 74.667 23.2599 74.5017 21.6309
+\l 73.9649 21.6473
+\c 73.9649 21.6473 73.8112 21.0066 73.4137 20.4739
+\l 73.2156 20.2321
+\c 73.2156 20.2321 74.1821 19.4623 75.4552 19.7724
+\c 76.7263 20.0839 77.6142 20.801 78.2822 23.6041
+\c 78.2822 23.6041 78.0882 23.7585 77.8936 23.7633
+\c 77.8936 23.7633 77.8949 23.9108 78.19 24.0522
+\s
+\m 72.1979 18.7017
+\c 72.1979 18.7017 71.0354 19.4018 70.3872 20.1641
+\c 70.3872 20.1641 70.237 19.8717 70.741 19.3369
+\c 71.2472 18.8014 72.1911 18.1819 72.1979 18.7017
+\s
+\m 71.1857 21.6766
+\c 71.1857 21.6766 72.0798 21.0817 72.2218 20.7054
+\c 72.3639 20.3304 72.7997 20.0961 72.7997 20.0961
+\c 72.7997 20.0961 73.0339 20.3987 72.7327 20.6159
+\c 72.2013 21.0038 71.9199 21.9532 71.1857 21.6766
+\s
+\m 71.5839 22.3575
+\c 71.5839 22.3575 71.924 22.2982 71.9281 22.6452
+\c 71.9322 22.9914 71.6904 23.197 71.6454 23.4457
+\c 71.5996 23.6935 71.5047 23.8951 70.9664 23.7619
+\c 70.4296 23.6287 69.9392 23.4449 69.5485 23.4538
+\c 69.1578 23.4654 68.7658 23.3282 68.5137 22.6424
+\c 68.2617 21.9573 67.9714 22.1138 67.7699 21.6732
+\c 67.5691 21.2333 67.8 20.1378 68.481 19.9206
+\c 69.1612 19.7027 69.2644 20.1467 69.2644 20.1467
+\c 69.2644 20.1467 68.6333 20.4609 68.6381 20.8079
+\c 68.6421 21.1541 69.0308 20.9943 69.0772 20.7949
+\c 69.1223 20.5961 69.556 20.088 69.8484 20.0805
+\c 69.8484 20.0805 70.1434 20.2198 70.1461 20.4178
+\c 70.1461 20.4178 69.5669 21.0292 69.4775 21.6247
+\c 69.386 22.2223 69.7794 22.4586 70.1236 22.6471
+\c 70.4672 22.8357 70.907 22.921 71.2035 23.1608
+\c 71.4999 23.3991 71.6337 22.553 71.5839 22.3575
+\s
+\m 68.537 24.5233
+\c 68.537 24.5233 68.7309 24.4687 68.7289 24.2207
+\c 68.7248 23.9728 68.2371 23.9372 68.2385 24.1852
+\c 68.2426 24.4332 68.537 24.5233 68.537 24.5233
+\m 69.2405 26.1878
+\c 69.2405 26.1878 68.7487 25.8544 68.5984 25.6612
+\c 68.4502 25.4672 68.1087 25.3778 68.0998 24.7835
+\c 68.0998 24.7835 67.5172 24.9482 67.2672 24.4605
+\c 67.0166 23.9721 66.6197 23.3403 66.3745 23.2474
+\c 66.13 23.1566 65.1472 22.5398 64.4614 22.4107
+\c 64.4614 22.4107 65.2899 22.2394 65.3842 21.988
+\c 65.4777 21.7387 65.9627 21.4285 66.4039 21.6129
+\c 66.4039 21.6129 66.2584 21.766 66.2632 22.0624
+\c 66.2666 22.3595 66.1225 22.5624 66.1225 22.5624
+\c 66.1225 22.5624 66.3636 22.3076 66.8527 22.492
+\c 66.8527 22.492 67.1484 22.6314 67.4414 22.7229
+\c 67.7337 22.8131 67.6893 23.0617 67.6893 23.0617
+\c 67.6893 23.0617 67.4961 23.216 67.6443 23.3608
+\c 67.7932 23.5043 68.1395 23.8915 68.1395 23.8915
+\c 68.1395 23.8915 68.4311 23.8827 68.4277 23.5862
+\c 68.4277 23.5862 68.9707 24.0657 68.9727 24.3136
+\c 68.9761 24.5616 68.8812 24.8109 69.2241 24.9003
+\c 69.2241 24.9003 69.6735 25.679 69.6762 25.976
+\c 69.6762 25.976 69.7213 25.6783 69.6694 25.3819
+\c 69.6694 25.3819 70.0574 25.2726 70.2575 25.5144
+\c 70.2575 25.5144 69.7281 26.1735 69.7384 27.0143
+\c 69.7384 27.0143 69.153 27.0805 69.2405 26.1878
+\s
+\m 68.2112 25.7707
+\l 68.3601 26.0637
+\c 68.3601 26.0637 67.5883 26.8273 66.5002 25.6218
+\c 65.4122 24.4142 64.9723 24.2285 65.2039 23.1827
+\c 65.2039 23.1827 65.5932 23.1212 65.546 23.3214
+\c 65.4989 23.5208 65.6499 23.8616 65.8978 24.1526
+\c 66.1444 24.4436 66.7905 25.3158 67.231 25.6
+\c 67.6757 25.8847 68.2112 25.7707 68.2112 25.7707
+\s
+\m 66.5077 26.2149
+\l 65.6936 25.4212
+\c 65.6936 25.4212 66.255 25.3802 66.5077 26.2149
+\s
+\m 65.4859 26.3923
+\c 65.4859 26.3923 64.5973 25.5256 64.3528 25.484
+\c 64.109 25.4409 63.7654 25.3015 63.1425 26.2114
+\c 63.1425 26.2114 63.0899 25.9655 63.3304 25.6116
+\c 63.5687 25.2586 64.249 24.9915 64.6431 25.3261
+\c 65.0386 25.6629 65.6779 26.1397 65.6779 26.1397
+\o
+\s
+\m 79.75 25.9868
+\l 79.6851 26.6581
+\c 79.6851 26.6581 77.66 28.6471 73.1405 30.1109
+\c 68.6223 31.576 65.0597 30.5139 63.0278 28.8384
+\c 60.5881 26.8282 58.1702 20.436 63.8542 12.4768
+\c 63.8542 12.4768 62.1371 15.6439 61.5969 19.4483
+\c 61.058 23.2492 61.8332 28.0215 66.3288 29.4873
+\c 70.5157 30.8547 77.9468 28.1185 79.75 25.9868
+\s
+\m 0 0
+\l 89.8566 0
+\l 89.8566 90.3472
+\l 0 90.3472
+\o
+\i
+\m 68.5725 40.7632
+\c 68.1791 40.4668 67.1942 40.9606 66.7024 41.9441
+\c 66.2093 42.9297 66.0132 44.7998 66.0132 44.7998
+\c 68.3765 43.0281 68.9666 41.0589 68.5725 40.7632
+\m 70.9364 50.6102
+\c 70.9364 50.6102 71.4288 50.2168 72.8065 48.0503
+\c 74.1848 45.8837 72.3147 44.7028 71.3298 46.7696
+\c 70.3449 48.8378 70.9364 50.6102 70.9364 50.6102
+\m 77.7303 55.0409
+\c 78.3211 53.2692 77.1395 52.9734 76.352 53.7616
+\c 75.5631 54.5491 74.8753 56.913 74.8753 56.913
+\c 74.8753 56.913 77.1395 56.8133 77.7303 55.0409
+\m 80.782 64.002
+\c 81.1761 61.6388 79.6011 62.4263 79.207 63.707
+\c 78.8122 64.9863 78.8122 67.3495 78.8122 67.3495
+\c 78.8122 67.3495 80.3879 66.3653 80.782 64.002
+\m 64.3392 36.9226
+\c 66.1068 36.7963 65.9149 35.1509 64.2401 35.545
+\c 62.5661 35.9391 61.6802 37.1207 61.6802 37.1207
+\c 61.6802 37.1207 62.9595 37.0216 64.3392 36.9226
+\m 59.4146 45.3913
+\c 61.3844 47.3611 65.0283 45.4903 65.0283 45.4903
+\c 64.9293 45.1932 65.7161 41.1573 67.5883 40.3698
+\c 69.4604 39.5816 69.2623 40.8629 68.6722 42.4379
+\c 68.08 44.0123 66.1109 45.0962 66.1109 45.0962
+\c 66.1109 45.0962 65.4224 46.9677 66.7024 49.5263
+\c 67.983 52.0876 69.7541 51.1027 69.7541 51.1027
+\c 69.6557 49.3309 70.3449 45.9821 72.019 45.2929
+\c 73.6924 44.6045 73.9888 46.4746 73.1999 48.247
+\c 72.4124 50.0194 70.7397 51.201 70.7397 51.201
+\c 71.0347 57.5039 74.3822 57.1098 74.3822 57.1098
+\c 74.4812 54.6475 76.449 52.3833 77.3362 52.6777
+\c 78.2228 52.9734 78.4188 54.2527 77.5329 55.8291
+\c 76.6471 57.4041 74.9744 57.5039 74.9744 57.5039
+\c 74.9744 57.5039 74.0871 62.0329 75.0727 65.1843
+\c 76.0569 68.3351 78.3211 67.6446 78.3211 67.6446
+\c 78.3211 67.6446 78.4202 62.9188 79.5027 62.1306
+\c 80.5867 61.3438 81.3735 62.2303 81.0785 64.1994
+\c 80.782 66.1672 78.9133 67.8419 78.9133 67.8419
+\c 78.9133 67.8419 78.4202 70.2052 80.1926 77.4922
+\c 81.9636 84.778 86.1983 87.831 86.1983 87.831
+\c 86.1983 87.831 83.1466 83.6947 82.9492 75.03
+\c 82.7518 66.3653 84.3269 60.3589 85.4108 54.2527
+\c 86.492 48.1493 86.8882 37.1207 81.0785 33.1817
+\c 75.2687 29.2425 71.5272 33.0834 71.5272 33.0834
+\c 73.5954 35.1509 73.8904 36.9233 73.0046 37.6131
+\c 72.118 38.3016 71.3298 37.9082 70.8367 36.5299
+\c 70.3449 35.1509 70.9364 33.3785 70.9364 33.3785
+\c 66.5043 30.6211 60.9897 32.4919 60.4986 34.461
+\c 60.0061 36.4308 61.2868 36.8243 61.2868 36.8243
+\c 64.3392 33.8716 66.7024 35.545 65.6184 36.8243
+\c 64.5359 38.1056 61.0894 37.4157 61.0894 37.4157
+\c 58.233 39.0905 57.4448 43.4235 59.4146 45.3913
+\m 71.4288 36.9226
+\c 71.9206 38.0066 73.1999 37.6131 72.9055 36.2334
+\c 72.6105 34.8551 71.3298 33.5758 71.3298 33.5758
+\c 71.1331 34.0676 70.9364 35.84 71.4288 36.9226
+\m 60.7943 37.0216
+\c 60.7943 37.0216 59.317 36.3325 60.0061 33.9693
+\c 60.696 31.606 65.6184 29.1449 71.1331 32.9844
+\c 71.1331 32.9844 72.8065 30.4244 77.0405 31.1129
+\c 81.2752 31.8034 85.2155 34.3961 86.7926 44.9979
+\c 88.2679 54.9432 83.1453 66.5627 83.6391 76.704
+\c 84.1315 86.8475 88.4659 90.3903 88.4659 90.3903
+\c 88.4659 90.3903 76.5501 81.7269 78.5192 68.0393
+\c 78.5192 68.0393 75.4661 69.0249 74.0871 64.4938
+\c 72.7095 59.9654 74.3822 57.5039 74.3822 57.5039
+\c 74.3822 57.5039 70.2465 57.6022 70.0492 51.7918
+\c 70.0492 51.7918 64.8309 52.6784 65.0283 45.9828
+\c 65.0283 45.9828 60.7943 48.0503 58.3327 45.1953
+\c 55.8698 42.3396 58.6264 37.9082 60.7943 37.0216
+\s
+
+\m 0 0
+\l 89.8566 0
+\l 89.8566 90.3472
+\l 0 90.3472
+\o
+\i
+\m 49.5854 19.8329
+\c 49.8805 20.2263 49.3873 21.2106 48.4045 21.703
+\c 47.4182 22.1955 45.5481 22.3929 45.5481 22.3929
+\c 47.3205 20.0297 49.2896 19.4395 49.5854 19.8329
+\m 39.7391 17.4697
+\c 39.7391 17.4697 40.1325 16.9766 42.2976 15.5982
+\c 44.4655 14.2199 45.6471 16.0907 43.579 17.0763
+\c 41.5115 18.0598 39.7391 17.4697 39.7391 17.4697
+\m 35.3077 10.6751
+\c 37.0787 10.085 37.3758 11.2659 36.5876 12.0527
+\c 35.7994 12.8416 33.4362 13.5301 33.4362 13.5301
+\c 33.4362 13.5301 33.5346 11.2659 35.3077 10.6751
+\m 26.3472 7.6228
+\c 28.7104 7.2293 27.9222 8.8043 26.643 9.1992
+\c 25.3616 9.5925 22.9991 9.5925 22.9991 9.5925
+\c 22.9991 9.5925 23.984 8.0168 26.3472 7.6228
+\m 53.4253 24.0663
+\c 53.5516 22.2979 55.1977 22.4919 54.8043 24.166
+\c 54.4102 25.8387 53.2279 26.7245 53.2279 26.7245
+\c 53.2279 26.7245 53.3269 25.4452 53.4253 24.0663
+\m 44.9573 28.9901
+\c 42.9882 27.0203 44.8589 23.3778 44.8589 23.3778
+\c 45.154 23.4754 49.1913 22.6886 49.9795 20.8165
+\c 50.767 18.9464 49.4857 19.1438 47.912 19.7332
+\c 46.3356 20.3254 45.2524 22.2945 45.2524 22.2945
+\c 45.2524 22.2945 43.3816 22.9844 40.821 21.703
+\c 38.2617 20.4231 39.2459 18.652 39.2459 18.652
+\c 41.0183 18.7491 44.3658 18.0605 45.0536 16.3858
+\c 45.7448 14.7131 43.874 14.4159 42.1023 15.2048
+\c 40.3278 15.9923 39.1469 17.665 39.1469 17.665
+\c 32.8454 17.3707 33.2381 14.0225 33.2381 14.0225
+\c 35.7011 13.9255 37.9646 11.9557 37.6702 11.0685
+\c 37.3758 10.1819 36.0945 9.9859 34.5195 10.8719
+\c 32.9438 11.7577 32.8447 13.4324 32.8447 13.4324
+\c 32.8447 13.4324 28.3163 14.319 25.1649 13.3341
+\c 22.0142 12.3491 22.7047 10.085 22.7047 10.085
+\c 22.7047 10.085 27.4305 9.9859 28.218 8.9027
+\c 29.0048 7.8194 28.1183 7.0319 26.1491 7.3263
+\c 24.1814 7.6228 22.5066 9.4942 22.5066 9.4942
+\c 22.5066 9.4942 20.1434 9.9859 12.857 8.2135
+\c 5.5699 6.4411 2.5182 2.2064 2.5182 2.2064
+\c 2.5182 2.2064 6.6532 5.2595 15.3179 5.4555
+\c 23.984 5.6536 29.9897 4.0779 36.0945 2.9939
+\c 42.2 1.912 53.2279 1.5186 57.1675 7.3263
+\c 61.1065 13.1367 57.2652 16.8782 57.2652 16.8782
+\c 55.1977 14.8107 53.4239 14.515 52.7354 15.4015
+\c 52.047 16.2888 52.4404 17.0763 53.8187 17.5681
+\c 55.1977 18.0605 56.9688 17.4697 56.9688 17.4697
+\c 59.7261 21.9004 57.856 27.4151 55.8869 27.9061
+\c 53.9177 28.3993 53.5243 27.1194 53.5243 27.1194
+\c 56.477 24.0663 54.8043 21.703 53.5243 22.7863
+\c 52.243 23.8703 52.9322 27.3174 52.9322 27.3174
+\c 51.2595 30.1717 46.9264 30.9599 44.9573 28.9901
+\m 53.4253 16.9766
+\c 52.3407 16.4855 52.7368 15.2048 54.1138 15.5
+\c 55.4921 15.7956 56.7727 17.0763 56.7727 17.0763
+\c 56.2817 17.2716 54.5086 17.4697 53.4253 16.9766
+\m 53.3269 27.6104
+\c 53.3269 27.6104 54.0161 29.0884 56.3793 28.3993
+\c 58.7426 27.7108 61.2041 22.7863 57.3629 17.2716
+\c 57.3629 17.2716 59.9242 15.5982 59.2343 11.3642
+\c 58.5445 7.1302 55.9531 3.1913 45.3514 1.6156
+\c 35.406 0.1396 23.7859 5.2595 13.6432 4.767
+\c 3.5018 4.2752 -0.0431 -0.0578 -0.0431 -0.0578
+\c -0.0431 -0.0578 8.6217 11.8567 22.3086 9.887
+\c 22.3086 9.887 21.3237 12.9387 25.8541 14.319
+\c 30.3825 15.6966 32.8447 14.0225 32.8447 14.0225
+\c 32.8447 14.0225 32.7464 18.1589 38.5554 18.3556
+\c 38.5554 18.3556 37.6695 23.5738 44.3651 23.3778
+\c 44.3651 23.3778 42.2976 27.6118 45.1533 30.0727
+\c 48.009 32.5349 52.4404 29.7783 53.3269 27.6104
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian196.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian196.pgf
new file mode 100644
index 0000000000..10c9b1e57a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian196.pgf
@@ -0,0 +1,441 @@
+\m 60.9275 27.0527
+\c 60.9275 27.0527 60.336 23.7769 64.2504 22.611
+\c 68.1654 21.4472 70.9706 22.8303 73.2593 20.4281
+\c 73.2593 20.4281 72.5961 21.1555 70.1585 21.301
+\c 67.7208 21.4472 60.4091 20.4281 60.9275 27.0527
+\s
+\m 73.5558 21.3748
+\c 73.5558 21.3748 72.5217 23.057 69.7152 23.2018
+\c 66.9101 23.3473 64.3979 23.0325 63.0688 24.9244
+\c 61.739 26.8184 63.3652 28.8005 64.8412 29.0191
+\c 66.3179 29.2383 66.8356 28 66.8356 28
+\c 66.8356 28 66.0973 29.0922 64.6944 28.7288
+\c 63.2908 28.3641 62.1836 26.3519 63.9547 25.0139
+\c 64.8672 24.3261 68.8293 24.0385 69.5677 24.0385
+\c 70.3067 24.0385 73.1869 23.3405 73.5558 21.3748
+\s
+\m 77.425 25.9278
+\c 77.0419 25.3991 76.0802 25.5821 76.4668 26.5028
+\c 76.8506 27.416 77.7133 27.4645 77.7133 27.4645
+\c 77.7133 27.4645 77.8096 26.4544 77.425 25.9278
+\m 81.1379 28.1264
+\c 80.0587 28.9187 77.9284 27.8723 77.9284 27.8723
+\c 75.124 31.1856 71.8872 28.5922 71.8872 28.5922
+\c 71.8872 28.5922 73.2839 29.6775 75.0516 29.241
+\c 76.8028 28.8101 77.617 27.7043 77.617 27.7043
+\c 77.3287 27.7043 76.4668 27.4406 76.1779 26.5028
+\c 75.8555 25.4537 77.0439 24.8076 77.8567 25.9278
+\c 78.4325 26.7187 78.0022 27.6565 78.0022 27.6565
+\c 79.7275 28.5922 81.127 27.5178 80.3736 26.4304
+\c 79.8088 25.6149 78.3908 25.4531 76.9531 24.8766
+\c 75.5147 24.2994 74.764 22.54 74.764 22.54
+\c 76.2031 24.3418 77.6422 24.8274 79.6558 25.0617
+\c 81.4227 25.2686 82.2171 27.3334 81.1379 28.1264
+\m 71.5361 27.7275
+\c 71.5361 27.7275 72.1358 27.4276 72.3072 26.6026
+\c 72.4787 25.7789 70.9706 25.4824 71.1079 26.6791
+\c 71.1925 27.4276 71.5361 27.7275 71.5361 27.7275
+\m 70.5929 24.7017
+\c 68.9379 25.1341 68.2911 25.6382 68.2911 26.647
+\c 68.2911 27.6565 69.8737 28.5922 71.3838 27.8723
+\c 71.3838 27.8723 70.6011 27.4372 70.6011 26.5008
+\c 70.6011 25.2741 72.6788 25.0549 72.7594 26.4284
+\c 72.8311 27.6537 71.5996 28.0895 71.5996 28.0895
+\c 71.1686 28.4474 68.3376 28.9726 67.4011 27.3874
+\c 66.5201 25.8929 68.1347 24.5446 69.8013 24.3418
+\c 72.1747 24.0536 72.9663 22.8282 72.9663 22.8282
+\c 72.9663 22.8282 72.2464 24.2694 70.5929 24.7017
+\s
+\m 81.0894 28.4371
+\c 81.0894 28.4371 82.7867 29.3121 84.1165 28.0007
+\c 85.4464 26.6914 83.8946 23.7052 81.4569 23.6321
+\c 79.0213 23.5591 76.9524 23.9976 74.2948 21.4479
+\c 74.2948 21.4479 75.6226 23.5591 77.617 24.07
+\c 79.6121 24.5795 82.6078 23.7469 83.7962 26.0083
+\c 84.8303 27.9741 83.0831 28.9474 81.0894 28.4371
+\s
+\m 86.1601 27.1401
+\c 86.1601 27.1401 86.9476 25.2201 85.5939 23.6076
+\c 83.9232 21.6173 80.9897 22.0742 78.4796 21.9711
+\c 76.5378 21.8911 74.8549 20.9103 74.4915 20.3953
+\c 74.4915 20.3953 75.4573 21.592 76.8547 22.1179
+\c 78.2522 22.6438 82.6672 22.4574 84.6336 23.5953
+\c 86.6874 24.7858 86.1601 27.1401 86.1601 27.1401
+\s
+\m 86.5037 8.2688
+\c 86.5037 8.2688 87.3909 7.346 86.7502 5.8407
+\c 85.9661 3.9958 84.1903 2.1046 88.5718 0.8901
+\c 88.5718 0.8901 87.3417 0.6968 85.8637 1.9099
+\c 84.387 3.1236 85.5693 4.9206 85.9142 5.5988
+\c 86.2585 6.2791 86.8978 7.0544 86.5037 8.2688
+\s
+\m 72.8181 2.8813
+\c 72.8181 2.8813 73.3338 3.5991 74.1466 3.6558
+\c 74.9601 3.7098 75.7708 2.8813 75.7708 2.8813
+\c 75.7708 2.8813 74.221 3.8765 72.8181 2.8813
+\s
+\m 76.2154 4.5549
+\c 76.2154 4.5549 75.7469 4.4093 75.3774 4.046
+\c 75.0079 3.6819 74.2203 3.5358 73.4082 3.9006
+\c 72.5968 4.2645 72.5968 4.4824 72.0777 4.4824
+\c 72.0777 4.4824 72.1522 4.9202 72.5224 4.7735
+\c 72.5224 4.7735 73.3638 4.238 74.1473 4.1424
+\c 75.3282 3.9968 75.4764 5.0658 76.2154 4.5549
+\s
+\m 73.704 13.8749
+\c 73.704 13.8749 73.1132 13.4378 71.711 14.3119
+\c 71.711 14.3119 71.6372 13.8032 71.1925 13.9473
+\c 71.1925 13.9473 70.2322 14.8939 67.4995 14.2389
+\l 67.4257 14.603
+\c 67.4257 14.603 66.6874 14.3844 66.2441 13.657
+\c 66.2441 13.657 65.4327 14.1658 67.4995 15.0394
+\c 69.5677 15.9134 71.9309 14.8939 73.704 13.8749
+\s
+\m 66.3179 12.2728
+\c 66.3179 12.2728 66.7618 13.1471 68.0917 13.5842
+\c 68.0917 13.5842 68.0172 13.3656 68.4605 13.3656
+\c 68.9031 13.3656 71.1925 12.856 72.2266 12.2003
+\c 72.2266 12.2003 72.4479 11.3992 71.711 11.2544
+\c 71.711 11.2544 71.3408 11.6178 71.9309 11.8363
+\c 71.9309 11.8363 71.711 12.2003 71.3408 12.0549
+\c 70.9706 11.9094 70.7493 11.5454 70.7493 11.5454
+\c 70.7493 11.5454 70.3804 11.9094 71.0443 12.3452
+\l 69.789 12.4914
+\c 69.789 12.4914 69.4208 11.9094 68.9775 12.4914
+\c 68.9775 12.4914 68.7549 12.0549 69.0513 11.9094
+\c 69.6865 11.5966 69.9365 12.1266 69.9365 12.1266
+\l 70.3804 12.0549
+\c 70.3804 12.0549 70.196 11.5454 69.5308 11.4723
+\c 68.7931 11.3917 68.4605 11.9094 68.4605 12.4914
+\c 68.4605 12.4914 67.8697 12.6375 67.13 11.8363
+\l 66.7618 12.0549
+\c 66.7618 12.0549 66.9101 12.5651 67.4257 12.7106
+\c 67.4257 12.7106 66.6143 12.6375 66.3179 12.2728
+\s
+\m 78.3799 11.7144
+\c 78.1074 11.7916 78.0514 12.0833 78.0384 12.2
+\c 78.4865 12.2417 78.9673 12.2512 79.4085 12.2445
+\c 79.3457 11.6201 78.7084 11.6215 78.3799 11.7144
+\m 81.4835 12.2486
+\c 79.1203 13.6077 77.7905 12.8797 77.7905 12.8797
+\c 77.7905 12.8797 76.9524 12.5402 76.3131 12.4425
+\c 75.6731 12.3455 75.9689 11.812 75.9689 11.812
+\c 76.2147 11.6672 75.9689 11.4241 75.9689 11.4241
+\c 76.2147 10.9392 76.5098 11.3265 76.5098 11.3265
+\c 77.2488 11.3265 77.0023 12.0067 77.0023 12.0067
+\c 77.2106 12.0744 77.4531 12.1256 77.7126 12.1617
+\c 77.7707 11.907 77.9783 11.3873 78.7262 11.4241
+\c 79.455 11.4597 79.6162 11.9746 79.651 12.2396
+\c 80.4324 12.2178 81.0396 12.1509 81.0396 12.1509
+\o
+\s
+\m 79.2665 13.4147
+\c 79.2665 13.4147 77.9865 14.1428 76.9524 12.9762
+\c 76.9524 12.9762 77.3458 13.0124 77.9387 13.1585
+\c 78.5281 13.304 79.2665 13.4147 79.2665 13.4147
+\s
+\m 81.8271 13.3173
+\c 81.8271 13.3173 79.9071 15.4046 76.4101 13.4149
+\c 76.4101 13.4149 76.9428 14.1889 78.9222 14.5795
+\c 80.6461 14.9196 81.8271 13.3173 81.8271 13.3173
+\s
+\m 82.0238 13.6567
+\c 82.0238 13.6567 81.0894 14.8207 79.1203 14.8207
+\c 77.1505 14.8207 75.6731 13.6567 75.6731 13.6567
+\c 75.6731 13.6567 75.5748 13.9962 76.363 14.4341
+\c 77.1505 14.8698 78.7262 15.6955 80.4481 15.1129
+\c 82.172 14.5303 82.0238 13.6567 82.0238 13.6567
+\s
+\m 76.436 8.6322
+\c 76.436 8.6322 76.2154 8.1234 75.6233 7.9048
+\c 75.0338 7.6849 74.3686 7.1036 73.704 7.4684
+\c 73.0387 7.831 72.6699 8.4874 72.1529 8.4874
+\c 72.1529 8.4874 71.7834 8.8508 72.4479 9.7974
+\c 72.4479 9.7974 73.0387 10.0898 73.0387 10.4531
+\c 73.0387 10.4531 73.5558 10.671 73.4076 10.3076
+\c 73.26 9.9428 72.7444 9.361 72.7444 9.361
+\c 72.7444 9.361 73.0387 8.9963 73.3338 8.6322
+\c 73.6302 8.2688 74.221 8.1234 75.0338 8.4874
+\c 75.8452 8.8508 76.2154 9.361 75.2551 9.6513
+\c 75.2551 9.6513 75.3658 10.1185 75.697 10.2667
+\c 75.697 10.2667 75.7708 9.9326 76.0672 9.7114
+\c 76.3636 9.4914 76.5098 9.1042 76.436 8.6322
+\s
+\m 74.9833 5.9382
+\l 74.3938 5.9382
+\c 74.3938 5.9382 74.2948 6.2298 74.7374 6.2298
+\l 75.4272 6.279
+\c 75.4272 6.279 75.2797 5.9867 74.9833 5.9382
+\m 73.482 5.9867
+\c 73.3058 5.9867 73.1624 6.0523 73.1624 6.1336
+\c 73.1624 6.2135 73.3058 6.279 73.482 6.279
+\c 73.6596 6.279 73.8023 6.2135 73.8023 6.1336
+\c 73.8023 6.0523 73.6596 5.9867 73.482 5.9867
+\m 78.2337 5.7449
+\c 77.9387 5.9382 77.6429 5.9382 77.4455 6.279
+\c 77.2488 6.6178 76.7065 6.8616 76.5597 6.8125
+\c 76.4108 6.7646 76.7065 6.2298 76.3131 6.2298
+\c 75.919 6.2298 75.1813 6.7646 75.1813 6.7646
+\c 75.1813 6.7646 74.5899 6.279 74.2456 6.279
+\l 73.6056 6.6178
+\c 73.1624 6.1814 71.7342 6.376 71.7342 6.376
+\l 71.7834 6.6178
+\c 71.7834 6.8616 71.3899 7.0064 71.3899 7.0064
+\c 71.3899 7.0064 71.3408 5.9867 70.3559 5.2593
+\c 70.3559 5.2593 70.11 4.8706 70.4044 4.7258
+\c 70.4044 4.7258 71.0443 5.2593 71.3408 5.4048
+\c 71.6372 5.551 73.4581 5.3078 74.3938 4.7737
+\c 74.3938 4.7737 74.6397 5.1623 75.4272 5.2101
+\c 76.2154 5.2593 76.9531 5.3563 77.397 5.6479
+\c 77.397 5.6479 78.1846 5.4048 78.3806 5.2593
+\c 78.3806 5.2593 78.5281 5.551 78.2337 5.7449
+\s
+\m 56.4224 13.8476
+\c 56.4224 13.8476 55.684 13.3299 54.0592 13.183
+\c 52.4349 13.0361 51.4739 15.5459 53.0251 15.6197
+\c 54.5755 15.6935 56.1266 14.2902 56.4224 13.8476
+\m 21.4173 20.4937
+\c 21.4173 20.4937 22.2294 22.2661 24.8146 22.8569
+\c 27.3991 23.4484 28.0637 21.8973 25.4791 21.1589
+\c 22.8946 20.4199 21.4173 20.4937 21.4173 20.4937
+\m 31.978 16.8758
+\c 31.978 16.8758 32.3468 18.7957 33.8242 19.6816
+\c 35.3009 20.5681 36.7775 19.7547 36.2605 19.0908
+\c 35.7441 18.4262 34.4143 17.319 31.978 16.8758
+\m 38.7719 12.6666
+\c 38.7719 12.6666 39.5847 14.0695 41.504 15.0285
+\c 43.4253 15.9899 44.68 15.9148 44.68 15.1036
+\c 44.68 14.2902 42.8338 12.5929 38.7719 12.6666
+\m 44.68 8.0126
+\c 44.68 8.0126 45.7885 9.8594 47.0432 10.746
+\c 48.2986 11.6319 49.037 11.3368 49.1107 10.6729
+\c 49.1852 10.0077 48.5944 9.3432 44.68 8.0126
+\m 57.7515 5.3304
+\c 56.5699 2.5724 54.7975 1.8839 53.0251 3.2629
+\c 53.0251 3.2629 54.6008 4.8372 54.5017 7.3985
+\c 54.5017 7.3985 54.6008 8.5802 53.5175 8.5802
+\c 52.4343 8.5802 51.4494 6.1186 52.631 3.2629
+\c 52.631 3.2629 49.7261 0.4571 47.2154 0.8
+\c 44.1117 1.2262 42.6856 4.0019 44.2128 7.2012
+\c 44.2128 7.2012 47.658 7.9881 48.9386 9.5644
+\c 50.2186 11.1387 48.7419 12.1735 47.4128 11.4352
+\c 46.0829 10.6961 45.2947 9.5146 44.2613 8.087
+\c 44.2613 8.087 38.3048 7.251 38.1566 11.7801
+\c 38.1566 11.7801 41.7997 11.9775 43.8187 13.502
+\c 45.837 15.0285 44.9512 16.1613 43.6705 16.1122
+\c 42.3912 16.063 39.4864 15.2751 38.3048 12.5192
+\c 38.3048 12.5192 33.8734 12.3709 32.0518 16.2597
+\c 32.0518 16.2597 34.5625 16.8006 35.99 18.2281
+\c 37.4182 19.6577 36.4825 20.7888 34.5625 20.297
+\c 32.6426 19.8045 31.7567 17.9829 31.6577 16.8512
+\c 31.6577 16.8512 28.0145 16.4072 26.0454 16.7528
+\c 23.01 17.2828 21.5641 18.4262 21.2199 19.9521
+\c 21.2199 19.9521 25.1096 20.297 26.5863 21.2819
+\c 28.0637 22.2661 27.7679 23.3992 25.5529 23.3002
+\c 23.3372 23.2012 21.5641 21.8235 20.8756 20.3462
+\c 20.8756 20.3462 16.6908 20.6419 11.3729 22.2661
+\c 6.0563 23.891 2.2649 26.7965 1.2315 27.7323
+\c 1.2315 27.7323 8.6162 24.4333 20.0383 24.9244
+\c 31.461 25.4169 38.1566 29.2574 45.0495 28.1755
+\c 51.9425 27.0916 55.6834 25.0221 57.2591 21.4793
+\c 58.8341 17.9331 58.6374 15.4715 56.6683 13.9951
+\c 56.6683 13.9951 55.486 15.9646 53.1227 15.9646
+\c 50.7595 15.9646 51.9411 11.2385 56.1758 13.405
+\c 56.1758 13.405 56.5699 13.9951 57.1607 12.5178
+\c 57.7515 11.0417 58.9331 8.087 57.7515 5.3304
+\m 52.8775 3.5826
+\c 52.8775 3.5826 52.3605 5.133 52.5818 6.6841
+\c 52.8038 8.2353 53.3208 8.087 53.6896 8.087
+\c 54.0592 8.087 54.945 6.9054 52.8775 3.5826
+\m 56.9633 13.6993
+\c 57.9482 14.0934 60.0157 16.9489 57.8499 21.2819
+\c 55.684 25.6149 51.7451 27.7794 42.9814 29.0601
+\c 34.2176 30.3407 26.3404 26.3027 17.4783 25.6149
+\c 8.6162 24.9244 0 28.5191 0 28.5191
+\c 10.8319 18.2773 21.0225 20.0019 21.0225 20.0019
+\c 22.2041 13.405 31.756 16.2597 31.756 16.2597
+\c 33.4294 11.3368 37.9592 11.9269 37.9592 11.9269
+\c 37.369 6.0189 43.8679 7.0038 43.8679 7.0038
+\c 43.8679 7.0038 41.7014 2.7698 45.0495 0.7023
+\c 49.0014 -1.7388 52.9267 2.9672 52.9267 2.9672
+\c 54.8958 0.7023 58.7364 3.2615 58.9331 7.3985
+\c 59.1298 11.5321 56.9633 13.6993 56.9633 13.6993
+\s
+\m 91.7875 14.7661
+\c 91.7875 14.7661 92.508 14.2578 94.1063 14.1295
+\c 95.7039 14.0031 96.6881 16.5261 95.1602 16.5807
+\c 93.635 16.6347 92.0853 15.2128 91.7875 14.7661
+\m 125.876 21.8502
+\c 125.876 21.8502 125.1711 23.6123 122.8577 24.1717
+\c 120.5437 24.7291 119.9256 23.1711 122.2376 22.4642
+\c 124.5489 21.758 125.876 21.8502 125.876 21.8502
+\m 115.9115 18.099
+\c 115.9115 18.099 115.3808 19.5231 113.9383 20.3892
+\c 112.4971 21.258 111.03 20.4261 111.5286 19.7697
+\c 112.0286 19.1106 113.5175 18.5116 115.9115 18.099
+\m 109.1558 13.8051
+\c 109.1558 13.8051 108.5739 14.9027 106.697 15.8383
+\c 104.82 16.7733 103.5817 16.6852 103.5701 15.8717
+\c 103.5578 15.0611 105.154 13.6808 109.1558 13.8051
+\m 103.1685 8.9802
+\c 103.1685 8.9802 102.1037 10.8121 100.8811 11.683
+\c 99.6578 12.5538 98.9256 12.2484 98.8437 11.5839
+\c 98.7617 10.9173 99.3327 10.2595 103.1685 8.9802
+\m 90.3504 6.2325
+\c 91.474 3.4895 93.2088 2.8222 94.9751 4.223
+\c 94.9751 4.223 93.4957 5.7243 93.4841 8.0445
+\c 93.4841 8.0445 93.4048 9.2255 94.4731 9.2377
+\c 95.5386 9.252 96.5699 7.0978 95.3637 4.2272
+\c 95.3637 4.2272 97.8519 0.8831 100.9139 1.3646
+\c 103.9758 1.8476 105.0721 4.9914 103.6166 8.1736
+\c 103.6166 8.1736 100.2336 8.9174 98.9973 10.4774
+\c 97.7597 12.0368 99.2296 13.0885 100.5287 12.3673
+\c 101.8264 11.6467 102.5852 10.4733 103.5817 9.0595
+\c 103.5817 9.0595 109.5356 8.3949 109.7493 12.9267
+\c 109.7493 12.9267 106.3609 12.7819 104.3945 14.2838
+\c 102.4295 15.7843 103.3188 16.9277 104.5796 16.8949
+\c 105.8391 16.8614 108.4926 16.4052 109.6141 13.6636
+\c 109.6141 13.6636 113.9772 13.5708 115.8302 17.483
+\c 115.8302 17.483 113.1678 17.5007 111.7834 18.9112
+\c 110.3968 20.3202 111.3367 21.4649 113.2197 20.9971
+\c 115.1049 20.5292 116.1471 19.2103 116.227 18.0792
+\c 116.227 18.0792 118.7849 17.3231 121.7547 18.0506
+\c 124.7231 18.7773 126.2352 19.4371 126.5549 21.3113
+\c 126.5549 21.3113 122.7287 21.6077 121.2889 22.5742
+\c 119.8484 23.5399 120.1687 24.8404 122.338 24.6054
+\c 123.9226 24.4333 125.8248 23.3405 126.4825 21.8727
+\c 126.4825 21.8727 131.0273 22.0578 136.2885 23.7483
+\c 141.5505 25.4401 145.3289 28.3927 146.3616 29.3401
+\c 146.3616 29.3401 139.0377 25.9496 127.7932 26.2993
+\c 116.5494 26.6483 109.5574 30.2307 102.7505 29.0607
+\c 95.9456 27.8914 92.338 26.0357 90.7329 22.471
+\c 89.1278 18.9064 89.6305 16.3615 91.5477 14.9102
+\c 91.5477 14.9102 92.7409 16.8935 95.0693 16.9229
+\c 97.3977 16.9536 96.1622 12.2123 92.0245 14.3248
+\c 92.0245 14.3248 91.6447 14.9102 91.0402 13.426
+\c 90.4358 11.9418 89.2282 8.9741 90.3504 6.2325
+\m 95.1253 4.544
+\c 95.1253 4.544 95.5591 5.8069 95.3644 7.3547
+\c 95.1697 8.9037 94.6575 8.7487 94.2941 8.7446
+\c 93.9308 8.7392 93.1391 7.8424 95.1253 4.544
+\m 91.252 14.6097
+\c 90.2882 14.9928 87.9482 17.9071 90.1482 22.2661
+\c 92.3462 26.6265 95.6745 28.556 104.3255 29.948
+\c 112.978 31.3365 121.6065 27.5977 130.3251 27.0199
+\c 139.0438 26.4414 147.5849 30.1433 147.5849 30.1433
+\c 136.7625 19.7677 126.7489 21.3625 126.7489 21.3625
+\c 125.4867 14.7517 116.1205 17.4864 116.1205 17.4864
+\c 114.3986 12.5429 109.9447 13.0756 109.9447 13.0756
+\c 110.4324 7.8902 103.954 7.9803 103.954 7.9803
+\c 103.954 7.9803 106.3759 3.4034 103.0463 1.2929
+\c 99.1176 -1.1967 95.0693 3.9293 95.0693 3.9293
+\c 93.0941 1.6392 89.3505 4.1513 89.2173 8.2835
+\c 89.0855 12.4178 91.252 14.6097 91.252 14.6097
+\s
+\m 86.6027 8.9478
+\c 85.6683 8.6089 83.7969 8.8016 83.9444 9.6765
+\c 84.0926 10.5494 85.2237 10.0645 85.2237 10.0645
+\c 85.124 10.2229 84.7948 10.3411 84.458 10.326
+\c 84.5748 10.9332 84.6192 11.4155 84.6336 11.746
+\c 84.7551 11.7112 84.8829 11.6832 85.0263 11.6668
+\c 86.2585 11.5214 87.3902 12.3949 87.3902 12.3949
+\c 88.6709 10.5985 87.5391 9.2879 86.6027 8.9478
+\m 84.5359 13.7534
+\c 85.7155 13.8511 86.503 12.9618 86.503 12.9618
+\c 86.503 12.9618 86.1601 12.7153 84.9778 12.6654
+\c 83.7969 12.6162 83.3543 13.6571 84.5359 13.7534
+\m 82.5176 16.3751
+\c 81.7786 17.1517 82.4179 18.2193 83.8946 18.2684
+\c 85.1458 18.3101 86.8192 17.7248 87.3035 17.5438
+\c 87.1266 17.2986 86.9169 17.0779 86.7017 16.9004
+\c 85.2237 15.6873 83.2553 15.5979 82.5176 16.3751
+\m 88.0794 16.2781
+\c 88.524 13.9467 87.1935 13.3559 87.1935 13.3559
+\c 85.8999 14.1202 85.2032 14.2479 84.6807 14.1031
+\c 84.6821 14.3975 84.6513 14.8339 84.6384 14.9986
+\c 84.7039 15.0061 84.7668 15.0177 84.8296 15.0286
+\c 86.503 15.3694 88.3758 16.8334 88.1784 19.017
+\c 87.9824 21.202 85.5693 21.5196 83.7457 21.2785
+\c 82.312 21.0866 81.5204 20.6849 81.2486 20.5224
+\c 80.6489 20.9247 79.7015 21.0954 78.4796 20.9377
+\c 76.2154 20.6474 75.1308 19.1898 75.1308 19.1898
+\c 79.5622 21.3256 81.976 19.4815 81.4842 18.5587
+\c 80.9897 17.6373 79.1674 17.3457 79.1674 17.3457
+\c 79.8094 17.3457 81.8776 17.6851 81.976 19.045
+\c 82.0122 19.5668 81.8373 20.0081 81.4842 20.34
+\c 82.4998 20.9383 85.0523 21.5442 86.7502 20.5483
+\c 88.1709 19.7185 87.9592 18.4686 87.3192 17.5663
+\c 85.7155 18.5546 82.8318 19.394 81.7287 17.7377
+\c 80.6878 16.1757 82.7662 14.9097 84.4095 14.9795
+\l 84.3488 13.9679
+\c 84.2108 13.8941 84.0803 13.8026 83.9444 13.7056
+\c 83.3372 13.265 83.3645 12.2986 84.2989 11.8642
+\c 84.2784 11.296 84.135 10.6778 84.0059 10.2079
+\c 83.7204 10.0501 83.5319 9.7243 83.6487 9.1424
+\c 83.6739 9.0195 83.6985 8.8016 83.6985 8.8016
+\c 81.5805 3.9023 77.6914 0.8991 74.4915 0.7939
+\c 71.6836 0.7017 69.8634 2.0562 68.5343 3.3655
+\c 67.3574 4.5252 65.6055 7.163 65.2162 7.7586
+\c 65.7168 8.0052 66.0037 8.391 66.0713 8.7544
+\c 66.1997 9.4266 65.6629 9.77 64.8139 9.7578
+\l 64.6144 10.4899
+\c 64.5926 10.5678 64.5113 10.615 64.4334 10.5931
+\c 64.3549 10.5726 64.3085 10.4907 64.3296 10.4121
+\l 64.5134 9.7373
+\c 64.4744 9.7332 64.4375 9.7304 64.3979 9.7243
+\c 63.314 9.5789 63.1186 8.6288 63.1186 8.6288
+\l 63.413 8.5803
+\c 64.3481 9.697 65.7769 9.4819 65.7284 8.9963
+\c 65.6779 8.5112 64.3481 7.7838 62.478 8.5112
+\c 60.6072 9.2394 61.099 11.4244 61.099 11.4244
+\c 63.5599 10.0167 65.6779 11.2297 65.8254 12.4427
+\c 65.9743 13.6571 64.792 14.2391 63.5599 13.9965
+\c 62.3304 13.7534 61.2964 12.371 61.2964 12.371
+\l 61.5907 12.2255
+\c 64.2019 15.3251 66.516 12.5888 64.7422 11.9093
+\c 62.9711 11.2311 60.5082 12.1033 60.1141 13.7534
+\c 59.7207 15.4043 60.8046 16.1818 60.8046 16.1818
+\c 62.773 13.8511 67.2536 14.4672 67.647 16.5063
+\c 68.0411 18.5451 66.0051 19.3804 64.152 18.9958
+\c 62.2806 18.6093 61.6905 17.4919 61.6905 17.4919
+\l 61.9377 17.3942
+\c 61.9377 17.3942 63.0688 18.8032 65.0379 18.7062
+\c 67.0077 18.6086 67.2741 17.0738 66.9094 16.4735
+\c 66.4661 15.7433 63.6104 15.0156 61.642 16.5684
+\c 59.6722 18.123 61.099 20.5982 63.5599 20.6945
+\c 66.0228 20.7929 67.5985 19.3845 67.5985 19.3845
+\c 67.2038 16.6675 70.1585 17.3457 70.1585 17.3457
+\c 68.8792 17.5403 67.647 18.3169 68.4858 19.2882
+\c 69.5704 20.5477 73.2115 19.7738 73.2115 19.7738
+\c 69.5677 21.6179 67.7952 19.6761 67.7952 19.6761
+\c 64.3481 21.7149 61.4931 20.9383 60.7056 19.3845
+\c 59.918 17.832 60.7056 16.7638 60.7056 16.7638
+\c 58.2433 13.4624 60.903 11.6177 60.903 11.6177
+\c 60.0164 9.0932 62.1836 7.7347 62.1836 7.7347
+\c 62.0839 5.0655 63.2491 5.215 62.773 2.8812
+\c 62.3783 0.9483 59.6223 0.2585 59.6223 0.2585
+\c 60.2138 0.2585 62.6269 0.9721 63.314 2.6216
+\c 64.0045 4.2732 62.9711 5.9869 62.773 6.6671
+\c 62.5763 7.346 62.6754 7.6849 62.6754 7.6849
+\c 63.6869 7.4075 64.4724 7.4629 65.0345 7.6794
+\l 64.9894 7.5899
+\c 64.9894 7.5899 68.287 0.6484 73.8017 0.3083
+\l 74.8351 0.3083
+\c 75.6738 0.3083 80.6455 0.6969 83.9943 8.415
+\l 84.0018 8.4832
+\c 84.9498 7.5257 87.2919 7.9355 88.0794 9.6144
+\c 88.9591 11.4851 87.7351 12.8136 87.7351 12.8136
+\c 89.1633 14.2903 88.0794 16.2781 88.0794 16.2781
+\m 63.9547 11.7795
+\c 63.9581 11.7795 63.9635 11.7795 63.9663 11.7802
+\c 64.0482 11.7864 64.1083 11.8581 64.1022 11.9386
+\l 64.0277 12.8997
+\c 64.0216 12.9795 63.9506 13.041 63.87 13.0342
+\c 63.7894 13.0294 63.7286 12.9584 63.7334 12.8771
+\l 63.8071 11.9161
+\c 63.8126 11.8382 63.8782 11.7795 63.9547 11.7795
+\s
+\m 85.9627 9.1212
+\c 85.9627 9.1212 85.8152 9.5563 85.5201 9.8103
+\c 85.5201 9.8103 86.1102 9.9579 85.9627 9.1212
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian2.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian2.pgf
new file mode 100644
index 0000000000..474401a82b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian2.pgf
@@ -0,0 +1,29 @@
+\r -0.2 0 134 48
+\i
+\m 132.9548 23.3771
+\c 131.3683 31.9185 119.1886 48.1506 83.3983 47.7588
+\c 47.6176 47.3669 30.7069 35.1745 28.7443 22.9853
+\c 26.7787 10.7929 38.1841 9.2191 38.1841 9.2191
+\c 46.4388 19.0539 81.0439 37.9239 88.9067 39.5009
+\c 96.7727 41.0748 97.5628 39.5009 97.5628 39.5009
+\c 93.23 38.714 83.7933 33.9957 75.1437 27.7036
+\c 66.494 21.4115 48.4077 7.6484 33.0676 5.2877
+\c 17.7307 2.9301 11.4386 5.6827 6.7235 11.5798
+\c 1.9988 17.4801 7.5072 23.3771 11.4386 22.1952
+\c 15.3732 21.0164 9.1224 16.9703 14.9781 15.9031
+\c 19.3046 15.1193 19.6932 20.2295 19.6932 20.2295
+\c 20.4865 24.951 17.3389 27.3085 13.0124 28.0986
+\c 8.6892 28.8856 1.9988 27.3085 0.4313 20.6245
+\c -1.1425 13.9405 0.8232 3.7138 19.3046 0.5662
+\c 37.7923 -2.5751 53.9129 8.0403 68.071 15.5144
+\c 82.2259 22.9853 100.7072 38.319 113.2883 36.3565
+\c 125.8726 34.3844 128.6284 26.1266 128.6284 20.6245
+\c 128.6284 15.1193 126.2708 8.8272 118.3985 9.2191
+\c 110.5389 9.6141 111.7209 15.5144 112.8965 17.4801
+\c 114.0752 19.4458 115.6523 20.6245 112.8965 21.8033
+\c 110.147 22.9853 105.4287 21.4115 103.0648 17.4801
+\c 100.7072 13.5487 101.8956 0.6554 117.2229 0.1743
+\c 129.804 -0.2176 134.9205 12.7586 132.9548 23.3771
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian20.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian20.pgf
new file mode 100644
index 0000000000..aa30519166
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian20.pgf
@@ -0,0 +1,125 @@
+\m -0.8416 0
+\l 81.4539 0
+\l 81.4539 81.1389
+\l -0.8416 81.1389
+\o
+\i
+\m 49.991 29.0767
+\c 53.9126 32.3055 59.4454 31.8431 61.7542 30.5775
+\c 64.0598 29.3087 64.2902 27.4623 64.8662 27.6927
+\c 65.4438 27.9215 65.4438 30.4607 62.5606 32.4207
+\c 59.6758 34.3823 55.1798 34.3823 55.1798 34.3823
+\c 58.4086 36.6863 61.1766 38.4159 61.5222 41.7615
+\c 61.7974 44.4207 60.6006 48.1023 59.6774 48.1023
+\c 58.7558 48.1023 59.4454 46.2575 58.5254 42.2207
+\c 57.6038 38.1855 52.1814 34.6111 47.4566 29.5407
+\c 44.087 25.9247 41.9606 22.1231 41.0982 20.4239
+\l 41.0982 36.3007
+\c 41.4742 38.2591 42.2422 41.2783 43.7654 44.1823
+\c 46.303 49.0255 49.279 50.8607 50.791 51.7679
+\c 52.3094 52.6799 53.2854 52.8927 52.8758 53.2911
+\c 52.0934 54.0543 48.1174 53.3503 46.303 52.3711
+\c 44.5286 51.4127 42.8438 50.2127 41.0982 47.9151
+\l 41.0982 52.9615
+\c 42.1174 53.2607 42.8678 54.1935 42.8678 55.3119
+\c 42.8678 56.4319 42.1174 57.3679 41.0982 57.6687
+\l 41.0982 69.8959
+\c 41.0982 70.2783 40.7862 70.5887 40.4038 70.5887
+\c 40.023 70.5887 39.7126 70.2783 39.7126 69.8959
+\l 39.7126 57.6687
+\c 38.6918 57.3679 37.9414 56.4319 37.9414 55.3119
+\c 37.9414 54.1935 38.6918 53.2607 39.7126 52.9615
+\l 39.7126 47.6607
+\c 37.8934 50.1343 36.151 51.3759 34.3094 52.3711
+\c 32.495 53.3503 28.5174 54.0543 27.7366 53.2911
+\c 27.327 52.8927 28.303 52.6799 29.8214 51.7679
+\c 31.3318 50.8607 34.3094 49.0255 36.8454 44.1823
+\c 38.7062 40.6335 39.447 36.9055 39.7126 35.1615
+\l 39.7126 20.0303
+\c 39.0118 21.4623 36.8182 25.6079 33.1558 29.5407
+\c 28.431 34.6111 23.0086 38.1855 22.087 42.2207
+\c 21.1654 46.2575 21.8566 48.1023 20.9334 48.1023
+\c 20.0102 48.1023 18.815 44.4207 19.0902 41.7615
+\c 19.4358 38.4159 22.2038 36.6863 25.4326 34.3823
+\c 25.4326 34.3823 20.935 34.3823 18.0518 32.4207
+\c 15.1686 30.4607 15.1686 27.9215 15.7446 27.6927
+\c 16.3222 27.4623 16.551 29.3087 18.8582 30.5775
+\c 21.1654 31.8431 26.6982 32.3055 30.6198 29.0767
+\c 34.0438 26.2559 38.6118 20.7087 39.7126 15.9695
+\l 39.7126 4.8142
+\c 38.6918 4.515 37.9414 3.5806 37.9414 2.4622
+\c 37.9414 1.1022 39.0438 -0.0002 40.4038 -0.0002
+\c 41.7654 -0.0002 42.8678 1.1022 42.8678 2.4622
+\c 42.8678 3.5806 42.1174 4.515 41.0982 4.8142
+\l 41.0982 16.6799
+\c 42.4582 21.2527 46.7366 26.3967 49.991 29.0767
+\o
+\m 41.2262 2.4622
+\c 41.2262 2.0094 40.8582 1.643 40.4038 1.643
+\c 39.951 1.643 39.583 2.0094 39.583 2.4622
+\c 39.583 2.9166 39.951 3.283 40.4038 3.283
+\c 40.8582 3.283 41.2262 2.9166 41.2262 2.4622
+\o
+\s
+\m -0.8416 0
+\l 81.4539 0
+\l 81.4539 81.1389
+\l -0.8416 81.1389
+\o
+\i
+\m 74.4486 42.0687
+\c 70.8422 47.8591 65.0678 53.7727 59.4854 59.4895
+\c 56.1654 62.8879 52.7302 66.4047 49.8278 69.8239
+\c 46.6454 73.5743 44.8566 76.2447 43.6742 78.0111
+\c 42.2822 80.0927 41.5798 81.1391 40.3062 81.1391
+\c 39.031 81.1391 38.3302 80.0927 36.9382 78.0111
+\c 35.7542 76.2447 33.967 73.5743 30.7846 69.8239
+\c 27.8806 66.4047 24.447 62.8879 21.127 59.4895
+\c 15.5446 53.7727 9.7686 47.8591 6.1638 42.0687
+\c 0.9478 33.6911 -0.8426 25.7631 0.3574 16.3615
+\c 1.3814 8.3262 7.4726 0.1902 17.1286 0.1902
+\c 25.8518 0.1902 31.831 5.1886 32.0038 12.6287
+\c 32.1718 19.9087 27.3734 23.5263 22.5414 23.8847
+\c 19.583 24.1055 16.6678 23.1071 14.7414 21.2175
+\c 13.119 19.6239 12.3302 17.5423 12.4598 15.2031
+\c 12.663 11.5455 14.4742 9.8894 16.1206 9.1342
+\c 19.7382 7.0302 22.7702 8.5582 23.0966 11.1743
+\c 23.4406 13.9439 21.5398 15.8463 19.9814 14.9807
+\c 18.4262 14.1151 20.3286 10.4831 18.599 10.2239
+\c 17.663 10.0846 16.8646 10.3215 16.319 10.5711
+\c 15.1542 11.2511 13.9894 12.5999 13.8406 15.2767
+\c 13.7334 17.2111 14.3798 18.9231 15.711 20.2271
+\c 17.3334 21.8207 19.9094 22.6927 22.439 22.5055
+\c 26.3126 22.2191 30.7782 19.4687 30.6198 12.6623
+\c 30.463 5.9262 25.1686 1.5758 17.1286 1.5758
+\c 8.2726 1.5758 2.6774 9.1022 1.7286 16.5391
+\c 0.5718 25.6015 2.303 33.2495 7.3398 41.3391
+\c 10.8662 47.0031 16.5846 52.8591 22.1158 58.5247
+\c 25.4534 61.9391 28.903 65.4719 31.839 68.9279
+\c 35.0726 72.7391 36.887 75.4479 38.087 77.2415
+\c 39.2822 79.0303 39.7894 79.7551 40.3062 79.7551
+\c 40.823 79.7551 41.327 79.0303 42.5238 77.2415
+\c 43.7238 75.4479 45.5382 72.7391 48.7718 68.9279
+\c 51.7078 65.4719 55.1574 61.9391 58.4966 58.5247
+\c 64.0278 52.8591 69.7462 47.0031 73.2726 41.3391
+\c 78.3094 33.2495 80.0374 25.6015 78.8822 16.5391
+\c 77.9334 9.1022 72.3398 1.5758 63.4822 1.5758
+\c 55.4438 1.5758 50.1494 5.9262 49.991 12.6623
+\c 49.8342 19.4687 54.2982 22.2191 58.1718 22.5055
+\c 60.7014 22.6927 63.279 21.8207 64.9014 20.2271
+\c 66.231 18.9231 66.879 17.2111 66.7718 15.2767
+\c 66.623 12.5999 65.4582 11.2511 64.2934 10.5711
+\c 63.7478 10.3215 62.9478 10.0846 62.0134 10.2239
+\c 60.2838 10.4831 62.1862 14.1151 60.6294 14.9807
+\c 59.0726 15.8463 57.1686 13.9439 57.5158 11.1743
+\c 57.8422 8.5582 60.8758 7.0302 64.4918 9.1342
+\c 66.1398 9.891 67.9494 11.5455 68.1526 15.2031
+\c 68.2822 17.5423 67.4934 19.6239 65.871 21.2175
+\c 63.9446 23.1071 61.0294 24.1055 58.0694 23.8847
+\c 53.2358 23.5263 48.439 19.9087 48.6086 12.6287
+\c 48.7798 5.1886 54.759 0.1902 63.4822 0.1902
+\c 73.1382 0.1902 79.2294 8.3262 80.2534 16.3615
+\c 81.455 25.7631 79.6646 33.6911 74.4486 42.0687
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian21.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian21.pgf
new file mode 100644
index 0000000000..eb74694ce7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian21.pgf
@@ -0,0 +1,38 @@
+\r -0.38 -0.8 68.6 57.06
+\i
+\m 45.792 21.4016
+\c 50.7389 24.5168 54.4514 26.2192 57.1576 27.1488
+\l 41.6405 27.1488
+\c 38.0387 21.6448 31.9091 23.6192 31.9091 23.6192
+\c 18.564 26.6896 0 27.9936 0 27.9936
+\c 16.7216 29.6 27.4608 31.9008 33.0608 33.208
+\c 37.6107 34.2656 40.692 30.008 41.685 28.376
+\l 56.9357 28.376
+\c 54.2496 29.32 50.5982 31.0176 45.792 34.048
+\c 33.1357 42.0256 26.156 52.688 25.3122 55.448
+\c 25.3122 55.448 33.2888 46.5504 47.4045 42.5616
+\c 47.4045 42.5616 58.7546 40.4128 52.3122 32.6656
+\c 52.3122 32.6656 55.0734 29.2752 61.0498 28.2288
+\c 61.3576 29.7696 62.6733 30.9312 64.2779 31.0352
+\l 64.2779 33.5904
+\c 64.2779 33.5904 58.4482 35.1984 59.7522 40.1072
+\c 61.0576 45.0176 63.895 46.7792 64.5858 54.1456
+\c 64.5858 54.1456 67.5762 49.7728 67.9608 42.8688
+\c 68.3435 35.9664 64.9685 33.8944 64.9685 33.8944
+\l 64.9685 31.0144
+\c 66.6982 30.7856 68.0373 29.3248 68.0373 27.5328
+\c 68.0373 25.7424 66.6982 24.2784 64.9685 24.0512
+\l 64.9685 21.5552
+\c 64.9685 21.5552 68.3435 19.4832 67.9608 12.5792
+\c 67.5762 5.6768 64.5858 1.304 64.5858 1.304
+\c 63.895 8.6656 61.0576 10.432 59.7522 15.3424
+\c 58.4482 20.2512 64.2779 21.8608 64.2779 21.8608
+\l 64.2779 24.0304
+\c 62.5467 24.1424 61.167 25.496 61.0107 27.2144
+\c 55.0622 26.1568 52.3122 22.7824 52.3122 22.7824
+\c 58.7546 15.032 47.4045 12.888 47.4045 12.888
+\c 33.2888 8.9008 25.3122 0 25.3122 0
+\c 26.156 2.7632 33.1357 13.424 45.792 21.4016
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian22.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian22.pgf
new file mode 100644
index 0000000000..16404b2661
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian22.pgf
@@ -0,0 +1,58 @@
+\m 0 0
+\l 34.3967 0
+\l 34.3967 61.2011
+\l 0 61.2011
+\o
+\i
+\m 28.492 18.607
+\c 26.5464 25.1398 23.5592 25.4134 21.3352 25.1382
+\c 19.1112 24.8582 19.3192 26.5958 19.3192 26.5958
+\l 19.3192 27.4214
+\c 20.8168 28.0326 21.844 29.2118 21.844 30.583
+\c 21.844 31.9542 20.8168 33.1302 19.3192 33.743
+\l 19.3192 34.6022
+\c 19.3192 34.6022 19.1112 36.3414 21.3352 36.0662
+\c 23.5592 35.7862 26.5464 36.0614 28.492 42.5926
+\c 30.4376 49.1238 31.4792 50.583 34.3976 51.7638
+\c 34.3976 51.7638 25.7816 51.6966 19.9448 39.2582
+\c 19.9448 39.2582 19.46 38.2182 18.2088 38.839
+\l 18.2088 41.6214
+\c 18.2088 41.6214 18.6952 43.495 19.876 46.2742
+\c 21.0568 49.055 21.0568 51.9718 19.18 55.655
+\c 19.18 55.655 17.7224 58.5734 17.2344 61.0054
+\l 17.1976 61.2022
+\l 17.1608 61.0054
+\c 16.6744 58.5734 15.2152 55.655 15.2152 55.655
+\c 13.34 51.9718 13.34 49.055 14.5192 46.2742
+\c 15.7 43.495 16.188 41.6214 16.188 41.6214
+\l 16.188 38.839
+\c 14.9368 38.2182 14.4504 39.2582 14.4504 39.2582
+\c 8.6136 51.6966 -0.0008 51.7638 -0.0008 51.7638
+\c 2.916 50.583 3.9608 49.1238 5.9032 42.5926
+\c 7.8488 36.0614 10.8376 35.7862 13.0616 36.0662
+\c 15.2856 36.3414 15.076 34.6022 15.076 34.6022
+\l 15.076 33.8774
+\c 13.3976 33.311 12.2264 32.0518 12.2264 30.583
+\c 12.2264 29.1142 13.3976 27.8518 15.076 27.2886
+\l 15.076 26.5958
+\c 15.076 26.5958 15.2856 24.8582 13.0616 25.1382
+\c 10.8376 25.4134 7.8488 25.1398 5.9032 18.607
+\c 3.9608 12.0774 2.916 10.6166 -0.0008 9.4374
+\c -0.0008 9.4374 8.6136 9.5046 14.4504 21.9414
+\c 14.4504 21.9414 14.9368 22.983 16.188 22.359
+\l 16.188 19.5798
+\c 16.188 19.5798 15.7 17.7046 14.5192 14.927
+\c 13.34 12.1446 13.34 9.2278 15.2152 5.5462
+\c 15.2152 5.5462 16.6744 2.623 17.1608 0.1926
+\l 17.1976 -0.001
+\l 17.2344 0.1926
+\c 17.7224 2.623 19.18 5.5462 19.18 5.5462
+\c 21.0568 9.2278 21.0568 12.1446 19.876 14.927
+\c 18.6952 17.7046 18.2088 19.5798 18.2088 19.5798
+\l 18.2088 22.359
+\c 19.46 22.983 19.9448 21.9414 19.9448 21.9414
+\c 25.7816 9.5046 34.3976 9.4374 34.3976 9.4374
+\c 31.4792 10.6166 30.4376 12.0774 28.492 18.607
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian23.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian23.pgf
new file mode 100644
index 0000000000..46dfcd448f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian23.pgf
@@ -0,0 +1,38 @@
+\r -0.38 -0.8 68.6 57.06
+\i
+\m 22.2448 21.4016
+\c 17.2976 24.5168 13.5856 26.2192 10.8784 27.1488
+\l 26.3968 27.1488
+\c 29.9984 21.6448 36.128 23.6192 36.128 23.6192
+\c 49.4736 26.6896 68.0368 27.9936 68.0368 27.9936
+\c 51.3152 29.6 40.576 31.9008 34.976 33.208
+\c 30.4256 34.2656 27.3456 30.008 26.3504 28.376
+\l 11.1008 28.376
+\c 13.7872 29.32 17.4384 31.0176 22.2448 34.048
+\c 34.9008 42.0256 41.8816 52.688 42.7248 55.448
+\c 42.7248 55.448 34.7472 46.5504 20.632 42.5616
+\c 20.632 42.5616 9.2816 40.4128 15.7248 32.6656
+\c 15.7248 32.6656 12.9632 29.2752 6.9872 28.2288
+\c 6.6784 29.7696 5.3632 30.9312 3.7584 31.0352
+\l 3.7584 33.5904
+\c 3.7584 33.5904 9.5888 35.1984 8.2832 40.1072
+\c 6.9792 45.0176 4.1408 46.7792 3.4512 54.1456
+\c 3.4512 54.1456 0.4608 49.7728 0.0768 42.8688
+\c -0.3072 35.9664 3.0688 33.8944 3.0688 33.8944
+\l 3.0688 31.0144
+\c 1.3392 30.7856 0 29.3248 0 27.5328
+\c 0 25.7424 1.3392 24.2784 3.0688 24.0512
+\l 3.0688 21.5552
+\c 3.0688 21.5552 -0.3072 19.4832 0.0768 12.5792
+\c 0.4608 5.6768 3.4512 1.304 3.4512 1.304
+\c 4.1408 8.6656 6.9792 10.432 8.2832 15.3424
+\c 9.5888 20.2512 3.7584 21.8608 3.7584 21.8608
+\l 3.7584 24.0304
+\c 5.4896 24.1424 6.8704 25.496 7.0256 27.2144
+\c 12.9744 26.1568 15.7248 22.7824 15.7248 22.7824
+\c 9.2816 15.032 20.632 12.888 20.632 12.888
+\c 34.7472 8.9008 42.7248 0 42.7248 0
+\c 41.8816 2.7632 34.9008 13.424 22.2448 21.4016
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian24.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian24.pgf
new file mode 100644
index 0000000000..a9d082cf8e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian24.pgf
@@ -0,0 +1,50 @@
+\r -0.20 -0.25 78.75 75.15
+\i
+\m 30.585 60.861
+\c 34.905 60.381 35.6234 58.221 34.425 56.7826
+\c 33.225 55.341 32.505 53.421 32.505 53.421
+\c 30.8266 49.581 33.225 45.741 38.5034 45.021
+\c 43.7834 44.301 48.345 49.341 46.4266 56.5394
+\c 44.505 63.7394 37.065 65.6626 34.185 66.1394
+\c 31.305 66.621 31.305 67.5826 31.305 67.5826
+\c 31.0634 69.981 40.1834 70.461 50.0266 66.1394
+\c 59.865 61.821 60.825 51.501 60.585 48.6194
+\c 60.345 45.741 58.905 45.981 56.2634 45.501
+\c 53.6234 45.021 50.7434 42.3794 51.225 36.141
+\c 51.705 29.9042 59.6266 28.941 59.6266 28.941
+\c 73.0634 28.941 74.5034 42.141 72.8266 50.061
+\c 71.145 57.9826 66.8234 62.301 66.8234 62.301
+\c 66.8234 63.501 70.4234 62.781 70.4234 62.781
+\c 73.305 62.781 76.4266 64.221 76.4266 69.261
+\c 76.4266 74.3042 70.4234 74.061 70.4234 74.061
+\c 70.4234 70.701 68.2634 68.0626 63.9434 68.0626
+\c 59.6234 68.0626 56.745 69.741 56.745 69.741
+\c 46.1834 76.221 28.185 78.141 13.0666 63.9794
+\c -2.0534 49.821 0.1066 36.8626 0.1066 36.8626
+\c 7.785 63.9794 26.2634 61.3394 30.585 60.861
+\o
+\s
+\m 78.2378 38.3458
+\c 70.5578 10.9426 52.0762 13.6082 47.7578 14.0946
+\c 43.4378 14.5778 42.7162 16.7634 43.9178 18.2178
+\c 45.1162 19.6738 45.8362 21.613 45.8362 21.613
+\c 47.5162 25.4946 45.1162 29.373 39.8394 30.1026
+\c 34.5578 30.829 30.105 26.3778 32.0266 19.101
+\c 33.945 11.8274 42.345 9.5074 45.2234 9.021
+\c 48.1066 8.5346 49.305 7.5826 49.305 7.5826
+\c 49.545 5.1554 38.1578 4.3954 28.3162 8.7586
+\c 18.4778 13.125 17.5178 23.5538 17.7578 26.4642
+\c 17.9978 29.373 19.4394 29.133 22.0778 29.6162
+\c 24.7162 30.1026 27.705 31.9938 27.2266 38.3042
+\c 26.745 44.6066 18.345 45.981 18.345 45.981
+\c 4.9066 45.981 3.8394 33.0114 5.5162 25.0098
+\c 7.1978 17.0066 12.1066 12.621 12.1066 12.621
+\c 12.1066 11.4098 7.9178 12.1538 7.9178 12.1538
+\c 5.0394 12.1538 2.2666 11.9538 2.2666 6.861
+\c 2.2666 1.7698 8.2634 1.581 8.2634 1.581
+\c 8.2634 4.9778 12.6426 8.9506 16.4266 6.861
+\c 34.6634 -3.2206 50.3274 -2.3342 65.625 10.4642
+\c 78.8234 21.501 78.2378 38.3458 78.2378 38.3458
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian25.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian25.pgf
new file mode 100644
index 0000000000..4f283a4ee9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian25.pgf
@@ -0,0 +1,104 @@
+\r 0 0 80 88
+\i
+\m 39.4841 20.6345
+\c 37.3577 12.5609 31.8329 14.6857 31.8329 14.6857
+\c 31.8329 9.5865 38.6313 11.7097 38.6313 11.7097
+\c 38.6313 11.7097 38.6313 4.9097 38.6313 1.5113
+\c 38.6313 -1.8903 41.1833 1.5113 41.1833 1.5113
+\l 41.1833 11.7097
+\c 47.1305 10.8585 46.7081 14.2601 46.7081 14.2601
+\c 41.1833 14.2601 39.4841 20.6345 39.4841 20.6345
+\o
+\s
+\m 75.6074 33.385
+\c 71.7802 34.6602 68.3818 35.9354 68.3818 35.9354
+\c 78.1562 38.9098 77.7306 41.8826 77.7306 41.8826
+\c 74.7546 44.433 69.657 41.8826 65.8313 39.3338
+\c 62.0073 36.7834 59.8809 36.7834 59.8809 36.7834
+\c 59.8809 36.7834 69.2314 44.8586 74.7546 52.5082
+\c 80.281 60.1578 78.1562 66.9594 78.1562 66.9594
+\c 75.6074 66.5306 72.2074 65.257 72.2074 65.257
+\c 77.7322 74.1818 72.6298 78.857 72.6298 78.857
+\c 70.081 78.0058 69.2314 77.5818 69.2314 77.5818
+\c 63.7049 93.3066 45.0089 88.2058 42.8841 80.5578
+\c 40.7561 72.9066 43.7337 65.257 50.5321 64.8314
+\c 57.3321 64.409 62.0073 69.5082 59.0313 74.6058
+\c 56.0585 79.7066 50.5321 76.7306 50.9577 73.3322
+\c 51.3817 69.9338 55.6329 71.6314 55.6329 71.6314
+\c 56.4825 65.6794 48.8329 65.6842 45.8585 70.7834
+\c 42.8825 75.881 45.8585 82.6826 50.5321 84.3818
+\c 55.2089 86.0794 60.7321 84.8074 65.8313 79.7066
+\c 70.9322 74.6058 69.657 58.033 67.9546 51.6602
+\c 66.2553 45.2842 59.8809 37.2106 49.6809 31.6826
+\c 46.4393 29.9258 43.0697 28.5162 39.7337 27.2009
+\c 36.4649 28.5162 33.1609 29.9258 29.9849 31.6826
+\c 19.9865 37.2106 13.7385 45.2842 12.0745 51.6602
+\c 10.4041 58.033 9.1561 74.6058 14.1545 79.7066
+\c 19.1529 84.8074 24.5673 86.0794 29.1513 84.3818
+\c 33.7321 82.6826 36.6505 75.881 33.7321 70.7834
+\c 30.8169 65.6842 23.3177 65.6794 24.1513 71.6314
+\c 24.1513 71.6314 28.3177 69.9338 28.7337 73.3322
+\c 29.1513 76.7306 23.7337 79.7066 20.8185 74.6058
+\c 17.9033 69.5082 22.4857 64.409 29.1513 64.8314
+\c 35.8169 65.257 38.7321 72.9066 36.6489 80.5578
+\c 34.5657 88.2058 16.2393 93.3066 10.8217 77.5818
+\c 10.8217 77.5818 9.9913 78.0058 7.4905 78.857
+\c 7.4905 78.857 2.4905 74.1818 7.9065 65.257
+\c 7.9065 65.257 4.5737 66.5306 2.0745 66.9594
+\c 2.0745 66.9594 -0.0071 60.1578 5.4089 52.5082
+\c 10.8217 44.8586 19.9865 36.7834 19.9865 36.7834
+\c 19.9865 36.7834 18.4121 37.7754 14.1545 39.3338
+\c 7.1849 41.8842 2.7241 39.3354 2.7241 39.3354
+\c 8.4601 39.3354 9.7337 34.2362 9.7337 34.2362
+\c 9.7337 34.2362 8.3241 34.6602 4.5753 33.385
+\c 0.8249 32.1098 -1.2583 28.2842 0.8249 23.6105
+\c 2.9081 18.9353 10.4041 18.5113 10.4041 18.5113
+\c 10.4041 18.5113 8.8249 21.4873 5.9097 22.7625
+\c 2.9945 24.0361 7.9737 31.897 15.4713 32.3242
+\c 22.5561 32.7242 24.1513 32.5338 27.0681 30.8346
+\c 28.7977 29.8266 31.8521 27.921 36.2137 25.8297
+\c 30.3161 23.5433 24.7161 21.2921 20.3577 17.6601
+\c 12.7097 11.2857 16.1097 4.4889 22.0601 4.4889
+\c 28.0105 4.4889 27.1577 10.0105 24.6089 10.0105
+\c 22.0601 10.0105 22.4841 7.0377 22.4841 7.0377
+\c 22.4841 7.0377 19.5097 7.0377 19.0857 10.4345
+\c 18.6585 13.8377 21.6329 18.0841 32.2601 21.4857
+\c 35.0089 22.3641 37.4969 23.3001 39.7337 24.2345
+\c 41.9289 23.3001 44.3673 22.3641 47.0617 21.4857
+\c 57.4777 18.0841 60.3945 13.8377 59.9753 10.4345
+\c 59.5593 7.0377 56.6441 7.0377 56.6441 7.0377
+\c 56.6441 7.0377 57.0585 10.0105 54.5609 10.0105
+\c 52.0617 10.0105 51.2265 4.4889 57.0585 4.4889
+\c 62.8905 4.4889 66.2249 11.2857 58.7273 17.6601
+\c 54.4745 21.2745 49.0153 23.5241 43.2633 25.7993
+\c 47.7465 27.9018 50.8857 29.8202 52.6585 30.8346
+\c 55.6329 32.5338 59.8809 32.9354 67.1066 32.5338
+\c 74.7546 32.1098 76.0314 22.7609 73.057 21.4857
+\c 70.081 20.2105 69.657 18.5113 69.657 18.5113
+\c 69.657 18.5113 77.305 18.9353 79.4314 23.6105
+\c 81.5562 28.2842 79.4298 32.1098 75.6074 33.385
+\o
+\s
+\m 36.2537 34.5562
+\c 36.2537 32.3002 38.0825 30.4762 40.3321 30.4762
+\c 42.5833 30.4762 44.4121 32.3002 44.4121 34.5562
+\c 44.4121 36.8074 42.5833 38.633 40.3321 38.633
+\c 38.0825 38.633 36.2537 36.8074 36.2537 34.5562
+\o
+\s
+\m 44.7961 62.2858
+\c 41.6089 68.0218 40.0153 68.6602 40.0153 75.033
+\c 40.0153 68.6602 38.4201 68.0218 35.2329 62.2858
+\c 33.1833 58.593 33.2441 56.2314 33.5497 55.009
+\c 32.7961 56.241 30.7097 58.057 25.0329 57.185
+\c 16.7465 55.9098 21.2105 48.2602 21.2105 48.2602
+\c 21.2105 48.2602 21.8473 54.6346 27.5849 51.4474
+\c 33.3209 48.2602 33.6393 41.8842 40.0153 41.2474
+\c 46.3897 41.8842 46.7081 48.2602 52.4441 51.4474
+\c 58.1817 54.6346 58.8185 48.2602 58.8185 48.2602
+\c 58.8185 48.2602 63.2825 55.9098 54.9961 57.185
+\c 49.3193 58.057 47.2329 56.241 46.4793 55.009
+\c 46.7849 56.2314 46.8457 58.593 44.7961 62.2858
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian26.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian26.pgf
new file mode 100644
index 0000000000..067dda54cf
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian26.pgf
@@ -0,0 +1,67 @@
+\m -0.4415 0
+\l 59.2312 0
+\l 59.2312 119.8534
+\l -0.4415 119.8534
+\o
+\i
+\m 17.8132 34.1483
+\c 24.9124 30.7659 29.1684 27.2171 29.3396 11.4939
+\c 29.5076 27.2171 33.7668 30.7659 40.866 34.1483
+\c 34.178 35.5099 31.1044 41.4059 29.938 44.4635
+\c 29.9652 46.4107 29.9876 49.2091 29.9876 53.2507
+\c 29.9876 57.3787 30.0324 62.6763 30.09 68.3131
+\l 35.3364 68.3131
+\l 35.3364 72.9963
+\l 30.1396 72.9963
+\c 30.2292 81.4683 30.3252 90.1851 30.3252 96.5259
+\c 30.3252 108.3595 33.2004 119.8539 29.4804 119.8539
+\c 25.762 119.8539 28.634 108.3595 28.634 96.5259
+\c 28.634 90.1851 28.73 81.4683 28.8228 72.9963
+\l 23.3924 72.9963
+\l 23.3924 68.3131
+\l 28.8724 68.3131
+\c 28.9268 62.6763 28.9732 57.3787 28.9732 53.2507
+\c 28.9732 49.7163 28.9892 47.1195 29.0116 45.2219
+\c 28.1044 42.5179 25.1092 35.6331 17.8132 34.1483
+\o
+\m 29.3396 37.7771
+\c 31.7764 37.7771 33.7508 35.8011 33.7508 33.3659
+\c 33.7508 30.9307 31.7764 28.9547 29.3396 28.9547
+\c 26.9028 28.9547 24.9268 30.9307 24.9268 33.3659
+\c 24.9268 35.8011 26.9028 37.7771 29.3396 37.7771
+\o
+\s
+\m -0.4415 0
+\l 59.2312 0
+\l 59.2312 119.8534
+\l -0.4415 119.8534
+\o
+\i
+\m 29.0596 8.7899
+\c 26.6068 7.4379 24.6644 6.8235 24.6644 4.3963
+\c 24.6644 1.9691 26.6324 -0.0005 29.0596 -0.0005
+\c 31.4868 -0.0005 33.4548 1.9691 33.4548 4.3963
+\c 33.4548 6.8235 31.2564 7.6923 29.0596 8.7899
+\o
+\s
+\m 55.4292 24.9339
+\c 54.0756 27.2171 54.4148 29.3291 54.5828 31.1883
+\c 51.2036 26.6251 48.4148 28.2315 41.9044 24.1723
+\c 33.4532 18.6795 32.5236 12.0027 32.5236 12.0027
+\c 32.3556 11.1563 32.4388 10.6491 33.114 11.6651
+\c 35.9028 17.7483 39.37 20.3691 45.7924 21.8907
+\c 51.0804 23.1435 56.6964 20.3691 58.7252 18.4267
+\c 59.2308 20.8763 56.7812 22.6523 55.4292 24.9339
+\o
+\s
+\m 26.2692 12.0027
+\c 26.2692 12.0027 25.3396 18.6795 16.8868 24.1723
+\c 10.378 28.2315 7.5892 26.6251 4.2084 31.1883
+\c 4.3764 29.3291 4.7172 27.2171 3.3636 24.9339
+\c 2.0116 22.6523 -0.4412 20.8763 0.0676 18.4267
+\c 2.0964 20.3691 7.7108 23.1435 12.9988 21.8907
+\c 19.4228 20.3691 22.8884 17.7483 25.6772 11.6651
+\c 26.354 10.6491 26.4388 11.1563 26.2692 12.0027
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian27.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian27.pgf
new file mode 100644
index 0000000000..fe8dc5abd3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian27.pgf
@@ -0,0 +1,189 @@
+\m -0.7443 -0.0019
+\l 100.6272 -0.0019
+\l 100.6272 98.5984
+\l -0.7443 98.5984
+\o
+\i
+\m 30.4295 63.4183
+\c 25.8727 62.5159 23.2135 58.6502 24.0199 56.9334
+\c 24.7831 55.4086 26.9639 60.8566 32.9543 60.4214
+\c 35.3383 60.247 38.1943 58.9366 40.5639 57.6038
+\l 47.6823 50.7606
+\c 40.2423 53.9366 34.3927 52.5094 28.2695 53.0102
+\c 21.6231 53.5558 20.7511 60.2038 19.8791 60.5286
+\c 18.5735 60.6374 19.5543 52.9014 23.6951 50.9414
+\c 27.8327 48.9782 30.4487 50.3958 38.9511 50.7238
+\c 44.2327 50.927 48.0007 49.527 50.0951 48.4422
+\l 53.2567 45.4006
+\c 50.9351 46.4694 47.8103 47.3718 44.5639 46.7446
+\c 35.7479 46.7782 28.2135 36.9126 23.8759 31.5446
+\c 19.2983 25.8758 15.4519 27.4742 14.4327 29.2934
+\c 13.4167 31.1078 13.1239 32.9974 11.8167 31.9782
+\c 10.5079 30.9622 12.9799 27.8374 15.5943 26.8214
+\c 20.6071 24.8614 24.8199 26.3878 30.9239 35.2486
+\c 34.6919 40.7254 37.4071 42.7606 38.9319 43.519
+\c 38.1799 42.6182 37.6007 41.5974 37.2199 40.4966
+\c 36.7239 40.2582 35.9143 39.8534 35.5735 39.6086
+\c 32.3767 36.847 30.4855 33.5046 31.9383 28.2742
+\c 33.3703 23.127 37.0615 17.6326 37.1703 12.2934
+\c 37.1703 7.935 35.4983 8.2966 34.4103 6.4102
+\c 33.8327 5.407 35.9703 3.0678 37.8231 7.6438
+\c 39.6759 12.2198 40.2199 18.5398 35.5735 27.0774
+\c 31.4487 34.647 35.1079 38.1286 36.8983 39.287
+\c 36.8647 39.119 36.8199 38.9494 36.7959 38.7782
+\c 36.4551 36.375 37.1143 34.0694 38.6455 32.2806
+\c 41.0103 29.519 44.1911 29.4006 46.1943 30.143
+\c 47.6455 30.6774 48.5543 31.6534 48.6007 32.6934
+\c 48.7079 33.0198 48.7799 33.3606 48.7543 33.7238
+\c 48.6487 35.6854 47.4487 36.775 45.9239 36.3382
+\c 44.3975 35.903 44.2887 33.7238 45.7047 32.7414
+\c 46.3927 32.2678 46.3895 31.7414 46.1975 31.3254
+\c 46.0759 31.2678 45.9511 31.2134 45.8167 31.1638
+\c 44.1415 30.5446 41.4759 30.6502 39.4695 32.991
+\c 38.1447 34.535 37.5799 36.5366 37.8727 38.6246
+\c 38.2071 40.9766 39.6327 43.1862 41.6583 44.5126
+\c 48.5079 48.487 56.3671 42.2966 56.4423 42.2342
+\l 56.4919 42.2934
+\l 62.8823 36.1526
+\l 60.2887 33.5094
+\l 62.5703 31.2694
+\l 65.1847 33.9366
+\l 75.3623 24.1542
+\c 73.6679 24.727 71.3687 25.151 68.4999 24.8966
+\c 63.3895 25.7478 59.0663 22.2214 55.0455 21.8838
+\c 49.8167 21.4486 47.1975 23.847 47.5271 22.975
+\c 50.7383 18.6902 54.9703 18.919 57.2071 19.4342
+\c 56.3143 18.3254 55.5863 17.087 55.0887 15.7222
+\c 53.7767 12.1158 54.2103 8.1734 56.2487 5.1718
+\c 58.0567 2.5078 60.7511 0.999 63.8407 0.9254
+\c 66.9303 0.855 70.0903 2.2438 71.6967 4.3862
+\c 73.1143 6.2806 73.5223 9.063 72.6999 11.311
+\c 72.0151 13.1862 70.5975 14.4582 68.7031 14.8934
+\c 67.2615 15.2262 66.0439 15.0454 65.0775 14.351
+\c 65.0567 14.335 65.0375 14.3142 65.0151 14.2966
+\c 63.9799 13.7318 62.6519 12.599 62.4583 10.4422
+\c 62.1271 6.847 66.5975 6.4118 67.5783 8.4806
+\c 68.5591 10.5542 67.4679 11.5318 66.5975 12.0758
+\c 65.9463 12.4838 66.1431 13.3686 66.7367 13.6614
+\c 66.9255 13.703 67.1191 13.7254 67.3271 13.7302
+\c 67.3751 13.7206 67.4151 13.727 67.4679 13.7126
+\c 67.7495 13.727 68.0647 13.6998 68.4087 13.6198
+\c 70.2647 13.1926 71.0999 11.8854 71.4743 10.863
+\c 72.1495 9.015 71.8151 6.7254 70.6455 5.1686
+\c 69.3063 3.3782 66.6615 2.463 64.0151 2.5254
+\c 62.1351 2.5702 59.4791 3.2438 57.4727 6.1958
+\c 55.6455 8.8934 55.2759 12.3062 56.4599 15.5638
+\c 57.8039 19.255 60.7575 21.7382 64.8119 22.8902
+\c 73.1655 25.263 77.8967 21.4214 77.9431 21.383
+\l 78.0775 21.543
+\l 80.9303 18.8006
+\c 80.6647 18.3926 80.5063 17.9062 80.5063 17.3814
+\c 80.5063 15.935 81.6775 14.7654 83.1223 14.7654
+\c 83.6839 14.7654 84.1991 14.9446 84.6279 15.2486
+\l 92.7687 7.4182
+\c 91.5623 6.367 89.8679 5.8998 86.9719 7.5046
+\c 83.6375 9.3558 79.1655 8.2966 77.4151 3.4374
+\c 77.1623 2.0806 80.2183 6.2422 83.9223 4.8838
+\c 87.4647 3.5878 90.0567 2.1894 94.0183 6.2214
+\l 94.4183 5.8374
+\c 94.4087 4.7414 94.5495 2.9478 95.4871 2.1238
+\c 96.8871 0.8966 99.2279 1.2262 100.6279 -0.001
+\c 99.5335 1.5046 100.0711 3.807 98.9751 5.311
+\c 98.2455 6.3142 96.4871 6.6182 95.3943 6.711
+\l 94.8903 7.1974
+\c 98.6087 11.8422 96.8375 14.2422 95.0375 17.6342
+\c 93.1847 21.1222 96.8903 24.719 95.5799 24.2822
+\c 91.0055 21.8838 90.5687 17.3078 92.8599 14.2582
+\c 94.9095 11.5222 94.5943 9.7526 93.6439 8.3942
+\l 85.4711 16.2534
+\c 85.6375 16.5942 85.7367 16.9734 85.7367 17.3814
+\c 85.7367 18.8246 84.5655 19.9958 83.1223 19.9958
+\c 82.6775 19.9958 82.2679 19.8774 81.9031 19.6806
+\l 78.3335 23.111
+\c 77.3655 24.783 75.5431 29.0438 77.3591 35.4358
+\c 78.5095 39.4934 80.9943 42.4454 84.6839 43.7878
+\c 87.9431 44.9718 91.3559 44.6006 94.0487 42.7734
+\c 97.0055 40.7702 97.6775 38.1094 97.7223 36.2342
+\c 97.7847 33.5862 96.8679 30.943 95.0807 29.599
+\c 93.5223 28.431 91.2343 28.1014 89.3879 28.7782
+\c 88.3655 29.1494 87.0567 29.9862 86.6279 31.839
+\c 86.5495 32.1862 86.5223 32.5014 86.5191 32.8054
+\c 86.5223 32.831 86.5271 32.8758 86.5223 32.9238
+\c 86.5223 33.1302 86.5463 33.327 86.5879 33.5126
+\c 86.8807 34.1046 87.7655 34.3014 88.1719 33.6534
+\c 88.7191 32.7814 89.6967 31.6902 91.7687 32.6726
+\c 93.8375 33.6534 93.4023 38.1238 89.8055 37.7942
+\c 87.6487 37.599 86.5191 36.2678 85.9495 35.2342
+\c 85.9335 35.2102 85.9143 35.1958 85.8967 35.1702
+\c 85.2023 34.2054 85.0215 32.9878 85.3559 31.5462
+\c 85.7911 29.6534 87.0647 28.2326 88.9367 27.5494
+\c 91.1847 26.7254 93.9687 27.1318 95.8647 28.5526
+\c 98.0055 30.159 99.3943 33.319 99.3223 36.4102
+\c 99.2487 39.495 97.7399 42.1926 95.0775 44.0038
+\c 92.0743 46.0374 88.1335 46.471 84.5287 45.1606
+\c 83.1623 44.6646 81.9255 43.935 80.8151 43.0406
+\c 81.3303 45.279 81.5591 49.5094 77.2743 52.7222
+\c 76.4023 53.0502 78.7991 50.4342 78.3655 45.2022
+\c 78.0279 41.1814 74.4999 36.8598 75.3527 31.7494
+\c 75.1239 29.1814 75.4375 27.0614 75.9223 25.431
+\l 66.0999 34.871
+\l 68.4711 37.2854
+\l 66.1943 39.5238
+\l 63.7975 37.0838
+\l 56.5895 44.0134
+\c 55.1767 46.1078 51.5479 52.4294 54.8103 58.055
+\c 56.1543 60.103 58.3607 61.5271 60.7175 61.8615
+\c 62.8007 62.1591 64.8023 61.5911 66.3495 60.263
+\c 68.6871 58.2598 68.7975 55.5942 68.1751 53.9206
+\c 68.1255 53.7878 68.0711 53.6566 68.0119 53.5366
+\c 67.5975 53.351 67.0711 53.3446 66.5975 54.0294
+\c 65.6151 55.447 63.4375 55.3382 63.0007 53.8118
+\c 62.5639 52.2886 63.6535 51.0886 65.6151 50.9798
+\c 65.9799 50.959 66.3223 51.0278 66.6455 51.1334
+\c 67.6871 51.1814 68.6599 52.0902 69.1975 53.5414
+\c 69.9367 55.5446 69.8215 58.7238 67.0599 61.0903
+\c 65.2679 62.6263 62.9639 63.2791 60.5639 62.9415
+\c 60.3895 62.9159 60.2231 62.8727 60.0519 62.8391
+\c 61.2071 64.6311 64.6903 68.2887 72.2615 64.1639
+\c 80.7991 59.5158 87.1191 60.0614 91.6935 61.9127
+\c 96.2711 63.7655 93.9335 65.9063 92.9287 65.3271
+\c 91.0407 64.2359 91.4023 62.5671 87.0455 62.5671
+\c 81.7031 62.6743 76.2119 66.3655 71.0647 67.7975
+\c 65.8343 69.2503 62.4919 67.3607 59.7319 64.1639
+\c 59.4855 63.8215 59.0823 63.0135 58.8423 62.5143
+\c 57.7415 62.1367 56.7207 61.5559 55.8199 60.799
+\c 56.5767 62.3223 58.6071 65.0391 64.0903 68.8135
+\c 72.9527 74.9159 74.4775 79.1287 72.5143 84.1415
+\c 71.4999 86.7559 68.3751 89.2279 67.3591 87.9207
+\c 66.3399 86.6119 68.2311 86.3207 70.0455 85.3031
+\c 71.8631 84.2871 73.4599 80.4359 67.7943 75.8599
+\c 62.4295 71.5255 52.5799 64.0039 52.5911 55.199
+\c 51.9703 52.0134 52.8263 48.9414 53.8663 46.6278
+\l 51.0727 49.3142
+\c 49.9703 51.327 48.4007 55.2054 48.6167 60.7878
+\c 48.9447 69.2871 50.3607 71.9015 48.3975 76.0423
+\c 46.4391 80.1831 38.7015 81.1623 38.8103 79.8583
+\c 39.1351 78.9831 45.7831 78.1127 46.3271 71.4631
+\c 46.8423 65.1831 45.3239 59.1926 48.8295 51.4726
+\l 42.9735 57.0998
+\c 41.3351 59.6902 39.1447 63.6471 38.9207 66.7799
+\c 38.4823 72.7719 43.9319 74.9511 42.4039 75.7159
+\c 40.5511 76.5895 36.1959 73.4263 35.7575 68.1959
+\c 35.7479 68.0983 35.7575 68.0039 35.7543 67.9079
+\c 31.8199 72.1543 25.9079 73.8663 25.6199 73.9495
+\l 25.6039 73.8951
+\c 25.6039 73.8951 2.7079 96.5623 1.9799 97.2903
+\c 0.6695 98.5975 -0.7449 96.9623 0.4519 95.8759
+\c 1.1207 95.2695 24.4855 73.1575 24.4855 73.1575
+\c 24.6519 72.2871 25.7831 67.3879 30.4295 63.4183
+\o
+\m 28.3479 67.6551
+\c 28.1271 68.5143 28.0391 69.4663 28.5671 69.9399
+\c 29.1239 70.4407 30.3175 70.2167 31.1799 69.9607
+\c 32.9383 68.8551 34.7319 67.3767 36.0231 65.4855
+\c 36.3863 64.1127 37.0359 62.8375 37.7511 61.7479
+\c 36.2007 62.7239 34.3079 63.5463 32.3175 63.5927
+\c 30.5927 64.8535 29.3015 66.2791 28.3479 67.6551
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian28.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian28.pgf
new file mode 100644
index 0000000000..b4c12bd04c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian28.pgf
@@ -0,0 +1,151 @@
+\m -0.0148 0
+\l 52.4329 0
+\l 52.4329 101.8568
+\l -0.0148 101.8568
+\o
+\i
+\m 51.5586 2.5068
+\c 46.3282 10.5724 47.2034 17.9804 48.293 21.1404
+\c 49.381 24.302 52.1058 26.9164 50.8002 26.59
+\c 46.2178 25.1548 44.9394 20.8044 44.6242 17.7612
+\c 44.5554 17.1292 44.6434 16.1228 44.821 14.9868
+\c 41.2834 20.102 34.2034 29.7516 27.0082 36.1484
+\c 34.1778 43.022 37.8498 43.1468 40.5362 43.2268
+\c 44.2034 43.3324 46.2658 41.6284 47.3458 40.182
+\c 49.0146 37.9532 49.2274 35.2572 48.7186 33.6972
+\c 47.7058 30.5964 45.8834 29.3212 42.8146 29.566
+\c 42.5522 29.5868 42.3218 29.638 42.1058 29.702
+\c 41.1714 30.1612 40.1746 30.9436 40.3746 32.1468
+\c 40.5906 32.8748 43.8626 32.8748 43.3522 35.7804
+\c 42.9026 38.3564 39.0658 38.4684 38.1218 36.2892
+\c 37.2274 34.2188 38.1122 30.9932 40.253 29.4908
+\c 40.8626 28.9548 41.6658 28.5644 42.7282 28.4796
+\c 46.2898 28.1964 48.5906 29.79 49.7554 33.3596
+\c 50.493 35.6172 49.8738 38.6236 48.2178 40.8348
+\c 46.469 43.174 43.7282 44.4092 40.5026 44.3148
+\c 38.997 44.2684 37.4498 44.1212 35.653 43.4796
+\c 35.653 43.4812 35.653 43.4812 35.653 43.4812
+\c 35.3586 43.7004 37.325 45.5132 37.1058 48.2748
+\c 36.8866 51.0348 33.2562 51.254 33.7618 50.5292
+\c 35.8706 48.3468 35.3586 45.5868 32.821 43.262
+\c 31.3874 41.9532 30.021 40.5036 29.1026 39.4892
+\c 28.3522 38.87 27.5586 38.1676 26.7154 37.3772
+\l 26.7154 38.2492
+\c 26.653 43.3164 27.309 46.2204 27.5218 47.022
+\c 27.541 47.0396 27.565 47.0524 27.5874 47.0764
+\c 31.0738 58.7356 39.9874 57.6332 41.7522 54.702
+\c 44.0034 50.9644 40.0802 48.494 41.533 47.622
+\c 44.2242 46.822 46.1842 52.4876 42.9906 56.0476
+\c 40.8626 58.4172 36.8498 58.518 32.9282 57.646
+\c 34.453 59.3884 40.1186 64.0748 40.4466 72.6828
+\c 40.7714 81.294 31.837 87.9404 30.965 87.1756
+\c 30.2594 86.5596 37.5026 82.382 37.2866 73.8812
+\c 37.069 65.382 33.4706 61.0236 30.3122 55.3596
+\c 28.4402 51.998 27.3746 50.102 26.8146 49.1084
+\c 26.7778 50.5516 26.6866 55.8044 27.1522 60.9148
+\c 27.421 63.9036 29.2338 67.3788 30.965 69.0876
+\c 33.381 71.4748 35.6146 71.5676 34.341 72.1388
+\c 32.1906 72.1388 30.6034 71.5516 29.437 70.7372
+\c 29.069 72.0684 28.253 74.8092 27.2866 76.7036
+\c 27.2866 76.8956 27.2866 99.6764 27.2866 99.6764
+\l 26.4962 101.8572
+\l 26.0898 100.7276
+\l 25.709 99.6764
+\c 25.709 99.6764 25.709 76.8956 25.709 76.7036
+\c 24.6722 74.6668 23.8034 71.6524 23.4834 70.4636
+\c 22.2866 71.4156 20.6034 72.1388 18.2146 72.1388
+\c 16.9458 71.5676 19.1778 71.4748 21.5938 69.0876
+\c 23.325 67.3788 25.1362 63.9036 25.4082 60.9148
+\c 25.8722 55.8044 25.7842 50.5516 25.7458 49.1084
+\c 25.1874 50.102 24.1218 51.998 22.2466 55.3596
+\c 19.0866 61.0236 15.493 65.382 15.2738 73.8812
+\c 15.0562 82.382 22.2994 86.5596 21.5938 87.1756
+\c 20.7218 87.9404 11.7874 81.294 12.1154 72.6828
+\c 12.4402 64.0748 18.1058 59.3884 19.6338 57.646
+\c 15.709 58.518 11.6962 58.4172 9.5714 56.0476
+\c 6.3778 52.4876 8.3362 46.822 11.0242 47.622
+\c 12.4754 48.494 8.5554 50.9644 10.8034 54.702
+\c 12.5554 57.6124 21.3458 58.71 24.8866 47.334
+\l 24.8274 47.2588
+\c 24.8274 47.2588 25.7714 44.278 25.6994 38.2492
+\l 25.6994 37.3772
+\c 24.8594 38.1676 24.0626 38.87 23.309 39.4892
+\c 22.3906 40.5036 21.0274 41.9532 19.597 43.262
+\c 17.053 45.5868 16.5458 48.3468 18.653 50.5292
+\c 19.1618 51.254 15.5314 51.0348 15.3122 48.2748
+\c 15.093 45.5132 17.053 43.7004 16.765 43.4812
+\c 14.965 44.1212 13.4178 44.2684 11.9122 44.3148
+\c 8.6866 44.4092 5.9458 43.174 4.197 40.8348
+\c 2.5394 38.6236 1.925 35.6172 2.6626 33.3596
+\c 3.8242 29.79 6.125 28.1964 9.6866 28.4796
+\c 10.749 28.5644 11.5522 28.9548 12.1618 29.4908
+\c 14.3026 30.9932 15.1906 34.2188 14.293 36.2892
+\c 13.349 38.4684 9.5154 38.3564 9.0626 35.7804
+\c 8.5554 32.8748 11.8242 32.8748 12.0434 32.1468
+\c 12.2434 30.9436 11.2434 30.1612 10.3122 29.702
+\c 10.093 29.638 9.8626 29.5868 9.6002 29.566
+\c 6.5314 29.3212 4.709 30.5964 3.6962 33.6972
+\c 3.1874 35.2572 3.4002 37.9532 5.069 40.182
+\c 6.1522 41.6284 8.2098 43.3324 11.8802 43.2268
+\c 14.5682 43.1468 18.237 43.022 25.4034 36.1484
+\c 18.2098 29.7516 11.1314 20.102 7.5938 14.9868
+\c 7.7746 16.1228 7.8594 17.1292 7.7938 17.7612
+\c 7.4754 20.8044 6.197 25.1548 1.6178 26.59
+\c 0.309 26.9164 3.0338 24.302 4.125 21.1404
+\c 5.2098 17.9804 6.0834 10.5724 0.853 2.5068
+\c 0.2002 0.982 -0.0158 -0.0004 -0.0158 -0.0004
+\c -0.0158 -0.0004 12.7314 -0.0004 16.765 -0.0004
+\c 20.797 -0.0004 25.9906 2.8732 25.8434 7.302
+\c 25.8082 10.1004 24.3282 11.8444 22.4306 12.8252
+\c 20.533 13.8044 16.909 13.622 16.6898 12.534
+\c 18.0002 12.2412 23.1554 12.0268 22.9746 7.302
+\c 22.9746 4.7964 20.8306 1.9292 14.1458 1.7468
+\c 6.1938 1.854 2.8146 1.7468 2.8146 1.7468
+\c 2.8146 1.7468 4.197 6.6828 8.2706 6.5964
+\c 10.6754 5.9212 13.2098 6.2076 13.549 8.2668
+\c 13.933 10.5868 11.6178 11.8188 9.7378 10.8796
+\c 7.5682 9.7932 8.3746 8.174 5.8658 8.8268
+\c 6.2738 9.6876 6.6738 10.9036 7.005 12.1884
+\c 9.581 16.0508 17.8274 27.9724 26.2082 35.4028
+\c 34.5874 27.9724 42.8338 16.0508 45.4082 12.1884
+\c 45.7394 10.9036 46.1394 9.6876 46.5458 8.8268
+\c 44.0402 8.174 44.8466 9.7932 42.6754 10.8796
+\c 40.797 11.8188 38.4834 10.5868 38.8658 8.2668
+\c 39.2034 6.2076 41.7394 5.9212 44.141 6.5964
+\c 48.2178 6.6828 49.6002 1.7468 49.6002 1.7468
+\c 49.6002 1.7468 46.221 1.854 38.2658 1.7468
+\c 31.5842 1.9292 29.4402 4.7964 29.4402 7.302
+\c 29.2594 12.0268 34.4146 12.2412 35.725 12.534
+\c 35.5058 13.622 31.8834 13.8044 29.9842 12.8252
+\c 28.0866 11.8444 26.6034 10.1004 26.5714 7.302
+\c 26.4242 2.8732 31.6178 -0.0004 35.653 -0.0004
+\c 39.6802 -0.0004 52.4338 -0.0004 52.4338 -0.0004
+\c 52.4338 -0.0004 52.2146 0.982 51.5586 2.5068
+\o
+\m 24.2098 69.8012
+\c 24.3394 70.2988 25.3282 74.054 26.4962 76.3388
+\c 27.5186 74.35 28.397 71.2508 28.693 70.15
+\c 26.6658 68.2972 26.2802 65.8188 26.2802 65.8188
+\c 26.2802 65.8188 25.9282 67.9996 24.2098 69.8012
+\o
+\s
+\m 34.8866 19.0716
+\c 35.4306 19.782 34.933 20.2812 34.125 19.7276
+\c 32.8594 18.8492 27.9154 15.5852 29.3314 14.3852
+\c 30.333 13.5404 32.2738 15.9116 34.8866 19.0716
+\o
+\s
+\m 18.2898 19.7276
+\c 17.4834 20.2812 16.9842 19.782 17.5282 19.0716
+\c 20.1394 15.9116 22.0834 13.5404 23.0834 14.3852
+\c 24.4994 15.5852 19.5586 18.8492 18.2898 19.7276
+\o
+\s
+\m 28.2402 18.6348
+\c 28.021 20.2684 26.0626 31.2764 26.0626 31.2764
+\c 26.0626 31.2764 24.0994 20.2684 23.8802 18.6348
+\c 23.6658 17.0012 26.0626 11.5532 26.0626 11.5532
+\c 26.0626 11.5532 28.4594 17.0012 28.2402 18.6348
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian29.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian29.pgf
new file mode 100644
index 0000000000..243ec8b1ee
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian29.pgf
@@ -0,0 +1,88 @@
+\m 31.2096 32.6816
+\l 31.4368 32.44
+\c 28.7088 31.9616 23.6 29.9488 15.0224 22.9312
+\c 13.9056 23.9968 12.3968 24.656 10.7312 24.656
+\c 7.2992 24.656 4.5184 21.8736 4.5184 18.4448
+\c 4.5184 15.0144 7.2992 12.232 10.7312 12.232
+\c 14.1584 12.232 16.944 15.0144 16.944 18.4448
+\c 16.944 19.5968 16.6224 20.6704 16.0752 21.5968
+\c 26.496 30.1248 31.44 30.8896 32.9216 30.8704
+\l 37.4368 26.0928
+\c 35.6752 26.4656 33.5776 26.4848 31.6688 25.3408
+\c 29.584 24.088 26.8752 21.1408 24.0064 18.0192
+\c 21.44 15.2272 18.7872 12.3424 16.512 10.5888
+\c 16.512 10.5888 10.5744 5.8896 8.7088 4.4144
+\c 7.5968 3.8608 7.2288 3.2592 7.1312 2.952
+\l 8.0928 1.5024
+\c 8.0928 1.5024 9.5808 2.5136 9.8064 2.6896
+\c 10.8224 3.1392 13.0496 3.6976 17.8432 3.4976
+\c 20.2992 3.3952 41.0096 2.8272 50.9024 11.9296
+\l 63.8848 0
+\l 65.2592 1.496
+\l 52.3184 13.3904
+\c 52.3936 13.4816 52.4784 13.5632 52.5536 13.656
+\c 61.0784 23.976 61.4128 37.1968 61.5904 44.2992
+\c 61.6336 46.0832 61.6688 47.4944 61.8128 48.4112
+\c 62.4784 52.7312 63.4272 53.8896 63.4368 53.9024
+\l 62.0368 55.3712
+\c 61.9408 55.2896 59.64 53.352 57.3248 49.8816
+\c 55.896 47.7392 52.8688 45.4832 50.2 43.496
+\l 46.5808 40.672
+\l 45.696 39.9216
+\c 43.0784 37.7344 39.04 34.3648 39.04 28.392
+\c 39.04 27.8624 39.096 27.2992 39.1744 26.7216
+\l 34.5472 31.6144
+\l 34.5408 31.6928
+\c 33.9584 38.6928 41.2224 46.1344 43.8496 48.5824
+\c 44.8624 47.8656 46.0992 47.4368 47.44 47.4368
+\c 50.8688 47.4368 53.6528 50.2176 53.6528 53.6496
+\c 53.6528 57.0784 50.8688 59.8608 47.44 59.8608
+\c 44.0096 59.8608 41.2272 57.0784 41.2272 53.6496
+\c 41.2272 52.1712 41.7472 50.8144 42.6064 49.7488
+\c 40.3504 47.648 35.2528 42.4144 33.4688 36.504
+\l 33.7504 52.4864
+\c 36.5184 53.112 38.5904 55.584 38.5904 58.5424
+\c 38.5904 61.976 35.8096 64.7552 32.3776 64.7552
+\c 28.9504 64.7552 26.1648 61.976 26.1648 58.5424
+\c 26.1648 55.224 28.7744 52.5184 32.0496 52.3472
+\c 31.9616 47.2976 31.7744 36.5648 31.7408 34.5856
+\l 23.3312 43.4784
+\c 24.0464 44.4912 24.472 45.7232 24.472 47.0592
+\c 24.472 50.4896 21.6912 53.2704 18.2592 53.2704
+\c 14.8288 53.2704 12.0464 50.4896 12.0464 47.0592
+\c 12.0464 43.6288 14.8288 40.848 18.2592 40.848
+\c 19.744 40.848 21.1056 41.368 22.1744 42.2368
+\l 29.5776 34.4048
+\c 25.0816 34.4864 15.1872 34.6624 12.3024 34.7152
+\c 11.7408 37.5648 9.2272 39.7184 6.2128 39.7184
+\c 2.7808 39.7184 0 36.936 0 33.5056
+\c 0 30.0752 2.7808 27.2928 6.2128 27.2928
+\c 9.4784 27.2928 12.1504 29.8144 12.4 33.0176
+\l 31.2096 32.6816
+\o
+\m 40.3184 22.848
+\l 42.6496 21.424
+\l 41.8192 24.0256
+\c 41.2992 25.6512 41.0752 27.0992 41.0752 28.3984
+\c 41.0752 33.4144 44.4192 36.2048 47 38.3616
+\l 47.9216 39.1392
+\l 51.4128 41.864
+\c 54.216 43.952 57.3936 46.3168 59.0192 48.7552
+\c 59.3712 49.2864 59.7152 49.72 60.0592 50.176
+\c 59.9712 49.7216 59.8848 49.2496 59.8032 48.7184
+\c 59.64 47.6768 59.6032 46.2096 59.56 44.3488
+\c 59.3712 37.0112 59.0624 24.728 50.9872 14.9488
+\c 44.1776 6.7104 27.0032 5.1504 17.9248 5.5312
+\c 16.088 5.6048 14.5808 5.5696 13.312 5.4656
+\c 15.5312 7.2208 17.7504 8.9792 17.7504 8.9792
+\c 20.1648 10.8368 22.8784 13.7888 25.5024 16.6448
+\c 28.2688 19.6544 30.8816 22.496 32.7152 23.5968
+\c 35.896 25.5056 40.2752 22.8768 40.3184 22.848
+\o
+\s
+\m 55.5344 40.2816
+\c 52.1472 4.8896 23.9088 10.5376 23.9088 10.5376
+\c 49.1344 12.0448 55.5344 40.2816 55.5344 40.2816
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian3.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian3.pgf
new file mode 100644
index 0000000000..215e3a785e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian3.pgf
@@ -0,0 +1,44 @@
+\r -0.3 -0.25 130.25 65.85
+\i
+\m 85.7876 29.4177
+\c 84.073 10.5543 54.0593 -1.4506 31.764 3.979
+\c 9.4688 9.4112 1.4646 28.8488 2.8935 42.8541
+\c 4.3223 56.8595 17.4703 64.0063 17.4703 64.0063
+\c 17.4703 64.0063 18.0419 65.7235 16.3273 65.4378
+\c 14.6126 65.152 12.6122 64.0063 10.0403 61.7176
+\c 7.4684 59.434 -3.1103 48.0006 0.8931 31.4207
+\c 5.1874 13.6302 18.0419 4.5531 32.6214 1.4071
+\c 47.1982 -1.7364 59.5955 0.3523 73.4969 7.9824
+\c 88.0738 15.9865 87.788 27.9915 87.788 29.7061
+\c 87.788 31.4207 85.7876 29.4177 85.7876 29.4177
+\o
+\s
+\m 128.6609 37.996
+\c 124.377 51.4272 108.0829 50.5725 98.9356 46.8575
+\c 89.7884 43.1399 86.6449 37.996 76.0688 37.7077
+\c 65.4953 37.4219 53.202 50.001 46.9125 52.0014
+\c 40.6281 54.0018 36.9079 51.1441 36.9079 51.1441
+\c 37.7652 60.0029 53.4904 63.4348 65.4953 60.2913
+\c 77.8614 57.0543 83.7872 46.286 84.6445 43.1399
+\c 85.5018 39.999 87.5022 42.2826 87.5022 42.2826
+\c 84.073 58.0051 68.0647 64.2921 56.6339 64.5779
+\c 45.1978 64.8636 35.7674 58.0051 34.6191 52.5703
+\c 33.4787 47.1407 31.764 38.2792 43.1949 30.8492
+\c 54.6283 23.4166 69.4935 29.7061 75.7831 32.5664
+\c 82.0726 35.4215 82.0726 33.4185 82.0726 33.4185
+\c 73.4969 26.2769 54.0593 20.2731 41.4802 26.2769
+\c 28.9063 32.2806 28.6206 48.5695 28.6206 48.5695
+\c 28.6206 48.5695 29.4779 52.8587 25.1887 51.7156
+\c 17.9406 49.7828 13.4722 47.4265 14.3295 35.4215
+\c 15.1868 23.4166 30.3352 9.9828 52.0589 13.9835
+\c 73.7801 17.9869 86.9307 32.8496 89.5052 35.1383
+\c 92.0772 37.4219 105.7967 50.001 116.9444 46.0002
+\c 128.0946 41.9968 127.2373 32.5664 124.377 27.9915
+\c 121.5167 23.4166 115.8013 23.4166 112.9436 27.4199
+\c 110.0833 31.4207 114.6582 34.2784 114.6582 34.2784
+\c 112.0863 38.2792 103.7937 36.5672 102.6533 28.8488
+\c 101.5076 21.1304 108.0829 17.1296 114.6582 17.1296
+\c 121.2335 17.1296 132.9527 24.5622 128.6609 37.996
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian30.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian30.pgf
new file mode 100644
index 0000000000..b065752c2d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian30.pgf
@@ -0,0 +1,87 @@
+\m 21.5024 56.0684
+\c 21.5024 56.0684 37.1104 52.1868 51.9184 40.3628
+\c 51.9184 40.3628 43.7456 55.8524 21.5024 56.0684
+\o
+\s
+\m 52.712 25.0588
+\c 38.4048 12.6332 22.968 8.1148 22.968 8.1148
+\c 45.1824 9.246 52.712 25.0588 52.712 25.0588
+\o
+\s
+\m -0.0004 0
+\l 63.2644 0
+\l 63.2644 63.868
+\l -0.0004 63.868
+\o
+\i
+\m 59.984 32.5484
+\c 59.9376 32.6316 59.8432 32.7052 59.7856 32.782
+\c 59.7888 32.7868 59.752 32.822 59.7424 32.8316
+\c 59.5504 33.0796 59.3312 33.3244 59.048 33.558
+\c 58.112 34.606 56.5888 36.614 56.36 38.9052
+\c 55.4208 48.2844 51.0368 54.8204 43.6848 57.8172
+\c 37.9728 60.1452 30.36 60.8332 22.9952 61.4988
+\c 17.0576 62.0348 11.4496 62.542 7.4768 63.8684
+\l 6.6992 61.9932
+\c 6.7808 61.9516 14.792 57.9068 18.0016 53.27
+\c 18.2832 52.8812 24.9648 43.6492 30.728 40.1916
+\c 36.6304 36.6492 44.1488 35.5164 48.1024 35.158
+\c 51.5248 34.846 55.6992 33.4812 57.472 32.2172
+\l 35.4192 32.5276
+\c 34.1936 32.8332 23.5616 35.662 16.8368 43.1804
+\c 17.3728 44.0428 17.696 45.0524 17.696 46.142
+\c 17.696 49.2652 15.168 51.7916 12.0496 51.7916
+\c 8.9312 51.7916 6.4032 49.2652 6.4032 46.142
+\c 6.4032 43.0252 8.9312 40.4972 12.0496 40.4972
+\c 13.584 40.4972 14.9696 41.1132 15.9888 42.1052
+\c 20.552 37.078 26.6272 34.1324 30.7344 32.5932
+\l 11.1904 32.8668
+\c 10.7056 35.494 8.4144 37.4828 5.648 37.4828
+\c 2.528 37.4828 0 34.9564 0 31.838
+\c 0 28.718 2.528 26.19 5.648 26.19
+\c 8.6544 26.19 11.0896 28.5468 11.2608 31.5084
+\l 30.504 31.2396
+\c 23.6272 28.7676 17.4432 23.8268 15.1584 21.862
+\c 14.2656 22.4524 13.1984 22.7996 12.048 22.7996
+\c 8.9296 22.7996 6.4016 20.2716 6.4016 17.1516
+\c 6.4016 14.0332 8.9296 11.5052 12.048 11.5052
+\c 15.1664 11.5052 17.6944 14.0332 17.6944 17.1516
+\c 17.6944 18.6252 17.1184 19.9548 16.1952 20.9596
+\c 19.0832 23.4044 27.4752 29.9772 35.4928 31.166
+\l 56.4928 30.878
+\c 54.4048 29.8732 51.2064 28.9548 48.48 28.7068
+\c 44.5248 28.3484 37.0096 27.2156 31.104 23.67
+\c 25.344 20.2156 18.6592 10.9836 18.376 10.5932
+\c 15.1664 5.958 7.1568 1.9116 7.0768 1.8716
+\l 7.8512 -0.0004
+\c 11.8256 1.3228 17.4336 1.83 23.3696 2.366
+\c 30.736 3.0316 38.3504 3.718 44.0608 6.046
+\c 51.4128 9.0428 55.7968 15.5804 56.736 24.9596
+\c 56.9648 27.2492 58.4864 29.2588 59.4256 30.3052
+\c 59.6272 30.4732 59.7936 30.6508 59.9456 30.8284
+\l 63.2432 30.782
+\l 63.264 32.1372
+\l 59.984 32.5484
+\o
+\m 48.2864 37.182
+\c 44.5056 37.526 37.3328 38.6028 31.7728 41.9356
+\c 26.3728 45.1756 19.7168 54.366 19.6624 54.4428
+\c 18.0336 56.7964 15.3952 58.9276 12.9936 60.5772
+\c 16.0192 60.1116 19.3408 59.7868 22.8112 59.4732
+\c 30.0256 58.8204 37.4864 58.1484 42.9152 55.9372
+\c 49.528 53.2412 53.4784 47.2828 54.3376 38.702
+\c 54.4512 37.5612 54.816 36.5052 55.2736 35.55
+\c 52.9552 36.4076 50.2848 37.0012 48.2864 37.182
+\o
+\m 54.7136 25.1628
+\c 53.8544 16.5804 49.904 10.6236 43.2928 7.9276
+\c 37.864 5.7164 30.4032 5.0428 23.1872 4.39
+\c 19.7168 4.0764 16.3968 3.7532 13.3696 3.2876
+\c 15.7696 4.9372 18.4112 7.0684 20.0384 9.4204
+\c 20.0928 9.4972 26.7504 18.6876 32.1504 21.9276
+\c 37.7072 25.2652 44.8816 26.3388 48.6624 26.6812
+\c 50.6608 26.8668 53.3296 27.4556 55.6496 28.3148
+\c 55.192 27.3596 54.8272 26.3036 54.7136 25.1628
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian31.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian31.pgf
new file mode 100644
index 0000000000..ae4dcecc88
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian31.pgf
@@ -0,0 +1,45 @@
+\r 0 0 48 48
+\i
+\m -3.828 -0.0472
+\l 48.4248 -0.0472
+\l 48.4248 51.498
+\l -3.828 51.498
+\o
+\i
+\m 48.425 46.0342
+\c 48.425 46.0342 37.0624 51.4982 32.9155 36.6278
+\c 32.9155 36.6278 40.8773 34.7174 43.1312 26.3206
+\c 44.7813 20.175 41.2029 15.3654 36.2438 13.9542
+\c 36.6773 20.2374 34.8062 24.8438 28.5155 28.815
+\c 24.1342 31.5814 20.0312 32.2438 17.756 32.3782
+\c 17.8437 36.7494 19.0843 41.9334 22.0282 47.9926
+\l 0.4118 48.023
+\l 0 26.3814
+\c 6.3592 29.3062 11.7781 30.4678 16.3093 30.4662
+\c 16.4843 26.4806 17.5594 22.2486 20.5155 18.7302
+\c 26.0467 12.1446 32.3342 11.7974 34.2312 11.855
+\c 32.7312 6.8678 27.9718 3.1926 21.2117 4.8182
+\c 12.7594 6.8518 11.125 15.2534 11.125 15.2534
+\c -3.8282 11.4278 1.3906 -0.0474 1.3906 -0.0474
+\c 1.3906 -0.0474 0.3461 9.6902 6.956 11.0806
+\c 6.956 11.0806 10.4936 2.8502 17.7344 1.6902
+\c 26.1062 0.3526 34.5656 3.7206 36.0085 12.0278
+\c 44.1843 13.1942 47.4843 21.4054 46.3342 29.7318
+\c 45.3312 36.9958 37.1781 40.711 37.1781 40.711
+\c 38.7093 47.2886 48.425 46.0342 48.425 46.0342
+\o
+\m 16.2936 32.4006
+\c 16.0501 32.3926 15.9093 32.3798 15.9093 32.3798
+\c 15.9093 32.3798 10.0874 31.943 5.3875 30.3782
+\l 5.7374 43.5926
+\l 18.2562 43.423
+\c 17.7968 41.8566 16.4147 37.471 16.2936 32.4006
+\o
+\m 34.6125 13.6054
+\c 33.2594 13.4358 31.8467 13.5094 30.4282 13.8614
+\c 25.2686 15.1526 18.4064 20.415 17.8 30.423
+\c 27.9187 29.8246 33.2499 23.215 34.428 18.0342
+\c 34.7624 16.5478 34.8147 15.0438 34.6125 13.6054
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian32.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian32.pgf
new file mode 100644
index 0000000000..7754b03f7f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian32.pgf
@@ -0,0 +1,39 @@
+\r 0 0 48 48
+\i
+\m 11.1991 40.7024
+\c 11.1991 40.7024 3.0471 36.9872 2.0439 29.7232
+\c 0.8951 21.3968 4.1927 13.1855 12.3687 12.0191
+\c 13.8119 3.7119 22.2711 0.3439 30.6423 1.6815
+\c 37.8855 2.8415 41.4231 11.0719 41.4231 11.0719
+\c 48.0327 9.6815 46.9879 -0.0561 46.9879 -0.0561
+\c 46.9879 -0.0561 52.2071 11.4191 37.2519 15.2448
+\c 37.2519 15.2448 35.6199 6.8431 27.1671 4.8095
+\c 20.4055 3.1839 15.6455 6.8591 14.1479 11.8463
+\c 16.0439 11.7887 22.3303 12.1359 27.8631 18.7216
+\c 30.8183 22.24 31.8935 26.472 32.0679 30.4576
+\c 36.6007 30.4592 42.0199 29.2976 48.3783 26.3728
+\l 47.9671 48.0144
+\l 26.3495 47.984
+\c 29.2951 41.9248 30.5335 36.7408 30.6215 32.3696
+\c 28.3479 32.2352 24.2439 31.5728 19.8631 28.8064
+\c 13.5719 24.8352 11.7015 20.2288 12.1335 13.9455
+\c 7.1751 15.3568 3.5975 20.1664 5.2471 26.312
+\c 7.5015 34.7088 15.4615 36.6192 15.4615 36.6192
+\c 11.3159 51.4896 -0.0473 46.0256 -0.0473 46.0256
+\c -0.0473 46.0256 9.6679 47.28 11.1991 40.7024
+\o
+\m 30.1207 43.4144
+\l 42.6407 43.584
+\l 42.9895 30.3696
+\c 38.2919 31.9344 32.4679 32.3712 32.4679 32.3712
+\c 32.4679 32.3712 32.3271 32.384 32.0855 32.392
+\c 31.9639 37.4624 30.5799 41.848 30.1207 43.4144
+\o
+\m 13.9511 18.0256
+\c 15.1287 23.2064 20.4583 29.816 30.5767 30.4144
+\c 29.9735 20.4064 23.1095 15.144 17.9495 13.8527
+\c 16.5319 13.5007 15.1175 13.4271 13.7671 13.5967
+\c 13.5639 15.0352 13.6151 16.5392 13.9511 18.0256
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian33.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian33.pgf
new file mode 100644
index 0000000000..a60b41cfe5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian33.pgf
@@ -0,0 +1,127 @@
+\m 84.8086 8.6651
+\c 83.647 13.2235 80.1158 18.3819 75.679 22.4907
+\c 74.1446 23.9163 72.3238 25.5163 70.2422 27.1323
+\c 74.1414 32.7995 76.1958 38.4603 75.8102 42.9035
+\c 75.7206 43.8955 75.5478 44.7819 75.343 45.6155
+\c 73.9846 53.5291 66.8582 55.3947 65.119 55.3979
+\c 63.6294 55.3979 63.2038 54.4859 63.2038 54.4859
+\c 63.2038 54.4859 62.5958 53.2651 64.0726 52.8315
+\c 65.0262 52.5547 67.5926 53.0027 70.2022 50.9611
+\c 71.5126 49.9371 72.3446 48.8059 72.8902 47.8395
+\c 73.559 46.5019 74.0678 44.8523 74.2502 42.7643
+\c 74.6006 38.7579 72.6294 33.4091 68.9926 28.0811
+\c 63.3094 32.2779 55.8102 36.3867 46.5846 37.6587
+\c 46.215 39.6635 46.0022 41.7003 45.9494 43.7579
+\c 48.3686 46.1099 50.5702 48.5707 52.0758 51.0939
+\c 54.1766 54.6059 53.7574 57.6283 52.8086 59.7547
+\c 52.3382 61.0059 51.5398 62.0859 50.511 62.9195
+\c 57.3734 75.8907 68.5862 80.1499 72.1606 81.5179
+\c 75.743 82.8907 79.7302 81.6283 80.279 83.5307
+\c 80.5286 84.3979 80.0422 85.4475 78.3094 85.2939
+\c 76.527 85.1371 73.1926 83.7579 68.0086 81.0299
+\c 61.5702 77.6507 54.1174 72.2747 49.4886 63.6539
+\c 46.5718 65.2987 42.0166 65.9067 36.7014 59.6891
+\c 35.6742 58.4859 34.4838 56.8027 33.2246 55.0283
+\c 29.6118 49.9291 24.6678 42.9435 20.4038 43.2651
+\c 17.4086 43.4907 16.4838 45.9931 16.6022 48.0715
+\c 16.6278 48.4747 16.703 48.8619 16.8086 49.2491
+\c 18.2998 52.6587 23.031 55.0155 27.0406 59.5243
+\c 31.2102 64.2219 30.5974 68.1003 30.5974 68.1003
+\c 30.5798 68.3915 30.6166 68.6251 30.6022 68.8779
+\c 30.4918 70.6411 29.6086 71.9339 28.1142 72.5211
+\c 25.8182 73.4203 22.5846 72.4091 20.0646 70.0027
+\l 17.7846 67.6987
+\c 14.8198 64.6219 11.4582 61.1339 9.3702 62.6411
+\c 8.951 62.9371 8.7366 63.3371 8.7126 63.8683
+\c 8.6918 64.2971 8.807 64.7995 9.0166 65.3307
+\c 9.8006 66.8907 11.7398 68.4651 13.183 70.0891
+\c 14.3478 71.3995 14.727 72.2251 14.943 72.8603
+\c 15.3702 74.1195 15.1718 75.0747 15.1718 75.0747
+\c 15.1622 75.1259 15.1302 75.1579 15.119 75.2027
+\c 15.1062 75.2523 15.1078 75.3067 15.095 75.3579
+\c 14.9142 76.0059 14.3142 77.1499 12.311 77.5099
+\c 10.2918 77.8715 9.119 76.3979 8.1782 75.2091
+\c 7.887 74.8427 7.631 74.5291 7.3862 74.2715
+\c 7.3846 74.2715 6.5622 73.4331 5.5654 74.0891
+\c 4.567 74.7403 6.0438 77.1307 5.5206 79.2155
+\c 5.0006 81.3035 2.175 81.3931 1.4806 80.3035
+\c 0.7846 79.2155 1.4342 78.4379 2.8262 78.4379
+\c 4.2182 78.4379 3.2582 76.9115 2.8262 75.0891
+\c 2.391 73.2635 3.415 71.5499 6.175 71.9163
+\c 6.271 71.9259 6.3222 71.9675 6.4086 71.9899
+\c 7.7558 72.1995 8.6758 73.3211 9.4054 74.2379
+\c 10.3526 75.4299 10.9734 75.9835 12.0342 75.9675
+\c 12.4854 75.9627 12.8534 75.8027 13.1302 75.5803
+\c 13.2406 75.4587 13.3542 75.3435 13.4534 75.2027
+\c 13.5062 75.1163 13.559 75.0267 13.5846 74.9371
+\c 13.6502 74.7067 13.6422 74.4123 13.5654 74.0779
+\c 12.9254 72.5131 9.671 70.3995 7.8022 67.4155
+\c 6.3462 65.0939 7.1702 63.1403 7.4358 62.6315
+\c 7.6534 62.1371 7.9862 61.7067 8.4534 61.3691
+\c 11.6438 59.0715 15.5078 63.0811 18.9126 66.6123
+\l 21.143 68.8715
+\c 23.199 70.8315 25.8326 71.7339 27.543 71.0619
+\c 28.463 70.7035 28.9702 69.9339 29.039 68.7787
+\c 29.0582 68.4251 29.0214 68.0891 28.991 67.7467
+\c 28.9286 67.4523 28.8726 67.1611 28.7766 66.8283
+\c 27.6454 62.9163 20.255 58.4811 17.2998 54.8315
+\c 14.3414 51.1819 15.0406 46.9195 15.0406 46.9195
+\c 15.3334 44.3643 16.9414 41.9579 20.2854 41.7067
+\c 25.4342 41.3195 30.4614 48.4203 34.5014 54.1211
+\c 35.7398 55.8683 36.911 57.5227 37.8934 58.6683
+\c 41.631 63.0443 45.2854 64.2507 48.7574 62.2683
+\c 46.927 58.4619 45.6726 54.0347 45.2374 48.9275
+\c 45.055 48.7627 44.895 48.6155 44.7094 48.4411
+\c 41.415 45.3595 36.7414 41.1755 33.2902 37.4331
+\c 16.4198 34.5723 8.063 22.6523 3.6966 13.1035
+\c 1.2598 7.7755 0.063 4.3707 0.0022 2.5803
+\c -0.057 0.8443 1.015 0.4155 1.871 0.7163
+\c 3.7414 1.3659 2.2582 5.2779 3.4358 8.9275
+\c 4.607 12.5819 8.2598 24.0571 20.911 31.6203
+\c 24.583 33.8155 28.391 35.2907 32.2358 36.1803
+\c 29.2294 32.3547 27.5638 26.8987 28.4278 22.5787
+\c 28.6438 20.2091 29.4902 17.9243 30.9846 15.9467
+\c 34.1302 11.7835 39.6118 9.5787 46.0294 9.8891
+\c 49.4358 10.0491 53.3606 11.6283 57.2918 14.2251
+\c 59.1382 12.0619 60.9606 10.1979 62.5686 8.6395
+\c 66.9158 4.4363 72.2582 1.1915 76.8694 0.2811
+\c 79.7174 -0.2805 82.767 -0.0277 84.207 1.2859
+\c 85.5462 3.1035 85.5238 5.8571 84.8086 8.6651
+\o
+\m 60.6854 31.9659
+\c 63.4742 30.4283 65.9862 28.7403 68.2278 26.9995
+\c 67.3878 25.8475 66.5014 24.6939 65.5158 23.5643
+\c 62.943 20.6203 60.1718 18.1339 57.3958 16.1675
+\c 55.6278 18.2331 53.8918 20.5259 52.287 23.0971
+\c 49.6582 27.3019 47.7782 31.9179 46.7686 36.7323
+\c 51.6294 35.9883 56.3414 34.3627 60.6854 31.9659
+\o
+\m 45.6726 37.7691
+\c 43.7238 37.9931 41.6934 38.0859 39.5958 38.0347
+\c 41.4118 39.5979 43.2982 41.2475 45.111 42.9627
+\c 45.2006 41.1707 45.3846 39.4363 45.6726 37.7691
+\o
+\m 49.8278 61.4939
+\c 50.7878 60.6155 51.431 59.4427 51.6678 58.0891
+\c 51.5702 54.6411 49.6966 53.0027 46.2918 49.9003
+\c 46.8214 53.7867 47.9926 57.6811 49.8278 61.4939
+\o
+\m 45.9526 11.4507
+\c 40.0614 11.1659 35.063 13.1467 32.2358 16.8907
+\c 30.5366 19.1371 29.7638 21.8315 29.9686 24.5755
+\c 30.1718 26.4395 31.0502 30.3163 34.775 33.7915
+\c 35.8886 34.8267 37.167 35.9371 38.503 37.0891
+\c 40.9606 37.2347 43.4118 37.1755 45.831 36.8619
+\c 47.5654 27.9435 51.903 20.8203 56.2934 15.4219
+\c 52.6566 13.0363 49.0598 11.5995 45.9526 11.4507
+\o
+\m 80.1846 5.0907
+\c 80.1846 5.0907 77.9478 2.8779 73.1254 4.2571
+\c 69.7094 5.2315 63.9686 8.8907 58.4374 14.9931
+\c 61.2758 17.0203 64.0934 19.5579 66.6934 22.5339
+\c 67.6966 23.6859 68.5974 24.8507 69.4518 26.0155
+\c 75.6614 20.8955 79.4934 15.4907 80.6358 12.1867
+\c 82.2758 7.4459 80.1846 5.0907 80.1846 5.0907
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian34.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian34.pgf
new file mode 100644
index 0000000000..ff8541f97d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian34.pgf
@@ -0,0 +1,127 @@
+\m 1.0873 1.2859
+\c 2.5289 -0.0277 5.5769 -0.2805 8.4249 0.2811
+\c 13.0361 1.1915 18.3785 4.4363 22.7273 8.6395
+\c 24.3353 10.1979 26.1561 12.0619 28.0041 14.2251
+\c 31.9353 11.6283 35.8601 10.0491 39.2665 9.8891
+\c 45.6825 9.5787 51.1641 11.7835 54.3097 15.9467
+\c 55.8057 17.9243 56.6521 20.2091 56.8601 22.5803
+\c 57.7321 26.8987 56.0665 32.3547 53.0601 36.1803
+\c 56.9033 35.2907 60.7113 33.8155 64.3849 31.6203
+\c 77.0345 24.0571 80.6873 12.5819 81.8601 8.9275
+\c 83.0361 5.2779 81.5529 1.3659 83.4233 0.7163
+\c 84.2777 0.4155 85.3513 0.8443 85.2921 2.5803
+\c 85.2313 4.3707 84.0345 7.7755 81.5993 13.1035
+\c 77.2313 22.6523 68.8745 34.5723 52.0057 37.4331
+\c 48.5529 41.1755 43.8793 45.3595 40.5865 48.4411
+\c 40.4009 48.6155 40.2393 48.7627 40.0585 48.9275
+\c 39.6217 54.0347 38.3673 58.4619 36.5385 62.2683
+\c 40.0105 64.2507 43.6649 63.0443 47.4025 58.6683
+\c 48.3849 57.5227 49.5545 55.8683 50.7945 54.1211
+\c 54.8329 48.4203 59.8617 41.3195 65.0105 41.7067
+\c 68.3529 41.9579 69.9609 44.3643 70.2233 46.9579
+\c 70.2553 46.9195 70.9529 51.1819 67.9961 54.8315
+\c 65.0393 58.4811 57.6505 62.9163 56.5193 66.8283
+\c 56.4217 67.1611 56.3657 67.4523 56.3033 67.7467
+\c 56.2745 68.0891 56.2361 68.4251 56.2569 68.7787
+\c 56.3257 69.9339 56.8313 70.7035 57.7513 71.0619
+\c 59.4633 71.7339 62.0953 70.8315 64.1513 68.8715
+\l 66.3833 66.6123
+\c 69.7881 63.0811 73.6521 59.0715 76.8409 61.3691
+\c 77.3081 61.7067 77.6409 62.1371 77.8601 62.6315
+\c 78.1257 63.1403 78.9481 65.0939 77.4921 67.4155
+\c 75.6233 70.3995 72.3689 72.5131 71.7305 74.0779
+\c 71.6537 74.4123 71.6457 74.7067 71.7097 74.9371
+\c 71.7369 75.0267 71.7897 75.1163 71.8409 75.2027
+\c 71.9417 75.3435 72.0553 75.4587 72.1641 75.5803
+\c 72.4409 75.8027 72.8105 75.9627 73.2617 75.9675
+\c 74.3225 75.9835 74.9433 75.4299 75.8889 74.2379
+\c 76.6185 73.3211 77.5401 72.1995 78.8857 71.9899
+\c 78.9721 71.9675 79.0233 71.9259 79.1209 71.9163
+\c 81.8793 71.5499 82.9033 73.2635 82.4697 75.0891
+\c 82.0361 76.9115 81.0761 78.4379 82.4697 78.4379
+\c 83.8617 78.4379 84.5113 79.2155 83.8137 80.3035
+\c 83.1209 81.3931 80.2937 81.3035 79.7737 79.2155
+\c 79.2521 77.1307 80.7289 74.7403 79.7305 74.0891
+\c 78.7337 73.4331 77.9113 74.2715 77.9113 74.2715
+\c 77.6649 74.5291 77.4089 74.8427 77.1177 75.2091
+\c 76.1769 76.3979 75.0041 77.8715 72.9849 77.5099
+\c 70.9817 77.1499 70.3801 76.0059 70.2009 75.3579
+\c 70.1881 75.3067 70.1897 75.2523 70.1769 75.2027
+\c 70.1641 75.1579 70.1337 75.1259 70.1241 75.0747
+\c 70.1241 75.0747 69.9257 74.1195 70.3513 72.8603
+\c 70.5673 72.2251 70.9465 71.3995 72.1129 70.0891
+\c 73.5545 68.4651 75.4937 66.8907 76.2777 65.3307
+\c 76.4873 64.7995 76.6041 64.2971 76.5833 63.8683
+\c 76.5577 63.3371 76.3449 62.9371 75.9257 62.6411
+\c 73.8361 61.1339 70.4761 64.6219 67.5097 67.6987
+\l 65.2297 70.0027
+\c 62.7097 72.4091 59.4777 73.4203 57.1801 72.5211
+\c 55.6857 71.9339 54.8041 70.6411 54.6921 68.8779
+\c 54.6777 68.6251 54.7161 68.3915 54.7241 68.1435
+\c 54.6969 68.1003 54.0841 64.2219 58.2553 59.5243
+\c 62.2649 55.0155 66.9961 52.6587 68.4857 49.2491
+\c 68.5929 48.8619 68.6681 48.4747 68.6921 48.0715
+\c 68.8121 45.9931 67.8857 43.4907 64.8905 43.2651
+\c 60.6265 42.9435 55.6825 49.9291 52.0713 55.0283
+\c 50.8121 56.8027 49.6201 58.4859 48.5945 59.6891
+\c 43.2777 65.9067 38.7241 65.2987 35.8073 63.6539
+\c 31.1785 72.2747 23.7257 77.6507 17.2857 81.0299
+\c 12.1017 83.7579 8.7673 85.1371 6.9865 85.2939
+\c 5.2537 85.4475 4.7657 84.3979 5.0153 83.5307
+\c 5.5641 81.6283 9.5513 82.8907 13.1353 81.5179
+\c 16.7081 80.1499 27.9225 75.8907 34.7849 62.9195
+\c 33.7545 62.0859 32.9561 61.0059 32.4857 59.7547
+\c 31.5385 57.6283 31.1193 54.6059 33.2185 51.0939
+\c 34.7257 48.5707 36.9273 46.1099 39.3449 43.7579
+\c 39.2921 41.7003 39.0793 39.6635 38.7113 37.6587
+\c 29.4841 36.3867 21.9865 32.2779 16.3017 28.0811
+\c 12.6665 33.4091 10.6937 38.7579 11.0457 42.7643
+\c 11.2265 44.8523 11.7369 46.5019 12.4057 47.8395
+\c 12.9497 48.8059 13.7833 49.9371 15.0921 50.9611
+\c 17.7017 53.0027 20.2697 52.5547 21.2217 52.8315
+\c 22.6985 53.2651 22.0905 54.4859 22.0905 54.4859
+\c 22.0905 54.4859 21.6665 55.3979 20.1769 55.3979
+\c 18.4361 55.3947 11.3097 53.5291 9.9177 45.6155
+\c 9.7449 44.7819 9.5737 43.8955 9.4841 42.9035
+\c 9.0985 38.4603 11.1529 32.7995 15.0537 27.1323
+\c 12.9705 25.5163 11.1497 23.9163 9.6153 22.4907
+\c 5.1801 18.3819 1.6489 13.2235 0.4857 8.6651
+\c -0.2295 5.8571 -0.2535 3.1035 1.0873 1.2859
+\o
+\m 38.5273 36.7323
+\c 37.5177 31.9179 35.6361 27.3019 33.0089 23.0971
+\c 31.4041 20.5259 29.6681 18.2331 27.8985 16.1675
+\c 25.1241 18.1339 22.3513 20.6203 19.7801 23.5643
+\c 18.7945 24.6939 17.9065 25.8475 17.0681 26.9995
+\c 19.3081 28.7403 21.8201 30.4283 24.6105 31.9659
+\c 28.9529 34.3627 33.6665 35.9883 38.5273 36.7323
+\o
+\m 40.1849 42.9627
+\c 41.9977 41.2475 43.8825 39.5979 45.6985 38.0347
+\c 43.6025 38.0859 41.5705 37.9931 39.6217 37.7691
+\c 39.9113 39.4363 40.0937 41.1707 40.1849 42.9627
+\o
+\m 39.0041 49.9003
+\c 35.5993 53.0027 33.7257 54.6411 33.6265 58.0891
+\c 33.8649 59.4427 34.5065 60.6155 35.4681 61.4939
+\c 37.3017 57.6811 38.4745 53.7867 39.0041 49.9003
+\o
+\m 29.0025 15.4219
+\c 33.3929 20.8203 37.7305 27.9435 39.4649 36.8619
+\c 41.8825 37.1755 44.3353 37.2347 46.7929 37.0891
+\c 48.1289 35.9371 49.4073 34.8267 50.5209 33.7915
+\c 54.2457 30.3163 55.1241 26.4395 55.3273 24.5755
+\c 55.5321 21.8315 54.7577 19.1371 53.0601 16.8907
+\c 50.2313 13.1467 45.2329 11.1659 39.3433 11.4507
+\c 36.2345 11.5995 32.6377 13.0363 29.0025 15.4219
+\o
+\m 4.6601 12.1867
+\c 5.8025 15.4907 9.6329 20.8955 15.8441 26.0155
+\c 16.6969 24.8507 17.5993 23.6859 18.6025 22.5339
+\c 21.2025 19.5579 24.0185 17.0203 26.8585 14.9931
+\c 21.3273 8.8907 15.5865 5.2315 12.1689 4.2571
+\c 7.3449 2.8779 5.1097 5.0907 5.1097 5.0907
+\c 5.1097 5.0907 3.0185 7.4459 4.6601 12.1867
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian35.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian35.pgf
new file mode 100644
index 0000000000..c50067b6a2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian35.pgf
@@ -0,0 +1,139 @@
+\r 0 0 97 97
+\i
+\m 84.2873 91.5457
+\c 67.3353 97.6737 51.1593 85.5665 41.5113 81.5025
+\c 37.8473 79.9585 33.9945 78.9057 30.2425 78.3393
+\c 30.1849 78.7841 30.1321 79.2369 30.1241 79.7217
+\c 29.9513 89.1089 40.6793 92.7457 45.3257 93.4017
+\c 48.3161 93.8241 50.4489 93.0593 52.4649 93.4017
+\c 53.8041 93.6321 54.4233 95.0641 53.7881 96.1393
+\c 52.8777 97.6801 48.5865 97.2801 44.7385 96.5329
+\c 37.2281 95.0689 28.7321 88.7633 28.3849 80.9361
+\c 28.3433 79.9633 28.3945 79.0241 28.5193 78.1185
+\c 26.1721 77.8561 23.8921 77.8017 21.7369 77.9553
+\c 20.8777 82.7889 19.0697 87.0465 16.2153 90.2401
+\c 10.7433 96.3585 4.4137 92.7825 4.4137 92.7825
+\c 4.4137 92.7825 0.8345 86.4529 6.9545 80.9809
+\c 10.1481 78.1281 14.4073 76.3169 19.2393 75.4593
+\c 19.3913 73.3057 19.3385 71.0241 19.0809 68.6769
+\c 18.1705 68.8017 17.2329 68.8545 16.2585 68.8113
+\c 8.4329 68.4625 2.1273 59.9665 0.6633 52.4561
+\c -0.0887 48.6049 -0.4839 44.3153 1.0521 43.4049
+\c 2.1289 42.7713 3.5641 43.3889 3.7929 44.7265
+\c 4.1369 46.7457 3.3689 48.8801 3.7929 51.8689
+\c 4.4505 56.5137 8.0873 67.2465 17.4761 67.0705
+\c 17.9609 67.0625 18.4121 67.0113 18.8553 66.9521
+\c 18.2921 63.2033 17.2361 59.3489 15.6905 55.6801
+\c 11.6281 46.0337 -0.4791 29.8609 5.6505 12.9089
+\c 11.7801 -4.0447 32.7753 -3.5231 38.9049 9.9089
+\c 44.5641 22.3121 38.4105 35.5793 30.2697 38.1585
+\c 31.1465 41.3697 31.6201 44.9681 31.4713 48.9889
+\c 31.0809 59.5377 27.5689 65.6177 22.2137 67.8465
+\c 22.3753 70.3249 22.3545 72.7457 22.1289 75.0673
+\c 24.4489 74.8401 26.8713 74.8177 29.3481 74.9841
+\c 31.5753 69.6289 37.6585 66.1121 48.2073 65.7217
+\c 52.2281 65.5745 55.8265 66.0497 59.0361 66.9249
+\c 61.6153 58.7841 74.8857 52.6321 87.2857 58.2897
+\c 100.7161 64.4209 101.2377 85.4145 84.2873 91.5457
+\o
+\m 37.9913 19.2993
+\c 37.7881 9.2625 31.3753 4.2721 24.4713 3.6081
+\c 24.0137 5.7889 23.8233 7.9249 23.9513 9.8113
+\c 25.1017 9.7089 26.2793 9.8945 27.4281 10.4321
+\c 33.2969 13.1681 32.2537 22.1681 25.8633 19.6897
+\c 23.3193 18.7009 22.1945 16.1153 21.7881 13.2433
+\c 19.3049 14.6977 17.9081 17.2977 17.3257 20.2145
+\c 17.8537 20.5585 18.3945 20.9249 18.9545 21.3393
+\c 22.9129 24.2833 27.2313 29.1553 29.6265 36.0737
+\c 34.0985 34.7953 38.2089 30.0449 37.9913 19.2993
+\o
+\m 24.3625 12.2977
+\c 24.9049 14.4017 25.9449 15.9521 27.5593 16.4289
+\c 31.0809 17.4705 29.5161 11.7345 25.0809 12.1249
+\c 24.8249 12.1633 24.6073 12.2433 24.3625 12.2977
+\o
+\m 20.2569 33.7745
+\c 21.7129 35.3153 24.0905 36.3521 26.6329 36.4369
+\c 24.6953 31.0977 21.3113 26.1969 17.0489 22.4833
+\c 16.7865 26.8833 18.1049 31.4993 20.2569 33.7745
+\o
+\m 28.4281 45.5121
+\c 28.3593 43.1905 27.9753 40.8769 27.3401 38.6209
+\c 18.8409 38.7953 15.1337 30.6657 15.0393 23.6017
+\c 15.0281 22.6897 15.0953 21.8209 15.1929 20.9777
+\c 13.4521 19.6737 11.5945 18.5665 9.6521 17.6897
+\c 8.6809 16.8593 11.3113 16.8081 15.5065 19.1137
+\c 16.4569 14.8673 18.7993 11.7713 21.5945 10.4689
+\c 21.5673 7.6145 22.0073 4.9153 22.2729 3.5457
+\c 16.7481 3.7425 11.2921 6.6241 8.7785 11.8641
+\c 2.7817 24.3841 12.5609 36.1201 18.3001 50.7281
+\c 20.2649 55.7297 21.5241 60.9265 22.0441 65.9489
+\c 27.3993 63.0593 28.7081 54.9121 28.4281 45.5121
+\o
+\m 9.1705 83.1985
+\c 6.4313 86.5873 7.0201 90.1745 7.0201 90.1745
+\c 7.0201 90.1745 10.6057 90.7633 13.9961 88.0241
+\c 16.5897 85.9297 18.1993 82.4593 18.9097 78.2833
+\c 14.7369 78.9969 11.2633 80.6065 9.1705 83.1985
+\o
+\m 31.2473 75.1521
+\c 36.2697 75.6721 41.4633 76.9313 46.4697 78.8977
+\c 61.0729 84.6337 72.8105 94.4145 85.3289 88.4145
+\c 90.5705 85.9009 93.4537 80.4449 93.6473 74.9185
+\c 92.2809 75.1857 89.5817 75.6289 86.7289 75.6017
+\c 85.4249 78.3921 82.3257 80.7361 78.0777 81.6897
+\c 80.3881 85.8833 80.3385 88.5137 79.5049 87.5425
+\c 78.6297 85.6017 77.5209 83.7425 76.2201 82.0017
+\c 75.3721 82.1025 74.5033 82.1681 73.5929 82.1553
+\c 66.5305 82.0625 58.3961 78.3521 58.5737 69.8561
+\c 56.3177 69.2209 54.0057 68.8337 51.6841 68.7665
+\c 42.2857 68.4833 34.1353 69.7953 31.2473 75.1521
+\o
+\m 63.4217 76.9377
+\c 65.6953 79.0897 70.3113 80.4081 74.7129 80.1457
+\c 70.9945 75.8801 66.1001 72.4993 60.7561 70.5633
+\c 60.8441 73.1041 61.8809 75.4801 63.4217 76.9377
+\o
+\m 77.8953 59.2017
+\c 67.1497 58.9841 62.3961 63.0977 61.1193 67.5681
+\c 68.0377 69.9633 72.9113 74.2801 75.8537 78.2417
+\c 76.2697 78.8001 76.6361 79.3393 76.9785 79.8673
+\c 79.8969 79.2865 82.4969 77.8897 83.9529 75.4049
+\c 81.0825 74.9969 78.4921 73.8737 77.5049 71.3313
+\c 75.0265 64.9425 84.0265 63.8993 86.7625 69.7665
+\c 87.3001 70.9137 87.4873 72.0945 87.3801 73.2449
+\c 89.2665 73.3697 91.4073 73.1841 93.5849 72.7249
+\c 92.9241 65.8177 87.9305 59.4049 77.8953 59.2017
+\o
+\m 85.0665 72.1105
+\c 85.4617 67.6801 79.7225 66.1137 80.7657 69.6369
+\c 81.2425 71.2481 82.7913 72.2897 84.9001 72.8321
+\c 84.9529 72.5905 85.0313 72.3713 85.0665 72.1105
+\o
+\s
+\m 53.6409 62.4609
+\l 46.5961 56.8545
+\l 36.8185 60.5057
+\l 40.4697 50.7281
+\l 34.8617 43.6833
+\l 44.2521 44.2049
+\l 50.1193 34.0337
+\l 52.0121 45.3137
+\l 63.2921 47.2049
+\l 53.1193 53.0737
+\l 53.6409 62.4609
+\o
+\m 54.9577 48.7809
+\c 52.7033 48.4017 49.4633 47.8577 49.4633 47.8577
+\c 49.4633 47.8577 48.9209 44.6209 48.5433 42.3681
+\c 47.3785 44.3873 45.7593 47.1905 45.7593 47.1905
+\c 45.7593 47.1905 42.8489 47.0321 40.8777 46.9217
+\c 41.9705 48.2945 43.5337 50.2561 43.5337 50.2561
+\c 43.5337 50.2561 42.2505 53.6977 41.4281 55.8993
+\c 43.6281 55.0769 47.0665 53.7889 47.0665 53.7889
+\c 47.0665 53.7889 49.0313 55.3553 50.4057 56.4449
+\c 50.2953 54.4737 50.1353 51.5665 50.1353 51.5665
+\c 50.1353 51.5665 52.9401 49.9457 54.9577 48.7809
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian36.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian36.pgf
new file mode 100644
index 0000000000..6645743784
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian36.pgf
@@ -0,0 +1,139 @@
+\r 0 0 97 97
+\i
+\m 9.9085 58.2897
+\c 22.3085 52.6321 35.5789 58.7841 38.1565 66.9249
+\c 41.3677 66.0497 44.9645 65.5745 48.9869 65.7217
+\c 59.5357 66.1121 65.6173 69.6289 67.8461 74.9841
+\c 70.3229 74.8177 72.7453 74.8401 75.0653 75.0673
+\c 74.8397 72.7457 74.8173 70.3249 74.9805 67.8465
+\c 69.6237 65.6177 66.1133 59.5361 65.7229 48.9889
+\c 65.5741 44.9681 66.0477 41.3713 66.9229 38.1585
+\c 58.7837 35.5793 52.6285 22.3121 58.2877 9.9089
+\c 64.4173 -3.5231 85.4125 -4.0447 91.5421 12.9089
+\c 97.6733 29.8609 85.5645 46.0337 81.5021 55.6801
+\c 79.9565 59.3489 78.9021 63.2017 78.3389 66.9521
+\c 78.7821 67.0113 79.2333 67.0625 79.7181 67.0705
+\c 89.1069 67.2465 92.7421 56.5137 93.4013 51.8689
+\c 93.8237 48.8801 93.0573 46.7457 93.4013 44.7265
+\c 93.6285 43.3889 95.0653 42.7713 96.1421 43.4049
+\c 97.6781 44.3153 97.2829 48.6049 96.5309 52.4561
+\c 95.0669 59.9665 88.7597 68.4625 80.9357 68.8113
+\c 79.9597 68.8545 79.0221 68.8017 78.1133 68.6769
+\c 77.8557 71.0241 77.8029 73.3057 77.9533 75.4593
+\c 82.7869 76.3169 87.0461 78.1281 90.2397 80.9809
+\c 96.3581 86.4529 92.7805 92.7825 92.7805 92.7825
+\c 92.7805 92.7825 86.4509 96.3585 80.9789 90.2401
+\c 78.1229 87.0465 76.3165 82.7889 75.4573 77.9553
+\c 73.3021 77.8017 71.0205 77.8561 68.6749 78.1185
+\c 68.7997 79.0241 68.8509 79.9633 68.8093 80.9377
+\c 68.4605 88.7633 59.9661 95.0689 52.4557 96.5329
+\c 48.6077 97.2801 44.3165 97.6801 43.4061 96.1393
+\c 42.7709 95.0641 43.3885 93.6321 44.7261 93.4017
+\c 46.7453 93.0593 48.8781 93.8241 51.8685 93.4017
+\c 56.5149 92.7457 67.2429 89.1089 67.0701 79.7217
+\c 67.0605 79.2369 67.0093 78.7841 66.9501 78.3409
+\c 63.1981 78.9057 59.3453 79.9585 55.6829 81.5025
+\c 46.0349 85.5665 29.8573 97.6737 12.9069 91.5457
+\c -4.0451 85.4145 -3.5219 64.4209 9.9085 58.2897
+\o
+\m 67.5677 36.0737
+\c 69.9613 29.1553 74.2797 24.2833 78.2397 21.3409
+\c 78.7997 20.9249 79.3405 20.5585 79.8685 20.2145
+\c 79.2845 17.2977 77.8877 14.6977 75.4061 13.2433
+\c 74.9981 16.1153 73.8749 18.7009 71.3309 19.6897
+\c 64.9405 22.1681 63.8957 13.1681 69.7645 10.4321
+\c 70.9149 9.8945 72.0909 9.7089 73.2429 9.8113
+\c 73.3709 7.9249 73.1805 5.7889 72.7229 3.6081
+\c 65.8173 4.2705 59.4061 9.2625 59.2029 19.2993
+\c 58.9853 30.0449 63.0941 34.7953 67.5677 36.0737
+\o
+\m 72.1133 12.1249
+\c 67.6781 11.7345 66.1133 17.4705 69.6349 16.4289
+\c 71.2493 15.9521 72.2877 14.4017 72.8301 12.2977
+\c 72.5869 12.2433 72.3693 12.1633 72.1133 12.1249
+\o
+\m 80.1453 22.4833
+\c 75.8829 26.1969 72.4989 31.0977 70.5597 36.4369
+\c 73.1037 36.3521 75.4797 35.3153 76.9373 33.7745
+\c 79.0877 31.4993 80.4077 26.8833 80.1453 22.4833
+\o
+\m 75.1485 65.9489
+\c 75.6701 60.9265 76.9261 55.7297 78.8925 50.7281
+\c 84.6317 36.1201 94.4125 24.3841 88.4157 11.8641
+\c 85.9021 6.6241 80.4461 3.7425 74.9213 3.5457
+\c 75.1869 4.9153 75.6253 7.6145 75.5997 10.4689
+\c 78.3917 11.7697 80.7373 14.8673 81.6861 19.1137
+\c 85.8829 16.8081 88.5133 16.8593 87.5421 17.6897
+\c 85.5997 18.5665 83.7421 19.6737 82.0013 20.9777
+\c 82.0989 21.8209 82.1645 22.6897 82.1533 23.6017
+\c 82.0573 30.6657 78.3517 38.7953 69.8541 38.6209
+\c 69.2173 40.8769 68.8333 43.1905 68.7645 45.5121
+\c 68.4845 54.9121 69.7949 63.0593 75.1485 65.9489
+\o
+\m 78.2829 78.2833
+\c 78.9949 82.4593 80.6045 85.9297 83.1949 88.0241
+\c 86.5885 90.7633 90.1741 90.1745 90.1741 90.1745
+\c 90.1741 90.1745 90.7613 86.5873 88.0221 83.1985
+\c 85.9293 80.6049 82.4573 78.9969 78.2829 78.2833
+\o
+\m 45.5101 68.7665
+\c 43.1885 68.8337 40.8749 69.2209 38.6189 69.8561
+\c 38.7949 78.3521 30.6605 82.0625 23.6013 82.1553
+\c 22.6893 82.1681 21.8205 82.1025 20.9741 82.0017
+\c 19.6733 83.7425 18.5629 85.6017 17.6877 87.5425
+\c 16.8557 88.5137 16.8061 85.8833 19.1165 81.6897
+\c 14.8685 80.7361 11.7693 78.3921 10.4653 75.6017
+\c 7.6125 75.6289 4.9133 75.1857 3.5453 74.9185
+\c 3.7405 80.4449 6.6221 85.9009 11.8653 88.4145
+\c 24.3837 94.4145 36.1213 84.6337 50.7229 78.8977
+\c 55.7293 76.9313 60.9229 75.6705 65.9453 75.1521
+\c 63.0573 69.7953 54.9085 68.4833 45.5101 68.7665
+\o
+\m 36.4365 70.5633
+\c 31.0925 72.4993 26.1981 75.8801 22.4797 80.1457
+\c 26.8829 80.4081 31.4989 79.0897 33.7725 76.9361
+\c 35.3133 75.4801 36.3485 73.1057 36.4365 70.5633
+\o
+\m 3.6093 72.7249
+\c 5.7869 73.1841 7.9261 73.3697 9.8125 73.2449
+\c 9.7069 72.0945 9.8925 70.9137 10.4301 69.7665
+\c 13.1677 63.8993 22.1677 64.9425 19.6877 71.3313
+\c 18.7021 73.8737 16.1117 74.9969 13.2413 75.4049
+\c 14.6957 77.8897 17.2957 79.2865 20.2157 79.8673
+\c 20.5565 79.3393 20.9229 78.8001 21.3405 78.2417
+\c 24.2829 74.2801 29.1549 69.9633 36.0749 67.5681
+\c 34.7949 63.0977 30.0445 58.9841 19.2973 59.2017
+\c 9.2605 59.4049 4.2701 65.8177 3.6093 72.7249
+\o
+\m 12.2925 72.8321
+\c 14.4029 72.2897 15.9501 71.2481 16.4269 69.6369
+\c 17.4717 66.1137 11.7325 67.6801 12.1261 72.1105
+\c 12.1613 72.3713 12.2413 72.5905 12.2925 72.8321
+\o
+\s
+\m 44.0749 53.0737
+\l 33.9021 47.2049
+\l 45.1821 45.3137
+\l 47.0749 34.0337
+\l 52.9421 44.2049
+\l 62.3309 43.6833
+\l 56.7229 50.7281
+\l 60.3757 60.5057
+\l 50.5949 56.8545
+\l 43.5517 62.4609
+\l 44.0749 53.0737
+\o
+\m 47.0573 51.5665
+\c 47.0573 51.5665 46.8973 54.4737 46.7885 56.4449
+\c 48.1613 55.3553 50.1261 53.7889 50.1261 53.7889
+\c 50.1261 53.7889 53.5645 55.0769 55.7661 55.8993
+\c 54.9421 53.6977 53.6573 50.2561 53.6573 50.2561
+\c 53.6573 50.2561 55.2221 48.2945 56.3165 46.9217
+\c 54.3453 47.0321 51.4333 47.1905 51.4333 47.1905
+\c 51.4333 47.1905 49.8157 44.3873 48.6509 42.3681
+\c 48.2733 44.6209 47.7293 47.8577 47.7293 47.8577
+\c 47.7293 47.8577 44.4893 48.4017 42.2349 48.7809
+\c 44.2541 49.9457 47.0573 51.5665 47.0573 51.5665
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian37.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian37.pgf
new file mode 100644
index 0000000000..93dd2631ac
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian37.pgf
@@ -0,0 +1,129 @@
+\r 0 0 104 104
+\i
+\m -4.1311 -0.2523
+\l 105.4042 -0.2523
+\l 105.4042 105.0378
+\l -4.1311 105.0378
+\o
+\i
+\m 99.7949 103.9072
+\c 96.2317 103.9968 89.8413 102.4528 86.7965 100.104
+\c 86.8573 100.1248 86.9005 100.1344 86.9581 100.1568
+\c 85.9405 99.5232 85.0845 98.8368 84.3741 98.1296
+\c 77.8189 103.0112 66.1261 105.0368 55.4125 103.1488
+\c 46.5869 101.6304 39.2205 98.7872 33.1853 95.304
+\c 26.6701 101.1552 15.2013 102.0496 7.3085 94.8768
+\c -4.1315 84.488 -1.4723 66.376 12.0333 67.0768
+\c 11.9341 63.6048 12.7933 60.9024 13.7757 59.0544
+\c 13.8077 58.9856 13.8381 58.928 13.8749 58.856
+\c 14.4013 57.6544 15.0525 56.6288 15.7773 55.7632
+\c 12.7197 53.1024 9.5357 50.056 6.3821 46.2912
+\c -0.7395 37.7952 -0.9459 25.8224 4.1213 19.6576
+\c 2.0413 16.912 0.6525 13.1456 0.2061 8.6448
+\c -0.5731 0.7328 1.0765 0.1264 1.5117 0.04
+\c 2.9741 -0.2512 3.9453 0.9968 3.7725 4.8224
+\c 3.6269 8.04 2.3117 14.5024 5.0653 18.688
+\c 6.6349 17.1728 8.5757 16.12 10.9005 15.7776
+\c 22.1165 14.1232 21.1101 24.1968 14.2045 24.5568
+\c 10.6093 24.7424 7.4877 23.3648 5.0909 20.808
+\c 3.8605 22.5088 2.9869 24.9456 2.8157 28.3824
+\c 2.2173 40.328 10.8477 47.7152 18.1437 53.528
+\c 21.1837 50.9232 25.8749 48.6832 32.8973 49.3984
+\c 41.1629 50.2416 48.8381 56.3552 53.1165 63.0336
+\c 58.3213 70.3856 57.8605 79.5392 53.0653 83.7616
+\c 49.2941 87.088 43.2685 87.112 38.1661 85.0656
+\c 38.1437 85.3568 38.1485 85.64 38.1149 85.9344
+\c 37.8461 88.3328 37.0125 90.4784 35.7837 92.3392
+\c 36.0189 92.4672 36.2541 92.6 36.4909 92.728
+\c 36.6781 92.8256 36.8605 92.92 37.0493 93.0176
+\c 39.6701 94.368 42.3437 95.5648 45.0109 96.6208
+\c 51.6349 99.1792 58.0509 100.608 63.5869 100.976
+\c 72.1565 101.5424 78.5181 99.2352 81.3773 97.9232
+\c 82.0269 97.528 82.6221 97.1296 83.1485 96.728
+\c 81.5757 94.6464 81.0477 92.6592 80.8941 91.856
+\c 80.7917 91.3008 80.7405 90.7664 80.7405 90.2624
+\c 80.7405 88.36 81.4269 86.8224 82.3949 85.8144
+\c 82.3501 85.8272 82.3213 85.8368 82.2781 85.8496
+\c 82.3677 85.7744 82.4573 85.7248 82.5469 85.6592
+\c 82.9581 85.2672 83.4077 84.96 83.8829 84.768
+\c 84.3517 84.5792 84.8205 84.5296 85.2813 84.5488
+\c 88.1277 84.4272 89.8893 87.7952 89.4957 90.368
+\c 89.1085 93.1152 87.5453 95.4912 85.2061 97.4624
+\c 87.0925 99.2752 89.8109 100.7392 93.5277 101.512
+\c 95.2269 101.7968 97.6717 102.0128 100.4477 101.6272
+\c 104.2845 101.0944 105.4045 101.408 105.4045 102.5392
+\c 105.4045 103.6704 103.3597 103.8256 99.7949 103.9072
+\o
+\m 7.0733 20.7744
+\c 11.3789 23.7728 18.5501 22.2096 16.8141 18.9936
+\c 15.9917 17.4736 9.8349 15.8912 5.9565 19.8016
+\c 6.2909 20.1488 6.6557 20.48 7.0733 20.7744
+\o
+\m 13.9005 68.7312
+\c 13.9197 68.848 13.9197 68.9568 13.9373 69.0736
+\c 14.4141 72.1536 15.8413 75.2544 18.1261 78.3072
+\c 18.2349 78.4512 18.3389 78.592 18.4493 78.7328
+\c 18.9917 79.4304 19.5645 80.12 20.1933 80.8096
+\c 20.2253 80.8416 20.2573 80.8768 20.2861 80.9088
+\c 21.6493 82.3904 23.2269 83.8512 24.9949 85.2848
+\c 26.9293 80.1104 24.0797 70.2048 13.9005 68.7312
+\o
+\m 33.1357 79.9632
+\c 34.2893 80.8912 35.4589 81.6768 36.6253 82.3408
+\c 36.5373 81.1232 36.3757 79.8704 36.0269 78.5456
+\c 34.5981 73.1056 31.5517 69.2928 27.5981 65.664
+\c 27.5357 65.808 27.4637 65.9424 27.4093 66.0928
+\c 26.1965 69.4 26.9661 75.0144 33.1357 79.9632
+\o
+\m 28.4349 62.568
+\c 30.1933 61.1232 32.9149 60.6016 36.7437 62.3744
+\c 43.7869 65.6352 46.1997 73.0048 43.5917 72.7424
+\c 40.9821 72.4816 40.5549 65.8992 35.4397 63.4832
+\c 33.3885 62.5152 31.8125 62.4608 30.6605 62.6848
+\c 30.1581 62.8512 29.6893 63.1136 29.2653 63.4496
+\c 34.0797 68.7344 38.1597 75.3744 38.2413 83.168
+\c 41.3949 84.6288 44.5101 85.1248 47.3261 84.5344
+\c 48.6653 84.2544 49.8765 83.7056 50.9533 82.9936
+\c 52.4573 81.8576 53.9133 79.9024 54.1517 76.5232
+\c 54.5757 70.5824 49.8493 64.1984 44.5693 59.2416
+\c 40.3293 55.2656 32.2093 49.4624 22.1469 52.5616
+\c 21.2141 52.92 20.3181 53.3616 19.4781 53.896
+\c 19.3149 53.9984 19.1821 54.1232 19.0269 54.2336
+\c 19.9149 54.936 20.7821 55.6256 21.5933 56.2912
+\c 23.7693 58.0688 26.1613 60.176 28.4349 62.568
+\o
+\m 13.0749 94.9776
+\c 19.9821 98.8704 27.1549 98.2208 31.7661 94.4928
+\c 28.9261 92.7488 26.4301 90.8576 24.2285 88.9024
+\c 23.4061 89.528 22.4445 89.9312 21.3341 90.0224
+\c 12.8125 90.7168 8.9005 81.6752 8.8157 78.9792
+\c 8.7277 76.2832 11.3373 76.6336 12.2925 78.9792
+\c 13.2509 81.328 15.5101 89.4128 21.7661 88.3712
+\c 22.2477 88.2912 22.6685 88.0928 23.0653 87.8416
+\c 17.8717 82.9328 14.5949 77.704 13.1613 73.3296
+\c 12.6077 71.6368 12.2957 70.072 12.1389 68.6144
+\c 0.3933 68.6624 0.7005 88 13.0749 94.9776
+\o
+\m 33.1581 82.112
+\c 30.6189 79.9744 29.1357 77.8768 28.2461 76.2224
+\c 26.3469 73.3568 25.7389 70.5184 25.9197 68.176
+\c 25.9197 67.1136 26.1789 65.9264 26.6989 64.84
+\c 23.7037 62.1936 20.2397 59.5776 16.5773 56.4448
+\c 14.3341 59.1552 13.3837 62.8256 13.7485 67.2672
+\c 14.0445 67.312 14.3341 67.3536 14.6397 67.4176
+\c 26.1789 69.8384 28.9517 80.4688 26.2653 86.2512
+\c 28.9277 88.2368 31.6573 90.0128 34.4093 91.5808
+\c 35.7261 89.5904 36.5405 87.176 36.6669 84.4
+\c 35.3949 83.7616 34.2061 82.9936 33.1581 82.112
+\o
+\m 81.9229 91.6656
+\c 82.2077 93.1888 82.9005 94.696 83.9533 96.0912
+\c 86.0781 94.264 87.0381 92.5424 87.3805 91.7328
+\c 87.7549 90.8512 87.9421 89.9808 87.9421 89.1776
+\c 87.9421 88.3296 87.7341 87.5552 87.3181 86.9152
+\c 86.5293 85.704 85.4189 85.2768 84.2701 85.7376
+\c 82.9309 86.2736 81.7869 87.9344 81.7869 90.2496
+\c 81.7869 90.6992 81.8285 91.1696 81.9229 91.6656
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian38.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian38.pgf
new file mode 100644
index 0000000000..44b54addea
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian38.pgf
@@ -0,0 +1,129 @@
+\r 0 0 104 104
+\i
+\m 0 -0.2523
+\l 109.5353 -0.2523
+\l 109.5353 105.0378
+\l 0 105.0378
+\o
+\i
+\m -0.0004 102.5392
+\c -0.0004 101.408 1.1196 101.0944 4.9564 101.6272
+\c 7.7324 102.0128 10.1772 101.7968 11.8764 101.512
+\c 15.5932 100.7392 18.3116 99.2752 20.198 97.4624
+\c 17.8588 95.4912 16.2956 93.1152 15.9084 90.368
+\c 15.5148 87.7952 17.2764 84.4272 20.1228 84.5488
+\c 20.5836 84.5296 21.0524 84.5792 21.5212 84.768
+\c 21.9964 84.96 22.446 85.2672 22.8572 85.6592
+\c 22.9484 85.7248 23.0364 85.7744 23.126 85.8496
+\c 23.0844 85.8368 23.054 85.8272 23.0092 85.8144
+\c 23.9772 86.8224 24.6636 88.36 24.6636 90.2624
+\c 24.6636 90.7664 24.614 91.3008 24.51 91.856
+\c 24.3564 92.6592 23.8284 94.6464 22.2556 96.728
+\c 22.782 97.1296 23.3772 97.528 24.0268 97.9232
+\c 26.8876 99.2352 33.2476 101.5424 41.8188 100.976
+\c 47.3548 100.608 53.7676 99.1792 60.3932 96.6208
+\c 63.0604 95.5648 65.734 94.368 68.3548 93.0176
+\c 68.5436 92.92 68.726 92.8256 68.9132 92.728
+\c 69.1516 92.6 69.3852 92.4672 69.622 92.3392
+\c 68.3916 90.4784 67.558 88.3328 67.2892 85.9344
+\c 67.2556 85.64 67.2604 85.3568 67.2364 85.0656
+\c 62.1356 87.112 56.11 87.088 52.3388 83.7616
+\c 47.5452 79.5392 47.0844 70.3856 52.2876 63.0336
+\c 56.5644 56.3552 64.2412 50.2416 72.5068 49.3984
+\c 79.5292 48.6832 84.222 50.9232 87.2604 53.528
+\c 94.5564 47.7152 103.1868 40.328 102.5884 28.3824
+\c 102.4172 24.9456 101.5436 22.5088 100.3132 20.808
+\c 97.9164 23.3648 94.7948 24.7424 91.1996 24.5568
+\c 84.294 24.1968 83.2876 14.1232 94.502 15.7776
+\c 96.8284 16.12 98.7676 17.1728 100.3388 18.688
+\c 103.0924 14.5024 101.7772 8.04 101.6316 4.8224
+\c 101.4588 0.9968 102.43 -0.2512 103.8924 0.04
+\c 104.3276 0.1264 105.9772 0.7328 105.198 8.6448
+\c 104.7516 13.1456 103.3628 16.912 101.2844 19.6576
+\c 106.3516 25.8224 106.1452 37.7952 99.022 46.2912
+\c 95.8684 50.056 92.686 53.1024 89.6268 55.7632
+\c 90.3516 56.6288 91.0028 57.6544 91.5292 58.856
+\c 91.566 58.928 91.5964 58.9856 91.6284 59.0544
+\c 92.6124 60.9024 93.47 63.6048 93.3708 67.0768
+\c 106.8764 66.376 109.5356 84.488 98.0956 94.8768
+\c 90.2028 102.0496 78.734 101.1552 72.2204 95.304
+\c 66.1836 98.7872 58.8188 101.6304 49.9916 103.1488
+\c 39.278 105.0368 27.5852 103.0112 21.03 98.1296
+\c 20.3196 98.8368 19.4636 99.5232 18.446 100.1568
+\c 18.502 100.1344 18.5484 100.1248 18.6076 100.104
+\c 15.5628 102.4528 9.1724 103.9968 5.6092 103.9072
+\c 2.0444 103.8256 -0.0004 103.6704 -0.0004 102.5392
+\o
+\m 99.4476 19.8016
+\c 95.5676 15.8912 89.414 17.4736 88.59 18.9936
+\c 86.854 22.2096 94.0252 23.7728 98.3308 20.7744
+\c 98.75 20.48 99.1132 20.1488 99.4476 19.8016
+\o
+\m 80.4092 85.2848
+\c 82.1772 83.8512 83.7548 82.3904 85.118 80.9088
+\c 85.1484 80.8768 85.1788 80.8416 85.2108 80.8096
+\c 85.8396 80.12 86.414 79.4304 86.9548 78.7328
+\c 87.0652 78.592 87.1676 78.4512 87.278 78.3072
+\c 89.5628 75.2544 90.99 72.1536 91.4668 69.0736
+\c 91.486 68.9568 91.486 68.848 91.502 68.7312
+\c 81.3244 70.2048 78.4748 80.1104 80.4092 85.2848
+\o
+\m 77.9948 66.0928
+\c 77.9404 65.9424 77.8684 65.808 77.806 65.664
+\c 73.8524 69.2928 70.806 73.1056 69.3772 78.5456
+\c 69.0284 79.8704 68.8668 81.1232 68.7788 82.3408
+\c 69.9468 81.6768 71.1148 80.8912 72.2684 79.9632
+\c 78.4364 75.0144 79.2076 69.4 77.9948 66.0928
+\o
+\m 83.8108 56.2912
+\c 84.622 55.6256 85.4892 54.936 86.3772 54.2336
+\c 86.222 54.1232 86.0892 53.9984 85.926 53.896
+\c 85.0876 53.3616 84.19 52.92 83.2572 52.5616
+\c 73.1948 49.4624 65.0748 55.2656 60.8332 59.2416
+\c 55.5548 64.1984 50.8284 70.5824 51.2524 76.5232
+\c 51.4908 79.9024 52.9468 81.8576 54.4508 82.9936
+\c 55.5276 83.7056 56.7388 84.2544 58.078 84.5344
+\c 60.894 85.1248 64.0092 84.6288 67.1628 83.168
+\c 67.2444 75.3744 71.3244 68.7344 76.1388 63.4496
+\c 75.7148 63.1136 75.246 62.8512 74.7452 62.6848
+\c 73.5916 62.4608 72.0172 62.5152 69.9644 63.4832
+\c 64.8492 65.8992 64.422 72.4816 61.814 72.7424
+\c 59.2044 73.0048 61.6172 65.6352 68.6604 62.3744
+\c 72.4892 60.6016 75.2108 61.1232 76.9676 62.568
+\c 79.2428 60.176 81.6332 58.0688 83.8108 56.2912
+\o
+\m 93.2652 68.6144
+\c 93.1084 70.072 92.7964 71.6368 92.2428 73.3296
+\c 90.8092 77.704 87.5324 82.9328 82.3388 87.8416
+\c 82.7356 88.0928 83.1564 88.2912 83.6364 88.3712
+\c 89.894 89.4128 92.1548 81.328 93.1116 78.9792
+\c 94.0668 76.6336 96.6764 76.2832 96.5884 78.9792
+\c 96.502 81.6752 92.5916 90.7168 84.07 90.0224
+\c 82.9596 89.9312 81.998 89.528 81.1756 88.9024
+\c 78.974 90.8576 76.4796 92.7488 73.6364 94.4928
+\c 78.2492 98.2208 85.422 98.8704 92.3292 94.9776
+\c 104.702 88 105.0124 68.6624 93.2652 68.6144
+\o
+\m 68.7372 84.4
+\c 68.8636 87.176 69.6796 89.5904 70.9948 91.5808
+\c 73.7484 90.0128 76.4764 88.2368 79.1388 86.2512
+\c 76.4524 80.4688 79.2252 69.8384 90.7644 67.4176
+\c 91.07 67.3536 91.3596 67.312 91.6556 67.2672
+\c 92.022 62.8256 91.07 59.1552 88.8268 56.4448
+\c 85.1644 59.5776 81.6988 62.1936 78.7052 64.84
+\c 79.2252 65.9264 79.486 67.1136 79.486 68.1776
+\c 79.6652 70.5184 79.0572 73.3568 77.158 76.2224
+\c 76.2684 77.8768 74.7852 79.9744 72.246 82.112
+\c 71.198 82.9936 70.0092 83.7616 68.7372 84.4
+\o
+\m 23.6172 90.2496
+\c 23.6172 87.9344 22.4732 86.2736 21.134 85.7376
+\c 19.9852 85.2768 18.8748 85.704 18.0876 86.9152
+\c 17.67 87.5552 17.462 88.3296 17.462 89.1776
+\c 17.462 89.9808 17.6492 90.8512 18.0236 91.7328
+\c 18.366 92.5424 19.326 94.264 21.4508 96.0912
+\c 22.502 94.696 23.1964 93.1888 23.4828 91.6656
+\c 23.5756 91.1696 23.6172 90.6992 23.6172 90.2496
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian39.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian39.pgf
new file mode 100644
index 0000000000..124c2fa4c1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian39.pgf
@@ -0,0 +1,178 @@
+\r 0 0 112 112
+\i
+\m 85.7538 112.3561
+\c 72.6594 112.3865 62.237 103.8409 50.2114 97.0153
+\c 49.0834 106.8857 46.4834 111.7865 46.4834 111.7865
+\c 41.1154 108.9321 30.725 103.5657 30.725 103.5657
+\c 33.325 99.6489 34.7842 95.3529 35.4162 90.9497
+\c 31.805 90.2121 28.1682 90.0121 24.6674 90.3049
+\c 23.8738 97.3513 20.9346 103.2937 17.3666 107.1065
+\c 12.2082 112.6265 5.5506 113.8377 1.4738 111.0121
+\c -1.3551 106.9353 -0.1423 100.2777 5.3778 95.1145
+\c 9.1906 91.5513 15.133 88.6089 22.1778 87.8137
+\c 22.4706 84.3145 22.2706 80.6777 21.533 77.0681
+\c 17.1282 77.6953 12.8338 79.1545 8.9154 81.7577
+\c 8.9154 81.7577 3.5506 71.3673 0.6977 66.0024
+\c 0.6977 66.0024 5.597 63.4008 15.4674 62.276
+\c 8.6434 50.2456 0.0977 39.8248 0.1297 26.7304
+\c 0.1713 9.2648 9.949 -0.4408 23.4178 0.0152
+\c 36.085 0.444 42.5986 8.4632 42.5986 17.7128
+\c 42.5986 26.9608 35.7522 32.6408 27.9858 31.6424
+\c 21.4018 30.7944 18.3858 25.996 17.7202 21.0728
+\c 15.8578 25.292 16.0994 29.98 17.8242 35.0664
+\c 19.493 39.9816 22.7458 45.4088 26.1618 50.708
+\c 28.7986 54.804 30.8674 58.5448 32.493 62.0568
+\c 37.301 62.38 42.0642 62.9 46.5282 63.6264
+\c 45.7746 59.5512 44.9346 56.2232 44.1986 54.132
+\c 44.1618 54.028 44.1234 53.9368 44.0882 53.8376
+\c 39.6994 52.6952 36.157 51.012 33.8834 49.2616
+\c 28.3298 44.9864 31.813 38.0152 38.1474 41.1176
+\c 41.237 42.6296 43.7298 46.7768 45.6594 52.452
+\c 47.6178 52.8568 49.8562 53.1512 52.4562 53.292
+\c 54.1906 53.3864 55.813 53.4008 57.3458 53.3304
+\c 57.3986 52.612 57.4674 51.8904 57.5538 51.1608
+\c 59.2642 36.7752 69.8866 31.0728 76.2802 36.204
+\c 81.7602 42.5656 75.7074 53.2184 61.3234 54.9304
+\c 60.5858 55.0168 59.8562 55.0872 59.1346 55.14
+\c 59.0738 56.6776 59.0946 58.2984 59.1906 60.0248
+\c 59.3314 62.628 59.629 64.8648 60.0322 66.8216
+\c 65.709 68.7545 69.853 71.2473 71.3682 74.3369
+\c 74.4706 80.6729 67.4994 84.1545 63.2242 78.5993
+\c 61.4754 76.3273 59.789 72.7849 58.6466 68.3961
+\c 58.549 68.3577 58.453 68.3209 58.3522 68.2857
+\c 56.2578 67.5496 52.9314 66.708 48.8578 65.9576
+\c 49.5794 70.4185 50.101 75.1817 50.429 79.9881
+\c 53.9426 81.6169 57.6802 83.6825 61.7746 86.3241
+\c 67.0754 89.7401 72.5026 92.9913 77.4178 94.6585
+\c 82.5058 96.3817 87.1938 96.6265 91.4114 94.7641
+\c 86.4898 94.0969 81.6898 91.0825 80.8434 84.4985
+\c 79.845 76.7305 85.5218 69.8857 94.7714 69.8857
+\c 104.0194 69.8857 112.037 76.3993 112.4674 89.0633
+\c 112.9234 102.5369 103.2194 112.3145 85.7538 112.3561
+\o
+\m 34.8738 42.9448
+\c 32.701 43.572 32.5922 46.6728 36.0178 48.7256
+\c 37.9314 49.8776 40.2258 51.0248 43.341 51.892
+\c 40.6498 45.3336 37.485 42.1864 34.8738 42.9448
+\o
+\m 71.637 48.1944
+\c 77.6466 43.0968 74.0018 38.4808 74.0018 38.4808
+\c 74.0018 38.4808 69.3522 35.332 64.2898 40.8472
+\c 61.1938 44.2184 59.709 48.2072 59.2578 53.1928
+\c 64.2034 52.6968 68.1458 51.1528 71.637 48.1944
+\o
+\m 63.7554 76.4681
+\c 65.8114 79.8905 68.9122 79.7801 69.541 77.6105
+\c 70.2978 74.9993 67.1506 71.8313 60.589 69.1449
+\c 61.4594 72.2553 62.6066 74.5529 63.7554 76.4681
+\o
+\m 33.9618 102.4617
+\l 45.4514 108.5513
+\c 46.8818 104.8185 47.7618 100.4921 48.237 95.9273
+\c 46.9122 95.2121 45.5714 94.5097 44.1938 93.8585
+\c 42.021 92.8313 39.7778 92.0265 37.509 91.4313
+\c 36.4834 98.1321 33.9618 102.4617 33.9618 102.4617
+\o
+\m 48.565 81.4489
+\c 45.1538 80.0073 41.3298 78.7289 37.3154 77.8601
+\c 37.6514 80.1561 37.8418 82.4265 37.917 84.7273
+\c 37.9714 86.3289 37.9042 87.8473 37.7682 89.2873
+\c 41.581 90.4009 45.061 91.9689 48.4146 93.7817
+\c 48.7234 89.7289 48.7554 85.5465 48.565 81.4489
+\o
+\m 9.4866 95.5721
+\c 0.5809 101.9657 4.0242 108.4585 4.0242 108.4585
+\c 4.0242 108.4585 10.517 111.8985 16.9122 102.9945
+\c 19.4114 99.5129 21.0642 95.2537 21.8306 90.6537
+\c 17.2306 91.4201 12.9714 93.0697 9.4866 95.5721
+\o
+\m 24.8482 87.6313
+\c 25.2866 87.6201 25.7122 87.5769 26.157 87.5801
+\c 29.6114 87.6073 32.7362 88.0361 35.6594 88.7273
+\c 35.9666 84.9481 35.709 81.1209 35.0674 77.4169
+\c 31.3618 76.7753 27.5378 76.5193 23.757 76.8233
+\c 24.4466 79.7481 24.877 82.8729 24.9042 86.3257
+\c 24.9058 86.7721 24.8626 87.1945 24.8482 87.6313
+\o
+\m 3.9346 67.028
+\l 10.0242 78.5225
+\c 10.0242 78.5225 14.3506 75.9993 21.0514 74.9769
+\c 20.4546 72.7049 19.653 70.4617 18.6258 68.2873
+\c 17.9746 66.9144 17.2738 65.5736 16.5602 64.2456
+\c 11.9938 64.7224 7.6674 65.5976 3.9346 67.028
+\o
+\m 20.6786 24.9048
+\c 23.1906 29.8136 31.2034 30.6776 35.6338 27.188
+\c 41.0002 22.9624 41.2306 13.604 36.6626 8.236
+\c 33.9922 5.0968 29.2146 3.1128 24.1586 2.788
+\c 23.3586 6.3608 23.0866 9.404 23.229 11.8392
+\c 23.9346 11.5496 24.6498 11.3352 25.3586 11.204
+\c 30.9538 10.1784 33.9218 15.2008 31.8658 18.74
+\c 30.1346 21.7256 24.2578 22.1848 22.1634 16.684
+\c 22.0194 16.308 21.8994 15.8904 21.7954 15.4552
+\c 20.8098 16.388 19.9778 17.3544 19.2786 18.348
+\c 19.2034 20.1224 19.4418 22.484 20.6786 24.9048
+\o
+\m 23.4882 14.0232
+\c 24.1394 17.4552 25.7874 19.1608 27.7586 18.8536
+\c 31.2834 18.3048 29.2546 9.9144 23.4882 14.0232
+\o
+\m 26.8434 55.732
+\c 20.3362 45.228 14.6274 37.4632 14.285 27.8728
+\c 14.0242 20.5704 17.3394 15.3288 21.405 12.788
+\c 21.109 8.9096 21.6898 4.4232 21.941 2.7528
+\c 19.0562 2.8504 16.1682 3.4968 13.5986 4.8136
+\c 4.237 9.6088 0.1553 24.6664 5.2674 38.8344
+\c 8.5522 47.9464 13.4882 54.8632 17.5922 62.0584
+\c 21.1122 61.7592 25.1714 61.6488 29.8098 61.8936
+\c 29.9202 61.9 30.0338 61.9064 30.1442 61.9144
+\c 29.0722 59.5896 27.941 57.4984 26.8434 55.732
+\o
+\m 31.0338 63.916
+\c 26.9362 63.7288 22.7554 63.7608 18.7042 64.068
+\c 20.5138 67.4232 22.0834 70.9001 23.1938 74.7145
+\c 24.6354 74.5817 26.1538 74.5145 27.7554 74.5673
+\c 30.0562 74.6393 32.3282 74.8313 34.6258 75.1689
+\c 33.7554 71.1545 32.477 67.3272 31.0338 63.916
+\o
+\m 33.3778 64.0472
+\c 35.1042 68.1081 36.2306 71.8809 36.9314 75.5529
+\c 40.6018 76.2537 44.3746 77.3833 48.437 79.1065
+\c 48.125 74.2777 47.557 69.6441 46.8786 65.6072
+\c 42.8402 64.9272 38.2066 64.3576 33.3778 64.0472
+\o
+\m 58.141 66.2168
+\c 57.4658 62.908 57.1042 59.204 57.2402 55.244
+\c 53.2802 55.3784 49.5746 55.0184 46.269 54.3448
+\c 47.149 57.2568 47.8978 60.5064 48.5186 63.964
+\c 51.9778 64.588 55.2274 65.3352 58.141 66.2168
+\o
+\m 84.6114 98.1977
+\c 75.021 97.8569 67.2578 92.1465 56.7538 85.6393
+\c 54.9842 84.5449 52.893 83.4137 50.5714 82.3401
+\c 50.5778 82.4505 50.5858 82.5641 50.5906 82.6761
+\c 50.8338 87.3113 50.725 91.3737 50.4242 94.8921
+\c 57.6194 98.9945 64.5378 103.9305 73.6482 107.2169
+\c 87.8178 112.3257 102.8786 108.2457 107.6722 98.8825
+\c 108.9858 96.3145 109.6338 93.4249 109.733 90.5433
+\c 108.0594 90.7929 103.5778 91.3753 99.6994 91.0793
+\c 97.1554 95.1449 91.9122 98.4585 84.6114 98.1977
+\o
+\m 93.6306 84.7257
+\c 93.3202 86.6969 95.0258 88.3433 98.4626 88.9977
+\c 102.5666 83.2297 94.181 81.2009 93.6306 84.7257
+\o
+\m 104.2466 75.8217
+\c 98.8802 71.2553 89.5186 71.4825 85.2978 76.8473
+\c 81.8082 81.2809 82.669 89.2921 87.5778 91.8041
+\c 89.997 93.0441 92.3602 93.2809 94.1362 93.2073
+\c 95.1282 92.5049 96.093 91.6777 97.0258 90.6873
+\c 96.5906 90.5865 96.1778 90.4633 95.7986 90.3225
+\c 90.2994 88.2233 90.7602 82.3481 93.7458 80.6153
+\c 97.2834 78.5593 102.3058 81.5289 101.2802 87.1241
+\c 101.1506 87.8345 100.9346 88.5497 100.645 89.2553
+\c 103.0802 89.3977 106.1234 89.1241 109.6978 88.3273
+\c 109.3714 83.2697 107.3826 78.4905 104.2466 75.8217
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian4.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian4.pgf
new file mode 100644
index 0000000000..2e8ef113e6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian4.pgf
@@ -0,0 +1,163 @@
+\m 130.5352 68.7379
+\c 129.6149 68.7028 125.7775 68.5546 120.8404 68.3791
+\c 120.4153 82.0673 114.9673 94.4725 106.2708 103.8202
+\c 109.8508 107.1428 112.6314 109.7245 113.3021 110.3407
+\c 115.642 112.4894 113.2943 116.2059 110.3422 113.3084
+\c 109.5155 112.4933 106.9611 109.7947 103.7399 106.359
+\c 94.4428 115.1218 82.104 120.5971 68.5016 120.9753
+\c 68.6498 125.6668 68.7512 129.3832 68.7395 130.5376
+\c 68.7005 134.6791 64.4185 133.712 64.5511 130.5376
+\c 64.5901 129.6211 64.7305 125.8306 64.9138 120.9441
+\c 51.3153 120.4099 39.0076 114.8137 29.7963 105.9261
+\c 26.3099 109.6738 23.584 112.6064 22.9483 113.3084
+\c 20.7996 115.6443 17.0831 113.2928 19.9884 110.3407
+\c 20.8269 109.4827 23.7049 106.7607 27.3317 103.3601
+\c 18.8731 94.0669 13.5889 81.8333 13.1716 68.3518
+\c 7.8796 68.5429 3.7186 68.695 2.7553 68.7379
+\c -0.4191 68.8744 -1.3862 64.5846 2.7553 64.5535
+\c 3.9799 64.5418 8.0668 64.6548 13.1755 64.8186
+\c 13.6201 51.3839 18.9004 39.1971 27.3317 29.9313
+\c 23.7049 26.5307 20.8269 23.8086 19.9845 22.9507
+\c 17.0831 19.9908 20.7996 17.647 22.9483 19.9869
+\c 23.584 20.681 26.3099 23.6176 29.7963 27.3652
+\c 39.0076 18.4777 51.3153 12.8815 64.9138 12.3472
+\c 64.7305 7.4608 64.5901 3.6702 64.5511 2.7538
+\c 64.4185 -0.4206 68.7005 -1.3839 68.7395 2.7538
+\c 68.7512 3.9081 68.6498 7.6207 68.5016 12.3199
+\c 82.104 12.6943 94.4428 18.1696 103.7399 26.9324
+\c 106.9611 23.5006 109.5155 20.7941 110.3422 19.9869
+\c 113.2982 17.0854 115.642 20.798 113.3021 22.9507
+\c 112.6314 23.5669 109.8508 26.1485 106.2708 29.4711
+\c 114.94 38.7877 120.3763 51.1538 120.8365 64.7952
+\c 125.5981 64.6431 129.3692 64.5418 130.5352 64.5535
+\c 134.6768 64.5846 133.7096 68.8744 130.5352 68.7379
+\o
+\m 117.3852 68.2465
+\c 107.277 67.88 94.6417 67.4198 90.9681 67.2872
+\c 90.8083 73.5229 88.3046 79.1815 84.2956 83.3893
+\c 86.9943 85.8969 96.3147 94.5622 103.736 101.4648
+\c 111.8826 92.7098 116.9835 81.0807 117.3852 68.2465
+\o
+\m 67.008 45.2145
+\c 55.3047 45.2145 45.7815 54.8313 45.7815 66.6476
+\c 45.7815 78.46 55.3047 88.0769 67.008 88.0769
+\c 78.7112 88.0769 88.2305 78.46 88.2305 66.6476
+\c 88.2305 54.8313 78.7112 45.2145 67.008 45.2145
+\o
+\m 101.3727 103.8358
+\c 94.4233 96.4068 85.7581 87.0707 83.2739 84.3916
+\c 79.0855 88.2953 73.5401 90.7209 67.4291 90.8262
+\c 67.5578 94.3087 68.0414 107.2247 68.3846 117.5162
+\c 81.1212 117.1653 92.6723 112.0371 101.3727 103.8358
+\o
+\m 65.0386 117.485
+\c 65.4168 107.1935 65.8848 94.2346 66.0096 90.7989
+\c 59.887 90.5454 54.3493 87.9833 50.2428 83.9314
+\c 48.2852 86.0334 39.3235 95.6658 32.1479 103.3874
+\c 40.7703 111.7251 52.298 116.982 65.0386 117.485
+\o
+\m 29.8548 100.9929
+\c 37.6037 93.751 47.2517 84.8011 49.2913 82.9136
+\c 45.5319 78.7564 43.1882 73.2811 43.04 67.2599
+\c 40.6611 67.3457 27.3629 67.8293 16.6307 68.2231
+\c 17.0129 80.8389 21.9539 92.2925 29.8548 100.9929
+\o
+\m 16.6385 64.9356
+\c 27.4019 65.2944 40.6845 65.7936 43.0478 65.8794
+\c 43.2349 59.9205 45.5631 54.5037 49.2913 50.3778
+\c 47.2556 48.4864 37.6076 39.5403 29.8548 32.2984
+\c 21.9851 40.9676 17.0519 52.3706 16.6385 64.9356
+\o
+\m 32.1518 29.904
+\c 39.3274 37.6255 48.2852 47.258 50.2428 49.3638
+\c 54.3493 45.312 59.887 42.7498 66.0096 42.4924
+\c 65.8848 39.0567 65.4168 26.09 65.0386 15.8063
+\c 52.3019 16.3094 40.7742 21.5663 32.1518 29.904
+\o
+\m 68.3846 15.779
+\c 68.0414 26.0666 67.5578 38.9827 67.4291 42.4651
+\c 73.5401 42.5704 79.0855 45 83.2739 48.9037
+\c 85.7581 46.2206 94.4233 36.8846 101.3727 29.4555
+\c 92.6723 21.2543 81.1212 16.1261 68.3846 15.779
+\o
+\m 103.736 31.8266
+\c 96.3108 38.7253 86.9865 47.3984 84.2917 49.902
+\c 88.2695 54.0748 90.7654 59.6748 90.9603 65.856
+\c 94.6222 65.7195 107.2419 65.2437 117.3774 64.9083
+\c 116.9445 52.1288 111.8514 40.5465 103.736 31.8266
+\o
+\s
+\m 78.2705 77.2394
+\l 58.0541 77.2394
+\c 57.4145 77.2394 56.8958 76.7207 56.8958 76.0851
+\l 56.8958 56.4419
+\c 56.8958 55.8024 57.4145 55.2837 58.0541 55.2837
+\l 78.2705 55.2837
+\c 78.914 55.2837 79.4248 55.8024 79.4248 56.4419
+\l 79.4248 76.0851
+\c 79.4248 76.7207 78.914 77.2394 78.2705 77.2394
+\o
+\m 77.1201 57.5963
+\c 75.1858 57.5963 61.1388 57.5963 59.2084 57.5963
+\c 59.2084 59.5149 59.2084 73.0121 59.2084 74.9268
+\c 61.1388 74.9268 75.1858 74.9268 77.1201 74.9268
+\c 77.1201 73.0121 77.1201 59.5149 77.1201 57.5963
+\o
+\s
+\m 100.7098 75.4065
+\c 102.6246 75.4065 104.1767 76.9625 104.1767 78.8773
+\c 104.1767 80.7882 102.6246 82.3403 100.7098 82.3403
+\c 98.795 82.3403 97.2429 80.7882 97.2429 78.8773
+\c 97.2429 76.9625 98.795 75.4065 100.7098 75.4065
+\o
+\s
+\m 34.8465 55.3851
+\c 32.9279 55.3851 31.3796 53.8291 31.3796 51.9182
+\c 31.3796 50.0034 32.9279 48.4474 34.8465 48.4474
+\c 36.7613 48.4474 38.3134 50.0034 38.3134 51.9182
+\c 38.3134 53.8291 36.7613 55.3851 34.8465 55.3851
+\o
+\s
+\m 98.1476 49.1923
+\c 99.5008 47.8351 101.6925 47.839 103.0457 49.1923
+\c 104.4029 50.5416 104.4029 52.741 103.0457 54.0943
+\c 101.6925 55.4475 99.4969 55.4436 98.1476 54.0943
+\c 96.7905 52.741 96.7905 50.5416 98.1476 49.1923
+\o
+\s
+\m 37.4126 81.6032
+\c 36.0555 82.9565 33.8638 82.9565 32.5067 81.6032
+\c 31.1535 80.25 31.1535 78.0506 32.5067 76.6973
+\c 33.8638 75.3441 36.0555 75.348 37.4126 76.6973
+\c 38.7658 78.0506 38.7658 80.25 37.4126 81.6032
+\o
+\s
+\m 81.2616 35.9291
+\c 79.3468 35.9291 77.7908 34.3809 77.7908 32.4661
+\c 77.7908 30.5474 79.3468 28.9992 81.2577 28.9992
+\c 83.1725 28.9992 84.7285 30.5513 84.7285 32.4661
+\c 84.7285 34.3809 83.1725 35.9291 81.2616 35.9291
+\o
+\s
+\m 54.2947 94.8547
+\c 56.2095 94.8625 57.7694 96.4107 57.7694 98.3255
+\c 57.7694 100.2403 56.2095 101.7885 54.2986 101.7885
+\c 52.3877 101.7885 50.8278 100.2403 50.8278 98.3255
+\c 50.8278 96.4107 52.3877 94.8625 54.2947 94.8547
+\o
+\s
+\m 56.4786 35.0244
+\c 55.1215 36.3776 52.9259 36.3815 51.5727 35.0244
+\c 50.2194 33.6751 50.2194 31.4756 51.5766 30.1224
+\c 52.9259 28.7731 55.1215 28.7731 56.4786 30.1224
+\c 57.8279 31.4834 57.8279 33.6751 56.4786 35.0244
+\o
+\s
+\m 79.0777 95.7594
+\c 80.4349 94.4101 82.6304 94.4023 83.9837 95.7594
+\c 85.333 97.1126 85.333 99.3121 83.9837 100.6653
+\c 82.6304 102.0147 80.4349 102.0147 79.0777 100.6653
+\c 77.7284 99.3082 77.7284 97.1165 79.0777 95.7594
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian40.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian40.pgf
new file mode 100644
index 0000000000..0282871807
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian40.pgf
@@ -0,0 +1,178 @@
+\r 0 0 112 112
+\i
+\m 0.0152 89.0633
+\c 0.4424 76.3993 8.4632 69.8857 17.7112 69.8857
+\c 26.9608 69.8857 32.636 76.7305 31.636 84.4985
+\c 30.7928 91.0825 25.9928 94.0969 21.0712 94.7641
+\c 25.2888 96.6265 29.9768 96.3817 35.0648 94.6585
+\c 39.98 92.9913 45.4072 89.7401 50.7048 86.3241
+\c 54.8025 83.6825 58.5401 81.6169 62.0537 79.9881
+\c 62.3817 75.1817 62.9017 70.4185 63.6249 65.9576
+\c 59.5513 66.708 56.2233 67.5496 54.1305 68.2857
+\c 54.0297 68.3209 53.9337 68.3577 53.8345 68.3961
+\c 52.6921 72.7849 51.0072 76.3273 49.2584 78.5993
+\c 44.9832 84.1545 38.012 80.6729 41.1144 74.3369
+\c 42.6296 71.2473 46.7704 68.7545 52.4505 66.8216
+\c 52.8537 64.8648 53.1513 62.628 53.2921 60.0248
+\c 53.3881 58.2984 53.4089 56.6776 53.3481 55.14
+\c 52.6265 55.0872 51.8969 55.0168 51.1593 54.9304
+\c 36.7736 53.2184 30.7224 42.5656 36.2024 36.204
+\c 42.596 31.0728 53.2185 36.7752 54.9289 51.1608
+\c 55.0153 51.8904 55.0841 52.612 55.1369 53.3304
+\c 56.6697 53.4008 58.2921 53.3864 60.0265 53.292
+\c 62.6265 53.1512 64.8649 52.8568 66.8233 52.452
+\c 68.7529 46.7768 71.2457 42.6296 74.3353 41.1176
+\c 80.6697 38.0152 84.1529 44.9864 78.5993 49.2616
+\c 76.3257 51.012 72.7833 52.6952 68.3945 53.8376
+\c 68.3593 53.9368 68.3209 54.028 68.2841 54.132
+\c 67.5481 56.2232 66.7049 59.5512 65.9545 63.6264
+\c 70.4185 62.9 75.1817 62.38 79.9897 62.0568
+\c 81.6153 58.5448 83.6841 54.804 86.3209 50.708
+\c 89.7369 45.4088 92.9897 39.9816 94.6585 35.0664
+\c 96.3833 29.98 96.6249 25.292 94.7625 21.0728
+\c 94.0969 25.996 91.0809 30.7944 84.4969 31.6424
+\c 76.7305 32.6408 69.8841 26.9608 69.8841 17.7128
+\c 69.8841 8.4632 76.3977 0.444 89.0649 0.0152
+\c 102.5337 -0.4408 112.3113 9.2648 112.3529 26.7304
+\c 112.3849 39.8248 103.8361 50.2456 97.0153 62.276
+\c 106.8857 63.4008 111.7849 66.0024 111.7849 66.0024
+\c 108.9321 71.3673 103.5657 81.7577 103.5657 81.7577
+\c 99.6489 79.1545 95.3545 77.6953 90.9497 77.0681
+\c 90.2121 80.6777 90.0121 84.3145 90.3033 87.8137
+\c 97.3497 88.6089 103.2921 91.5513 107.1033 95.1145
+\c 112.6233 100.2777 113.8361 106.9353 111.0089 111.0121
+\c 106.9321 113.8377 100.2745 112.6265 95.1161 107.1065
+\c 91.5481 103.2937 88.6089 97.3513 87.8153 90.3049
+\c 84.3145 90.0121 80.6777 90.2121 77.0665 90.9497
+\c 77.6969 95.3529 79.1561 99.6489 81.7561 103.5657
+\c 81.7561 103.5657 71.3657 108.9321 65.9993 111.7865
+\c 65.9993 111.7865 63.3993 106.8857 62.2713 97.0153
+\c 50.2424 103.8409 39.8232 112.3865 26.7288 112.3561
+\c 9.2632 112.3145 -0.4408 102.5369 0.0152 89.0633
+\o
+\m 69.1417 51.892
+\c 72.2569 51.0248 74.5513 49.8776 76.4649 48.7256
+\c 79.8905 46.6728 79.7817 43.572 77.6089 42.9448
+\c 74.9977 42.1864 71.8313 45.3336 69.1417 51.892
+\o
+\m 53.2233 53.1928
+\c 52.7737 48.2072 51.2889 44.2184 48.1928 40.8472
+\c 43.1304 35.332 38.4808 38.4808 38.4808 38.4808
+\c 38.4808 38.4808 34.8344 43.0968 40.8456 48.1944
+\c 44.3368 51.1528 48.2792 52.6968 53.2233 53.1928
+\o
+\m 51.8937 69.1449
+\c 45.332 71.8313 42.1848 74.9993 42.9416 77.6105
+\c 43.5688 79.7801 46.6712 79.8905 48.7272 76.4681
+\c 49.876 74.5529 51.0232 72.2553 51.8937 69.1449
+\o
+\m 74.9737 91.4313
+\c 72.7049 92.0265 70.4617 92.8313 68.2889 93.8585
+\c 66.9113 94.5097 65.5705 95.2121 64.2457 95.9273
+\c 64.7209 100.4921 65.6009 104.8185 67.0297 108.5513
+\l 78.5209 102.4617
+\c 78.5209 102.4617 75.9993 98.1321 74.9737 91.4313
+\o
+\m 64.0681 93.7817
+\c 67.4217 91.9689 70.9001 90.4009 74.7145 89.2873
+\c 74.5785 87.8473 74.5113 86.3289 74.5641 84.7273
+\c 74.6393 82.4265 74.8297 80.1561 75.1657 77.8601
+\c 71.1529 78.7289 67.3289 80.0073 63.9177 81.4489
+\c 63.7273 85.5465 63.7593 89.7289 64.0681 93.7817
+\o
+\m 90.6521 90.6537
+\c 91.4185 95.2537 93.0713 99.5129 95.5705 102.9945
+\c 101.9641 111.8985 108.4585 108.4585 108.4585 108.4585
+\c 108.4585 108.4585 111.9001 101.9657 102.9961 95.5721
+\c 99.5113 93.0697 95.2521 91.4201 90.6521 90.6537
+\o
+\m 87.5785 86.3257
+\c 87.6057 82.8729 88.0345 79.7481 88.7257 76.8233
+\c 84.9449 76.5193 81.1209 76.7753 77.4153 77.4169
+\c 76.7737 81.1209 76.5161 84.9481 76.8233 88.7273
+\c 79.7465 88.0361 82.8713 87.6073 86.3257 87.5801
+\c 86.7705 87.5769 87.1961 87.6201 87.6329 87.6313
+\c 87.6201 87.1945 87.5737 86.7721 87.5785 86.3257
+\o
+\m 95.9225 64.2456
+\c 95.2089 65.5736 94.5049 66.9144 93.8569 68.2873
+\c 92.8297 70.4617 92.0281 72.7049 91.4297 74.9769
+\c 98.1321 75.9993 102.4585 78.5225 102.4585 78.5225
+\l 108.5481 67.028
+\c 104.8153 65.5976 100.4889 64.7224 95.9225 64.2456
+\o
+\m 93.2041 18.348
+\c 92.5033 17.3544 91.6729 16.388 90.6873 15.4552
+\c 90.5833 15.8904 90.4633 16.308 90.3193 16.684
+\c 88.2249 22.1848 82.3481 21.7256 80.6169 18.74
+\c 78.5609 15.2008 81.5289 10.1784 87.1241 11.204
+\c 87.8313 11.3352 88.5481 11.5496 89.2537 11.8392
+\c 89.3961 9.404 89.1241 6.3608 88.3241 2.788
+\c 83.2681 3.1128 78.4889 5.0968 75.8201 8.236
+\c 71.2521 13.604 71.4825 22.9624 76.8489 27.188
+\c 81.2793 30.6776 89.2921 29.8136 91.8041 24.9048
+\c 93.0409 22.484 93.2793 20.1224 93.2041 18.348
+\o
+\m 84.7241 18.8536
+\c 86.6953 19.1608 88.3433 17.4552 88.9945 14.0232
+\c 83.2265 9.9144 81.1993 18.3048 84.7241 18.8536
+\o
+\m 82.3385 61.9144
+\c 82.4489 61.9064 82.5625 61.9 82.6729 61.8936
+\c 87.3081 61.6488 91.3689 61.7592 94.8905 62.0584
+\c 98.9945 54.8632 103.9305 47.9464 107.2153 38.8344
+\c 112.3273 24.6664 108.2425 9.6088 98.8841 4.8136
+\c 96.3145 3.4968 93.4265 2.8504 90.5417 2.7528
+\c 90.7929 4.4232 91.3737 8.9096 91.0777 12.788
+\c 95.1433 15.3288 98.4585 20.5704 98.1977 27.8728
+\c 97.8553 37.4632 92.1465 45.228 85.6393 55.732
+\c 84.5417 57.4984 83.4105 59.5896 82.3385 61.9144
+\o
+\m 77.8569 75.1689
+\c 80.1545 74.8313 82.4265 74.6393 84.7273 74.5673
+\c 86.3289 74.5145 87.8473 74.5817 89.2889 74.7145
+\c 90.3993 70.9001 91.9673 67.4232 93.7785 64.068
+\c 89.7273 63.7608 85.5465 63.7288 81.4489 63.916
+\c 80.0057 67.3272 78.7273 71.1545 77.8569 75.1689
+\o
+\m 65.6041 65.6072
+\c 64.9257 69.6441 64.3561 74.2777 64.0425 79.1065
+\c 68.1081 77.3833 71.8809 76.2537 75.5513 75.5529
+\c 76.2521 71.8809 77.3785 68.1081 79.1049 64.0472
+\c 74.2761 64.3576 69.6425 64.9272 65.6041 65.6072
+\o
+\m 63.9625 63.964
+\c 64.5849 60.5064 65.3337 57.2568 66.2137 54.3448
+\c 62.9049 55.0184 59.2025 55.3784 55.2393 55.244
+\c 55.3769 59.204 55.0169 62.908 54.3417 66.2168
+\c 57.2553 65.3352 60.5033 64.588 63.9625 63.964
+\o
+\m 12.7832 91.0793
+\c 8.9048 91.3753 4.4232 90.7929 2.7496 90.5433
+\c 2.8488 93.4249 3.4968 96.3145 4.8104 98.8825
+\c 9.604 108.2457 24.6648 112.3257 38.8328 107.2169
+\c 47.9448 103.9305 54.8633 98.9945 62.0585 94.8921
+\c 61.7561 91.3737 61.6489 87.3113 61.8921 82.6761
+\c 61.8969 82.5641 61.9033 82.4505 61.9113 82.3401
+\c 59.5897 83.4137 57.4969 84.5449 55.7289 85.6393
+\c 45.2232 92.1465 37.4616 97.8569 27.8712 98.1977
+\c 20.5688 98.4585 15.3272 95.1449 12.7832 91.0793
+\o
+\m 14.02 88.9977
+\c 17.4568 88.3433 19.1624 86.6969 18.852 84.7257
+\c 18.3 81.2009 9.916 83.2297 14.02 88.9977
+\o
+\m 2.7848 88.3273
+\c 6.3592 89.1241 9.4024 89.3977 11.836 89.2553
+\c 11.548 88.5497 11.332 87.8345 11.2024 87.1241
+\c 10.1736 81.5289 15.1992 78.5593 18.7368 80.6153
+\c 21.7224 82.3481 22.1832 88.2233 16.684 90.3225
+\c 16.3048 90.4633 15.892 90.5865 15.4568 90.6873
+\c 16.3896 91.6777 17.3544 92.5049 18.3464 93.2073
+\c 20.1224 93.2809 22.4856 93.0441 24.9048 91.8041
+\c 29.8136 89.2921 30.6744 81.2809 27.1848 76.8473
+\c 22.9624 71.4825 13.6024 71.2553 8.2344 75.8217
+\c 5.0984 78.4905 3.1112 83.2697 2.7848 88.3273
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian41.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian41.pgf
new file mode 100644
index 0000000000..606f996286
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian41.pgf
@@ -0,0 +1,154 @@
+\r 0 0 111 113
+\i
+\m 109.5757 110.0066
+\c 107.5994 110.3378 94.3775 111.5618 88.9032 105.7442
+\c 86.2525 107.3474 82.368 108.2338 77.204 107.4194
+\c 76.9306 107.3746 76.6752 107.309 76.4095 107.2562
+\c 74.0282 110.1474 69.1962 112.6466 63.5696 110.2754
+\c 56.2571 107.1906 57.0563 99.2498 60.9407 97.3666
+\c 61.1939 97.2434 61.4368 97.1842 61.6837 97.1074
+\c 59.8767 95.1714 57.9298 93.013 55.7149 90.6546
+\c 53.2946 91.0658 50.9103 91.8018 48.6024 92.7922
+\c 49.5274 94.069 50.2672 95.6338 50.6994 97.5922
+\c 52.2219 104.5234 46.3547 112.9042 37.8269 113.1314
+\c 34.04 113.2338 30.4837 111.9186 27.7211 109.6194
+\c 21.9798 114.3122 16.6579 113.269 14.2704 110.3874
+\c 11.3322 106.8418 12.6141 100.5634 12.6141 100.5634
+\c 12.6141 100.5634 6.4758 102.1074 3.1134 98.9554
+\c 0.6002 96.5954 -0.596 90.9234 4.5728 85.0834
+\c 1.5008 82.0738 -0.2483 77.8322 0.0282 73.3266
+\c 0.5485 64.8098 9.1206 59.237 15.9978 60.9938
+\c 18.5274 61.6434 20.4306 62.7602 21.7962 64.1714
+\c 22.7821 61.8482 23.5024 59.4466 23.8853 57.0082
+\c 21.6211 54.7122 19.5269 52.6818 17.643 50.8178
+\c 17.5698 51.381 17.4243 51.9682 17.1173 52.5666
+\c 15.1517 56.4098 7.1954 57.0418 4.2666 49.669
+\c 1.9883 43.9458 4.6603 39.1282 7.6314 36.8338
+\c 7.3899 35.981 7.2008 35.0978 7.0859 34.1698
+\c 6.4485 28.9778 7.4666 25.125 9.1618 22.5314
+\c 3.5352 16.8594 5.211 3.6914 5.6077 1.7282
+\c 6.068 -0.5438 8.5206 -0.9934 8.0829 2.957
+\c 7.6477 6.8482 5.9406 11.349 7.4915 17.357
+\c 8.0141 19.3874 8.8078 20.7938 9.6954 21.781
+\c 10.7494 20.429 11.9923 19.4946 13.2462 18.9842
+\c 15.7899 17.9506 18.272 19.0802 18.6509 21.4562
+\c 19.0261 23.8306 16.5149 25.957 12.3702 24.5938
+\c 11.7792 24.389 11.2338 24.125 10.7328 23.8162
+\c 9.3642 26.5282 8.7806 30.5778 9.947 35.5778
+\c 10.0181 35.557 10.0923 35.5266 10.161 35.509
+\c 16.1923 33.9778 27.7126 37.7634 25.6539 54.2338
+\c 25.5392 55.1522 25.3806 56.0434 25.2048 56.9218
+\c 28.3509 60.293 30.9048 64.0754 31.5509 69.6818
+\c 33.0571 82.7538 24.7742 89.4946 15.4752 89.4818
+\c 11.8634 89.4754 8.6549 88.3106 6.1008 86.4002
+\c 3.4338 90.1474 3.3438 94.3042 5.0022 96.1362
+\c 6.9002 98.2338 9.4024 99.0002 14.7189 98.7714
+\c 14.3758 104.085 15.0696 106.6194 17.1259 108.5634
+\c 18.8094 110.1538 22.5579 110.2114 26.1525 108.0946
+\c 23.6118 105.2754 22.0704 101.469 22.2126 97.1378
+\c 22.5165 87.8434 29.5392 79.797 42.5494 81.7506
+\c 48.6024 82.6594 52.44 85.7218 55.904 89.3554
+\c 57.0594 89.1218 58.2338 88.9218 59.4579 88.7954
+\c 75.9642 87.0818 79.5072 98.6786 77.8501 104.6786
+\c 77.8261 104.7666 77.7847 104.8562 77.7547 104.9442
+\c 81.8751 105.725 85.2696 105.2386 87.6767 104.1298
+\c 87.3837 103.6194 87.1392 103.0658 86.9539 102.469
+\c 85.7352 98.2786 87.9439 95.8418 90.3048 96.2978
+\c 92.665 96.7538 93.7103 99.277 92.5907 101.781
+\c 92.0376 103.0178 91.0603 104.229 89.672 105.2338
+\c 90.6306 106.1586 92.0048 106.997 94.0175 107.5906
+\c 99.9688 109.3458 104.5251 107.7938 108.4322 107.4946
+\c 112.3931 107.1874 111.8626 109.629 109.5757 110.0066
+\o
+\m 15.7845 23.8738
+\c 17.7392 23.541 18.3141 20.2594 15.8008 20.0434
+\c 14.1688 19.9074 12.4306 20.9762 11.1626 23.0194
+\c 13.1259 24.2194 15.1462 23.981 15.7845 23.8738
+\o
+\m 17.2462 62.4098
+\c 13.2954 61.0098 9.068 62.2594 6.1229 65.1154
+\c 7.4112 64.5618 8.7509 64.6418 9.6757 65.2754
+\c 12.1322 66.9618 11.6861 70.0322 10.0869 69.9762
+\c 8.4875 69.9218 9.3392 68.4626 6.9603 67.8114
+\c 4.3837 67.3538 3.1493 69.8162 2.5986 71.6098
+\c 2.3501 72.8498 2.2539 74.1634 2.3909 75.5426
+\c 2.7032 78.7154 4.1235 81.4082 6.2126 83.4258
+\c 6.6259 83.0514 7.0534 82.677 7.5211 82.3074
+\c 12.9205 78.0194 18.2064 71.9698 21.3368 65.1954
+\c 20.433 64.0658 19.1219 63.0738 17.2462 62.4098
+\o
+\m 10.3525 53.6818
+\c 15.7539 54.8786 15.836 50.8834 15.836 50.8834
+\c 15.836 50.8834 13.9883 51.9858 12.7618 50.5314
+\c 11.7757 49.3682 12.1157 47.3042 13.4869 46.509
+\c 11.4338 44.229 9.8094 42.0434 8.6909 39.677
+\c 3.7298 42.8434 4.2907 51.9282 10.3525 53.6818
+\o
+\m 10.8946 38.7602
+\c 11.1102 39.357 11.3298 39.957 11.5923 40.5714
+\c 12.5072 42.7074 13.6539 44.5442 14.9166 46.2178
+\c 16.1454 46.3666 17.3642 47.6562 17.643 49.4242
+\c 19.7422 51.6482 21.9774 53.6386 24.0438 55.7122
+\c 24.0875 55.3218 24.14 54.9346 24.1618 54.5426
+\c 24.7859 43.7042 17.9742 37.1778 10.8946 38.7602
+\o
+\m 22.6859 85.9186
+\c 31.8547 81.9058 33.1008 67.1474 24.9314 58.1346
+\c 24.3454 60.6242 23.5539 62.957 22.5931 65.1154
+\c 24.304 67.4162 24.8462 70.3122 24.4931 73.253
+\c 23.9563 77.7298 19.1758 79.397 17.4517 78.4946
+\c 15.7322 77.6002 16.4712 76.0258 17.843 75.9954
+\c 19.9758 76.0706 20.9915 75.3442 22.1821 74.0114
+\c 22.9728 73.1218 23.7837 69.4178 22.0446 66.2754
+\c 17.5994 75.5122 10.5853 81.5698 7.6171 84.6098
+\c 11.5899 87.493 17.243 88.301 22.6859 85.9186
+\o
+\m 59.6851 104.1074
+\c 61.276 110.069 69.9931 110.925 73.44 106.3842
+\c 70.8907 105.3842 68.6352 103.8258 66.3517 101.7746
+\c 65.3603 102.5378 63.8135 102.581 62.8829 101.7634
+\c 61.4563 100.5058 62.5978 98.6786 62.5978 98.6786
+\c 62.5978 98.6786 58.6008 98.6786 59.6851 104.1074
+\o
+\m 35.6939 110.6946
+\c 37.0704 110.8786 38.3845 110.8274 39.633 110.6194
+\c 41.4446 110.1282 43.9454 108.981 43.576 106.3906
+\c 43.0062 103.9922 41.5197 104.7906 41.5197 103.1906
+\c 41.5197 101.5938 44.6048 101.2482 46.204 103.7634
+\c 46.8079 104.7122 46.8392 106.0498 46.2447 107.3202
+\c 49.1994 104.469 50.5899 100.293 49.3283 96.2978
+\c 48.9227 95.0242 48.3587 94.0162 47.704 93.1938
+\c 41.147 96.2194 35.2579 101.2066 31.0094 106.3346
+\c 30.4914 106.957 29.9742 107.5138 29.4594 108.037
+\c 31.1869 109.4194 33.2899 110.3746 35.6939 110.6946
+\o
+\m 54.4283 89.2914
+\c 45.7875 80.2338 30.4368 80.837 26.0211 90.053
+\c 23.0994 96.1474 24.2909 102.6562 28.0658 106.733
+\c 28.2078 106.613 28.3563 106.5186 28.4963 106.3906
+\c 31.4797 103.6498 37.6235 96.7042 46.9243 92.3442
+\c 43.6931 89.3218 38.9517 90.0946 37.9002 90.9682
+\c 36.5282 92.1074 35.7672 93.1042 35.7672 95.2338
+\c 35.6939 96.6034 34.0946 97.2882 33.2571 95.5378
+\c 32.4189 93.7842 34.2477 89.0642 38.7406 88.6818
+\c 42.1931 88.3874 45.5328 89.333 47.8821 91.8978
+\c 50.0064 90.9682 52.2986 90.1906 54.7376 89.621
+\c 54.6338 89.509 54.5352 89.4034 54.4283 89.2914
+\o
+\m 74.5954 103.9922
+\c 76.4211 96.9074 70.0261 89.8818 59.1127 90.2818
+\c 58.3845 90.309 57.6563 90.3714 56.9338 90.4626
+\c 58.8471 92.5618 60.7141 94.781 62.8338 96.8594
+\c 65.3407 96.6418 67.3207 98.3586 67.2821 99.9362
+\c 67.2767 100.1378 67.2274 100.3154 67.1813 100.4962
+\c 68.3392 101.301 69.58 102.0498 70.9595 102.6978
+\c 72.2023 103.2786 73.3931 103.7282 74.5539 104.1058
+\c 74.565 104.0642 74.5845 104.0322 74.5954 103.9922
+\o
+\m 91.6189 99.1938
+\c 91.4875 96.6722 88.1915 97.1378 87.7914 99.0786
+\c 87.6603 99.7106 87.3563 101.725 88.4869 103.7282
+\c 90.5728 102.5298 91.704 100.8306 91.6189 99.1938
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian42.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian42.pgf
new file mode 100644
index 0000000000..f7bf505572
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian42.pgf
@@ -0,0 +1,154 @@
+\r 0 0 111 113
+\i
+\m 2.9186 107.4946
+\c 6.8258 107.7938 11.3842 109.3458 17.3362 107.5906
+\c 19.349 106.997 20.7234 106.1586 21.6786 105.2338
+\c 20.293 104.229 19.3138 103.0178 18.7634 101.781
+\c 17.6434 99.277 18.6866 96.7538 21.0466 96.2978
+\c 23.4098 95.8418 25.6162 98.2786 24.397 102.469
+\c 24.2114 103.0658 23.9682 103.6194 23.677 104.1298
+\c 26.0818 105.2386 29.4754 105.725 33.597 104.9442
+\c 33.5666 104.8562 33.525 104.7666 33.501 104.6786
+\c 31.845 98.6786 35.3874 87.0818 51.8962 88.7954
+\c 53.117 88.9218 54.2946 89.1218 55.4466 89.3554
+\c 58.9106 85.7218 62.7506 82.6594 68.805 81.7506
+\c 81.8146 79.797 88.8338 87.8434 89.141 97.1378
+\c 89.2818 101.469 87.7394 105.2754 85.2018 108.0946
+\c 88.7954 110.2114 92.541 110.1538 94.2258 108.5634
+\c 96.2818 106.6194 96.9746 104.085 96.6322 98.7714
+\c 101.9522 99.0002 104.4514 98.2338 106.349 96.1362
+\c 108.0098 94.3042 107.917 90.1474 105.2514 86.4002
+\c 102.6994 88.3106 99.4898 89.4754 95.877 89.4818
+\c 86.5794 89.4946 78.2962 82.7538 79.8018 69.6818
+\c 80.4482 64.0754 83.0002 60.293 86.1458 56.9218
+\c 85.9714 56.0434 85.8146 55.1522 85.6994 54.2338
+\c 83.6418 37.7634 95.1586 33.9778 101.1906 35.509
+\c 101.2578 35.5266 101.333 35.557 101.4034 35.5778
+\c 102.5698 30.5778 101.9874 26.5282 100.621 23.8162
+\c 100.1186 24.125 99.5746 24.389 98.9842 24.5938
+\c 94.8386 25.957 92.325 23.8306 92.701 21.4562
+\c 93.0786 19.0802 95.5618 17.9506 98.1074 18.9842
+\c 99.3586 19.4946 100.6018 20.429 101.6546 21.781
+\c 102.5458 20.7938 103.3362 19.3874 103.8594 17.357
+\c 105.4098 11.349 103.7042 6.8482 103.2706 2.957
+\c 102.8306 -0.9934 105.2834 -0.5438 105.7442 1.7282
+\c 106.141 3.6914 107.8162 16.8594 102.1922 22.5314
+\c 103.8834 25.125 104.9058 28.9778 104.2674 34.1698
+\c 104.1506 35.0978 103.9602 35.981 103.7202 36.8338
+\c 106.693 39.1282 109.3618 43.9458 107.0882 49.669
+\c 104.1554 57.0418 96.2018 56.4098 94.2338 52.5666
+\c 93.9266 51.9682 93.7842 51.381 93.7074 50.8178
+\c 91.8242 52.6818 89.7298 54.7122 87.469 57.0082
+\c 87.8514 59.4466 88.5714 61.8482 89.557 64.1714
+\c 90.9234 62.7602 92.8226 61.6434 95.3554 60.9938
+\c 102.2306 59.237 110.805 64.8098 111.325 73.3266
+\c 111.6018 77.8322 109.8498 82.0738 106.7778 85.0834
+\c 111.9506 90.9234 110.7538 96.5954 108.237 98.9554
+\c 104.8786 102.1074 98.7378 100.5634 98.7378 100.5634
+\c 98.7378 100.5634 100.0194 106.8418 97.0818 110.3874
+\c 94.6962 113.269 89.3746 114.3122 83.6306 109.6194
+\c 80.8674 111.9186 77.3106 113.2338 73.5266 113.1314
+\c 64.997 112.9042 59.1298 104.5234 60.6546 97.5922
+\c 61.0834 95.6338 61.8242 94.069 62.749 92.7922
+\c 60.4434 91.8018 58.0578 91.0658 55.6354 90.6546
+\c 53.4242 93.013 51.477 95.1714 49.6706 97.1074
+\c 49.917 97.1842 50.1602 97.2434 50.4098 97.3666
+\c 54.2946 99.2498 55.093 107.1906 47.7842 110.2754
+\c 42.157 112.6466 37.3234 110.1474 34.9442 107.2562
+\c 34.6786 107.309 34.421 107.3746 34.149 107.4194
+\c 28.9842 108.2338 25.0978 107.3474 22.4514 105.7442
+\c 16.9746 111.5618 3.7522 110.3378 1.7778 110.0066
+\c -0.5086 109.629 -1.043 107.1874 2.9186 107.4946
+\o
+\m 100.1874 23.0194
+\c 98.9218 20.9762 97.1826 19.9074 95.5522 20.0434
+\c 93.037 20.2594 93.613 23.541 95.5698 23.8738
+\c 96.205 23.981 98.2274 24.2194 100.1874 23.0194
+\o
+\m 90.0178 65.1954
+\c 93.1474 71.9698 98.4306 78.0194 103.8322 82.3074
+\c 104.301 82.677 104.7266 83.0514 105.141 83.4258
+\c 107.2274 81.4082 108.6482 78.7154 108.9634 75.5426
+\c 109.0962 74.1634 109.0018 72.8498 108.7522 71.6098
+\c 108.2018 69.8162 106.9698 67.3538 104.3906 67.8114
+\c 102.0146 68.4626 102.8626 69.9218 101.2642 69.9762
+\c 99.6674 70.0322 99.2194 66.9618 101.6754 65.2754
+\c 102.6034 64.6418 103.9426 64.5618 105.2306 65.1154
+\c 102.2834 62.2594 98.0578 61.0098 94.1074 62.4098
+\c 92.2322 63.0738 90.9186 64.0658 90.0178 65.1954
+\o
+\m 102.661 39.677
+\c 101.5442 42.0434 99.9202 44.229 97.8642 46.509
+\c 99.2354 47.3042 99.5746 49.3682 98.5922 50.5314
+\c 97.365 51.9858 95.5154 50.8834 95.5154 50.8834
+\c 95.5154 50.8834 95.597 54.8786 101.0018 53.6818
+\c 107.0626 51.9282 107.6226 42.8434 102.661 39.677
+\o
+\m 87.1922 54.5426
+\c 87.2146 54.9346 87.2658 55.3218 87.3074 55.7122
+\c 89.3746 53.6386 91.6082 51.6482 93.7106 49.4242
+\c 93.9906 47.6562 95.2082 46.3666 96.4354 46.2178
+\c 97.6994 44.5442 98.8466 42.7074 99.7602 40.5714
+\c 100.0242 39.957 100.2434 39.357 100.4578 38.7602
+\c 93.3762 37.1778 86.565 43.7042 87.1922 54.5426
+\o
+\m 103.733 84.6098
+\c 100.7682 81.5698 93.7522 75.5122 89.3058 66.2754
+\c 87.5698 69.4178 88.3778 73.1218 89.1714 74.0114
+\c 90.3618 75.3442 91.3746 76.0706 93.5074 75.9954
+\c 94.8834 76.0258 95.6226 77.6002 93.8994 78.4946
+\c 92.1746 79.397 87.397 77.7298 86.8578 73.253
+\c 86.5042 70.3122 87.0466 67.4162 88.757 65.1154
+\c 87.8002 62.957 87.005 60.6242 86.4226 58.1346
+\c 78.253 67.1474 79.4962 81.9058 88.6642 85.9186
+\c 94.1074 88.301 99.7634 87.493 103.733 84.6098
+\o
+\m 48.7522 98.6786
+\c 48.7522 98.6786 49.8946 100.5058 48.4674 101.7634
+\c 47.5378 102.581 45.9906 102.5378 45.0018 101.7746
+\c 42.717 103.8258 40.4594 105.3842 37.9122 106.3842
+\c 41.3602 110.925 50.0786 110.069 51.669 104.1074
+\c 52.7522 98.6786 48.7522 98.6786 48.7522 98.6786
+\o
+\m 81.8946 108.037
+\c 81.3762 107.5138 80.8626 106.957 80.3442 106.3346
+\c 76.0946 101.2066 70.2066 96.2194 63.6466 93.1938
+\c 62.9922 94.0162 62.4274 95.0242 62.0258 96.2978
+\c 60.7602 100.293 62.1506 104.469 65.109 107.3202
+\c 64.5154 106.0498 64.5442 104.7122 65.1474 103.7634
+\c 66.749 101.2482 69.8338 101.5938 69.8338 103.1906
+\c 69.8338 104.7906 68.3474 103.9922 67.7762 106.3906
+\c 67.405 108.981 69.9074 110.1282 71.7186 110.6194
+\c 72.9682 110.8274 74.2834 110.8786 75.6578 110.6946
+\c 78.061 110.3746 80.1634 109.4194 81.8946 108.037
+\o
+\m 56.6162 89.621
+\c 59.0514 90.1906 61.3474 90.9682 63.469 91.8978
+\c 65.8178 89.333 69.157 88.3874 72.613 88.6818
+\c 77.1058 89.0642 78.9346 93.7842 78.0962 95.5378
+\c 77.2594 97.2882 75.6594 96.6034 75.5842 95.2338
+\c 75.5842 93.1042 74.8226 92.1074 73.4514 90.9682
+\c 72.4018 90.0946 67.6578 89.3218 64.429 92.3442
+\c 73.7298 96.7042 79.8706 103.6498 82.8578 106.3906
+\c 82.9938 106.5186 83.1458 106.613 83.2882 106.733
+\c 87.0594 102.6562 88.253 96.1474 85.333 90.053
+\c 80.9138 80.837 65.565 80.2338 56.9218 89.2914
+\c 56.8162 89.4034 56.7202 89.509 56.6162 89.621
+\o
+\m 36.797 104.1058
+\c 37.957 103.7282 39.149 103.2786 40.3906 102.6978
+\c 41.7746 102.0498 43.0146 101.301 44.173 100.4962
+\c 44.125 100.3154 44.0738 100.1378 44.0706 99.9362
+\c 44.0306 98.3586 46.0098 96.6418 48.5186 96.8594
+\c 50.637 94.781 52.5042 92.5618 54.4194 90.4626
+\c 53.6946 90.3714 52.9666 90.309 52.2386 90.2818
+\c 41.3282 89.8818 34.9298 96.9074 36.7554 103.9922
+\c 36.7666 104.0322 36.7858 104.0642 36.797 104.1058
+\o
+\m 22.8642 103.7282
+\c 23.997 101.725 23.6914 99.7106 23.5618 99.0786
+\c 23.1602 97.1378 19.8642 96.6722 19.7346 99.1938
+\c 19.6482 100.8306 20.781 102.5298 22.8642 103.7282
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian43.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian43.pgf
new file mode 100644
index 0000000000..bef0c04672
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian43.pgf
@@ -0,0 +1,99 @@
+\r 0 0 123 63
+\i
+\m 91.3116 32.0344
+\c 85.0428 31.7832 78.9436 28.9352 77.2684 21.7528
+\c 75.5116 14.228 80.278 6.956 87.0492 6.956
+\c 93.8188 6.956 97.8316 10.7176 97.8316 16.4872
+\c 97.8316 22.2536 93.0652 26.2664 87.7996 24.2584
+\c 82.5372 22.2536 82.7868 15.484 87.0492 14.4808
+\c 91.3116 13.4776 91.5628 17.4904 89.806 18.7432
+\c 88.0524 19.996 86.046 17.9928 86.046 17.9928
+\c 86.046 17.9928 85.294 23.0056 89.806 23.0056
+\c 95.5756 23.0056 96.078 17.4904 95.8252 14.9832
+\c 95.5756 12.4744 93.0652 8.716 86.5468 8.964
+\c 81.5372 9.1576 76.766 16.7368 79.774 23.0056
+\c 82.7868 29.276 89.5596 32.0344 98.334 29.524
+\c 107.11 27.0184 111.8748 19.4968 111.8748 19.4968
+\c 107.862 29.0248 97.5804 32.2856 91.3116 32.0344
+\o
+\s
+\m 104.3532 32.5368
+\c 77.7724 50.8424 52.1932 42.0648 52.1932 42.0648
+\c 52.1932 42.0648 53.694 46.828 49.1836 47.0808
+\c 43.918 47.3736 45.422 42.8152 45.422 42.8152
+\c 39.6524 44.3224 40.406 42.5656 35.6412 41.5624
+\c 30.8748 40.5608 29.3724 44.0728 29.3724 44.0728
+\c 31.1276 36.2984 41.6588 36.2984 41.6588 36.2984
+\c 33.638 31.0328 28.6188 35.5432 28.6188 35.5432
+\c 24.8556 32.5368 28.3692 29.276 28.3692 29.276
+\c 23.8556 29.0248 22.35 25.012 20.5964 23.5096
+\c 18.8412 22.004 16.0812 21.2536 13.8252 24.7624
+\c 11.5692 28.2712 14.0748 32.0344 14.0748 32.0344
+\c 10.3148 30.2792 10.062 22.004 17.838 19.7464
+\c 25.6124 17.4904 31.3772 23.5096 31.3772 23.5096
+\c 31.1276 18.2408 35.39 19.996 35.39 19.996
+\c 36.3932 29.276 46.174 32.5368 46.174 32.5368
+\c 46.174 32.5368 43.5004 29.444 41.6588 24.5128
+\c 39.766 19.4312 43.6652 15.7336 43.6652 15.7336
+\c 42.662 19.2472 43.4156 20.7496 47.6748 22.5032
+\c 51.9404 24.2584 51.6908 26.7688 51.6908 26.7688
+\c 54.1996 25.516 57.7068 26.0152 57.71 29.524
+\c 57.71 31.9512 54.95 33.0376 54.95 33.0376
+\c 54.95 33.0376 68.5436 45.66 94.3212 35.796
+\c 114.6348 28.0232 119.1468 7.7112 119.1468 7.7112
+\c 119.1468 7.7112 118.4812 22.8056 104.3532 32.5368
+\o
+\m 51.9404 32.7864
+\c 51.9404 32.7864 58.2524 30.7256 55.1996 28.0232
+\c 53.0284 26.1 50.9372 29.7784 50.9372 29.7784
+\c 50.9372 29.7784 50.6876 26.4312 48.8492 25.0936
+\c 47.0092 23.7592 43.166 22.4216 42.4972 20.7496
+\c 42.4972 20.7496 41.1596 28.1064 52.3596 35.628
+\c 52.3596 35.628 39.3212 35.628 33.9692 22.084
+\c 33.9692 22.084 31.6284 22.2536 33.4684 26.4312
+\c 33.4684 26.4312 31.294 25.932 29.9564 24.0936
+\c 28.622 22.2536 22.438 19.2472 19.2588 21.084
+\c 19.2588 21.084 22.2684 21.7528 24.4412 25.0968
+\c 26.6156 28.4408 29.79 28.7752 31.966 28.1064
+\c 31.966 28.1064 26.7804 30.2776 28.622 34.2904
+\c 28.622 34.2904 31.2972 31.9512 36.1436 32.6184
+\c 40.99 33.2872 46.8428 37.3 46.8428 37.3
+\c 46.8428 37.3 38.4844 36.7992 35.8092 39.6408
+\c 35.8092 39.6408 36.9804 40.14 39.6556 41.3128
+\c 42.3276 42.4808 45.3372 41.8136 47.0092 39.8056
+\c 47.0092 39.8056 45.1692 44.8216 48.3468 45.6568
+\c 51.5244 46.4952 52.5244 41.1464 49.35 39.9752
+\c 49.35 39.9752 51.022 39.4744 54.3692 40.1432
+\c 57.71 40.8104 63.894 43.1528 77.0156 41.316
+\c 77.0156 41.316 63.7276 43.068 51.9404 32.7864
+\o
+\s
+\m 63.9772 60.8728
+\c 47.6748 62.3784 22.8524 60.1208 8.5596 44.8248
+\c -5.738 29.524 -0.9716 12.724 14.3244 5.9544
+\c 29.622 -0.8152 48.9308 4.1992 59.7148 14.732
+\c 70.4972 25.2632 70.75 32.2856 70.75 32.2856
+\c 59.462 7.9608 37.3964 7.2088 27.6156 6.2056
+\c 17.838 5.2024 2.5404 11.9736 2.2876 25.2632
+\c 2.0412 38.556 13.8252 49.8376 28.118 53.6008
+\c 42.4124 57.3624 72.0028 61.6248 97.8316 44.8248
+\c 123.662 28.0232 121.9068 -0.0632 121.9068 -0.0632
+\c 121.9068 -0.0632 126.6348 12.668 114.6348 31.2808
+\c 102.3468 50.34 80.278 59.3688 63.9772 60.8728
+\o
+\s
+\m 115.3868 33.7912
+\c 102.3468 50.8424 109.038 60.172 114.718 60.7048
+\c 120.0684 61.2056 121.406 57.6968 121.406 54.3512
+\c 121.406 51.0088 119.9068 48.724 116.5564 49.1704
+\c 114.0492 49.5048 114.2156 52.8504 114.2156 52.8504
+\c 114.3804 51.0056 117.7276 50.508 117.894 53.1848
+\c 118.0092 55.0264 116.1372 55.6056 114.6348 55.1064
+\c 113.1276 54.6024 111.8748 52.348 113.6316 49.3368
+\c 115.3868 46.3272 123.1596 46.3272 123.1596 54.3528
+\c 123.1596 62.3784 116.3868 63.3816 112.878 62.3784
+\c 109.3692 61.3752 105.1036 58.116 106.6092 49.3368
+\c 108.1116 40.5608 115.3868 33.7912 115.3868 33.7912
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian44.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian44.pgf
new file mode 100644
index 0000000000..70b2c948e9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian44.pgf
@@ -0,0 +1,99 @@
+\r 0 0 123 63
+\i
+\m 31.8464 32.0344
+\c 38.1184 31.7832 44.2144 28.9352 45.8912 21.7528
+\c 47.6464 14.228 42.88 6.956 36.1088 6.956
+\c 29.3408 6.956 25.328 10.7176 25.328 16.4872
+\c 25.328 22.2536 30.0928 26.2664 35.36 24.2584
+\c 40.6256 22.2536 40.3744 15.484 36.1088 14.4808
+\c 31.8464 13.4776 31.5968 17.4904 33.3536 18.7432
+\c 35.1056 19.996 37.1152 17.9928 37.1152 17.9928
+\c 37.1152 17.9928 37.8656 23.0056 33.3536 23.0056
+\c 27.584 23.0056 27.0848 17.4904 27.3344 14.9832
+\c 27.584 12.4744 30.0928 8.716 36.6112 8.964
+\c 41.6256 9.1576 46.3936 16.7368 43.384 23.0056
+\c 40.3744 29.276 33.6032 32.0344 24.8288 29.524
+\c 16.0496 27.0184 11.288 19.4968 11.288 19.4968
+\c 15.2976 29.0248 25.5808 32.2856 31.8464 32.0344
+\o
+\s
+\m 4.0128 7.7112
+\c 4.0128 7.7112 8.528 28.0232 28.84 35.796
+\c 54.6144 45.66 68.2096 33.0376 68.2096 33.0376
+\c 68.2096 33.0376 65.4496 31.9512 65.4496 29.524
+\c 65.4528 26.0152 68.9632 25.516 71.4688 26.7688
+\c 71.4688 26.7688 71.2192 24.2584 75.4848 22.5032
+\c 79.744 20.7496 80.496 19.2472 79.4944 15.7336
+\c 79.4944 15.7336 83.3936 19.4312 81.4992 24.5128
+\c 79.6624 29.444 76.9872 32.5368 76.9872 32.5368
+\c 76.9872 32.5368 86.7648 29.276 87.768 19.996
+\c 87.768 19.996 92.0336 18.2408 91.7808 23.5096
+\c 91.7808 23.5096 97.5488 17.4904 105.3248 19.7464
+\c 113.0976 22.004 112.8464 30.2792 109.0848 32.0344
+\c 109.0848 32.0344 111.5904 28.2712 109.3344 24.7624
+\c 107.0768 21.2536 104.3216 22.004 102.5648 23.5096
+\c 100.8096 25.012 99.3056 29.0248 94.7904 29.276
+\c 94.7904 29.276 98.3024 32.5368 94.5408 35.5432
+\c 94.5408 35.5432 89.5248 31.0328 81.4992 36.2984
+\c 81.4992 36.2984 92.0336 36.2984 93.7904 44.0728
+\c 93.7904 44.0728 92.2848 40.5608 87.5184 41.5624
+\c 82.7568 42.5656 83.5056 44.3224 77.7408 42.8152
+\c 77.7408 42.8152 79.24 47.3736 73.9776 47.0808
+\c 69.4656 46.828 70.968 42.0648 70.968 42.0648
+\c 70.968 42.0648 45.3904 50.8424 18.8096 32.5368
+\c 4.68 22.8056 4.0128 7.7112 4.0128 7.7112
+\o
+\m 46.144 41.316
+\c 59.2656 43.1528 65.4496 40.8104 68.7936 40.1432
+\c 72.1376 39.4744 73.8112 39.9752 73.8112 39.9752
+\c 70.6336 41.1464 71.6336 46.4952 74.8128 45.6568
+\c 77.9904 44.8216 76.1488 39.8056 76.1488 39.8056
+\c 77.8224 41.8136 80.8336 42.4808 83.5056 41.3128
+\c 86.1808 40.14 87.3488 39.6408 87.3488 39.6408
+\c 84.6752 36.7992 76.3184 37.3 76.3184 37.3
+\c 76.3184 37.3 82.168 33.2872 87.0192 32.6184
+\c 91.8656 31.9512 94.5408 34.2904 94.5408 34.2904
+\c 96.3776 30.2776 91.1968 28.1064 91.1968 28.1064
+\c 93.3712 28.7752 96.544 28.4408 98.7184 25.0968
+\c 100.8912 21.7528 103.8992 21.084 103.8992 21.084
+\c 100.7248 19.2472 94.5408 22.2536 93.2032 24.0936
+\c 91.8656 25.932 89.6944 26.4312 89.6944 26.4312
+\c 91.5312 22.2536 89.1904 22.084 89.1904 22.084
+\c 83.84 35.628 70.8 35.628 70.8 35.628
+\c 82.0032 28.1064 80.6656 20.7496 80.6656 20.7496
+\c 79.9968 22.4216 76.1488 23.7592 74.3088 25.0936
+\c 72.472 26.4312 72.2224 29.7784 72.2224 29.7784
+\c 72.2224 29.7784 70.1344 26.1 67.96 28.0232
+\c 64.9056 30.7256 71.2192 32.7864 71.2192 32.7864
+\c 59.4304 43.068 46.144 41.316 46.144 41.316
+\o
+\s
+\m 59.184 60.8728
+\c 75.4848 62.3784 100.3088 60.1208 114.6032 44.8248
+\c 128.8976 29.524 124.1312 12.724 108.8336 5.9544
+\c 93.5376 -0.8152 74.232 4.1992 63.4464 14.732
+\c 52.6624 25.2632 52.4128 32.2856 52.4128 32.2856
+\c 63.696 7.9608 85.7632 7.2088 95.544 6.2056
+\c 105.3248 5.2024 120.6224 11.9736 120.872 25.2632
+\c 121.1216 38.556 109.3344 49.8376 95.0432 53.6008
+\c 80.7456 57.3624 51.1568 61.6248 25.328 44.8248
+\c -0.5008 28.0232 1.256 -0.0632 1.256 -0.0632
+\c 1.256 -0.0632 -3.4752 12.668 8.528 31.2808
+\c 20.8128 50.34 42.88 59.3688 59.184 60.8728
+\o
+\s
+\m 7.7744 33.7912
+\c 20.8128 50.8424 14.1216 60.172 8.44 60.7048
+\c 3.0928 61.2056 1.7536 57.6968 1.7536 54.3512
+\c 1.7536 51.0088 3.2528 48.724 6.6032 49.1704
+\c 9.1088 49.5048 8.944 52.8504 8.944 52.8504
+\c 8.7776 51.0056 5.4336 50.508 5.2656 53.1848
+\c 5.1488 55.0264 7.0224 55.6056 8.528 55.1064
+\c 10.032 54.6024 11.288 52.348 9.5312 49.3368
+\c 7.7744 46.3272 0 46.3272 0 54.3528
+\c 0 62.3784 6.7712 63.3816 10.2848 62.3784
+\c 13.7936 61.3752 18.056 58.116 16.5488 49.3368
+\c 15.0464 40.5608 7.7744 33.7912 7.7744 33.7912
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian45.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian45.pgf
new file mode 100644
index 0000000000..9bad3e5b47
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian45.pgf
@@ -0,0 +1,275 @@
+\m 170.9112 45.7906
+\c 172.1368 45.7906 173.1864 46.5474 173.6296 47.6098
+\c 181.5416 46.5874 186.4488 42.8098 186.5032 42.7586
+\c 186.6584 42.613 187.1576 42.2146 187.612 41.9458
+\c 186.8216 41.7474 186.2712 41.6898 186.2712 41.6898
+\c 190.196 41.461 193.172 37.3026 193.172 37.3026
+\c 193.172 37.3026 196.1512 41.461 200.076 41.6898
+\c 200.076 41.6898 198.924 41.8066 197.5512 42.3154
+\c 197.8024 42.4962 198.0168 42.6722 198.1064 42.7586
+\c 198.1624 42.8098 203.068 46.5874 210.98 47.6098
+\c 211.4264 46.5474 212.4744 45.7906 213.6968 45.7906
+\c 215.3224 45.7906 216.644 47.1122 216.644 48.7378
+\c 216.644 50.3602 215.3224 51.6818 213.6968 51.6818
+\c 212.1576 51.6818 210.9032 50.4834 210.7768 48.9778
+\c 204.1848 48.1122 198.812 44.325 196.8008 42.629
+\c 195.268 43.341 193.6712 44.5586 193.172 46.6578
+\c 192.5432 43.9938 190.14 42.7378 188.3432 42.1586
+\c 186.9368 43.4834 181.1208 48.0194 173.8328 48.9778
+\c 173.7048 50.4834 172.4536 51.6818 170.9112 51.6818
+\c 169.2888 51.6818 167.9656 50.3602 167.9656 48.7378
+\c 167.9656 47.1122 169.2888 45.7906 170.9112 45.7906
+\o
+\m 213.6968 50.293
+\c 214.5592 50.293 215.2568 49.5938 215.2568 48.7378
+\c 215.2568 47.8786 214.5592 47.1762 213.6968 47.1762
+\c 213.0488 47.1762 212.4936 47.5746 212.26 48.141
+\l 212.1448 48.8194
+\c 212.1896 49.637 212.8648 50.293 213.6968 50.293
+\o
+\m 170.9112 50.293
+\c 171.7432 50.293 172.4184 49.637 172.4632 48.8194
+\l 172.3528 48.141
+\c 172.1144 47.5746 171.5624 47.1762 170.9112 47.1762
+\c 170.052 47.1762 169.3528 47.8786 169.3528 48.7378
+\c 169.3528 49.5938 170.052 50.293 170.9112 50.293
+\o
+\s
+\m 182.5176 51.3346
+\c 182.9928 51.3346 183.4312 51.4658 183.8248 51.677
+\l 190.0808 45.7346
+\c 189.668 46.2418 186.4488 50.9186 184.8456 52.613
+\c 185.1208 53.045 185.292 53.5538 185.292 54.1058
+\c 185.292 55.6354 184.0456 56.8786 182.5176 56.8786
+\c 180.9912 56.8786 179.7464 55.6354 179.7464 54.1058
+\c 179.7464 52.5778 180.9912 51.3346 182.5176 51.3346
+\o
+\m 182.5176 55.4898
+\c 183.284 55.4898 183.9032 54.8706 183.9032 54.1058
+\c 183.9032 53.3442 183.284 52.7218 182.5176 52.7218
+\c 181.7528 52.7218 181.1304 53.3442 181.1304 54.1058
+\c 181.1304 54.8706 181.7528 55.4898 182.5176 55.4898
+\o
+\s
+\m 201.692 51.677
+\c 202.084 51.4658 202.5224 51.3346 202.9976 51.3346
+\c 204.5272 51.3346 205.7656 52.5778 205.7656 54.1058
+\c 205.7656 55.6354 204.5272 56.8786 202.9976 56.8786
+\c 201.4664 56.8786 200.2248 55.6354 200.2248 54.1058
+\c 200.2248 53.5538 200.3896 53.045 200.668 52.613
+\c 199.0664 50.9186 195.844 46.2418 195.4312 45.7346
+\l 201.692 51.677
+\o
+\m 202.9976 55.4898
+\c 203.7624 55.4898 204.3816 54.8706 204.3816 54.1058
+\c 204.3816 53.3442 203.7624 52.7218 202.9976 52.7218
+\c 202.2328 52.7218 201.6088 53.3442 201.6088 54.1058
+\c 201.6088 54.8706 202.2328 55.4898 202.9976 55.4898
+\o
+\s
+\m 192.044 53.4658
+\l 192.044 48.3874
+\c 192.044 48.0066 192.356 47.6962 192.7368 47.6962
+\c 193.1208 47.6962 193.4328 48.0066 193.4328 48.3874
+\l 193.4328 53.5666
+\c 194.532 53.9314 195.3368 54.9586 195.3368 56.1874
+\c 195.3368 57.4754 194.4472 58.5474 193.2568 58.8578
+\l 193.2568 63.4594
+\c 193.2568 63.8434 192.948 64.1522 192.5656 64.1522
+\c 192.1832 64.1522 191.8712 63.8434 191.8712 63.4594
+\l 191.8712 58.8578
+\c 190.6808 58.5474 189.7912 57.4754 189.7912 56.1874
+\c 189.7912 54.8338 190.7656 53.7106 192.044 53.4658
+\o
+\m 192.5656 57.5714
+\c 193.3288 57.5714 193.9496 56.9474 193.9496 56.1874
+\c 193.9496 55.421 193.3288 54.8002 192.5656 54.8002
+\c 191.8024 54.8002 191.1752 55.421 191.1752 56.1874
+\c 191.1752 56.9474 191.8024 57.5714 192.5656 57.5714
+\o
+\s
+\m 0 -0.073
+\l 385.344 -0.073
+\l 385.344 64.1533
+\l 0 64.1533
+\o
+\i
+\m 384.8248 1.365
+\c 384.5912 1.4258 360.9784 7.4178 302.9832 15.469
+\c 302.0648 15.6002 301.14 15.7218 300.2152 15.8434
+\c 300.1544 15.8802 300.0936 15.9122 300.0216 15.9282
+\c 299.9048 15.9506 288.3896 18.2626 283.2952 23.5778
+\l 282.932 23.9602
+\l 282.4632 23.7058
+\c 282.3864 23.6658 274.9272 19.6786 266.3368 19.4178
+\c 262.716 19.7138 259.1576 19.9778 255.6792 20.2178
+\c 256.6376 20.413 257.5416 20.7378 258.3016 21.285
+\c 258.6488 21.5346 258.948 21.8178 259.2152 22.1346
+\c 262.116 24.277 261.084 27.7314 259.8344 28.413
+\c 258.5624 29.1026 256.7128 28.0626 256.7128 26.909
+\c 256.7128 25.1618 257.1784 24.9474 258.1 24.6002
+\c 258.7208 24.3682 258.612 23.8306 258.476 23.4962
+\c 258.2232 23.0754 257.9032 22.7058 257.4936 22.4098
+\c 255.8904 21.253 252.9992 21.061 249.3592 21.869
+\c 246.1256 22.5874 239.884 27.3426 234.868 31.1618
+\c 232.8472 32.7042 230.9336 34.1618 229.34 35.2754
+\c 223.572 39.2898 217.8936 40.5298 217.652 40.581
+\c 217.5112 40.613 216.9416 40.8178 216.8168 40.7698
+\c 209.2808 42.4994 200.5896 40.0274 193.9128 35.6306
+\c 193.4904 35.3506 193.076 35.0498 192.668 34.741
+\c 192.2648 35.0498 191.8504 35.3506 191.428 35.6306
+\c 184.7528 40.0274 176.0616 42.4994 168.5256 40.7698
+\c 168.4024 40.8178 167.8312 40.613 167.6888 40.581
+\c 167.4488 40.5298 161.7688 39.2898 156.0024 35.2754
+\c 154.4088 34.1618 152.4968 32.7042 150.4744 31.1618
+\c 145.4552 27.3426 139.2152 22.5874 135.9816 21.869
+\c 132.3432 21.061 129.4552 21.253 127.8472 22.4098
+\c 127.436 22.7058 127.1176 23.0754 126.868 23.4962
+\c 126.7272 23.8306 126.62 24.3682 127.2392 24.6002
+\c 128.1624 24.9474 128.6264 25.1618 128.6264 26.909
+\c 128.6264 28.0626 126.7768 29.1026 125.5064 28.413
+\c 124.2584 27.7314 123.2248 24.277 126.1304 22.1346
+\c 126.3928 21.8178 126.6968 21.5346 127.0376 21.285
+\c 127.7992 20.7378 128.7032 20.413 129.6632 20.2178
+\c 126.1864 19.9778 122.628 19.7138 119.0024 19.4178
+\c 110.4168 19.6786 102.956 23.6658 102.8776 23.7058
+\l 102.4104 23.9602
+\l 102.0456 23.5778
+\c 96.9496 18.2626 85.436 15.9506 85.3208 15.9282
+\c 85.2504 15.9122 85.1896 15.8802 85.1272 15.8434
+\c 84.2024 15.7218 83.2792 15.6002 82.356 15.469
+\c 24.3624 7.4178 0.7496 1.4258 0.5176 1.365
+\c 0.2024 1.285 -0.0008 1.0034 -0.0008 0.693
+\c -0.0008 0.6386 0.0024 0.5778 0.0184 0.5218
+\c 0.1144 0.1506 0.492 -0.0718 0.8616 0.021
+\c 1.0952 0.0834 24.6488 6.0642 82.5464 14.0978
+\c 94.7448 15.7906 107.2504 17.069 119.1208 18.037
+\c 119.3704 18.0306 120.1112 18.0642 120.2184 18.1282
+\c 154.2552 20.853 182.772 21.0178 183.156 21.021
+\l 183.5864 21.0226
+\l 183.7752 21.4066
+\c 183.812 21.4834 187.2936 28.413 192.668 32.9522
+\c 198.0456 28.413 201.5272 21.4834 201.5656 21.4066
+\l 201.7576 21.0226
+\l 202.1832 21.021
+\c 202.5704 21.0178 231.084 20.853 265.1256 18.1282
+\c 265.2296 18.0642 265.9688 18.0306 266.2184 18.037
+\c 278.0904 17.069 290.5976 15.7906 302.7928 14.0978
+\c 360.692 6.0642 384.2456 0.0834 384.4792 0.021
+\c 384.8504 -0.0718 385.2296 0.1506 385.3192 0.5218
+\c 385.3368 0.5778 385.3448 0.6386 385.3448 0.693
+\c 385.3448 1.0034 385.1368 1.285 384.8248 1.365
+\o
+\m 93.476 16.8946
+\c 96.6904 18.1282 100.2136 19.8866 102.6632 22.2562
+\c 103.908 21.6338 107.6264 19.9042 112.4456 18.8562
+\c 106.2008 18.293 99.836 17.6466 93.476 16.8946
+\o
+\m 228.5448 34.1378
+\c 230.116 33.0402 232.02 31.5922 234.0312 30.0626
+\c 239.116 26.1858 244.8408 21.829 248.436 20.6898
+\c 238.596 21.2898 229.6808 21.6818 222.3544 21.9362
+\c 222.4296 21.981 222.508 22.0194 222.5768 22.0658
+\c 224.772 23.5746 226.2424 26.7618 226.2344 29.9906
+\c 226.228 32.7714 225.1576 35.2498 223.2136 37.1554
+\c 224.8632 36.4034 226.7048 35.4178 228.5448 34.1378
+\o
+\m 151.3112 30.0626
+\c 153.324 31.5922 155.2248 33.0402 156.7976 34.1378
+\c 158.636 35.4178 160.4808 36.4034 162.1272 37.1554
+\c 160.1848 35.2498 159.1128 32.7714 159.1064 29.9906
+\c 159.0984 26.7618 160.5656 23.5746 162.764 22.0658
+\c 162.8328 22.0194 162.9112 21.981 162.9848 21.9362
+\c 155.6616 21.6818 146.7448 21.2898 136.9064 20.6898
+\c 140.5032 21.829 146.2248 26.1858 151.3112 30.0626
+\o
+\m 182.7288 22.4002
+\c 181.612 22.3938 178.1336 22.3554 172.8936 22.2306
+\c 173.8488 22.8594 174.62 23.637 175.0856 24.5474
+\c 176.1304 24.4002 178.0424 24.5282 178.8584 27.141
+\c 179.9032 30.4802 180.94 33.1474 183.5944 29.6802
+\c 183.5944 29.6802 183.5944 32.1058 181.1688 32.453
+\c 178.7448 32.8002 178.1656 29.2178 177.244 28.0626
+\c 176.7896 27.4962 176.252 27.4306 175.8264 27.5122
+\c 175.9352 29.173 175.5656 30.7986 174.7304 32.069
+\c 173.8024 33.4786 172.4152 34.309 170.8248 34.4146
+\c 168.9656 34.5394 167.8152 34.2866 167.0808 33.6066
+\c 167.0024 33.5282 166.9288 33.4434 166.8584 33.3618
+\c 166.8504 33.3762 165.0024 31.5282 166.0424 28.9906
+\c 167.0808 26.4482 169.8536 27.6018 169.8536 29.6802
+\c 169.8536 29.6802 169.7368 31.6434 167.8904 31.8754
+\l 167.7272 32.109
+\c 167.7992 32.317 167.9 32.4754 168.0312 32.5938
+\c 168.4472 32.9826 169.3272 33.125 170.7304 33.0306
+\c 172.2024 32.9346 173.0936 32.0386 173.5736 31.3042
+\c 174.5688 29.7938 174.7496 27.6242 174.0472 25.6402
+\c 173.5656 24.2626 172.2312 23.1282 170.3896 22.5298
+\c 168.0152 21.7554 165.2648 22.0274 163.548 23.2098
+\c 161.7432 24.4514 160.484 27.2386 160.4936 29.9874
+\c 160.4984 32.973 161.9112 35.573 164.468 37.309
+\c 171.9176 42.3714 182.9928 39.5298 190.6616 34.4722
+\c 190.9688 34.2754 191.2616 34.053 191.5576 33.8338
+\c 186.7368 29.6882 183.5224 23.9186 182.7288 22.4002
+\o
+\m 193.7848 33.8338
+\c 194.0792 34.053 194.372 34.2754 194.6776 34.4722
+\c 202.3464 39.5298 213.4216 42.3714 220.8712 37.309
+\c 223.4296 35.573 224.8392 32.973 224.8488 29.9874
+\c 224.8584 27.2386 223.5992 24.4514 221.7944 23.2098
+\c 220.0776 22.0274 217.3272 21.7554 214.9512 22.5298
+\c 213.1112 23.1282 211.7784 24.2626 211.292 25.6402
+\c 210.5896 27.6242 210.7704 29.7938 211.7656 31.3042
+\c 212.2504 32.0386 213.1368 32.9346 214.6088 33.0306
+\c 216.0136 33.125 216.8952 32.9826 217.3128 32.5938
+\c 217.4392 32.4754 217.54 32.317 217.6152 32.109
+\l 217.452 31.8754
+\c 215.6024 31.6434 215.4904 29.6802 215.4904 29.6802
+\c 215.4904 27.6018 218.2584 26.4482 219.2984 28.9906
+\c 220.3368 31.5282 218.4904 33.3762 218.4904 33.3762
+\c 218.4136 33.4434 218.3416 33.5282 218.2584 33.6066
+\c 217.5272 34.2866 216.372 34.5394 214.5144 34.4146
+\c 212.924 34.309 211.5368 33.4786 210.6088 32.069
+\c 209.7768 30.7986 209.4088 29.173 209.516 27.5122
+\c 209.0872 27.4306 208.5528 27.4962 208.0984 28.0626
+\c 207.172 29.2178 206.5992 32.8002 204.1704 32.453
+\c 201.748 32.1058 201.748 29.6802 201.748 29.6802
+\c 204.4008 33.1474 205.4392 30.4802 206.4808 27.141
+\c 207.2984 24.5282 209.2088 24.4002 210.2584 24.5474
+\c 210.7272 23.637 211.4952 22.8594 212.4504 22.2306
+\c 207.2056 22.3554 203.732 22.3938 202.6136 22.4002
+\c 201.8184 23.9186 198.6056 29.6882 193.7848 33.8338
+\o
+\m 272.8984 18.8562
+\c 277.7144 19.9042 281.4328 21.6338 282.6808 22.2562
+\c 285.1272 19.8866 288.652 18.1282 291.868 16.8946
+\c 285.5048 17.6466 279.14 18.293 272.8984 18.8562
+\o
+\s
+\m 192.9112 27.9474
+\c 189.9672 25.525 188.9256 21.365 188.9256 21.365
+\l 196.0312 21.365
+\c 196.0312 23.7906 192.9112 27.9474 192.9112 27.9474
+\o
+\s
+\m 276.1112 2.0706
+\c 275.892 2.1074 254.7032 5.5042 199.7944 6.7026
+\l 191.9592 10.797
+\l 184.6184 6.9634
+\c 122.6184 7.685 108.412 2.2642 107.8312 2.0306
+\c 107.476 1.8882 107.3048 1.4834 107.4456 1.1298
+\c 107.5896 0.7762 107.9912 0.605 108.3496 0.7474
+\c 108.4872 0.7986 122.7672 6.181 182.7752 5.5954
+\l 191.9592 1.7906
+\l 200.436 5.3026
+\c 254.7208 4.0946 275.668 0.7394 275.8856 0.7042
+\c 276.2632 0.6418 276.6248 0.8962 276.684 1.277
+\c 276.748 1.6498 276.4904 2.0098 276.1112 2.0706
+\o
+\m 192.22 3.8706
+\c 191.0712 3.8706 190.14 4.8002 190.14 5.9458
+\c 190.14 7.093 191.0712 8.0258 192.22 8.0258
+\c 193.3656 8.0258 194.2968 7.093 194.2968 5.9458
+\c 194.2968 4.8002 193.3656 3.8706 192.22 3.8706
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian46.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian46.pgf
new file mode 100644
index 0000000000..48eac164cb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian46.pgf
@@ -0,0 +1,240 @@
+\m 444.152 35.3252
+\c 438.4462 41.1287 427.983 47.4764 409.537 47.4764
+\c 381.6051 47.4764 361.8805 36.012 342.8163 24.9253
+\c 340.8061 23.7525 338.7985 22.5955 336.7962 21.4464
+\l 336.7962 29.5533
+\c 336.7962 32.9821 337.1105 35.9459 337.5543 38.3286
+\c 340.4442 41.4509 341.2684 43.8151 341.2076 44.9167
+\c 341.1653 45.6405 340.8008 46.1899 340.2117 46.3827
+\c 339.7521 46.536 339.2529 46.4488 338.8011 46.1239
+\c 337.6732 45.3103 336.6562 42.6793 335.9773 39.1898
+\c 332.9105 35.9988 327.3711 31.7802 317.6554 27.279
+\c 300.9185 19.5286 284.5698 19.5128 284.4695 19.5418
+\c 284.0072 19.5735 283.6083 19.1667 283.6083 18.6912
+\c 283.6083 18.2184 283.986 17.8301 284.4615 17.8248
+\c 284.6623 17.8142 301.2962 17.8116 318.3819 25.7231
+\c 326.6315 29.5454 332.044 33.2119 335.5177 36.3342
+\c 335.243 34.2025 335.0897 31.8911 335.0897 29.5533
+\l 335.0897 20.4716
+\c 319.0317 11.3767 302.9234 3.7188 281.5611 3.7188
+\c 242.3497 3.7188 234.2428 22.7117 233.3314 35.8455
+\l 238.4191 35.8455
+\c 241.087 35.8455 241.087 38.4316 241.087 39.6705
+\c 241.087 42.0849 239.6606 42.9461 238.3319 42.9461
+\l 233.5586 42.9461
+\c 235.2518 56.7667 245.0547 65.2065 260.1063 65.2065
+\c 275.9161 65.2065 285.7031 53.1821 285.7031 42.0427
+\c 285.7031 30.322 276.4629 22.4502 267.8329 22.4502
+\c 264.8955 22.4502 262.4705 23.3853 260.5422 24.6136
+\c 257.9719 26.4706 256.2919 29.2839 256.1255 32.5621
+\c 255.8983 37.1478 258.4368 41.1445 262.3094 41.517
+\c 270.4903 42.3015 266.3774 33.8564 267.8567 32.747
+\c 269.0586 31.8489 275.8897 38.4686 271.7265 46.3193
+\c 269.5446 50.4587 264.8611 52.3421 260.0059 51.2115
+\c 255.3145 50.1232 250.3986 46.2269 250.3087 38.1014
+\c 250.1661 25.06 259.7154 21.8875 264.3988 21.1162
+\c 265.4634 20.8784 266.6098 20.7358 267.8329 20.7358
+\c 277.2897 20.7358 287.4174 29.2997 287.4174 42.0427
+\c 287.4174 54.0089 276.9806 66.9209 260.1063 66.9209
+\c 244.2516 66.9209 233.5771 57.6358 231.8257 42.9461
+\l 227.7181 42.9461
+\l 227.7128 48.8949
+\c 230.6291 72.7984 250.7895 73.118 251.648 73.1207
+\l 253.3809 73.1233
+\l 252.3322 74.4969
+\c 252.2001 74.666 249.0725 78.6468 241.0184 78.6468
+\c 238.4957 78.6468 236.179 78.0419 234.1477 77.0909
+\c 235.3892 82.5775 233.408 85.4066 232.2801 87.0074
+\c 231.3661 88.307 230.5314 89.3029 229.797 90.1852
+\c 228.4075 91.8309 227.5781 92.8214 227.5781 94.232
+\c 227.5781 95.7034 227.4909 97.0162 226.4343 97.0162
+\c 225.3697 97.0162 225.2878 95.7034 225.2878 94.232
+\c 225.2878 92.8214 224.4531 91.8309 223.0689 90.1852
+\c 222.3372 89.3029 221.4998 88.307 220.5779 87.0074
+\c 219.4579 85.4066 217.482 82.5775 218.7183 77.0909
+\c 216.6869 78.0419 214.3755 78.6468 211.8476 78.6468
+\c 203.7934 78.6468 200.6632 74.666 200.5338 74.4969
+\l 199.493 73.1233
+\l 201.2179 73.1207
+\c 202.0764 73.118 222.2342 72.7984 225.1478 48.9979
+\l 225.1478 42.9461
+\l 221.4814 42.9461
+\c 219.7221 57.6358 209.0343 66.9209 193.1849 66.9209
+\c 176.3159 66.9209 165.8738 54.0089 165.8738 42.0427
+\c 165.8738 29.2997 176.0068 20.7358 185.4689 20.7358
+\c 186.6893 20.7358 187.8305 20.8784 188.8924 21.1162
+\c 193.5785 21.8902 203.1304 25.0653 202.9825 38.1014
+\c 202.8927 46.2269 197.9846 50.1232 193.2906 51.2115
+\c 188.4301 52.3421 183.7519 50.4587 181.562 46.3193
+\c 177.4095 38.4686 184.2353 31.8489 185.4425 32.747
+\c 186.9191 33.8564 182.8009 42.3015 190.9819 41.517
+\c 194.8597 41.1445 197.3929 37.1478 197.171 32.5621
+\c 197.0046 29.2839 195.3219 26.4759 192.7543 24.6163
+\c 190.8234 23.3879 188.4037 22.4502 185.4689 22.4502
+\c 176.831 22.4502 167.5908 30.322 167.5908 42.0427
+\c 167.5908 53.1821 177.3752 65.2065 193.1849 65.2065
+\c 208.2313 65.2065 218.05 56.7667 219.7458 42.9461
+\l 214.9699 42.9461
+\c 213.6333 42.9461 212.2042 42.0849 212.2042 39.6705
+\c 212.2042 38.4316 212.2042 35.8455 214.8695 35.8455
+\l 219.9651 35.8455
+\c 219.0458 22.7117 210.9442 3.7188 171.7354 3.7188
+\c 150.3678 3.7188 134.2569 11.3767 118.2068 20.4716
+\l 118.2068 29.5533
+\c 118.2068 31.8911 118.0562 34.2025 117.7841 36.3316
+\c 121.2446 33.2119 126.6518 29.5454 134.912 25.7231
+\c 151.995 17.8116 168.6421 17.8327 168.8297 17.8248
+\c 169.3105 17.8301 169.6908 18.2184 169.6856 18.6912
+\c 169.6803 19.1614 169.2999 19.5418 168.8297 19.5418
+\c 168.7108 19.5656 152.378 19.5286 135.6358 27.279
+\c 125.9201 31.7802 120.3887 35.9988 117.3245 39.1898
+\c 116.6377 42.6793 115.6286 45.3103 114.4901 46.1239
+\c 114.0437 46.4488 113.5418 46.536 113.0742 46.3827
+\c 112.4957 46.1899 112.1232 45.6405 112.0889 44.9167
+\c 112.0255 43.8151 112.8523 41.4509 115.7395 38.3286
+\c 116.178 35.9459 116.495 32.9821 116.495 29.5533
+\l 116.495 21.4464
+\c 114.4901 22.5955 112.4904 23.7525 110.4775 24.9253
+\c 91.4081 36.012 71.6915 47.4764 43.7569 47.4764
+\c 25.3505 47.4764 14.8978 41.1551 9.1868 35.3621
+\c 4.2233 30.6734 -0.1221 22.7936 0.002 15.5874
+\c 0.1421 7.4408 5.9984 1.4603 12.2959 1.5739
+\c 20.1598 1.7192 23.5965 6.8676 23.8791 11.5828
+\c 24.1644 16.3059 22.4501 19.1614 21.1663 19.1614
+\c 19.8745 19.1614 21.5414 12.0134 14.6865 11.1548
+\c 10.0057 10.5658 5.0527 12.6817 4.572 20.8784
+\c 4.2048 27.2763 9.0203 32.7311 10.5472 34.2897
+\c 16.0416 39.8 26.0664 45.7646 43.7569 45.7646
+\c 71.2292 45.7646 90.7424 34.4165 109.6111 23.4381
+\c 111.8961 22.1147 114.1837 20.7807 116.495 19.4652
+\l 116.495 4.7094
+\c 115.5652 5.2272 114.1044 6.1042 112.5987 7.0102
+\c 106.2299 10.8299 95.5844 17.2172 84.3155 22.1121
+\c 70.825 27.979 60.5731 29.7832 53.7156 27.6039
+\c 52.2152 27.2816 49.1299 26.3121 49.1906 23.7393
+\c 49.2884 19.9248 55.0734 19.4837 56.2911 22.2838
+\c 57.2527 24.4921 55.8711 25.8446 55.2715 26.3095
+\c 61.7063 27.8548 71.2213 25.9344 83.634 20.5403
+\c 94.7919 15.6904 105.3925 9.3348 111.7164 5.5389
+\c 115.7343 3.1298 116.7777 2.5116 117.3245 2.5116
+\c 117.4883 2.5116 117.6124 2.5724 117.7577 2.6543
+\l 118.2068 2.9317
+\l 118.2068 18.5037
+\c 133.7841 9.7575 150.4418 2.0018 171.7354 2.0018
+\c 213.4695 2.0018 220.7998 23.837 221.6768 35.8455
+\l 225.4596 35.8455
+\l 225.4596 20.5086
+\c 222.7757 20.049 220.7285 17.7297 220.7285 14.927
+\c 220.7285 12.119 222.7757 9.7971 225.4596 9.3427
+\l 225.4596 0.8554
+\c 225.4596 0.3878 225.8347 -0.0005 226.3101 -0.0005
+\c 226.783 -0.0005 227.1713 0.3878 227.1713 0.8554
+\l 227.1713 9.3242
+\c 229.9423 9.702 232.0872 12.053 232.0872 14.927
+\c 232.0872 17.7984 229.9423 20.1467 227.1713 20.5271
+\l 227.1713 35.8455
+\l 231.6197 35.8455
+\c 232.4914 23.837 239.827 2.0018 281.5611 2.0018
+\c 302.8495 2.0018 319.5124 9.7575 335.0897 18.5037
+\l 335.0897 3.4336
+\l 335.0977 2.8973
+\l 335.5388 2.6543
+\c 335.6867 2.5724 335.8056 2.5116 335.972 2.5116
+\c 336.5136 2.5116 337.5596 3.1298 341.5801 5.5389
+\c 347.9093 9.3348 358.4966 15.6904 369.6652 20.5403
+\c 382.0752 25.9318 391.5875 27.8548 398.0144 26.3095
+\c 397.4175 25.8472 396.0333 24.4921 397.0054 22.2838
+\c 398.2284 19.4837 404.0108 19.9248 404.1033 23.7393
+\c 404.1667 26.3016 401.0972 27.2763 399.5862 27.6012
+\c 392.7313 29.7832 382.4768 27.979 368.981 22.1121
+\c 357.7121 17.2172 347.0613 10.8299 340.6978 7.0102
+\c 339.1842 6.1042 337.7287 5.2272 336.7962 4.7094
+\l 336.7962 19.4652
+\c 339.1076 20.7807 341.4031 22.1147 343.6775 23.4381
+\c 362.5567 34.4165 382.07 45.7646 409.537 45.7646
+\c 427.1932 45.7646 437.2179 39.8211 442.7229 34.3187
+\c 444.2128 32.7972 449.0944 27.3159 448.7166 20.8784
+\c 448.2385 12.6817 443.2856 10.5658 438.6153 11.1548
+\c 431.7472 12.0134 433.414 19.1614 432.1302 19.1614
+\c 430.8438 19.1614 429.1215 16.3059 429.4068 11.5828
+\c 429.6947 6.8676 433.1288 1.7192 440.9927 1.5739
+\c 447.2981 1.4603 453.1492 7.4408 453.2945 15.5874
+\c 453.4213 22.7751 449.0944 30.6258 444.152 35.3252
+\o
+\m 252.4326 38.8992
+\c 252.385 38.8992 252.3322 38.9018 252.2767 38.9098
+\c 251.8171 38.9916 251.5027 39.4381 251.5899 39.9056
+\c 252.0654 42.5578 254.9949 49.3862 262.7558 49.3862
+\c 262.8113 49.3862 262.8747 49.3862 262.9301 49.3862
+\c 270.736 49.2832 271.5047 40.677 271.0292 40.6188
+\c 270.559 40.5607 269.1986 47.582 262.909 47.6639
+\c 262.8562 47.6665 262.806 47.6665 262.7611 47.6665
+\c 256.1704 47.6665 253.6794 41.8577 253.2805 39.6018
+\c 253.2065 39.1871 252.842 38.8992 252.4326 38.8992
+\o
+\m 221.9859 86.0168
+\c 222.8629 87.2636 223.6712 88.2251 224.3897 89.081
+\c 225.2429 90.098 225.9694 90.9591 226.4343 91.881
+\c 226.9045 90.9591 227.6204 90.098 228.4762 89.081
+\c 229.1947 88.2251 230.003 87.2636 230.8748 86.0168
+\c 232.0106 84.4054 233.8835 81.7242 232.0476 75.9286
+\c 229.5117 74.2935 227.5728 72.1644 226.4343 70.1991
+\c 225.2931 72.1644 223.3542 74.2935 220.813 75.9286
+\c 218.9824 81.7242 220.85 84.4054 221.9859 86.0168
+\o
+\m 203.2783 74.6554
+\c 203.5531 74.8377 203.878 75.0384 204.2293 75.226
+\c 208.4215 76.1611 218.3432 76.9245 226.2388 66.2156
+\l 226.4343 65.6794
+\l 226.6245 66.2209
+\c 234.5386 76.9456 244.4788 76.1585 248.6578 75.2181
+\c 249.0065 75.0305 249.3314 74.8377 249.5982 74.6554
+\c 244.2279 73.9395 229.9687 70.2783 226.4396 51.8112
+\c 222.9501 70.2704 208.6645 73.9395 203.2783 74.6554
+\o
+\m 190.3849 47.6639
+\c 184.0953 47.582 182.7402 40.566 182.2594 40.6188
+\c 181.7892 40.677 182.5526 49.2832 190.3637 49.3862
+\c 190.4218 49.3862 190.4826 49.3862 190.5407 49.3862
+\c 198.3043 49.3862 201.2364 42.5578 201.7092 39.9056
+\c 201.7885 39.4381 201.4794 38.9916 201.0092 38.9098
+\c 200.9564 38.9018 200.9115 38.8992 200.8587 38.8992
+\c 200.4492 38.8992 200.09 39.1871 200.0186 39.6018
+\c 199.6092 41.8736 197.0865 47.7801 190.3849 47.6639
+\o
+\m 12.4412 6.1491
+\c 19.3436 6.1491 20.4372 9.8235 20.4847 9.982
+\c 20.6247 10.505 21.1663 10.8299 21.6999 10.6899
+\c 22.2335 10.5446 22.5531 10.0137 22.4236 9.4827
+\c 22.3655 9.2661 20.9893 4.1494 12.4412 4.1494
+\c 4.6512 4.1494 1.8881 13.9417 2.4112 14.1081
+\c 2.9368 14.2745 6.1199 6.1491 12.4412 6.1491
+\o
+\m 222.4455 14.927
+\c 222.4455 16.784 223.7293 18.332 225.4596 18.7573
+\l 225.4596 11.0941
+\c 223.7293 11.522 222.4455 13.0753 222.4455 14.927
+\o
+\m 230.3702 14.927
+\c 230.3702 13.0039 228.994 11.3979 227.1713 11.0413
+\l 227.1713 18.8101
+\c 228.994 18.4535 230.3702 16.8501 230.3702 14.927
+\o
+\m 213.9265 39.5966
+\c 213.9265 41.097 214.6556 41.097 214.9699 41.097
+\l 238.3319 41.097
+\c 238.641 41.097 239.3727 41.097 239.3727 39.5966
+\c 239.3727 37.6471 239.0636 37.5599 238.4191 37.5599
+\l 214.8695 37.5599
+\c 214.2382 37.5599 213.9265 37.6471 213.9265 39.5966
+\o
+\m 440.8553 4.1494
+\c 432.2993 4.1494 430.9231 9.2661 430.8755 9.4827
+\c 430.7408 10.0163 431.0631 10.5631 431.6046 10.6952
+\c 432.1382 10.8299 432.6823 10.505 432.8118 9.9688
+\c 432.8514 9.8235 433.9503 6.1491 440.8553 6.1491
+\c 447.1951 6.1491 450.357 14.2772 450.8801 14.1108
+\c 451.411 13.9417 448.6453 4.1494 440.8553 4.1494
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian47.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian47.pgf
new file mode 100644
index 0000000000..54b3cfaa2d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian47.pgf
@@ -0,0 +1,40 @@
+\m 114.1829 31.1981
+\c 96.9626 32.5341 90.6109 24.1773 90.6109 24.1773
+\c 90.6109 24.1773 82.7523 32.1997 71.7189 31.1981
+\c 60.6851 30.1949 55.3773 24.3885 55.3773 24.3885
+\c 55.3773 24.3885 48.607 32.0349 36.6109 31.5325
+\c 23.732 30.9901 16.8843 22.7565 16.8843 22.7565
+\c 6.0189 32.0349 0 30.8653 0 30.8653
+\c 10.1976 28.3565 16.0072 21.8781 16.0072 21.8781
+\c 10.8234 15.8605 8.7634 7.6285 12.036 2.6093
+\c 14.5437 -1.2355 22.5366 -1.7523 23.739 7.4605
+\c 24.7414 15.1469 18.8906 20.9997 18.8906 20.9997
+\c 28.5874 30.3629 38.6179 29.3597 44.9702 28.1885
+\c 51.3227 27.0189 53.9984 22.8413 53.9984 22.8413
+\c 47.2282 14.8573 51.1859 7.7165 53.8304 6.7901
+\c 57.1742 5.6189 60.4766 7.7533 60.6437 13.1005
+\c 60.6437 13.1005 60.7696 16.6573 57.3843 22.3821
+\c 57.3843 22.3821 65.0328 29.1901 74.0602 29.0253
+\c 83.0875 28.8573 89.6071 22.6317 89.6071 22.6317
+\c 89.6071 22.6317 86.7423 19.1533 87.768 15.8189
+\c 89.1063 11.4717 94.1211 12.4717 94.1211 16.8221
+\c 94.1211 20.3485 92.1149 22.8381 92.1149 22.8381
+\c 97.2976 30.8621 114.1829 31.1981 114.1829 31.1981
+\o
+\m 21.9 9.1309
+\c 21.3992 2.6125 18.5851 1.6445 16.8843 1.7757
+\c 14.7109 1.9421 11.6179 4.4221 13.0406 10.7997
+\c 14.5024 17.3661 17.8875 19.8717 17.8875 19.8717
+\c 17.8875 19.8717 22.4024 15.6509 21.9 9.1309
+\o
+\m 58.7234 13.8605
+\c 59.4874 7.8541 53.2445 6.2973 52.4501 11.9133
+\c 51.8038 16.4573 55.7477 21.1245 55.7477 21.1245
+\c 55.7477 21.1245 58.1688 18.2109 58.7234 13.8605
+\o
+\m 92.6165 16.1517
+\c 92.1149 12.6413 86.932 15.3165 91.1125 21.3341
+\c 91.1125 21.3341 93.1181 19.6637 92.6165 16.1517
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian48.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian48.pgf
new file mode 100644
index 0000000000..1ef352adfb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian48.pgf
@@ -0,0 +1,40 @@
+\m 22.0463 22.8382
+\c 22.0463 22.8382 20.0415 20.347 20.0415 16.8222
+\c 20.0415 12.475 25.0559 11.4718 26.3935 15.819
+\c 27.4207 19.1534 24.5535 22.6318 24.5535 22.6318
+\c 24.5535 22.6318 31.0751 28.8574 40.1023 29.0254
+\c 49.1311 29.1918 56.7776 22.3822 56.7776 22.3822
+\c 53.3936 16.6574 53.5184 13.1038 53.5184 13.1038
+\c 53.6864 7.7534 56.9872 5.619 60.3312 6.7918
+\c 62.976 7.7166 66.9344 14.8574 60.1648 22.8414
+\c 60.1648 22.8414 62.84 27.019 69.192 28.1886
+\c 75.544 29.3598 85.5744 30.363 95.272 20.9998
+\c 95.272 20.9998 89.4208 15.1486 90.4224 7.459
+\c 91.6256 -1.7522 99.6176 -1.2354 102.1264 2.6094
+\c 105.3984 7.6286 103.3376 15.859 98.1536 21.8782
+\c 98.1536 21.8782 103.9648 28.3582 114.1616 30.8654
+\c 114.1616 30.8654 108.144 32.035 97.2784 22.7566
+\c 97.2784 22.7566 90.4304 30.9918 77.5504 31.5342
+\c 65.5552 32.035 58.784 24.387 58.784 24.387
+\c 58.784 24.387 53.4768 30.1934 42.4431 31.1966
+\c 31.4095 32.1998 23.5519 24.179 23.5519 24.179
+\c 23.5519 24.179 17.1983 32.5342 -0.0209 31.1966
+\c -0.0209 31.1966 16.8655 30.8622 22.0463 22.8382
+\o
+\m 96.2752 19.8718
+\c 96.2752 19.8718 99.6608 17.3646 101.1232 10.8014
+\c 102.5456 4.4206 99.4512 1.9422 97.2784 1.7758
+\c 95.5776 1.6446 92.7632 2.6126 92.2608 9.131
+\c 91.7616 15.6542 96.2752 19.8718 96.2752 19.8718
+\o
+\m 58.4144 21.1262
+\c 58.4144 21.1262 62.3584 16.4574 61.7136 11.9134
+\c 60.9184 6.2974 54.6752 7.8542 55.44 13.8606
+\c 55.992 18.211 58.4144 21.1262 58.4144 21.1262
+\o
+\m 23.0495 21.3326
+\c 27.2303 15.3166 22.0463 12.6414 21.5455 16.1518
+\c 21.0447 19.6622 23.0495 21.3326 23.0495 21.3326
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian49.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian49.pgf
new file mode 100644
index 0000000000..7ad006525f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian49.pgf
@@ -0,0 +1,101 @@
+\m 0 0
+\l 162.627 0
+\l 162.627 60.9336
+\l 0 60.9336
+\o
+\i
+\m 159.4383 53.4108
+\c 158.1215 53.4108 156.9935 52.75 156.5055 51.8108
+\c 149.4591 52.2652 125.5535 52.9692 115.2543 42.79
+\c 107.5439 47.55 98.5535 46.4268 91.5151 43.4588
+\c 88.8351 45.5052 85.8367 47.6092 82.6463 49.8988
+\c 82.6463 49.8988 86.1583 52.6588 86.1583 55.4172
+\c 86.1583 58.174 84.0079 60.934 81.5007 60.934
+\c 78.9919 60.934 76.8399 58.174 76.8399 55.4172
+\c 76.8399 52.6588 80.3519 49.8988 80.3519 49.8988
+\c 77.1055 47.5708 74.0639 45.4364 71.3535 43.3564
+\c 64.2783 46.4028 55.1663 47.6044 47.3727 42.79
+\c 37.0735 52.9692 13.1679 52.2652 6.1199 51.8108
+\c 5.6335 52.75 4.5039 53.4108 3.1871 53.4108
+\c 1.4271 53.4108 -0.0001 52.23 -0.0001 50.7772
+\c -0.0001 49.3244 1.4271 48.1468 3.1871 48.1468
+\c 4.5743 48.1468 5.7391 48.8796 6.1775 49.8988
+\l 21.9215 49.8988
+\c 27.1199 49.8988 38.7151 47.5932 45.6447 41.6092
+\c 33.2847 32.3644 36.7807 20.2892 43.4895 18.302
+\c 49.9375 16.3932 59.5599 26.774 49.8335 39.9004
+\c 50.3695 40.2524 50.9295 40.5804 51.5119 40.8716
+\c 56.7839 43.5084 62.9215 44.4108 69.5663 41.9484
+\c 65.0079 38.2652 61.6287 34.654 60.2895 30.3404
+\c 58.3135 23.9772 60.2895 14.0396 70.0687 13.2876
+\c 70.2623 13.2748 70.4303 13.2796 70.6191 13.2684
+\c 70.6879 3.5084 75.0111 -0.0004 81.9807 -0.0004
+\c 87.3903 -0.0004 91.9727 4.8556 91.9711 13.2556
+\c 92.2911 13.2652 92.5935 13.262 92.9279 13.2876
+\c 102.7087 14.0396 104.6847 23.9772 102.7087 30.3404
+\c 101.3455 34.734 97.8655 38.3964 93.1775 42.1516
+\c 99.7775 44.5148 105.8591 43.4988 111.1119 40.8716
+\c 111.6975 40.5804 112.2559 40.2524 112.7935 39.9004
+\c 103.0671 26.774 112.6879 16.3932 119.1375 18.302
+\c 125.8431 20.2892 129.3423 32.3644 116.9791 41.6092
+\c 123.9087 47.5932 135.5055 49.8988 140.7039 49.8988
+\l 156.4463 49.8988
+\c 156.8863 48.8796 158.0527 48.1468 159.4383 48.1468
+\c 161.1999 48.1468 162.6271 49.3244 162.6271 50.7772
+\c 162.6271 52.23 161.1999 53.4108 159.4383 53.4108
+\o
+\m 51.0111 32.5964
+\c 53.0175 19.8092 45.2431 19.0556 42.4863 21.814
+\c 39.7631 24.5372 41.9439 33.5676 48.3183 38.7836
+\c 49.6831 36.9804 50.6447 34.9292 51.0111 32.5964
+\o
+\m 79.3455 57.9244
+\c 80.3519 60.1804 84.2911 59.4332 84.1119 56.4204
+\c 83.8623 52.158 81.1039 51.1516 81.1039 51.1516
+\c 81.1039 51.1516 77.9343 54.7404 79.3455 57.9244
+\o
+\m 81.5007 49.1484
+\c 81.5007 49.1484 85.0927 46.6764 89.3695 42.4684
+\c 85.8847 40.7148 83.0351 38.5644 81.3119 36.6092
+\c 79.6319 38.5212 76.8767 40.6156 73.5039 42.3468
+\c 77.8367 46.63 81.5007 49.1484 81.5007 49.1484
+\o
+\m 80.8527 26.5772
+\c 79.6063 26.5772 78.5951 25.5676 78.5951 24.3212
+\c 78.5951 23.1308 79.5215 22.1644 80.6911 22.0812
+\c 80.2655 19.902 78.7135 15.5308 73.1311 14.686
+\c 73.0911 15.9308 73.1503 17.3212 73.3311 18.8892
+\c 74.3343 27.5804 81.1871 34.6044 81.1871 34.6044
+\c 81.1871 34.6044 87.0383 28.7516 88.7087 18.0524
+\c 88.8943 16.8796 88.9711 15.8236 88.9903 14.846
+\c 83.7183 16.0828 82.5039 20.6924 82.2287 22.5436
+\c 82.7599 22.9548 83.1087 23.5964 83.1087 24.3212
+\c 83.1087 25.5676 82.0975 26.5772 80.8527 26.5772
+\o
+\m 67.5631 35.606
+\c 69.0255 37.5372 70.5631 39.2956 72.0623 40.8716
+\c 74.7599 39.5468 77.5279 37.6652 80.3519 35.1052
+\c 76.5903 32.3468 71.1567 26.2444 70.6543 15.2124
+\c 70.6463 14.9884 70.6495 14.7868 70.6415 14.5676
+\c 62.4687 15.214 61.5151 27.6236 67.5631 35.606
+\o
+\m 81.6895 5.0124
+\c 78.2719 5.0124 73.9407 6.3308 73.2223 13.3116
+\c 80.2111 14.0028 81.5007 19.0556 81.5007 19.0556
+\c 81.5007 19.0556 82.6975 14.4172 88.9551 13.4268
+\c 88.5151 6.6652 84.0623 5.0124 81.6895 5.0124
+\o
+\m 95.4351 35.606
+\c 101.5807 27.4924 100.4943 14.8108 91.9423 14.5516
+\c 91.8783 15.7036 91.7455 16.9084 91.5087 18.1772
+\c 89.3775 29.5868 82.3567 35.3548 82.3567 35.3548
+\c 85.2063 37.9404 87.9935 39.8172 90.7055 41.1164
+\c 92.2767 39.4812 93.8991 37.6364 95.4351 35.606
+\o
+\m 120.1407 21.814
+\c 117.3823 19.0556 109.6095 19.8092 111.6143 32.5964
+\c 111.9791 34.9292 112.9423 36.9804 114.3071 38.7836
+\c 120.6783 33.5676 122.8639 24.5372 120.1407 21.814
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian5.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian5.pgf
new file mode 100644
index 0000000000..09fa411f84
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian5.pgf
@@ -0,0 +1,38 @@
+\r 0 0 129 146
+\i
+\m 106.1241 95.9479
+\c 90.9999 96.8186 85.7679 81.4042 83.7322 81.4042
+\c 81.8733 81.4042 83.156 94.3665 76.0019 112.418
+\c 81.5915 121.9779 83.156 134.322 83.156 134.322
+\l 76.4688 138.9694
+\c 76.7884 133.3336 75.493 125.9019 72.7971 119.5553
+\c 63.1152 138.6119 47.7934 145.9427 34.8983 145.6609
+\c 21.5195 145.3665 15.1224 134.322 15.1224 134.322
+\c 15.1224 134.322 11.926 139.8443 9.6002 144.2057
+\c 7.2743 148.5672 -1.7388 145.3665 0.2969 140.4247
+\c 2.3283 135.4828 14.8322 111.3539 16.5777 109.6085
+\c 18.3231 107.8631 24.43 109.6085 24.1355 111.6399
+\c 23.8453 113.6797 22.6803 126.7641 31.4032 130.8311
+\c 35.2179 132.6144 40.9168 132.9467 46.8555 131.4957
+\c 38.6835 120.5815 43.1375 100.9277 60.474 101.466
+\c 65.1509 101.6132 68.9025 103.7624 71.9096 106.8957
+\c 76.8893 94.0721 77.924 81.3537 75.594 81.1182
+\c 72.6877 80.8238 67.7459 88.9663 58.7328 90.4215
+\c 49.7196 91.8809 33.4346 86.3544 34.8983 68.0338
+\c 36.3493 49.7174 63.3844 42.7441 69.1969 34.3114
+\c 75.0178 25.8745 66.0046 13.6692 54.0811 13.379
+\c 42.1618 13.0846 30.5326 22.6781 27.3362 25.2983
+\c 24.1355 27.9143 17.1581 24.7179 21.8097 19.1914
+\c 26.4656 13.665 39.8317 0.5848 68.0361 0.0002
+\c 96.2362 -0.5802 120.3651 27.3297 127.351 52.6278
+\c 134.3242 77.9175 121.2357 95.0731 106.1241 95.9479
+\o
+\m 63.6746 107.8631
+\c 54.9559 102.9254 47.1036 113.6797 52.6217 119.7824
+\c 56.3523 123.9083 61.1301 122.5961 63.8513 121.3091
+\c 65.1761 119.8077 66.3874 118.1421 67.4515 116.2958
+\c 68.0613 115.2359 68.6417 114.1508 69.1885 113.0573
+\c 67.5902 110.8576 65.7481 109.0449 63.6746 107.8631
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian50.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian50.pgf
new file mode 100644
index 0000000000..42e02227b7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian50.pgf
@@ -0,0 +1,288 @@
+\m 101.3981 93.5184
+\c 104.4077 93.5184 114.6893 93.5184 118.7021 93.5184
+\c 122.7149 93.5184 126.2237 91.0096 128.7341 89.0064
+\c 128.7341 89.0064 124.2173 93.5184 128.2333 100.792
+\c 128.2333 100.792 123.4685 95.024 117.6989 95.2752
+\c 117.6989 95.2752 108.1453 95.1248 101.5933 95.0576
+\c 101.9213 96.3904 102.1213 97.6368 102.1517 98.752
+\c 102.4029 107.5248 97.8893 111.2896 93.8765 111.7904
+\c 89.8637 112.2912 85.3597 110.1696 86.1037 105.5216
+\c 86.4925 103.0928 88.4573 101.968 90.4333 101.744
+\c 89.9197 99.7152 89.2317 97.7536 88.4109 95.8496
+\c 86.1037 96.56 83.4509 97.872 80.0829 100.2896
+\l 79.5693 100.5088
+\c 81.6957 105.96 82.4189 110.7872 82.3405 114.296
+\c 82.1453 123.128 77.3245 125.0816 74.5661 125.0816
+\c 71.8077 125.0816 67.5453 122.32 69.0493 114.0464
+\c 70.5533 105.7712 76.0701 101.76 76.0701 101.76
+\c 73.6733 96.8192 70.6669 92.3792 67.3789 88.4224
+\c 64.2333 92.568 61.9037 97.056 61.0125 101.752
+\c 62.9421 102.016 64.8349 103.144 65.2141 105.5216
+\c 65.9565 110.1696 61.4525 112.2912 57.4381 111.7904
+\c 53.4269 111.2896 48.9133 107.5248 49.1645 98.752
+\c 49.3037 93.752 52.5549 86.2416 57.9549 78.8432
+\c 57.0765 78.08 56.1949 77.3408 55.3197 76.6352
+\c 51.6141 78.112 47.6173 79.3152 43.4717 79.944
+\c 28.4717 82.216 18.2077 76.4528 15.4861 68.8224
+\c 13.8509 68.9344 12.1437 68.9728 10.3693 68.9056
+\c 0.6173 68.5584 -0.0803 63.6064 0.0061 62.544
+\c -0.0803 61.4784 0.6173 56.5216 10.3693 56.1728
+\c 12.4893 56.0976 14.5133 56.184 16.4301 56.3808
+\c 19.5917 49.8272 27.4301 44.4992 42.4669 46.3408
+\c 46.9309 46.8864 50.9357 47.8704 54.5117 49.0928
+\c 55.4061 48.3744 56.3037 47.6416 57.2077 46.8704
+\c 52.2541 39.8128 49.3005 32.76 49.1645 27.9968
+\c 48.9133 19.2192 53.4269 15.456 57.4381 14.9552
+\c 61.4525 14.4544 65.9565 16.5744 65.2141 21.224
+\c 64.8701 23.3776 63.2829 24.5024 61.5517 24.8896
+\c 62.3101 29.2656 64.2685 33.4592 66.9293 37.352
+\c 70.2909 33.5344 73.3693 29.3344 75.8205 24.7712
+\c 75.8205 24.7712 70.5533 19.3104 69.0493 11.0352
+\c 67.5453 2.76 71.8077 0 74.5661 0
+\c 77.3245 0 82.1453 1.952 82.3405 10.784
+\c 82.4269 14.6672 81.5325 20.1616 78.8445 26.3328
+\l 80.0829 27.2816
+\c 82.9613 29.3504 85.3133 30.6016 87.3773 31.368
+\c 88.3117 29.2752 89.0637 27.0976 89.5853 24.8496
+\c 87.9229 24.4288 86.4333 23.3024 86.1037 21.224
+\c 85.3597 16.5744 89.8637 14.4544 93.8765 14.9552
+\c 97.8893 15.456 102.4029 19.2192 102.1517 27.9968
+\c 102.1117 29.3376 101.8429 30.864 101.3773 32.5152
+\c 107.9325 32.4496 117.6989 32.296 117.6989 32.296
+\c 123.4685 32.5488 128.2333 26.7792 128.2333 26.7792
+\c 124.2173 34.0512 128.7341 38.5664 128.7341 38.5664
+\c 126.2237 36.56 122.7149 34.0512 118.7021 34.0512
+\c 114.6893 34.0512 104.4077 34.0512 101.3981 34.0512
+\c 101.2461 34.0512 101.0733 34.0512 100.8989 34.0528
+\c 98.6861 40.544 93.6605 48.6496 86.7757 55.688
+\c 92.2893 59.2096 97.2589 61.4864 99.9645 62.1088
+\c 100.7421 61.8176 101.4557 61.5824 102.0925 61.4
+\c 102.5837 60.64 103.4333 60.1328 104.4077 60.1328
+\c 105.9309 60.1328 107.1677 61.3648 107.1677 62.8896
+\c 107.1677 64.4144 105.9309 65.648 104.4077 65.648
+\c 103.1325 65.648 102.0701 64.7776 101.7581 63.6064
+\c 98.2205 64.8624 92.7549 67.5152 86.9357 71.2208
+\c 94.0349 78.5232 99.1245 86.9488 101.1613 93.5152
+\c 101.2397 93.5152 101.3277 93.5184 101.3981 93.5184
+\o
+\m 91.9869 101.7472
+\c 92.8333 101.8512 93.5981 102.1136 94.1277 102.5104
+\c 96.1341 104.016 94.6301 107.024 92.3693 106.5232
+\c 90.1133 106.0224 90.3645 103.5152 90.3645 103.5152
+\c 88.1069 103.5152 86.8541 106.5232 88.3613 108.5296
+\c 89.8637 110.5344 95.1309 111.7904 98.3901 107.2768
+\c 100.2893 104.6432 100.9805 100.4032 99.6557 95.0368
+\c 98.5453 95.0272 97.5901 95.024 96.8861 95.024
+\c 94.5613 95.024 92.4157 94.9088 89.8989 95.456
+\c 90.7485 97.4784 91.4605 99.5744 91.9869 101.7472
+\o
+\m 71.0573 115.3008
+\c 70.3037 123.0752 74.2797 125.1104 77.3245 122.5728
+\c 80.3357 120.0656 80.3357 107.5248 76.5725 103.0144
+\c 76.5725 103.0144 71.8077 107.5248 71.0573 115.3008
+\o
+\m 79.0301 99.1936
+\c 80.1389 98.3696 83.2141 96.232 87.1037 94.7728
+\c 87.3325 94.688 87.5709 94.6096 87.8205 94.5344
+\c 85.0189 88.584 80.9245 83.2896 76.5949 78.8272
+\c 74.3261 80.76 72.1645 82.8336 70.1933 85.0192
+\c 74.2925 89.8752 77.1341 94.7184 79.0301 99.1936
+\o
+\m 61.0621 49.0048
+\c 62.6333 50.9936 64.1725 52.7568 65.6141 54.2896
+\c 66.1325 54.6112 66.6365 54.928 67.1213 55.248
+\c 69.5677 53.3504 72.2109 51.1088 74.8141 48.576
+\c 72.5677 46.5344 70.4269 44.3312 68.4989 41.9904
+\c 66.3389 44.3536 63.8733 46.7024 61.0621 49.0048
+\o
+\m 69.0797 83.7312
+\c 71.0045 81.5472 73.1037 79.4688 75.3053 77.528
+\c 72.6301 74.8928 69.9133 72.5648 67.4077 70.6048
+\c 65.7165 72.2896 63.8269 74.3344 61.8653 76.7408
+\c 64.5949 79.0368 66.9853 81.384 69.0797 83.7312
+\o
+\m 73.8989 63.8928
+\c 73.8989 63.8928 73.8989 62.7232 74.2333 62.2224
+\c 74.2333 62.2224 69.5517 58.2096 66.8781 57.3712
+\c 63.5581 59.8304 60.3853 61.8912 58.7133 62.888
+\c 60.3917 63.8688 63.4829 65.7776 67.1613 68.5216
+\c 67.1613 68.5216 71.7245 66.0656 73.8989 63.8928
+\o
+\m 55.6765 62.7232
+\c 55.7821 62.6656 60.3421 60.3008 65.3981 56.5552
+\c 64.6861 55.8496 63.9885 55.1408 63.3165 54.416
+\c 61.5757 53.4784 59.6509 52.5568 57.5645 51.7024
+\c 52.2349 55.5872 45.8509 59.2752 38.2045 62.544
+\c 46.1021 65.9168 52.6509 69.7344 58.0765 73.76
+\c 60.5757 72.6688 63.1565 71.288 65.9997 69.5216
+\c 62.0925 66.5728 55.6765 62.7232 55.6765 62.7232
+\o
+\m 68.4829 56.1744
+\c 71.2989 58.16 73.3693 60.0256 74.7133 61.3648
+\c 75.2029 60.912 75.8541 60.6336 76.5725 60.6336
+\c 77.2061 60.6336 77.7837 60.8544 78.2493 61.2144
+\c 79.4797 60.2464 81.5949 58.4752 84.1645 55.8864
+\c 81.4477 54.0592 78.6685 51.96 75.9981 49.6336
+\c 73.4605 52.112 70.8861 54.3024 68.4829 56.1744
+\o
+\m 76.5725 66.1504
+\c 75.7725 66.1504 75.0573 65.8048 74.5533 65.2576
+\c 73.1325 66.4496 71.1117 67.9936 68.6237 69.6336
+\c 71.1293 71.5792 73.8301 73.8784 76.4941 76.5008
+\c 78.9613 74.4064 81.5165 72.48 84.0509 70.7472
+\c 81.5517 68.2368 79.4893 66.5056 78.2733 65.5504
+\c 77.8013 65.9216 77.2173 66.1504 76.5725 66.1504
+\o
+\m 57.9421 81.9472
+\c 49.9165 93.5184 49.6653 102.7616 52.9245 107.2768
+\c 56.1837 111.7904 61.4525 110.5344 62.9565 108.5296
+\c 64.4605 106.5232 63.2061 103.5152 60.9485 103.5152
+\c 60.9485 103.5152 61.1997 106.0224 58.9453 106.5232
+\c 56.6893 107.024 55.1821 104.016 57.1869 102.5104
+\c 57.7485 102.0912 58.5741 101.8192 59.4829 101.7328
+\c 60.4077 96.584 62.9085 91.6704 66.2941 87.1472
+\c 64.0445 84.56 61.6861 82.1904 59.3069 80.0384
+\c 58.8541 80.6592 58.3949 81.2928 57.9421 81.9472
+\o
+\m 60.4733 75.6
+\c 61.0989 74.8416 61.7341 74.0864 62.4013 73.344
+\c 61.4605 73.8432 60.4749 74.3344 59.4701 74.816
+\c 59.8077 75.0784 60.1453 75.3376 60.4733 75.6
+\o
+\m 42.7181 77.4352
+\c 46.7869 77.0816 50.2925 76.4704 53.7453 75.3872
+\c 43.5357 67.4864 34.4429 63.6416 34.4429 63.6416
+\c 34.4429 63.6416 29.8429 66.2848 22.5149 67.8352
+\c 24.8013 74.6512 32.4637 78.3248 42.7181 77.4352
+\o
+\m 21.9053 65.1472
+\c 21.9453 65.4656 22.0109 65.768 22.0685 66.08
+\c 27.3485 64.744 31.9357 62.8896 31.9357 62.8896
+\c 31.9357 62.8896 30.4605 61.2368 22.3437 59.1904
+\c 21.8045 61.216 21.6845 63.2752 21.9053 65.1472
+\o
+\m 2.3469 63.3904
+\c 2.8397 66.36 6.3581 67.6528 13.8829 67.4048
+\c 14.2669 67.3904 14.6605 67.3648 15.0573 67.3312
+\c 14.9885 67.0224 14.9293 66.712 14.8829 66.4
+\c 14.4989 63.6992 14.7485 60.6784 15.8205 57.8048
+\c 5.0173 56.1184 1.8701 60.5408 2.3469 63.3904
+\o
+\m 47.4829 48.5968
+\c 32.6989 45.4752 25.4285 51 22.8893 57.5216
+\c 29.9981 59.304 34.4429 62.192 34.4429 62.192
+\c 34.4429 62.192 43.2285 57.8896 53.2109 50.1216
+\c 51.3981 49.544 49.4989 49.0192 47.4829 48.5968
+\o
+\m 58.8237 50.7648
+\c 59.5549 51.0864 60.2733 51.4128 60.9613 51.7472
+\c 60.5101 51.2128 60.0733 50.6752 59.6445 50.1376
+\c 59.3741 50.3472 59.0989 50.5568 58.8237 50.7648
+\o
+\m 60.0541 25.0448
+\c 58.9229 25.032 57.8653 24.744 57.1869 24.2336
+\c 55.1821 22.7296 56.6893 19.7216 58.9453 20.2224
+\c 61.1997 20.7216 60.9485 23.232 60.9485 23.232
+\c 63.2061 23.232 64.4605 20.2224 62.9565 18.216
+\c 61.4525 16.2096 56.1837 14.9552 52.9245 19.4688
+\c 49.6653 23.9824 49.9165 33.2272 57.9421 44.7984
+\c 58.1517 45.0992 58.3613 45.3904 58.5677 45.6848
+\c 61.0525 43.4896 63.5261 41.1024 65.8813 38.528
+\c 62.9869 34.3344 60.8573 29.7968 60.0541 25.0448
+\o
+\m 77.3245 2.5088
+\c 74.2797 -0.0304 70.3037 2.0096 71.0573 9.7808
+\c 71.8077 17.5552 76.8237 23.7696 76.8237 23.7696
+\c 80.5853 19.256 80.3357 5.0176 77.3245 2.5088
+\o
+\m 78.5789 28.0336
+\l 78.2717 27.5856
+\c 76.2925 31.8144 73.4605 36.3216 69.5453 40.8256
+\c 71.4893 43.1824 73.6573 45.4096 75.9389 47.4656
+\c 80.1069 43.2368 84.0605 38.2464 86.7741 32.6656
+\c 82.0413 30.824 78.5789 28.0336 78.5789 28.0336
+\o
+\m 98.3901 19.4688
+\c 95.1309 14.9552 89.8637 16.2096 88.3613 18.216
+\c 86.8541 20.2224 88.1069 23.232 90.3645 23.232
+\c 90.3645 23.232 90.1133 20.7216 92.3693 20.2224
+\c 94.6301 19.7216 96.1341 22.7296 94.1277 24.2336
+\c 93.4157 24.768 92.2797 25.0656 91.0845 25.0448
+\c 90.5533 27.3968 89.7821 29.6672 88.8301 31.8496
+\c 91.8269 32.6976 94.2429 32.5488 96.8861 32.5488
+\c 97.5421 32.5488 98.4237 32.544 99.4397 32.536
+\c 101.0557 26.7744 100.3869 22.2336 98.3901 19.4688
+\o
+\m 93.3741 44.7984
+\c 96.0589 40.928 97.8557 37.3248 98.9613 34.0656
+\c 95.8237 34.0768 91.4029 33.9968 88.2365 33.152
+\c 85.4573 38.984 81.4045 44.1552 77.1261 48.5088
+\c 79.8061 50.8256 82.5917 52.9152 85.2957 54.7184
+\c 87.7821 52.1056 90.5901 48.8112 93.3741 44.7984
+\o
+\m 97.7245 63.0256
+\c 94.5965 61.9568 90.2637 59.8224 85.6285 56.8432
+\c 83.6045 58.816 81.4301 60.6752 79.1325 62.3808
+\c 79.2573 62.6928 79.3325 63.0304 79.3325 63.3904
+\c 79.3325 63.7408 79.2573 64.0656 79.1453 64.3712
+\c 81.3853 66.0416 83.5197 67.8496 85.5037 69.7744
+\c 89.9661 66.8368 94.2653 64.5344 97.7245 63.0256
+\o
+\m 93.3741 81.9472
+\c 90.6461 78.016 87.8989 74.7744 85.4477 72.184
+\c 82.8925 73.8784 80.3021 75.7616 77.8013 77.8128
+\c 82.2477 82.4 86.4637 87.896 89.3309 94.1648
+\c 92.4653 93.5376 96.4237 93.4928 99.2333 93.5056
+\c 98.1645 90.0352 96.2861 86.1488 93.3741 81.9472
+\o
+\s
+\m 161.5837 35.8096
+\c 160.0589 35.8096 158.8237 34.5712 158.8237 33.0464
+\c 158.8237 31.5248 160.0589 30.2928 161.5837 30.2928
+\c 163.1053 30.2928 164.3421 31.5248 164.3421 33.0464
+\c 164.3421 34.5712 163.1053 35.8096 161.5837 35.8096
+\o
+\s
+\m 150.9277 36.4336
+\c 149.0589 36.4336 147.5421 34.9152 147.5421 33.0464
+\c 147.5421 31.1776 149.0589 29.6624 150.9277 29.6624
+\c 152.7965 29.6624 154.3117 31.1776 154.3117 33.0464
+\c 154.3117 34.9152 152.7965 36.4336 150.9277 36.4336
+\o
+\s
+\m 137.7581 37.4352
+\c 135.3389 37.4352 133.3693 35.472 133.3693 33.0464
+\c 133.3693 30.6256 135.3389 28.6592 137.7581 28.6592
+\c 140.1837 28.6592 142.1485 30.6256 142.1485 33.0464
+\c 142.1485 35.472 140.1837 37.4352 137.7581 37.4352
+\o
+\s
+\m 161.5837 91.2256
+\c 163.1053 91.2256 164.3421 92.4624 164.3421 93.984
+\c 164.3421 95.5088 163.1053 96.744 161.5837 96.744
+\c 160.0589 96.744 158.8237 95.5088 158.8237 93.984
+\c 158.8237 92.4624 160.0589 91.2256 161.5837 91.2256
+\o
+\s
+\m 150.9277 97.3696
+\c 149.0589 97.3696 147.5421 95.8544 147.5421 93.984
+\c 147.5421 92.1168 149.0589 90.6 150.9277 90.6
+\c 152.7965 90.6 154.3117 92.1168 154.3117 93.984
+\c 154.3117 95.8544 152.7965 97.3696 150.9277 97.3696
+\o
+\s
+\m 137.7581 98.3712
+\c 135.3389 98.3712 133.3693 96.4096 133.3693 93.984
+\c 133.3693 91.5616 135.3389 89.5984 137.7581 89.5984
+\c 140.1837 89.5984 142.1485 91.5616 142.1485 93.984
+\c 142.1485 96.4096 140.1837 98.3712 137.7581 98.3712
+\o
+\s
+\m 50.2413 65.8992
+\c 48.7165 65.8992 47.4829 64.6656 47.4829 63.1408
+\c 47.4829 61.6176 48.7165 60.3808 50.2413 60.3808
+\c 51.7661 60.3808 53.0013 61.6176 53.0013 63.1408
+\c 53.0013 64.6656 51.7661 65.8992 50.2413 65.8992
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian51.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian51.pgf
new file mode 100644
index 0000000000..b80813eb57
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian51.pgf
@@ -0,0 +1,288 @@
+\m 63.1792 93.5152
+\c 65.2192 86.9488 70.304 78.5232 77.4064 71.2208
+\c 71.5872 67.5152 66.12 64.8624 62.5856 63.6064
+\c 62.272 64.7776 61.2112 65.648 59.9344 65.648
+\c 58.4112 65.648 57.176 64.4144 57.176 62.8896
+\c 57.176 61.3648 58.4112 60.1328 59.9344 60.1328
+\c 60.9072 60.1328 61.7616 60.64 62.2512 61.4
+\c 62.8896 61.5824 63.6 61.8176 64.3792 62.1088
+\c 67.0864 61.4864 72.0544 59.2096 77.5664 55.688
+\c 70.6832 48.6496 65.6576 40.544 63.4448 34.0528
+\c 63.2688 34.0512 63.0976 34.0512 62.944 34.0512
+\c 59.9344 34.0512 49.6528 34.0512 45.64 34.0512
+\c 41.6304 34.0512 38.1168 36.56 35.6112 38.5664
+\c 35.6112 38.5664 40.1232 34.0512 36.1104 26.7792
+\c 36.1104 26.7792 40.8768 32.5488 46.6416 32.296
+\c 46.6416 32.296 56.408 32.4496 62.9648 32.5152
+\c 62.4976 30.864 62.2304 29.3376 62.192 27.9968
+\c 61.9424 19.2192 66.4528 15.456 70.4672 14.9552
+\c 74.48 14.4544 78.9824 16.5744 78.2384 21.224
+\c 77.9104 23.3024 76.4208 24.4288 74.7584 24.8496
+\c 75.28 27.0976 76.0304 29.2752 76.9648 31.368
+\c 79.0304 30.6016 81.3824 29.3504 84.2592 27.2816
+\l 85.4976 26.3328
+\c 82.8112 20.1616 81.9152 14.6672 82.0016 10.784
+\c 82.1984 1.952 87.0176 0 89.776 0
+\c 92.5344 0 96.7968 2.76 95.2912 11.0352
+\c 93.7888 19.3104 88.5216 24.7712 88.5216 24.7712
+\c 90.9728 29.3344 94.0512 33.5344 97.4144 37.352
+\c 100.0736 33.4592 102.0304 29.2656 102.7904 24.8896
+\c 101.0592 24.5024 99.4736 23.3776 99.1296 21.224
+\c 98.3856 16.5744 102.8896 14.4544 106.904 14.9552
+\c 110.9152 15.456 115.4304 19.2192 115.1792 27.9968
+\c 115.0416 32.76 112.0896 39.8128 107.136 46.8704
+\c 108.0384 47.6416 108.936 48.3744 109.8304 49.0928
+\c 113.4064 47.8704 117.4112 46.8864 121.8752 46.3408
+\c 136.9136 44.4992 144.752 49.8272 147.912 56.3808
+\c 149.8272 56.184 151.8528 56.0976 153.9696 56.1728
+\c 163.7264 56.5216 164.4224 61.4784 164.336 62.544
+\c 164.4224 63.6064 163.7264 68.5584 153.9696 68.9056
+\c 152.1984 68.9728 150.4912 68.9344 148.8576 68.8224
+\c 146.1344 76.4528 135.8704 82.216 120.8704 79.944
+\c 116.7264 79.3152 112.7296 78.112 109.0224 76.6352
+\c 108.1472 77.3408 107.2672 78.08 106.3888 78.8432
+\c 111.7888 86.2416 115.0352 93.752 115.1792 98.752
+\c 115.4304 107.5248 110.9152 111.2896 106.904 111.7904
+\c 102.8896 112.2912 98.3856 110.1696 99.1296 105.5216
+\c 99.5072 103.144 101.4016 102.016 103.3296 101.752
+\c 102.4384 97.056 100.1088 92.568 96.9648 88.4224
+\c 93.6752 92.3792 90.6704 96.8192 88.272 101.76
+\c 88.272 101.76 93.7888 105.7712 95.2912 114.0464
+\c 96.7968 122.32 92.5344 125.0816 89.776 125.0816
+\c 87.0176 125.0816 82.1984 123.128 82.0016 114.296
+\c 81.9232 110.7872 82.6464 105.96 84.7728 100.5088
+\l 84.2592 100.2896
+\c 80.8912 97.872 78.2352 96.56 75.9312 95.8496
+\c 75.1104 97.7536 74.4224 99.7152 73.9104 101.744
+\c 75.8864 101.968 77.8512 103.0928 78.2384 105.5216
+\c 78.9824 110.1696 74.48 112.2912 70.4672 111.7904
+\c 66.4528 111.2896 61.9424 107.5248 62.192 98.752
+\c 62.224 97.6368 62.424 96.3904 62.752 95.0576
+\c 56.1968 95.1248 46.6416 95.2752 46.6416 95.2752
+\c 40.8768 95.024 36.1104 100.792 36.1104 100.792
+\c 40.1232 93.5184 35.6112 89.0064 35.6112 89.0064
+\c 38.1168 91.0096 41.6304 93.5184 45.64 93.5184
+\c 49.6528 93.5184 59.9344 93.5184 62.944 93.5184
+\c 63.0176 93.5184 63.1008 93.5152 63.1792 93.5152
+\o
+\m 74.4448 95.456
+\c 71.9264 94.9088 69.7792 95.024 67.456 95.024
+\c 66.7552 95.024 65.7968 95.0272 64.6896 95.0368
+\c 63.3616 100.4032 64.0544 104.6432 65.9552 107.2768
+\c 69.2144 111.7904 74.48 110.5344 75.9824 108.5296
+\c 77.4896 106.5232 76.2352 103.5152 73.9776 103.5152
+\c 73.9776 103.5152 74.2304 106.0224 71.9728 106.5232
+\c 69.7136 107.024 68.2112 104.016 70.2176 102.5104
+\c 70.7456 102.1136 71.5072 101.8512 72.3552 101.7472
+\c 72.8816 99.5744 73.5936 97.4784 74.4448 95.456
+\o
+\m 87.7696 103.0144
+\c 84.008 107.5248 84.008 120.0656 87.0176 122.5728
+\c 90.064 125.1104 94.0384 123.0752 93.2864 115.3008
+\c 92.5344 107.5248 87.7696 103.0144 87.7696 103.0144
+\o
+\m 94.1488 85.0192
+\c 92.1792 82.8336 90.0176 80.76 87.7488 78.8272
+\c 83.4176 83.2896 79.3232 88.584 76.5232 94.5344
+\c 76.7696 94.6096 77.0112 94.688 77.2352 94.7728
+\c 81.1296 96.232 84.2048 98.3696 85.3136 99.1936
+\c 87.208 94.7184 90.0496 89.8752 94.1488 85.0192
+\o
+\m 95.8448 41.9904
+\c 93.9152 44.3312 91.7744 46.5344 89.5296 48.576
+\c 92.1328 51.1088 94.776 53.3504 97.2208 55.248
+\c 97.704 54.928 98.2096 54.6112 98.7296 54.2896
+\c 100.1696 52.7568 101.7088 50.9936 103.28 49.0048
+\c 100.4688 46.7024 98.0048 44.3536 95.8448 41.9904
+\o
+\m 102.4768 76.7408
+\c 100.5168 74.3344 98.624 72.2896 96.936 70.6048
+\c 94.4272 72.5648 91.712 74.8928 89.0352 77.528
+\c 91.2352 79.4688 93.3392 81.5472 95.2624 83.7312
+\c 97.3568 81.384 99.7472 79.0368 102.4768 76.7408
+\o
+\m 97.1824 68.5216
+\c 100.8608 65.7776 103.952 63.8688 105.6304 62.888
+\c 103.9568 61.8912 100.784 59.8304 97.464 57.3712
+\c 94.792 58.2096 90.1104 62.2224 90.1104 62.2224
+\c 90.4432 62.7232 90.4432 63.8928 90.4432 63.8928
+\c 92.6176 66.0656 97.1824 68.5216 97.1824 68.5216
+\o
+\m 98.3424 69.5216
+\c 101.1856 71.288 103.7664 72.6688 106.2656 73.76
+\c 111.6928 69.7344 118.2416 65.9168 126.1376 62.544
+\c 118.4912 59.2752 112.1056 55.5872 106.7792 51.7024
+\c 104.6912 52.5568 102.7648 53.4784 101.0272 54.416
+\c 100.3536 55.1408 99.6576 55.8496 98.944 56.5552
+\c 104 60.3008 108.5616 62.6656 108.6672 62.7232
+\c 108.6672 62.7232 102.2512 66.5728 98.3424 69.5216
+\o
+\m 88.3456 49.6336
+\c 85.6736 51.96 82.8944 54.0592 80.1792 55.8864
+\c 82.7472 58.4752 84.8624 60.2464 86.0928 61.2144
+\c 86.5584 60.8544 87.136 60.6336 87.7696 60.6336
+\c 88.4896 60.6336 89.1392 60.912 89.6304 61.3648
+\c 90.9696 60.0256 93.0448 58.16 95.8608 56.1744
+\c 93.456 54.3024 90.8816 52.112 88.3456 49.6336
+\o
+\m 86.0704 65.5504
+\c 84.8544 66.5056 82.792 68.2368 80.2912 70.7472
+\c 82.8272 72.48 85.3808 74.4064 87.848 76.5008
+\c 90.5136 73.8784 93.2144 71.5792 95.7184 69.6336
+\c 93.2304 67.9936 91.2112 66.4496 89.7888 65.2576
+\c 89.2864 65.8048 88.5696 66.1504 87.7696 66.1504
+\c 87.1264 66.1504 86.5408 65.9216 86.0704 65.5504
+\o
+\m 105.0352 80.0384
+\c 102.6576 82.1904 100.2976 84.56 98.048 87.1472
+\c 101.432 91.6704 103.9344 96.584 104.8608 101.7328
+\c 105.7664 101.8192 106.5952 102.0912 107.1552 102.5104
+\c 109.16 104.016 107.6544 107.024 105.3984 106.5232
+\c 103.1424 106.0224 103.3936 103.5152 103.3936 103.5152
+\c 101.136 103.5152 99.8832 106.5232 101.3856 108.5296
+\c 102.8896 110.5344 108.1584 111.7904 111.4176 107.2768
+\c 114.6768 102.7616 114.4272 93.5184 106.4016 81.9472
+\c 105.9472 81.2928 105.4896 80.6592 105.0352 80.0384
+\o
+\m 104.8736 74.816
+\c 103.8672 74.3344 102.8832 73.8432 101.9424 73.344
+\c 102.608 74.0864 103.2432 74.8416 103.8704 75.6
+\c 104.1968 75.3376 104.5344 75.0784 104.8736 74.816
+\o
+\m 141.8272 67.8352
+\c 134.4976 66.2848 129.8976 63.6416 129.8976 63.6416
+\c 129.8976 63.6416 120.8064 67.4864 110.5968 75.3872
+\c 114.0512 76.4704 117.5552 77.0816 121.624 77.4352
+\c 131.88 78.3248 139.5424 74.6512 141.8272 67.8352
+\o
+\m 141.9984 59.1904
+\c 133.8816 61.2368 132.408 62.8896 132.408 62.8896
+\c 132.408 62.8896 136.9936 64.744 142.2736 66.08
+\c 142.3328 65.768 142.3984 65.4656 142.4352 65.1472
+\c 142.6576 63.2752 142.5392 61.216 141.9984 59.1904
+\o
+\m 148.5232 57.8048
+\c 149.5952 60.6784 149.8448 63.6992 149.4608 66.4
+\c 149.4144 66.712 149.3552 67.0224 149.2864 67.3312
+\c 149.6832 67.3648 150.0768 67.3904 150.4608 67.4048
+\c 157.9856 67.6528 161.5008 66.36 161.9952 63.3904
+\c 162.472 60.5408 159.3264 56.1184 148.5232 57.8048
+\o
+\m 111.1328 50.1216
+\c 121.1136 57.8896 129.8976 62.192 129.8976 62.192
+\c 129.8976 62.192 134.3456 59.304 141.4544 57.5216
+\c 138.9136 51 131.6432 45.4752 116.8592 48.5968
+\c 114.8448 49.0192 112.944 49.544 111.1328 50.1216
+\o
+\m 104.6976 50.1376
+\c 104.2704 50.6752 103.8304 51.2128 103.3824 51.7472
+\c 104.0704 51.4128 104.7872 51.0864 105.52 50.7648
+\c 105.2448 50.5568 104.9664 50.3472 104.6976 50.1376
+\o
+\m 98.4608 38.528
+\c 100.8176 41.1024 103.2896 43.4896 105.7728 45.6848
+\c 105.9824 45.3904 106.192 45.0992 106.4016 44.7984
+\c 114.4272 33.2272 114.6768 23.9824 111.4176 19.4688
+\c 108.1584 14.9552 102.8896 16.2096 101.3856 18.216
+\c 99.8832 20.2224 101.136 23.232 103.3936 23.232
+\c 103.3936 23.232 103.1424 20.7216 105.3984 20.2224
+\c 107.6544 19.7216 109.16 22.7296 107.1552 24.2336
+\c 106.4768 24.744 105.4192 25.032 104.2896 25.0448
+\c 103.4864 29.7968 101.3552 34.3344 98.4608 38.528
+\o
+\m 87.5184 23.7696
+\c 87.5184 23.7696 92.5344 17.5552 93.2864 9.7808
+\c 94.0384 2.0096 90.064 -0.0304 87.0176 2.5088
+\c 84.008 5.0176 83.7584 19.256 87.5184 23.7696
+\o
+\m 77.5664 32.6656
+\c 80.2816 38.2464 84.2352 43.2368 88.4048 47.4656
+\c 90.6848 45.4096 92.8544 43.1824 94.7984 40.8256
+\c 90.8816 36.3216 88.0512 31.8144 86.0704 27.5856
+\l 85.7648 28.0336
+\c 85.7648 28.0336 82.3008 30.824 77.5664 32.6656
+\o
+\m 64.9008 32.536
+\c 65.92 32.544 66.8 32.5488 67.456 32.5488
+\c 70.1008 32.5488 72.5168 32.6976 75.512 31.8496
+\c 74.56 29.6672 73.7888 27.3968 73.2576 25.0448
+\c 72.064 25.0656 70.9264 24.768 70.2176 24.2336
+\c 68.2112 22.7296 69.7136 19.7216 71.9728 20.2224
+\c 74.2304 20.7216 73.9776 23.232 73.9776 23.232
+\c 76.2352 23.232 77.4896 20.2224 75.9824 18.216
+\c 74.48 16.2096 69.2144 14.9552 65.9552 19.4688
+\c 63.9584 22.2336 63.2896 26.7744 64.9008 32.536
+\o
+\m 79.0464 54.7184
+\c 81.7504 52.9152 84.536 50.8256 87.2176 48.5088
+\c 82.9376 44.1552 78.8864 38.984 76.104 33.152
+\c 72.9392 33.9968 68.5184 34.0768 65.3824 34.0656
+\c 66.4864 37.3248 68.2848 40.928 70.9664 44.7984
+\c 73.752 48.8112 76.56 52.1056 79.0464 54.7184
+\o
+\m 78.8384 69.7744
+\c 80.8224 67.8496 82.9584 66.0416 85.1984 64.3712
+\c 85.0848 64.0656 85.0112 63.7408 85.0112 63.3904
+\c 85.0112 63.0304 85.0864 62.6928 85.2096 62.3808
+\c 82.912 60.6752 80.7392 58.816 78.7136 56.8432
+\c 74.0784 59.8224 69.7472 61.9568 66.6208 63.0256
+\c 70.08 64.5344 74.376 66.8368 78.8384 69.7744
+\o
+\m 65.1104 93.5056
+\c 67.92 93.4928 71.8768 93.5376 75.0112 94.1648
+\c 77.88 87.896 82.0944 82.4 86.5424 77.8128
+\c 84.0416 75.7616 81.4496 73.8784 78.8944 72.184
+\c 76.4432 74.7744 73.6944 78.016 70.9664 81.9472
+\c 68.056 86.1488 66.1792 90.0352 65.1104 93.5056
+\o
+\s
+\m 2.7584 35.8096
+\c 4.2832 35.8096 5.5168 34.5712 5.5168 33.0464
+\c 5.5168 31.5248 4.2832 30.2928 2.7584 30.2928
+\c 1.2352 30.2928 0 31.5248 0 33.0464
+\c 0 34.5712 1.2352 35.8096 2.7584 35.8096
+\o
+\s
+\m 13.4176 36.4336
+\c 15.2864 36.4336 16.8016 34.9152 16.8016 33.0464
+\c 16.8016 31.1776 15.2864 29.6624 13.4176 29.6624
+\c 11.5488 29.6624 10.032 31.1776 10.032 33.0464
+\c 10.032 34.9152 11.5488 36.4336 13.4176 36.4336
+\o
+\s
+\m 26.5824 37.4352
+\c 29.0048 37.4352 30.9696 35.472 30.9696 33.0464
+\c 30.9696 30.6256 29.0048 28.6592 26.5824 28.6592
+\c 24.16 28.6592 22.192 30.6256 22.192 33.0464
+\c 22.192 35.472 24.16 37.4352 26.5824 37.4352
+\o
+\s
+\m 2.7584 91.2256
+\c 1.2352 91.2256 0 92.4624 0 93.984
+\c 0 95.5088 1.2352 96.744 2.7584 96.744
+\c 4.2832 96.744 5.5168 95.5088 5.5168 93.984
+\c 5.5168 92.4624 4.2832 91.2256 2.7584 91.2256
+\o
+\s
+\m 13.4176 97.3696
+\c 15.2864 97.3696 16.8016 95.8544 16.8016 93.984
+\c 16.8016 92.1168 15.2864 90.6 13.4176 90.6
+\c 11.5488 90.6 10.032 92.1168 10.032 93.984
+\c 10.032 95.8544 11.5488 97.3696 13.4176 97.3696
+\o
+\s
+\m 26.5824 98.3712
+\c 29.0048 98.3712 30.9696 96.4096 30.9696 93.984
+\c 30.9696 91.5616 29.0048 89.5984 26.5824 89.5984
+\c 24.16 89.5984 22.192 91.5616 22.192 93.984
+\c 22.192 96.4096 24.16 98.3712 26.5824 98.3712
+\o
+\s
+\m 114.1008 65.8992
+\c 115.6256 65.8992 116.8592 64.6656 116.8592 63.1408
+\c 116.8592 61.6176 115.6256 60.3808 114.1008 60.3808
+\c 112.576 60.3808 111.3424 61.6176 111.3424 63.1408
+\c 111.3424 64.6656 112.576 65.8992 114.1008 65.8992
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian52.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian52.pgf
new file mode 100644
index 0000000000..07e8874e40
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian52.pgf
@@ -0,0 +1,503 @@
+\m 247.7451 156.6912
+\c 245.6987 166.6624 236.3819 171.488 232.4859 172.0144
+\c 232.4059 172.0256 232.3243 172.0288 232.2443 172.0368
+\l 232.2635 172.0992
+\c 232.0763 172.1568 213.5787 177.36 202.5803 164.0576
+\c 201.8539 163.1792 201.2043 162.2928 200.6155 161.3968
+\c 195.6731 164.4608 189.3419 167.0224 181.3883 167.9136
+\c 180.9355 167.9648 180.4891 167.9936 180.0363 168.0368
+\c 179.6827 169.8912 179.0795 171.7392 178.1403 173.5296
+\c 175.4635 178.6336 171.0763 181.9408 166.0971 182.6128
+\c 161.9771 183.1696 157.9707 181.8448 155.3819 179.0736
+\c 151.6075 175.0256 151.2923 169.3952 152.6507 165.608
+\c 152.8443 165.0688 153.0779 164.5856 153.3291 164.128
+\c 149.5787 162.5056 146.0987 160.4256 142.9627 157.9056
+\c 142.1227 157.232 141.3195 156.5184 140.5307 155.7872
+\c 142.0043 158.7008 142.9195 161.9728 142.6859 166.0752
+\c 142.1675 175.12 134.2891 179.384 128.9915 183.0016
+\c 125.3323 185.5008 124.4091 191.0224 124.1851 194.1968
+\c 124.2795 188.5296 124.2299 184.1104 129.1195 179.9008
+\c 134.6747 175.12 138.2923 172.0224 138.5515 163.7536
+\c 138.6955 159.12 136.6107 154.7696 134.7483 151.8416
+\l 126.2331 166.5136
+\l 115.1466 149.2608
+\c 113.2762 151.6336 109.3162 157.4224 109.513 163.7536
+\c 109.7722 172.0224 113.3882 175.12 118.9451 179.9008
+\c 124.0363 184.2832 123.9323 188.8928 124.0795 194.9008
+\c 123.8923 191.9088 123.0203 185.6992 119.0731 183.0016
+\c 113.7754 179.384 105.8986 175.12 105.3786 166.0752
+\c 105.145 161.9728 106.0602 158.7008 107.5338 155.7856
+\c 106.7466 156.5184 105.9418 157.232 105.1034 157.9056
+\c 101.969 160.4256 98.4858 162.5056 94.7354 164.128
+\c 94.9882 164.5856 95.2202 165.0688 95.4138 165.608
+\c 96.7722 169.3952 96.457 175.0256 92.6826 179.0736
+\c 90.0938 181.8448 86.089 183.1696 81.9674 182.6128
+\c 76.9882 181.9408 72.5994 178.6336 69.9258 173.5296
+\c 68.9866 171.7392 68.3834 169.8912 68.0298 168.0368
+\c 67.577 167.9984 67.129 167.9664 66.6746 167.9136
+\c 58.721 167.0224 52.3914 164.4608 47.4506 161.4016
+\c 46.8602 162.2928 46.2122 163.1792 45.4858 164.0576
+\c 34.4858 177.36 15.9882 172.1568 15.801 172.0992
+\l 15.8202 172.0368
+\c 15.7418 172.0288 15.6602 172.0256 15.5786 172.0144
+\c 11.6826 171.488 2.369 166.6624 0.3194 156.6912
+\c -1.3782 148.4064 4.0858 144.072 6.9258 143.3488
+\c 6.9258 143.3488 2.1034 150.088 3.4922 155.6336
+\c 4.8794 161.1824 10.1626 162.6336 13.201 161.5088
+\c 16.2394 160.3888 21.9194 160.9184 22.4474 166.136
+\c 22.6826 168.4448 22.0458 169.952 20.9626 170.8752
+\c 26.8026 171.4688 36.977 171.0464 43.8666 162.7184
+\c 44.5402 161.904 45.1418 161.0784 45.689 160.248
+\c 43.1514 158.4992 41.0282 156.6464 39.289 154.8736
+\c 30.2826 147.2432 21.5722 130.2368 24.4458 115.4048
+\c 26.0266 107.2576 29.3626 100.7376 32.633 95.9696
+\c 35.7322 90.224 39.5562 86.0608 43.6234 83.0752
+\c 40.3002 76.68 40.6138 67.6128 46.5594 62.2368
+\c 50.4954 58.6816 54.673 58.8528 57.561 59.672
+\c 62.8506 60.7408 64.6954 64.616 63.1754 67.0432
+\c 61.6426 69.496 58.7306 68.7808 57.8602 66.9408
+\c 56.993 65.104 58.9354 63.928 58.9354 63.928
+\c 58.761 62.9936 58.1866 62.312 57.5434 61.8288
+\c 55.1834 61.0256 51.4842 60.6192 47.9674 63.7968
+\c 42.8282 68.44 42.5274 76.2688 45.3546 81.8832
+\c 56.129 74.9168 68.033 75.496 72.1994 75.9792
+\c 72.3018 75.3488 72.3818 74.7008 72.4218 74.0256
+\c 73.2074 60.8096 73.2074 61.5968 75.801 61.5968
+\c 78.3978 61.5968 80.7578 60.8912 81.545 57.5872
+\c 82.329 54.2848 80.601 52.0032 80.601 52.0032
+\c 80.601 52.0032 83.3546 46.496 94.2074 46.5744
+\c 105.0618 46.656 110.7242 52.7088 110.8026 58.6096
+\c 110.8826 64.5088 106.6026 67.128 103.001 65.9744
+\c 103.001 65.9744 107.3818 65.5904 108.3418 60.7184
+\c 107.6666 59.8784 105.9514 58.288 102.7098 58.3776
+\c 102.6362 58.3776 99.945 58.3664 98.0826 60.1632
+\c 96.8426 61.36 96.2138 63.1184 96.2138 65.3936
+\c 96.2138 68.7152 97.473 71.4688 99.8554 73.3568
+\c 102.545 75.4832 106.3994 76.2288 110.433 75.4
+\c 114.1994 74.6288 117.9451 71.3536 119.9787 67.0528
+\c 121.4763 63.8848 123.1787 57.6976 119.8811 49.288
+\c 119.1915 48.4912 118.4075 47.8752 117.5067 47.6192
+\c 113.2442 46.4 111.1722 45.5472 111.6602 38.9712
+\c 112.1482 32.3968 105.6954 28.0096 100.457 34.2224
+\c 100.457 34.2224 100.8218 29.1056 105.6954 28.0096
+\c 110.5626 26.9152 114.2186 32.6368 114.2186 32.6368
+\c 114.2186 32.6368 113.6106 24.8432 118.2363 21.8
+\c 122.8667 18.7568 122.9883 5.2368 122.9883 5.2368
+\l 123.7179 0
+\l 124.7147 5.2368
+\c 124.7147 5.2368 124.8363 18.7568 129.4667 21.8
+\c 134.0939 24.8432 133.4859 32.6368 133.4859 32.6368
+\c 133.4859 32.6368 137.1387 26.9152 142.0091 28.0096
+\c 146.8827 29.1056 147.2475 34.2224 147.2475 34.2224
+\c 142.0091 28.0096 135.5547 32.3968 136.0411 38.9712
+\c 136.5291 45.5472 134.4603 46.4 130.1963 47.6192
+\c 129.3579 47.856 128.6187 48.4032 127.9627 49.1152
+\c 124.5995 57.616 126.3067 63.8624 127.8059 67.0528
+\c 129.8251 71.3536 133.5467 74.6288 137.2891 75.4
+\c 141.2939 76.2288 145.1227 75.4832 147.7947 73.3568
+\c 150.1627 71.4688 151.4139 68.7152 151.4139 65.3936
+\c 151.4139 63.1184 150.7883 61.36 149.5563 60.1632
+\c 147.7067 58.3664 145.0363 58.3776 144.9611 58.3776
+\c 142.1259 58.2976 140.4699 59.5184 139.6539 60.3872
+\c 140.4731 65.5808 145.0635 65.9744 145.0635 65.9744
+\c 141.8443 67.0064 138.0955 65.016 137.3883 60.3712
+\l 137.1259 60.2368
+\c 137.1387 60.2128 137.2107 60.088 137.3275 59.9088
+\c 137.2859 59.4944 137.2555 59.0656 137.2619 58.6096
+\c 137.3419 52.7088 143.0043 46.656 153.8571 46.5744
+\c 164.7099 46.496 167.4635 52.0032 167.4635 52.0032
+\c 167.4635 52.0032 165.7339 54.2848 166.5195 57.5872
+\c 167.3067 60.8912 169.6667 61.5968 172.2619 61.5968
+\c 174.8571 61.5968 174.8571 60.8096 175.6427 74.0256
+\c 175.6827 74.7008 175.7627 75.3488 175.8635 75.9792
+\c 180.0331 75.496 191.9355 74.9168 202.7115 81.8832
+\c 205.5387 76.2688 205.2363 68.44 200.0987 63.7968
+\c 196.5819 60.6192 192.8827 61.0256 190.5227 61.8288
+\c 189.8795 62.312 189.3035 62.9936 189.1291 63.928
+\c 189.1291 63.928 191.0731 65.104 190.2043 66.9408
+\c 189.3355 68.7808 186.4235 69.496 184.8891 67.0432
+\c 183.3707 64.616 185.2139 60.7408 190.5035 59.6688
+\c 193.3915 58.8528 197.5707 58.6816 201.5051 62.2368
+\c 207.4507 67.6128 207.7627 76.68 204.4411 83.0752
+\c 208.5099 86.0624 212.3355 90.2256 215.4363 95.976
+\c 218.7019 100.7424 222.0379 107.2592 223.6171 115.4048
+\c 226.4923 130.232 217.7835 147.2368 208.7787 154.8736
+\c 207.0379 156.6448 204.9163 158.4976 202.3771 160.248
+\c 202.9227 161.0784 203.5243 161.904 204.1995 162.7184
+\c 211.0891 171.0464 221.2603 171.4688 227.1019 170.8752
+\c 226.0203 169.952 225.3819 168.4448 225.6171 166.136
+\c 226.1451 160.9184 231.8267 160.3888 234.8635 161.5088
+\c 237.9019 162.6336 243.1851 161.1824 244.5723 155.6336
+\c 245.9611 150.088 241.1387 143.3488 241.1387 143.3488
+\c 243.9787 144.072 249.4443 148.4064 247.7451 156.6912
+\o
+\m 177.8331 131.7072
+\c 177.8331 131.7072 172.9227 136.5184 177.9355 144.4384
+\c 177.9355 144.4384 179.3387 146.6448 183.0443 149.1472
+\c 186.5611 151.5232 189.8795 157.408 185.2715 165.184
+\c 190.9883 164.0368 195.6971 161.9744 199.5275 159.6064
+\c 194.8219 151.1792 195.6299 142.3376 197.6379 134.5152
+\c 195.7723 136.2544 192.1579 138.9584 187.1547 139.6256
+\c 179.6379 140.6256 177.1323 134.5136 177.8331 131.7072
+\o
+\m 181.1563 165.8272
+\c 182.4299 165.6832 183.6539 165.4912 184.8411 165.2608
+\c 185.6843 162.2512 186.9851 154.576 179.1371 152.6528
+\c 179.1371 152.6528 180.7531 157.024 180.4171 162.6768
+\c 180.4571 163.7408 180.4363 164.816 180.3355 165.9008
+\c 180.6107 165.8736 180.8811 165.856 181.1563 165.8272
+\o
+\m 154.6299 166.32
+\c 153.5195 169.4032 153.7627 174.2592 156.9179 177.6368
+\c 159.0427 179.9136 162.3707 180.9984 165.8187 180.5312
+\c 170.1115 179.952 173.9227 177.0448 176.2795 172.5568
+\c 177.0235 171.136 177.5355 169.672 177.8651 168.2
+\c 173.4859 168.4464 169.2203 168.2288 165.1387 167.5568
+\c 164.2795 169.7264 161.9323 169.832 161.1451 168.2608
+\c 160.8379 167.6464 160.8171 167.1216 160.9339 166.688
+\c 159.0011 166.2016 157.1195 165.6144 155.2955 164.92
+\c 155.0427 165.3312 154.8171 165.7984 154.6299 166.32
+\o
+\m 162.2603 164.8368
+\c 162.2603 164.8256 162.2571 164.8096 162.2571 164.7984
+\c 161.5099 163.9136 160.0555 162.752 157.6635 163.0592
+\c 157.4235 163.0944 157.1851 163.1792 156.9547 163.2912
+\c 158.6731 163.9008 160.4443 164.4176 162.2603 164.8368
+\o
+\m 144.2795 156.2688
+\c 147.3883 158.7728 150.8667 160.8144 154.6203 162.3856
+\c 155.4267 161.6 156.3675 161.112 157.3915 160.9776
+\c 161.0235 160.5024 163.3627 162.5664 164.3963 164.1488
+\c 164.7179 164.5072 165.0043 164.9392 165.1787 165.4304
+\c 169.2859 166.1296 173.5867 166.3584 178.0139 166.0912
+\c 178.0107 162.6 177.4427 158.2304 175.3291 153.9568
+\c 170.7195 144.6368 170.1179 140.4256 171.7195 135.1136
+\c 173.3243 129.8048 180.5403 125.9952 186.3531 126.3936
+\c 186.3531 126.3936 178.6363 127.1984 179.4379 132.5104
+\c 180.2379 137.8224 186.7547 139.424 192.4667 135.816
+\c 195.3467 133.9968 197.6891 131.1872 199.3067 128.8432
+\c 199.6475 127.7856 199.9947 126.7568 200.3275 125.7568
+\l 200.6539 124.7856
+\c 202.6411 118.8256 206.6219 102.6176 196.9035 89.9696
+\c 193.4411 91.424 189.1707 91.976 185.1451 90.8736
+\c 178.8235 89.688 174.0379 84.1664 172.0587 78.9408
+\c 170.0955 79.5696 168.1547 80.4912 166.3243 81.632
+\c 168.3083 86.3936 173.7563 88.808 173.7563 88.808
+\c 168.7883 88.3392 165.7243 86.1472 163.8555 83.3664
+\c 161.5339 85.1968 159.4923 87.392 157.9707 89.8112
+\c 157.3051 90.8672 156.6443 92.1216 156.1099 93.544
+\l 168.5787 93.544
+\l 158.5611 110.8112
+\c 160.8187 113.9056 163.9803 116.1056 167.8267 117.1728
+\c 173.7643 118.8176 179.5483 117.3456 182.1915 115.0416
+\c 185.5483 112.1216 186.1003 108.0496 185.5003 105.2176
+\c 184.9979 102.8464 183.6859 101.1232 181.9915 100.6032
+\c 180.7227 100.2128 179.6555 100.248 178.8235 100.7088
+\c 178.5291 100.8768 178.2859 101.088 178.0763 101.3072
+\c 177.8763 101.6944 177.7179 102.1392 177.6731 102.648
+\c 177.6731 102.648 179.3979 102.896 179.4379 104.6576
+\c 179.4795 106.4224 177.0203 107.816 175.0091 106.4224
+\c 173.0107 105.0336 174.4203 99.8032 178.1787 98.6912
+\c 179.4507 98.1168 180.9387 98.08 182.6107 98.5936
+\c 185.0427 99.344 186.8923 101.6544 187.5547 104.7808
+\c 188.2811 108.1984 187.6139 113.104 183.5707 116.6256
+\c 179.9355 119.7904 173.2299 120.8496 167.2667 119.1984
+\c 163.2491 118.088 159.8987 115.88 157.4139 112.7872
+\l 152.6075 121.0672
+\l 165.6171 144.4656
+\l 139.0299 144.4656
+\l 136.7259 148.4336
+\c 138.9483 151.3824 141.4603 154.0048 144.2795 156.2688
+\o
+\m 92.2106 105.4592
+\c 93.4042 101.7776 93.2986 98.4608 92.6026 95.6448
+\c 87.4138 95.6448 83.9018 95.6448 83.1882 95.6448
+\c 83.7018 96.4448 86.8202 101.296 91.161 108.0496
+\c 91.561 107.2288 91.9162 106.3664 92.2106 105.4592
+\o
+\m 94.209 106.1072
+\c 93.7482 107.528 93.161 108.8544 92.4682 110.088
+\c 94.2298 112.8256 96.1482 115.8144 98.1546 118.9312
+\l 110.2826 95.6448
+\c 104.5178 95.6448 99.1706 95.6448 94.7626 95.6448
+\c 95.5162 99.08 95.3418 102.6128 94.209 106.1072
+\o
+\m 99.4618 120.9696
+\c 104.0106 128.0432 108.8842 135.632 113.2106 142.3632
+\c 113.8794 142.3632 114.553 142.3632 115.233 142.3632
+\c 119.2379 134.992 121.8107 126.04 122.9051 115.5664
+\l 122.9915 115.5744
+\l 122.9915 106.264
+\c 121.9947 105.5312 120.4411 104.7088 118.5579 104.808
+\c 115.2234 104.9824 114.2442 109.0064 116.6043 111.3056
+\c 118.9611 113.608 119.8235 117.8064 118.1547 121.0272
+\c 116.4891 124.248 111.0826 125.0496 107.9194 120.6816
+\c 107.9194 120.6816 112.8074 123.5568 114.7626 120.9696
+\c 116.7179 118.3824 115.1674 116.0256 113.9578 113.1472
+\c 112.7498 110.2736 112.1162 104.12 117.8683 103.1424
+\c 117.8683 103.1424 120.5275 102.6832 122.9915 103.7792
+\l 122.9915 95.6448
+\c 119.4971 95.6448 116.0202 95.6448 112.6506 95.6448
+\c 108.433 103.7456 103.6618 112.904 99.4618 120.9696
+\o
+\m 98.345 123.1136
+\c 93.0138 133.3536 88.8362 141.3744 88.3194 142.3632
+\c 89.4858 142.3632 98.937 142.3632 110.713 142.3632
+\l 98.345 123.1136
+\o
+\m 124.0331 122.656
+\c 122.7099 130.0816 120.5563 136.6512 117.6043 142.3632
+\c 121.8299 142.3632 126.1915 142.3632 130.4603 142.3632
+\c 127.5067 136.6512 125.3547 130.0816 124.0331 122.656
+\o
+\m 122.9915 93.544
+\l 122.9915 75.7872
+\c 121.3323 78.9744 117.8699 85.6256 113.745 93.544
+\l 122.9915 93.544
+\o
+\m 125.0923 93.544
+\l 134.9051 93.544
+\c 130.5483 85.704 126.8843 79.1136 125.0923 75.8928
+\l 125.0923 93.544
+\o
+\m 125.0923 95.6448
+\l 125.0923 103.7712
+\c 127.5483 102.6832 130.1963 103.1424 130.1963 103.1424
+\c 135.9467 104.12 135.3147 110.2736 134.1067 113.1472
+\c 132.8987 116.0256 131.3483 118.3824 133.3003 120.9696
+\c 135.2571 123.5568 140.1467 120.6816 140.1467 120.6816
+\c 136.9819 125.0496 131.5755 124.248 129.9083 121.0272
+\c 128.2411 117.8064 129.1035 113.608 131.4619 111.3056
+\c 133.8203 109.0064 132.8411 104.9824 129.5067 104.808
+\c 127.6331 104.7136 126.0891 105.52 125.0923 106.248
+\l 125.0923 115.5728
+\l 125.1611 115.5664
+\c 126.2539 126.04 128.8283 134.992 132.8331 142.3632
+\c 134.5227 142.3632 136.1899 142.3632 137.8203 142.3632
+\c 141.7131 135.6528 146.0987 128.0992 150.1915 121.0448
+\c 145.7019 112.9616 140.5883 103.7712 136.0731 95.6448
+\c 132.5035 95.6448 128.8043 95.6448 125.0923 95.6448
+\o
+\m 135.3819 146.5664
+\c 135.7787 145.8784 136.1867 145.1744 136.6011 144.4656
+\l 134.0299 144.4656
+\c 134.4651 145.1824 134.9163 145.8784 135.3819 146.5664
+\o
+\m 140.2475 142.3632
+\c 151.7227 142.3632 160.8667 142.3632 162.0443 142.3632
+\c 161.4891 141.3632 157.0475 133.3744 151.3803 123.1824
+\l 140.2475 142.3632
+\o
+\m 151.4203 118.9296
+\c 153.0507 116.1184 154.6203 113.4144 156.0795 110.9008
+\c 155.1707 109.448 154.4219 107.848 153.8571 106.1072
+\c 152.7227 102.6128 152.5483 99.08 153.3019 95.6448
+\c 149.0699 95.6448 143.9739 95.6448 138.4763 95.6448
+\l 151.4203 118.9296
+\o
+\m 155.8539 105.4592
+\c 156.2411 106.6496 156.7259 107.7664 157.2923 108.8096
+\c 161.4475 101.648 164.4619 96.4528 164.9323 95.6448
+\c 164.2475 95.6448 160.7099 95.6448 155.4603 95.6448
+\c 154.7675 98.4608 154.6603 101.7776 155.8539 105.4592
+\o
+\m 133.4299 149.9296
+\c 132.5787 148.7872 131.9627 148.12 131.9627 148.12
+\l 133.0699 146.8528
+\c 132.5627 146.0752 132.0779 145.28 131.6091 144.4656
+\l 116.4555 144.4656
+\c 116.1579 144.9824 115.8602 145.4992 115.5482 146.0016
+\c 121.2603 154.8912 125.5899 161.6288 126.1419 162.488
+\c 126.5755 161.7424 129.4379 156.808 133.4299 149.9296
+\o
+\m 113.0474 145.9968
+\l 112.0634 144.4656
+\l 84.857 144.4656
+\l 97.0362 121.0784
+\l 91.2234 112.0304
+\c 88.6906 115.5184 85.1338 117.9968 80.7978 119.1984
+\c 74.833 120.8496 68.129 119.7904 64.4954 116.6256
+\c 60.4506 113.104 59.785 108.1984 60.5098 104.7808
+\c 61.1722 101.6544 63.0202 99.344 65.4538 98.5936
+\c 67.1258 98.08 68.6138 98.1168 69.889 98.6912
+\c 73.6442 99.808 75.0506 105.0336 73.0554 106.4224
+\c 71.0458 107.816 68.585 106.4224 68.6266 104.6576
+\c 68.6666 102.896 70.3898 102.648 70.3898 102.648
+\c 70.345 102.1392 70.1882 101.6944 69.9882 101.3072
+\c 69.7786 101.088 69.5354 100.8768 69.241 100.7088
+\c 68.4074 100.248 67.3418 100.2128 66.0714 100.6032
+\c 64.3786 101.1232 63.0666 102.8464 62.5626 105.2176
+\c 61.9626 108.0496 62.5162 112.1216 65.873 115.0416
+\c 68.5178 117.3456 74.3034 118.8176 80.2378 117.1728
+\c 84.3674 116.0288 87.7082 113.5792 89.9882 110.1136
+\l 79.3418 93.544
+\l 91.9546 93.544
+\c 91.4202 92.1216 90.761 90.8672 90.0954 89.8112
+\c 88.5722 87.392 86.5306 85.1968 84.209 83.3664
+\c 82.3386 86.1472 79.2762 88.3392 74.3082 88.808
+\c 74.3082 88.808 79.7562 86.3936 81.7418 81.632
+\c 79.9098 80.4912 77.9706 79.5696 76.0042 78.9408
+\c 74.0266 84.1664 69.241 89.6832 62.9226 90.8736
+\c 58.8954 91.976 54.6234 91.424 51.161 89.9696
+\c 41.4426 102.6176 45.425 118.8256 47.4122 124.7856
+\l 47.7354 125.7568
+\c 48.0698 126.7568 48.4138 127.7856 48.7578 128.8432
+\c 50.3738 131.1856 52.7162 133.9968 55.5978 135.816
+\c 61.3098 139.424 67.8266 137.8224 68.6266 132.5104
+\c 69.4282 127.1984 61.7114 126.3936 61.7114 126.3936
+\c 67.5258 125.9952 74.7402 129.8048 76.345 135.1136
+\c 77.9482 140.4256 77.345 144.6368 72.7354 153.9568
+\c 70.6202 158.2304 70.0522 162.6 70.049 166.0912
+\c 74.4762 166.3584 78.7786 166.1296 82.8858 165.4304
+\c 83.0602 164.9392 83.345 164.5072 83.6682 164.144
+\c 84.7002 162.5664 87.041 160.5024 90.673 160.9776
+\c 91.6954 161.112 92.6378 161.6 93.4442 162.3856
+\c 97.1978 160.8144 100.6746 158.7728 103.785 156.2688
+\c 107.3562 153.3968 110.4378 149.9616 113.0474 145.9968
+\o
+\m 85.809 164.7984
+\c 85.8074 164.8096 85.8042 164.8256 85.8042 164.8368
+\c 87.6202 164.4176 89.393 163.9008 91.1114 163.2912
+\c 90.8794 163.1792 90.6426 163.0944 90.401 163.0592
+\c 88.0074 162.752 86.5546 163.9088 85.809 164.7984
+\o
+\m 82.2474 180.5312
+\c 85.6954 180.9984 89.0218 179.9136 91.145 177.6368
+\c 94.3002 174.2592 94.5434 169.4032 93.4362 166.32
+\c 93.2474 165.7984 93.0218 165.3312 92.7706 164.92
+\c 90.945 165.6144 89.0634 166.2016 87.129 166.688
+\c 87.2474 167.1216 87.2266 167.6464 86.9194 168.2608
+\c 86.1322 169.832 83.785 169.7264 82.9274 167.5568
+\c 78.8442 168.2288 74.5786 168.4448 70.1994 168.2
+\c 70.5306 169.672 71.041 171.136 71.785 172.5568
+\c 74.1402 177.0448 77.9546 179.952 82.2474 180.5312
+\o
+\m 66.9066 165.8272
+\c 67.1818 165.856 67.4538 165.8736 67.729 165.9008
+\c 67.6298 164.8224 67.6074 163.7408 67.6474 162.6832
+\c 67.3098 157.0272 68.9258 152.6528 68.9258 152.6528
+\c 61.0794 154.576 62.3818 162.2512 63.2234 165.2608
+\c 64.4106 165.4912 65.633 165.6832 66.9066 165.8272
+\o
+\m 62.793 165.184
+\c 58.185 157.408 61.5034 151.5232 65.0202 149.1472
+\c 68.7258 146.6448 70.129 144.4384 70.129 144.4384
+\c 75.1418 136.5184 70.2298 131.7072 70.2298 131.7072
+\c 70.9322 134.5136 68.4266 140.6256 60.9098 139.6256
+\c 55.9066 138.9584 52.2922 136.2544 50.4266 134.5152
+\c 52.4362 142.3376 53.2442 151.1792 48.5386 159.6064
+\c 52.3674 161.9744 57.0762 164.0368 62.793 165.184
+\o
+\m 35.3034 95.5168
+\c 29.5162 108.1488 30.5338 121.9264 30.5338 121.9264
+\c 30.2298 138.5184 37.9738 149.8736 42.6794 155.2256
+\c 43.889 156.3056 45.2458 157.3952 46.7674 158.448
+\c 52.7722 147.4432 48.7706 135.4608 45.745 126.4256
+\l 45.4186 125.4512
+\c 43.3354 119.2048 39.1754 102.304 49.1706 88.984
+\c 47.857 88.2288 46.729 87.344 45.8698 86.3856
+\c 45.4586 85.9296 45.0842 85.4304 44.7258 84.92
+\c 41.2922 87.4736 38.041 90.904 35.3034 95.5168
+\o
+\m 47.433 84.9824
+\c 48.209 85.848 49.2698 86.6432 50.5098 87.32
+\c 53.5258 83.8304 57.6266 80.648 63.1002 78.0384
+\c 58.1834 78.5328 52.1498 80.0032 46.4442 83.7184
+\c 46.7546 84.1616 47.0794 84.5872 47.433 84.9824
+\o
+\m 68.8666 77.84
+\l 68.8858 77.8992
+\c 61.4698 80.5536 56.2378 84.176 52.5818 88.2608
+\c 55.657 89.408 59.3754 89.792 62.7914 88.736
+\c 63.3242 88.5696 63.8762 88.3568 64.4362 88.0944
+\c 67.2778 86.0912 70.385 82.8912 71.7482 78.04
+\c 71.001 77.9616 70.0266 77.8784 68.8666 77.84
+\o
+\m 79.4986 66.472
+\c 79.4986 66.472 77.4538 67.7312 76.9818 74.7296
+\c 76.9354 75.4336 76.8138 76.176 76.6282 76.9392
+\c 78.585 77.5664 80.5226 78.4544 82.3626 79.5568
+\c 83.489 74.264 82.1482 67.6496 79.4986 66.472
+\o
+\m 128.6123 30.5696
+\c 128.2475 24.9664 124.8363 24.2352 124.8363 24.2352
+\l 122.8667 24.2352
+\c 122.8667 24.2352 119.4555 24.9664 119.0923 30.5696
+\c 118.7259 36.1696 119.5787 38.8496 122.0139 45.0624
+\c 123.5547 48.9904 123.7787 53.0592 123.7355 55.5248
+\c 123.8267 56.2304 123.8763 56.9088 123.9035 57.5712
+\c 123.9227 57.1712 123.9547 56.7664 123.9947 56.3536
+\c 123.8891 54.0592 123.9579 49.4752 125.6891 45.0624
+\c 128.1259 38.8496 128.9771 36.1696 128.6123 30.5696
+\o
+\m 151.0235 50.4128
+\c 145.2299 49.9152 140.2619 52.5904 139.6171 57.6848
+\c 140.8571 56.8784 142.6043 56.2096 144.9707 56.2752
+\c 145.1147 56.2752 148.5355 56.2368 151.0379 58.6464
+\c 152.7067 60.256 153.5515 62.5248 153.5515 65.3936
+\c 153.5515 69.312 151.9851 72.7216 149.1419 74.9856
+\c 145.9675 77.5136 141.4875 78.416 136.8475 77.4576
+\c 132.3995 76.5392 128.1915 72.8912 125.8635 67.9344
+\c 124.9979 66.0944 124.0731 63.3216 123.9035 59.784
+\c 123.7355 63.3216 122.8043 66.0944 121.9323 67.9344
+\c 119.5883 72.8912 115.353 76.5392 110.8762 77.4576
+\c 106.2058 78.416 101.6954 77.5136 98.497 74.9856
+\c 95.6362 72.7216 94.0602 69.312 94.0602 65.3936
+\c 94.0602 62.5248 94.913 60.256 96.5914 58.6464
+\c 99.1098 56.2368 102.5546 56.2752 102.697 56.2752
+\c 105.345 56.2032 107.2202 57.0336 108.481 57.9568
+\c 107.9818 52.6848 102.9386 49.9056 97.0394 50.4128
+\c 90.6378 50.9664 85.7818 57.0336 86.665 68.4032
+\c 86.665 68.4032 87.9818 75.6464 85.241 81.5216
+\c 87.8666 83.5408 90.1706 85.984 91.873 88.6928
+\c 92.8634 90.2704 93.6298 91.8928 94.1818 93.544
+\l 111.3754 93.544
+\l 123.9195 69.4592
+\l 137.3083 93.544
+\l 153.8811 93.544
+\c 154.4331 91.8928 155.2011 90.2704 156.1915 88.6928
+\c 157.8955 85.984 160.1979 83.5408 162.8235 81.5216
+\c 160.0811 75.6464 161.3979 68.4032 161.3979 68.4032
+\c 162.2811 57.0336 157.4267 50.9664 151.0235 50.4128
+\o
+\m 168.5627 66.472
+\c 165.9163 67.6496 164.5755 74.264 165.7003 79.5568
+\c 167.5419 78.4544 169.4795 77.5664 171.4363 76.9392
+\c 171.2507 76.176 171.1291 75.4336 171.0827 74.7296
+\c 170.6107 67.7312 168.5627 66.472 168.5627 66.472
+\o
+\m 183.6283 88.0992
+\c 184.1883 88.3568 184.7403 88.5696 185.2731 88.736
+\c 188.6891 89.792 192.4091 89.408 195.4811 88.2608
+\c 191.8267 84.176 186.5947 80.5536 179.1771 77.8992
+\l 179.1979 77.84
+\c 178.0379 77.8784 177.0635 77.9616 176.3163 78.04
+\c 177.6795 82.8912 180.7883 86.0912 183.6283 88.0992
+\o
+\m 184.9627 78.0384
+\c 190.4363 80.648 194.5403 83.8304 197.5547 87.32
+\c 198.7947 86.6432 199.8555 85.848 200.6331 84.9824
+\c 200.9851 84.5872 201.3099 84.1616 201.6219 83.7184
+\c 195.9147 80.0032 189.8795 78.5328 184.9627 78.0384
+\o
+\m 205.3851 155.2256
+\c 210.0907 149.8736 217.8363 138.5184 217.5323 121.9264
+\c 217.5323 121.9264 218.5483 108.1488 212.7611 95.5168
+\c 210.0235 90.9072 206.7723 87.4736 203.3387 84.92
+\c 202.9819 85.4304 202.6075 85.9296 202.1947 86.3856
+\c 201.3355 87.344 200.2059 88.2288 198.8955 88.984
+\c 208.8907 102.304 204.7291 119.2048 202.6459 125.4512
+\l 202.3195 126.4256
+\c 199.2955 135.4608 195.2907 147.4432 201.2987 158.448
+\c 202.8171 157.3952 204.1755 156.3056 205.3851 155.2256
+\o
+\s
+\m 124.1851 194.1968
+\c 124.1723 194.9664 124.1579 195.76 124.1275 196.5744
+\c 124.1275 196.5744 124.1259 196.536 124.1227 196.4608
+\c 124.1035 195.9296 124.0923 195.4128 124.0795 194.9008
+\c 124.1019 195.2928 124.1131 195.6112 124.1211 195.8768
+\c 124.1227 195.4608 124.1387 194.896 124.1851 194.1968
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian53.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian53.pgf
new file mode 100644
index 0000000000..5f7f5944ee
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian53.pgf
@@ -0,0 +1,278 @@
+\r 0 0 134 134
+\i
+\m 124.1325 13.212
+\c 122.0505 13.212 120.362 11.518 120.362 9.4378
+\c 120.362 7.351 122.0505 5.6636 124.1325 5.6636
+\c 126.2228 5.6636 127.9028 7.351 127.9028 9.4378
+\c 127.9028 11.518 126.2228 13.212 124.1325 13.212
+\o
+\s
+\m 131.1452 5.9335
+\c 129.5058 5.9335 128.1771 4.6037 128.1771 2.9711
+\c 128.1771 1.332 129.5058 0 131.1452 0
+\c 132.7821 0 134.1066 1.332 134.1066 2.9711
+\c 134.1066 4.6037 132.7821 5.9335 131.1452 5.9335
+\o
+\s
+\m 78.4159 20.0167
+\c 70.3232 20.4248 66.303 17.3681 60.7316 13.1331
+\c 57.8515 10.9453 54.5835 8.4525 50.0814 5.9642
+\c 46.1898 3.8115 41.7283 2.6464 37.1801 2.4401
+\c 38.9983 2.789 40.7876 3.3398 42.5191 4.1166
+\c 45.7731 5.5824 48.7699 8.0422 51.1378 11.055
+\c 53.9 12.9202 58.4087 16.7888 60.1786 23.0492
+\c 62.8037 32.3554 59.1673 39.4233 60.7851 43.6715
+\c 62.4008 47.9197 68.2639 46.7041 68.2639 46.7041
+\c 67.8588 56.0036 59.3687 56.2055 56.9451 51.7554
+\c 54.5192 47.3141 57.5516 45.4906 58.9658 32.3554
+\c 59.9109 23.5868 56.3623 18.0769 53.8958 15.3625
+\c 54.32 16.2139 54.708 17.0697 55.0314 17.9562
+\c 56.54 22.1035 57.59 28.5943 54.035 35.9365
+\c 51.1422 41.9073 45.6287 45.4752 38.9147 45.7342
+\c 32.0232 45.9975 25.3417 42.6511 22.2804 37.4089
+\c 19.4829 32.6055 19.2086 27.0846 21.5615 22.6389
+\c 23.6124 18.7615 27.373 16.2731 31.6201 15.9747
+\c 33.4741 15.8474 35.0876 16.2095 36.429 17.0433
+\c 39.5555 18.4126 42.457 21.3925 42.5898 26.2837
+\c 42.7912 33.7685 35.3081 34.5716 32.8836 31.7431
+\c 30.1868 28.5943 33.0861 22.2373 38.5461 24.6664
+\c 38.6876 23.9291 38.6417 23.2445 38.4818 22.5972
+\c 38.3714 22.2461 38.2505 21.8928 38.1026 21.5505
+\c 37.4682 20.2076 36.3392 19.0906 35.1883 18.2283
+\c 34.209 17.728 33.0583 17.4998 31.7274 17.5875
+\c 28.0427 17.8465 24.7802 20.0167 22.9953 23.3981
+\c 20.9048 27.3435 21.1606 32.2764 23.6786 36.5904
+\c 26.445 41.3345 32.5417 44.3605 38.8524 44.1148
+\c 44.9502 43.8844 49.9528 40.6455 52.5779 35.2321
+\c 55.8929 28.4012 54.9114 22.3646 53.5079 18.507
+\c 51.4531 12.8412 46.9848 7.8974 41.8567 5.5933
+\c 33.7085 1.9354 24.1438 3.489 16.318 9.5585
+\c 14.55 11.1384 13.0028 12.9509 11.6807 14.9543
+\c 11.0303 16.9753 10.1741 19.0402 9.227 21.0239
+\c 8.4149 22.7398 7.8534 24.2737 7.4571 25.6824
+\c 7.1022 27.9491 7.0327 30.2883 7.2385 32.6384
+\c 8.0719 35.3001 10.2535 32.3159 11.2522 29.3162
+\c 13.6135 32.2171 14.8928 34.3741 15.7714 44.4768
+\c 16.6522 54.6761 18.7287 52.3632 18.7287 52.3632
+\c 19.5397 46.9103 22.3726 46.9103 22.3726 46.9103
+\c 22.3726 46.9103 23.3144 52.2974 33.6927 58.628
+\c 39.4205 62.1258 45.8578 62.8828 50.1328 62.9355
+\c 69.4124 60.412 83.9307 47.6696 84.1021 47.5138
+\l 84.2756 47.3624
+\l 85.7199 47.121
+\l 85.7349 47.189
+\c 96.7816 36.145 104.6717 28.2585 104.6717 28.2585
+\c 105.1452 27.7868 105.9165 27.7802 106.3881 28.2564
+\c 106.866 28.7259 106.8704 29.4918 106.3936 29.9679
+\l 87.6314 48.8479
+\l 87.4234 50.1031
+\l 87.2672 50.2786
+\c 87.1072 50.4586 73.1647 66.3279 71.5628 86.9436
+\c 71.7397 91.1063 72.7681 96.309 76.1498 100.6867
+\c 83.022 109.5803 87.8757 112.0073 87.8757 112.0073
+\c 87.8757 112.0073 88.0128 114.8357 82.4177 115.6454
+\c 82.4177 115.6454 80.1933 117.4645 90.3004 119.084
+\c 100.4116 120.7012 103.6474 120.6353 105.4645 123.1259
+\c 102.4677 124.1265 99.4817 126.3055 102.1451 127.1371
+\c 105.0318 127.3939 107.9011 127.2249 110.6526 126.6259
+\c 111.6382 126.2572 112.6689 125.7789 113.7553 125.1469
+\c 115.217 124.2955 117.379 123.3892 119.7577 122.7441
+\c 121.787 121.4143 123.6298 119.8542 125.222 118.0614
+\c 131.295 110.2364 132.8464 100.6626 129.1929 92.5238
+\c 126.8871 87.3891 121.936 82.928 116.2777 80.8654
+\c 112.4205 79.4654 106.3861 78.4889 99.5523 81.8023
+\c 94.1394 84.4268 90.9058 89.4298 90.6657 95.53
+\c 90.4259 101.8365 93.4451 107.9346 98.1916 110.6994
+\c 102.5052 113.2207 107.4403 113.4775 111.3855 111.3885
+\c 114.7669 109.6001 116.9358 106.3327 117.1969 102.6506
+\c 117.2869 101.3209 117.0576 100.1711 116.554 99.1836
+\c 115.6927 98.0404 114.5782 96.9125 113.2368 96.2805
+\c 112.8833 96.1247 112.5201 95.9996 112.1633 95.8899
+\c 111.5228 95.7363 110.8369 95.6902 110.1149 95.8307
+\c 112.5425 101.2924 106.1889 104.1911 103.0431 101.492
+\c 100.2124 99.0673 101.0181 91.5846 108.4957 91.7909
+\c 113.3911 91.9226 116.374 94.8257 117.7433 97.9482
+\c 118.5771 99.2955 118.9392 100.9018 118.8106 102.7647
+\c 118.5129 107.0086 116.0205 110.7675 112.144 112.8213
+\c 107.6953 115.1693 102.1774 114.8994 97.3751 112.0994
+\c 92.1305 109.0405 88.7885 102.35 89.0501 95.4686
+\c 89.307 88.7474 92.8816 83.2374 98.8473 80.3453
+\c 106.1867 76.7861 112.6755 77.8372 116.8327 79.3535
+\c 117.7113 79.6716 118.5706 80.0622 119.4147 80.4857
+\c 116.7041 78.0127 111.1967 74.4689 102.4324 75.4125
+\c 89.2899 76.8322 87.4693 79.8604 83.022 77.4378
+\c 78.5776 75.0087 78.7791 66.5145 88.0793 66.1129
+\c 88.0793 66.1129 86.8663 71.9761 91.1114 73.5934
+\c 95.3566 75.2106 102.4324 71.5702 111.7348 74.199
+\c 117.9941 75.9698 121.8621 80.477 123.7286 83.2418
+\c 126.735 85.6117 129.2036 88.6004 130.6675 91.8633
+\c 131.4429 93.5881 131.9948 95.3786 132.343 97.2021
+\c 132.1348 92.6533 130.978 88.1856 128.8181 84.2951
+\c 126.3271 79.7945 123.84 76.5294 121.6501 73.646
+\c 117.4155 68.0812 114.3522 64.0568 114.7691 55.9619
+\c 114.9747 51.9002 117.2612 48.9774 121.0392 47.9395
+\c 125.4276 46.7304 130.6071 48.3849 132.8251 51.7137
+\c 134.3713 54.0375 134.685 56.7673 133.6629 59.0186
+\c 132.7909 60.9387 131.1022 62.1938 129.0193 62.4637
+\c 128.3294 62.5537 127.7165 62.5537 127.1699 62.4835
+\c 126.4842 62.4747 125.6883 62.2377 124.8064 61.6014
+\c 121.8427 59.4443 122.3784 55.4002 123.4584 55.2641
+\c 124.5405 55.1303 125.3486 55.4002 125.3486 58.2265
+\c 125.3486 59.723 126.5893 60.502 127.7635 60.9036
+\c 128.0935 60.9211 128.4407 60.9123 128.8137 60.8619
+\c 130.3223 60.6644 131.5546 59.745 132.1886 58.3494
+\c 132.9836 56.6093 132.7181 54.4654 131.4794 52.609
+\c 129.6578 49.8771 125.1663 48.4815 121.4721 49.4953
+\c 119.6699 49.9912 116.6139 51.5031 116.3826 56.0453
+\c 115.9979 63.5477 118.7591 67.1728 122.9335 72.6674
+\c 125.1601 75.5946 127.6821 78.9102 130.2343 83.5117
+\c 134.3897 91.0141 135.1801 100.5112 132.3494 108.9133
+\c 131.0679 112.7314 129.0698 116.1392 126.5068 119.0489
+\c 125.9292 119.7905 125.3175 120.5344 124.6607 121.2476
+\l 124.4968 121.0984
+\c 124.1613 121.4099 123.8141 121.7106 123.4606 122.009
+\c 127.9436 121.4582 132.3343 122.2767 133.7722 126.3625
+\c 135.3879 132.2236 130.1358 135.0587 126.0879 134.2468
+\c 122.0442 133.4371 121.8427 130.6042 123.4584 128.5854
+\c 121.4375 126.9682 119.011 128.3835 108.7027 129.1932
+\c 106.866 129.3337 103.1545 129.213 98.7402 128.3001
+\c 98.6801 128.2848 98.6213 128.2738 98.5622 128.2672
+\c 98.3329 128.2146 98.0973 128.1575 97.8594 128.107
+\c 97.2595 127.9754 96.6637 127.8262 96.0702 127.6616
+\c 85.8549 124.9121 73.3341 117.7586 70.8117 100.4739
+\c 70.4968 99.0519 70.2526 97.6015 70.0895 96.1247
+\c 69.8881 94.3166 69.7959 92.5304 69.7959 90.7727
+\c 69.7959 74.9495 77.3455 61.3951 82.1434 54.3667
+\l 73.4069 63.1593
+\c 72.1254 65.5577 68.6088 72.3865 66.0417 79.6607
+\c 64.5631 83.854 63.6696 87.716 63.3161 91.4749
+\c 62.8937 95.9426 63.3523 101.13 64.1548 105.5362
+\c 64.9274 109.7954 66.7318 114.7765 66.3118 119.1476
+\c 65.8253 124.177 61.6958 127.4487 56.7375 127.8086
+\c 52.7324 128.1005 48.1542 125.4826 47.7155 121.1159
+\c 47.4906 118.8667 48.1335 116.8414 49.4429 115.4743
+\c 49.4021 115.4875 49.3678 115.494 49.3316 115.5094
+\c 49.3935 115.4655 49.4514 115.426 49.5135 115.3799
+\c 49.5541 115.3404 49.58 115.2944 49.6121 115.2549
+\c 50.4606 114.4627 51.5172 114.0085 52.6806 113.8439
+\c 55.3979 113.1593 57.7401 114.1577 58.8991 115.5094
+\c 60.5152 117.3987 60.2495 120.9053 58.7611 121.0391
+\c 57.2815 121.173 56.7414 120.3633 56.7414 118.0702
+\c 56.7414 116.7294 55.8244 116.0009 55.0593 115.6147
+\c 54.8471 115.5511 54.6448 115.4743 54.3931 115.4304
+\c 52.9314 115.2044 51.6607 115.5511 50.7307 116.431
+\c 49.6463 117.447 49.1427 119.0971 49.3248 120.9557
+\c 49.6634 124.3328 53.4372 126.4262 56.6194 126.1958
+\c 60.8301 125.8908 63.8173 122.924 64.2331 118.6473
+\c 64.4925 115.9241 63.7468 113.1856 63.0288 110.5371
+\l 62.8917 110.0104
+\c 61.3219 104.224 60.8172 98.251 61.3895 92.2627
+\c 61.7559 88.3743 62.6795 84.3851 64.2032 80.0622
+\c 65.9153 75.2194 68.1225 70.3172 69.826 66.758
+\l 56.8143 79.8538
+\l 60.6524 83.3076
+\l 56.6923 87.6875
+\l 52.6527 84.0384
+\l 45.5644 91.1699
+\c 45.3305 93.2479 45.3799 96.5504 47.5764 98.398
+\c 50.9471 100.8162 52.698 97.5861 51.8878 95.0232
+\c 54.7207 94.6216 58.3615 100.8162 53.7778 104.5926
+\c 49.1943 108.3713 42.3199 103.919 42.5898 95.8307
+\c 40.6675 100.9237 37.3012 103.2431 32.771 104.5027
+\c 24.1846 113.8066 18.5079 120.3172 16.3456 118.8141
+\c 13.8676 117.0871 17.4814 114.206 30.9282 101.6039
+\c 32.2354 97.4852 34.5754 94.4022 39.3518 92.5984
+\c 31.2646 92.8661 26.8202 85.9913 30.596 81.4074
+\c 34.3696 76.8322 40.5655 80.4682 40.162 83.2989
+\c 37.6054 82.487 34.3654 84.2424 36.7932 87.6107
+\c 38.4454 89.5812 41.2655 89.8248 43.3356 89.6844
+\c 45.7206 87.2816 48.1934 84.8042 50.7051 82.2851
+\l 46.9743 78.9212
+\l 50.928 74.5369
+\l 54.8749 78.0961
+\c 59.3386 73.6175 63.8763 69.0665 68.3176 64.6186
+\c 64.7196 66.363 59.4824 68.7549 54.3134 70.5805
+\c 49.9978 72.1056 46.0035 73.0272 42.1162 73.3959
+\c 36.129 73.962 30.1589 73.4639 24.3644 71.8928
+\l 23.8436 71.7545
+\c 21.1909 71.0326 18.4566 70.2887 15.7308 70.5498
+\c 11.4536 70.9624 8.4941 73.9576 8.1856 78.1641
+\c 7.9521 81.3437 10.0477 85.118 13.4206 85.4603
+\c 15.2807 85.6402 16.9306 85.1333 17.9488 84.0559
+\c 18.8336 83.1233 19.1787 81.855 18.9472 80.3936
+\c 18.4864 77.4751 15.9193 77.7823 15.6301 77.8284
+\l 15.3643 76.2331
+\c 15.4435 76.2178 17.2758 75.9281 18.7822 77.0099
+\c 19.7359 77.6967 20.3228 78.7478 20.5416 80.139
+\c 20.8543 82.0876 20.3487 83.8738 19.1232 85.1662
+\c 17.7603 86.6123 15.6235 87.3035 13.2643 87.0665
+\c 8.9014 86.6299 6.2752 82.0503 6.5699 78.0456
+\c 6.932 73.0865 10.2063 68.9567 15.2294 68.4718
+\c 19.6029 68.0483 24.5851 69.8564 28.8366 70.6288
+\c 33.2446 71.4254 38.439 71.8906 42.9049 71.4671
+\c 46.6655 71.1138 50.5282 70.2207 54.7207 68.7417
+\c 63.0183 65.8145 70.7219 61.654 71.9453 60.9848
+\c 75.0323 57.8907 78.044 54.8823 80.9069 52.0187
+\c 74.1846 56.7541 60.1304 64.9872 43.6077 64.9872
+\c 41.8483 64.9872 40.0613 64.8928 38.2547 64.6932
+\c 36.7761 64.5308 35.3274 64.2806 33.909 63.9668
+\c 16.47 61.4302 9.3407 48.7053 6.6406 38.438
+\c 6.5098 37.9465 6.3919 37.4506 6.2846 36.9656
+\c 6.2247 36.7023 6.1648 36.45 6.1135 36.1954
+\c 6.1027 36.1515 6.092 36.1099 6.0856 36.0638
+\c 5.1662 31.64 5.0462 27.9206 5.1844 26.084
+\c 5.9956 15.7706 7.4121 13.3437 5.7942 11.3249
+\c 3.7666 12.9399 0.9425 12.7403 0.1348 8.6939
+\c -0.6751 4.652 2.1575 -0.6056 8.0153 1.0116
+\c 12.4178 2.5564 13.3756 6.4206 12.6534 10.9738
+\c 12.8529 10.739 13.0715 10.5152 13.2834 10.2848
+\l 13.1327 10.1202
+\c 13.845 9.4641 14.5842 8.8607 15.3362 8.2748
+\c 18.24 5.7118 21.6473 3.7128 25.4639 2.4313
+\c 33.8682 -0.395 43.3677 0.3928 50.8657 4.5532
+\c 55.4696 7.1008 58.7815 9.6221 61.7131 11.8472
+\c 67.2031 16.0274 70.8277 18.7834 78.3334 18.4016
+\c 82.8827 18.169 84.3891 15.1145 84.88 13.313
+\c 85.9001 9.6155 84.5028 5.1259 81.7684 3.3047
+\c 79.917 2.0671 77.7697 1.7993 76.0318 2.5959
+\c 74.6283 3.2301 73.7157 4.4589 73.5162 5.9686
+\c 73.5011 6.0695 73.514 6.1617 73.5076 6.2582
+\c 73.8399 7.5551 74.609 9.2293 76.3513 9.2293
+\c 79.1819 9.2293 79.4518 10.0412 79.3127 11.1165
+\c 79.2366 11.7594 77.7697 12.1917 76.1454 11.8296
+\c 75.3011 11.7243 74.4075 11.4193 73.6426 10.8027
+\c 72.6525 10.0193 71.5553 8.5096 71.9132 5.7601
+\c 72.1831 3.6843 73.439 1.9924 75.3614 1.1213
+\c 77.6132 0.0987 80.3401 0.4103 82.6641 1.9551
+\c 85.9964 4.178 87.6521 9.3544 86.4399 13.7431
+\c 85.4048 17.5217 82.4776 19.8082 78.4159 20.0167
+\o
+\s
+\m 121.2213 12.8653
+\c 121.5919 13.0716 122.0078 13.4183 122.4471 13.9515
+\c 125.0228 18.6211 123.842 22.7113 121.0649 26.163
+\c 120.8099 27.7231 120.9492 29.6059 123.0536 29.72
+\c 126.6911 29.924 126.8936 34.5716 122.853 35.7851
+\c 119.7169 36.7265 117.692 33.4108 118.3393 28.9607
+\c 114.0211 32.7328 108.2182 35.5218 104.8624 37.2026
+\c 97.9829 40.6411 95.9631 47.5138 98.7916 49.7344
+\c 101.6266 51.9595 105.2631 48.3213 105.2631 48.3213
+\c 110.3203 60.0456 94.9517 61.259 92.123 53.9827
+\c 88.2807 42.6577 104.0546 34.9776 107.8925 31.5413
+\c 108.9017 26.2837 109.5071 25.0746 116.9891 23.2555
+\c 124.47 21.4298 121.8686 15.5666 119.6162 15.1606
+\c 118.8106 13.1418 112.9454 10.3133 111.1305 17.796
+\c 109.3068 25.2765 108.0918 25.8799 102.8375 26.8937
+\c 99.4003 30.7338 91.7157 46.5022 80.3948 42.6577
+\c 73.1122 39.8314 74.3283 24.4668 86.0588 29.5159
+\c 86.0588 29.5159 82.4177 33.1607 84.6441 35.9848
+\c 86.8663 38.8198 93.7409 36.7967 97.1759 29.924
+\c 98.8517 26.5689 101.6448 20.7605 105.4195 16.4421
+\c 100.9644 17.0938 97.6516 15.0619 98.5903 11.9306
+\c 99.8051 7.8864 104.4531 8.0883 104.6579 11.7287
+\c 104.7724 13.8374 106.6516 13.9779 108.2182 13.7211
+\c 111.6705 10.9387 115.759 9.7582 120.4261 12.3365
+\c 120.7671 12.5274 121.0308 12.7052 121.2213 12.8653
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian54.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian54.pgf
new file mode 100644
index 0000000000..3f2ace6a49
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian54.pgf
@@ -0,0 +1,278 @@
+\r 0 0 134.5 134.5
+\i
+\m 10.1222 13.2078
+\c 12.2068 13.2078 13.8965 11.5203 13.8965 9.4357
+\c 13.8965 7.3511 12.2068 5.6614 10.1222 5.6614
+\c 8.031 5.6614 6.3523 7.3511 6.3523 9.4357
+\c 6.3523 11.5203 8.031 13.2078 10.1222 13.2078
+\o
+\s
+\m 3.1112 5.9313
+\c 4.7526 5.9313 6.0802 4.6038 6.0802 2.9646
+\c 6.0802 1.3298 4.7526 0 3.1112 0
+\c 1.4742 0 0.1489 1.3298 0.1489 2.9646
+\c 0.1489 4.6038 1.4742 5.9313 3.1112 5.9313
+\o
+\s
+\m 55.8415 20.0147
+\c 63.9321 20.425 67.9543 17.3661 73.5236 13.1354
+\c 76.407 10.9432 79.6722 8.457 84.1728 5.9664
+\c 88.0678 3.8094 92.5289 2.6442 97.0778 2.4401
+\c 95.2565 2.7846 93.4681 3.3376 91.7411 4.1144
+\c 88.4825 5.5802 85.4872 8.0423 83.1173 11.053
+\c 80.3546 12.9225 75.8518 16.7868 74.0788 23.0495
+\c 71.4543 32.3513 75.0882 39.4259 73.4731 43.6698
+\c 71.8537 47.9203 65.9904 46.7024 65.9904 46.7024
+\c 66.3985 56.0021 74.8885 56.2039 77.3155 51.756
+\c 79.738 47.3102 76.7054 45.4889 75.2923 32.3513
+\c 74.3465 23.5849 77.8926 18.0727 80.359 15.3649
+\c 79.9377 16.2097 79.5493 17.0699 79.2267 17.9542
+\c 77.717 22.1015 76.6659 28.5946 80.2208 35.9347
+\c 83.1151 41.9034 88.6295 45.4736 95.3399 45.7347
+\c 102.2345 45.9958 108.9185 42.6516 111.9774 37.4071
+\c 114.7752 32.6037 115.0473 27.0849 112.695 22.6369
+\c 110.6433 18.7617 106.8843 16.2711 102.6383 15.9749
+\c 100.7819 15.8454 99.1668 16.2053 97.8283 17.0413
+\c 94.7013 18.4084 91.8004 21.3884 91.6665 26.284
+\c 91.4668 33.7667 98.9474 34.5742 101.3721 31.7413
+\c 104.0712 28.5924 101.1724 22.2398 95.7107 24.6645
+\c 95.5703 23.9316 95.6142 23.2426 95.7743 22.5952
+\c 95.8841 22.2441 96.0069 21.8909 96.1518 21.5485
+\c 96.7881 20.2078 97.9182 19.0931 99.0681 18.2263
+\c 100.0489 17.726 101.1966 17.4956 102.5286 17.5877
+\c 106.2107 17.8445 109.4781 20.0147 111.2621 23.394
+\c 113.3489 27.3438 113.0966 32.2767 110.5796 36.5908
+\c 107.8148 41.3328 101.7166 44.3588 95.4057 44.1153
+\c 89.3054 43.8827 84.3067 40.6438 81.68 35.2303
+\c 78.3644 28.3971 79.343 22.3626 80.7474 18.5072
+\c 82.8079 12.8413 87.2734 7.8953 92.4016 5.5912
+\c 100.5449 1.9376 110.1122 3.489 117.9395 9.5564
+\c 119.7059 11.1363 121.2552 12.9467 122.574 14.9523
+\c 123.2257 16.9711 124.0815 19.0382 125.0294 21.0263
+\c 125.8414 22.7401 126.4075 24.2739 126.7981 25.6783
+\c 127.1536 27.9517 127.226 30.2886 127.0197 32.6388
+\c 126.1837 35.2984 124.0047 32.3118 123.0063 29.3144
+\c 120.6473 32.2153 119.3636 34.3723 118.4859 44.4773
+\c 117.606 54.6789 115.5279 52.3616 115.5279 52.3616
+\c 114.716 46.9087 111.8809 46.9087 111.8809 46.9087
+\c 111.8809 46.9087 110.9417 52.298 100.5624 58.6309
+\c 94.8352 62.1265 88.3991 62.8836 84.1267 62.934
+\c 64.8449 60.4105 50.3271 47.6679 50.156 47.5121
+\l 49.9826 47.3585
+\l 48.5343 47.1193
+\l 48.519 47.1874
+\c 37.4748 36.1432 29.5839 28.2611 29.5839 28.2611
+\c 29.1121 27.7827 28.3397 27.7805 27.8679 28.2523
+\c 27.3917 28.7263 27.3895 29.4943 27.8613 29.9683
+\l 46.623 48.8463
+\l 46.8315 50.1015
+\l 46.9895 50.2748
+\c 47.1497 50.4547 61.0926 66.3331 62.6923 86.9424
+\c 62.5167 91.1029 61.4898 96.3079 58.1083 100.6857
+\c 51.2334 109.5794 46.3817 112.0063 46.3817 112.0063
+\c 46.3817 112.0063 46.2412 114.837 51.8368 115.6446
+\c 51.8368 115.6446 54.0641 117.4615 43.9525 119.0809
+\c 33.8431 120.7025 30.6065 120.6345 28.7895 123.1251
+\c 31.7892 124.1257 34.7735 126.3069 32.1096 127.1386
+\c 29.2262 127.3931 26.356 127.2264 23.6021 126.6295
+\c 22.6212 126.2564 21.5855 125.7803 20.5015 125.1461
+\c 19.04 124.2947 16.8764 123.3906 14.4999 122.7455
+\c 12.468 121.4113 10.6269 119.8511 9.0316 118.0605
+\c 2.9598 110.2355 1.4106 100.6659 5.0642 92.5227
+\c 7.3661 87.3923 12.3187 82.9268 17.978 80.8707
+\c 21.8378 79.4685 27.8723 78.4898 34.7077 81.8011
+\c 40.1146 84.4255 43.3513 89.4286 43.5883 95.5267
+\c 43.8318 101.8399 40.8102 107.9336 36.0638 110.6985
+\c 31.7519 113.2198 26.8146 113.4765 22.8714 111.3853
+\c 19.4899 109.5969 17.3197 106.3317 17.0607 102.6518
+\c 16.9686 101.3198 17.199 100.17 17.7015 99.1825
+\c 18.5617 98.0415 19.6786 96.9158 21.0171 96.2772
+\c 21.3726 96.1236 21.7325 96.0007 22.0924 95.8866
+\c 22.7331 95.7352 23.4178 95.6935 24.1397 95.8318
+\c 21.7128 101.2913 28.0676 104.1922 31.2143 101.491
+\c 34.045 99.0662 33.2397 91.5879 25.7569 91.7898
+\c 20.8635 91.9192 17.8836 94.8245 16.5121 97.9493
+\c 15.6805 99.2944 15.3162 100.9007 15.4435 102.7615
+\c 15.7419 107.0098 18.2369 110.7621 22.1121 112.816
+\c 26.5601 115.1684 32.0789 114.8985 36.8823 112.0985
+\c 42.1246 109.0396 45.471 102.3534 45.2055 95.4675
+\c 44.9509 88.7506 41.3763 83.2384 35.4077 80.3462
+\c 28.0676 76.7848 21.5789 77.8403 17.425 79.35
+\c 16.5429 79.6703 15.6849 80.0631 14.8422 80.4888
+\c 17.5523 78.0114 23.0601 74.4697 31.8265 75.4133
+\c 44.9641 76.8287 46.7854 79.8613 51.2334 77.4365
+\c 55.6791 75.0073 55.4751 66.5152 46.1776 66.1114
+\c 46.1776 66.1114 47.3933 71.9748 43.145 73.592
+\c 38.9011 75.207 31.8265 71.5732 22.5225 74.1976
+\c 16.262 75.9685 12.3977 80.4757 10.5281 83.2428
+\c 7.5197 85.6148 5.0532 88.6014 3.5896 91.8622
+\c 2.8128 93.5891 2.262 95.3775 1.9109 97.201
+\c 2.1194 92.6521 3.2802 88.1844 5.4416 84.2938
+\c 7.93 79.7976 10.4162 76.528 12.6062 73.6425
+\c 16.8391 68.0798 19.9024 64.0553 19.4877 55.9604
+\c 19.2814 51.9008 16.9927 48.9779 13.2162 47.9378
+\c 8.8297 46.7287 3.6489 48.3833 1.4326 51.7121
+\c -0.1167 54.0359 -0.4305 56.7657 0.5943 59.0149
+\c 1.4633 60.9394 3.1573 62.1967 5.2354 62.4666
+\c 5.9266 62.5566 6.541 62.5566 7.0874 62.4842
+\c 7.7698 62.471 8.5664 62.2384 9.4485 61.5999
+\c 12.4131 59.4428 11.8755 55.3986 10.7959 55.2648
+\c 9.7162 55.1287 8.9087 55.3986 8.9087 58.2249
+\c 8.9087 59.7215 7.6667 60.5027 6.4949 60.9021
+\c 6.1636 60.9218 5.8147 60.913 5.446 60.8604
+\c 3.9319 60.6651 2.7009 59.75 2.0667 58.3522
+\c 1.2724 56.6121 1.5401 54.4638 2.7777 52.6096
+\c 4.5968 49.8754 9.0908 48.4776 12.7861 49.498
+\c 14.5899 49.9895 17.6422 51.5036 17.8726 56.046
+\c 18.2567 63.5462 15.4962 67.1713 11.3225 72.666
+\c 9.0974 75.5932 6.5717 78.9111 4.0219 83.5105
+\c -0.1298 91.013 -0.9242 100.5123 1.9065 108.9123
+\c 3.1858 112.7305 5.1827 116.1427 7.7501 119.048
+\c 8.3272 119.7941 8.935 120.5336 9.5934 121.2467
+\l 9.7579 121.0997
+\c 10.0937 121.4091 10.4404 121.7141 10.7959 122.0104
+\c 6.315 121.4574 1.9197 122.2759 0.4846 126.3618
+\c -1.1304 132.2229 4.1228 135.058 8.1692 134.2461
+\c 12.2134 133.4386 12.4131 130.6057 10.7959 128.5868
+\c 12.8212 126.9674 15.2438 128.385 25.5529 129.1925
+\c 27.3917 129.3351 31.1046 129.2144 35.5196 128.2972
+\c 35.5767 128.284 35.6337 128.2731 35.6952 128.2643
+\c 35.9234 128.2138 36.1604 128.159 36.3952 128.1041
+\c 36.9942 127.9746 37.5933 127.8254 38.188 127.6608
+\c 48.4027 124.9113 60.9236 117.7577 63.4428 100.4706
+\c 63.7587 99.0509 64.0045 97.6026 64.1647 96.1236
+\c 64.3666 94.3155 64.4587 92.5314 64.4587 90.7716
+\c 64.4587 74.9481 56.9124 61.3914 52.1111 54.3695
+\l 60.849 63.16
+\c 62.1327 65.5563 65.6503 72.3829 68.2155 79.6594
+\c 69.6923 83.8528 70.5876 87.7148 70.9387 91.476
+\c 71.3644 95.9415 70.9036 101.1289 70.1004 105.5352
+\c 69.328 109.7944 67.5243 114.7756 67.9456 119.1511
+\c 68.4327 124.174 72.5603 127.448 77.5195 127.8079
+\c 81.5242 128.0997 86.1038 125.4818 86.5405 121.1173
+\c 86.7665 118.8659 86.1236 116.8405 84.8157 115.469
+\c 84.8531 115.4866 84.8882 115.4953 84.9255 115.5107
+\c 84.864 115.4646 84.8048 115.4273 84.7433 115.3834
+\c 84.7038 115.3417 84.6775 115.2935 84.6424 115.254
+\c 83.7976 114.4618 82.7399 114.0054 81.5791 113.843
+\c 78.8581 113.1627 76.5167 114.159 75.3559 115.5107
+\c 73.7409 117.3978 74.0086 120.9044 75.4941 121.0383
+\c 76.9731 121.1743 77.5151 120.3646 77.5151 118.0715
+\c 77.5151 116.733 78.4324 116 79.1982 115.6138
+\c 79.4089 115.5502 79.6107 115.4734 79.8675 115.4339
+\c 81.3245 115.2035 82.5973 115.5502 83.5277 116.4301
+\c 84.6095 117.4483 85.1164 119.0963 84.9342 120.9549
+\c 84.5919 124.332 80.8198 126.4232 77.638 126.1972
+\c 73.4249 125.8878 70.4384 122.9254 70.0236 118.6442
+\c 69.7625 115.9232 70.5108 113.1847 71.2305 110.5361
+\l 71.3666 110.0139
+\c 72.9333 104.2186 73.4402 98.2499 72.8675 92.2659
+\c 72.4988 88.3731 71.5772 84.3816 70.0543 80.0631
+\c 68.3427 75.218 66.1374 70.318 64.428 66.761
+\l 77.4405 79.8525
+\l 73.6048 83.3042
+\l 77.5634 87.6863
+\l 81.6076 84.0415
+\l 88.691 91.1688
+\c 88.9258 93.2468 88.8753 96.5471 86.6809 98.3991
+\c 83.3104 100.8173 81.5571 97.585 82.3669 95.0242
+\c 79.5383 94.6205 75.8957 100.8173 80.4797 104.5916
+\c 85.0637 108.3703 91.9386 103.9179 91.6665 95.8318
+\c 93.5888 100.9227 96.9571 103.2443 101.4884 104.5016
+\c 110.0727 113.8079 115.7495 120.3163 117.9088 118.811
+\c 120.3884 117.0884 116.7787 114.2095 103.3295 101.6029
+\c 102.0239 97.4819 99.6825 94.4032 94.9032 92.5995
+\c 102.9916 92.8694 107.4373 85.9923 103.6608 81.4105
+\c 99.8888 76.8287 93.6897 80.4669 94.0957 83.2954
+\c 96.6521 82.4901 99.8931 84.239 97.4662 87.6095
+\c 95.8116 89.5822 92.9897 89.8214 90.9226 89.6854
+\c 88.5374 87.2826 86.0643 84.8051 83.554 82.2838
+\l 87.2844 78.9221
+\l 83.328 74.5356
+\l 79.3803 78.097
+\c 74.9192 73.6161 70.3769 69.065 65.9399 64.6193
+\c 69.5365 66.3616 74.7744 68.7578 79.9421 70.5835
+\c 84.2606 72.1042 88.2521 73.0258 92.1405 73.3945
+\c 98.1311 73.965 104.0997 73.4603 109.8928 71.8958
+\l 110.4129 71.7531
+\c 113.0658 71.0334 115.8022 70.2917 118.5254 70.5528
+\c 122.8044 70.9654 125.7646 73.9519 126.074 78.165
+\c 126.3044 81.3446 124.211 85.1189 120.8338 85.459
+\c 118.9752 85.639 117.3251 85.1321 116.3091 84.0547
+\c 115.4248 83.1243 115.0781 81.8559 115.3107 80.3945
+\c 115.7715 77.476 118.3411 77.781 118.6285 77.8271
+\l 118.8918 76.2318
+\c 118.8172 76.2142 116.9806 75.929 115.4752 77.0108
+\c 114.5229 77.6976 113.9326 78.7487 113.7132 80.1399
+\c 113.4038 82.0863 113.9085 83.8725 115.1351 85.1672
+\c 116.4978 86.6089 118.6351 87.3023 120.994 87.0675
+\c 125.3586 86.633 127.9787 82.049 127.6912 78.0443
+\c 127.3247 73.0851 124.0508 68.9553 119.0279 68.4704
+\c 114.6524 68.0513 109.6734 69.855 105.4185 70.6296
+\c 101.0123 71.4284 95.8204 71.8914 91.3527 71.4701
+\c 87.5916 71.1146 83.7295 70.2193 79.5383 68.7403
+\c 71.2393 65.813 63.5327 61.6525 62.3127 60.9832
+\c 59.2208 57.8914 56.2102 54.8851 53.3487 52.0171
+\c 60.0722 56.7525 74.1227 64.9857 90.6483 64.9857
+\c 92.4082 64.9857 94.1988 64.8936 96.0026 64.6895
+\c 97.4794 64.5271 98.9276 64.2814 100.3496 63.9676
+\c 117.7881 61.4287 124.9175 48.7036 127.6166 38.4385
+\c 127.7504 37.9447 127.8646 37.4532 127.9721 36.9639
+\c 128.0335 36.7027 128.0928 36.4482 128.1476 36.1936
+\c 128.152 36.152 128.163 36.1081 128.1718 36.0598
+\c 129.0912 31.6404 129.2119 27.9187 129.0714 26.0821
+\c 128.2617 15.7708 126.8442 13.3461 128.4614 11.3229
+\c 130.489 12.9379 133.3153 12.7382 134.1228 8.6962
+\c 134.9326 4.6498 132.1018 -0.6078 126.2407 1.0116
+\c 121.8411 2.5586 120.8799 6.4185 121.6041 10.974
+\c 121.4022 10.737 121.1871 10.5131 120.9765 10.2849
+\l 121.1257 10.1204
+\c 120.4103 9.462 119.6708 8.8542 118.9204 8.2749
+\c 116.015 5.7097 112.6094 3.715 108.7912 2.4291
+\c 100.3869 -0.3994 90.8875 0.395 83.3894 4.5511
+\c 78.7857 7.0987 75.4744 9.6222 72.5449 11.8451
+\c 67.0525 16.0254 63.4274 18.7793 55.9249 18.3996
+\c 51.376 18.167 49.8685 15.1147 49.377 13.3131
+\c 48.3544 9.6157 49.7522 5.126 52.4907 3.3025
+\c 54.3384 2.0649 56.4867 1.7994 58.2246 2.5937
+\c 59.6268 3.2279 60.5418 4.4567 60.7415 5.9708
+\c 60.7547 6.0696 60.7437 6.1617 60.7503 6.2561
+\c 60.4145 7.553 59.6487 9.2294 57.9042 9.2294
+\c 55.0757 9.2294 54.8036 10.0414 54.9418 11.1144
+\c 55.0186 11.7595 56.4867 12.1896 58.1127 11.8298
+\c 58.9553 11.7222 59.8484 11.415 60.6164 10.8028
+\c 61.6039 10.0194 62.7011 8.5097 62.3412 5.758
+\c 62.0713 3.6843 60.8161 1.9903 58.8939 1.1191
+\c 56.6447 0.0944 53.9149 0.406 51.5933 1.9552
+\c 48.2622 4.1737 46.6055 9.3523 47.8146 13.741
+\c 48.8525 17.5219 51.7798 19.8084 55.8415 20.0147
+\o
+\s
+\m 13.0363 12.8611
+\c 12.6632 13.0696 12.2507 13.4163 11.8075 13.9495
+\c 9.2313 18.6213 10.4118 22.7115 13.1921 26.1611
+\c 13.4466 27.7256 13.3084 29.6018 11.204 29.7181
+\c 7.5614 29.9222 7.3639 34.5742 11.4015 35.7877
+\c 14.5394 36.7247 16.567 33.4112 15.9175 28.9589
+\c 20.2338 32.7353 26.0378 35.52 29.3952 37.2009
+\c 36.2723 40.6372 38.2911 47.5121 35.4648 49.7372
+\c 32.6297 51.9601 28.9914 48.3218 28.9914 48.3218
+\c 23.9334 60.0485 39.3049 61.2575 42.1334 53.9811
+\c 45.9757 42.6604 30.2049 34.9758 26.3626 31.5394
+\c 25.3532 26.284 24.7475 25.0727 17.267 23.2536
+\c 9.7886 21.43 12.389 15.5667 14.6382 15.163
+\c 15.4435 13.1398 21.3112 10.3113 23.1281 17.794
+\c 24.9494 25.2724 26.1629 25.8802 31.4184 26.8896
+\c 34.8591 30.7319 42.5416 46.5005 53.8622 42.6604
+\c 61.1409 39.8297 59.9274 24.4626 48.2008 29.5162
+\c 48.2008 29.5162 51.8368 33.1589 49.6161 35.9874
+\c 47.3933 38.8159 40.5162 36.7971 37.082 29.9222
+\c 35.4033 26.567 32.6121 20.7564 28.8356 16.4401
+\c 33.2902 17.0918 36.6036 15.0598 35.6666 11.9263
+\c 34.4488 7.8865 29.8011 8.0884 29.5971 11.7266
+\c 29.4852 13.8354 27.6046 13.9714 26.0378 13.7191
+\c 22.5883 10.9367 18.498 9.7583 13.8328 12.3345
+\c 13.4905 12.5276 13.225 12.7031 13.0363 12.8611
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian55.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian55.pgf
new file mode 100644
index 0000000000..3a996d6d9f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian55.pgf
@@ -0,0 +1,290 @@
+\r 0 0 269 116
+\i
+\m 232.9414 39.3284
+\c 232.9414 40.7524 231.7869 41.9069 230.3648 41.9069
+\c 228.9445 41.9069 227.7882 40.7524 227.7882 39.3284
+\c 227.7882 37.9081 228.9445 36.7537 230.3648 36.7537
+\c 231.7869 36.7537 232.9414 37.9081 232.9414 39.3284
+\o
+\s
+\m 236.6648 55.1296
+\c 236.6648 56.1455 235.8426 56.9619 234.8287 56.9619
+\c 233.8167 56.9619 232.9964 56.1455 232.9964 55.1296
+\c 232.9964 54.1138 233.8167 53.2917 234.8287 53.2917
+\c 235.8426 53.2917 236.6648 54.1138 236.6648 55.1296
+\o
+\s
+\m 141.9333 41.9069
+\c 139.184 29.1968 143.6479 20.6145 143.9915 14.7759
+\c 144.3352 8.9354 138.4985 11.6848 138.4985 11.6848
+\c 138.4985 11.6848 139.9415 4.931 145.0225 5.8462
+\c 149.4884 6.6513 150.1738 11.6848 145.7099 21.3019
+\c 141.246 30.917 141.9333 41.9069 141.9333 41.9069
+\o
+\s
+\m 252.7033 35.4246
+\c 248.8223 36.4347 244.3736 35.8898 240.1774 33.898
+\c 235.9793 31.9082 231.8629 28.4677 226.5901 23.5727
+\c 224.4559 21.5905 220.1743 17.6867 215.7578 14.0696
+\c 220.2275 19.9272 222.7964 27.3987 223.049 36.0493
+\c 223.0812 37.0651 223.0642 38.0752 223.011 39.0702
+\c 223.0129 39.0892 223.0205 39.1062 223.0205 39.1233
+\c 223.0034 39.748 222.5173 54.486 214.5503 63.3151
+\c 211.7192 66.448 209.1009 68.641 206.7882 70.5777
+\c 202.6585 74.0296 199.93 76.31 199.93 81.015
+\c 199.93 85.4106 202.7838 87.3663 205.4591 87.727
+\c 208.0509 88.0897 211.106 86.9429 211.9015 84.0815
+\c 212.6287 81.4498 211.9566 79.2169 210.0996 78.1081
+\c 208.6509 77.2422 206.9268 77.3752 205.8123 78.4403
+\c 205.5104 78.7271 205.0319 78.7214 204.7452 78.4119
+\c 204.4566 78.1138 204.4661 77.6353 204.768 77.3448
+\c 206.3838 75.803 208.8389 75.5885 210.8762 76.8074
+\c 212.7863 77.9543 214.4401 80.5688 213.3578 84.4802
+\c 212.3344 88.1789 208.5161 89.6656 205.2541 89.227
+\c 202.1022 88.796 198.4205 86.3903 198.4205 81.015
+\c 198.4205 75.6055 201.5231 73.01 205.818 69.4176
+\c 208.0908 67.5132 210.6692 65.36 213.4281 62.3049
+\c 215.3078 60.2201 216.7528 57.7518 217.8597 55.2151
+\c 213.6142 61.7277 207.0731 66.1764 199.3699 67.0442
+\c 189.8706 68.1037 181.9813 66.2201 176.5453 61.5891
+\c 171.8687 57.5999 169.2181 51.7594 168.8801 44.6866
+\c 168.1643 29.6164 178.106 23.1949 186.8421 22.2683
+\c 192.4585 21.6664 198.1016 23.643 201.5515 27.4196
+\c 204.6446 30.7993 205.8104 35.3923 204.8344 40.3347
+\c 203.9458 44.8328 202.0148 47.9391 199.0965 49.5777
+\c 194.7826 51.9891 189.9522 50.2461 189.7338 50.1645
+\c 188.4522 49.6594 187.4933 48.936 186.7585 48.1214
+\l 186.5782 48.317
+\c 186.5782 48.317 183.1434 44.6543 183.9446 39.2695
+\c 184.744 33.8923 190.4706 33.4328 192.4149 36.4119
+\c 194.3611 39.3854 192.1851 42.8259 190.2408 42.7081
+\c 188.2965 42.5885 186.0047 43.2778 187.8351 46.9442
+\l 187.7876 46.9955
+\c 188.3914 47.7018 189.1889 48.3265 190.275 48.7537
+\c 190.3187 48.7689 194.6497 50.3391 198.3579 48.2562
+\c 200.8737 46.8531 202.5503 44.0904 203.3496 40.0404
+\c 204.4813 34.3233 202.387 30.5734 200.4351 28.4392
+\c 197.3041 25.0101 192.1547 23.2234 186.9997 23.7683
+\c 178.5351 24.6664 169.7231 30.6132 170.3915 44.6126
+\c 170.7067 51.2562 173.175 56.7303 177.5269 60.4328
+\c 182.6364 64.7904 190.1364 66.56 199.2009 65.5385
+\c 212.3819 64.0613 221.9876 51.4005 221.5376 36.0892
+\c 221.0344 18.8126 210.9844 6.374 194.6592 2.8063
+\c 177.5022 -0.9361 163.0168 3.5829 154.9149 15.2088
+\c 151.4573 20.1683 148.9605 26.1626 147.5441 32.6031
+\c 151.1839 22.2968 159.3826 17.1436 161.8529 16.0386
+\c 166.1991 14.0867 173.1864 14.7759 173.1864 20.6145
+\c 173.1864 26.4493 167.3459 26.1094 167.3459 26.1094
+\c 169.406 22.6765 164.2529 15.4633 154.9833 25.4202
+\c 151.296 29.3791 148.4592 33.8069 147.4263 38.8157
+\c 145.8637 46.4107 147.3124 54.1537 147.3124 54.1537
+\c 146.9479 52.8056 146.6706 51.5088 146.4428 50.2404
+\c 147.4149 60.9511 151.4308 71.5366 159.0333 79.7808
+\c 159.6959 78.3169 161.1637 77.2764 161.1637 77.2764
+\c 161.1637 77.2764 167.1162 74.1853 173.5282 82.4334
+\c 180.6617 91.6023 187.9528 103.3802 213.3654 98.2308
+\c 238.7799 93.0777 254.2337 74.191 254.2337 74.191
+\c 231.5686 104.0694 205.8104 102.3473 184.5161 100.6327
+\c 163.2238 98.9181 151.2029 85.1789 142.6169 76.9384
+\c 134.0327 68.6961 128.8814 68.3467 122.3574 68.3467
+\c 115.8315 68.3467 118.2353 75.9074 118.2353 75.9074
+\c 109.991 74.8745 104.6176 63.5524 116.1732 59.4227
+\c 125.7903 55.9879 134.72 61.8265 145.0225 73.5036
+\c 155.3251 85.1789 164.4257 90.5011 164.4257 90.5011
+\c 166.4858 91.8758 168.7187 91.1903 160.1345 83.8043
+\c 159.7035 83.4359 159.3978 83.0638 159.1738 82.6954
+\c 154.3833 78.7726 145.3017 69.8486 137.7713 53.8005
+\c 136.5732 51.2524 135.4036 48.6113 134.2719 46.0632
+\c 133.5504 44.4265 132.8232 42.7879 132.0808 41.1588
+\c 131.8795 41.193 131.6726 41.2176 131.4561 41.2176
+\c 129.4662 41.2176 127.8504 39.6056 127.8504 37.6138
+\c 127.8504 36.5202 128.346 35.5556 129.1169 34.8911
+\c 127.7441 32.1455 126.2783 29.4626 124.6625 26.8917
+\l 118.9226 31.6063
+\l 115.8315 27.1404
+\l 121.5979 22.4335
+\c 119.7884 20.0411 117.7929 17.7873 115.5448 15.7405
+\c 114.9618 16.2057 114.2308 16.4924 113.4258 16.4924
+\c 111.5289 16.4924 109.991 14.9544 109.991 13.0595
+\c 109.991 12.562 110.103 12.0949 110.2929 11.6715
+\c 106.7954 9.3854 102.7834 7.5285 98.1125 6.2316
+\c 85.6436 2.7683 74.3347 4.1013 66.2651 9.9797
+\c 59.6556 14.7968 55.8164 22.367 55.4556 31.2892
+\c 54.7607 48.4157 65.067 59.153 75.6031 60.9056
+\c 82.0891 61.9935 88.5144 60.5809 93.2252 57.0473
+\c 97.4062 53.9144 99.9771 49.2398 100.6549 43.5379
+\c 101.3518 37.7069 100.1707 32.8215 97.1499 29.0126
+\c 94.3492 25.4867 89.9404 23.0772 85.3531 22.5664
+\c 82.5942 22.2645 78.2803 22.8892 75.2252 25.667
+\c 72.9847 27.7139 71.8797 30.5126 71.9385 33.993
+\c 72.0505 40.3594 75.8537 43.5037 79.3455 43.7297
+\c 79.6132 43.7448 79.8885 43.7297 80.16 43.7126
+\l 79.7385 43.4847
+\c 82.3094 43.6575 85.4157 41.1759 84.529 39.0493
+\c 83.6423 36.9208 79.7385 37.8949 79.7385 37.8949
+\c 79.7385 37.8949 79.917 34.7031 82.5771 33.6379
+\c 85.2372 32.5708 89.3081 34.2189 87.5442 39.3094
+\c 85.9474 43.9271 82.4879 44.9904 82.4879 44.9904
+\l 82.1993 44.8328
+\c 81.2385 45.1575 80.2322 45.3094 79.2448 45.2372
+\c 75.0885 44.9714 70.5562 41.343 70.429 34.0177
+\c 70.3626 30.1347 71.6689 26.8613 74.2094 24.5506
+\c 77.6347 21.431 82.4518 20.7246 85.522 21.0683
+\c 90.5005 21.6208 95.2872 24.2392 98.3347 28.0746
+\c 101.5682 32.1512 102.8878 37.5569 102.1568 43.7126
+\c 101.4296 49.8379 98.6537 54.8695 94.1347 58.2568
+\c 89.0954 62.0429 82.2505 63.5524 75.3524 62.3999
+\c 64.1651 60.5334 53.217 49.2284 53.9462 31.2284
+\c 54.1797 25.4392 55.8164 20.1816 58.674 15.8107
+\c 55.055 18.5411 48.812 23.1208 40.0152 29.1379
+\c 23.2095 40.6366 10.7405 37.1392 4.6722 30.0341
+\c 0.2899 24.9037 -1.2082 16.9557 1.0285 10.7088
+\c 2.7222 5.9753 6.3678 2.888 11.295 2.0108
+\c 12.5595 1.7867 13.7102 1.6861 14.764 1.6861
+\c 19.7595 1.6861 22.4652 3.9759 23.8968 6.1063
+\c 26.6329 10.1829 26.2133 16.0386 24.2595 19.1316
+\c 22.4918 21.9151 19.7842 23.6088 16.826 23.7816
+\c 14.3121 23.9164 12.0013 22.9443 10.4956 21.0873
+\c 8.5589 18.6949 8.2532 15.1044 9.7855 12.7405
+\c 10.6988 11.3259 13.0456 9.1728 18.4893 10.6101
+\c 18.8937 10.7202 19.1329 11.1323 19.0266 11.5348
+\c 18.9203 11.9354 18.5102 12.1747 18.1038 12.074
+\c 14.7507 11.1854 12.25 11.7114 11.0538 13.5607
+\c 9.8823 15.374 10.1519 18.262 11.6728 20.1379
+\c 12.8652 21.6094 14.7013 22.3917 16.7386 22.2721
+\c 19.2051 22.1297 21.4798 20.6924 22.9817 18.3227
+\c 24.6943 15.6209 24.962 10.4088 22.6399 6.9494
+\c 20.5133 3.7766 16.6779 2.588 11.5608 3.5013
+\c 5.9576 4.4962 3.514 8.2519 2.4507 11.2177
+\c 0.4191 16.893 1.8374 24.3911 5.819 29.0525
+\c 11.464 35.6582 23.1848 38.8233 39.1626 27.8904
+\c 53.7829 17.886 61.3645 11.8443 61.4404 11.7778
+\c 61.6189 11.6373 61.8373 11.5993 62.0442 11.6354
+\c 62.5056 11.174 62.9841 10.7221 63.4778 10.2892
+\c 60.9582 11.6772 58.8373 12.7709 56.9329 13.5759
+\l 56.3405 14.136
+\c 56.3405 14.136 51.5974 16.481 46.8012 16.724
+\c 41.312 17.0012 40.1614 11.9126 41.4202 8.3658
+\c 42.2082 6.1481 44.2285 5.6297 45.6848 6.1006
+\c 46.5582 6.3854 47.0158 7.1069 47.4867 7.7943
+\c 48.7455 9.6266 48.8614 12.2544 52.6398 12.374
+\c 56.4183 12.4879 60.998 9.7386 60.998 9.7386
+\l 60.567 10.1468
+\c 61.7385 9.5259 63.0031 8.831 64.4063 8.0487
+\c 73.2847 3.0911 81.4758 2.9202 81.8195 2.9146
+\c 81.8233 2.9146 81.8252 2.9146 81.8309 2.9146
+\c 81.8936 2.9146 81.9486 2.9335 82.0037 2.9525
+\c 83.0024 2.8804 84.0144 2.831 85.0417 2.831
+\c 89.3138 2.831 93.8404 3.4766 98.5188 4.7734
+\c 103.4043 6.1329 107.5815 8.0715 111.2138 10.4506
+\c 111.8119 9.9399 112.5808 9.6266 113.4258 9.6266
+\c 115.3245 9.6266 116.8625 11.1607 116.8625 13.0595
+\c 116.8625 13.593 116.7277 14.0943 116.5093 14.5443
+\c 118.8448 16.6595 120.9125 18.9873 122.7827 21.4651
+\l 128.8814 16.4924
+\l 132.3143 20.6145
+\l 125.8492 25.9196
+\c 127.522 28.5721 129.0352 31.3366 130.4479 34.1677
+\c 130.7707 34.0708 131.103 34.0082 131.4561 34.0082
+\c 133.4479 34.0082 135.0618 35.624 135.0618 37.6138
+\c 135.0618 38.8537 134.4371 39.9398 133.4878 40.5892
+\c 134.2188 42.2088 134.9365 43.8284 135.6542 45.4442
+\c 136.784 47.9942 137.9498 50.6258 139.1384 53.1625
+\c 143.6782 62.8309 148.8561 69.9074 153.2497 74.8138
+\c 141.0143 56.1796 142.6377 30.186 153.6751 14.3449
+\c 160.2067 4.9671 170.6554 0 183.2516 0
+\c 186.9864 0.0057 190.9149 0.4386 194.9838 1.3272
+\c 196.7705 1.7202 198.4699 2.2348 200.1066 2.8234
+\c 200.1104 2.8234 200.1104 2.8215 200.1104 2.8215
+\c 200.1958 2.8215 200.2794 2.8348 200.361 2.8671
+\c 200.4579 2.8956 201.5781 3.2924 203.211 4.0234
+\c 203.2813 4.0405 203.3553 4.0424 203.4237 4.0823
+\c 203.5642 4.1582 203.7294 4.2494 203.8908 4.3367
+\c 204.5401 4.6424 205.2484 4.9899 205.9965 5.3829
+\c 206.1389 5.4494 206.2813 5.512 206.4294 5.5785
+\l 205.8085 5.1987
+\c 208.2218 6.4595 213.2743 8.5272 216.0313 7.1487
+\c 218.7863 5.7702 217.0642 1.7525 219.9369 1.0633
+\c 222.8078 0.3722 227.5167 4.7373 223.611 8.1835
+\c 219.7091 11.6259 212.7009 9.4481 212.7009 9.4481
+\l 212.3667 9.2411
+\c 212.1977 9.2012 212.0344 9.1576 211.8711 9.1196
+\c 217.7306 13.424 224.6876 19.7449 227.6173 22.4639
+\c 232.7876 27.2658 236.7996 30.6227 240.8268 32.5347
+\c 244.7059 34.3708 248.7882 34.8797 252.3274 33.9645
+\c 257.0135 32.7493 259.1495 29.3753 260.116 26.7493
+\c 261.728 22.3803 261.1736 16.9291 258.7679 13.4924
+\c 257.3894 11.5253 255.4565 10.1829 253.4666 9.8126
+\c 249.9502 9.1633 245.8831 10.6993 245.1882 14.4
+\c 244.7078 16.9633 245.2983 19.2645 246.8097 20.7076
+\c 248.2261 22.0594 250.3109 22.4981 252.6881 21.9398
+\c 253.0945 21.8411 253.497 22.0955 253.5957 22.5
+\c 253.6888 22.9101 253.44 23.3145 253.0318 23.4075
+\c 250.1476 24.0854 247.5616 23.5196 245.7654 21.8012
+\c 243.878 19.9955 243.1261 17.1968 243.7015 14.1209
+\c 244.5711 9.4918 249.485 7.5399 253.74 8.3316
+\c 256.1173 8.7683 258.4014 10.3348 260.004 12.6266
+\c 262.7191 16.5057 263.3362 22.3917 261.5343 27.2734
+\c 259.9888 31.4563 256.854 34.3556 252.7033 35.4246
+\o
+\s
+\m 268.6812 38.7626
+\c 268.6906 38.8043 268.7134 38.8385 268.721 38.8822
+\c 268.7419 39.0417 270.9179 55.0689 264.559 72.5562
+\c 261.9596 79.7068 258.84 84.5011 256.0869 88.7353
+\c 253.0318 93.4232 250.6204 97.1295 250.178 102.2447
+\c 249.6806 108.015 253.0489 111.5523 256.609 112.5017
+\c 259.6964 113.32 262.478 112.177 263.6799 109.5871
+\c 265.2748 106.1447 263.8489 104.0181 263.1596 103.2662
+\c 262.159 102.1612 260.7122 101.6485 259.6356 102.034
+\c 257.4654 102.8011 258.5078 105.9169 258.5552 106.0517
+\c 258.69 106.4466 258.4793 106.8738 258.0862 107.0124
+\c 257.6932 107.1453 257.2641 106.9403 257.1274 106.5472
+\c 256.5654 104.9352 256.2635 101.6219 259.1343 100.608
+\c 260.7881 100.0251 262.8577 100.684 264.278 102.2447
+\c 266.1331 104.284 266.4217 107.265 265.0489 110.227
+\c 263.5489 113.4605 259.9983 114.97 256.2217 113.958
+\c 252.0521 112.8491 248.1008 108.7574 248.6723 102.1137
+\c 249.1451 96.6245 251.773 92.5859 254.8204 87.9131
+\c 257.5261 83.7454 260.6002 79.0289 263.1407 72.0435
+\c 266.1539 63.7537 267.2077 55.8113 267.4944 49.798
+\c 265.4913 59.9771 260.2185 75.5391 246.335 88.477
+\c 240.6445 93.7821 234.3483 97.8378 228.2344 100.9365
+\l 228.7034 100.8587
+\c 218.287 106.589 208.2142 109.1067 203.7484 110.8213
+\c 199.2845 112.5377 200.4294 116.4282 200.4294 116.4282
+\c 194.8186 117.1175 189.7832 111.7384 192.6465 109.4485
+\c 195.506 107.1586 200.0857 107.7321 207.5249 106.3555
+\c 214.968 104.9846 222.1793 101.8916 222.1793 101.8916
+\l 222.9161 101.7757
+\c 230.2945 98.5422 238.273 93.9283 245.304 87.3739
+\c 264.9179 69.0986 266.978 45.4746 267.1906 40.124
+\c 259.9527 72.4954 240.5363 81.7365 234.1432 81.4005
+\c 228.6141 81.1119 224.6971 79.3403 224.3553 73.16
+\c 224.0097 66.9758 233.285 66.6378 233.285 66.6378
+\c 231.9103 73.5036 238.0698 76.5929 248.9097 68.6961
+\c 259.2046 61.1904 265.5919 44.1322 267.2115 39.3854
+\c 267.2172 39.1499 267.2172 39.0208 267.2172 38.998
+\c 267.2153 38.9638 267.2305 38.9316 267.2343 38.8993
+\c 267.2419 38.848 267.2457 38.7987 267.259 38.7531
+\c 267.2761 38.7056 267.3008 38.6638 267.3255 38.6202
+\c 267.3482 38.5803 267.371 38.5385 267.4033 38.5044
+\c 267.4318 38.4683 267.4679 38.436 267.5058 38.4056
+\c 267.521 38.3942 267.5343 38.3771 267.5533 38.3657
+\c 267.6008 38.2081 267.6274 38.1265 267.6274 38.1265
+\c 267.6122 38.2006 267.5951 38.2689 267.5818 38.3392
+\c 267.5951 38.3335 267.6122 38.3335 267.6255 38.3259
+\c 267.6691 38.3012 267.7147 38.286 267.7622 38.2727
+\c 267.7982 38.2613 267.8267 38.2442 267.8666 38.2347
+\c 267.8932 38.2347 267.9236 38.2347 267.952 38.2347
+\c 267.9539 38.2347 267.9558 38.2347 267.9577 38.2347
+\c 267.9615 38.2347 267.9691 38.2347 267.971 38.2347
+\c 268.0679 38.2347 268.1628 38.2537 268.2501 38.286
+\c 268.2805 38.2993 268.2976 38.3183 268.3242 38.3335
+\c 268.3793 38.36 268.4362 38.3942 268.4818 38.436
+\c 268.5065 38.4588 268.5236 38.4873 268.5444 38.5138
+\c 268.5824 38.5594 268.6185 38.605 268.6451 38.6581
+\c 268.6603 38.6904 268.6698 38.7303 268.6812 38.7626
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian56.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian56.pgf
new file mode 100644
index 0000000000..0af99167ae
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian56.pgf
@@ -0,0 +1,290 @@
+\r 0 0 269 116
+\i
+\m 36.1555 39.3276
+\c 36.1555 40.7497 37.308 41.9041 38.7302 41.9041
+\c 40.1542 41.9041 41.3067 40.7497 41.3067 39.3276
+\c 41.3067 37.9036 40.1542 36.7549 38.7302 36.7549
+\c 37.308 36.7549 36.1555 37.9036 36.1555 39.3276
+\o
+\s
+\m 32.4303 55.1247
+\c 32.4303 56.1386 33.2524 56.9607 34.2663 56.9607
+\c 35.2783 56.9607 36.1024 56.1386 36.1024 55.1247
+\c 36.1024 54.1127 35.2783 53.2905 34.2663 53.2905
+\c 33.2524 53.2905 32.4303 54.1127 32.4303 55.1247
+\o
+\s
+\m 127.1636 41.9041
+\c 129.9091 29.1981 125.4434 20.6122 125.1016 14.7756
+\c 124.7579 8.9352 130.5983 11.6845 130.5983 11.6845
+\c 130.5983 11.6845 129.1515 4.9271 124.0725 5.8442
+\c 119.6049 6.6511 118.9194 11.6845 123.3852 21.2976
+\c 127.849 30.9164 127.1636 41.9041 127.1636 41.9041
+\o
+\s
+\m 16.3902 35.4239
+\c 20.273 36.4283 24.7216 35.8853 28.9177 33.8973
+\c 33.1195 31.9056 37.2321 28.4671 42.5067 23.5703
+\c 44.6408 21.5881 48.9242 17.6863 53.3368 14.0693
+\c 48.8692 19.9249 46.3002 27.3943 46.0458 36.0466
+\c 46.0154 37.0643 46.0325 38.0744 46.0857 39.0694
+\c 46.0857 39.0864 46.0781 39.1016 46.0781 39.1206
+\c 46.0933 39.7453 46.5793 54.4848 54.5481 63.3099
+\c 57.3772 66.4466 59.9974 68.6396 62.3081 70.5705
+\c 66.4377 74.028 69.1643 76.3084 69.1643 81.0152
+\c 69.1643 85.4088 66.3086 87.3625 63.6372 87.7233
+\c 61.0436 88.0859 57.9886 86.9353 57.1949 84.0759
+\c 56.4696 81.4443 57.1399 79.2115 58.9968 78.1045
+\c 60.4417 77.2387 62.1695 77.3697 63.2821 78.433
+\c 63.584 78.7216 64.0644 78.7159 64.3511 78.4102
+\c 64.6397 78.1102 64.6264 77.6299 64.3264 77.3432
+\c 62.7087 75.8014 60.2575 75.585 58.2164 76.8058
+\c 56.3101 77.9507 54.6545 80.5633 55.7386 84.4784
+\c 56.7601 88.1771 60.5822 89.6619 63.8403 89.2214
+\c 66.996 88.7961 70.6756 86.3885 70.6756 81.0152
+\c 70.6756 75.604 67.5713 73.0084 63.2783 69.4161
+\c 61.0037 67.5117 58.4272 65.3529 55.6684 62.2998
+\c 53.7887 60.217 52.3438 57.7468 51.2349 55.2101
+\c 55.4842 61.7226 62.0214 66.1751 69.7263 67.039
+\c 79.2254 68.1022 87.1126 66.2168 92.5485 61.5859
+\c 97.2269 57.5968 99.8775 51.7545 100.2154 44.6857
+\c 100.9313 29.6177 90.9859 23.1906 82.2519 22.2621
+\c 76.6356 21.6641 70.9965 23.6425 67.5447 27.4171
+\c 64.4498 30.7987 63.284 35.3859 64.2599 40.3339
+\c 65.1523 44.8319 67.0795 47.9381 70.0016 49.5748
+\c 74.3135 51.988 79.1438 50.2431 79.3583 50.1634
+\c 80.6456 49.6565 81.6026 48.9331 82.3374 48.1166
+\l 82.5178 48.3141
+\c 82.5178 48.3141 85.9506 44.6515 85.1531 39.2687
+\c 84.3481 33.8878 78.6254 33.4321 76.6793 36.4093
+\c 74.7331 39.3845 76.9109 42.8212 78.8571 42.7034
+\c 80.8013 42.5895 83.0912 43.2731 81.257 46.9375
+\l 81.3083 46.9945
+\c 80.7026 47.7008 79.9052 48.3255 78.8191 48.7508
+\c 78.7773 48.7679 74.4445 50.3343 70.7364 48.2533
+\c 68.2225 46.8483 66.5422 44.0857 65.7428 40.0396
+\c 64.615 34.3226 66.7074 30.5727 68.6592 28.4348
+\c 71.794 25.0096 76.9432 23.2229 82.0943 23.7659
+\c 90.5606 24.6659 99.3705 30.6126 98.7022 44.6135
+\c 98.3889 51.2533 95.9187 56.7272 91.5688 60.4353
+\c 86.4594 64.7871 78.9577 66.5548 69.8972 65.5352
+\c 56.7127 64.058 47.1091 51.3976 47.5572 36.0865
+\c 48.0622 18.8122 58.1101 6.372 74.435 2.8025
+\c 91.5935 -0.938 106.0786 3.579 114.1784 15.2047
+\c 117.6378 20.1679 120.1346 26.1583 121.5491 32.6005
+\c 117.9112 22.2963 109.7108 17.1414 107.2425 16.0344
+\c 102.8945 14.0845 95.9111 14.7756 95.9111 20.6122
+\c 95.9111 26.4507 101.7496 26.1051 101.7496 26.1051
+\c 99.6895 22.6723 104.8388 15.461 114.1139 25.4197
+\c 117.7992 29.3784 120.6359 33.8024 121.6669 38.813
+\c 123.2333 46.4078 121.7827 54.1526 121.7827 54.1526
+\c 122.1453 52.8064 122.4244 51.5058 122.6523 50.2375
+\c 121.6763 60.9461 117.6644 71.5313 110.0621 79.7792
+\c 109.3975 78.3134 107.9298 77.2748 107.9298 77.2748
+\c 107.9298 77.2748 101.9774 74.1837 95.5675 82.4278
+\c 88.4322 91.6004 81.1431 103.3761 55.731 98.2269
+\c 30.3171 93.0757 14.8636 74.1856 14.8636 74.1856
+\c 37.5302 104.0634 63.2859 102.3451 84.5759 100.6306
+\c 105.8698 98.9142 117.8885 85.1753 126.4762 76.933
+\c 135.0621 68.6927 140.2133 68.3491 146.7391 68.3491
+\c 153.263 68.3491 150.8573 75.9039 150.8573 75.9039
+\c 159.1014 74.873 164.4766 63.5473 152.9174 59.4176
+\c 143.3043 55.9848 134.3767 61.8233 124.0725 73.4983
+\c 113.7702 85.1753 104.6679 90.4954 104.6679 90.4954
+\c 102.6078 91.8719 100.3768 91.1865 108.9608 83.8025
+\c 109.3937 83.4323 109.6994 83.0601 109.9216 82.6899
+\c 114.7101 78.771 123.7934 69.8452 131.3236 53.7994
+\c 132.5198 51.2514 133.6894 48.6103 134.821 46.0546
+\c 135.5444 44.4237 136.2735 42.7851 137.0121 41.156
+\c 137.2152 41.1902 137.4222 41.2149 137.6367 41.2149
+\c 139.6266 41.2149 141.2424 39.6029 141.2424 37.6112
+\c 141.2424 36.5213 140.7449 35.553 139.9797 34.8884
+\c 141.3487 32.1448 142.8145 29.462 144.4303 26.8893
+\l 150.17 31.6018
+\l 153.263 27.1342
+\l 147.4947 22.433
+\c 149.3042 20.0369 151.3016 17.7869 153.5497 15.7401
+\c 154.1326 16.2053 154.8636 16.492 155.6667 16.492
+\c 157.5616 16.492 159.1014 14.9522 159.1014 13.0573
+\c 159.1014 12.5617 158.9894 12.0928 158.8033 11.6675
+\c 162.3007 9.3833 166.3108 7.5245 170.9796 6.2296
+\c 183.4502 2.7664 194.7588 4.0955 202.8283 9.9795
+\c 209.4376 14.7965 213.2768 22.3628 213.6375 31.2885
+\c 214.3286 48.4128 204.0264 59.1499 193.4905 60.9043
+\c 187.0065 61.9941 180.5775 60.5796 175.8669 57.0462
+\c 171.686 53.9095 169.117 49.2368 168.4354 43.5332
+\c 167.7443 37.7042 168.9234 32.817 171.9442 29.0139
+\c 174.7447 25.4804 179.1516 23.0767 183.7388 22.5659
+\c 186.4995 22.2621 190.8115 22.8849 193.8684 25.6684
+\c 196.1088 27.7095 197.212 30.5082 197.1512 33.9923
+\c 197.0411 40.3586 193.238 43.5028 189.7501 43.7325
+\c 189.4805 43.7439 189.2071 43.7325 188.9318 43.7117
+\l 189.3552 43.48
+\c 186.7805 43.6566 183.6762 41.1731 184.5629 39.0466
+\c 185.4496 36.9181 189.3552 37.8922 189.3552 37.8922
+\c 189.3552 37.8922 189.1767 34.7005 186.5166 33.6353
+\c 183.8547 32.5701 179.7858 34.2182 181.5478 39.3086
+\c 183.1427 43.9224 186.6059 44.9876 186.6059 44.9876
+\l 186.8945 44.8281
+\c 187.8552 45.1604 188.8634 45.3066 189.8507 45.2401
+\c 194.0051 44.9648 198.5391 41.3421 198.6626 34.0169
+\c 198.7309 30.1341 197.4246 26.8627 194.8842 24.5463
+\c 191.4589 21.4286 186.6419 20.7223 183.5737 21.0641
+\c 178.5953 21.6185 173.8049 24.2349 170.7594 28.0721
+\c 167.5259 32.1486 166.2044 37.558 166.9373 43.7117
+\c 167.6664 49.8368 170.4423 54.8665 174.9612 58.2556
+\c 179.9965 62.034 186.8432 63.5473 193.7392 62.3948
+\c 204.9282 60.5284 215.8761 49.2292 215.1489 31.2259
+\c 214.9134 25.4368 213.2768 20.1831 210.4192 15.8104
+\c 214.04 18.5388 220.2829 23.1185 229.0777 29.1335
+\c 245.8811 40.6301 258.3517 37.1365 264.4199 30.0335
+\c 268.804 24.9032 270.302 16.9572 268.0635 10.7086
+\c 266.368 5.9771 262.7206 2.8879 257.7973 2.0107
+\c 256.5346 1.7848 255.3783 1.6841 254.3303 1.6841
+\c 249.3329 1.6841 246.6292 3.9721 245.1957 6.1062
+\c 242.4596 10.1808 242.8793 16.0363 244.8349 19.1255
+\c 246.5988 21.9128 249.3063 23.6083 252.2664 23.7811
+\c 254.7802 23.914 257.0872 22.9457 258.5928 21.0869
+\c 260.5314 18.6945 260.8371 15.1041 259.3048 12.7345
+\c 258.3935 11.3257 256.0467 9.1707 250.6012 10.608
+\c 250.2006 10.7162 249.9576 11.1301 250.0639 11.5345
+\c 250.1721 11.9333 250.5841 12.1706 250.9886 12.07
+\c 254.3379 11.1852 256.8441 11.7111 258.0365 13.5585
+\c 259.2099 15.3718 258.9403 18.2616 257.4213 20.1375
+\c 256.227 21.609 254.3891 22.3875 252.3537 22.2735
+\c 249.8892 22.1292 247.6108 20.69 246.1089 18.3186
+\c 244.4001 15.6167 244.1305 10.4067 246.4488 6.9454
+\c 248.5772 3.7765 252.4145 2.586 257.5314 3.4974
+\c 263.1326 4.4961 265.5743 8.2479 266.6414 11.2175
+\c 268.6711 16.8889 267.2527 24.3868 263.2712 29.0519
+\c 257.6283 35.6593 245.9058 38.8187 229.9283 27.888
+\c 215.3103 17.8857 207.7288 11.8421 207.6547 11.7776
+\c 207.4763 11.639 207.256 11.5972 207.0472 11.6333
+\c 206.5877 11.17 206.1073 10.7238 205.6118 10.289
+\c 208.1332 11.6731 210.2541 12.7668 212.1565 13.5756
+\l 212.7489 14.1339
+\c 212.7489 14.1339 217.4938 16.4768 222.2918 16.7218
+\c 227.779 16.9971 228.9334 11.9124 227.6745 8.3656
+\c 226.8828 6.1461 224.8645 5.6315 223.4063 6.1024
+\c 222.5329 6.3834 222.0772 7.1049 221.6044 7.7922
+\c 220.3456 9.6226 220.2317 12.2541 216.4514 12.37
+\c 212.6768 12.4839 208.0971 9.7384 208.0971 9.7384
+\l 208.5243 10.1428
+\c 207.351 9.5219 206.0883 8.8308 204.689 8.0467
+\c 195.8069 3.0892 187.6179 2.9183 187.2723 2.9145
+\c 187.2685 2.9145 187.2647 2.9145 187.2609 2.9145
+\c 187.2002 2.9145 187.1451 2.9335 187.0881 2.9487
+\c 186.0894 2.8765 185.0812 2.8309 184.0521 2.8309
+\c 179.7801 2.8309 175.2517 3.4727 170.5752 4.7733
+\c 165.6918 6.1309 161.5147 8.0694 157.8787 10.4504
+\c 157.2787 9.9396 156.5154 9.6226 155.6667 9.6226
+\c 153.768 9.6226 152.232 11.1586 152.232 13.0573
+\c 152.232 13.5927 152.3649 14.094 152.5832 14.544
+\c 150.2478 16.6591 148.1821 18.9869 146.3119 21.4647
+\l 140.2133 16.492
+\l 136.7766 20.6122
+\l 143.2436 25.9171
+\c 141.5727 28.5677 140.0595 31.336 138.6449 34.165
+\c 138.3241 34.072 137.9899 34.0055 137.6367 34.0055
+\c 135.6469 34.0055 134.0311 35.6194 134.0311 37.6112
+\c 134.0311 38.851 134.6558 39.939 135.607 40.5902
+\c 134.876 42.206 134.1564 43.8275 133.4387 45.4452
+\c 132.3109 47.9913 131.1432 50.621 129.9565 53.1576
+\c 125.4168 62.8277 120.2409 69.906 115.8474 74.8103
+\c 128.0806 56.1785 126.4573 30.1835 115.4183 14.3408
+\c 108.8887 4.9689 98.4421 0 85.8443 0
+\c 82.1076 0 78.1811 0.4386 74.1142 1.3253
+\c 72.3237 1.7202 70.6282 2.2329 68.9877 2.8234
+\c 68.9839 2.8234 68.9839 2.8215 68.9801 2.8215
+\c 68.8984 2.8215 68.8168 2.8347 68.7352 2.8632
+\c 68.6383 2.8955 67.5181 3.2904 65.8871 4.0214
+\c 65.8131 4.0385 65.739 4.0385 65.6707 4.0784
+\c 65.5302 4.1581 65.3669 4.2474 65.2036 4.3366
+\c 64.5561 4.6366 63.846 4.986 63.0998 5.3828
+\c 62.9593 5.4454 62.8131 5.5119 62.6669 5.5784
+\l 63.2859 5.1967
+\c 60.8765 6.4574 55.8222 8.527 53.0672 7.1467
+\c 50.3084 5.7701 52.0305 1.7506 49.1597 1.0614
+\c 46.2888 0.3721 41.5801 4.7353 45.4838 8.1815
+\c 49.3875 11.6257 56.3956 9.4422 56.3956 9.4422
+\l 56.7297 9.239
+\c 56.8949 9.2011 57.062 9.1574 57.2272 9.1156
+\c 51.364 13.4237 44.4072 19.7407 41.4795 22.4615
+\c 36.3093 27.2614 32.2955 30.6202 28.2722 32.5303
+\c 24.3931 34.3701 20.3053 34.8751 16.7699 33.9619
+\c 12.082 32.7448 9.9498 29.3708 8.9815 26.7469
+\c 7.3695 22.3799 7.9239 16.9287 10.3314 13.4902
+\c 11.708 11.5213 13.639 10.1808 15.6307 9.8124
+\c 19.1471 9.1574 23.2122 10.6991 23.9071 14.3978
+\c 24.3874 16.9629 23.8008 19.2622 22.2837 20.7071
+\c 20.873 22.0552 18.7863 22.4957 16.411 21.9356
+\c 16.0009 21.8387 15.5984 22.0951 15.5016 22.4995
+\c 15.4047 22.9058 15.6554 23.3121 16.0636 23.4052
+\c 18.9515 24.0792 21.5318 23.5172 23.3299 21.7989
+\c 25.2191 19.9951 25.971 17.1964 25.3919 14.1206
+\c 24.5261 9.4897 19.6103 7.5359 15.3554 8.3277
+\c 12.9782 8.7682 10.696 10.3327 9.0935 12.6244
+\c 6.3765 16.5034 5.7632 22.3875 7.5632 27.269
+\c 9.1049 31.4556 12.2396 34.3511 16.3902 35.4239
+\o
+\s
+\m 0.4165 38.7599
+\c 0.4032 38.8016 0.3842 38.8358 0.3785 38.8795
+\c 0.3557 39.039 -1.824 55.0677 4.5366 72.5547
+\c 7.1359 79.7013 10.2574 84.4993 13.0124 88.7315
+\c 16.0655 93.4213 18.4787 97.1275 18.9192 102.2407
+\c 19.4167 108.0108 16.0484 111.55 12.4903 112.4936
+\c 9.3992 113.3176 6.6176 112.1765 5.4176 109.5848
+\c 3.8227 106.1425 5.2486 104.0122 5.9341 103.2603
+\c 6.9385 102.1552 8.3853 101.6464 9.4618 102.0299
+\c 11.6301 102.7951 10.5897 105.9184 10.5441 106.0495
+\c 10.4093 106.4425 10.6181 106.8716 11.0112 107.0121
+\c 11.4023 107.145 11.8352 106.938 11.97 106.5469
+\c 12.532 104.933 12.832 101.6179 9.9612 100.6059
+\c 8.3074 100.0192 6.2379 100.68 4.8157 102.2407
+\c 2.9645 104.2761 2.6778 107.2627 4.0468 110.2209
+\c 5.5467 113.4581 9.0973 114.9638 12.8776 113.9556
+\c 17.0452 112.8468 20.9964 108.7532 20.4249 102.1116
+\c 19.9483 96.6206 17.3205 92.5839 14.2788 87.9056
+\c 11.5675 83.7436 8.4973 79.0216 5.9569 72.0401
+\c 2.9417 63.7523 1.888 55.8082 1.6013 49.7932
+\c 3.6063 59.9758 8.877 75.5375 22.7603 88.4752
+\c 28.4506 93.7782 34.7467 97.8357 40.8605 100.9306
+\l 40.3915 100.8565
+\c 50.8096 106.583 60.8822 109.1007 65.346 110.819
+\c 69.8117 112.5354 68.6649 116.4296 68.6649 116.4296
+\c 74.2736 117.1112 79.3128 111.7341 76.4514 109.4424
+\c 73.5901 107.1545 69.0086 107.7279 61.5676 106.3532
+\c 54.1285 104.9786 46.9173 101.8875 46.9173 101.8875
+\l 46.1768 101.7736
+\c 38.8023 98.5363 30.824 93.9225 23.7894 87.372
+\c 4.1797 69.0952 2.1177 45.4736 1.9051 40.1212
+\c 9.1467 72.4901 28.557 81.7329 34.9556 81.3988
+\c 40.4845 81.1064 44.3977 79.3368 44.7414 73.1565
+\c 45.0832 66.9744 35.8138 66.6326 35.8138 66.6326
+\c 37.1865 73.4983 31.0253 76.5856 20.1856 68.6927
+\c 9.8909 61.1929 3.5075 44.1275 1.8842 39.3845
+\c 1.8804 39.1491 1.8804 39.0162 1.8804 38.9972
+\c 1.8842 38.9649 1.8671 38.9307 1.8614 38.8985
+\c 1.8576 38.8453 1.8519 38.7978 1.8348 38.7485
+\c 1.8215 38.7048 1.7968 38.6611 1.774 38.6194
+\c 1.7494 38.5776 1.7285 38.5377 1.6943 38.4997
+\c 1.6639 38.4637 1.6278 38.4352 1.5899 38.4067
+\c 1.5728 38.3915 1.5633 38.3744 1.5443 38.363
+\c 1.493 38.2073 1.4703 38.1257 1.4703 38.1257
+\c 1.4854 38.1998 1.5025 38.2662 1.5139 38.3384
+\c 1.5025 38.3308 1.4854 38.3308 1.4703 38.3213
+\c 1.4285 38.2985 1.3829 38.2871 1.3354 38.2719
+\c 1.2994 38.2605 1.269 38.2415 1.2329 38.2339
+\c 1.2025 38.232 1.176 38.232 1.1456 38.232
+\c 1.1437 38.232 1.1437 38.2301 1.1399 38.2301
+\c 1.1342 38.2301 1.1304 38.2301 1.1266 38.2301
+\c 1.026 38.2301 0.9367 38.2529 0.8456 38.2852
+\c 0.819 38.2966 0.7962 38.3156 0.7715 38.3327
+\c 0.7146 38.3592 0.6614 38.3915 0.6139 38.4352
+\c 0.5912 38.458 0.5741 38.4865 0.5513 38.513
+\c 0.5133 38.5567 0.4791 38.6004 0.4507 38.6535
+\c 0.4355 38.6858 0.4279 38.7276 0.4165 38.7599
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian57.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian57.pgf
new file mode 100644
index 0000000000..92460c5da0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian57.pgf
@@ -0,0 +1,255 @@
+\m 18.1992 60.1944
+\c 34.1304 55.068 49.7848 57.908 49.7848 57.908
+\c 36.6376 56.7976 21.4872 61.5848 19.3688 62.1432
+\c 17.2536 62.6968 16.4728 60.9736 18.1992 60.1944
+\o
+\s
+\m 51.1208 70.6104
+\c 64.0472 59.3592 79.1976 56.572 79.1976 56.572
+\c 62.4872 62.476 55.4312 70.0504 53.0904 72.06
+\c 50.7496 74.0648 49.0056 72.2824 51.1208 70.6104
+\o
+\s
+\m 25.9784 72.0968
+\c 29.8648 69.3032 36.8072 65.5336 44.2136 62.7544
+\c 60.7032 56.572 72.996 56.0904 72.996 56.0904
+\c 63.4888 58.3176 57.4168 59.6936 46.2776 64.5384
+\c 38.5208 67.9112 32.5496 72.5336 28.8024 75.1048
+\c 25.4536 77.4056 23.644 78.9976 22.4168 77.628
+\c 21.252 76.3304 22.8184 74.3608 25.9784 72.0968
+\o
+\s
+\m 17.3656 37.2232
+\c 15.804 35.8856 17.5128 34.3288 19.8888 35.8136
+\c 31.9208 45.0984 47.7432 47.844 47.7432 47.844
+\c 30.8088 46.6536 18.924 38.5608 17.3656 37.2232
+\o
+\s
+\m 80.2744 48.812
+\c 80.2744 48.812 62.3752 50.2232 44.1032 42.4232
+\c 25.8312 34.6248 27.0952 31.2072 28.0584 30.7608
+\c 29.0248 30.316 30.4184 30.8152 32.9464 32.82
+\c 35.4712 34.828 44.6984 40.6392 57.1752 44.5016
+\c 69.6536 48.364 80.2744 48.812 80.2744 48.812
+\o
+\s
+\m 63.6376 42.0504
+\c 55.0968 38.1896 53.5336 35.9608 53.9832 35.3672
+\c 54.428 34.772 55.6168 34.476 58.2904 36.4792
+\c 73.1448 46.956 87.628 47.548 87.628 47.548
+\c 81.316 48.068 72.1784 45.9144 63.6376 42.0504
+\o
+\s
+\m 86.5144 33.5832
+\c 101.8904 45.468 116.7464 44.356 116.7464 44.356
+\c 100.7032 46.8792 85.1032 35.588 84.0632 34.4024
+\c 83.0248 33.2104 83.0984 31.3544 86.5144 33.5832
+\o
+\s
+\m 82.5032 43.2392
+\c 64.0088 36.1096 62.0792 31.5784 64.5288 31.2808
+\c 66.9816 30.9832 71.884 36.332 83.916 41.2344
+\c 95.948 46.1384 106.0504 46.1384 106.0504 46.1384
+\c 104.2648 46.956 92.3832 46.956 82.5032 43.2392
+\o
+\s
+\m 134.572 43.6872
+\c 133.5304 44.7256 94.1656 55.716 61.484 55.716
+\c 28.8024 55.716 5.6279 45.0216 2.2119 43.388
+\c -1.2041 41.7544 -0.3145 38.3352 2.5095 39.3752
+\c 11.5704 43.6872 38.6072 52.3016 68.9128 52.1528
+\c 99.2152 52.004 134.572 43.6872 134.572 43.6872
+\o
+\s
+\m 107.8328 53.0072
+\c 107.8328 53.0072 92.9032 57.4632 82.6536 70.276
+\c 80.9816 71.5016 80.6488 69.1608 83.0984 66.7096
+\c 85.5496 64.26 94.0168 56.7976 107.8328 53.0072
+\o
+\s
+\m 103.2616 52.7832
+\c 103.2616 52.7832 83.0984 55.9032 64.2696 76.2936
+\c 62.4872 77.7416 61.26 75.8456 63.156 73.5064
+\c 65.0504 71.1672 80.6488 55.124 103.2616 52.7832
+\o
+\s
+\m 123.6536 49.108
+\c 123.6536 49.108 108.0552 53.676 95.5752 69.6072
+\c 93.3464 72.8376 91.3416 71.0552 92.1208 69.4952
+\c 92.9032 67.9352 103.7096 52.1176 123.6536 49.108
+\o
+\s
+\m 143.4088 48.8104
+\c 143.4088 48.8104 136.3528 52.3016 133.1592 58.02
+\c 132.1208 59.2088 131.3032 57.6472 132.268 56.0136
+\c 133.2344 54.38 135.6104 50.964 143.4088 48.8104
+\o
+\s
+\m 119.94 62.4024
+\c 118.5272 63.6648 117.4136 62.1784 118.6024 60.0264
+\c 119.7896 57.8696 130.7096 45.9096 143.2616 46.0632
+\c 143.2616 46.0632 133.0872 47.9192 119.94 62.4024
+\o
+\s
+\m 109.3176 63.6648
+\c 108.3528 64.7784 107.4584 63.22 109.1688 61.1384
+\c 110.8776 59.06 116.8184 50.9608 131.8232 48.068
+\c 131.8232 48.068 118.6776 51.332 109.3176 63.6648
+\o
+\s
+\m 103.3752 34.1784
+\c 112.5096 41.5288 125.9912 41.8648 125.9912 41.8648
+\c 125.9912 41.8648 116.4104 44.316 107.2744 39.9688
+\c 98.9 35.988 100.812 32.6184 103.3752 34.1784
+\o
+\s
+\m 169.8936 38.3544
+\c 171.7688 48.3192 176.4968 51.6936 175.6536 51.3688
+\c 172.5496 50.1832 169.8536 46.2984 169.1784 44.3592
+\c 167.1496 38.5112 168.9496 36.7688 169.8936 38.3544
+\o
+\s
+\m 163.9432 41.6632
+\c 162.8376 37.0648 164.3368 35.8744 164.9384 37.1496
+\c 165.6184 44.868 168.9624 47.788 168.3432 47.4808
+\c 166.0712 46.3448 164.3128 43.1896 163.9432 41.6632
+\o
+\s
+\m 159.124 36.7672
+\c 160.0616 42.6104 162.7656 44.6504 162.2776 44.4488
+\c 160.4872 43.7064 158.9784 41.4008 158.6136 40.26
+\c 157.5224 36.8184 158.5992 35.8296 159.124 36.7672
+\o
+\s
+\m 191.1896 53.6632
+\c 186.8184 54.2488 184.988 49.7464 186.8824 49.7464
+\c 188.7752 49.7464 192.06 53.5464 191.1896 53.6632
+\o
+\s
+\m 153.8472 35.628
+\c 151.18 35.1336 149.2408 34.2008 147.8104 33.0744
+\c 147.5896 33.2648 147.3752 33.4488 147.1608 33.6232
+\c 144.8744 35.476 135.3512 41.7544 127.884 37.1864
+\c 125.3528 35.636 123.7832 33.8248 122.9496 31.9576
+\c 118.9096 32.9176 113.5368 33.3064 106.4952 32.6184
+\c 90.3784 31.0408 86.4408 22.8152 86.4408 22.8152
+\c 86.4408 22.8152 95.0184 29.164 109.3896 30.3896
+\c 114.8584 30.916 119.1096 30.7672 122.3784 30.2232
+\c 121.7432 27.14 122.9656 24.0744 125.212 21.9224
+\c 128.7032 18.58 134.4584 19.9176 133.9032 23.7048
+\c 133.5656 26.004 131.0872 29.5288 124.6152 31.5016
+\c 126.1176 34.2792 129.2872 36.5144 134.1256 36.1816
+\c 138.7064 35.8696 143.0776 33.7528 146.0984 31.3464
+\c 144.1512 28.7768 144.0056 25.8072 144.2632 24.2632
+\c 144.7096 21.5896 147.884 20.364 149.8344 21.7016
+\c 154.6056 24.6104 151.8552 29.1544 148.7288 32.22
+\c 155.2856 37.1208 161.6808 30.9496 162.2008 27.828
+\c 162.7592 24.4872 161.3096 21.9224 161.3096 21.9224
+\c 163.3144 22.1448 164.9032 24.932 164.988 25.8232
+\c 165.5432 31.6168 159.2936 36.6392 153.8472 35.628
+\o
+\m 131.7848 22.7032
+\c 130.5592 19.9176 125.212 21.364 123.8744 25.7096
+\c 123.4824 26.9896 123.5144 28.4664 123.9496 29.908
+\c 131.0504 28.276 132.612 24.5784 131.7848 22.7032
+\o
+\m 150.1688 25.932
+\c 150.6152 22.4808 147.2936 22.2472 146.0472 23.26
+\c 144.372 24.62 144.9576 28.6776 146.924 30.644
+\c 148.796 28.9816 149.9992 27.2536 150.1688 25.932
+\o
+\s
+\m -1.2031 -0.0153
+\l 207.2862 -0.0153
+\l 207.2862 102.9209
+\l -1.2031 102.9209
+\o
+\i
+\m 207.2872 26.2296
+\c 204.6008 27.5496 203.54 31.3176 203.14 33.5816
+\c 203.0712 42.0104 200.5592 48.2808 199.8504 49.8856
+\c 201.0728 51.0888 202.4504 52.0696 203.98 52.8968
+\c 202.0872 54.3448 198.7432 53.8984 198.7432 53.8984
+\c 198.7432 53.8984 200.7512 55.5704 204.2024 56.4632
+\c 202.2616 57.2792 200.612 57.6328 199.212 57.6856
+\c 198.6552 63.0184 199.9752 65.4168 202.42 68.2712
+\c 205.0968 71.388 205.8744 71.948 205.3176 73.172
+\c 204.7608 74.3976 202.644 74.0648 201.196 72.8376
+\c 197.0216 68.3608 196.572 61.4072 196.7064 57.4232
+\c 196.3544 57.3288 196.028 57.2152 195.724 57.0824
+\c 195.1288 57.9688 193.0744 60.3064 188.3464 59.58
+\c 186.5752 59.308 184.8488 58.5864 183.2536 57.4568
+\c 179.94 73.4968 160.4408 77.8808 134.572 83.4248
+\c 108.0552 89.1032 103.7096 98.0168 99.4744 102.9208
+\c 98.612 102.4408 99.7368 92.6712 111.9336 82.2984
+\c 112.3 80.02 114.132 73.1144 123.2088 65.932
+\c 129.9288 60.6104 137.4872 57.7976 143.7784 56.692
+\c 142.5816 51.5976 147.1336 46.932 153.2872 45.876
+\c 161.0872 44.54 168.7752 50.8888 169.444 53.3384
+\c 156.7416 43.092 143.9288 49.4408 145.156 56.3496
+\c 145.164 56.3944 145.1752 56.4328 145.1848 56.4728
+\c 148.3208 56.0344 151.084 56.0248 153.1784 56.3496
+\c 158.5752 57.1864 159.6392 62.0312 155.9624 63.4808
+\c 152.7688 64.74 148.8344 63.4808 146.0472 60.8056
+\c 145.2824 59.9544 144.7144 59.0904 144.316 58.228
+\c 143.7992 58.3464 143.2952 58.4728 142.8152 58.6152
+\c 123.2968 64.8856 116.3304 75.7048 114.1128 80.5288
+\c 115.556 79.4104 117.1368 78.292 118.8616 77.1816
+\c 137.58 65.1528 157.9688 66.2632 157.9688 66.2632
+\c 157.9688 66.2632 142.0344 67.8264 127.8216 74.9288
+\c 115.1368 81.0264 107.2344 89.2648 104.8232 93.6744
+\c 123.54 78.076 140.0312 78.9672 160.9752 72.7288
+\c 177.9656 67.6664 181.3208 59.3816 181.98 56.4328
+\c 178.956 53.7256 176.5688 49.4008 175.572 43.6872
+\c 176.0168 40.564 178.5416 51.5576 184.484 55.1224
+\c 189.7432 58.2792 192.6792 56.8264 193.8408 55.8728
+\c 192.7176 54.8552 192.2808 53.7864 192.2808 53.7864
+\c 192.2808 53.7864 194.4248 55.388 196.8056 55.7496
+\c 196.8536 55.1944 196.9032 54.7816 196.932 54.5544
+\c 195.7208 53.332 194.66 51.8504 193.8408 49.8888
+\c 195.7368 51.4456 198.3 52.7832 200.3064 52.2264
+\c 191.3912 45.4296 194.2888 41.8648 184.3736 28.828
+\c 178.7624 21.4552 173.0952 18.9336 170.3128 18.0936
+\c 175.8248 23.7288 175.2904 30.0872 174.0104 33.2872
+\c 174.2344 24.1512 169.7752 19.9176 164.6536 17.244
+\c 146.38 8.9976 129.4472 14.5688 109.6136 17.4664
+\c 89.7832 20.364 79.756 17.02 67.0536 9.2216
+\c 79.3096 21.9224 93.124 23.26 108.0552 21.4776
+\c 122.9848 19.6952 140.588 16.7976 140.588 16.7976
+\c 140.1432 17.6904 114.5176 23.7048 98.4728 23.7048
+\c 82.4296 23.7048 70.1752 16.7976 64.38 10.1128
+\c 58.588 3.4296 59.2552 0.756 62.1528 2.092
+\c 70.62 10.5592 83.0984 15.9064 93.7928 15.9064
+\c 104.4904 15.9064 133.9032 6.9944 145.9336 8.3304
+\c 156.7752 9.8456 163.7224 12.7576 168.092 16.1304
+\c 185.0648 18.62 193.012 34.292 194.7336 40.5288
+\c 195.6712 43.9288 196.98 46.5192 198.644 48.5576
+\c 199.2968 46.732 201.0408 41.412 201.5704 35.2344
+\c 201.14 33.3336 199.9464 29.444 196.8888 26.0088
+\c 198.3096 25.548 200.6088 27.2472 201.6872 30.084
+\c 201.62 28.6632 201.4648 27.228 201.196 25.8232
+\c 201.0792 25.2136 200.9528 24.62 200.8184 24.0392
+\c 199.7144 22.6424 196.356 18.588 193.5448 17.244
+\c 195.1336 15.9016 197.8152 17.0264 199.5528 19.6488
+\c 198.8216 17.5688 197.948 15.7048 196.9176 14.0008
+\c 196.3496 13.4344 193.6648 10.9672 187.6056 8.556
+\c 188.908 7.3864 191.0024 7.7672 192.8904 8.8408
+\c 191.7528 7.684 190.5096 6.5816 189.1448 5.524
+\c 188.1128 4.9576 186.5832 4.2104 184.484 3.4296
+\c 180.1016 1.796 180.6968 0.1608 181.7368 0.012
+\c 181.924 -0.0152 182.1976 0.0024 182.54 0.0744
+\c 186.3976 0.6104 192.2472 5.6232 196.2648 10.6856
+\c 195.58 7.8232 195.9592 4.9032 197.7048 4.4664
+\c 197.2744 8.516 198.5672 13.572 199.0296 15.2104
+\c 199.708 16.5912 200.2728 17.908 200.7528 19.1688
+\c 200.6584 15.5224 202.4584 13.0648 204.6872 13.7544
+\c 202.8024 15.5816 202.1496 20.644 201.948 22.8936
+\c 202.4408 24.772 202.74 26.5544 202.9176 28.2824
+\c 203.7096 25.916 205.4408 25.132 207.2872 26.2296
+\o
+\m 156.1832 60.2472
+\c 156.0936 57.468 150.5304 57.1064 145.6472 57.9608
+\c 147.9912 63.284 156.2872 63.308 156.1832 60.2472
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian58.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian58.pgf
new file mode 100644
index 0000000000..e127fac1a5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian58.pgf
@@ -0,0 +1,475 @@
+\m -0.0011 0
+\l 227.7774 0
+\l 227.7774 115.8486
+\l -0.0011 115.8486
+\o
+\i
+\m 223.4339 61.8059
+\c 222.4275 62.9659 221.3875 64.1627 220.1779 65.1691
+\c 219.1843 65.9995 218.0227 66.1595 216.8339 66.0779
+\c 218.7091 66.9467 219.6883 69.0971 219.5875 69.1179
+\c 216.7443 69.7275 214.3411 71.2347 211.7251 72.4059
+\c 206.9347 74.5563 202.5939 73.3995 198.2275 70.7003
+\c 198.1171 70.6315 200.6211 72.4379 201.3411 73.4811
+\c 203.6499 76.8347 204.9955 80.1467 203.9203 84.2747
+\c 203.9555 84.1723 203.5059 83.4187 201.6339 83.0843
+\c 200.4115 82.8651 198.7203 82.9963 197.4963 83.1371
+\c 193.4291 83.6059 190.6515 82.4651 188.2035 79.3147
+\c 187.9491 78.9883 187.7043 78.7435 187.4515 78.4491
+\c 188.2163 79.3371 188.4883 81.3787 188.3699 82.4587
+\c 188.3555 82.5787 187.7347 84.7003 187.5523 84.4315
+\c 187.0227 83.6683 185.3587 82.9499 183.8179 82.7131
+\c 181.1011 82.2907 177.1459 82.0939 175.8371 80.9899
+\c 174.1283 79.5499 173.5027 78.3931 172.1091 76.7099
+\l 168.9843 72.9339
+\c 166.3091 69.9723 163.2099 68.5403 159.7875 67.7691
+\c 160.4867 68.2475 163.6307 69.8811 164.4147 75.5931
+\c 164.5779 76.7883 163.9747 79.5131 163.9747 79.5131
+\c 163.9747 79.5131 162.7491 77.1467 156.7059 78.2843
+\c 150.6659 79.4219 147.7747 78.4587 144.4483 75.6555
+\c 141.1203 72.8555 138.0563 68.3899 134.1171 69.7035
+\c 130.1763 71.0187 130.0899 75.3931 134.1171 76.0091
+\c 138.1443 76.6219 139.2835 76.1835 142.0851 79.5131
+\c 144.8867 82.8379 146.9027 83.0123 146.9027 83.0123
+\c 146.9027 83.0123 146.7251 84.5899 144.0131 86.4283
+\c 145.6755 89.4059 147.6035 90.7179 151.2787 90.2811
+\c 150.0531 94.2219 145.3475 97.8123 136.4067 96.6379
+\c 126.0803 95.3467 121.8595 87.3035 121.8595 87.3035
+\c 121.8595 87.3035 121.7715 88.8779 123.8755 92.2939
+\c 125.9747 95.7099 129.0259 98.1563 128.7027 101.5659
+\c 128.4691 104.0315 126.8243 105.9099 127.4627 110.0683
+\c 123.6115 109.2811 120.6339 105.9531 120.6339 105.9531
+\c 120.6339 105.9531 120.9843 108.2315 120.1091 109.8939
+\c 119.2323 111.5563 115.4691 114.4475 113.8938 115.8491
+\c 112.3079 114.4475 108.5421 111.5563 107.6672 109.8939
+\c 106.7898 108.2315 107.1405 105.9531 107.1405 105.9531
+\c 107.1405 105.9531 104.1672 109.2811 100.3125 110.0683
+\c 100.9531 105.9099 99.3109 104.0315 99.0749 101.5659
+\c 98.7499 98.1563 101.8 95.7099 103.9031 92.2939
+\c 106.0047 88.8779 105.9157 87.3035 105.9157 87.3035
+\c 105.9157 87.3035 101.6952 95.3467 91.3687 96.6379
+\c 82.4312 97.8123 77.725 94.2219 76.4968 90.2811
+\c 80.1749 90.7179 82.1 89.4059 83.7656 86.4283
+\c 81.0499 84.5899 80.8749 83.0123 80.8749 83.0123
+\c 80.8749 83.0123 82.8906 82.8379 85.6922 79.5131
+\c 88.4936 76.1835 89.6328 76.6219 93.6594 76.0091
+\c 97.6875 75.3931 97.6 71.0187 93.6594 69.7035
+\c 89.7179 68.3899 86.6539 72.8555 83.328 75.6555
+\c 80.0014 78.4587 77.1141 79.4219 71.0688 78.2843
+\c 65.028 77.1467 63.8014 79.5131 63.8014 79.5131
+\c 63.8014 79.5131 63.1984 76.7883 63.361 75.5931
+\c 64.1437 69.8811 67.289 68.2475 67.9898 67.7691
+\c 64.5672 68.5403 61.4688 69.9723 58.7898 72.9339
+\l 55.6674 76.7099
+\c 54.2749 78.3931 53.6469 79.5499 51.9405 80.9899
+\c 50.6312 82.0939 46.6734 82.2907 43.961 82.7131
+\c 42.4171 82.9499 40.7515 83.6683 40.225 84.4315
+\c 40.0422 84.7003 39.4187 82.5787 39.4062 82.4587
+\c 39.2875 81.3787 39.5594 79.3371 40.325 78.4491
+\c 40.0718 78.7435 39.8296 78.9883 39.5734 79.3147
+\c 37.1251 82.4651 34.3454 83.6059 30.2813 83.1371
+\c 29.0562 82.9963 27.3672 82.8651 26.1437 83.0843
+\c 24.2688 83.4187 23.8202 84.1723 23.8562 84.2747
+\c 22.7829 80.1467 24.1296 76.8347 26.4373 73.4811
+\c 27.1562 72.4379 29.6594 70.6315 29.5483 70.7003
+\c 25.1843 73.3995 20.8406 74.5563 16.0515 72.4059
+\c 13.4406 71.2347 11.0312 69.7275 8.1882 69.1179
+\c 8.0875 69.0971 9.0686 66.9467 10.9422 66.0779
+\c 9.7531 66.1595 8.5938 65.9995 7.5968 65.1691
+\c 6.3867 64.1627 5.3499 62.9659 4.3422 61.8059
+\c 3.0344 60.2971 1.2373 58.3339 0 57.8411
+\c 1.2373 57.3467 3.0827 55.3851 4.3898 53.8747
+\c 5.3984 52.7179 6.4406 51.5179 7.6499 50.5131
+\c 8.6437 49.6811 9.803 49.5227 10.9938 49.6027
+\c 9.1179 48.7307 8.139 46.5851 8.2374 46.5627
+\c 11.0843 45.9531 13.489 44.4491 16.1 43.2747
+\c 20.8922 41.1243 25.2344 42.2811 29.6 44.9787
+\c 29.7109 45.0475 27.2062 43.2443 26.4877 42.1995
+\c 24.1782 38.8475 22.8312 35.5339 23.9062 31.4027
+\c 23.8686 31.5099 24.3211 32.2619 26.1922 32.5963
+\c 27.4155 32.8155 29.108 32.6843 30.3312 32.5435
+\c 34.3968 32.0715 37.1749 33.2155 39.625 36.3627
+\c 39.8781 36.6907 40.1211 36.9371 40.3734 37.2315
+\c 39.6125 36.3403 39.3405 34.3035 39.457 33.2219
+\c 39.4702 33.1035 40.0906 30.9819 40.2749 31.2475
+\c 40.803 32.0123 42.4686 32.7275 44.0093 32.9691
+\c 46.7251 33.3899 50.6813 33.5883 51.9882 34.6907
+\c 53.6968 36.1307 54.3226 37.2843 55.7155 38.9723
+\l 58.8421 42.7467
+\c 61.5171 45.7099 64.6155 47.1403 68.039 47.9131
+\c 67.3374 47.4347 64.1952 45.7995 63.4125 40.0875
+\c 63.2499 38.8939 63.8522 36.1723 63.8522 36.1723
+\c 63.8522 36.1723 65.0781 38.5339 71.1211 37.3963
+\c 77.1626 36.2555 80.0522 37.2219 83.3781 40.0251
+\c 86.7063 42.8251 89.7703 47.2907 93.7095 45.9787
+\c 97.6515 44.6619 97.7375 40.2843 93.7095 39.6715
+\c 89.6813 39.0587 88.5437 39.4971 85.7407 36.1723
+\c 82.9406 32.8443 80.9251 32.6651 80.9251 32.6651
+\c 80.9251 32.6651 81.1 31.0907 83.8155 29.2523
+\c 82.1531 26.2747 80.225 24.9627 76.5483 25.3995
+\c 77.7734 21.4587 82.4797 17.8651 91.4203 19.0443
+\c 101.7469 20.3339 105.9687 28.3787 105.9687 28.3787
+\c 105.9687 28.3787 106.0554 26.7995 103.9531 23.3883
+\c 101.8515 19.9723 98.8015 17.5243 99.125 14.1147
+\c 99.3594 11.6491 101.0031 9.7723 100.3656 5.6123
+\c 104.2155 6.3995 107.1938 9.7275 107.1938 9.7275
+\c 107.1938 9.7275 106.8421 7.4491 107.7171 5.7883
+\c 108.5594 4.1883 112.2187 1.4539 113.8875 -0.0005
+\c 115.5571 1.4539 119.2163 4.1883 120.0595 5.7883
+\c 120.9363 7.4491 120.5843 9.7275 120.5843 9.7275
+\c 120.5843 9.7275 123.5587 6.3995 127.4131 5.6123
+\c 126.7715 9.7723 128.4163 11.6491 128.6499 14.1147
+\c 128.9747 17.5243 125.9251 19.9723 123.8211 23.3883
+\c 121.7203 26.7995 121.8099 28.3787 121.8099 28.3787
+\c 121.8099 28.3787 126.0307 20.3339 136.3571 19.0443
+\c 145.2963 17.8651 150.0035 21.4587 151.2275 25.3995
+\c 147.5507 24.9627 145.6243 26.2747 143.9603 29.2523
+\c 146.6771 31.0907 146.8499 32.6651 146.8499 32.6651
+\c 146.8499 32.6651 144.8339 32.8443 142.0339 36.1723
+\c 139.2307 39.4971 138.0931 39.0587 134.0659 39.6715
+\c 130.0387 40.2843 130.1283 44.6619 134.0659 45.9787
+\c 138.0099 47.2907 141.0723 42.8251 144.3971 40.0251
+\c 147.7251 37.2219 150.6131 36.2555 156.6563 37.3963
+\c 162.6979 38.5339 163.9251 36.1723 163.9251 36.1723
+\c 163.9251 36.1723 164.5283 38.8939 164.3651 40.0875
+\c 163.5811 45.7995 160.4371 47.4347 159.7379 47.9131
+\c 163.1587 47.1403 166.2595 45.7099 168.9363 42.7467
+\l 172.0595 38.9723
+\c 173.4531 37.2843 174.0787 36.1307 175.7843 34.6907
+\c 177.0931 33.5883 181.0515 33.3899 183.7651 32.9691
+\c 185.3091 32.7275 186.9747 32.0123 187.5011 31.2475
+\c 187.6851 30.9819 188.3075 33.1035 188.3203 33.2219
+\c 188.4371 34.3035 188.1651 36.3403 187.4019 37.2315
+\c 187.6547 36.9371 187.8963 36.6907 188.1539 36.3627
+\c 190.6003 33.2155 193.3811 32.0715 197.4451 32.5435
+\c 198.6723 32.6843 200.3587 32.8155 201.5827 32.5963
+\c 203.4563 32.2619 203.9059 31.5099 203.8723 31.4027
+\c 204.9443 35.5339 203.5971 38.8475 201.2867 42.1995
+\c 200.5715 43.2443 198.0691 45.0475 198.1779 44.9787
+\c 202.5411 42.2811 206.8851 41.1243 211.6755 43.2747
+\c 214.2883 44.4491 216.6947 45.9531 219.5379 46.5627
+\c 219.6371 46.5851 218.6563 48.7307 216.7843 49.6027
+\c 217.9731 49.5227 219.1331 49.6811 220.1283 50.5131
+\c 221.3379 51.5179 222.3763 52.7179 223.3843 53.8747
+\c 224.6915 55.3851 226.5379 57.3467 227.7763 57.8411
+\c 226.5379 58.3339 224.7443 60.2971 223.4339 61.8059
+\o
+\m 219.3763 51.4123
+\c 217.9779 50.2475 216.0307 50.7659 213.9747 51.3339
+\c 210.4419 52.3131 207.2147 51.4315 207.2147 51.4315
+\c 207.2147 51.4315 208.2723 50.8443 210.1491 50.7275
+\c 215.2435 50.4091 217.1843 48.1035 218.0067 47.0843
+\c 215.0179 46.4443 213.5251 45.1003 211.1875 44.2971
+\c 208.8787 43.5003 206.5539 43.3435 204.1491 43.8155
+\c 202.2531 44.1899 200.4307 45.0219 198.7683 45.9931
+\c 195.2003 48.0811 191.4627 49.3371 188.3267 50.0971
+\c 184.1475 51.1067 180.2307 51.0059 180.2099 50.6907
+\c 180.2067 50.6747 183.6755 49.8587 183.9411 49.7819
+\c 188.4899 48.4587 193.3491 47.2091 197.1443 44.2283
+\c 200.0835 41.9179 203.0595 37.5147 202.8163 33.6523
+\c 201.6995 34.1227 199.7475 34.2347 197.7683 34.0059
+\c 194.1155 33.5835 191.6899 34.4123 189.4947 37.2347
+\c 187.7539 39.4715 185.6819 42.0443 182.1395 41.7131
+\c 185.0627 39.9995 187.4211 36.8155 187.1715 33.3243
+\c 185.4883 34.6907 178.0403 34.8155 176.8819 35.7659
+\c 174.6099 37.6283 171.6547 42.4411 168.1971 45.3307
+\c 164.9747 48.1339 161.6403 49.0315 157.9299 49.6715
+\c 152.8371 50.5467 150.1875 50.0251 150.1875 50.0251
+\c 153.7795 49.1995 157.3427 48.2091 160.0707 45.6443
+\c 161.1011 44.6747 161.9587 43.3499 162.4371 42.0091
+\c 163.1555 39.9931 163.0163 38.8091 162.9251 38.3995
+\c 162.2115 38.9227 160.6883 39.7691 158.4099 39.5835
+\c 155.1683 39.3227 153.0691 38.3595 150.0899 38.9723
+\c 147.1155 39.5835 145.2755 42.1243 142.3843 44.7499
+\c 139.4963 47.3787 136.7811 48.8651 132.4915 46.7659
+\c 128.2003 43.7003 129.0771 40.3755 131.0035 39.0587
+\c 132.9283 37.7467 137.4835 38.5339 139.5843 36.4315
+\c 141.6835 34.3307 142.3843 32.8443 144.6627 32.3147
+\c 142.8243 31.0027 143.3475 30.7403 136.6931 31.1787
+\c 137.7443 28.9883 141.6835 30.3035 142.9091 27.6747
+\c 144.1379 25.0491 146.9251 24.1963 148.7187 24.0491
+\c 146.3699 20.7659 138.7075 18.3931 130.0387 23.0347
+\c 122.0723 27.2411 121.1075 35.9067 121.1075 35.9067
+\c 121.1075 35.9067 118.3059 29.0779 122.4211 22.7723
+\c 126.5379 16.4683 127.9251 16.1931 126.6563 12.7067
+\c 125.7171 10.1243 125.6643 7.3627 125.6643 7.3627
+\c 125.6643 7.3627 122.7715 8.2379 119.6211 13.3195
+\c 118.3971 10.3403 120.5843 8.3275 117.6947 5.4379
+\c 115.6067 3.3467 114.4755 2.4059 113.8875 1.7131
+\c 113.3031 2.4059 112.172 3.3467 110.0813 5.4379
+\c 107.1896 8.3275 109.3813 10.3403 108.1562 13.3195
+\c 105.0031 8.2379 102.1141 7.3627 102.1141 7.3627
+\c 102.1141 7.3627 102.0594 10.1243 101.1203 12.7067
+\c 99.8522 16.1931 101.2375 16.4683 105.3546 22.7723
+\c 109.4703 29.0779 106.6687 35.9067 106.6687 35.9067
+\c 106.6687 35.9067 105.7063 27.2411 97.7375 23.0347
+\c 89.0688 18.3931 81.4046 20.7659 79.0594 24.0491
+\c 80.8523 24.1963 83.6406 25.0491 84.8656 27.6747
+\c 86.0922 30.3035 90.0312 28.9883 91.0827 31.1787
+\c 84.428 30.7403 84.9531 31.0027 83.1157 32.3147
+\c 85.3898 32.8443 86.0922 34.3307 88.1922 36.4315
+\c 90.2952 38.5339 94.8469 37.7467 96.7749 39.0587
+\c 98.7 40.3755 99.5765 43.7003 95.2859 46.7659
+\c 90.9938 48.8651 88.2813 47.3787 85.3922 44.7499
+\c 82.5014 42.1243 80.6624 39.5835 77.6843 38.9723
+\c 74.7093 38.3595 72.6062 39.3227 69.3656 39.5835
+\c 67.0875 39.7691 65.5656 38.9227 64.8499 38.3995
+\c 64.7611 38.8091 64.6187 39.9931 65.3406 42.0091
+\c 65.8171 43.3499 66.6749 44.6747 67.7062 45.6443
+\c 70.436 48.2091 73.9968 49.1995 77.5898 50.0251
+\c 77.5898 50.0251 74.9374 50.5467 69.8469 49.6715
+\c 66.1358 49.0315 62.803 48.1339 59.5797 45.3307
+\c 56.1179 42.4411 53.1656 37.6283 50.8938 35.7659
+\c 49.7374 34.8155 42.2906 34.6907 40.603 33.3243
+\c 40.3562 36.8155 42.7125 39.9995 45.6373 41.7131
+\c 42.0938 42.0443 40.0218 39.4715 38.2797 37.2347
+\c 36.0877 34.4123 33.661 33.5835 30.0062 34.0059
+\c 28.028 34.2347 26.0749 34.1227 24.9626 33.6523
+\c 24.7179 37.5147 27.6922 41.9179 30.6344 44.2283
+\c 34.4312 47.2091 39.2843 48.4587 43.8344 49.7819
+\c 44.1 49.8587 47.5718 50.6747 47.5718 50.6491
+\c 47.5469 51.0059 43.631 51.1067 39.4499 50.0971
+\c 36.3141 49.3371 32.5765 48.0811 29.0078 45.9931
+\c 27.3469 45.0219 25.5211 44.1899 23.6251 43.8155
+\c 21.2216 43.3435 18.9 43.5003 16.5867 44.2971
+\c 14.2523 45.1003 12.7578 46.4443 9.7718 47.0843
+\c 10.5896 48.1035 12.5344 50.4091 17.628 50.7275
+\c 19.5048 50.8443 20.561 51.4315 20.561 51.4315
+\c 20.561 51.4315 17.3328 52.3131 13.8 51.3339
+\c 11.7437 50.7659 9.8 50.2475 8.4 51.4123
+\c 7.2626 52.3595 3.228 56.6651 1.7611 57.8411
+\c 3.228 59.0123 7.2141 63.3227 8.3499 64.2683
+\c 9.7469 65.4347 11.6952 64.9147 13.7499 64.3467
+\c 17.2843 63.3691 20.5094 64.2491 20.5094 64.2491
+\c 20.5094 64.2491 19.4562 64.8379 17.5782 64.9531
+\c 12.4843 65.2715 10.5405 67.5755 9.7195 68.5963
+\c 12.7062 69.2379 14.2014 70.5819 16.5373 71.3835
+\c 18.8483 72.1819 21.1718 72.3371 23.5765 71.8651
+\c 25.472 71.4907 27.2952 70.6587 28.9562 69.6875
+\c 32.525 67.5995 36.2624 66.3435 39.4 65.5851
+\c 43.5781 64.5723 47.4968 64.6747 47.5179 64.9899
+\c 47.5179 65.0059 44.0499 65.8219 43.7843 65.9003
+\c 39.236 67.2219 34.3782 68.4715 30.5813 71.4523
+\c 27.6405 73.7627 24.6672 78.1659 24.9125 82.0283
+\c 26.0266 81.5595 27.9781 81.4475 29.9562 81.6747
+\c 33.6093 82.0971 36.0344 81.2683 38.231 78.4475
+\c 39.9718 76.2091 42.0437 73.6379 45.5867 73.9691
+\c 42.664 75.6779 40.3062 78.8651 40.5531 82.3563
+\c 42.2374 80.9899 49.6875 80.8651 50.8454 79.9147
+\c 53.1157 78.0523 56.0688 73.2411 59.528 70.3499
+\c 62.7531 67.5467 66.0877 66.6491 69.7968 66.0091
+\c 74.8891 65.1307 77.5374 65.6555 77.5422 65.6555
+\c 73.9469 66.4811 70.3843 67.4683 67.6554 70.0379
+\c 66.625 71.0059 65.7656 72.3307 65.2891 73.6715
+\c 64.5686 75.6875 64.7093 76.8715 64.8014 77.2811
+\c 65.5155 76.7595 67.039 75.9131 69.3157 76.0971
+\c 72.5562 76.3595 74.657 77.3227 77.636 76.7099
+\c 80.6125 76.0971 82.4515 73.5563 85.3406 70.9307
+\c 88.2296 68.3035 90.9437 66.8155 95.2346 68.9147
+\c 99.5266 71.9819 98.6499 75.3067 96.7226 76.6219
+\c 94.7984 77.9339 90.2437 77.1467 88.1421 79.2491
+\c 86.0407 81.3499 85.3406 82.8411 83.0624 83.3627
+\c 84.903 84.6779 84.3781 84.9403 91.0314 84.5035
+\c 89.9813 86.6907 86.0407 85.3787 84.8155 88.0027
+\c 83.5882 90.6315 80.8014 91.4811 79.0094 91.6315
+\c 81.3562 94.9147 89.0187 97.2843 97.6875 92.6443
+\c 105.6523 88.4443 106.6187 79.7723 106.6187 79.7723
+\c 106.6187 79.7723 109.4187 86.6027 105.3048 92.9067
+\c 101.1882 99.2123 99.8031 99.4875 101.072 102.9755
+\c 102.0093 105.5563 102.0626 108.3195 102.0626 108.3195
+\c 102.0626 108.3195 104.9531 107.4411 108.1047 102.3627
+\c 109.3311 105.3403 107.1405 107.3531 110.0312 110.2443
+\c 112.3749 112.5883 113.328 113.4875 113.8875 114.2123
+\c 114.4483 113.4875 115.4035 112.5883 117.7475 110.2443
+\c 120.6371 107.3531 118.4451 105.3403 119.6723 102.3627
+\c 122.8243 107.4411 125.7123 108.3195 125.7123 108.3195
+\c 125.7123 108.3195 125.7683 105.5563 126.7075 102.9755
+\c 127.9747 99.4875 126.5875 99.2123 122.4723 92.9067
+\c 118.3555 86.6027 121.1587 79.7723 121.1587 79.7723
+\c 121.1587 79.7723 122.1203 88.4443 130.0899 92.6443
+\c 138.7555 97.2843 146.4211 94.9147 148.7683 91.6315
+\c 146.9731 91.4811 144.1875 90.6315 142.9619 88.0027
+\c 141.7363 85.3787 137.7955 86.6907 136.7443 84.5035
+\c 143.4003 84.9403 142.8739 84.6779 144.7123 83.3627
+\c 142.4371 82.8411 141.7363 81.3499 139.6323 79.2491
+\c 137.5331 77.1467 132.9795 77.9339 131.0515 76.6219
+\c 129.1283 75.3067 128.2515 71.9819 132.5411 68.9147
+\c 136.8339 66.8155 139.5475 68.3035 142.4339 70.9307
+\c 145.3251 73.5563 147.1635 76.0971 150.1427 76.7099
+\c 153.1171 77.3227 155.2211 76.3595 158.4611 76.0971
+\c 160.7379 75.9131 162.2611 76.7595 162.9779 77.2811
+\c 163.0659 76.8715 163.2083 75.6875 162.4883 73.6715
+\c 162.0099 72.3307 161.1539 71.0059 160.1203 70.0379
+\c 157.3891 67.4683 153.8307 66.4811 150.2355 65.6555
+\c 150.2355 65.6555 152.8883 65.1307 157.9795 66.0091
+\c 161.6899 66.6491 165.0243 67.5467 168.2483 70.3499
+\c 171.7075 73.2411 174.6627 78.0523 176.9315 79.9147
+\c 178.0899 80.8651 185.5379 80.9899 187.2243 82.3563
+\c 187.4723 78.8651 185.1123 75.6779 182.1859 73.9691
+\c 185.7347 73.6379 187.8067 76.2091 189.5475 78.4475
+\c 191.7411 81.2683 194.1651 82.0971 197.8195 81.6747
+\c 199.8003 81.4475 201.7523 81.5595 202.8659 82.0283
+\c 203.1091 78.1659 200.1363 73.7627 197.1939 71.4523
+\c 193.3971 68.4715 188.5443 67.2219 183.9923 65.9003
+\c 183.7283 65.8219 180.2563 65.0059 180.2563 65.0315
+\c 180.2819 64.6747 184.1971 64.5723 188.3779 65.5851
+\c 191.5123 66.3435 195.2515 67.5995 198.8179 69.6875
+\c 200.4819 70.6587 202.3059 71.4907 204.2003 71.8651
+\c 206.6067 72.3371 208.9283 72.1819 211.2403 71.3835
+\c 213.5731 70.5819 215.0707 69.2379 218.0547 68.5963
+\c 217.2355 67.5755 215.2931 65.2715 210.2003 64.9531
+\c 208.3219 64.8379 207.2659 64.2491 207.2659 64.2491
+\c 207.2659 64.2491 210.4931 63.3691 214.0259 64.3467
+\c 216.0835 64.9147 218.0275 65.4347 219.4275 64.2683
+\c 220.5619 63.3227 224.5491 59.0123 226.0163 57.8411
+\c 224.5491 56.6651 220.5123 52.3595 219.3763 51.4123
+\o
+\s
+\m 202.7267 63.7339
+\c 202.7267 63.7339 194.5475 60.6091 186.5939 60.4939
+\l 186.4547 60.4939
+\l 186.2499 60.4939
+\c 181.3187 60.4283 170.8435 60.4379 162.8211 60.4587
+\c 170.1379 62.3835 175.8531 65.8779 175.7155 66.1227
+\c 175.5203 66.4587 164.6899 60.7435 154.2067 60.6123
+\c 146.6339 60.5147 143.3283 60.5755 142.3619 60.5995
+\c 141.9939 60.7659 141.3571 61.0587 140.5059 61.4715
+\c 141.5443 61.5723 142.5683 61.8027 143.5347 62.0187
+\c 146.0131 62.5787 148.5091 64.2491 148.5091 64.2491
+\c 148.5091 64.2491 145.7107 63.3131 142.9491 62.8411
+\c 141.4515 62.5851 139.3187 62.6283 137.8643 63.0475
+\c 137.7203 63.0875 137.5843 63.0715 137.4531 63.0283
+\c 136.9539 63.2939 136.4307 63.5787 135.8819 63.8843
+\c 137.6947 63.7131 139.4019 63.8811 140.9283 64.2315
+\c 145.1683 65.2059 148.1843 68.5691 148.1843 68.5691
+\c 148.1843 68.5691 144.2979 66.3243 140.3539 65.5003
+\c 137.6435 64.9339 134.3475 65.0251 130.8835 66.8475
+\c 126.4131 69.6779 121.4227 73.3659 117.3171 77.7403
+\c 116.6019 81.4619 116.8963 85.1499 117.2659 88.0315
+\c 117.7715 92.0155 119.8883 96.6971 119.8883 96.6971
+\c 119.8883 96.6971 117.0707 93.2187 116.1347 88.6491
+\c 115.5619 85.8491 115.0067 83.2475 115.4931 79.8091
+\c 115.1395 80.2347 114.7939 80.6651 114.4595 81.1067
+\c 114.4339 81.1339 114.3203 97.1339 113.7437 101.7995
+\c 113.1344 97.0843 113.0453 80.7307 113.0453 80.7307
+\c 112.6875 80.2715 112.3141 79.8187 111.9312 79.3723
+\c 112.5344 83.0347 111.9483 85.7307 111.3531 88.6491
+\c 110.4187 93.2187 107.6 96.6971 107.6 96.6971
+\c 107.6 96.6971 109.7155 92.0155 110.2234 88.0315
+\c 110.6031 85.0443 110.9093 81.1899 110.0859 77.3275
+\c 108.5469 75.7243 106.8906 74.2155 105.1898 72.8091
+\c 105.4187 75.4555 104.8234 77.8283 103.9155 79.8027
+\c 102.1843 83.5723 98.1781 85.9723 98.1781 85.9723
+\c 98.1781 85.9723 101.3179 82.9691 102.9483 79.5035
+\c 103.9531 77.3627 104.4312 73.7659 103.6202 71.5467
+\c 102.9531 71.0251 102.2781 70.5195 101.6031 70.0283
+\c 102.3797 71.9595 102.2875 73.9595 101.8594 75.7099
+\c 101.1375 78.6555 98.4554 81.0843 98.4554 81.0843
+\c 98.4554 81.0843 100.4125 78.0779 100.7179 75.6315
+\c 101.072 72.8155 101.1031 70.4555 98.5531 68.0475
+\c 98.4765 67.9755 98.425 67.8907 98.3867 67.7995
+\c 97.8626 67.4539 97.3423 67.1147 96.8312 66.7931
+\c 93.4095 65.0251 90.1531 64.9403 87.4719 65.5003
+\c 83.528 66.3243 79.6406 68.5691 79.6406 68.5691
+\c 79.6406 68.5691 82.657 65.2059 86.8968 64.2315
+\c 88.4155 63.8811 90.1125 63.7131 91.9141 63.8811
+\c 91.3719 63.5819 90.8499 63.2971 90.3562 63.0347
+\c 90.228 63.0715 90.0968 63.0875 89.9594 63.0475
+\c 88.5063 62.6283 86.3735 62.5851 84.8765 62.8411
+\c 82.1155 63.3131 79.3171 64.2491 79.3171 64.2491
+\c 79.3171 64.2491 81.8125 62.5787 84.2906 62.0187
+\c 85.2523 61.8027 86.2656 61.5755 87.2968 61.4747
+\c 86.4421 61.0587 85.8048 60.7659 85.4374 60.5995
+\c 84.4328 60.5755 81.1141 60.5179 73.6202 60.6123
+\c 63.1346 60.7435 52.303 66.4587 52.1107 66.1227
+\c 51.9718 65.8779 57.6877 62.3835 65.0046 60.4587
+\c 56.9813 60.4379 46.5062 60.4283 41.5968 60.4907
+\l 41.3688 60.4939
+\l 41.2328 60.4939
+\c 33.2781 60.6091 25.0984 63.7339 25.0984 63.7339
+\c 25.0984 63.7339 27.8437 61.4347 34.1437 60.1307
+\c 21.7437 59.6347 17.1686 58.4443 17.1686 58.4443
+\c 17.1686 58.4443 33.9453 59.0683 41.2747 59.0843
+\c 49.4688 58.9723 75.2312 59.0843 75.4906 59.0875
+\c 75.6125 59.0875 75.7195 59.1243 75.8187 59.1787
+\c 80.9898 59.1275 83.7374 59.1563 84.9797 59.1819
+\l 85.0686 59.1403
+\c 85.1829 59.0939 92.1031 56.1035 99.6571 50.9243
+\c 99.6906 50.8027 99.7437 50.6875 99.8437 50.5931
+\c 102.3938 48.1851 102.361 45.8251 102.0093 43.0091
+\c 101.7031 40.5627 99.7469 37.5563 99.7469 37.5563
+\c 99.7469 37.5563 102.428 39.9851 103.1499 42.9307
+\c 103.5781 44.6715 103.6719 46.6587 102.9093 48.5787
+\c 103.5938 48.0587 104.2749 47.5243 104.9499 46.9723
+\c 105.7 44.7467 105.228 41.2411 104.2375 39.1371
+\c 102.6093 35.6747 99.4687 32.6683 99.4687 32.6683
+\c 99.4687 32.6683 103.4765 35.0683 105.2063 38.8379
+\c 106.0968 40.7723 106.6843 43.0843 106.4936 45.6619
+\c 108.0218 44.3307 109.4936 42.9147 110.861 41.4219
+\c 111.7483 37.4843 111.4311 33.5403 111.0437 30.4939
+\c 110.5375 26.5099 108.4218 21.8283 108.4218 21.8283
+\c 108.4218 21.8283 111.2391 25.3035 112.1749 29.8747
+\c 112.7749 32.8155 113.1827 35.4811 112.7375 39.2347
+\c 112.8437 39.1035 112.9469 38.9723 113.0515 38.8379
+\c 113.0515 38.8379 113.2311 24.4379 113.7437 17.9723
+\c 114.5683 29.0443 114.4291 38.4347 114.4291 38.4347
+\c 114.5315 38.5691 114.6067 38.6555 114.6755 38.7499
+\c 114.6195 35.2347 114.7411 32.6843 115.3139 29.8747
+\c 116.2499 25.3035 119.0675 21.8283 119.0675 21.8283
+\c 119.0675 21.8283 116.9475 26.5099 116.4419 30.4939
+\c 116.0691 33.4251 115.7683 37.1931 116.5379 40.9851
+\c 126.4899 52.1307 142.5571 59.0683 142.7315 59.1403
+\l 142.8211 59.1819
+\c 144.0531 59.1563 146.8019 59.1275 152.0067 59.1787
+\c 152.1059 59.1243 152.2147 59.0875 152.3347 59.0875
+\c 152.5939 59.0843 182.8851 58.6219 191.0771 58.7339
+\c 198.4067 58.7179 208.5635 58.2123 210.6563 58.4443
+\c 207.1011 59.0539 201.4483 59.5403 193.6803 60.1307
+\c 199.7011 61.4347 202.7267 63.7339 202.7267 63.7339
+\o
+\m 113.9 40.0091
+\c 111.6328 42.8587 108.9469 45.4587 106.1437 47.7851
+\c 106.0523 47.9595 105.9015 48.0843 105.7171 48.1371
+\c 98.3063 54.1899 90.2063 58.2939 87.0375 59.7899
+\c 89.0251 60.7275 92.9594 62.6971 97.4437 65.5275
+\c 97.5922 65.6027 97.7407 65.6619 97.889 65.7435
+\c 97.9851 65.7963 98.0594 65.8715 98.1179 65.9563
+\c 103.4624 69.3931 109.4813 74.0187 113.9 79.5691
+\c 118.3299 74.0059 124.3635 69.3723 129.7187 65.9307
+\c 129.7763 65.8555 129.8467 65.7931 129.9347 65.7435
+\c 130.0483 65.6843 130.1587 65.6411 130.2707 65.5819
+\c 134.7875 62.7227 138.7619 60.7339 140.7619 59.7899
+\c 136.3283 57.7003 122.2563 50.5067 113.9 40.0091
+\o
+\s
+\m 114.4595 72.1883
+\l 113.9 72.9227
+\l 113.3391 72.1883
+\c 107.8938 65.0283 97.3656 60.4811 97.2594 60.4379
+\l 95.7421 59.7899
+\l 97.2594 59.1403
+\c 97.3656 59.0971 107.8938 54.5531 113.3391 47.3931
+\l 113.9 46.6555
+\l 114.4595 47.3931
+\c 119.9059 54.5531 130.4323 59.0971 130.5379 59.1403
+\l 132.0563 59.7899
+\l 130.5379 60.4379
+\c 130.4323 60.4811 119.9059 65.0283 114.4595 72.1883
+\o
+\m 113.0407 49.9275
+\c 109.0624 54.3195 103.6515 57.5147 100.4624 59.1659
+\l 113.0407 59.1659
+\l 113.0407 49.9275
+\o
+\m 113.0407 60.5723
+\l 100.7611 60.5723
+\c 103.9797 62.2619 109.1813 65.3931 113.0407 69.6523
+\l 113.0407 60.5723
+\o
+\m 114.4483 60.5723
+\l 114.4483 70.0155
+\c 118.3347 65.5755 123.7299 62.3099 127.0371 60.5723
+\l 114.4483 60.5723
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian59.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian59.pgf
new file mode 100644
index 0000000000..60823b671e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian59.pgf
@@ -0,0 +1,538 @@
+\m 197.0769 59.2574
+\c 192.7073 60.9326 187.4241 59.9982 183.2785 56.8174
+\c 176.4849 51.5982 173.9441 43.8574 173.3585 41.6734
+\c 172.7937 41.867 172.1969 41.995 171.5649 41.995
+\c 168.4929 41.995 165.9921 39.4958 165.9921 36.4222
+\c 165.9921 35.339 166.3153 34.3358 166.8545 33.4798
+\l 166.4353 32.7198
+\c 165.5441 33.0638 164.5777 33.2606 163.5633 33.2606
+\c 159.1457 33.2606 155.5489 29.6638 155.5489 25.2446
+\c 155.5489 23.8574 155.9041 22.555 156.5249 21.4142
+\l 155.9793 20.8014
+\c 155.2401 21.163 154.4241 21.3822 153.5489 21.3822
+\c 150.4753 21.3822 147.9761 18.883 147.9761 15.811
+\c 147.9761 15.0222 148.1441 14.2766 148.4401 13.595
+\c 143.0769 11.0206 132.4929 10.9758 125.3521 13.5726
+\c 124.7537 13.8046 124.1729 14.0414 123.6081 14.2862
+\c 127.3457 15.0974 131.4865 17.1918 130.6497 21.6318
+\c 129.8657 25.7918 124.2913 25.7598 124.2913 25.7598
+\c 124.2913 25.7598 125.7121 23.0734 123.3105 21.2894
+\c 119.9905 19.0606 112.1937 21.8318 112.1313 21.8382
+\c 112.1313 21.8382 112.2961 21.6478 112.5441 21.3662
+\c 104.8273 28.6926 103.6273 37.5262 103.6273 43.0974
+\c 103.5473 48.867 106.1969 55.1918 110.4865 59.4222
+\c 114.4721 63.355 119.1313 65.4798 124.8737 65.3198
+\c 125.1201 65.3134 125.3537 65.2958 125.5937 65.2798
+\c 126.2497 65.139 126.9297 65.0574 127.6321 65.0574
+\c 127.6881 65.0574 127.7425 65.0638 127.7969 65.0638
+\c 133.7793 64.1854 137.5697 61.2446 139.7777 58.7486
+\c 141.9681 56.2734 143.5137 53.1822 144.2401 50.0174
+\c 144.2417 49.9918 144.2353 49.9662 144.2401 49.939
+\c 145.0289 46.0862 144.1009 41.9694 141.7553 38.9262
+\c 139.6561 36.2046 136.6273 34.5982 133.2257 34.411
+\c 130.4305 34.2542 128.4961 34.6798 127.1569 35.2862
+\c 129.1729 35.0766 131.1969 35.8014 132.7361 37.2766
+\c 134.3409 38.8142 135.1777 40.9486 135.0385 43.1358
+\c 134.7601 47.435 131.1025 52.1422 125.6785 52.2446
+\c 116.2465 52.7006 110.5281 43.9006 114.0593 35.7662
+\c 116.7073 29.6574 122.2593 26.0078 128.9825 26.3262
+\c 138.0993 27.0862 145.0129 34.7038 145.9681 44.7454
+\c 146.4593 49.8958 144.6865 55.9694 141.0289 60.107
+\c 139.2017 62.1758 136.1569 64.6222 131.8561 66.0478
+\c 132.9041 66.5694 133.8321 67.2702 134.5745 68.1134
+\c 135.2273 67.1758 136.5137 65.8414 138.9169 64.9518
+\c 140.3057 64.435 141.4257 64.307 142.4129 64.1918
+\c 144.0865 63.9982 145.1969 63.8702 146.6993 61.8894
+\l 147.6961 60.579
+\c 147.9121 62.0926 148.1793 63.6174 148.1729 65.1518
+\c 148.1713 65.5134 147.8369 69.1854 147.2465 69.0702
+\c 150.0209 69.6206 151.4721 70.907 153.8897 72.5758
+\c 155.3521 73.5886 157.0097 74.7358 159.2385 75.9662
+\l 160.1585 76.4766
+\l 159.3217 77.1134
+\c 153.2785 81.7262 147.8817 81.979 144.3153 81.323
+\c 146.4273 83.5598 146.7553 86.3326 147.0433 88.8206
+\c 147.2849 90.8926 147.4881 92.6798 148.6705 93.7566
+\l 150.0817 95.0446
+\l 148.1729 94.9486
+\c 143.0241 94.6862 139.1201 92.9918 136.5665 89.9102
+\c 133.5217 86.2382 133.2465 81.6382 133.3121 79.4798
+\c 131.7697 80.651 129.7905 81.3566 127.6321 81.3566
+\c 124.3841 81.3566 121.5473 79.755 119.9905 77.3694
+\c 119.5041 79.8542 118.3713 82.1326 116.7505 84.0734
+\c 118.3313 83.9758 123.1841 83.9166 126.2113 86.579
+\c 129.3969 89.3822 131.3233 89.4606 131.3425 89.4606
+\l 132.6225 89.491
+\l 131.7233 90.3982
+\c 131.5617 90.5598 127.2401 94.3006 120.5473 92.0222
+\c 120.3857 91.9918 122.2833 99.155 116.3281 101.4894
+\l 115.8593 101.6926
+\l 115.6241 101.235
+\c 115.1569 100.3358 114.5905 99.555 113.9905 98.7326
+\c 112.9233 97.2606 111.8353 95.755 111.3041 93.5358
+\c 110.2673 96.6638 107.7377 101.0318 101.6897 100.8478
+\l 100.5281 100.811
+\l 101.2977 99.9326
+\c 101.3089 99.9198 102.4193 98.6302 102.6689 95.8606
+\c 102.8753 93.5982 103.6113 91.755 104.8801 90.283
+\c 104.1537 90.3662 103.4177 90.4222 102.6673 90.4222
+\c 95.8609 90.4222 89.9569 86.9358 87.0273 81.8542
+\c 86.0865 83.1198 84.8561 84.155 83.4161 84.8254
+\c 83.8849 85.9566 84.5505 88.0078 84.4241 90.3166
+\c 84.3025 92.4766 83.5409 94.0926 82.9249 95.3918
+\c 82.5633 96.155 82.2513 96.8142 82.1281 97.435
+\l 82.0225 97.9598
+\l 81.4945 97.867
+\c 80.5729 97.7038 78.0289 96.4414 76.4737 93.7454
+\c 76.0625 93.0318 75.6737 92.1294 75.4369 91.0302
+\c 74.1073 93.1982 70.7473 97.2318 63.8929 97.7822
+\l 63.0001 97.8542
+\l 63.3425 97.027
+\c 63.7889 95.9422 63.9809 94.7454 64.1841 93.483
+\c 64.5425 91.251 64.9505 88.7198 66.8849 86.1166
+\c 68.4625 83.9918 70.5441 82.627 71.8673 81.9006
+\c 71.4273 81.3134 71.0481 80.683 70.7537 80.0014
+\c 68.5953 81.1886 63.6721 83.5166 58.1777 83.5166
+\c 50.8945 83.5166 43.6817 78.563 43.0001 75.3326
+\c 46.9777 75.3326 50.3521 73.1662 53.9793 71.9326
+\c 58.5249 70.3918 61.2257 71.8606 64.0833 73.4206
+\l 65.6497 74.2478
+\c 67.5857 75.2174 69.0769 75.6862 69.9921 75.9102
+\c 70.1425 71.6302 73.1521 68.0702 77.1633 67.0702
+\c 70.3153 66.2766 65.7345 62.8606 63.2977 60.107
+\c 59.6401 55.9694 57.8721 49.8958 58.3601 44.7454
+\c 59.3185 34.7038 66.2305 27.0862 75.3473 26.3262
+\c 82.0721 26.0078 87.6225 29.6574 90.2705 35.7662
+\c 93.8001 43.9006 88.0833 52.7006 78.6529 52.2446
+\c 73.2257 52.1422 69.5681 47.435 69.2897 43.1358
+\c 69.1505 40.9486 69.9905 38.8142 71.5937 37.2766
+\c 73.1345 35.8014 75.1553 35.0766 77.1745 35.2862
+\c 75.8321 34.6798 73.8961 34.2542 71.1025 34.411
+\c 67.7025 34.5982 64.6721 36.2046 62.5745 38.9262
+\c 60.2289 41.9694 59.2993 46.0862 60.0865 49.939
+\c 60.0929 49.9662 60.0865 49.9918 60.0865 50.0174
+\c 60.8177 53.1822 62.3617 56.2734 64.5505 58.7486
+\c 67.0977 61.6302 71.7521 65.107 79.4545 65.3198
+\c 85.1969 65.4798 89.8561 63.355 93.8433 59.4222
+\c 98.1329 55.1918 100.7841 48.867 100.7009 43.0974
+\c 100.7009 37.5262 99.5009 28.6926 91.7857 21.3662
+\c 92.0321 21.6478 92.1969 21.8382 92.1969 21.8382
+\c 92.1361 21.8318 84.3377 19.0606 81.0177 21.2894
+\c 78.6177 23.0734 80.0369 25.7598 80.0369 25.7598
+\c 80.0369 25.7598 74.4625 25.7918 73.6785 21.6318
+\c 72.8417 17.1918 76.9857 15.0974 80.7217 14.2862
+\c 80.1553 14.0414 79.5745 13.8046 78.9777 13.5726
+\c 71.8353 10.9758 61.2545 11.0206 55.8897 13.595
+\c 56.1841 14.2766 56.3537 15.0222 56.3537 15.811
+\c 56.3537 18.883 53.8529 21.3822 50.7809 21.3822
+\c 49.9073 21.3822 49.0881 21.163 48.3521 20.8014
+\l 47.8033 21.4142
+\c 48.4257 22.555 48.7793 23.8574 48.7793 25.2446
+\c 48.7793 29.6638 45.1841 33.2606 40.7633 33.2606
+\c 39.7521 33.2606 38.7857 33.0638 37.8929 32.7198
+\l 37.4929 33.4894
+\c 38.0129 34.3358 38.3361 35.339 38.3361 36.4222
+\c 38.3361 39.4958 35.8369 41.995 32.7633 41.995
+\c 32.1345 41.995 31.5361 41.867 30.9697 41.6734
+\c 30.3841 43.8574 27.8449 51.5982 21.0529 56.8174
+\c 16.9073 59.9982 11.6209 60.9326 7.2545 59.2574
+\c 0.0193 56.0862 -2.2639 46.8958 2.5041 41.5726
+\c 5.0561 38.7262 9.1809 37.6702 12.1409 37.8894
+\c 15.1217 38.107 17.4785 39.3326 18.7745 41.3422
+\c 19.9185 43.1134 20.1121 45.283 19.3185 47.451
+\c 18.1601 50.6046 15.1009 51.667 12.5777 51.3166
+\c 10.1857 50.9854 7.6657 49.267 7.4273 46.1694
+\c 7.4193 46.0542 7.4161 45.939 7.4161 45.8302
+\c 7.4161 45.5566 7.4929 45.323 7.5441 45.0734
+\c 6.3265 46.307 5.6241 48.051 5.6241 50.0446
+\c 5.6241 50.2302 5.6289 50.4142 5.6417 50.6014
+\c 6.0161 56.6974 13.1889 58.0974 13.4945 58.155
+\c 15.9105 57.8766 18.3393 56.9326 20.4497 55.3102
+\c 27.6673 49.7726 29.1681 41.1262 29.2369 40.7006
+\c 28.0001 39.6798 27.1905 38.1518 27.1905 36.4222
+\c 27.1905 33.3518 29.6929 30.851 32.7633 30.851
+\c 33.5457 30.851 34.2865 31.0174 34.9617 31.307
+\l 35.1473 30.955
+\c 33.6705 29.4974 32.7505 27.4798 32.7505 25.2446
+\c 32.7505 20.827 36.3457 17.2302 40.7633 17.2302
+\c 42.6145 17.2302 44.3137 17.8638 45.6705 18.9198
+\l 45.9745 18.579
+\c 45.5009 17.7614 45.2097 16.8222 45.2097 15.811
+\c 45.2097 12.739 47.7089 10.2382 50.7809 10.2382
+\c 52.5089 10.2382 54.0369 11.0446 55.0625 12.2862
+\c 60.6945 9.4766 71.5953 9.3886 79.1825 12.1454
+\c 92.5857 17.323 98.4225 25.8254 100.8177 33.307
+\c 100.8881 30.0734 100.8785 25.7166 100.4801 22.5166
+\c 99.8017 17.0974 97.4097 16.5038 93.5665 15.979
+\c 90.3489 15.539 89.1041 13.5758 87.6673 11.3006
+\l 85.8065 8.5918
+\c 84.7665 7.2766 83.9025 6.5982 83.1649 6.5262
+\c 82.2929 6.4382 81.3505 7.1726 80.2033 8.1422
+\l 78.5537 9.5358
+\l 79.0961 7.4446
+\c 80.7409 1.1006 85.6273 0.6222 87.6529 0.7134
+\c 91.9585 0.9038 95.5665 3.2478 98.6961 7.6014
+\c 99.0913 2.6798 102.0305 0.0958 102.1633 -0.0274
+\c 102.2977 0.0958 105.2385 2.6798 105.6337 7.6014
+\c 108.7617 3.2478 112.3697 0.9038 116.6753 0.7134
+\c 118.7009 0.6222 123.5905 1.1006 125.2337 7.4446
+\l 125.7729 9.5358
+\l 124.1249 8.1422
+\c 122.9809 7.1726 122.0353 6.4382 121.1649 6.5262
+\c 120.4257 6.5982 119.5617 7.2766 118.5233 8.5918
+\l 116.6625 11.3006
+\c 115.2257 13.5758 113.9809 15.539 110.7617 15.979
+\c 106.9201 16.5038 104.5281 17.0974 103.8497 22.5166
+\c 103.4497 25.7166 103.4401 30.0734 103.5121 33.307
+\c 105.9057 25.8254 111.7441 17.323 125.1489 12.1454
+\c 132.7361 9.3886 143.6353 9.4766 149.2689 12.2862
+\c 150.2897 11.0446 151.8193 10.2382 153.5489 10.2382
+\c 156.6209 10.2382 159.1217 12.739 159.1217 15.811
+\c 159.1217 16.8222 158.8273 17.7614 158.3537 18.579
+\l 158.6577 18.9198
+\c 160.0177 17.8638 161.7169 17.2302 163.5633 17.2302
+\c 167.9841 17.2302 171.5793 20.827 171.5793 25.2446
+\c 171.5793 27.4798 170.6609 29.4974 169.1809 30.955
+\l 169.3681 31.307
+\c 170.0433 31.0174 170.7841 30.851 171.5649 30.851
+\c 174.6385 30.851 177.1377 33.3518 177.1377 36.4222
+\c 177.1377 38.1518 176.3313 39.6798 175.0929 40.7006
+\c 175.1601 41.1262 176.6641 49.7726 183.8785 55.3102
+\c 185.9905 56.9326 188.4177 57.8766 190.8337 58.155
+\c 191.1393 58.0974 198.3153 56.6974 198.6865 50.6014
+\c 198.6977 50.4142 198.7041 50.2302 198.7041 50.0446
+\c 198.7041 48.051 198.0049 46.307 196.7873 45.0734
+\c 196.8385 45.323 196.9137 45.5566 196.9137 45.8302
+\c 196.9137 45.939 196.9089 46.0542 196.8993 46.1694
+\c 196.6625 49.267 194.1425 50.9854 191.7505 51.3166
+\c 189.2289 51.667 186.1665 50.6046 185.0129 47.451
+\c 184.2177 45.283 184.4097 43.1134 185.5553 41.3422
+\c 186.8497 39.3326 189.2081 38.107 192.1889 37.8894
+\c 195.1473 37.6702 199.2737 38.7262 201.8241 41.5726
+\c 206.5937 46.8958 204.3089 56.0862 197.0769 59.2574
+\o
+\m 129.0961 27.7326
+\c 125.1201 27.5454 121.4145 28.8206 118.6817 31.3262
+\c 113.9937 35.6222 113.0177 45.0734 118.9457 48.8702
+\c 124.6033 52.4926 133.1681 50.4254 133.6673 42.6894
+\c 133.8961 39.1486 130.9185 35.9854 127.2817 36.3726
+\c 125.4913 36.5662 124.3505 37.6318 123.7601 39.0222
+\c 123.4769 39.9518 123.2513 41.2638 123.8385 42.2766
+\c 124.8433 44.0142 123.8385 45.1102 122.8305 45.0206
+\c 121.6433 44.835 121.2625 43.851 121.1841 42.091
+\c 121.0961 40.107 122.2097 37.3422 125.1185 34.8702
+\c 125.1121 34.8894 125.1009 34.9102 125.0929 34.9294
+\c 126.0593 34.0206 127.2129 33.3422 128.5025 33.0382
+\c 134.1329 31.7198 139.1393 33.7294 142.6257 38.2574
+\c 143.0177 38.7662 143.3585 39.3102 143.6785 39.8702
+\c 141.8033 34.0046 137.2929 28.4174 129.0961 27.7326
+\o
+\m 65.1585 75.2302
+\l 63.5569 74.3822
+\c 60.8033 72.883 58.4241 71.5822 54.3345 72.9726
+\c 53.3169 73.3166 52.4385 73.7726 51.4241 74.2974
+\c 49.8513 75.1102 48.0433 76.0174 45.2625 76.7886
+\c 46.7409 78.5166 51.9025 82.4206 58.1777 82.4206
+\c 61.4369 82.4206 64.5409 81.5262 66.9137 80.579
+\c 62.5281 81.2014 58.4721 79.6542 55.6193 77.667
+\c 59.1857 78.8542 65.7697 80.227 68.0561 78.4894
+\c 64.3985 78.3982 60.6497 77.027 59.1857 75.4702
+\c 63.2625 77.0894 67.7425 77.1486 70.0193 77.0446
+\c 69.0625 76.8318 67.3905 76.3454 65.1585 75.2302
+\o
+\m 61.7041 38.2574
+\c 65.1889 33.7294 70.1953 31.7198 75.8273 33.0382
+\c 77.1153 33.3422 78.2721 34.0206 79.2337 34.9294
+\c 79.2273 34.9102 79.2193 34.8894 79.2129 34.8702
+\c 82.1217 37.3422 83.2305 40.107 83.1441 42.091
+\c 83.0657 43.851 82.6881 44.835 81.4961 45.0206
+\c 80.4929 45.1102 79.4865 44.0142 80.4929 42.2766
+\c 81.0785 41.2638 80.8545 39.9518 80.5665 39.0254
+\c 79.9793 37.6318 78.8385 36.5662 77.0497 36.3726
+\c 73.4129 35.9854 70.4337 39.1486 70.6609 42.6894
+\c 71.1585 50.4254 79.7249 52.4926 85.3841 48.8702
+\c 91.3121 45.0734 90.3345 35.6222 85.6465 31.3262
+\c 82.9137 28.8206 79.2081 27.5454 75.2337 27.7326
+\c 67.0337 28.4174 62.5281 34.0046 60.6513 39.8702
+\c 60.9681 39.3102 61.3121 38.7662 61.7041 38.2574
+\o
+\m 4.2737 50.6862
+\c 4.2593 50.4702 4.2529 50.2542 4.2529 50.0446
+\c 4.2529 47.4222 5.2545 45.1006 7.0545 43.6078
+\c 7.6753 43.0894 8.3521 42.7166 9.0497 42.4766
+\c 9.3649 42.3134 9.8049 42.1918 10.4273 42.1134
+\c 11.5521 41.9758 12.7921 42.083 13.3921 42.3454
+\c 14.2385 42.7166 14.6273 43.235 14.0257 43.7198
+\c 13.5057 44.1422 12.8497 43.7358 11.9537 43.6478
+\c 10.6961 43.6478 9.7633 43.9358 9.2625 44.4798
+\c 8.9457 44.8206 8.7873 45.2702 8.7873 45.827
+\c 8.7873 45.9006 8.7889 45.9822 8.7953 46.0638
+\c 8.9873 48.5598 11.0545 49.723 12.7665 49.9566
+\c 14.7441 50.2318 17.1377 49.4174 18.0305 46.9758
+\c 18.6737 45.2254 18.5281 43.4894 17.6209 42.0862
+\c 16.5649 40.4478 14.5825 39.4414 12.0401 39.2574
+\c 9.4993 39.0702 5.7553 40.0046 3.5281 42.4894
+\c 2.2321 43.9326 1.5825 45.7166 1.5825 47.8174
+\c 1.5825 48.5006 1.6513 49.2206 1.7905 49.9694
+\c 2.4497 53.5358 4.7057 56.3006 7.9809 57.5598
+\c 8.3233 57.691 8.6865 57.7566 9.0417 57.8542
+\c 6.8161 56.5598 4.4977 54.355 4.2737 50.6862
+\o
+\m 32.7633 32.2222
+\c 30.4481 32.2222 28.5617 34.107 28.5617 36.4222
+\c 28.5617 38.739 30.4481 40.6222 32.7633 40.6222
+\c 35.0817 40.6222 36.9633 38.739 36.9633 36.4222
+\c 36.9633 34.107 35.0817 32.2222 32.7633 32.2222
+\o
+\m 40.7633 18.6014
+\c 37.1009 18.6014 34.1217 21.5822 34.1217 25.2446
+\c 34.1217 28.907 37.1009 31.8894 40.7633 31.8894
+\c 44.4289 31.8894 47.4097 28.907 47.4097 25.2446
+\c 47.4097 21.5822 44.4289 18.6014 40.7633 18.6014
+\o
+\m 50.7809 11.611
+\c 48.4657 11.611 46.5809 13.4958 46.5809 15.811
+\c 46.5809 18.1262 48.4657 20.011 50.7809 20.011
+\c 53.0961 20.011 54.9825 18.1262 54.9825 15.811
+\c 54.9825 13.4958 53.0961 11.611 50.7809 11.611
+\o
+\m 83.0769 15.3854
+\c 79.5233 15.3422 73.6721 17.0142 74.8577 21.8174
+\c 75.1873 23.1566 76.6977 24.7758 78.8673 24.7454
+\c 78.8657 24.7102 78.0849 22.5614 80.0897 20.4734
+\c 81.9505 18.5358 85.4545 18.3422 88.4129 18.5822
+\c 86.8385 17.451 85.0673 16.379 83.0769 15.3854
+\o
+\m 102.8049 62.851
+\c 102.8049 62.851 105.9121 61.9358 109.5697 63.2174
+\c 108.1089 63.5822 107.9249 64.1326 107.9249 64.1326
+\c 107.9249 64.1326 110.7313 63.883 113.7841 65.5006
+\c 111.0497 62.667 107.0849 60.867 102.6673 60.867
+\c 102.4145 60.867 102.1697 60.8926 101.9185 60.9006
+\c 101.0353 61.2958 100.2401 61.7566 99.6945 62.3006
+\c 103.1713 61.2046 104.0849 61.5694 104.0849 61.5694
+\l 102.8049 62.851
+\o
+\m 117.1937 65.755
+\c 118.1713 67.0318 118.9473 68.4414 119.4753 69.9518
+\c 120.0113 68.8302 120.8177 67.8382 121.8177 67.0478
+\c 120.2161 66.8142 118.6721 66.3662 117.1937 65.755
+\o
+\m 146.6817 63.9134
+\c 146.6817 63.9134 145.4193 66.4174 140.2977 68.155
+\c 141.6465 66.723 142.3681 66.6734 142.7617 65.5326
+\c 142.6961 65.539 142.6321 65.5486 142.5681 65.555
+\c 141.6161 65.667 140.6273 65.779 139.3921 66.2382
+\c 136.8433 67.1822 135.8065 68.6382 135.4465 69.3006
+\c 136.0177 70.2574 136.3825 71.3262 136.4961 72.4638
+\c 137.9057 72.467 142.3393 72.2478 144.8625 69.5198
+\c 146.0865 68.1918 146.7073 66.4302 146.7073 64.2606
+\c 146.7073 64.1518 146.6849 64.027 146.6817 63.9134
+\o
+\m 157.6177 76.5918
+\c 155.8401 75.555 154.3617 74.5726 153.1089 73.7038
+\c 150.5649 71.9486 148.8161 70.7598 145.9601 70.339
+\c 145.9281 70.3758 145.8993 70.4206 145.8657 70.4574
+\c 145.0257 71.363 144.0225 72.0254 142.9873 72.5134
+\c 144.5873 72.9166 146.6001 73.835 147.5217 75.2894
+\c 145.8001 74.1102 142.1073 73.1166 139.7265 73.5422
+\c 139.7089 73.5454 139.6913 73.5486 139.6737 73.5518
+\c 143.5073 74.1038 147.1585 76.1134 147.7057 77.8478
+\c 143.8129 75.7854 138.1473 74.939 136.3777 74.7134
+\c 136.2369 75.4014 136.0001 76.0542 135.6849 76.667
+\c 136.7681 76.9422 138.5537 77.5134 140.5969 78.6414
+\c 140.9361 78.7982 148.1617 83.2014 157.6177 76.5918
+\o
+\m 137.6305 89.0446
+\c 139.6673 91.4958 142.7569 92.9134 146.7217 93.3854
+\c 146.0641 92.1166 145.8673 90.5854 145.6817 88.979
+\c 145.3633 86.2318 145.0353 83.3918 142.3137 81.3694
+\c 140.1121 79.739 137.9969 78.8382 136.5009 78.3454
+\c 138.5249 79.7886 141.7601 83.0926 142.4017 86.5358
+\c 140.5729 83.9758 137.0961 81.323 137.0961 81.323
+\c 137.3713 82.9694 139.3841 86.627 142.0337 89.3694
+\c 138.0817 87.5982 135.7025 83.3886 134.7505 81.3614
+\c 134.9249 83.5454 135.5697 86.563 137.6305 89.0446
+\o
+\m 127.6321 80.0078
+\c 131.7985 80.0078 135.1873 76.9566 135.1873 73.2078
+\c 135.1873 70.083 132.8305 67.451 129.6353 66.6574
+\c 128.9969 66.4974 128.3265 66.4078 127.6321 66.4078
+\c 126.3249 66.4078 125.0929 66.707 124.0193 67.2382
+\c 121.8513 68.3038 120.3297 70.3006 120.1089 72.6254
+\c 120.0929 72.8174 120.0785 73.011 120.0785 73.2078
+\c 120.0785 73.723 120.1489 74.2222 120.2689 74.7038
+\c 121.0273 77.7358 124.0369 80.0078 127.6321 80.0078
+\o
+\m 121.2913 90.9822
+\c 125.7489 92.4958 128.6929 91.1598 130.0545 90.2734
+\c 129.0433 89.9294 127.4897 89.1662 125.4865 87.4046
+\c 124.5393 86.5726 123.3553 86.0446 122.1553 85.7038
+\c 120.7953 85.5454 118.6849 85.3982 117.3441 85.8046
+\c 120.2721 87.3566 122.0993 88.2734 124.1121 88.5486
+\c 122.7409 89.1886 120.5473 89.4638 117.5281 87.0862
+\c 117.3777 87.6446 117.4673 88.2046 117.7185 88.739
+\c 118.6577 89.7854 119.8513 90.7006 121.2913 90.9822
+\o
+\m 114.8785 98.0862
+\c 115.3617 98.755 115.8337 99.4798 116.2753 100.235
+\c 119.0289 98.8302 119.7217 96.3518 119.7217 94.3566
+\c 119.7217 92.7886 119.3345 91.5422 119.2929 91.4174
+\c 119.2929 91.4174 117.3473 91.3822 114.7857 87.8174
+\c 114.6929 91.563 115.3313 92.9358 116.8881 95.1326
+\c 114.6017 94.035 113.8705 92.5694 113.4145 89.4606
+\c 112.6017 90.0046 112.2401 91.1486 112.2561 92.707
+\c 112.6817 95.035 113.7537 96.539 114.8785 98.0862
+\o
+\m 103.7617 95.9566
+\c 103.6033 97.7038 103.1473 98.8894 102.7521 99.6542
+\c 107.2193 99.3198 109.2577 96.035 110.1745 93.4638
+\c 110.2657 92.5982 110.4177 90.7598 110.2129 89.7358
+\c 108.6561 89.4078 106.5169 89.9006 105.0353 91.9102
+\c 104.3313 93.0382 103.9073 94.3726 103.7617 95.9566
+\o
+\m 100.9361 88.4766
+\c 104.2577 87.635 108.8209 85.2078 109.2513 78.2142
+\c 111.0977 81.1694 110.1713 85.6702 106.2865 88.1486
+\c 107.6657 87.827 108.9633 87.3358 110.1601 86.6862
+\c 112.3009 84.8958 113.1777 81.7854 111.5825 75.7454
+\c 113.6753 77.2862 114.2625 81.0318 114.1313 83.5886
+\c 114.4337 83.251 114.7185 82.9006 114.9873 82.539
+\c 115.6289 78.539 113.2881 72.9662 108.1553 71.2206
+\c 111.8241 70.9726 115.4897 73.9006 116.8241 79.107
+\c 117.0705 78.4206 117.2561 77.7102 117.3841 76.979
+\c 116.7585 72.4078 113.2785 68.4766 106.9201 68.4766
+\c 109.6609 67.163 114.3697 67.7198 116.8161 70.3166
+\c 116.6385 69.8318 116.4337 69.363 116.2049 68.9038
+\c 113.6897 65.9726 108.9745 64.4894 103.4897 65.4574
+\c 105.0001 63.6734 107.4689 63.6734 107.4689 63.6734
+\c 107.4689 63.6734 103.9009 62.9886 100.4721 64.4974
+\c 100.8849 62.5758 101.9809 62.4382 101.9809 62.4382
+\c 101.9809 62.4382 98.4161 62.9886 96.6305 64.907
+\c 96.8481 63.1726 98.3681 61.8702 100.2753 61.0606
+\c 94.0641 61.995 89.1217 66.483 87.9809 72.1982
+\c 87.8193 73.0174 87.7329 73.8606 87.7329 74.723
+\c 87.7329 76.2254 88.0081 77.667 88.4865 79.0222
+\c 90.2705 84.067 95.0865 87.8446 100.9361 88.4766
+\o
+\m 77.4257 93.1982
+\c 78.6081 95.2478 80.3313 96.2766 81.2369 96.6222
+\c 81.4193 96.067 81.6561 95.507 81.9329 94.9198
+\c 82.5377 93.6446 83.2193 92.2014 83.3281 90.2542
+\c 83.3377 90.0862 83.3425 89.9134 83.3425 89.7486
+\c 83.3425 89.6478 83.3313 89.555 83.3281 89.4542
+\c 83.0929 87.8078 82.3249 86.011 80.7649 85.7134
+\c 79.3953 87.907 80.4017 92.755 80.4017 92.755
+\c 80.4017 92.755 78.4817 91.0174 78.3889 85.8958
+\c 77.3137 86.0446 76.7089 86.827 76.3633 87.7006
+\c 76.3217 88.0926 76.2929 88.4734 76.2929 88.8478
+\c 76.2929 90.4382 76.6705 91.891 77.4257 93.1982
+\o
+\m 71.2929 84.0574
+\c 69.7745 84.7726 68.7521 85.4414 67.7649 86.7694
+\c 65.9905 89.1614 65.6209 91.4446 65.2689 93.6542
+\c 65.1057 94.6606 64.9105 95.6174 64.6289 96.5486
+\c 72.5921 95.507 75.0305 89.5326 75.1313 89.267
+\c 75.1313 89.267 75.2321 88.7038 75.2433 88.3918
+\l 74.5489 86.2606
+\c 74.5489 86.2606 71.5313 87.5422 68.4225 93.0302
+\c 68.5121 88.7294 74.0897 83.795 74.0929 83.7918
+\c 73.9313 83.6574 72.6273 83.4254 71.2929 84.0574
+\o
+\m 71.8033 76.2478
+\c 71.8033 80.4606 75.2305 83.8862 79.4401 83.8862
+\c 82.3073 83.8862 84.8065 82.2958 86.1121 79.955
+\c 86.7233 78.8542 87.0785 77.5918 87.0785 76.2478
+\c 87.0785 74.4574 86.4529 72.8142 85.4161 71.507
+\c 84.0177 69.7486 81.8625 68.611 79.4401 68.611
+\c 75.2305 68.611 71.8033 72.0382 71.8033 76.2478
+\o
+\m 81.9233 67.1262
+\c 83.5009 67.555 84.9153 68.3758 86.0529 69.4894
+\c 86.6897 67.8478 87.6161 66.3294 88.7825 64.9854
+\c 86.6433 66.091 84.3425 66.8478 81.9233 67.1262
+\o
+\m 110.5761 14.6206
+\c 113.1649 14.267 114.0945 12.795 115.5025 10.5662
+\l 117.4465 7.7422
+\c 118.7617 6.0734 119.8673 5.2766 121.0273 5.1614
+\c 121.7489 5.0894 122.4113 5.2974 123.0737 5.6702
+\c 121.3905 2.467 118.4993 2.0078 116.7361 2.0862
+\c 109.3889 2.1294 104.6337 10.8206 104.6337 10.8206
+\c 105.0337 6.4926 103.2273 3.3326 102.1633 1.883
+\c 101.0993 3.3326 99.2961 6.4926 99.6945 10.8206
+\c 99.6945 10.8206 94.9409 2.1294 87.5937 2.0862
+\c 85.8289 2.0078 82.9377 2.467 81.2545 5.6702
+\c 81.9169 5.2974 82.5793 5.0894 83.3009 5.1614
+\c 84.4625 5.2766 85.5649 6.0734 86.8833 7.7422
+\l 88.8257 10.5662
+\c 90.2337 12.795 91.1633 14.267 93.7521 14.6206
+\c 97.9953 15.1982 101.0577 16.0926 101.8401 22.3486
+\c 102.0081 23.6958 102.1073 25.2302 102.1633 26.7886
+\c 102.2209 25.2302 102.3217 23.6958 102.4881 22.3486
+\c 103.2721 16.0926 106.3345 15.1982 110.5761 14.6206
+\o
+\m 101.9105 37.8254
+\c 102.0193 38.467 102.1009 39.0894 102.1633 39.691
+\c 102.2273 39.0894 102.3121 38.467 102.4193 37.8254
+\l 102.3025 37.835
+\c 102.2929 37.6926 102.2209 36.363 102.1633 34.4574
+\c 102.1073 36.363 102.0337 37.6926 102.0257 37.835
+\l 101.9105 37.8254
+\o
+\m 102.1633 46.0702
+\c 101.4897 51.2958 98.9233 56.5598 95.0945 60.3358
+\c 95.0337 60.395 94.9729 60.4478 94.9121 60.507
+\c 97.2577 59.4702 99.8833 58.8734 102.6673 58.8734
+\c 104.8337 58.8734 106.8993 59.2414 108.8193 59.8862
+\c 105.2257 56.1454 102.8161 51.0974 102.1633 46.0702
+\o
+\m 115.9169 18.5822
+\c 118.8753 18.3422 122.3809 18.5358 124.2369 20.4734
+\c 126.2433 22.5614 125.4625 24.7102 125.4625 24.7454
+\c 127.6289 24.7758 129.1409 23.1566 129.4737 21.8174
+\c 130.6561 17.0142 124.8049 15.3422 121.2513 15.3854
+\c 119.2625 16.379 117.4881 17.451 115.9169 18.5822
+\o
+\m 153.5489 11.611
+\c 151.2305 11.611 149.3489 13.4958 149.3489 15.811
+\c 149.3489 18.1262 151.2305 20.011 153.5489 20.011
+\c 155.8625 20.011 157.7505 18.1262 157.7505 15.811
+\c 157.7505 13.4958 155.8625 11.611 153.5489 11.611
+\o
+\m 170.2081 25.2446
+\c 170.2081 21.5822 167.2257 18.6014 163.5633 18.6014
+\c 159.9009 18.6014 156.9201 21.5822 156.9201 25.2446
+\c 156.9201 28.907 159.9009 31.8894 163.5633 31.8894
+\c 167.2257 31.8894 170.2081 28.907 170.2081 25.2446
+\o
+\m 175.7649 36.4222
+\c 175.7649 34.107 173.8817 32.2222 171.5649 32.2222
+\c 169.2481 32.2222 167.3633 34.107 167.3633 36.4222
+\c 167.3633 38.739 169.2481 40.6222 171.5649 40.6222
+\c 173.8817 40.6222 175.7649 38.739 175.7649 36.4222
+\o
+\m 202.7457 47.8174
+\c 202.7457 45.7166 202.0945 43.9326 200.8017 42.4894
+\c 198.5745 40.0046 194.8273 39.0702 192.2897 39.2574
+\c 189.7473 39.4414 187.7633 40.4478 186.7073 42.0862
+\c 185.8033 43.4894 185.6561 45.2254 186.2993 46.9758
+\c 187.1937 49.4174 189.5873 50.2318 191.5633 49.9566
+\c 193.2753 49.723 195.3425 48.5598 195.5329 46.0638
+\c 195.5393 45.9822 195.5441 45.9006 195.5441 45.827
+\c 195.5441 45.2702 195.3825 44.8206 195.0689 44.4798
+\c 194.5633 43.9358 193.6337 43.6478 192.3761 43.6478
+\c 191.4785 43.7358 190.8225 44.1422 190.3009 43.7198
+\c 189.7009 43.235 190.0881 42.7166 190.9361 42.3454
+\c 191.5361 42.083 192.7745 41.9758 193.9009 42.1134
+\c 194.5249 42.1918 194.9617 42.3134 195.2785 42.4766
+\c 195.9761 42.7166 196.6545 43.0894 197.2753 43.6078
+\c 199.0737 45.1006 200.0769 47.4222 200.0769 50.0446
+\c 200.0769 50.2542 200.0705 50.4702 200.0577 50.6862
+\c 199.8321 54.355 197.5137 56.5598 195.2897 57.8542
+\c 195.6417 57.7566 196.0065 57.691 196.3505 57.5598
+\c 199.6257 56.3006 201.8801 53.5358 202.5393 49.9694
+\c 202.6769 49.2206 202.7457 48.5006 202.7457 47.8174
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian6.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian6.pgf
new file mode 100644
index 0000000000..dc8cb80807
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian6.pgf
@@ -0,0 +1,60 @@
+\m -0.8524 0
+\l 135.2106 0
+\l 135.2106 147.8143
+\l -0.8524 147.8143
+\o
+\i
+\m 120.9937 54.2008
+\c 128.762 62.7282 135.2106 69.7373 134.261 79.0239
+\c 133.3141 88.3104 127.6301 98.3561 113.6064 98.3561
+\c 100.2684 98.3561 78.5825 83.244 75.8262 54.3885
+\l 69.2987 54.3885
+\c 69.6143 59.4277 70.2157 65.7294 71.3476 70.8774
+\c 74.2481 85.7827 85.4937 96.0188 85.4937 109.9119
+\c 85.4937 123.8132 80.5688 128.8659 74.7542 135.5622
+\c 68.945 142.2557 66.9832 147.8145 66.9832 147.8145
+\c 66.9832 147.8145 65.0296 142.2557 59.2204 135.5622
+\c 53.4057 128.8659 48.4808 123.8132 48.4808 109.9119
+\c 48.4808 96.0188 59.7237 85.7827 62.6297 70.8774
+\c 63.7589 65.7294 64.3602 59.4277 64.6758 54.3885
+\l 58.5265 54.3885
+\c 55.773 83.244 34.0844 98.3561 20.7491 98.3561
+\c 6.7254 98.3561 1.0387 88.3104 0.0918 79.0239
+\c -0.8524 69.7373 5.5881 62.7282 13.3563 54.2008
+\c 21.1273 45.6707 19.0431 39.6112 9.0001 38.6588
+\c 20.1804 32.0279 29.2738 40.3648 29.2738 50.0296
+\c 29.2738 59.6944 20.9368 65.1934 20.1804 70.4965
+\c 19.4213 75.805 23.0211 82.6237 30.6016 81.6768
+\c 45.5939 79.9055 51.2752 64.2084 52.8479 54.3885
+\l 49.1747 54.3885
+\c 46.0347 54.3885 43.4907 52.3125 43.4907 49.7466
+\c 43.4907 47.1808 46.0347 45.1047 49.1747 45.1047
+\l 53.3459 45.1047
+\c 52.9105 33.6387 49.0604 26.4908 43.8661 26.1534
+\c 37.9944 25.7752 37.0448 31.4592 40.835 32.0279
+\c 37.2352 39.0398 28.3269 36.0059 27.0018 30.1314
+\c 25.6441 24.11 30.9825 17.6233 37.9944 17.4328
+\c 44.628 17.256 57.0083 18.9565 58.6571 45.1047
+\l 65.0649 45.1047
+\c 65.2037 43.3987 65.5438 36.0331 62.1236 25.7752
+\c 58.2055 14.0262 59.6612 10.1081 66.9832 -0.0002
+\c 74.3161 10.1081 75.7691 14.0262 71.8537 25.7752
+\c 68.4335 36.0331 68.7681 43.3987 68.9069 45.1047
+\l 75.6983 45.1047
+\c 77.3418 18.9565 89.7302 17.256 96.3611 17.4328
+\c 103.373 17.6233 108.7114 24.11 107.351 30.1314
+\c 106.0232 36.0059 97.1175 39.0398 93.5177 32.0279
+\c 97.308 31.4592 96.3611 25.7752 90.4839 26.1534
+\c 85.2924 26.4908 81.4395 33.6387 81.0069 45.1047
+\l 85.9345 45.1047
+\c 89.0772 45.1047 91.624 47.1808 91.624 49.7466
+\c 91.624 52.3125 89.0772 54.3885 85.9345 54.3885
+\l 81.5021 54.3885
+\c 83.0802 64.2084 88.7616 79.9055 103.7512 81.6768
+\c 111.3317 82.6237 114.9315 75.805 114.1751 70.4965
+\c 113.4159 65.1934 105.0763 59.6944 105.0763 50.0296
+\c 105.0763 40.3648 114.1751 32.0279 125.3554 38.6588
+\c 115.3124 39.6112 113.2255 45.6707 120.9937 54.2008
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian60.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian60.pgf
new file mode 100644
index 0000000000..eab6bf91b7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian60.pgf
@@ -0,0 +1,1611 @@
+\r 0 0 451 189
+\i
+\m 228.5818 24.4084
+\c 227.5481 25.8706 226.3967 27.4343 225.8026 28.2466
+\l 225.8026 93.9415
+\l 227.7857 96.4608
+\l 225.8026 99.2836
+\l 225.8026 123.2736
+\l 229.4388 123.2736
+\l 229.4388 125.6629
+\l 225.8026 125.6629
+\l 225.8026 138.6774
+\c 226.9633 138.8693 227.8528 139.8756 227.8528 141.089
+\c 227.8528 142.4435 226.7521 143.5442 225.3995 143.5442
+\c 224.046 143.5442 222.9443 142.4435 222.9443 141.089
+\c 222.9443 139.8756 223.8348 138.8693 224.9944 138.6774
+\l 224.9944 125.6629
+\l 221.3582 125.6629
+\l 221.3582 123.2736
+\l 224.9944 123.2736
+\l 224.9944 99.2531
+\l 223.0113 96.276
+\l 224.9944 93.9111
+\l 224.9944 28.2263
+\l 222.3381 24.5302
+\l 224.9944 21.5348
+\l 224.9944 0.4041
+\c 224.9944 0.1808 225.1761 -0.002 225.3995 -0.002
+\c 225.6219 -0.002 225.8026 0.1808 225.8026 0.4041
+\l 225.8026 21.4942
+\l 228.5818 24.4084
+\o
+\s
+\m 256.4396 53.8552
+\c 256.4396 53.8552 257.0793 57.0639 254.9703 57.7036
+\c 253.1628 58.2621 251.1148 56.4242 251.4813 52.5657
+\c 251.8479 48.7071 255.3378 44.3002 261.7654 41.914
+\c 261.7654 41.914 256.4995 45.275 254.4199 48.7071
+\c 253.6644 49.9561 253.44 50.809 253.4685 51.7127
+\c 253.5192 53.2155 254.5438 54.2716 256.4396 53.8552
+\o
+\s
+\m 380.0432 106.9276
+\c 380.0432 106.9276 379.8594 109.0924 376.1857 109.1331
+\c 370.7705 109.192 364.613 104.7759 364.2059 104.4805
+\c 364.2059 104.4805 366.3931 107.1886 365.3502 110.2348
+\c 365.3502 110.2348 362.4127 110.9679 358.5551 106.7458
+\c 354.6986 102.5217 348.3889 96.7126 339.0258 91.5005
+\c 339.0258 91.5005 343.2438 93.4166 352.4007 98.2042
+\c 362.4096 103.4397 370.6923 105.9162 373.0643 106.1945
+\c 376.1846 106.561 378.2073 105.8269 378.2073 102.8883
+\c 378.2073 99.9507 375.2677 100.1335 375.2677 100.1335
+\c 375.2677 100.1335 383.3494 95.5408 382.4304 102.3369
+\c 382.4304 102.3369 383.8997 103.0711 382.9818 104.7252
+\c 382.0639 106.3762 380.0432 106.9276 380.0432 106.9276
+\o
+\s
+\m 246.0164 104.1829
+\c 246.0133 104.4622 246.0042 104.6277 246.0022 104.6409
+\c 246.0012 104.6846 245.9859 104.7252 245.9707 104.7627
+\c 245.8458 106.2696 245.6183 107.7592 245.2619 109.2285
+\c 244.3938 112.7926 242.6503 115.321 240.0813 116.7415
+\c 239.5066 117.0593 238.9207 117.2898 238.3348 117.4706
+\c 239.1421 117.431 239.8244 117.3975 240.2621 117.3975
+\c 241.7314 117.3975 244.8974 116.6674 245.0375 119.0516
+\c 245.2213 122.1729 241.5486 121.8043 241.5486 121.8043
+\c 241.5486 121.8043 242.765 120.5513 242.2827 119.4181
+\c 242.1121 119.016 241.7354 118.8119 241.114 118.6495
+\c 239.5757 118.2464 236.9518 118.2799 235.3465 118.1336
+\c 233.0212 117.9194 232.1713 117.501 232.1713 117.501
+\c 232.3612 117.5224 232.5683 117.5406 232.7805 117.5538
+\c 232.6881 117.5274 232.5866 117.5051 232.4972 117.4746
+\c 231.3884 117.1061 230.37 116.4054 229.5109 115.4702
+\c 230.8472 117.8991 232.9552 120.1127 235.7892 122.0227
+\c 237.5641 123.2168 239.535 124.6048 240.7068 125.8436
+\c 243.2281 128.5111 243.3327 130.7978 243.3885 132.0254
+\c 243.4576 133.5262 242.8818 135.8221 241.4562 137.3188
+\c 240.391 138.4378 239.006 139.0084 237.3377 139.0145
+\c 237.3286 139.0145 237.3214 139.0145 237.3133 139.0145
+\c 235.4663 139.0145 233.9747 138.3169 233.0009 136.9959
+\c 231.7073 135.2443 231.624 132.8703 232.1154 131.2974
+\c 232.7247 129.3488 234.3341 128.4857 235.6359 128.3283
+\c 236.9965 128.1649 238.2231 128.7061 238.8486 129.7387
+\c 239.4538 130.743 239.5391 132.1239 239.0629 133.1779
+\c 238.7298 133.9131 238.1642 134.3853 237.4707 134.5091
+\c 235.7496 134.8158 235.0053 133.6389 234.9738 133.5882
+\c 234.8581 133.4013 234.9159 133.1546 235.1018 133.0368
+\c 235.2916 132.916 235.5394 132.9738 235.6592 133.1617
+\c 235.6805 133.1922 236.174 133.9141 237.3286 133.7131
+\c 237.8718 133.6156 238.1713 133.1881 238.3267 132.8449
+\c 238.6933 132.0346 238.6232 130.9308 238.1561 130.1581
+\c 237.6982 129.3996 236.763 129.0097 235.7333 129.1305
+\c 234.6814 129.2574 233.3827 129.9571 232.8882 131.5381
+\c 232.4698 132.8723 232.5318 134.9996 233.6518 136.5156
+\c 234.4793 137.6376 235.71 138.2052 237.3123 138.2052
+\c 237.3204 138.2052 237.3275 138.2052 237.3346 138.2052
+\c 238.7735 138.2012 239.9635 137.7158 240.8703 136.7613
+\c 242.3233 135.2362 242.6249 133.0216 242.5792 132.065
+\c 242.5254 130.8608 242.434 128.8482 240.1199 126.3991
+\c 239.003 125.2171 237.0767 123.8616 235.3384 122.6908
+\c 230.1405 119.1907 227.2669 114.6833 227.0262 109.657
+\c 227.0262 109.6316 227.0343 109.6073 227.0384 109.5819
+\c 226.9226 107.9674 227.1765 106.3224 227.8274 104.7963
+\c 229.2073 101.5632 232.2799 99.8502 235.6602 100.4229
+\c 238.8557 100.9692 241.1221 103.7869 241.049 107.1215
+\c 241.0074 109.0315 240.4093 110.5313 239.2731 111.5812
+\c 238.2637 112.5164 237.0513 112.8048 236.1547 112.8738
+\l 235.9943 113.0241
+\c 235.9943 113.0241 234.6915 113.1399 233.6182 112.5997
+\c 232.545 112.0605 231.5945 110.9242 231.5052 108.996
+\c 231.3772 106.1945 233.0933 104.8998 234.719 104.8399
+\c 236.5558 104.7739 237.7967 106.0655 237.887 107.8699
+\c 237.9307 108.7431 237.5428 109.5646 236.8097 109.5474
+\c 236.4269 109.5362 235.3617 109.3636 235.0865 110.2581
+\c 234.8398 111.0613 235.5353 112.3245 237.4859 111.6228
+\l 237.2605 111.8341
+\c 237.756 111.6726 238.2688 111.4106 238.7237 110.9902
+\c 239.6934 110.0916 240.2042 108.7848 240.2418 107.1043
+\c 240.3057 104.1718 238.3226 101.6972 235.5242 101.222
+\c 232.5257 100.7092 229.7983 102.2374 228.5707 105.1131
+\c 227.536 107.5399 227.5542 110.2896 228.6194 112.6596
+\c 229.5058 114.6274 231.0523 116.1424 232.7521 116.709
+\c 234.4773 117.2837 237.2057 117.4076 239.6904 116.0348
+\c 242.0532 114.728 243.6637 112.3742 244.477 109.0366
+\c 244.868 107.4262 245.1076 105.7883 245.2102 104.1281
+\c 245.2345 102.2557 245.0284 95.0757 240.7535 90.4171
+\l 240.6764 90.5034
+\c 239.8508 89.5733 238.5765 88.6665 237.9205 88.2877
+\c 236.2827 87.3373 235.1353 88.4705 234.8103 89.6657
+\c 234.4742 90.9095 234.9525 92.4205 234.9525 92.4205
+\c 234.9525 92.4205 233.4345 92.9718 231.8494 92.0976
+\c 230.6329 91.4792 229.9912 89.821 230.176 88.1953
+\c 230.176 88.1953 230.4502 84.8486 233.7584 84.7978
+\c 236.9254 84.7511 239.6447 87.5526 241.3902 89.688
+\l 241.2846 89.8068
+\c 242.6432 91.271 243.616 92.9678 244.3095 94.6838
+\c 243.0463 89.5733 240.5515 84.2941 236.8229 78.8739
+\c 235.0378 76.2795 233.5055 73.7237 232.2139 71.2106
+\c 232.0312 71.2614 231.8433 71.2989 231.6433 71.2989
+\c 230.4938 71.2989 229.5617 70.3658 229.5617 69.2174
+\c 229.5617 68.5015 229.9242 67.8709 230.4745 67.4962
+\c 228.1391 61.9684 227.0333 56.6578 227.2009 51.6315
+\c 227.4405 44.4221 229.4632 40.0761 233.3786 38.3601
+\c 234.4204 37.9032 235.3932 37.7102 236.2796 37.7102
+\c 238.344 37.7102 239.9483 38.7561 240.9038 40.0152
+\c 241.7639 41.1423 242.298 42.8787 242.3345 44.6556
+\c 242.3954 47.6511 240.8906 50.9106 237.4413 51.0121
+\c 236.169 51.0426 235.0408 50.6262 234.1696 49.7733
+\c 232.9592 48.6056 232.5277 46.9403 232.5277 45.7726
+\c 232.5277 44.0464 233.4548 42.5334 234.7819 42.0867
+\c 235.4744 41.8531 236.1811 41.9547 236.7985 42.3405
+\l 236.8655 42.2085
+\c 238.9674 43.691 238.7948 45.8538 237.7733 46.5748
+\c 236.9031 47.1942 235.2175 46.8083 235.2267 45.6812
+\c 235.2317 45.0313 236.0502 44.94 236.5223 44.5947
+\c 236.965 44.2698 236.9813 43.5996 236.3609 43.1833
+\l 236.4289 43.0615
+\c 235.9994 42.767 235.5232 42.6959 235.0388 42.8584
+\c 234.2184 43.1325 233.3349 44.1581 233.3349 45.7726
+\c 233.3349 46.7271 233.7015 48.1994 234.7342 49.1945
+\c 235.4541 49.8951 236.3487 50.2302 237.4149 50.1998
+\c 240.3159 50.1185 241.5791 47.2754 241.5252 44.6759
+\c 241.5019 43.4372 241.1556 41.6805 240.26 40.5026
+\c 239.0791 38.949 236.7366 37.7712 233.7025 39.1014
+\c 230.1009 40.6752 228.2376 44.7876 228.0081 51.662
+\c 227.8457 56.5664 228.9281 61.7653 231.2188 67.1794
+\c 231.3559 67.152 231.4981 67.1348 231.6433 67.1348
+\c 232.7927 67.1348 233.7249 68.0669 233.7249 69.2174
+\c 233.7249 69.8774 233.4111 70.4582 232.9318 70.839
+\c 234.2082 73.3237 235.7212 75.85 237.488 78.417
+\c 239.6447 81.5485 241.3821 84.6363 242.7285 87.6755
+\c 242.2472 86.2427 241.7222 84.7876 241.1495 83.3752
+\c 238.0272 75.6622 237.2443 74.0091 236.9254 71.9874
+\c 236.2776 67.8862 238.3724 65.9183 240.4093 66.0503
+\c 242.2645 66.1721 244.0709 68.0334 243.7216 71.6188
+\c 243.7216 71.6188 241.2226 69.8611 240.0478 71.9874
+\c 238.8141 74.2213 241.0906 78.748 242.7539 83.7418
+\c 245.8752 93.1089 246.06 100.0421 246.06 100.0421
+\c 246.06 100.0421 246.0184 99.8329 245.9382 99.4572
+\c 246.0864 101.0514 246.1149 102.6273 246.0164 104.1829
+\o
+\s
+\m 449.6109 167.8876
+\c 447.179 176.9359 439.6507 187.1053 425.8137 188.5096
+\c 412.1433 189.8956 401.7039 184.8247 392.9369 172.5463
+\c 392.0017 171.2395 391.165 169.9195 390.3953 168.5791
+\c 390.4217 168.7142 390.4481 168.8503 390.4694 168.9873
+\c 390.7172 170.6475 390.5283 172.5707 389.1809 173.8735
+\c 387.2902 175.7012 383.7271 174.6076 383.6713 171.8528
+\c 383.6459 170.6353 384.1231 169.7265 384.8166 169.2371
+\c 385.4046 168.8208 386.1844 168.7944 386.7936 168.7314
+\c 388.0507 168.6025 388.5127 167.6521 388.4904 166.5047
+\c 388.468 165.4232 387.9522 164.2687 387.4943 163.2208
+\c 387.1318 162.3902 386.8678 161.7657 386.8678 161.7657
+\l 387.2303 162.2399
+\c 386.3174 160.1817 385.4513 158.0473 384.5374 155.7982
+\c 384.0358 154.5635 383.522 153.3003 382.9848 152.0056
+\c 380.6108 151.637 378.1383 151.1009 375.5612 150.3607
+\c 377.5676 157.5711 378.3515 163.4381 378.4277 166.6092
+\c 378.6074 174.2563 375.8089 178.7586 370.7522 178.9607
+\c 368.4015 179.05 366.3453 178.2722 364.9867 176.7572
+\c 363.7043 175.3255 363.1712 173.4013 363.4819 171.3339
+\c 364.0089 167.8298 366.6266 166.2498 368.828 166.5239
+\c 370.2435 166.7067 371.5391 167.8287 371.9809 169.2544
+\c 372.3769 170.5277 372.3302 171.6325 371.8448 172.5352
+\c 371.1787 173.777 369.9247 174.1537 369.8718 174.17
+\c 369.6576 174.2289 369.4352 174.1101 369.3723 173.8968
+\c 369.3093 173.6836 369.4301 173.4592 369.6434 173.3932
+\c 369.6535 173.3922 370.6365 173.0865 371.1391 172.1442
+\c 371.5117 171.4406 371.5361 170.549 371.2081 169.493
+\c 370.8588 168.3608 369.8373 167.4693 368.7265 167.3261
+\c 366.9028 167.0905 364.7319 168.4553 364.281 171.4538
+\c 364.0068 173.2784 364.4709 174.9701 365.5899 176.2181
+\c 366.785 177.5503 368.6067 178.2438 370.7197 178.1514
+\c 375.2718 177.9706 377.788 173.7709 377.6204 166.6285
+\c 377.5443 163.4219 376.734 157.433 374.6524 150.0835
+\c 371.923 149.2559 369.0819 148.204 366.1291 146.8981
+\c 366.1473 150.2358 365.9331 152.4788 365.9331 152.4788
+\c 365.6701 155.8165 365.1949 159.541 364.4323 163.6798
+\l 362.57 162.9345
+\c 362.1395 164.0413 361.6917 165.0841 361.2409 166.0701
+\c 361.9415 166.5006 362.4127 167.2672 362.4127 168.1486
+\c 362.4127 169.5011 361.316 170.5988 359.9635 170.5988
+\c 359.6386 170.5988 359.3289 170.5308 359.0456 170.417
+\c 358.286 171.7797 357.6189 172.8621 357.1488 173.5881
+\l 358.3713 174.3314
+\c 347.2567 186.2706 334.9093 185.6025 333.5405 185.5354
+\c 328.433 185.2867 324.3755 184.1616 321.1434 182.5684
+\c 319.6173 181.9247 316.3121 180.0868 313.1907 181.8617
+\c 311.8179 182.6436 309.1585 183.2284 309.3342 181.1286
+\c 309.4774 179.4186 311.9814 178.8013 315.1474 179.1688
+\c 315.8836 179.2541 316.6421 179.4328 317.3925 179.6623
+\c 308.1472 172.1473 306.9663 161.2205 309.3119 152.7367
+\c 312.4657 141.3347 321.6694 136.4171 329.8617 136.4171
+\c 330.3166 136.4171 330.7695 136.4323 331.2163 136.4638
+\c 335.6871 136.7633 339.6553 138.6561 342.3918 141.7886
+\c 345.2837 145.1039 346.6312 149.5077 346.2849 154.5249
+\c 345.9854 158.8901 344.114 162.6309 341.0129 165.0547
+\c 338.4734 167.0398 335.2962 168.0115 332.1088 167.8308
+\c 332.2926 167.8704 332.4683 167.9161 332.6561 167.9506
+\c 332.6561 167.9506 328.7092 168.3161 323.9662 164.9653
+\c 320.8642 162.773 319.6802 161.9049 318.3338 162.3953
+\c 316.9873 162.8847 316.8645 164.7216 317.9662 165.4547
+\c 317.9662 165.4547 314.726 166.4387 313.0679 164.1093
+\c 310.9457 161.125 313.9259 156.6389 318.0891 157.9864
+\c 319.7543 158.5256 321.1414 159.6364 322.2106 160.7706
+\c 321.773 159.803 321.4379 158.7713 321.2409 157.6909
+\c 320.5027 153.5988 321.1972 149.6641 323.1032 147.1692
+\c 324.4201 145.4441 326.2316 144.4683 328.4889 144.2692
+\c 331.0893 144.0387 333.1902 145.0958 334.097 147.0961
+\c 334.8118 148.6731 334.6961 150.9364 333.838 152.1437
+\c 332.8297 153.5602 331.1421 153.7664 329.9155 153.3409
+\c 328.5346 152.8637 327.6857 151.6513 327.7527 150.2541
+\c 327.7933 149.4509 328.0604 148.8274 328.5488 148.403
+\c 329.2941 147.7602 330.2689 147.8455 330.3105 147.8496
+\c 330.5319 147.8729 330.6933 148.0679 330.672 148.2892
+\c 330.6537 148.5126 330.4354 148.6731 330.2354 148.6548
+\c 330.2273 148.6538 329.551 148.602 329.0727 149.0203
+\c 328.761 149.2925 328.5884 149.72 328.561 150.2916
+\c 328.5011 151.5426 329.3571 152.292 330.1805 152.5773
+\c 331.1218 152.9012 332.4134 152.7509 333.179 151.6736
+\c 333.8015 150.8003 334.0229 148.8883 333.3618 147.4312
+\c 332.6013 145.7558 330.805 144.8754 328.56 145.0734
+\c 326.5383 145.2532 324.9177 146.1224 323.7459 147.6577
+\c 322.0024 149.9433 321.3475 153.7318 322.037 157.5477
+\c 322.7975 161.7566 325.7006 165.2445 329.3185 166.4965
+\c 326.5616 164.4657 325.8031 160.3097 328.2035 158.2159
+\c 330.211 156.4673 333.7345 158.3326 333.1283 161.5931
+\c 333.1283 161.5931 331.1868 160.9473 330.6162 163.164
+\c 330.2628 164.5348 331.2792 167.055 334.4706 166.8012
+\l 334.4615 166.9423
+\c 336.6487 166.659 338.7465 165.8 340.5164 164.418
+\c 343.4326 162.1374 345.1944 158.6048 345.4787 154.469
+\c 345.8077 149.6722 344.5313 145.4715 341.7836 142.3207
+\c 339.1893 139.3496 335.417 137.5554 331.1635 137.269
+\c 322.9813 136.7217 313.2984 141.355 310.0917 152.951
+\c 309.2286 156.0683 305.9011 171.3949 320.2519 180.7427
+\c 321.4846 181.2849 322.5447 181.8221 323.2301 182.1084
+\c 331.004 185.3527 338.0408 183.9748 340.1559 183.4945
+\c 350.2897 181.1895 354.1472 171.7614 354.1472 171.7614
+\l 356.2065 173.0155
+\c 356.6786 172.2894 357.3651 171.1776 358.1429 169.7722
+\c 357.757 169.3397 357.5153 168.7751 357.5153 168.1486
+\c 357.5153 166.7971 358.612 165.7005 359.9635 165.7005
+\c 360.0407 165.7005 360.1128 165.7167 360.1879 165.7238
+\c 360.6479 164.7216 361.1089 163.6564 361.5475 162.5273
+\l 359.8406 161.8439
+\c 359.8406 161.8439 363.3712 156.1262 364.1358 145.9873
+\c 363.8921 145.8726 363.6464 145.7538 363.4007 145.636
+\c 360.9566 162.0196 350.505 173.7232 340.9053 178.0072
+\c 333.903 181.1326 330.1704 179.5395 328.5691 178.3149
+\c 326.9587 177.0822 326.1017 175.1326 326.3839 173.3505
+\c 326.6185 171.8569 327.4887 170.7206 328.8361 170.1479
+\c 330.3329 169.5103 332.2276 169.6616 333.442 170.5125
+\c 334.4442 171.2141 334.826 172.6164 334.3701 173.9192
+\c 333.9893 175.0097 332.9475 176.1287 331.1655 176.0231
+\c 330.9411 176.0079 330.7725 175.8149 330.7867 175.5936
+\c 330.7999 175.3712 330.9888 175.1935 331.2152 175.2158
+\c 332.3474 175.2839 333.24 174.701 333.6076 173.6531
+\c 333.9447 172.6875 333.6857 171.67 332.978 171.1735
+\c 331.9941 170.4861 330.3836 170.3693 329.1519 170.8912
+\c 328.3863 171.2172 327.4257 171.928 327.181 173.4775
+\c 326.9444 174.9701 327.6826 176.6181 329.0595 177.6731
+\c 330.5177 178.7921 333.9538 180.2259 340.5753 177.271
+\c 350.0216 173.053 360.3118 161.4824 362.6401 145.2694
+\c 361.8349 144.8714 361.0226 144.454 360.2011 144.0184
+\c 358.7734 143.2569 357.4118 142.5024 356.0816 141.75
+\l 349.0042 140.9062
+\l 346.16 135.6911
+\c 337.3432 129.8636 331.0132 124.4282 325.5929 119.7725
+\c 322.5122 117.1243 319.73 114.7381 316.8685 112.5621
+\c 315.7861 114.135 314.2925 115.6063 312.2149 116.5923
+\c 314.0538 117.1345 317.8504 118.3367 321.5557 119.9959
+\c 322.9255 120.5097 324.3328 121.1677 325.6894 121.9668
+\l 325.662 122.0937
+\c 326.8053 122.7741 327.8502 123.497 328.7041 124.2596
+\c 331.992 127.1962 331.9301 129.7915 331.6001 131.0781
+\c 331.1939 132.6641 329.9297 133.9974 328.5254 134.3213
+\c 327.1496 134.6371 325.7848 134.3578 324.7765 133.5577
+\c 324.3511 133.2175 324.019 132.8073 323.7926 132.3483
+\l 323.6565 132.3555
+\c 323.6565 132.3555 322.7995 130.7745 323.3976 129.0747
+\c 324.1104 127.0428 326.7058 127.1403 327.2846 128.769
+\c 327.835 130.3196 326.8866 131.4314 326.0915 131.2182
+\c 325.3756 131.0263 325.203 130.5754 324.7288 130.4841
+\c 324.2546 130.3917 324.3308 131.6152 324.8649 132.2895
+\l 324.7166 132.2976
+\c 324.871 132.525 325.0507 132.7433 325.2812 132.9251
+\c 326.0813 133.5628 327.2277 133.7953 328.3437 133.5333
+\c 329.2616 133.3211 330.4263 132.4001 330.8182 130.877
+\c 331.3077 128.964 330.3654 126.8266 328.165 124.8628
+\c 327.4105 124.1875 326.4926 123.5397 325.4792 122.9274
+\l 325.4487 123.0675
+\c 322.4817 121.4094 319.7503 123.1863 317.1102 123.826
+\c 313.0679 124.8049 311.9875 122.3953 312.3622 120.7036
+\c 312.618 119.5491 314.0416 118.685 316.2705 118.7723
+\c 313.2547 117.698 310.9355 117.0685 310.8827 117.0522
+\l 309.6338 116.7182
+\l 310.8522 116.2826
+\c 313.3309 115.3971 315.0449 113.806 316.2299 112.0788
+\c 315.2804 111.371 314.3199 110.6836 313.3339 110.0195
+\c 313.0801 109.8499 312.8292 109.6844 312.5774 109.5138
+\l 311.6869 111.2075
+\c 311.1498 112.0686 310.0145 112.3296 309.1555 111.7934
+\c 308.2965 111.2553 308.0345 110.1211 308.5727 109.26
+\l 309.5068 107.483
+\c 305.0685 104.584 300.6139 101.8932 295.8262 99.5557
+\c 295.6282 99.51 295.4231 99.4532 295.2109 99.378
+\c 292.6653 98.4581 290.9096 99.4115 289.1926 100.0716
+\c 289.1926 100.0716 288.5102 96.6446 285.2264 95.3337
+\c 285.004 95.2453 284.7837 95.1377 284.5633 95.025
+\c 280.5971 93.7679 276.3324 92.7505 271.625 92.0427
+\c 253.0918 89.2666 248.1193 101.2281 247.7568 102.1775
+\c 247.7182 102.3227 247.6989 102.407 247.6969 102.4182
+\c 247.6512 102.6375 247.4329 102.7807 247.2196 102.734
+\c 247.0013 102.6883 246.8592 102.475 246.9039 102.2557
+\c 246.9069 102.2455 246.9303 102.144 246.9749 101.9775
+\c 246.977 101.9683 246.9749 101.9592 246.979 101.949
+\c 246.981 101.946 246.9861 101.9318 246.9912 101.9145
+\c 247.3009 100.7996 248.5448 97.0335 252.1119 93.0063
+\c 251.8519 93.244 251.5757 93.4744 251.2813 93.6897
+\c 251.2813 93.6897 252.7506 92.1504 253.1324 90.4303
+\c 253.5253 88.6584 252.9608 86.6011 250.1653 86.788
+\c 250.1653 86.788 249.7957 85.2903 250.3045 84.1154
+\c 250.6121 83.4026 251.3747 82.7883 252.3515 82.7548
+\c 254.2321 82.6888 255.1723 84.6739 255.0606 86.9789
+\c 254.9784 88.6543 254.3001 90.4577 253.0501 91.998
+\c 257.5352 87.4114 265.1406 82.7629 277.8901 81.5485
+\c 281.311 81.2235 284.6019 81.0733 287.772 81.0733
+\c 302.4782 81.0733 314.463 84.3043 323.5489 88.1689
+\l 325.925 83.6646
+\l 329.2301 85.3796
+\l 326.8967 89.6778
+\c 328.5305 90.4597 330.0485 91.2507 331.4569 92.0356
+\c 331.8742 91.1796 332.7434 90.5836 333.7609 90.5836
+\c 335.1814 90.5836 336.3329 91.734 336.3329 93.1546
+\c 336.3329 93.4105 336.2842 93.6521 336.2141 93.8857
+\c 339.7112 95.948 357.6209 107.1124 370.4638 126.5422
+\c 375.3266 133.8999 378.5749 140.1111 381.1023 145.638
+\c 388.4548 145.4867 392.3489 143.5006 392.3489 139.2541
+\c 392.3489 139.2541 392.3672 138.4581 392.0088 137.93
+\c 391.6006 137.332 390.7395 137.0477 389.4103 138.1494
+\c 389.4103 138.1494 387.9522 134.7244 391.0147 132.9617
+\c 394.3665 131.0344 400.061 135.6423 395.2246 142.4374
+\c 392.8871 145.7223 387.7969 147.2617 381.8435 147.284
+\c 382.4517 148.6538 383.0194 149.984 383.5575 151.2776
+\c 391.0421 152.3752 397.4849 151.7264 402.896 150.1982
+\c 404.4597 141.7592 409.9653 131.6264 421.484 129.6717
+\c 423.2732 129.3681 424.9994 129.2199 426.6647 129.2097
+\c 428.1959 125.2293 428.992 121.0012 428.86 116.8603
+\c 428.5036 105.5852 422.3888 98.7871 416.7868 96.1846
+\c 410.7024 93.3546 399.4121 93.7933 394.9057 101.9815
+\c 392.7074 105.9792 392.2088 110.6704 393.539 114.8508
+\c 394.661 118.3753 396.9101 121.1078 399.8721 122.5436
+\c 405.8437 125.4426 410.737 123.0401 412.7536 119.5826
+\c 413.8319 117.7326 414.5447 114.4701 413.5608 111.6736
+\c 412.917 109.8449 411.664 108.5604 409.8353 107.8567
+\c 407.6989 107.0362 405.6234 107.2871 404.2779 108.5248
+\c 403.2412 109.4803 402.83 110.8664 403.2057 112.1417
+\c 403.424 112.888 403.7784 113.3876 404.2576 113.6303
+\c 404.3297 113.6669 404.4018 113.6943 404.4719 113.7176
+\l 404.6212 113.6171
+\c 405.8914 113.8923 406.3514 112.7428 405.7229 112.0869
+\c 405.0954 111.4279 404.1033 112.0717 404.1033 112.0717
+\c 404.5491 111.2593 405.6315 110.6491 406.8104 111.2451
+\c 407.9883 111.8412 408.3751 113.9451 406.7017 114.6731
+\c 404.9613 115.4337 403.5733 114.3218 403.5733 114.3218
+\l 403.7103 114.2284
+\c 403.1244 113.8598 402.6878 113.2445 402.4309 112.3692
+\c 401.9679 110.7973 402.4654 109.0975 403.7306 107.9318
+\c 405.3055 106.4798 407.6958 106.1701 410.1247 107.1033
+\c 412.1565 107.8821 413.6075 109.3717 414.3234 111.4076
+\c 415.3916 114.4436 414.6199 117.9844 413.4522 119.9888
+\c 411.2558 123.758 405.9595 126.395 399.5187 123.2716
+\c 396.3557 121.7363 393.9594 118.8343 392.7693 115.0966
+\c 392.5804 114.5036 392.4302 113.8974 392.3093 113.2861
+\c 392.2748 114.2649 392.2687 115.194 392.2647 116.0805
+\c 392.2616 118.1996 392.2555 120.0304 391.824 121.8978
+\c 391.0746 125.144 389.5921 126.5047 388.4812 127.0723
+\c 387.3348 127.6592 386.027 127.6988 384.7984 127.183
+\c 383.3687 126.5839 382.4162 125.1755 382.3126 123.5102
+\c 382.2223 122.0826 382.7878 120.8387 383.789 120.2619
+\c 384.4724 119.868 385.1385 119.7613 385.765 119.9482
+\c 386.4088 120.1381 386.9795 120.6488 387.3348 121.3464
+\c 387.6841 122.0359 387.6131 122.9071 387.609 122.9426
+\c 387.5887 123.165 387.3948 123.3264 387.1724 123.3092
+\c 386.95 123.2909 386.7855 123.0949 386.8038 122.8736
+\c 386.8048 122.8675 386.8566 122.1912 386.6149 121.714
+\c 386.4941 121.4754 386.1478 120.9047 385.5355 120.7209
+\c 385.1284 120.6031 384.6765 120.6813 384.1911 120.9616
+\c 383.459 121.384 383.0478 122.3395 383.1189 123.4584
+\c 383.1849 124.5226 383.7433 125.865 385.1111 126.4387
+\c 386.1164 126.859 387.1825 126.8296 388.1126 126.3534
+\c 389.4875 125.6497 390.4989 124.0464 391.036 121.715
+\c 391.4483 119.938 391.4533 118.1489 391.4594 116.0785
+\c 391.4665 113.1378 391.4757 109.8063 392.6292 105.3872
+\c 392.6424 105.3415 392.6627 105.2979 392.6901 105.2603
+\c 393.0526 103.9992 393.5532 102.7665 394.199 101.5916
+\c 398.9379 92.9799 410.7644 92.4946 417.1279 95.4514
+\c 422.9472 98.1565 429.2986 105.1953 429.6682 116.8339
+\c 429.8002 120.9859 429.0163 125.2192 427.5125 129.2199
+\c 433.8903 129.3722 439.276 131.7025 443.295 136.1236
+\c 450.8222 144.3972 452.1707 158.3651 449.6109 167.8876
+\o
+\m 374.3894 149.1564
+\c 374.1274 148.2649 373.8401 147.351 373.5415 146.4239
+\c 371.0142 145.9101 368.4838 145.175 366.0671 144.2205
+\c 366.0925 144.8409 366.1108 145.438 366.1209 146.0117
+\c 368.9834 147.2901 371.7402 148.3319 374.3894 149.1564
+\o
+\m 363.8068 134.9031
+\c 363.9216 136.4861 363.9652 138.1179 363.9165 139.8157
+\c 363.8911 140.7641 363.8312 141.6942 363.752 142.6141
+\c 363.9236 142.6832 364.0982 142.7512 364.2769 142.8203
+\c 364.3094 140.3873 364.1744 137.7432 363.8068 134.9031
+\o
+\m 365.8041 140.4442
+\c 365.9067 141.483 365.9788 142.4902 366.0295 143.4549
+\c 368.1233 144.1647 370.5207 144.7993 373.1384 145.1851
+\c 370.1602 136.3592 365.4254 126.1909 358.1611 116.6654
+\c 359.2243 118.4708 360.1666 120.3716 360.9667 122.377
+\l 360.7565 121.5617
+\c 363.6464 127.8887 365.2213 134.5599 365.8041 140.4442
+\o
+\m 364.1967 145.1212
+\c 364.2272 144.5779 364.2495 144.0215 364.2637 143.4549
+\c 364.0769 143.3706 363.8891 143.2853 363.7043 143.199
+\c 363.6515 143.7372 363.5875 144.2682 363.5195 144.7962
+\c 363.7469 144.9059 363.9713 145.0115 364.1967 145.1212
+\o
+\m 249.8963 97.4863
+\c 249.877 97.4792 249.8587 97.4691 249.8414 97.4609
+\c 249.7917 97.5452 249.748 97.6244 249.7003 97.7077
+\c 249.7653 97.6325 249.8292 97.5594 249.8963 97.4863
+\o
+\m 326.5119 90.3876
+\l 324.5775 93.9497
+\l 321.2734 92.4824
+\l 323.1712 88.8838
+\c 312.2383 84.2403 297.066 80.5331 277.9662 82.3537
+\c 263.7292 83.7083 256.0588 89.4016 252.0032 94.3792
+\c 255.283 91.4213 262.2802 86.7778 274.5869 85.7716
+\c 276.5243 85.6142 278.3957 85.5411 280.194 85.5411
+\c 294.9276 85.5411 304.8552 90.4871 307.4689 94.4949
+\c 308.925 96.7288 309.1626 98.9353 308.1025 100.3955
+\c 307.3318 101.4637 306.0027 101.9003 304.639 101.5337
+\c 302.8701 101.0616 302.0679 99.5415 302.1898 98.2814
+\c 302.3086 97.0731 303.2275 96.2364 304.5323 96.149
+\c 304.7364 96.1226 304.9476 96.3024 304.9619 96.5258
+\c 304.9771 96.7481 304.8085 96.9411 304.5851 96.9543
+\c 303.6692 97.0172 303.0752 97.5422 302.996 98.3606
+\c 302.9057 99.2795 303.5129 100.3975 304.8471 100.7529
+\c 305.8828 101.0281 306.8779 100.7123 307.4496 99.9233
+\c 308.3036 98.7424 308.0578 96.8781 306.7916 94.9366
+\c 303.9688 90.6059 292.1332 85.1522 274.6529 86.5758
+\c 262.3391 87.582 255.3856 92.4113 252.2997 95.2453
+\c 255.3094 92.8926 259.8219 90.8263 266.4017 90.8263
+\c 268.0497 90.8263 269.8287 90.9573 271.7438 91.2446
+\c 275.9506 91.8752 279.8021 92.7545 283.4068 93.8248
+\c 286.8653 94.6736 292.9283 96.4689 298.0073 99.5821
+\c 298.0073 99.5821 297.9281 99.6024 297.788 99.6268
+\c 301.9806 101.7754 305.9397 104.1901 309.8856 106.7641
+\l 310.8431 104.9425
+\c 311.3813 104.0824 312.5155 103.8204 313.3735 104.3576
+\c 314.2346 104.8968 314.4955 106.029 313.9584 106.888
+\l 312.9552 108.7959
+\c 313.2324 108.9808 313.5075 109.1635 313.7827 109.3493
+\c 314.7666 110.0104 315.7232 110.6937 316.6685 111.3984
+\c 318.6018 108.1765 318.8455 104.7567 318.8486 104.7008
+\l 318.9339 103.2985
+\l 319.6071 104.5302
+\c 320.059 105.3608 320.8246 106.5153 321.777 107.8404
+\c 321.447 106.9479 321.25 106.0787 321.2734 105.2755
+\c 321.382 101.2362 326.6886 101.879 326.6886 107.7552
+\c 326.6886 110.4277 325.9757 113.0932 327.6268 115.0397
+\l 327.5415 115.1483
+\c 330.208 118.292 332.8531 121.1129 334.365 122.2146
+\c 336.4141 123.7021 337.786 123.8727 339.2106 123.6707
+\c 341.5369 123.3417 343.5129 121.4083 344.0175 118.9693
+\c 344.5273 116.5059 344.0916 114.1837 342.8539 112.754
+\c 341.9999 111.7691 340.8241 111.2969 339.4786 111.3731
+\c 337.4306 111.4969 336.1826 112.7784 335.6962 113.9359
+\c 335.2566 114.9879 335.3652 116.0449 335.9917 116.7649
+\c 336.9889 117.9153 338.4551 117.0847 338.516 117.0482
+\c 338.709 116.9355 338.9537 117.0025 339.0684 117.1954
+\c 339.1801 117.3873 339.1172 117.6341 338.9252 117.7468
+\c 338.2033 118.1702 336.535 118.6221 335.3815 117.2939
+\c 334.5488 116.3364 334.3864 114.9656 334.9509 113.6232
+\c 335.5318 112.2412 337.0122 110.712 339.4299 110.5668
+\c 341.0454 110.4693 342.4406 111.043 343.4651 112.225
+\c 344.8664 113.8435 345.368 116.4267 344.8095 119.1328
+\c 344.2379 121.8998 341.9816 124.0951 339.3253 124.4698
+\c 337.4021 124.7429 335.8293 124.2769 333.8909 122.8675
+\c 332.3332 121.7333 329.6911 118.9348 327.0277 115.8063
+\l 326.9729 115.8744
+\c 326.4936 115.2692 325.8925 114.5218 325.2629 113.6872
+\c 322.9234 110.8186 320.7494 107.9207 319.4974 105.9325
+\c 319.2598 107.2972 318.678 109.6377 317.3123 111.8838
+\c 320.2062 114.0832 323.0118 116.4887 326.1199 119.1582
+\c 331.727 123.9763 337.8428 129.227 346.3519 134.8645
+\l 351.9428 135.028
+\l 355.979 140.7732
+\c 357.4504 141.6089 358.9816 142.4537 360.5819 143.3046
+\c 361.3109 143.6925 362.0339 144.0631 362.7508 144.4216
+\c 362.8158 143.8925 362.8747 143.3594 362.9244 142.8203
+\c 360.9535 141.8404 359.1014 140.7123 357.4534 139.4369
+\c 357.4534 139.4369 359.5228 140.829 362.9691 142.2922
+\c 363.0331 141.4657 363.0859 140.6371 363.1102 139.7933
+\c 363.5174 125.2506 357.5763 115.1483 349.582 107.0119
+\c 349.2022 106.6443 348.8295 106.2727 348.4396 105.9091
+\c 348.4031 105.8746 348.3767 105.833 348.3564 105.7914
+\c 345.8635 103.3747 343.2021 101.1276 340.49 98.981
+\c 339.1578 97.927 337.3991 96.6395 335.2444 95.2484
+\c 334.824 95.5459 334.3153 95.7256 333.7609 95.7256
+\c 332.3413 95.7256 331.1888 94.5752 331.1888 93.1546
+\c 331.1888 93.0419 331.2092 92.9373 331.2224 92.8297
+\c 329.7734 92.0163 328.2046 91.1949 326.5119 90.3876
+\o
+\m 369.7886 126.988
+\c 357.1041 107.7968 339.4431 96.7339 335.8699 94.6219
+\c 335.8587 94.6361 335.8435 94.6503 335.8323 94.6635
+\c 337.9474 96.0343 339.6736 97.3056 340.9906 98.3464
+\c 344.2044 100.889 347.346 103.5747 350.2267 106.5113
+\c 362.7193 118.6403 369.9988 133.2419 374.0188 145.305
+\c 374.6676 145.3862 375.3297 145.4512 376.0029 145.4989
+\c 377.5118 145.6025 378.909 145.6482 380.2158 145.6461
+\c 377.723 140.2299 374.5275 134.1558 369.7886 126.988
+\o
+\m 380.956 147.2779
+\c 378.8511 147.2342 376.6548 147.0068 374.4412 146.6027
+\c 374.7468 147.5663 375.0342 148.5106 375.3012 149.4346
+\c 377.8398 150.186 380.2778 150.7394 382.6193 151.1243
+\c 382.0964 149.8763 381.543 148.5959 380.956 147.2779
+\o
+\m 421.6181 130.4688
+\c 410.6943 132.3209 405.3787 141.8434 403.7682 149.9383
+\c 407.4176 148.8213 410.5826 147.3185 413.2592 145.704
+\c 419.0379 142.2141 423.656 136.4831 426.3326 130.017
+\c 424.8146 130.0444 423.2417 130.1937 421.6181 130.4688
+\o
+\m 442.699 136.6669
+\c 438.7754 132.3555 433.4831 130.1104 427.2028 130.0251
+\c 424.4795 136.7715 419.6868 142.7664 413.6756 146.3945
+\c 411.8438 147.5003 409.7804 148.5563 407.4998 149.4763
+\c 408.2452 149.527 409.0798 149.7514 409.9805 150.2734
+\c 413.4694 152.294 410.8355 156.6714 408.5122 155.0488
+\c 407.4734 154.3238 407.5425 153.1693 407.8349 152.4473
+\c 408.0807 151.8381 408.5122 151.5589 408.5122 151.5589
+\c 408.5122 151.5589 407.5729 149.9819 405.0202 150.3881
+\c 404.5562 150.5424 404.084 150.6897 403.6037 150.8328
+\c 403.3661 152.2504 403.2392 153.6151 403.2209 154.8701
+\c 403.1864 157.235 403.5001 161.8196 405.9777 165.9838
+\c 409.0362 171.1187 414.8534 173.9314 421.5236 173.5008
+\c 430.3536 172.9352 436.4999 166.0558 436.8177 156.3831
+\c 436.9497 152.3042 435.6175 148.4944 433.1602 145.9244
+\c 431.3589 144.0428 429.061 142.9908 426.687 142.9634
+\c 422.1623 142.8903 420.1864 145.3303 419.3507 147.3662
+\c 418.8064 148.6924 418.6013 150.1647 418.6521 151.57
+\l 418.7942 151.0684
+\c 418.7942 151.0684 418.5871 153.6648 419.9264 155.5687
+\c 421.3043 157.5274 422.9869 155.9667 422.9869 155.9667
+\c 422.9869 155.9667 422.008 153.9156 423.2021 152.0188
+\c 423.8987 150.91 425.2015 150.6257 426.2626 150.9161
+\c 427.0231 151.1222 427.6039 151.636 428.008 152.294
+\c 429.0783 154.0375 428.6823 157.3741 426.2331 158.8434
+\c 423.7829 160.3127 419.0704 159.1186 417.9981 153.8852
+\l 418.0936 153.544
+\c 417.6824 151.4979 417.7605 149.1117 418.6033 147.0586
+\c 419.9031 143.8925 422.7218 142.1541 426.5509 142.1541
+\c 426.5987 142.1541 426.6474 142.1541 426.6961 142.1562
+\c 429.2875 142.1846 431.7925 143.3249 433.7441 145.3669
+\c 436.3506 148.0923 437.7651 152.1173 437.625 156.4085
+\c 437.299 166.3615 430.6979 173.7232 421.5744 174.306
+\c 414.5864 174.7477 408.499 171.797 405.2842 166.397
+\c 402.7031 162.0633 402.3781 157.3081 402.4137 154.8589
+\c 402.4309 153.677 402.5426 152.4016 402.7467 151.0765
+\c 397.43 152.5276 391.1579 153.1429 383.917 152.1458
+\c 384.3881 153.284 384.842 154.402 385.2868 155.4956
+\c 387.0597 159.8629 388.6701 163.8047 390.7568 167.5556
+\c 390.7151 167.4074 390.6694 167.2601 390.6319 167.1068
+\c 390.6319 167.1068 391.564 168.9944 393.2648 170.4465
+\c 394.0558 171.1187 395.0926 171.7797 396.0806 172.0376
+\c 398.2779 172.6093 399.5086 171.1187 398.5348 169.4422
+\c 398.5348 169.4422 402.7599 169.2036 403.1833 172.39
+\c 403.4829 174.6685 400.6113 177.5462 396.3872 175.3113
+\c 396.1912 175.2087 395.9861 175.0818 395.778 174.9427
+\c 403.9581 185.0064 413.3232 188.9604 425.7315 187.7054
+\c 439.1593 186.3427 446.4672 176.4658 448.83 167.6785
+\c 451.333 158.3682 450.0292 144.7262 442.699 136.6669
+\o
+\s
+\m 280.0285 76.0531
+\c 281.0805 75.651 282.0999 75.2895 282.7031 75.1555
+\c 284.3562 74.7889 287.1008 74.9727 287.2958 77.3599
+\c 287.4847 79.6964 285.2954 81.1322 283.0697 80.1147
+\c 283.0697 80.1147 284.5318 77.1142 281.4166 77.5427
+\c 276.0908 78.2768 271.8667 81.585 266.1743 80.8499
+\c 266.1743 80.8499 272.9176 80.4498 273.5197 77.7275
+\c 273.8873 76.0653 272.7389 75.2113 271.3153 75.7078
+\c 271.3153 75.7078 271.4097 73.0952 273.8132 72.8444
+\c 276.3659 72.5763 277.6484 75.4205 276.5507 77.2107
+\c 278.613 75.8713 283.3103 72.0849 283.7693 65.2075
+\c 283.9571 62.3948 283.3113 59.9883 282.04 58.7698
+\c 281.3567 58.1098 280.5413 57.8255 279.6244 57.927
+\c 277.8494 58.12 277.1102 59.5009 277.1762 60.7092
+\c 277.225 61.6231 277.7499 62.537 278.8141 62.537
+\c 279.338 62.537 279.7401 62.3847 280.0417 62.0801
+\c 280.6723 61.4302 280.6479 60.3031 280.6469 60.2929
+\c 280.6398 60.0695 280.8154 59.8868 281.0378 59.8766
+\c 281.2409 59.8969 281.446 60.0391 281.4541 60.2625
+\c 281.4562 60.3234 281.4937 61.7348 280.6246 62.6385
+\c 280.1686 63.1056 279.5594 63.3493 278.8141 63.3493
+\c 277.4555 63.3493 276.4502 62.273 276.369 60.7499
+\c 276.2817 59.1252 277.3428 57.3584 279.5381 57.1249
+\c 279.6823 57.1045 279.8285 57.0944 279.9696 57.0944
+\c 280.9535 57.0944 281.8562 57.4701 282.5985 58.1809
+\c 284.0627 59.5923 284.7827 62.1714 284.5755 65.2684
+\c 284.3541 68.5756 283.1956 71.2035 281.7953 73.2191
+\c 288.3995 65.8574 288.299 56.211 285.464 50.545
+\c 283.9449 47.4988 280.9596 44.3104 276.5964 42.371
+\c 277.295 42.7264 278.0373 43.163 278.8374 43.691
+\c 278.8374 43.691 275.1627 41.7516 273.1532 44.1175
+\c 273.1532 44.1175 272.9074 44.3916 272.8526 44.808
+\c 272.7734 45.3969 272.9927 46.2092 274.0711 46.3209
+\c 274.0711 46.3209 272.3012 48.9508 270.0318 47.6105
+\c 268.2234 46.5341 268.4894 43.2036 271.1457 41.8937
+\c 272.2028 41.3759 273.2842 41.2845 274.4722 41.5688
+\c 271.7336 40.6955 268.5544 40.2995 264.9284 40.6651
+\c 253.9772 41.7617 247.4999 48.9813 248.0279 59.5212
+\c 248.5021 69.0265 254.9855 71.8249 259.4959 72.6159
+\c 259.8006 72.5987 260.1752 72.6007 260.3864 72.6139
+\c 263.0651 72.9673 262.8671 70.379 262.8671 70.379
+\c 263.716 72.3895 266.4363 72.5276 268.2386 71.4482
+\c 268.2386 71.4482 267.7146 71.8138 266.8455 72.2209
+\c 270.7934 70.7425 272.9511 67.1287 273.6761 63.6844
+\c 274.3971 60.2625 273.6121 56.5359 271.6758 54.2005
+\c 270.2379 52.4641 268.2284 51.5503 265.8737 51.6213
+\c 261.8557 51.7026 260.2088 54.0989 259.5274 56.1399
+\l 259.6736 56.1805
+\c 259.6736 56.1805 258.9507 58.5464 259.3761 60.3132
+\c 259.8006 62.0699 260.9074 62.009 261.1561 61.9785
+\c 261.1561 61.9785 260.5063 60.3539 261.2059 58.9831
+\c 261.9065 57.6123 263.718 57.3482 264.8289 58.3941
+\c 265.8757 59.3892 266.2098 61.9074 264.4511 63.2478
+\c 262.6904 64.5983 260.162 64.2226 258.9628 62.6385
+\c 257.9485 61.2982 257.5727 58.6581 258.6176 55.8861
+\l 258.7719 55.9267
+\c 259.5325 53.642 261.3755 50.9106 265.8565 50.809
+\c 268.4914 50.7582 270.6969 51.7533 272.2982 53.6826
+\c 274.3869 56.2008 275.2368 60.1914 274.4661 63.857
+\c 273.1836 69.9393 268.7392 73.7227 262.8671 73.7227
+\c 260.4545 73.7227 254.2574 73.2374 250.4162 68.6467
+\c 250.804 69.5474 251.2011 70.4267 251.5757 71.2543
+\c 252.2642 72.7794 252.8602 74.0964 253.1517 75.0356
+\c 253.6309 76.5709 253.4522 77.9529 252.646 78.9267
+\c 251.991 79.7207 250.9848 80.1279 249.9653 80.0111
+\c 248.958 79.8984 248.0695 79.4009 247.5273 78.6485
+\c 247.1821 78.1672 247.0034 77.5843 246.9587 76.9416
+\l 246.7952 76.9162
+\c 246.6114 74.4051 248.0959 73.2729 249.2901 73.5643
+\c 250.4842 73.8557 250.7451 75.2174 250.7451 75.2174
+\c 250.1186 74.5127 248.8616 74.4213 248.3102 75.2174
+\c 247.7538 76.0206 247.8979 77.0827 247.8979 77.0827
+\l 247.7639 77.0644
+\c 247.8187 77.4848 247.9548 77.8585 248.1833 78.1763
+\c 248.5925 78.7449 249.2738 79.1206 250.0547 79.2069
+\c 250.8071 79.2983 251.5422 78.9968 252.0235 78.4139
+\c 252.649 77.6554 252.776 76.5425 252.381 75.2763
+\c 252.1027 74.3848 251.5169 73.0871 250.8386 71.5873
+\c 249.3286 68.2446 247.4481 64.0804 247.3334 60.9022
+\c 247.2846 60.4757 247.243 60.0289 247.2207 59.5618
+\c 246.6693 48.5548 253.4248 41.0002 264.8471 39.8528
+\c 265.7986 39.7614 266.7185 39.7208 267.6111 39.7208
+\c 274.6864 39.7208 279.9209 42.5741 283.2311 46.0468
+\c 282.7681 45.3055 282.4239 44.4018 282.5193 43.3864
+\c 282.6706 41.7922 283.9449 40.9494 285.1492 40.9088
+\c 286.6165 40.8479 288.0655 42.2187 287.6634 45.0313
+\c 287.6634 45.0313 286.5413 44.7064 285.662 44.9907
+\c 284.742 45.2852 283.9632 46.4834 285.0192 47.976
+\c 285.0192 47.976 284.8314 47.844 284.5603 47.6003
+\c 285.2091 48.4533 285.7574 49.3265 286.187 50.1795
+\c 289.4454 56.6984 289.2474 68.2527 280.0285 76.0531
+\o
+\s
+\m 237.3753 17.0162
+\c 235.1018 17.2295 233.9279 15.818 233.5888 14.4269
+\c 233.2253 12.9241 233.7472 11.4721 234.8012 11.0456
+\c 235.0063 10.9644 235.2449 11.0659 235.3272 11.2792
+\c 235.4094 11.4822 235.3079 11.7158 235.1018 11.797
+\c 234.4397 12.061 234.1128 13.1577 234.3747 14.234
+\c 234.4996 14.7519 235.0845 16.4273 237.2991 16.2141
+\c 239.4975 16.0008 239.9666 13.7568 240.059 13.0663
+\c 240.1981 12.0407 239.9453 10.9339 239.402 10.1927
+\c 238.5379 9.025 237.1265 8.2431 235.6247 8.1111
+\c 234.4021 8.0096 232.548 8.2532 230.638 10.0607
+\c 227.3481 13.178 228.3594 19.372 228.3696 19.443
+\c 228.4072 19.6563 228.2599 19.8695 228.0396 19.9
+\c 227.8264 19.9508 227.6111 19.7883 227.5745 19.5751
+\c 227.5278 19.3009 226.4769 12.8937 230.0826 9.4819
+\c 231.9418 7.7151 233.7767 7.2785 235.1353 7.2785
+\c 235.3333 7.2785 235.5211 7.2886 235.6968 7.3089
+\c 237.425 7.4612 239.0547 8.3649 240.0509 9.7154
+\c 240.7251 10.6293 241.0277 11.929 240.8591 13.178
+\c 240.6307 14.894 239.5939 16.803 237.3753 17.0162
+\o
+\s
+\m 256.8183 115.6225
+\c 264.3973 114.6102 267.3176 120.2498 267.802 123.3691
+\c 268.1665 125.7187 267.5694 128.2248 266.2433 129.9093
+\c 265.169 131.2751 263.6652 132.0711 261.8943 132.2204
+\c 259.499 132.4184 258.1119 131.6437 257.324 130.8323
+\l 257.2143 130.9471
+\c 257.2143 130.9471 255.9572 129.7915 255.8049 127.5038
+\c 255.6658 125.408 257.1046 124.5236 258.3617 124.5652
+\c 259.7853 124.6109 260.4616 125.7472 260.5652 126.9372
+\c 260.6728 128.1618 260.0138 129.1265 259.0654 129.0188
+\c 258.4876 128.9528 258.117 128.5446 257.5971 128.4522
+\c 257.0691 128.3608 257.2285 129.4016 257.9637 130.1662
+\l 257.8794 130.2525
+\c 258.5272 130.9237 259.7071 131.5858 261.8273 131.4152
+\c 263.391 131.2852 264.6644 130.611 265.6077 129.4098
+\c 266.7998 127.8948 267.3349 125.6274 267.0018 123.493
+\c 266.5611 120.6437 263.8835 115.5058 256.9229 116.4237
+\c 249.4891 117.4097 248.0553 123.9915 247.7842 126.7758
+\c 247.3212 131.5076 249.3601 139.9131 259.9285 141.3967
+\c 267.4638 142.4578 276.3192 139.3161 279.137 129.9256
+\c 280.8398 124.2515 279.6203 116.8228 276.6777 111.1923
+\c 276.8178 113.1378 276.1334 114.8732 274.6265 115.3504
+\c 271.9103 116.2074 271.2036 111.4441 274.4803 111.8726
+\c 274.4803 111.8726 274.4204 104.5718 266.9815 103.1198
+\c 266.9815 103.1198 268.4569 103.2569 270.2765 103.9057
+\c 270.2664 103.8814 270.2603 103.856 270.2562 103.8286
+\c 268.6813 103.3087 266.8079 102.9279 264.4887 102.739
+\c 253.4573 101.8516 248.3275 106.7986 248.2767 106.8484
+\c 248.1193 107.0058 247.8634 107.0058 247.705 106.8464
+\c 247.5486 106.689 247.5486 106.4331 247.706 106.2767
+\c 247.903 106.0797 252.2774 101.8211 261.8151 101.8211
+\c 262.6833 101.8211 263.5982 101.8566 264.5527 101.9358
+\c 272.3449 102.5613 275.445 105.4228 278.4435 108.1877
+\c 279.1207 108.8122 279.7818 109.4194 280.4854 109.9972
+\l 280.7038 110.0063
+\c 280.8337 110.115 285.4264 113.9065 288.0289 112.2554
+\c 289.2829 111.4594 289.3408 110.0997 289.1591 109.2864
+\c 288.9428 108.2984 288.2127 107.8476 288.2127 107.8476
+\c 288.2127 107.8476 294.1061 106.1518 295.0078 110.7851
+\c 295.3693 112.6423 294.3681 114.7097 292.3891 115.653
+\c 290.3522 116.6258 287.2856 116.4166 283.9916 114.1664
+\c 282.0278 112.8231 279.8041 110.6846 278.9705 109.9363
+\l 279.1786 109.9444
+\c 278.74 109.5575 278.3155 109.1686 277.8962 108.7827
+\c 277.1214 108.0669 276.3568 107.3632 275.5242 106.7022
+\c 281.05 111.8706 282.6148 119.0993 284.0089 125.5827
+\c 284.7146 128.8584 285.3817 131.9544 286.5028 134.4035
+\c 290.9177 144.0499 299.5934 141.2738 300.5702 140.9265
+\c 304.9314 139.3699 307.0089 134.3081 305.4026 129.1518
+\c 304.4826 126.198 302.6437 124.9613 301.2637 124.4434
+\c 299.4756 123.7732 297.4194 123.9397 295.8973 124.877
+\c 294.3417 125.8355 293.2776 127.381 292.98 129.1224
+\c 292.7242 130.615 293.0542 132.063 293.8888 133.0947
+\c 294.7712 134.1832 296.1075 134.7305 297.4489 134.5528
+\c 298.4379 134.4218 299.2197 133.91 299.5406 133.185
+\c 300.3093 131.4497 299.1243 130.7491 298.9872 130.675
+\c 298.7902 130.5704 298.7151 130.3277 298.8166 130.1297
+\c 298.9212 129.9337 299.1659 129.8576 299.3629 129.9591
+\c 300.0625 130.3246 301.1561 131.535 300.2808 133.512
+\c 299.8432 134.497 298.8247 135.1854 297.5545 135.354
+\c 295.9288 135.5692 294.3184 134.9133 293.2603 133.6024
+\c 292.2804 132.39 291.8885 130.7074 292.1829 128.9853
+\c 292.5211 127.0164 293.7203 125.2689 295.4729 124.1875
+\c 297.2021 123.1254 299.5304 122.9314 301.547 123.6879
+\c 303.7373 124.5084 305.3792 126.3635 306.1743 128.9122
+\c 307.9106 134.4888 305.6188 139.9812 300.8403 141.686
+\c 299.7975 142.0607 290.4842 145.044 285.7686 134.7406
+\c 284.609 132.2103 283.9348 129.0737 283.2199 125.7533
+\c 281.9202 119.7106 280.4682 113.0089 275.7384 108.0557
+\c 275.7912 108.1512 275.8389 108.2466 275.8887 108.3441
+\c 279.9605 114.3218 281.9283 123.4341 279.9107 130.1591
+\c 276.9731 139.9548 267.4324 143.2609 259.8168 142.1978
+\c 248.6412 140.629 246.4896 131.7157 246.979 126.6976
+\c 247.5933 120.4082 251.1797 116.3709 256.8183 115.6225
+\o
+\s
+\m 92.2429 106.7458
+\c 88.3854 110.9679 85.4468 110.2348 85.4468 110.2348
+\c 84.404 107.1886 86.5922 104.4805 86.5922 104.4805
+\c 86.184 104.7759 80.0245 109.192 74.6114 109.1331
+\c 70.9386 109.0924 70.7538 106.9276 70.7538 106.9276
+\c 70.7538 106.9276 68.7342 106.3762 67.8152 104.7252
+\c 66.8973 103.0711 68.3666 102.3369 68.3666 102.3369
+\c 67.4487 95.5408 75.5293 100.1335 75.5293 100.1335
+\c 75.5293 100.1335 72.5907 99.9507 72.5907 102.8883
+\c 72.5907 105.8269 74.6134 106.561 77.7338 106.1945
+\c 80.1047 105.9162 88.3874 103.4397 98.3963 98.2042
+\c 107.5533 93.4166 111.7713 91.5005 111.7713 91.5005
+\c 102.4082 96.7126 96.0994 102.5217 92.2429 106.7458
+\o
+\s
+\m 214.5174 37.7102
+\c 215.4049 37.7102 216.3776 37.9032 217.4184 38.3601
+\c 221.3359 40.0761 223.3565 44.4221 223.5962 51.6315
+\c 223.7637 56.6578 222.66 61.9684 220.3225 67.4962
+\c 220.8728 67.8709 221.2353 68.5015 221.2353 69.2174
+\c 221.2353 70.3658 220.3042 71.2989 219.1538 71.2989
+\c 218.9558 71.2989 218.7659 71.2614 218.5841 71.2106
+\c 217.2915 73.7237 215.7613 76.2795 213.9762 78.8739
+\c 210.2456 84.2941 207.7507 89.5733 206.4896 94.6838
+\c 207.1811 92.9678 208.1538 91.271 209.5125 89.8068
+\l 209.4089 89.688
+\c 211.1523 87.5526 213.8736 84.7511 217.0407 84.7978
+\c 220.3469 84.8486 220.621 88.1953 220.621 88.1953
+\c 220.8058 89.821 220.1641 91.4792 218.9476 92.0976
+\c 217.3636 92.9718 215.8466 92.4205 215.8466 92.4205
+\c 215.8466 92.4205 216.3228 90.9095 215.9867 89.6657
+\c 215.6628 88.4705 214.5164 87.3373 212.8745 88.2877
+\c 212.2216 88.6665 210.9472 89.5733 210.1207 90.5034
+\l 210.0455 90.4181
+\c 205.7717 95.0768 205.5645 102.2679 205.5879 104.1332
+\c 205.6905 105.7893 205.9291 107.4272 206.321 109.0366
+\c 207.1333 112.3742 208.7438 114.728 211.1066 116.0348
+\c 213.5913 117.4086 216.3198 117.2848 218.0449 116.709
+\c 219.7468 116.1424 221.2922 114.6274 222.1776 112.6596
+\c 223.2438 110.2896 223.2611 107.5399 222.2264 105.1131
+\c 220.9998 102.2374 218.2734 100.7092 215.2739 101.222
+\c 212.4764 101.6972 210.4923 104.1718 210.5573 107.1043
+\c 210.5939 108.7848 211.1036 110.0916 212.0743 110.9902
+\c 212.5272 111.4086 213.0369 111.6685 213.5314 111.831
+\l 213.3111 111.6228
+\c 215.2637 112.3245 215.9583 111.0613 215.7115 110.2581
+\c 215.4353 109.3636 214.3702 109.5362 213.9884 109.5474
+\c 213.2542 109.5646 212.8663 108.7431 212.91 107.8699
+\c 213.0014 106.0655 214.2412 104.7739 216.0791 104.8399
+\c 217.7048 104.8998 219.4208 106.1945 219.2919 108.996
+\c 219.2045 110.9242 218.2531 112.0605 217.1798 112.5997
+\c 216.1075 113.1399 214.8048 113.0241 214.8048 113.0241
+\l 214.6423 112.8738
+\c 213.7457 112.8048 212.5343 112.5164 211.525 111.5812
+\c 210.3877 110.5313 209.7897 109.0315 209.748 107.1215
+\c 209.6759 103.7869 211.9423 100.9692 215.1378 100.4229
+\c 218.5171 99.8502 221.5918 101.5632 222.9697 104.7963
+\c 223.6205 106.3224 223.8744 107.9674 223.7596 109.5819
+\c 223.7627 109.6073 223.7728 109.6316 223.7708 109.657
+\c 223.5302 114.6833 220.6586 119.1907 215.4597 122.6908
+\c 213.7223 123.8616 211.7951 125.2171 210.6781 126.3991
+\c 208.364 128.8482 208.2716 130.8608 208.2178 132.065
+\c 208.1731 133.0216 208.4737 135.2362 209.9267 136.7613
+\c 210.8335 137.7158 212.0236 138.2012 213.4624 138.2052
+\c 213.4705 138.2052 213.4766 138.2052 213.4857 138.2052
+\c 215.087 138.2052 216.3187 137.6376 217.1473 136.5156
+\c 218.2663 134.9996 218.3282 132.8723 217.9089 131.5381
+\c 217.4164 129.9571 216.1157 129.2574 215.0637 129.1305
+\c 214.029 129.0097 213.0999 129.3996 212.6419 130.1581
+\c 212.1738 130.9308 212.1048 132.0346 212.4714 132.8449
+\c 212.6267 133.1881 212.9252 133.6156 213.4685 133.7131
+\c 214.6139 133.9131 215.1134 133.1993 215.1388 133.1617
+\c 215.2556 132.9738 215.5034 132.916 215.6922 133.0327
+\c 215.8821 133.1505 215.94 133.3983 215.8232 133.5882
+\c 215.7928 133.6389 215.0454 134.8117 213.3263 134.5091
+\c 212.6328 134.3853 212.0672 133.9131 211.7362 133.1779
+\c 211.2579 132.1239 211.3442 130.743 211.9494 129.7387
+\c 212.5749 128.7061 213.8026 128.1649 215.1591 128.3283
+\c 216.4629 128.4857 218.0723 129.3488 218.6816 131.2974
+\c 219.173 132.8703 219.0918 135.2443 217.7962 136.9959
+\c 216.8224 138.3169 215.3328 139.0145 213.4847 139.0145
+\c 213.4756 139.0145 213.4685 139.0145 213.4604 139.0145
+\c 211.791 139.0084 210.407 138.4378 209.3408 137.3188
+\c 207.9162 135.8221 207.3415 133.5262 207.4095 132.0254
+\c 207.4654 130.7978 207.569 128.5111 210.0912 125.8436
+\c 211.262 124.6048 213.2349 123.2168 215.0078 122.0227
+\c 217.8429 120.1127 219.9519 117.8991 221.2871 115.4702
+\c 220.4281 116.4054 219.4086 117.1061 218.3008 117.4746
+\c 218.2115 117.5051 218.1109 117.5274 218.0165 117.5538
+\c 218.2307 117.5406 218.4359 117.5224 218.6268 117.501
+\c 218.6268 117.501 217.7769 117.9194 215.4506 118.1336
+\c 213.8472 118.2799 211.2224 118.2464 209.6851 118.6495
+\c 209.0626 118.8119 208.6859 119.016 208.5153 119.4181
+\c 208.033 120.5513 209.2484 121.8043 209.2484 121.8043
+\c 209.2484 121.8043 205.5767 122.1729 205.7605 119.0516
+\c 205.8996 116.6674 209.0657 117.3975 210.535 117.3975
+\c 210.9706 117.3975 211.656 117.431 212.4612 117.4706
+\c 211.8743 117.2898 211.2894 117.0593 210.7167 116.7415
+\c 208.1467 115.321 206.4033 112.7926 205.5361 109.2285
+\c 205.1787 107.7612 204.9523 106.2727 204.8284 104.7678
+\c 204.8101 104.7282 204.7959 104.6876 204.7938 104.6409
+\c 204.7928 104.6277 204.7847 104.4622 204.7806 104.1829
+\c 204.6822 102.6273 204.7106 101.0514 204.8588 99.4572
+\c 204.7786 99.8329 204.737 100.0421 204.737 100.0421
+\c 204.737 100.0421 204.9198 93.1089 208.0432 83.7418
+\c 209.7064 78.748 211.984 74.2213 210.7492 71.9874
+\c 209.5734 69.8611 207.0775 71.6188 207.0775 71.6188
+\c 206.7262 68.0334 208.5336 66.1721 210.3877 66.0503
+\c 212.4257 65.9183 214.5204 67.8862 213.8716 71.9874
+\c 213.5517 74.0091 212.7699 75.6622 209.6475 83.3752
+\c 209.0758 84.7876 208.5498 86.2427 208.0685 87.6755
+\c 209.415 84.6363 211.1523 81.5485 213.3091 78.417
+\c 215.0749 75.85 216.5898 73.3237 217.8662 70.839
+\c 217.3869 70.4582 217.0722 69.8774 217.0722 69.2174
+\c 217.0722 68.0669 218.0043 67.1348 219.1538 67.1348
+\c 219.301 67.1348 219.4421 67.152 219.5792 67.1794
+\c 221.87 61.7653 222.9524 56.5664 222.7889 51.662
+\c 222.5605 44.7876 220.6972 40.6752 217.0955 39.1014
+\c 214.0584 37.7712 211.7179 38.949 210.537 40.5026
+\c 209.6424 41.6805 209.2962 43.4372 209.2718 44.6759
+\c 209.218 47.2754 210.4812 50.1185 213.3812 50.1998
+\c 214.4392 50.2302 215.345 49.8951 216.0629 49.1945
+\c 217.0965 48.1994 217.4621 46.7271 217.4621 45.7726
+\c 217.4621 44.1581 216.5797 43.1325 215.7592 42.8584
+\c 215.2739 42.6959 214.7977 42.767 214.3681 43.0615
+\l 214.4372 43.1833
+\c 213.8158 43.5996 213.833 44.2698 214.2757 44.5947
+\c 214.7479 44.94 215.5653 45.0313 215.5714 45.6812
+\c 215.5795 46.8083 213.8939 47.1942 213.0247 46.5748
+\c 212.0032 45.8538 211.8306 43.691 213.9325 42.2085
+\l 213.9995 42.3405
+\c 214.6159 41.9547 215.3216 41.8531 216.0151 42.0867
+\c 217.3433 42.5334 218.2703 44.0464 218.2703 45.7726
+\c 218.2703 46.9403 217.8378 48.6056 216.6274 49.7733
+\c 215.7562 50.6262 214.624 51.0426 213.3558 51.0121
+\c 209.9085 50.9106 208.4016 47.6511 208.4635 44.6658
+\c 208.4991 42.8787 209.0342 41.1423 209.8942 40.0152
+\c 210.8497 38.7561 212.4531 37.7102 214.5174 37.7102
+\o
+\s
+\m 163.025 81.0733
+\c 166.1941 81.0733 169.4891 81.2235 172.907 81.5485
+\c 185.6564 82.7629 193.2619 87.4114 197.7479 91.998
+\c 196.4969 90.4597 195.8187 88.6543 195.7374 86.9789
+\c 195.6257 84.6739 196.565 82.6888 198.4465 82.7548
+\c 199.4213 82.7883 200.1859 83.4026 200.4926 84.1154
+\c 201.0023 85.2903 200.6327 86.788 200.6327 86.788
+\c 197.8373 86.6011 197.2727 88.6584 197.6647 90.4303
+\c 198.0465 92.1504 199.5178 93.6897 199.5178 93.6897
+\c 199.2233 93.4744 198.9461 93.244 198.6852 93.0063
+\c 202.2523 97.0335 203.4972 100.7996 203.8059 101.9145
+\c 203.8109 101.9318 203.818 101.946 203.8191 101.949
+\c 203.8221 101.9592 203.8201 101.9683 203.8221 101.9775
+\c 203.8678 102.144 203.8901 102.2455 203.8932 102.2557
+\c 203.9379 102.475 203.7957 102.6903 203.5764 102.734
+\c 203.3611 102.7797 203.1448 102.6375 203.1012 102.4182
+\c 203.0991 102.407 203.0809 102.3258 203.0443 102.1867
+\c 202.7468 101.4373 197.5895 89.2788 179.1741 92.0427
+\c 174.4646 92.7505 170.1999 93.7679 166.2337 95.025
+\c 166.0144 95.1357 165.794 95.2453 165.5707 95.3337
+\c 162.2878 96.6446 161.6055 100.0716 161.6055 100.0716
+\c 159.8884 99.4115 158.1318 98.4581 155.5861 99.378
+\c 155.3759 99.4532 155.1698 99.51 154.9718 99.5557
+\c 150.1842 101.8932 145.7306 104.584 141.2902 107.483
+\l 142.2254 109.26
+\c 142.7636 110.1211 142.5016 111.2553 141.6415 111.7934
+\c 140.7815 112.3296 139.6473 112.0686 139.1101 111.2075
+\l 138.2196 109.5138
+\c 137.9678 109.6844 137.717 109.8499 137.4652 110.0195
+\c 136.4772 110.6836 135.5156 111.371 134.5652 112.0808
+\c 135.7501 113.806 137.4652 115.3961 139.9458 116.2826
+\l 141.1653 116.7182
+\l 139.9153 117.0522
+\c 139.8625 117.0685 137.5433 117.698 134.5245 118.7723
+\c 136.7554 118.683 138.179 119.5491 138.4359 120.7036
+\c 138.8096 122.3953 137.7292 124.8049 133.6878 123.826
+\c 131.0478 123.1863 128.3173 121.4094 125.3493 123.0675
+\l 125.3188 122.9274
+\c 124.3065 123.5397 123.3865 124.1875 122.63 124.8628
+\c 120.4317 126.8266 119.4894 128.964 119.9798 130.877
+\c 120.3718 132.4001 121.5354 133.3211 122.4544 133.5333
+\c 123.5683 133.7953 124.7147 133.5628 125.5168 132.9251
+\c 125.7463 132.7433 125.9261 132.525 126.0804 132.2976
+\l 125.9311 132.2895
+\c 126.4673 131.6152 126.5434 130.3917 126.0692 130.4841
+\c 125.594 130.5754 125.4214 131.0263 124.7045 131.2182
+\c 123.9105 131.4314 122.9631 130.3196 123.5124 128.769
+\c 124.0912 127.1403 126.6866 127.0428 127.4014 129.0747
+\c 127.9985 130.7745 127.1405 132.3555 127.1405 132.3555
+\l 127.0044 132.3483
+\c 126.778 132.8073 126.447 133.2175 126.0205 133.5577
+\c 125.0112 134.3578 123.6485 134.6371 122.2716 134.3213
+\c 120.8683 133.9974 119.6041 132.6641 119.1969 131.0781
+\c 118.869 129.7915 118.805 127.1962 122.0929 124.2596
+\c 122.9479 123.497 123.9917 122.7741 125.1361 122.0937
+\l 125.1076 121.9668
+\c 126.4642 121.1677 127.8726 120.5097 129.2414 119.9959
+\c 132.9466 118.3367 136.7432 117.1345 138.5841 116.5923
+\c 136.5066 115.6063 135.0109 114.135 133.9275 112.5621
+\c 131.0681 114.7381 128.2849 117.1243 125.2041 119.7725
+\c 119.7849 124.4282 113.4548 129.8636 104.637 135.6911
+\l 101.7928 140.9062
+\l 94.7154 141.75
+\c 93.3853 142.5024 92.0246 143.2569 90.5959 144.0184
+\c 89.7755 144.454 88.9621 144.8714 88.1569 145.2694
+\c 90.4853 161.4824 100.7764 173.053 110.2228 177.271
+\c 116.8432 180.2259 120.2794 178.7901 121.7375 177.6731
+\c 123.1154 176.6181 123.8526 174.9701 123.617 173.4775
+\c 123.3723 171.928 122.4107 171.2172 121.6461 170.8912
+\c 120.4124 170.3693 118.802 170.4861 117.819 171.1735
+\c 117.1113 171.67 116.8524 172.6875 117.1905 173.6531
+\c 117.5571 174.701 118.4455 175.2778 119.5828 175.2158
+\c 119.8021 175.1945 119.9971 175.3712 120.0113 175.5936
+\c 120.0255 175.8149 119.8559 176.0079 119.6326 176.0231
+\c 117.8597 176.1267 116.8077 175.0097 116.4279 173.9192
+\c 115.971 172.6164 116.3528 171.2141 117.356 170.5125
+\c 118.5694 169.6616 120.4652 169.5103 121.9619 170.1479
+\c 123.3073 170.7206 124.1785 171.8569 124.4141 173.3505
+\c 124.6974 175.1326 123.8384 177.0822 122.229 178.3149
+\c 120.6266 179.5415 116.896 181.1347 109.8928 178.0072
+\c 100.2921 173.7232 89.8425 162.0196 87.3974 145.636
+\c 87.1517 145.7538 86.9049 145.8726 86.6622 145.9873
+\c 87.4268 156.1262 90.9564 161.8439 90.9564 161.8439
+\l 89.2495 162.5273
+\c 89.6902 163.6564 90.1492 164.7216 90.6091 165.7238
+\c 90.6843 165.7167 90.7574 165.7005 90.8335 165.7005
+\c 92.1871 165.7005 93.2827 166.7971 93.2827 168.1486
+\c 93.2827 168.7751 93.041 169.3397 92.6552 169.7722
+\c 93.433 171.1776 94.1184 172.2894 94.5906 173.0155
+\l 96.6498 171.7614
+\c 96.6498 171.7614 100.5084 181.1895 110.6421 183.4945
+\c 112.7562 183.9748 119.793 185.3527 127.568 182.1084
+\c 128.2524 181.8221 129.3124 181.2849 130.5462 180.7427
+\c 144.8969 171.3949 141.5694 156.0683 140.7074 152.951
+\c 137.4987 141.354 127.7985 136.7217 119.6346 137.269
+\c 115.38 137.5554 111.6078 139.3496 109.0154 142.3207
+\c 106.2657 145.4715 104.9883 149.6722 105.3183 154.469
+\c 105.6037 158.6048 107.3654 162.1374 110.2817 164.418
+\c 112.0505 165.8 114.1494 166.659 116.3355 166.9423
+\l 116.3274 166.8012
+\c 119.5188 167.055 120.5353 164.5348 120.1809 163.164
+\c 119.6102 160.9473 117.6688 161.5931 117.6688 161.5931
+\c 117.0636 158.3326 120.5881 156.4673 122.5935 158.2159
+\c 124.9949 160.3097 124.2364 164.4657 121.4796 166.4965
+\c 125.0975 165.2445 128.0005 161.7566 128.7611 157.5477
+\c 129.4495 153.7318 128.7956 149.9433 127.0511 147.6577
+\c 125.8793 146.1224 124.2588 145.2532 122.2371 145.0734
+\c 119.991 144.8765 118.1947 145.7568 117.4352 147.4312
+\c 116.7752 148.8883 116.9966 150.8003 117.619 151.6736
+\c 118.3836 152.7479 119.6742 152.9033 120.6175 152.5773
+\c 121.44 152.292 122.297 151.5426 122.2361 150.2916
+\c 122.2086 149.72 122.037 149.2925 121.7253 149.0203
+\c 121.2491 148.605 120.5769 148.6538 120.5627 148.6548
+\c 120.3505 148.6649 120.1464 148.5126 120.124 148.2913
+\c 120.1027 148.0689 120.2652 147.8729 120.4865 147.8496
+\c 120.5281 147.8475 121.504 147.7622 122.2482 148.403
+\c 122.7367 148.8274 123.0057 149.4509 123.0453 150.2541
+\c 123.1113 151.6513 122.2625 152.8637 120.8825 153.3409
+\c 119.6569 153.7664 117.9683 153.5602 116.96 152.1437
+\c 116.101 150.9364 115.9852 148.6731 116.7001 147.0961
+\c 117.6078 145.0958 119.7006 144.0398 122.3092 144.2692
+\c 124.5654 144.4683 126.3779 145.4441 127.6949 147.1692
+\c 129.5998 149.6641 130.2943 153.5988 129.5561 157.6909
+\c 129.3612 158.7713 129.0261 159.803 128.5864 160.7706
+\c 129.6557 159.6344 131.0427 158.5256 132.708 157.9864
+\c 136.8711 156.6389 139.8514 161.125 137.7292 164.1093
+\c 136.072 166.4387 132.8308 165.4547 132.8308 165.4547
+\c 133.9326 164.7216 133.8107 162.8847 132.4643 162.3953
+\c 131.1168 161.9049 129.9329 162.773 126.8318 164.9653
+\c 122.0888 168.3161 118.1409 167.9506 118.1409 167.9506
+\c 118.3318 167.9161 118.5085 167.8704 118.6933 167.8308
+\c 115.5039 168.0115 112.3247 167.0398 109.7841 165.0547
+\c 106.6851 162.6309 104.8127 158.8901 104.5121 154.5249
+\c 104.1669 149.5077 105.5133 145.1039 108.4062 141.7886
+\c 111.1417 138.6561 115.1099 136.7633 119.5808 136.4638
+\c 120.0286 136.4323 120.4804 136.4171 120.9363 136.4171
+\c 129.1276 136.4171 138.3313 141.3347 141.4862 152.7367
+\c 143.8318 161.2205 142.6509 172.1473 133.4045 179.6623
+\c 134.1549 179.4328 134.9134 179.2541 135.6496 179.1688
+\c 138.8157 178.8013 141.3207 179.4186 141.4628 181.1286
+\c 141.6405 183.2284 138.9791 182.6436 137.6073 181.8617
+\c 134.4849 180.0868 131.1808 181.9247 129.6536 182.5684
+\c 126.4216 184.1616 122.365 185.2867 117.2565 185.5354
+\c 115.8877 185.6025 103.5404 186.2706 92.4257 174.3314
+\l 93.6483 173.5881
+\c 93.1791 172.8621 92.511 171.7797 91.7535 170.417
+\c 91.4692 170.5308 91.1595 170.5988 90.8335 170.5988
+\c 89.482 170.5988 88.3854 169.5011 88.3854 168.1486
+\c 88.3854 167.2672 88.8576 166.5006 89.5562 166.0701
+\c 89.1073 165.0841 88.6565 164.0413 88.227 162.9345
+\l 86.3657 163.6798
+\c 85.6022 159.541 85.1269 155.8165 84.864 152.4788
+\c 84.864 152.4788 84.6507 150.2358 84.668 146.8981
+\c 81.7162 148.204 78.8741 149.2559 76.1467 150.0835
+\c 74.0641 157.433 73.2538 163.4219 73.1776 166.6285
+\c 73.0101 173.7709 75.5252 177.9706 80.0773 178.1514
+\c 82.1995 178.2428 84.0141 177.5503 85.2092 176.2181
+\c 86.3261 174.9701 86.7912 173.2784 86.516 171.4538
+\c 86.0662 168.4573 83.8881 167.0946 82.0726 167.3261
+\c 80.9607 167.4693 79.9392 168.3608 79.5889 169.493
+\c 79.2609 170.549 79.2853 171.4406 79.659 172.1442
+\c 80.1586 173.0825 81.1354 173.3891 81.1547 173.3932
+\c 81.3669 173.4572 81.4898 173.6816 81.4268 173.8948
+\c 81.3649 174.1101 81.1435 174.2309 80.9252 174.17
+\c 80.8724 174.1537 79.6194 173.777 78.9533 172.5352
+\c 78.4669 171.6325 78.4212 170.5277 78.8162 169.2544
+\c 79.2579 167.8287 80.5535 166.7067 81.969 166.5239
+\c 84.1654 166.2407 86.7902 167.8298 87.3162 171.3339
+\c 87.6269 173.4013 87.0918 175.3255 85.8103 176.7572
+\c 84.4527 178.2712 82.428 179.0531 80.0458 178.9607
+\c 74.9881 178.7586 72.1906 174.2563 72.3714 166.6092
+\c 72.4455 163.4381 73.2304 157.5711 75.2359 150.3607
+\c 72.6587 151.1009 70.1862 151.6381 67.8112 152.0067
+\c 67.275 153.3003 66.7602 154.5635 66.2596 155.7982
+\c 65.3478 158.0473 64.4796 160.1817 63.5668 162.2399
+\l 63.9293 161.7657
+\c 63.9293 161.7657 63.6663 162.3902 63.3028 163.2208
+\c 62.8448 164.2687 62.33 165.4232 62.3067 166.5047
+\c 62.2853 167.6521 62.7463 168.6025 64.0044 168.7314
+\c 64.6137 168.7944 65.3935 168.8208 65.9804 169.2371
+\c 66.6739 169.7265 67.1512 170.6353 67.1268 171.8528
+\c 67.071 174.6076 63.5079 175.7012 61.6172 173.8735
+\c 60.2708 172.5707 60.0799 170.6475 60.3286 168.9873
+\c 60.3489 168.8503 60.3753 168.7142 60.4017 168.5791
+\c 59.6321 169.9195 58.7954 171.2395 57.8612 172.5463
+\c 49.0942 184.8226 38.6547 189.8926 24.9833 188.5096
+\c 11.1463 187.1053 3.6181 176.9359 1.1872 167.8876
+\c -1.3727 158.3651 -0.0252 144.3972 7.503 136.1236
+\c 11.521 131.7046 16.9077 129.3722 23.2845 129.2199
+\c 21.7817 125.2192 20.9968 120.9859 21.1298 116.8339
+\c 21.4984 105.1953 27.8498 98.1565 33.6701 95.4514
+\c 40.0327 92.4946 51.8581 92.9799 56.598 101.5916
+\c 57.2448 102.7665 57.7454 103.9992 58.109 105.2603
+\c 58.1354 105.2979 58.1557 105.3415 58.1679 105.3872
+\c 59.3214 109.8063 59.3315 113.1378 59.3386 116.0785
+\c 59.3447 118.1489 59.3498 119.938 59.761 121.715
+\c 60.2992 124.0464 61.3116 125.6497 62.6854 126.3534
+\c 63.6145 126.8296 64.6797 126.859 65.687 126.4387
+\c 67.0537 125.865 67.6132 124.5226 67.6792 123.4584
+\c 67.7503 122.3395 67.338 121.384 66.6059 120.9616
+\c 66.1205 120.6813 65.6697 120.6031 65.2615 120.7209
+\c 64.6492 120.9047 64.3029 121.4754 64.1831 121.714
+\c 63.9404 122.1912 63.9922 122.8675 63.9943 122.8736
+\c 64.0125 123.0949 63.847 123.2909 63.6247 123.3092
+\c 63.4135 123.3254 63.2073 123.165 63.188 122.9426
+\c 63.186 122.9071 63.1129 122.0359 63.4632 121.3464
+\c 63.8176 120.6488 64.3882 120.1381 65.033 119.9482
+\c 65.6585 119.7593 66.3246 119.8649 67.009 120.2619
+\c 68.0092 120.8387 68.5748 122.0826 68.4854 123.5102
+\c 68.3808 125.1755 67.4294 126.5839 65.9987 127.183
+\c 64.7711 127.6988 63.4642 127.6592 62.3158 127.0723
+\c 61.2049 126.5047 59.7235 125.144 58.9731 121.8978
+\c 58.5415 120.0304 58.5364 118.1996 58.5314 116.0805
+\c 58.5283 115.194 58.5232 114.2649 58.4877 113.2861
+\c 58.3669 113.8974 58.2176 114.5036 58.0287 115.0966
+\c 56.8387 118.8343 54.4423 121.7363 51.2793 123.2716
+\c 44.8376 126.395 39.5432 123.759 37.3449 119.9888
+\c 36.1772 117.9844 35.4065 114.4436 36.4747 111.4076
+\c 37.1895 109.3717 38.6415 107.8821 40.6724 107.1033
+\c 43.1002 106.1701 45.4905 106.4788 47.0664 107.9318
+\c 48.3316 109.0975 48.8291 110.7973 48.3681 112.3692
+\c 48.1102 113.2445 47.6736 113.8598 47.0867 114.2284
+\l 47.2248 114.3218
+\c 47.2248 114.3218 45.8367 115.4337 44.0953 114.6731
+\c 42.4219 113.9451 42.8088 111.8412 43.9867 111.2451
+\c 45.1666 110.6491 46.248 111.2593 46.6937 112.0717
+\c 46.6937 112.0717 45.7027 111.4279 45.0742 112.0869
+\c 44.4466 112.7428 44.9056 113.8923 46.1769 113.6171
+\l 46.3231 113.7156
+\c 46.3942 113.6943 46.4622 113.6689 46.5313 113.6344
+\c 47.0146 113.3927 47.371 112.8911 47.5924 112.1417
+\c 47.9671 110.8664 47.5558 109.4803 46.5211 108.5248
+\c 45.1747 107.2871 43.0972 107.0362 40.9628 107.8567
+\c 39.133 108.5604 37.881 109.8449 37.2372 111.6736
+\c 36.2533 114.4701 36.9661 117.7326 38.0445 119.5826
+\c 40.0591 123.0401 44.9513 125.4426 50.9249 122.5436
+\c 53.8879 121.1078 56.137 118.3753 57.2591 114.8508
+\c 58.5882 110.6704 58.0917 105.9792 55.8913 101.9815
+\c 51.3839 93.7933 40.0915 93.3567 34.0103 96.1846
+\c 28.4083 98.7871 22.2945 105.5852 21.9371 116.8603
+\c 21.8051 121.0012 22.6022 125.2293 24.1334 129.2087
+\c 25.7976 129.2199 27.5259 129.3681 29.314 129.6717
+\c 40.8318 131.6254 46.3373 141.7592 47.9011 150.1982
+\c 53.3122 151.7234 59.757 152.3742 67.2405 151.2766
+\c 67.7797 149.9829 68.3473 148.6538 68.9535 147.284
+\c 63.0002 147.2617 57.911 145.7223 55.5725 142.4374
+\c 50.7361 135.6423 56.4305 131.0344 59.7834 132.9617
+\c 62.8448 134.7244 61.3867 138.1494 61.3867 138.1494
+\c 60.0565 137.0477 59.1965 137.332 58.7903 137.93
+\c 58.4298 138.4581 58.4481 139.2541 58.4481 139.2541
+\c 58.4481 143.5006 62.3432 145.4867 69.6958 145.638
+\c 72.2231 140.1111 75.4704 133.8999 80.3342 126.5422
+\c 93.1761 107.1124 111.0869 95.948 114.5839 93.8857
+\c 114.5139 93.6521 114.4641 93.4105 114.4641 93.1546
+\c 114.4641 91.734 115.6166 90.5836 117.0372 90.5836
+\c 118.0536 90.5836 118.9238 91.1796 119.3421 92.0356
+\c 120.7485 91.2507 122.2675 90.4577 123.9003 89.6778
+\l 121.5669 85.3796
+\l 124.8721 83.6646
+\l 127.2491 88.1689
+\c 136.333 84.3033 148.3168 81.0733 163.025 81.0733
+\o
+\m 200.9627 97.4579
+\c 200.9424 97.4681 200.9211 97.4792 200.9008 97.4863
+\c 200.9759 97.5696 201.048 97.6539 201.1211 97.7361
+\c 201.0683 97.6427 201.0196 97.5513 200.9627 97.4579
+\o
+\m 87.2786 144.7962
+\c 87.2095 144.2682 87.1456 143.7372 87.0948 143.199
+\c 86.908 143.2853 86.7211 143.3706 86.5333 143.4549
+\c 86.5475 144.0215 86.5698 144.5779 86.6013 145.1212
+\c 86.8257 145.0115 87.0522 144.9059 87.2786 144.7962
+\o
+\m 84.9929 140.4442
+\c 85.5758 134.5599 87.1517 127.8887 90.0405 121.5617
+\l 89.8303 122.377
+\c 90.6325 120.3716 91.5748 118.4708 92.6369 116.6654
+\c 85.3727 126.1909 80.6388 136.3592 77.6606 145.1851
+\c 80.2763 144.7993 82.6737 144.1647 84.7675 143.4549
+\c 84.8193 142.4902 84.8904 141.483 84.9929 140.4442
+\o
+\m 86.9902 134.9031
+\c 86.6237 137.7432 86.4876 140.3873 86.5201 142.8203
+\c 86.6988 142.7512 86.8745 142.6832 87.0451 142.6141
+\c 86.9679 141.6942 86.9059 140.7641 86.8785 139.8157
+\c 86.8328 138.1179 86.8755 136.4861 86.9902 134.9031
+\o
+\m 84.6781 146.0117
+\c 84.6863 145.438 84.7056 144.8409 84.7299 144.2205
+\c 82.3143 145.175 79.7829 145.9101 77.2565 146.4239
+\c 76.957 147.351 76.6716 148.2649 76.4086 149.1564
+\c 79.0578 148.3319 81.8137 147.2881 84.6781 146.0117
+\o
+\m 29.179 130.4688
+\c 27.5563 130.1937 25.9835 130.0444 24.4654 130.018
+\c 27.14 136.4841 31.7591 142.2141 37.5388 145.704
+\c 40.2144 147.3185 43.3794 148.8213 47.0288 149.9383
+\c 45.4184 141.8434 40.1027 132.3209 29.179 130.4688
+\o
+\m 48.0513 151.0765
+\c 48.2564 152.4037 48.3671 153.677 48.3834 154.8589
+\c 48.4199 157.3081 48.094 162.0633 45.5128 166.397
+\c 42.298 171.797 36.2127 174.7488 29.2226 174.306
+\c 20.1002 173.7232 13.499 166.3615 13.1731 156.4085
+\c 13.0319 152.1173 14.4454 148.0923 17.0529 145.3669
+\c 19.0056 143.3249 21.5096 142.1846 24.1019 142.1562
+\c 27.9838 142.1206 30.8777 143.8519 32.1947 147.0586
+\c 33.0365 149.1117 33.1157 151.4979 32.7034 153.544
+\l 32.7999 153.8852
+\c 31.7276 159.1186 27.0131 160.3127 24.5649 158.8434
+\c 22.1158 157.3741 21.7187 154.0375 22.79 152.294
+\c 23.1931 151.636 23.7739 151.1222 24.5345 150.9161
+\c 25.5976 150.6257 26.9004 150.91 27.5959 152.0188
+\c 28.789 153.9156 27.8102 155.9667 27.8102 155.9667
+\c 27.8102 155.9667 29.4937 157.5274 30.8716 155.5687
+\c 32.2099 153.6648 32.0048 151.0684 32.0048 151.0684
+\l 32.146 151.57
+\c 32.1957 150.1647 31.9916 148.6924 31.4474 147.3662
+\c 30.6097 145.3293 28.6845 142.8954 24.1111 142.9634
+\c 21.737 142.9908 19.4381 144.0428 17.6368 145.9244
+\c 15.1795 148.4944 13.8473 152.3042 13.9813 156.3831
+\c 14.2971 166.0558 20.4434 172.9352 29.2744 173.5008
+\c 35.9446 173.9324 41.7629 171.1187 44.8193 165.9838
+\c 47.2979 161.8196 47.6106 157.235 47.5761 154.8701
+\c 47.5578 153.6151 47.4319 152.2524 47.1933 150.8339
+\c 46.712 150.6917 46.2378 150.5424 45.7728 150.3871
+\c 43.2241 149.984 42.2858 151.5589 42.2858 151.5589
+\c 42.2858 151.5589 42.7174 151.8381 42.9621 152.4473
+\c 43.2545 153.1693 43.3246 154.3238 42.2858 155.0488
+\c 39.9626 156.6714 37.3276 152.294 40.8176 150.2734
+\c 41.7182 149.7514 42.5519 149.527 43.2962 149.4763
+\c 41.0156 148.5563 38.9533 147.5003 37.1215 146.3945
+\c 31.1103 142.7664 26.3196 136.7715 23.5952 130.0251
+\c 17.3149 130.1114 12.0236 132.3555 8.0991 136.6669
+\c 0.7678 144.7262 -0.5349 158.3682 1.967 167.6785
+\c 4.3299 176.4658 11.6388 186.3427 25.0655 187.7054
+\c 37.4738 188.9584 46.841 185.0064 55.0201 174.9427
+\c 54.8109 175.0818 54.6058 175.2087 54.4098 175.3113
+\c 50.1867 177.5462 47.3142 174.6685 47.6157 172.39
+\c 48.0381 169.2036 52.2633 169.4422 52.2633 169.4422
+\c 51.2885 171.1187 52.5191 172.6093 54.7165 172.0376
+\c 55.7055 171.7797 56.7422 171.1187 57.5322 170.4465
+\c 59.234 168.9944 60.1652 167.1068 60.1652 167.1068
+\c 60.1276 167.2601 60.0819 167.4074 60.0403 167.5556
+\c 62.1279 163.8047 63.7384 159.8629 65.5113 155.4956
+\c 65.955 154.402 66.4089 153.284 66.879 152.1458
+\c 59.6402 153.1429 53.367 152.5286 48.0513 151.0765
+\o
+\m 75.4978 149.4326
+\c 75.7628 148.5106 76.0492 147.5663 76.3558 146.6027
+\c 74.1443 147.0068 71.948 147.2342 69.841 147.2779
+\c 69.2541 148.5959 68.7017 149.8763 68.1788 151.1243
+\c 70.5193 150.7394 72.9573 150.184 75.4978 149.4326
+\o
+\m 114.9292 94.6219
+\c 111.3539 96.7339 93.697 107.7907 81.0084 126.988
+\c 76.2706 134.1558 73.0751 140.2299 70.5822 145.6461
+\c 71.8891 145.6482 73.2863 145.6025 74.7941 145.4989
+\c 75.4674 145.4512 76.1304 145.3862 76.7783 145.305
+\c 80.7983 133.2419 88.0787 118.6403 100.5713 106.5113
+\c 103.452 103.5747 106.5937 100.889 109.8075 98.3464
+\c 111.1265 97.3056 112.8496 96.0343 114.9647 94.6635
+\c 114.9525 94.6503 114.9383 94.6361 114.9292 94.6219
+\o
+\m 119.5757 92.8297
+\c 119.5889 92.9373 119.6082 93.0419 119.6082 93.1546
+\c 119.6082 94.5752 118.4557 95.7256 117.0372 95.7256
+\c 116.4828 95.7256 115.973 95.5459 115.5537 95.2484
+\c 113.3979 96.6395 111.6403 97.927 110.3081 98.981
+\c 107.5949 101.1276 104.9355 103.3747 102.4417 105.7914
+\c 102.4204 105.833 102.394 105.8746 102.3584 105.9091
+\c 101.9685 106.2727 101.5959 106.6443 101.2151 107.0119
+\c 93.2208 115.1483 87.2796 125.2506 87.6878 139.7933
+\c 87.7112 140.6371 87.764 141.4657 87.83 142.2922
+\c 91.2752 140.829 93.3446 139.4369 93.3446 139.4369
+\c 91.6956 140.7123 89.8445 141.8404 87.8736 142.8203
+\c 87.9234 143.3594 87.9792 143.8925 88.0462 144.4216
+\c 88.7631 144.0631 89.4861 143.6925 90.2162 143.3046
+\c 91.8154 142.4537 93.3467 141.6089 94.818 140.7732
+\l 98.8543 135.028
+\l 104.4461 134.8645
+\c 112.9552 129.227 119.071 123.9763 124.6771 119.1582
+\c 127.7853 116.4887 130.5929 114.0832 133.4848 111.8838
+\c 132.12 109.6377 131.5382 107.2972 131.3006 105.9325
+\c 130.0476 107.9207 127.8756 110.8186 125.5341 113.6872
+\c 124.9056 114.5218 124.3034 115.2692 123.8252 115.8744
+\l 123.7703 115.8063
+\c 121.1069 118.9348 118.4659 121.7333 116.9062 122.8675
+\c 114.9688 124.2769 113.3939 124.7429 111.4727 124.4698
+\c 108.8154 124.0951 106.5612 121.8998 105.9875 119.1328
+\c 105.429 116.4267 105.9306 113.8435 107.3319 112.225
+\c 108.3564 111.043 109.7465 110.4663 111.3671 110.5668
+\c 113.7848 110.712 115.2663 112.2412 115.8461 113.6232
+\c 116.4096 114.9656 116.2482 116.3364 115.4156 117.2939
+\c 114.261 118.6221 112.5948 118.1702 111.8728 117.7468
+\c 111.6809 117.6341 111.6169 117.3873 111.7286 117.1954
+\c 111.8423 117.0025 112.0891 116.9355 112.281 117.0482
+\c 112.3429 117.0847 113.8082 117.9133 114.8043 116.7649
+\c 115.4318 116.0449 115.5425 114.9879 115.1008 113.9359
+\c 114.6144 112.7784 113.3655 111.4969 111.3194 111.3731
+\c 109.974 111.2949 108.7961 111.7691 107.9432 112.754
+\c 106.7054 114.1837 106.2708 116.5059 106.7795 118.9693
+\c 107.2842 121.4083 109.2602 123.3417 111.5865 123.6707
+\c 113.0141 123.8727 114.3859 123.7021 116.432 122.2146
+\c 117.9439 121.1129 120.5901 118.292 123.2565 115.1483
+\l 123.1723 115.0397
+\c 124.8223 113.0932 124.1095 110.4277 124.1095 107.7552
+\c 124.1095 101.879 129.416 101.2362 129.5257 105.2755
+\c 129.547 106.0787 129.35 106.9479 129.019 107.8404
+\c 129.9725 106.5153 130.7381 105.3608 131.192 104.5302
+\l 131.8642 103.2965
+\l 131.9484 104.7008
+\c 131.9525 104.7577 132.1911 108.1776 134.1265 111.4005
+\c 135.0739 110.6958 136.0304 110.0114 137.0143 109.3493
+\c 137.2895 109.1635 137.5647 108.9808 137.8419 108.7959
+\l 136.8397 106.888
+\c 136.3015 106.029 136.5625 104.8968 137.4235 104.3576
+\c 138.2836 103.8204 139.4178 104.0824 139.9539 104.9425
+\l 140.9115 106.7641
+\c 144.8583 104.1901 148.8164 101.7754 153.008 99.6268
+\c 152.8689 99.6024 152.7897 99.5821 152.7897 99.5821
+\c 157.8688 96.4689 163.9318 94.6736 167.3913 93.8248
+\c 170.996 92.7545 174.8464 91.8752 179.0532 91.2446
+\c 180.9693 90.9562 182.7463 90.8263 184.3953 90.8263
+\c 191.0005 90.8263 195.5242 92.9109 198.5339 95.2727
+\c 195.4694 92.4428 188.5179 87.5881 176.1451 86.5758
+\c 158.6649 85.1522 146.8303 90.6059 144.0054 94.9366
+\c 142.7392 96.8781 142.4935 98.7424 143.3495 99.9233
+\c 143.9191 100.7123 144.9172 101.0281 145.9499 100.7529
+\c 147.2852 100.3975 147.8924 99.2795 147.803 98.3606
+\c 147.7228 97.5422 147.1278 97.0172 146.2119 96.9543
+\c 145.9885 96.9411 145.8199 96.7481 145.8352 96.5258
+\c 145.8504 96.3024 146.0707 96.1226 146.2647 96.149
+\c 147.5695 96.2364 148.4884 97.0731 148.6072 98.2814
+\c 148.7301 99.5415 147.9289 101.0616 146.1581 101.5337
+\c 144.7934 101.9003 143.4642 101.4637 142.6945 100.3955
+\c 141.6344 98.9353 141.873 96.7288 143.3291 94.4949
+\c 145.9438 90.4871 155.8674 85.5411 170.603 85.5411
+\c 172.4023 85.5411 174.2737 85.6142 176.2101 85.7716
+\c 188.5646 86.7819 195.5699 91.4568 198.8334 94.4117
+\c 194.79 89.428 187.1196 83.7143 172.8318 82.3537
+\c 153.7279 80.5331 138.5588 84.2403 127.6269 88.8838
+\l 129.5257 92.4824
+\l 126.2195 93.9497
+\l 124.2862 90.3876
+\c 122.5915 91.1949 121.0227 92.0163 119.5757 92.8297
+\o
+\s
+\m 222.7574 19.9
+\c 222.5381 19.8695 222.3899 19.6563 222.4274 19.443
+\c 222.4376 19.372 223.4499 13.178 220.16 10.0607
+\c 218.25 8.2532 216.3908 8.0096 215.1723 8.1111
+\c 213.6705 8.2431 212.2591 9.025 211.3971 10.1927
+\c 210.8518 10.9339 210.601 12.0407 210.7391 13.0663
+\c 210.8305 13.7568 211.2996 16.0008 213.5 16.2141
+\c 215.7085 16.4171 216.2974 14.7519 216.4223 14.234
+\c 216.6823 13.1577 216.3583 12.061 215.6963 11.797
+\c 215.4891 11.7158 215.3886 11.4822 215.4709 11.2792
+\c 215.5541 11.0659 215.7928 10.9644 215.9958 11.0456
+\c 217.0519 11.4721 217.5717 12.9241 217.2082 14.4269
+\c 216.8701 15.818 215.6963 17.2193 213.4228 17.0162
+\c 211.2031 16.803 210.1664 14.894 209.9379 13.178
+\c 209.7704 11.929 210.073 10.6293 210.7462 9.7154
+\c 211.7433 8.3649 213.372 7.4612 215.1013 7.3089
+\c 215.2769 7.2886 215.4638 7.2785 215.6628 7.2785
+\c 217.0204 7.2785 218.8562 7.7151 220.7155 9.4819
+\c 224.3212 12.8937 223.2702 19.3009 223.2245 19.5751
+\c 223.1859 19.7984 222.9747 19.9406 222.7574 19.9
+\o
+\s
+\m 149.25 123.6879
+\c 151.2676 122.9304 153.5949 123.1254 155.3242 124.1875
+\c 157.0768 125.2689 158.277 127.0164 158.6141 128.9853
+\c 158.9086 130.7074 158.5166 132.39 157.5388 133.6024
+\c 156.4787 134.9133 154.8703 135.5692 153.2426 135.354
+\c 151.9733 135.1854 150.9538 134.497 150.5172 133.512
+\c 149.6409 131.535 150.7345 130.3246 151.4351 129.9591
+\c 151.6321 129.8576 151.8728 129.9337 151.9774 130.1287
+\c 152.0809 130.3267 152.0058 130.5704 151.8109 130.675
+\c 151.6728 130.7491 150.4878 131.4497 151.2564 133.185
+\c 151.5773 133.91 152.3592 134.4218 153.3502 134.5528
+\c 154.6956 134.7305 156.0278 134.1832 156.9082 133.0947
+\c 157.7429 132.063 158.0739 130.615 157.818 129.1224
+\c 157.5195 127.381 156.4563 125.8355 154.9007 124.877
+\c 153.3786 123.9397 151.3204 123.7732 149.5343 124.4434
+\c 148.1533 124.9613 146.3165 126.198 145.3945 129.1518
+\c 143.7891 134.3081 145.8666 139.3699 150.2278 140.9265
+\c 151.2036 141.2738 159.8803 144.0489 164.2953 134.4035
+\c 165.4153 131.9544 166.0804 128.8584 166.7881 125.5827
+\c 168.1833 119.0993 169.7491 111.8706 175.2739 106.7022
+\c 174.4413 107.3632 173.6767 108.0669 172.9029 108.7827
+\c 172.4825 109.1686 172.0571 109.5575 171.6184 109.9444
+\l 171.8266 109.9363
+\c 170.9939 110.6846 168.7692 112.8231 166.8054 114.1664
+\c 163.5114 116.4166 160.4449 116.6258 158.408 115.653
+\c 156.4299 114.7097 155.4277 112.6423 155.7892 110.7851
+\c 156.6899 106.1518 162.5843 107.8476 162.5843 107.8476
+\c 162.5843 107.8476 161.8553 108.2984 161.638 109.2864
+\c 161.4572 110.0997 161.5131 111.4594 162.7681 112.2554
+\c 165.3706 113.9065 169.9633 110.115 170.0933 110.0063
+\l 170.3116 109.9972
+\c 171.0153 109.4194 171.6763 108.8122 172.3536 108.1877
+\c 175.3531 105.4228 178.4531 102.5613 186.2444 101.9358
+\c 187.1999 101.8566 188.1127 101.8211 188.9829 101.8211
+\c 198.5186 101.8211 202.894 106.0797 203.093 106.2767
+\c 203.2494 106.4331 203.2494 106.69 203.093 106.8464
+\c 202.9336 107.0058 202.6798 107.0058 202.5203 106.8464
+\c 202.4706 106.7976 197.3905 101.8546 186.3083 102.739
+\c 183.9891 102.9279 182.1157 103.3087 180.5408 103.8286
+\c 180.5368 103.856 180.5317 103.8814 180.5205 103.9057
+\c 182.3401 103.2569 183.8175 103.1198 183.8175 103.1198
+\c 176.3766 104.5718 176.3167 111.8726 176.3167 111.8726
+\c 179.5934 111.4441 178.8877 116.2074 176.1705 115.3504
+\c 174.6646 114.8732 173.9792 113.1378 174.1194 111.1923
+\c 171.1767 116.8228 169.9582 124.2515 171.6601 129.9256
+\c 174.4768 139.3171 183.3383 142.4496 190.8696 141.3967
+\c 201.4369 139.9131 203.4758 131.5076 203.0138 126.7758
+\c 202.7417 123.9915 201.308 117.4097 193.8741 116.4237
+\c 186.9186 115.4946 184.2369 120.6437 183.7952 123.493
+\c 183.4632 125.6274 183.9983 127.8948 185.1894 129.4098
+\c 186.1337 130.611 187.404 131.2852 188.9718 131.4152
+\c 191.097 131.5858 192.2749 130.9268 192.9217 130.2556
+\l 192.8334 130.1662
+\c 193.5685 129.4016 193.7289 128.3608 193.2019 128.4522
+\c 192.681 128.5446 192.3104 128.9528 191.7316 129.0188
+\c 190.7832 129.1265 190.1253 128.1618 190.2329 126.9372
+\c 190.3354 125.7472 191.0127 124.6109 192.4363 124.5652
+\c 193.6924 124.5236 195.1322 125.408 194.9921 127.5038
+\c 194.8398 129.7915 193.5827 130.9471 193.5827 130.9471
+\l 193.4731 130.8323
+\c 192.6861 131.6447 191.2991 132.4184 188.9027 132.2204
+\c 187.1318 132.0711 185.628 131.2751 184.5547 129.9093
+\c 183.2276 128.2248 182.6305 125.7187 182.9951 123.3691
+\c 183.4794 120.2498 186.3957 114.6112 193.9797 115.6225
+\c 199.6183 116.3709 203.2047 120.4082 203.8191 126.6976
+\c 204.3075 131.7157 202.1558 140.629 190.9812 142.1978
+\c 183.3667 143.267 173.8239 139.9548 170.8873 130.1591
+\c 168.8687 123.4341 170.8366 114.3218 174.9094 108.3441
+\c 174.9581 108.2466 175.0068 108.1512 175.0596 108.0557
+\c 170.3289 113.0089 168.8778 119.7106 167.5771 125.7533
+\c 166.8633 129.0737 166.188 132.2103 165.0284 134.7406
+\c 160.3159 145.044 151.0016 142.0617 149.9567 141.686
+\c 145.1792 139.9812 142.8874 134.4888 144.6238 128.9122
+\c 145.4178 126.3635 147.0608 124.5084 149.25 123.6879
+\o
+\s
+\m 189.0317 41.914
+\c 195.4592 44.3002 198.9502 48.7071 199.3167 52.5657
+\c 199.6843 56.4242 197.6342 58.2621 195.8278 57.7036
+\c 193.7178 57.0639 194.3575 53.8552 194.3575 53.8552
+\c 196.2543 54.2716 197.2798 53.2155 197.3286 51.7127
+\c 197.358 50.809 197.1336 49.9561 196.3781 48.7071
+\c 194.2986 45.275 189.0317 41.914 189.0317 41.914
+\o
+\s
+\m 200.0529 75.2174
+\c 200.0529 75.2174 200.3129 73.8557 201.507 73.5643
+\c 202.7011 73.2729 204.1856 74.4051 204.0018 76.9162
+\l 203.8404 76.9416
+\c 203.7937 77.5843 203.616 78.1672 203.2697 78.6485
+\c 202.7275 79.4009 201.839 79.8984 200.8338 80.0111
+\c 199.8072 80.1289 198.806 79.7207 198.15 78.9267
+\c 197.3458 77.9529 197.1671 76.5709 197.6433 75.0356
+\c 197.9378 74.0964 198.5328 72.7794 199.2233 71.2543
+\c 199.597 70.4257 199.994 69.5474 200.3809 68.6467
+\c 196.5406 73.2374 190.3436 73.7227 187.9299 73.7227
+\c 182.0589 73.7227 177.6134 69.9393 176.3309 63.857
+\c 175.5582 60.1914 176.4112 56.2008 178.4988 53.6826
+\c 180.1011 51.7533 182.3452 50.7684 184.9406 50.809
+\c 189.4216 50.9106 191.2645 53.642 192.0251 55.9267
+\l 192.1794 55.8861
+\c 193.2243 58.6581 192.8486 61.2982 191.8342 62.6385
+\c 190.637 64.2226 188.1076 64.5983 186.3479 63.2478
+\c 184.5882 61.9074 184.9213 59.3892 185.9702 58.3941
+\c 187.0811 57.3482 188.8915 57.6123 189.5922 58.9831
+\c 190.2908 60.3539 189.6409 61.9785 189.6409 61.9785
+\c 189.8897 62.009 190.9975 62.0699 191.4219 60.3132
+\c 191.8464 58.5464 191.1234 56.1805 191.1234 56.1805
+\l 191.2747 56.1399
+\c 190.5964 54.0989 188.9504 51.7026 184.9233 51.6213
+\c 182.598 51.5503 180.5601 52.4641 179.1213 54.2005
+\c 177.1859 56.5359 176.4 60.2625 177.1219 63.6844
+\c 177.8469 67.1287 180.0047 70.7425 183.9516 72.2209
+\c 183.0824 71.8138 182.5594 71.4482 182.5594 71.4482
+\c 184.3628 72.5276 187.0831 72.3895 187.9299 70.379
+\c 187.9299 70.379 187.733 72.9673 190.4106 72.6139
+\c 190.6218 72.6007 190.9965 72.5987 191.3011 72.6159
+\c 195.8126 71.8249 202.2959 69.0265 202.7701 59.5212
+\c 203.2971 48.9813 196.8209 41.7617 185.8697 40.6651
+\c 182.2376 40.2995 179.0543 40.6955 176.3157 41.5688
+\c 177.5088 41.2845 178.5912 41.3759 179.6513 41.8937
+\c 182.3086 43.2036 182.5747 46.5341 180.7673 47.6105
+\c 178.4968 48.9508 176.7259 46.3209 176.7259 46.3209
+\c 177.8043 46.2092 178.0236 45.3969 177.9454 44.808
+\c 177.8896 44.3916 177.6449 44.1175 177.6449 44.1175
+\c 175.6354 41.7516 171.9606 43.691 171.9606 43.691
+\c 172.7699 43.1528 173.5213 42.7162 174.227 42.3608
+\c 169.8486 44.3002 166.8562 47.4988 165.333 50.545
+\c 162.498 56.211 162.3985 65.8574 169.0027 73.2191
+\c 167.6035 71.2035 166.4429 68.5756 166.2215 65.2684
+\c 166.0144 62.1714 166.7343 59.5923 168.1975 58.1809
+\c 168.9418 57.4701 169.8445 57.0944 170.8274 57.0944
+\c 170.9706 57.0944 171.1148 57.1045 171.26 57.1249
+\c 173.4553 57.3584 174.5154 59.1252 174.4291 60.7499
+\c 174.3468 62.273 173.3426 63.3493 171.984 63.3493
+\c 171.2376 63.3493 170.6284 63.1056 170.1725 62.6385
+\c 169.3043 61.7348 169.3419 60.3234 169.3429 60.2625
+\c 169.35 60.0391 169.55 59.8969 169.7612 59.8766
+\c 169.9846 59.8868 170.1583 60.0695 170.1512 60.2929
+\c 170.1491 60.3031 170.1309 61.4302 170.7523 62.0699
+\c 171.0559 62.3847 171.458 62.537 171.984 62.537
+\c 173.0471 62.537 173.5741 61.6231 173.6218 60.7092
+\c 173.6868 59.5009 172.9476 58.12 171.1727 57.927
+\c 170.2578 57.8255 169.4414 58.1098 168.758 58.7698
+\c 167.4857 59.9883 166.8409 62.3948 167.0278 65.2075
+\c 167.4857 72.0717 172.183 75.8642 174.2453 77.2076
+\c 173.1517 75.4174 174.4321 72.5763 176.9838 72.8444
+\c 179.3873 73.0952 179.4817 75.7078 179.4817 75.7078
+\c 178.0581 75.2113 176.9107 76.0653 177.2773 77.7275
+\c 177.8804 80.4498 184.6238 80.8499 184.6238 80.8499
+\c 178.9304 81.585 174.7063 78.2768 169.3805 77.5427
+\c 166.2662 77.1142 167.7274 80.1147 167.7274 80.1147
+\c 165.5026 81.1322 163.3134 79.6964 163.5043 77.3599
+\c 163.6962 74.9727 166.4409 74.7889 168.0939 75.1555
+\c 168.6981 75.2895 169.7166 75.651 170.7685 76.0531
+\c 161.5506 68.2527 161.3516 56.6984 164.6101 50.1795
+\c 165.0396 49.3265 165.5889 48.4533 166.2368 47.6003
+\c 165.9656 47.844 165.7778 47.976 165.7778 47.976
+\c 166.8338 46.4834 166.055 45.2852 165.135 44.9907
+\c 164.2567 44.7064 163.1357 45.0313 163.1357 45.0313
+\c 162.7326 42.2187 164.1816 40.8479 165.6478 40.9088
+\c 166.8541 40.9494 168.1274 41.7922 168.2787 43.3864
+\c 168.3722 44.3916 168.029 45.3055 167.5669 46.0468
+\c 170.8782 42.5639 176.1106 39.7208 183.186 39.7208
+\c 184.0775 39.7208 185.0005 39.7614 185.9499 39.8528
+\c 197.3732 41.0002 204.1277 48.5548 203.5764 59.5618
+\c 203.554 60.0289 203.5144 60.4757 203.4637 60.9022
+\c 203.3499 64.0804 201.4704 68.2446 199.9595 71.5873
+\c 199.2812 73.0871 198.6953 74.3848 198.4171 75.2763
+\c 198.0221 76.5425 198.149 77.6554 198.7735 78.4139
+\c 199.2548 78.9968 199.992 79.2983 200.7424 79.2069
+\c 201.5242 79.1206 202.2056 78.7449 202.6138 78.1763
+\c 202.8432 77.8585 202.9793 77.4848 203.0331 77.0644
+\l 202.9001 77.0827
+\c 202.9001 77.0827 203.0433 76.0206 202.4868 75.2174
+\c 201.9355 74.4213 200.6794 74.5127 200.0529 75.2174
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian61.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian61.pgf
new file mode 100644
index 0000000000..f8c57e312f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian61.pgf
@@ -0,0 +1,341 @@
+\r 0 0 205 205
+\i
+\m 0 3.8329
+\c 5.7227 -3.3031 24.4446 -0.4871 27.0718 12.3289
+\c 29.8104 25.7049 21.9571 41.4969 13.8899 56.0089
+\c 5.8181 70.5049 -1.0414 84.0729 8.4398 105.3849
+\c 9.6181 108.0409 10.9571 110.4889 12.4181 112.7449
+\c 14.0992 108.6809 16.8586 105.2409 20.2414 102.8889
+\c 16.9946 96.4569 16.1539 89.4649 16.7149 83.5289
+\c 18.0539 69.4329 24.3963 62.9049 36.2032 52.9369
+\c 48.0131 42.9849 46.2181 24.0089 46.2181 24.0089
+\c 49.2032 28.3129 52.968 30.8249 56.5883 32.2809
+\c 57.4227 28.7609 57.3054 25.0649 55.1328 22.0569
+\c 50.5008 15.6409 55.5306 10.6649 59.2718 13.8489
+\c 59.2718 13.8489 64.9181 10.9529 65.9712 15.5449
+\c 66.8048 19.1769 61.3742 22.6969 59.3662 29.4809
+\c 59.0821 30.4569 58.8102 31.6249 58.4446 32.9529
+\c 64.304 34.8089 69.329 34.1049 69.329 34.1049
+\c 72.3131 28.5529 77.8086 27.2569 78.8 32.4569
+\c 79.8899 38.1689 69.6648 36.2489 69.6648 36.2489
+\c 67.3477 39.0329 65.9523 42.3929 65.1243 45.6889
+\c 66.9821 46.0729 68.5461 46.5369 69.8102 46.8249
+\c 76.7211 48.3289 82.419 45.2729 85.2126 47.7529
+\c 88.7295 50.8889 83.467 54.4409 83.467 54.4409
+\c 84.4494 59.2409 77.6634 61.2569 74.2742 54.1049
+\c 72.4883 50.3449 68.704 48.4409 64.704 47.5929
+\c 63.5054 53.8169 64.1618 59.2889 64.1618 59.2889
+\c 64.1618 59.2889 55.0258 50.4089 38.3899 55.9769
+\c 24.0603 60.7609 12.4072 82.0569 21.5539 101.5289
+\c 21.6195 101.6729 21.693 101.7849 21.7571 101.9289
+\c 23.7821 100.7609 25.9789 99.9609 28.2672 99.6089
+\c 37.1306 98.2649 45.1696 103.6569 45.2899 112.5369
+\c 45.3195 114.8089 44.8602 116.6649 44.0883 118.1209
+\c 51.8648 120.2217 58.7493 120.3065 60.1306 120.3001
+\c 61.2789 118.7273 62.5634 117.1769 64.0149 115.6569
+\c 70.3851 108.9689 77.443 105.0169 83.4798 102.6649
+\c 83.7214 95.3049 81.3454 87.6089 74.8962 82.7289
+\c 63.7541 74.3129 48.5398 81.5609 47.729 89.5449
+\c 46.9213 97.5129 50.9258 99.2889 50.9258 99.2889
+\c 49.332 94.7289 52.0477 91.6249 55.4165 91.5769
+\c 58.7851 91.5289 62.2072 95.4649 59.8149 99.7849
+\c 56.7618 105.3049 45.4774 103.9609 45.9227 91.7049
+\c 46.3664 79.4489 65.1603 70.9209 77.6414 82.0889
+\c 83.3166 87.1609 85.9439 94.3609 85.8031 101.8329
+\c 92.9071 99.4169 98.0895 99.2569 98.0895 99.2569
+\c 98.3999 95.9609 101.1631 93.3529 104.5391 93.3529
+\c 108.0927 93.3529 110.9711 96.2329 110.9711 99.7849
+\c 110.9711 103.3369 108.0927 106.2169 104.5391 106.2169
+\c 104.5391 106.2169 104.4511 111.4009 102.1439 118.5369
+\c 109.5983 118.2969 116.8463 120.8249 121.9967 126.4313
+\c 133.3231 138.7609 125.0559 157.6713 112.8095 158.2809
+\c 100.5599 158.8937 99.0639 147.6281 104.5391 144.5017
+\c 108.8271 142.0505 112.8095 145.4169 112.8095 148.7881
+\c 112.8095 152.1561 109.7439 154.9129 105.1519 153.3817
+\c 105.1519 153.3817 106.9887 157.3625 114.9535 156.4441
+\c 122.9151 155.5257 129.9583 140.2137 121.3839 129.1881
+\c 116.4175 122.8089 108.6831 120.5337 101.3279 120.8777
+\c 99.0639 126.9449 95.2047 134.0569 88.6127 140.5193
+\c 86.9679 142.1305 85.2926 143.5465 83.611 144.8089
+\c 83.7486 147.4873 84.283 153.7289 86.3231 160.5321
+\c 87.7935 159.7065 89.6639 159.2009 91.9823 159.2009
+\c 100.8639 159.2009 106.3775 167.1625 105.1503 176.0425
+\c 104.8351 178.3369 104.0607 180.5433 102.9279 182.5849
+\c 103.0591 182.6473 103.1823 182.7209 103.3151 182.7817
+\c 122.9151 191.6601 144.0447 179.7193 148.6399 165.3257
+\c 153.9727 148.6121 144.9631 139.6009 144.9631 139.6009
+\c 144.9631 139.6009 150.4511 140.1817 156.6671 138.8985
+\c 155.7647 134.9097 153.8079 131.1529 150.0159 129.4169
+\c 142.8191 126.1273 144.7327 119.3097 149.5583 120.2281
+\c 149.5583 120.2281 153.0335 114.9209 156.2191 118.3929
+\c 158.7455 121.1497 155.7583 126.8905 157.3679 133.7833
+\c 157.6607 135.0409 158.1471 136.5977 158.5599 138.4521
+\c 161.8383 137.5753 165.1823 136.1369 167.9327 133.7833
+\c 167.9327 133.7833 165.8767 123.5833 171.6063 124.5945
+\c 176.8143 125.5145 175.5871 131.0249 170.0767 134.0905
+\c 170.0767 134.0905 169.4511 139.1193 171.3839 144.9561
+\c 172.7039 144.5689 173.8783 144.2841 174.8351 143.9849
+\c 181.5951 141.8873 185.0383 136.4057 188.6927 137.1913
+\c 193.3007 138.1833 190.4767 143.8681 190.4767 143.8681
+\c 193.7087 147.5625 188.7967 152.6633 182.3199 148.1161
+\c 179.2799 145.9881 175.5967 145.9209 172.0783 146.8025
+\c 173.5903 150.4025 176.1551 154.1337 180.4863 157.0569
+\c 180.4863 157.0569 161.5023 155.5257 151.7023 167.4681
+\c 141.9023 179.4121 135.4687 185.8441 121.3839 187.3753
+\c 115.3535 188.0281 108.3071 187.4313 101.8319 184.3225
+\c 99.5215 187.6409 96.1919 190.3689 92.2351 192.0713
+\c 94.5087 193.5033 96.9743 194.8057 99.6415 195.9497
+\c 121.0783 205.1369 134.5487 198.0905 148.9439 189.8249
+\c 163.3375 181.5561 179.0159 173.4873 192.4303 176.0425
+\c 205.2911 178.4937 208.3535 197.1721 201.3135 202.9913
+\c 201.3135 202.9913 206.5151 185.7401 195.7999 180.0249
+\c 186.6111 175.1257 172.8319 182.7817 164.5631 186.7625
+\c 156.2943 190.7417 123.2191 217.0777 89.8399 193.1929
+\c 89.7647 193.1369 89.6911 193.0825 89.6143 193.0281
+\c 88.4031 193.3833 87.1503 193.6505 85.8591 193.8041
+\c 75.7523 195.0313 65.9509 190.1273 59.8274 179.1033
+\c 59.8258 179.0969 59.8195 179.0905 59.8165 179.0873
+\c 60.2016 183.4553 60.007 190.6489 55.8461 196.5625
+\c 50.029 204.8297 37.9509 202.4025 29.5104 197.4793
+\c 22.1602 193.1929 15.1181 192.2713 15.1181 192.2713
+\c 15.1181 192.2713 16.3414 196.8681 12.9726 201.7689
+\c 9.7726 206.4217 3.4774 205.7497 1.3352 201.4601
+\c 1.3352 201.4601 -2.493 191.4281 13.2712 189.8569
+\c 13.2712 189.8569 12.2571 182.8249 7.869 175.5337
+\c 2.832 167.1593 0.2398 155.1193 8.4258 149.1881
+\c 14.2837 144.9433 21.4774 144.6521 25.8509 144.9769
+\c 25.843 144.9753 25.8336 144.9689 25.8274 144.9657
+\c 14.5432 139.3353 9.6851 129.2633 10.7712 119.1417
+\c 10.9102 117.8489 11.1571 116.5849 11.4978 115.3689
+\c 11.4414 115.2889 11.3837 115.2249 11.329 115.1609
+\c -13.0131 82.1049 12.8672 48.6649 16.7344 40.3449
+\c 20.6016 32.0249 28.0672 18.1369 23.043 9.0169
+\c 17.1805 -1.6071 0 3.8329 0 3.8329
+\o
+\m 179.5871 144.2153
+\c 179.5871 144.2153 185.7951 148.7465 187.7503 147.2425
+\c 189.7087 145.7369 187.6303 143.4073 184.8991 143.5897
+\c 184.8991 143.5897 190.4767 142.8041 188.6623 140.3193
+\c 186.8495 137.8313 181.6991 142.9785 179.5871 144.2153
+\o
+\m 153.5375 120.0009
+\c 150.4751 119.6953 152.6175 124.9017 152.6175 124.9017
+\c 151.3919 122.4537 148.3327 121.8377 148.0239 124.2873
+\c 147.7183 126.7401 154.7631 129.8009 154.7631 129.8009
+\c 154.7631 127.3497 156.5999 120.3065 153.5375 120.0009
+\o
+\m 169.1551 132.8633
+\c 174.3615 130.4121 173.4495 126.4745 171.2991 126.7369
+\c 168.1599 127.1225 169.1551 132.8633 169.1551 132.8633
+\o
+\m 158.1327 152.8249
+\c 162.1439 148.6025 166.2607 146.6425 169.6671 145.4905
+\c 167.7039 139.8409 168.2367 135.6217 168.2367 135.6217
+\c 164.8479 137.9433 161.6719 139.3769 158.9135 140.2569
+\c 159.4799 143.6169 159.6159 147.8009 158.1327 152.8249
+\o
+\m 155.5951 159.0905
+\c 154.7855 160.6665 153.8079 162.3113 152.6511 164.0153
+\c 152.5647 164.1721 152.4847 164.3257 152.4031 164.4761
+\c 162.5327 154.6553 175.0527 154.9129 175.0527 154.9129
+\c 172.8863 152.3145 171.3983 149.7161 170.3695 147.3033
+\c 165.8191 148.8441 161.7839 151.7273 160.1263 153.4057
+\c 158.4367 155.1161 156.9119 157.1193 155.5951 159.0905
+\o
+\m 151.3951 161.3433
+\l 150.8511 163.7833
+\c 150.9615 163.6105 151.0671 163.4441 151.1775 163.2601
+\c 152.0783 161.3753 153.0175 159.6905 153.9839 158.1817
+\c 155.0511 156.0025 156.0399 153.6153 156.6783 151.2377
+\c 157.2223 149.1929 157.6383 145.0153 157.0159 140.7881
+\c 152.1247 141.9929 148.9439 141.4377 148.9439 141.4377
+\c 154.1503 151.8505 151.3951 161.3433 151.3951 161.3433
+\o
+\m 104.2319 149.0937
+\c 104.2319 150.9561 105.7439 152.4617 107.6015 152.4617
+\c 109.4639 152.4617 110.9727 150.9561 110.9727 149.0937
+\c 110.9727 147.2345 109.4639 145.7257 107.6015 145.7257
+\c 105.7439 145.7257 104.2319 147.2345 104.2319 149.0937
+\o
+\m 51.8086 96.8409
+\c 51.837 98.6969 53.3648 100.1849 55.2258 100.1529
+\c 57.0883 100.1369 58.5726 98.6009 58.5491 96.7449
+\c 58.5195 94.8729 56.993 93.3849 55.1328 93.4169
+\c 53.2742 93.4489 51.7851 94.9689 51.8086 96.8409
+\o
+\m 73.8258 49.3689
+\c 73.8258 49.3689 76.9837 56.3609 79.429 56.0249
+\c 81.8734 55.6889 81.219 52.6329 78.7509 51.4489
+\c 78.7509 51.4489 83.9902 53.5129 83.6414 50.4569
+\c 83.2894 47.4009 76.2744 49.3209 73.8258 49.3689
+\o
+\m 70.5664 35.0169
+\c 70.5664 35.0169 76.3227 35.9289 76.6602 32.7929
+\c 76.893 30.6329 72.9461 29.7689 70.5664 35.0169
+\o
+\m 62.8104 47.2569
+\c 58.5726 46.6969 54.3992 47.1769 52.3648 47.7369
+\c 49.9962 48.4089 47.6211 49.4329 45.4602 50.5369
+\c 43.9634 51.5129 42.2899 52.4889 40.4165 53.4009
+\c 40.2368 53.5289 40.0712 53.6249 39.9008 53.7369
+\l 42.332 53.1609
+\c 42.332 53.1609 51.7851 50.2809 62.2672 55.3369
+\c 62.2672 55.3369 61.6688 52.1689 62.8104 47.2569
+\o
+\m 59.0688 24.7449
+\c 60.2806 22.6169 65.3539 17.4009 62.8414 15.6089
+\c 60.332 13.8329 59.6258 19.4169 59.6258 19.4169
+\c 59.7712 16.6809 57.4104 14.6489 55.9344 16.6169
+\c 54.4555 18.6009 59.0688 24.7449 59.0688 24.7449
+\o
+\m 50.7555 46.3129
+\c 55.7618 44.7609 59.9461 44.8409 63.3181 45.3529
+\c 64.1555 42.5849 65.5446 39.4009 67.8243 35.9769
+\c 67.8243 35.9769 63.6086 36.5689 57.929 34.6809
+\c 56.8288 38.1049 54.9211 42.2489 50.7555 46.3129
+\o
+\m 39.1851 52.2009
+\c 39.3352 52.1209 39.4883 52.0249 39.6461 51.9449
+\c 41.3352 50.7609 42.9635 49.7689 44.5243 48.9369
+\c 46.4821 47.5929 48.4634 46.0409 50.1491 44.3289
+\c 51.8032 42.6489 54.6336 38.5689 56.1086 33.9929
+\c 53.6838 33.0009 51.0672 31.5609 48.4382 29.4329
+\c 48.4382 29.4329 48.8672 41.9449 39.1851 52.2009
+\o
+\m 13.8915 191.9689
+\c 5.9306 192.2713 2.865 196.8681 5.0102 199.9289
+\c 6.7397 202.4009 9.9086 202.3801 12.0523 199.9289
+\c 14.1992 197.4793 13.8915 191.9689 13.8915 191.9689
+\o
+\m 56.7821 172.5097
+\c 53.1712 163.1305 52.1698 153.8409 52.1698 153.8409
+\c 52.1698 153.8409 43.9195 152.8345 32.1712 147.8809
+\c 25.9541 147.0217 15.4946 146.4937 9.6821 151.3129
+\c 3.3712 156.5449 4.8915 163.5817 7.7726 169.9609
+\c 12.8867 174.0345 17.5805 172.2281 19.4523 171.3929
+\c 24.5883 169.1065 22.704 162.7721 22.704 162.7721
+\c 22.1509 167.3753 16.0523 169.2937 13.2712 167.4985
+\c 10.4915 165.6937 9.7789 158.3577 16.1962 157.3497
+\c 22.6133 156.3417 24.2 160.3033 24.8414 162.4377
+\c 25.4838 164.5721 26.1758 170.3817 20.0883 173.2217
+\c 15.237 175.4873 11.0915 173.8441 9.0978 172.7065
+\c 10.1698 174.7993 11.2883 176.7785 12.1978 178.5353
+\c 15.3446 184.6217 15.1181 190.1273 15.1181 190.1273
+\c 15.1181 190.1273 20.3229 190.1273 26.4477 193.1929
+\c 28.2181 194.0809 30.2133 195.1721 32.3211 196.2121
+\c 31.1539 194.2345 29.4571 190.1129 31.6555 185.2281
+\c 34.4102 179.1033 40.2306 179.7193 42.3726 180.3273
+\c 44.5165 180.9417 48.4978 182.4729 47.5789 188.9033
+\c 46.6602 195.3353 39.3102 194.7257 37.4718 191.9689
+\c 35.6352 189.2105 37.4718 183.0873 42.0664 182.4729
+\c 42.0664 182.4729 35.7054 180.6745 33.4915 185.8441
+\c 32.6851 187.7241 30.9376 192.4409 35.0867 197.5033
+\c 41.5024 200.2937 48.5586 201.7193 53.7022 195.3369
+\c 58.5166 189.3657 57.7493 178.6745 56.7821 172.5097
+\o
+\m 39.2509 187.0025
+\c 38.5851 188.9481 39.4165 190.9913 41.1102 191.5705
+\c 42.8 192.1433 44.707 191.0377 45.3712 189.0905
+\c 46.0368 187.1433 45.2032 185.1001 43.5131 184.5241
+\c 41.8227 183.9465 39.9131 185.0553 39.2509 187.0025
+\o
+\m 16.0414 159.5593
+\c 14.1022 160.2505 13.0211 162.1737 13.6195 163.8537
+\c 14.2211 165.5369 16.2774 166.3433 18.2117 165.6505
+\c 20.1509 164.9625 21.2352 163.0377 20.632 161.3513
+\c 20.032 159.6713 17.9758 158.8665 16.0414 159.5593
+\o
+\m 85.8687 190.1385
+\c 70.9374 177.8281 67.2195 164.1305 68.6306 152.3817
+\c 60.5992 154.7929 54.6211 154.3001 54.6211 154.3001
+\c 54.6211 154.3001 55.8461 169.6121 64.1149 181.2489
+\c 70.4306 190.1385 79.4478 191.1673 85.8687 190.1385
+\o
+\m 88.9199 162.5657
+\c 88.9199 162.5657 95.6591 163.7913 94.1279 169.6121
+\c 93.7375 171.0905 92.9935 172.2073 92.0575 172.9849
+\c 94.2047 176.1433 96.8943 178.9753 100.2687 181.1161
+\c 101.9679 178.3385 102.8223 174.8345 101.7823 170.5305
+\c 99.6399 161.6489 91.9823 160.4233 88.9199 162.5657
+\o
+\m 84.939 168.3881
+\c 84.939 170.4153 86.5855 172.0633 88.6127 172.0633
+\c 90.6431 172.0633 92.2895 170.4153 92.2895 168.3881
+\c 92.2895 166.3577 90.6431 164.7113 88.6127 164.7113
+\c 86.5855 164.7113 84.939 166.3577 84.939 168.3881
+\o
+\m 81.7582 146.1321
+\c 78.0899 148.6217 74.4382 150.3689 71.0571 151.5849
+\c 70.9821 152.1785 70.9086 152.7689 70.8523 153.3817
+\c 69.8648 164.4905 75.2523 179.3769 88.6031 189.5449
+\c 89.9615 189.1689 91.1183 188.7241 91.9823 188.2921
+\c 94.2351 187.1657 96.9823 185.3673 99.0671 182.8153
+\c 95.7039 180.7449 92.5791 177.9049 89.9279 174.0937
+\c 87.4079 174.7897 84.5054 173.7721 83.1022 171.1433
+\c 81.6318 168.3897 81.9422 164.6537 84.3262 162.0969
+\c 82.9758 157.5593 82.0782 152.2697 81.7582 146.1321
+\o
+\m 98.2783 121.1673
+\c 94.0511 121.7817 90.1071 123.2281 87.0831 125.2057
+\c 79.5211 130.1625 73.9696 137.1273 71.7275 147.5929
+\c 77.5461 145.1849 83.7886 141.3721 88.9199 135.3145
+\c 93.3359 130.1033 96.2927 125.3273 98.2783 121.1673
+\o
+\m 100.5599 99.7849
+\c 100.5935 100.2649 100.6751 100.6809 100.7855 101.0489
+\c 100.8095 101.1289 100.8239 101.2089 100.8559 101.2889
+\c 100.8671 101.3049 100.8783 101.3369 100.8895 101.3689
+\c 101.5023 102.7769 102.9055 103.7689 104.5391 103.7689
+\c 106.7375 103.7689 108.5199 101.9929 108.5199 99.7849
+\c 108.5199 97.5929 106.7375 95.8009 104.5391 95.8009
+\c 102.3423 95.8009 100.5599 97.5929 100.5599 99.7849
+\o
+\m 76.9837 123.4377
+\c 72.7344 128.0441 65.2866 132.9657 56.3117 135.0809
+\c 53.2 144.1529 53.2414 151.6969 53.2414 151.6969
+\c 53.2414 151.6969 60.4978 151.6665 69.2838 148.5273
+\c 71.2688 139.5097 76.0992 131.9753 80.6526 127.6569
+\c 85.9519 122.6281 92.6399 119.5929 99.3487 118.7625
+\c 101.9279 112.5049 102.2303 107.9289 102.1871 105.7689
+\c 100.3535 105.0489 98.9359 103.5129 98.3727 101.6089
+\c 96.1375 101.6089 91.6575 102.0409 85.6222 104.6329
+\c 84.8798 111.3369 81.939 118.0729 76.9837 123.4377
+\o
+\m 57.2211 132.6249
+\c 67.6243 130.2329 74.504 124.5929 79.3446 116.9689
+\c 81.2814 113.9289 82.675 109.9609 83.2302 105.7369
+\c 79.0978 107.7689 74.3648 110.7929 69.2149 115.2729
+\c 63.2883 120.4441 59.5664 126.7337 57.2211 132.6249
+\o
+\m 23.2602 104.5529
+\c 25.4571 107.9289 28.3211 110.5849 31.4978 112.6649
+\c 32.2634 111.7209 33.3726 110.9529 34.8491 110.5369
+\c 40.6446 108.9369 41.9634 115.6569 41.9634 115.6569
+\c 44.0672 112.5529 42.7344 104.9209 33.8258 102.9049
+\c 29.504 101.9129 26.0133 102.8249 23.2602 104.5529
+\o
+\m 36.0978 112.3609
+\c 34.0688 112.3929 32.4461 114.0569 32.4758 116.0889
+\c 32.504 118.1209 34.1698 119.7385 36.2 119.7113
+\c 38.2288 119.6809 39.8509 118.0089 39.8226 115.9929
+\c 39.7946 113.9609 38.1274 112.3289 36.0978 112.3609
+\o
+\m 14.993 116.3289
+\c 25.3446 129.5465 40.3008 134.7273 51.3963 133.5881
+\c 52.1149 133.5145 52.8086 133.4217 53.4992 133.3225
+\c 54.5992 129.9337 56.193 126.3225 58.4851 122.7209
+\c 52.332 122.5193 47.0102 121.6633 42.4258 120.3049
+\c 39.9022 122.6601 36.2149 123.0041 33.4688 121.5865
+\c 30.768 120.1929 29.729 117.2249 30.4718 114.6649
+\c 26.7477 112.0409 23.904 108.9369 21.7915 105.6089
+\c 19.1523 107.7529 17.3274 110.6169 16.1992 112.9369
+\c 15.7789 113.8169 15.3509 114.9689 14.993 116.3289
+\o
+\m 23.6258 140.7097
+\c 35.3758 148.8153 51.2539 151.0057 51.2539 151.0057
+\c 51.2539 151.0057 50.469 144.3929 52.7821 135.7529
+\c 40.9757 137.4409 27.0774 133.9897 14.4384 119.0793
+\c 13.4946 125.5145 14.6493 134.5161 23.6258 140.7097
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian62.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian62.pgf
new file mode 100644
index 0000000000..29372b09f3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian62.pgf
@@ -0,0 +1,341 @@
+\r 0 0 205 205
+\i
+\m 181.9641 9.0169
+\c 176.9385 18.1369 184.4041 32.0249 188.2697 40.3449
+\c 192.1385 48.6649 218.0201 82.1049 193.6761 115.1609
+\c 193.6233 115.2249 193.5641 115.2889 193.5081 115.3689
+\c 193.8489 116.5849 194.0953 117.8489 194.2345 119.1417
+\c 195.3193 129.2633 190.4633 139.3353 179.1801 144.9657
+\c 179.1737 144.9689 179.1641 144.9753 179.1545 144.9769
+\c 183.5289 144.6521 190.7225 144.9433 196.5801 149.1881
+\c 204.7657 155.1193 202.1737 167.1593 197.1353 175.5337
+\c 192.7481 182.8249 191.7353 189.8569 191.7353 189.8569
+\c 207.4985 191.4281 203.6697 201.4601 203.6697 201.4601
+\c 201.5289 205.7497 195.2329 206.4217 192.0329 201.7689
+\c 188.6633 196.8681 189.8889 192.2713 189.8889 192.2713
+\c 189.8889 192.2713 182.8457 193.1929 175.4953 197.4793
+\c 167.0537 202.4025 154.9769 204.8297 149.1593 196.5625
+\c 144.9993 190.6489 144.8025 183.4553 145.1897 179.0873
+\c 145.1865 179.0905 145.1801 179.0969 145.1785 179.1033
+\c 139.0553 190.1273 129.2537 195.0313 119.1481 193.8041
+\c 117.8553 193.6505 116.6009 193.3833 115.3913 193.0281
+\c 115.3145 193.0825 115.2409 193.1369 115.1657 193.1929
+\c 81.7865 217.0777 48.7113 190.7417 40.4425 186.7625
+\c 32.1737 182.7817 18.3945 175.1257 9.2073 180.0249
+\c -1.5095 185.7401 3.6921 202.9913 3.6921 202.9913
+\c -3.3479 197.1721 -0.2855 178.4937 12.5753 176.0425
+\c 25.9897 173.4873 41.6665 181.5561 56.0617 189.8249
+\c 70.4569 198.0905 83.9289 205.1369 105.3641 195.9497
+\c 108.0313 194.8057 110.4969 193.5033 112.7705 192.0713
+\c 108.8137 190.3689 105.4841 187.6409 103.1737 184.3225
+\c 96.6985 187.4313 89.6521 188.0281 83.6217 187.3753
+\c 69.5353 185.8441 63.1033 179.4121 53.3033 167.4681
+\c 43.5033 155.5257 24.5193 157.0569 24.5193 157.0569
+\c 28.8505 154.1337 31.4169 150.4025 32.9289 146.8025
+\c 29.4105 145.9209 25.7257 145.9881 22.6873 148.1161
+\c 16.2105 152.6633 11.2969 147.5625 14.5305 143.8681
+\c 14.5305 143.8681 11.7049 138.1833 16.3129 137.1913
+\c 19.9673 136.4057 23.4121 141.8873 30.1705 143.9849
+\c 31.1289 144.2841 32.3017 144.5689 33.6217 144.9561
+\c 35.5545 139.1193 34.9305 134.0905 34.9305 134.0905
+\c 29.4201 131.0249 28.1913 125.5145 33.3993 124.5945
+\c 39.1289 123.5833 37.0713 133.7833 37.0713 133.7833
+\c 39.8233 136.1369 43.1673 137.5753 46.4457 138.4521
+\c 46.8585 136.5977 47.3465 135.0409 47.6377 133.7833
+\c 49.2473 126.8905 46.2617 121.1497 48.7865 118.3929
+\c 51.9721 114.9209 55.4473 120.2281 55.4473 120.2281
+\c 60.2713 119.3097 62.1865 126.1273 54.9897 129.4169
+\c 51.1977 131.1529 49.2409 134.9097 48.3401 138.8985
+\c 54.5545 140.1817 60.0425 139.6009 60.0425 139.6009
+\c 60.0425 139.6009 51.0329 148.6121 56.3657 165.3257
+\c 60.9609 179.7193 82.0905 191.6601 101.6905 182.7817
+\c 101.8233 182.7209 101.9481 182.6473 102.0793 182.5849
+\c 100.9465 180.5433 100.1705 178.3369 99.8553 176.0425
+\c 98.6281 167.1625 104.1433 159.2009 113.0233 159.2009
+\c 115.3433 159.2009 117.2137 159.7065 118.6841 160.5321
+\c 120.7225 153.7289 121.2569 147.4873 121.3961 144.8089
+\c 119.7129 143.5465 118.0377 142.1305 116.3929 140.5193
+\c 109.7993 134.0569 105.9433 126.9449 103.6793 120.8777
+\c 96.3225 120.5337 88.5881 122.8089 83.6217 129.1881
+\c 75.0473 140.2137 82.0905 155.5257 90.0521 156.4441
+\c 98.0169 157.3625 99.8537 153.3817 99.8537 153.3817
+\c 95.2617 154.9129 92.1977 152.1561 92.1977 148.7881
+\c 92.1977 145.4169 96.1785 142.0505 100.4665 144.5017
+\c 105.9433 147.6281 104.4457 158.8937 92.1977 158.2809
+\c 79.9513 157.6713 71.6841 138.7609 83.0105 126.4313
+\c 88.1593 120.8249 95.4089 118.2969 102.8633 118.5369
+\c 100.5545 111.4009 100.4665 106.2169 100.4665 106.2169
+\c 96.9129 106.2169 94.0345 103.3369 94.0345 99.7849
+\c 94.0345 96.2329 96.9129 93.3529 100.4665 93.3529
+\c 103.8425 93.3529 106.6041 95.9609 106.8713 99.2729
+\c 106.9161 99.2569 112.0985 99.4169 119.2009 101.8329
+\c 119.0633 94.3609 121.6889 87.1609 127.3641 82.0889
+\c 139.8457 70.9209 158.6393 79.4489 159.0841 91.7049
+\c 159.5289 103.9609 148.2441 105.3049 145.1913 99.7849
+\c 142.7993 95.4649 146.2201 91.5289 149.5897 91.5769
+\c 152.9577 91.6249 155.6745 94.7289 154.0809 99.2889
+\c 154.0809 99.2889 158.0857 97.5129 157.2777 89.5449
+\c 156.4665 81.5609 141.2521 74.3129 130.1097 82.7289
+\c 123.6617 87.6089 121.2857 95.3049 121.5257 102.6649
+\c 127.5625 105.0169 134.6201 108.9689 140.9913 115.6569
+\c 142.4425 117.1769 143.7273 118.7273 144.8761 120.3001
+\c 146.2569 120.3065 153.1417 120.2217 160.9177 118.1209
+\c 160.1465 116.6649 159.6857 114.8089 159.7161 112.5369
+\c 159.8361 103.6569 167.8761 98.2649 176.7385 99.6089
+\c 179.0265 99.9609 181.2233 100.7609 183.2473 101.9289
+\c 183.3145 101.7849 183.3849 101.6729 183.4505 101.5289
+\c 192.5977 82.0569 180.9449 60.7609 166.6169 55.9769
+\c 149.9801 50.4089 140.8441 59.2889 140.8441 59.2889
+\c 140.8441 59.2889 141.5001 53.8169 140.3017 47.5929
+\c 136.3017 48.4409 132.5177 50.3449 130.7321 54.1049
+\c 127.3433 61.2569 120.5561 59.2409 121.5401 54.4409
+\c 121.5401 54.4409 116.2777 50.8889 119.7929 47.7529
+\c 122.5865 45.2729 128.2841 48.3289 135.1961 46.8249
+\c 136.4601 46.5369 138.0233 46.0729 139.8825 45.6889
+\c 139.0537 42.3929 137.6585 39.0329 135.3417 36.2489
+\c 135.3417 36.2489 125.1161 38.1689 126.2041 32.4569
+\c 127.1977 27.2569 132.6921 28.5529 135.6777 34.1049
+\c 135.6777 34.1049 140.7017 34.8089 146.5609 32.9529
+\c 146.1961 31.6249 145.9241 30.4569 145.6393 29.4809
+\c 143.6313 22.6969 138.1993 19.1769 139.0345 15.5449
+\c 140.0873 10.9529 145.7321 13.8489 145.7321 13.8489
+\c 149.4761 10.6649 154.5049 15.6409 149.8713 22.0569
+\c 147.7001 25.0649 147.5833 28.7609 148.4169 32.2809
+\c 152.0377 30.8249 155.8009 28.3129 158.7881 24.0089
+\c 158.7881 24.0089 156.9929 42.9849 168.8009 52.9369
+\c 180.6105 62.9049 186.9513 69.4329 188.2921 83.5289
+\c 188.8505 89.4649 188.0105 96.4569 184.7641 102.8889
+\c 188.1481 105.2409 190.9081 108.6809 192.5881 112.7449
+\c 194.0473 110.4889 195.3881 108.0409 196.5673 105.3849
+\c 206.0473 84.0729 199.1881 70.5049 191.1161 56.0089
+\c 183.0489 41.4969 175.1945 25.7049 177.9321 12.3289
+\c 180.5609 -0.4871 199.2825 -3.3031 205.0041 3.8329
+\c 205.0041 3.8329 187.8265 -1.6071 181.9641 9.0169
+\o
+\m 16.3449 140.3193
+\c 14.5305 142.8041 20.1065 143.5897 20.1065 143.5897
+\c 17.3753 143.4073 15.2969 145.7369 17.2553 147.2425
+\c 19.2121 148.7465 25.4201 144.2153 25.4201 144.2153
+\c 23.3065 142.9785 18.1561 137.8313 16.3449 140.3193
+\o
+\m 50.2425 129.8009
+\c 50.2425 129.8009 57.2873 126.7401 56.9817 124.2873
+\c 56.6713 121.8377 53.6137 122.4537 52.3881 124.9017
+\c 52.3881 124.9017 54.5305 119.6953 51.4665 120.0009
+\c 48.4041 120.3065 50.2425 127.3497 50.2425 129.8009
+\o
+\m 33.7065 126.7369
+\c 31.5561 126.4745 30.6441 130.4121 35.8505 132.8633
+\c 35.8505 132.8633 36.8457 127.1225 33.7065 126.7369
+\o
+\m 46.0921 140.2569
+\c 43.3353 139.3769 40.1577 137.9433 36.7689 135.6217
+\c 36.7689 135.6217 37.3017 139.8409 35.3369 145.4905
+\c 38.7465 146.6425 42.8617 148.6025 46.8713 152.8249
+\c 45.3897 147.8009 45.5257 143.6169 46.0921 140.2569
+\o
+\m 44.8809 153.4057
+\c 43.2217 151.7273 39.1865 148.8441 34.6361 147.3033
+\c 33.6089 149.7161 32.1193 152.3145 29.9529 154.9129
+\c 29.9529 154.9129 42.4745 154.6553 52.6009 164.4761
+\c 52.5209 164.3257 52.4409 164.1721 52.3545 164.0153
+\c 51.1993 162.3113 50.2201 160.6665 49.4121 159.0905
+\c 48.0937 157.1193 46.5689 155.1161 44.8809 153.4057
+\o
+\m 56.0617 141.4377
+\c 56.0617 141.4377 52.8825 141.9929 47.9897 140.7881
+\c 47.3673 145.0153 47.7833 149.1929 48.3289 151.2377
+\c 48.9657 153.6153 49.9545 156.0025 51.0217 158.1817
+\c 51.9881 159.6905 52.9273 161.3753 53.8281 163.2601
+\c 53.9401 163.4441 54.0441 163.6105 54.1545 163.7833
+\l 53.6121 161.3433
+\c 53.6121 161.3433 50.8553 151.8505 56.0617 141.4377
+\o
+\m 97.4025 145.7257
+\c 95.5433 145.7257 94.0329 147.2345 94.0329 149.0937
+\c 94.0329 150.9561 95.5433 152.4617 97.4025 152.4617
+\c 99.2633 152.4617 100.7737 150.9561 100.7737 149.0937
+\c 100.7737 147.2345 99.2633 145.7257 97.4025 145.7257
+\o
+\m 149.8713 93.4169
+\c 148.0137 93.3849 146.4857 94.8729 146.4569 96.7449
+\c 146.4329 98.6009 147.9177 100.1369 149.7801 100.1529
+\c 151.6409 100.1849 153.1689 98.6969 153.1977 96.8409
+\c 153.2201 94.9689 151.7321 93.4489 149.8713 93.4169
+\o
+\m 121.3641 50.4569
+\c 121.0153 53.5129 126.2553 51.4489 126.2553 51.4489
+\c 123.7865 52.6329 123.1321 55.6889 125.5769 56.0249
+\c 128.0217 56.3609 131.1801 49.3689 131.1801 49.3689
+\c 128.7321 49.3209 121.7161 47.4009 121.3641 50.4569
+\o
+\m 128.3465 32.7929
+\c 128.6841 35.9289 134.4393 35.0169 134.4393 35.0169
+\c 132.0601 29.7689 128.1129 30.6329 128.3465 32.7929
+\o
+\m 142.7369 55.3369
+\c 153.2201 50.2809 162.6729 53.1609 162.6729 53.1609
+\l 165.1033 53.7369
+\c 164.9353 53.6249 164.7689 53.5289 164.5881 53.4009
+\c 162.7177 52.4889 161.0425 51.5129 159.5465 50.5369
+\c 157.3849 49.4329 155.0105 48.4089 152.6409 47.7369
+\c 150.6073 47.1769 146.4329 46.6969 142.1961 47.2569
+\c 143.3353 52.1689 142.7369 55.3369 142.7369 55.3369
+\o
+\m 149.0697 16.6169
+\c 147.5961 14.6489 145.2345 16.6809 145.3801 19.4169
+\c 145.3801 19.4169 144.6745 13.8329 142.1641 15.6089
+\c 139.6521 17.4009 144.7257 22.6169 145.9353 24.7449
+\c 145.9353 24.7449 150.5513 18.6009 149.0697 16.6169
+\o
+\m 147.0777 34.6809
+\c 141.3977 36.5689 137.1817 35.9769 137.1817 35.9769
+\c 139.4617 39.4009 140.8505 42.5849 141.6873 45.3529
+\c 145.0601 44.8409 149.2441 44.7609 154.2505 46.3129
+\c 150.0857 42.2489 148.1769 38.1049 147.0777 34.6809
+\o
+\m 156.5673 29.4329
+\c 153.9369 31.5609 151.3225 33.0009 148.8969 33.9929
+\c 150.3721 38.5689 153.2009 42.6489 154.8569 44.3289
+\c 156.5433 46.0409 158.5241 47.5929 160.4825 48.9369
+\c 162.0425 49.7689 163.6697 50.7609 165.3609 51.9449
+\c 165.5177 52.0249 165.6697 52.1209 165.8201 52.2009
+\c 156.1369 41.9449 156.5673 29.4329 156.5673 29.4329
+\o
+\m 192.9545 199.9289
+\c 195.0985 202.3801 198.2665 202.4009 199.9945 199.9289
+\c 202.1417 196.8681 199.0761 192.2713 191.1145 191.9689
+\c 191.1145 191.9689 190.8073 197.4793 192.9545 199.9289
+\o
+\m 151.3033 195.3369
+\c 156.4473 201.7193 163.5033 200.2937 169.9209 197.5033
+\c 174.0665 192.4409 172.3209 187.7241 171.5145 185.8441
+\c 169.3001 180.6745 162.9385 182.4729 162.9385 182.4729
+\c 167.5321 183.0873 169.3689 189.2105 167.5321 191.9689
+\c 165.6953 194.7257 158.3465 195.3353 157.4265 188.9033
+\c 156.5081 182.4729 160.4889 180.9417 162.6329 180.3273
+\c 164.7769 179.7193 170.5945 179.1033 173.3513 185.2281
+\c 175.5481 190.1129 173.8505 194.2345 172.6857 196.2121
+\c 174.7913 195.1721 176.7881 194.0809 178.5577 193.1929
+\c 184.6825 190.1273 189.8889 190.1273 189.8889 190.1273
+\c 189.8889 190.1273 189.6601 184.6217 192.8073 178.5353
+\c 193.7177 176.7785 194.8345 174.7993 195.9081 172.7065
+\c 193.9145 173.8441 189.7689 175.4873 184.9177 173.2217
+\c 178.8297 170.3817 179.5225 164.5721 180.1641 162.4377
+\c 180.8041 160.3033 182.3913 156.3417 188.8105 157.3497
+\c 195.2265 158.3577 194.5145 165.6937 191.7353 167.4985
+\c 188.9545 169.2937 182.8537 167.3753 182.3001 162.7721
+\c 182.3001 162.7721 180.4169 169.1065 185.5545 171.3929
+\c 187.4265 172.2281 192.1209 174.0345 197.2329 169.9609
+\c 200.1145 163.5817 201.6345 156.5449 195.3225 151.3129
+\c 189.5113 146.4937 179.0505 147.0217 172.8345 147.8809
+\c 161.0857 152.8345 152.8361 153.8409 152.8361 153.8409
+\c 152.8361 153.8409 151.8345 163.1305 148.2233 172.5097
+\c 147.2569 178.6745 146.4889 189.3657 151.3033 195.3369
+\o
+\m 161.4921 184.5241
+\c 159.8009 185.1001 158.9689 187.1433 159.6345 189.0905
+\c 160.2985 191.0377 162.2041 192.1433 163.8953 191.5705
+\c 165.5881 190.9913 166.4201 188.9481 165.7545 187.0025
+\c 165.0921 185.0553 163.1833 183.9465 161.4921 184.5241
+\o
+\m 184.3737 161.3513
+\c 183.7689 163.0377 184.8537 164.9625 186.7945 165.6505
+\c 188.7289 166.3433 190.7865 165.5369 191.3865 163.8537
+\c 191.9865 162.1737 190.9033 160.2505 188.9641 159.5593
+\c 187.0297 158.8665 184.9737 159.6713 184.3737 161.3513
+\o
+\m 140.8905 181.2489
+\c 149.1593 169.6121 150.3849 154.3001 150.3849 154.3001
+\c 150.3849 154.3001 144.4073 154.7929 136.3753 152.3817
+\c 137.7865 164.1305 134.0665 177.8281 119.1353 190.1385
+\c 125.5577 191.1673 134.5753 190.1385 140.8905 181.2489
+\o
+\m 103.2233 170.5305
+\c 102.1833 174.8345 103.0377 178.3385 104.7353 181.1161
+\c 108.1113 178.9753 110.7993 176.1433 112.9481 172.9849
+\c 112.0137 172.2073 111.2665 171.0905 110.8793 169.6121
+\c 109.3481 163.7913 116.0857 162.5657 116.0857 162.5657
+\c 113.0233 160.4233 105.3657 161.6489 103.2233 170.5305
+\o
+\m 116.3929 164.7113
+\c 114.3625 164.7113 112.7161 166.3577 112.7161 168.3881
+\c 112.7161 170.4153 114.3625 172.0633 116.3929 172.0633
+\c 118.4201 172.0633 120.0665 170.4153 120.0665 168.3881
+\c 120.0665 166.3577 118.4201 164.7113 116.3929 164.7113
+\o
+\m 120.6809 162.0969
+\c 123.0649 164.6537 123.3737 168.3897 121.9033 171.1433
+\c 120.5001 173.7721 117.5977 174.7897 115.0793 174.0937
+\c 112.4265 177.9049 109.3017 180.7449 105.9401 182.8153
+\c 108.0233 185.3673 110.7705 187.1657 113.0233 188.2921
+\c 113.8873 188.7241 115.0441 189.1689 116.4009 189.5449
+\c 129.7545 179.3769 135.1417 164.4905 134.1529 153.3817
+\c 134.0969 152.7689 134.0233 152.1785 133.9481 151.5849
+\c 130.5673 150.3689 126.9161 148.6217 123.2473 146.1321
+\c 122.9289 152.2697 122.0297 157.5593 120.6809 162.0969
+\o
+\m 116.0857 135.3145
+\c 121.2185 141.3721 127.4601 145.1849 133.2793 147.5929
+\c 131.0361 137.1273 125.4857 130.1625 117.9225 125.2057
+\c 114.8985 123.2281 110.9545 121.7817 106.7289 121.1673
+\c 108.7129 125.3273 111.6713 130.1033 116.0857 135.3145
+\o
+\m 100.4665 95.8009
+\c 98.2665 95.8009 96.4873 97.5929 96.4873 99.7849
+\c 96.4873 101.9929 98.2665 103.7689 100.4665 103.7689
+\c 102.1001 103.7689 103.5033 102.7769 104.1161 101.3689
+\c 104.1273 101.3369 104.1401 101.3049 104.1513 101.2889
+\c 104.1817 101.2089 104.1961 101.1289 104.2201 101.0489
+\c 104.3305 100.6809 104.4137 100.2649 104.4457 99.7849
+\c 104.4457 97.5929 102.6649 95.8009 100.4665 95.8009
+\o
+\m 119.3833 104.6329
+\c 113.3497 102.0409 108.8665 101.6089 106.6329 101.6089
+\c 106.0713 103.5129 104.6521 105.0489 102.8201 105.7689
+\c 102.7753 107.9289 103.0793 112.5049 105.6569 118.7625
+\c 112.3657 119.5929 119.0537 122.6281 124.3545 127.6569
+\c 128.9065 131.9753 133.7353 139.5097 135.7225 148.5273
+\c 144.5081 151.6665 151.7641 151.6969 151.7641 151.6969
+\c 151.7641 151.6969 151.8041 144.1529 148.6937 135.0809
+\c 139.7193 132.9657 132.2697 128.0441 128.0217 123.4377
+\c 123.0665 118.0729 120.1257 111.3369 119.3833 104.6329
+\o
+\m 135.7913 115.2729
+\c 130.6409 110.7929 125.9081 107.7689 121.7753 105.7369
+\c 122.3321 109.9609 123.7241 113.9289 125.6617 116.9689
+\c 130.5017 124.5929 137.3817 130.2329 147.7849 132.6249
+\c 145.4393 126.7337 141.7177 120.4441 135.7913 115.2729
+\o
+\m 171.1801 102.9049
+\c 162.2697 104.9209 160.9385 112.5529 163.0425 115.6569
+\c 163.0425 115.6569 164.3609 108.9369 170.1577 110.5369
+\c 171.6329 110.9529 172.7417 111.7209 173.5081 112.6649
+\c 176.6857 110.5849 179.5481 107.9289 181.7449 104.5529
+\c 178.9913 102.8249 175.5001 101.9129 171.1801 102.9049
+\o
+\m 165.1817 115.9929
+\c 165.1545 118.0089 166.7769 119.6809 168.8041 119.7113
+\c 170.8345 119.7385 172.5001 118.1209 172.5289 116.0889
+\c 172.5609 114.0569 170.9353 112.3929 168.9081 112.3609
+\c 166.8793 112.3289 165.2105 113.9609 165.1817 115.9929
+\o
+\m 188.8073 112.9369
+\c 187.6793 110.6169 185.8537 107.7529 183.2137 105.6089
+\c 181.1001 108.9369 178.2569 112.0409 174.5321 114.6649
+\c 175.2761 117.2249 174.2377 120.1929 171.5353 121.5865
+\c 168.7913 123.0041 165.1033 122.6601 162.5801 120.3049
+\c 157.9961 121.6633 152.6745 122.5193 146.5209 122.7209
+\c 148.8137 126.3225 150.4073 129.9337 151.5065 133.3225
+\c 152.1977 133.4217 152.8905 133.5145 153.6105 133.5881
+\c 164.7033 134.7273 179.6601 129.5465 190.0137 116.3289
+\c 189.6537 114.9689 189.2265 113.8169 188.8073 112.9369
+\o
+\m 190.5673 119.0793
+\c 177.9289 133.9897 164.0297 137.4409 152.2233 135.7529
+\c 154.5353 144.3929 153.7513 151.0057 153.7513 151.0057
+\c 153.7513 151.0057 169.6297 148.8153 181.3801 140.7097
+\c 190.3577 134.5161 191.5113 125.5145 190.5673 119.0793
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian63.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian63.pgf
new file mode 100644
index 0000000000..bb44e554f8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian63.pgf
@@ -0,0 +1,655 @@
+\r 0 0 212 212
+\i
+\m 64.1084 190.704
+\c 62.9788 194.368 57.9004 193.856 55.3662 189.76
+\c 53.3943 186.56 54.0646 182.912 54.4567 181.456
+\c 54.0113 180.176 53.3897 177.728 53.2631 173.856
+\c 53.0959 168.704 54.2537 163.472 54.6271 161.92
+\c 53.8631 161.776 53.2271 161.552 52.7591 161.328
+\l 30.7577 182.88
+\c 31.2786 183.68 31.5865 184.624 31.5865 185.648
+\c 31.5865 188.448 29.3193 190.72 26.5162 190.72
+\c 23.7148 190.72 21.4458 188.448 21.4458 185.648
+\c 21.4458 182.848 23.7148 180.576 26.5162 180.576
+\c 27.7054 180.576 28.7833 181.008 29.6474 181.68
+\l 50.8428 159.44
+\c 50.6201 158.976 50.3865 158.352 50.2287 157.584
+\c 48.6903 157.984 43.4662 159.216 38.3098 159.104
+\c 34.446 159.04 31.9927 158.448 30.7022 158.016
+\c 29.2522 158.432 25.6114 159.152 22.3897 157.216
+\c 18.2599 154.752 17.6708 149.68 21.3287 148.496
+\c 24.435 147.488 32.4442 151.376 31.482 157.12
+\c 32.8022 157.424 34.9974 157.744 38.5458 157.808
+\c 43.3927 157.904 48.5575 155.616 50.1022 154.864
+\c 50.149 154.416 50.2162 153.952 50.3412 153.456
+\c 50.4287 153.104 50.5882 152.816 50.713 152.512
+\c 50.738 150.224 50.3068 141.824 42.674 140.704
+\c 42.674 140.704 49.8505 139.488 53.7927 149.088
+\c 56.2708 147.792 59.5882 147.744 62.5068 148.624
+\c 63.2428 147.872 64.377 146.512 64.377 145.312
+\c 64.377 143.536 62.2522 141.648 62.2522 141.648
+\c 62.2522 141.648 67.5052 142.752 76.081 135.776
+\c 69.2217 144.448 70.3897 149.68 70.3897 149.68
+\c 70.3897 149.68 68.474 147.584 66.7054 147.6
+\c 65.5068 147.632 64.1646 148.784 63.4217 149.52
+\c 64.3318 152.432 64.3396 155.744 63.0756 158.24
+\c 72.7306 162.048 71.5994 169.248 71.5994 169.248
+\c 70.377 161.632 61.9865 161.312 59.6959 161.376
+\c 59.3865 161.504 59.1068 161.664 58.7615 161.76
+\c 58.2646 161.888 57.7991 161.968 57.3473 162.016
+\c 56.6217 163.568 54.3911 168.768 54.5561 173.616
+\c 54.6786 177.152 55.0231 179.344 55.3458 180.656
+\c 61.0833 179.616 65.0694 187.584 64.1084 190.704
+\o
+\m 23.4505 150.272
+\c 20.738 150.272 20.3833 153.456 22.6231 155.568
+\c 24.8662 157.696 27.5788 155.92 27.5788 155.92
+\c 29.8193 153.68 26.1617 150.272 23.4505 150.272
+\o
+\m 29.3474 185.648
+\c 29.3474 184.08 28.0818 182.816 26.5162 182.816
+\c 24.9521 182.816 23.6873 184.08 23.6873 185.648
+\c 23.6873 187.216 24.9521 188.48 26.5162 188.48
+\c 28.0818 188.48 29.3474 187.216 29.3474 185.648
+\o
+\m 53.0567 159.12
+\c 53.0567 159.12 56.5162 161.44 59.677 159.744
+\c 62.9788 157.968 62.913 152.48 61.0022 151.072
+\c 59.5678 149.168 54.0726 149.184 52.3458 152.512
+\c 50.6943 155.696 53.0567 159.12 53.0567 159.12
+\o
+\m 62.3114 188.608
+\c 62.2724 185.888 58.8068 182.272 56.5943 184.544
+\c 56.5943 184.544 54.8615 187.28 57.0162 189.504
+\c 59.1708 191.712 62.3474 191.312 62.3114 188.608
+\o
+\s
+\m 57.2084 158.24
+\c 57.2036 158.24 57.2006 158.24 57.1943 158.24
+\c 57.1847 158.24 57.1756 158.24 57.1662 158.24
+\c 57.0271 158.24 56.8919 158.224 56.7575 158.208
+\c 56.6802 158.192 56.6036 158.192 56.5287 158.176
+\c 56.4022 158.144 56.2818 158.112 56.1591 158.064
+\c 56.0756 158.032 55.9882 158.016 55.9086 157.984
+\c 55.8022 157.952 55.7022 157.888 55.6036 157.824
+\c 55.5177 157.776 55.4271 157.744 55.3474 157.696
+\c 55.2582 157.632 55.1849 157.568 55.1052 157.488
+\c 55.0201 157.424 54.9334 157.36 54.8567 157.296
+\c 54.7882 157.216 54.735 157.152 54.677 157.088
+\c 54.599 156.992 54.5177 156.896 54.449 156.8
+\c 54.4022 156.736 54.3726 156.656 54.3287 156.592
+\c 54.2646 156.48 54.1943 156.368 54.1428 156.256
+\c 54.1162 156.176 54.1006 156.112 54.077 156.048
+\c 54.0287 155.904 53.977 155.776 53.949 155.632
+\c 53.9351 155.568 53.9364 155.504 53.9287 155.456
+\c 53.9036 155.296 53.8786 155.152 53.8756 154.992
+\c 53.8756 154.976 53.8786 154.976 53.8786 154.96
+\c 53.8786 154.96 53.8786 154.96 53.8786 154.944
+\c 53.8786 154.912 53.8873 154.88 53.8873 154.832
+\c 53.8974 154.656 53.9084 154.464 53.9442 154.288
+\c 53.949 154.272 53.9575 154.256 53.9662 154.224
+\c 54.0084 154.032 54.0631 153.856 54.135 153.68
+\c 54.1396 153.664 54.1428 153.664 54.1442 153.664
+\c 54.6412 152.496 55.777 151.68 57.1177 151.664
+\c 57.1334 151.664 57.149 151.664 57.1646 151.664
+\c 57.1724 151.664 57.1802 151.664 57.1882 151.664
+\c 57.4068 151.664 57.6177 151.696 57.8231 151.728
+\c 57.8474 151.744 57.8708 151.744 57.8943 151.76
+\c 58.0818 151.792 58.2631 151.856 58.4351 151.92
+\c 58.4833 151.936 58.5257 151.968 58.5726 152
+\c 58.7162 152.064 58.8582 152.128 58.9897 152.224
+\c 59.0567 152.272 59.1148 152.32 59.177 152.368
+\c 59.2786 152.448 59.382 152.528 59.4726 152.608
+\c 59.5522 152.688 59.6177 152.784 59.6873 152.864
+\c 59.749 152.944 59.8177 153.008 59.8738 153.088
+\c 59.9545 153.216 60.0162 153.344 60.0802 153.472
+\c 60.1114 153.52 60.1505 153.584 60.177 153.648
+\c 60.246 153.792 60.2929 153.968 60.3364 154.128
+\c 60.3458 154.176 60.3646 154.208 60.374 154.256
+\c 60.4162 154.448 60.4334 154.64 60.4414 154.832
+\c 60.4414 154.864 60.4474 154.88 60.4474 154.912
+\c 60.4474 154.928 60.4537 154.944 60.4537 154.944
+\c 60.4537 155.152 60.4271 155.344 60.3942 155.536
+\c 60.3911 155.552 60.3927 155.552 60.3911 155.568
+\c 60.349 155.792 60.2865 155.984 60.2098 156.192
+\c 60.2098 156.192 60.2098 156.192 60.2084 156.192
+\c 60.0473 156.576 59.8162 156.928 59.5271 157.232
+\c 59.5239 157.232 59.5209 157.248 59.5177 157.248
+\c 59.3802 157.392 59.2302 157.504 59.0694 157.632
+\c 59.0567 157.632 59.0474 157.648 59.0364 157.648
+\c 58.8849 157.76 58.7177 157.856 58.5505 157.92
+\c 58.5257 157.936 58.5036 157.952 58.4788 157.968
+\c 58.3194 158.032 58.1529 158.08 57.9849 158.128
+\c 57.9412 158.144 57.9036 158.16 57.8599 158.16
+\c 57.7022 158.192 57.5396 158.208 57.377 158.224
+\c 57.3177 158.224 57.2646 158.24 57.2084 158.24
+\o
+\m 56.7113 156.272
+\c 56.8615 156.32 57.0162 156.352 57.1802 156.352
+\c 57.7615 156.336 58.2537 155.984 58.4615 155.488
+\c 58.4662 155.472 58.4646 155.44 58.4708 155.424
+\c 58.5257 155.264 58.5631 155.104 58.5617 154.944
+\c 58.5617 154.88 58.535 154.816 58.5257 154.752
+\c 58.5084 154.64 58.4943 154.512 58.4474 154.4
+\c 58.4146 154.32 58.3545 154.256 58.3086 154.192
+\c 58.2553 154.112 58.2148 154.016 58.1474 153.952
+\c 58.0662 153.888 57.9631 153.824 57.8646 153.76
+\c 57.8098 153.744 57.763 153.68 57.7022 153.664
+\c 57.5788 153.616 57.4396 153.6 57.299 153.584
+\c 57.2537 153.584 57.2098 153.552 57.1615 153.552
+\c 56.9865 153.552 56.8194 153.6 56.6662 153.648
+\c 56.6505 153.664 56.6334 153.664 56.6193 153.664
+\c 56.138 153.872 55.8036 154.336 55.777 154.896
+\c 55.777 154.912 55.7646 154.928 55.7646 154.96
+\c 55.7646 155.104 55.8068 155.232 55.849 155.36
+\c 55.8617 155.408 55.8582 155.456 55.8786 155.504
+\c 55.9209 155.6 55.9927 155.68 56.0553 155.76
+\c 56.1004 155.824 56.1287 155.888 56.1802 155.952
+\c 56.2302 156 56.2943 156.016 56.3505 156.064
+\c 56.4412 156.128 56.5271 156.208 56.6334 156.256
+\c 56.6567 156.256 56.6865 156.256 56.7113 156.272
+\o
+\s
+\m 104.3546 113.424
+\c 107.8298 113.424 110.6458 110.608 110.6458 107.136
+\c 110.6458 106.88 110.6234 106.624 110.593 106.368
+\c 110.3386 108.56 108.4314 110.288 106.0842 110.288
+\c 103.5642 110.288 101.5242 108.32 101.5242 105.888
+\c 101.5242 103.456 103.5642 101.472 106.0842 101.472
+\c 106.6074 101.472 107.0986 101.584 107.5626 101.744
+\c 106.6234 101.184 105.5322 100.848 104.3546 100.848
+\c 100.8794 100.848 98.065 103.664 98.065 107.136
+\c 98.065 110.608 100.8794 113.424 104.3546 113.424
+\o
+\s
+\m 198.7051 194.576
+\c 198.7051 192.144 200.6763 190.16 203.1083 190.16
+\c 205.5403 190.16 207.5115 192.144 207.5115 194.576
+\c 207.5115 197.008 205.5403 198.976 203.1083 198.976
+\c 200.6763 198.976 198.7051 197.008 198.7051 194.576
+\o
+\m 200.5915 194.576
+\c 200.5915 195.968 201.7195 197.088 203.1083 197.088
+\c 204.4971 197.088 205.6251 195.968 205.6251 194.576
+\c 205.6251 193.184 204.4971 192.048 203.1083 192.048
+\c 201.7195 192.048 200.5915 193.184 200.5915 194.576
+\o
+\s
+\m 12.8903 8.816
+\c 12.8903 6.384 14.8631 4.416 17.2943 4.416
+\c 19.7255 4.416 21.6973 6.384 21.6973 8.816
+\c 21.6973 11.248 19.7255 13.216 17.2943 13.216
+\c 14.8631 13.216 12.8903 11.248 12.8903 8.816
+\o
+\m 14.7802 8.816
+\c 14.7802 10.208 15.9036 11.328 17.2943 11.328
+\c 18.6833 11.328 19.813 10.208 19.813 8.816
+\c 19.813 7.424 18.6833 6.304 17.2943 6.304
+\c 15.9036 6.304 14.7802 7.424 14.7802 8.816
+\o
+\s
+\m 0 -0.0004
+\l 211.9136 -0.0004
+\l 211.9136 211.8724
+\l 0 211.8724
+\o
+\i
+\m 8.4873 8.816
+\c 8.4873 3.952 12.4317 0 17.2943 0
+\c 22.1591 0 26.1022 3.952 26.1022 8.816
+\c 26.1022 10.752 25.4679 12.544 24.4068 14
+\l 31.7631 20.928
+\c 42.2974 14.64 51.8505 19.52 52.2052 25.792
+\c 52.5193 31.376 42.1396 33.504 42.1396 33.504
+\c 42.1396 33.504 50.6334 41.84 48.1194 48.752
+\c 45.6004 55.68 38.0537 53.792 35.8522 50.96
+\c 33.649 48.128 29.249 41.84 29.249 41.84
+\c 25.1575 44.672 21.8583 49.536 21.8583 49.536
+\c 21.8583 49.536 26.4162 55.36 27.9897 62.592
+\c 30.5505 74.368 21.0677 79.584 17.6098 67.936
+\c 15.1989 59.824 19.1849 50.48 19.1849 50.48
+\c 18.5545 49.072 11.321 43.088 11.321 43.088
+\c 4.3991 53.792 3.4583 75.808 10.3786 91.216
+\c 17.9591 108.112 31.1334 117.312 31.1334 117.312
+\c 35.2217 110.4 41.8271 105.36 41.8271 105.36
+\c 41.8271 105.36 30.6052 93.184 38.0537 79.584
+\c 46.6217 63.936 61.3255 66.688 61.3255 66.688
+\c 70.446 56.624 78.6218 59.456 78.6218 59.456
+\c 74.0474 62.496 73.8522 66.16 75.2106 69.68
+\c 81.5946 73.392 85.6506 79.12 87.1882 81.584
+\c 92.6794 83.136 96.2346 88.384 96.2346 88.384
+\c 93.0906 86.176 89.6314 87.12 89.6314 87.12
+\c 90.289 90.688 90.401 94.112 90.0522 97.376
+\c 93.1258 98.752 95.6954 100.08 96.9578 100.752
+\c 98.8058 98.528 101.5546 97.072 104.6698 97.072
+\c 107.2858 97.072 109.6666 98.08 111.4586 99.728
+\l 114.0682 97.12
+\c 113.5002 96.304 113.1594 95.312 113.1594 94.24
+\c 113.1594 91.472 115.4138 89.216 118.1946 89.216
+\c 120.9706 89.216 123.2234 91.472 123.2234 94.24
+\c 123.2234 97.024 120.9706 99.28 118.1946 99.28
+\c 117.289 99.28 116.4554 99.024 115.721 98.608
+\l 112.929 101.392
+\c 114.065 103.024 114.7338 105.008 114.7338 107.136
+\c 114.7338 110.224 113.3114 112.96 111.1226 114.8
+\c 111.7722 116.032 113.1354 118.656 114.5498 121.808
+\c 117.8042 121.472 121.2314 121.584 124.7978 122.24
+\c 124.7978 122.24 125.7402 118.784 123.5402 115.632
+\c 123.5402 115.632 128.7786 119.184 130.3322 124.672
+\c 132.8042 126.224 138.5274 130.272 142.2362 136.656
+\c 145.7658 138.016 149.4202 137.824 152.4746 133.248
+\c 152.4746 133.248 155.3066 141.424 145.241 150.544
+\c 145.241 150.544 147.993 165.248 132.3434 173.808
+\c 118.7466 181.264 106.5546 170.032 106.5546 170.032
+\c 106.5546 170.032 101.5242 176.64 94.6058 180.736
+\c 94.6058 180.736 103.8154 193.904 120.7098 201.488
+\c 136.121 208.416 158.137 207.472 168.8266 200.544
+\c 168.8266 200.544 162.8506 193.312 161.4362 192.688
+\c 161.4362 192.688 152.0986 196.672 143.9818 194.256
+\c 132.3434 190.8 137.5482 181.312 149.329 183.872
+\c 156.5626 185.456 162.3818 190.016 162.3818 190.016
+\c 162.3818 190.016 167.2554 186.704 170.0842 182.624
+\c 170.0842 182.624 163.7962 178.224 160.9658 176.016
+\c 158.137 173.808 156.2474 166.272 163.1674 163.744
+\c 170.0842 161.232 178.4186 169.728 178.4186 169.728
+\c 178.4186 169.728 180.545 159.344 186.1258 159.664
+\c 192.4074 160.016 197.2891 169.568 190.9994 180.096
+\l 197.9307 187.456
+\c 199.3851 186.4 201.1723 185.76 203.1083 185.76
+\c 207.9723 185.76 211.9147 189.712 211.9147 194.576
+\c 211.9147 199.44 207.9723 203.376 203.1083 203.376
+\c 198.2443 203.376 194.3019 199.44 194.3019 194.576
+\c 194.3019 192.528 195.0011 190.656 196.1627 189.168
+\l 189.7418 182.224
+\l 182.9034 191.424
+\c 182.9034 191.424 186.6762 195.904 189.9786 201.088
+\c 189.9786 201.088 188.0922 203.696 177.6362 211.872
+\c 177.6362 211.872 174.1754 207.472 170.1642 202.032
+\c 170.1642 202.032 158.137 210.064 137.1434 208.88
+\c 116.2458 207.712 99.5626 198.352 89.6378 183.376
+\c 85.7306 185.088 80.9434 185.968 78.041 186.4
+\c 79.673 188.176 81.3066 188.928 81.3066 188.928
+\c 79.5946 193.088 74.3898 192.096 74.3898 192.096
+\c 75.1498 195.856 72.121 198.72 73.4714 202.48
+\c 74.0938 204.224 74.105 205.776 74.105 205.776
+\c 72.2218 206.16 71.1418 204.64 69.8442 204.656
+\c 68.5458 204.672 64.0599 204.256 61.5833 204.288
+\c 59.1068 204.336 57.0521 200.704 57.0521 200.704
+\c 57.0521 200.704 56.4786 202.016 54.9646 203.328
+\c 53.449 204.64 51.9271 205.488 51.9271 205.488
+\c 51.0887 204.56 50.2271 201.968 48.7897 200.336
+\c 46.7974 198.08 44.5068 197.696 43.9833 193.92
+\c 43.3646 189.456 46.3505 185.872 45.7378 184.112
+\c 45.1225 182.352 41.713 183.104 41.7631 186.752
+\c 41.813 190.416 42.5396 191.824 42.5694 194.064
+\c 42.6004 196.304 39.5788 199.648 37.8412 201.904
+\c 36.1036 204.176 35.8786 204.88 35.4247 206.544
+\c 34.9786 208.192 33.4583 209.04 33.4583 209.04
+\c 31.8068 209.072 31.3036 206.832 31.0583 206.016
+\c 30.8114 205.184 29.749 205.2 28.6724 204.272
+\c 27.599 203.344 27.6833 200.864 27.6833 200.864
+\c 27.6833 200.864 26.413 202.896 24.5505 204.56
+\c 22.6847 206.24 18.6786 206.416 14.4271 206.128
+\c 10.1788 205.824 9.0177 207.136 7.3756 207.872
+\c 5.7333 208.592 4.6287 208.208 4.6287 208.208
+\c 4.6287 208.208 4.2271 207.104 4.9333 205.456
+\c 5.6412 203.808 6.9396 202.624 6.5849 198.384
+\c 6.2333 194.144 6.349 190.128 8.0005 188.24
+\c 9.6521 186.352 11.6567 185.056 11.6567 185.056
+\c 11.6567 185.056 9.1802 185.184 8.2349 184.112
+\c 7.2903 183.056 7.2903 181.984 6.4677 181.76
+\c 5.6412 181.52 3.4005 181.056 3.4005 179.392
+\c 3.4005 179.392 4.2271 177.872 5.877 177.392
+\c 7.5271 176.912 8.2349 176.688 10.477 174.912
+\c 12.7162 173.152 16.0209 170.08 18.2599 170.08
+\c 20.5005 170.08 21.9162 170.784 25.5724 170.784
+\c 29.2287 170.784 29.9351 167.36 28.1679 166.784
+\c 26.3974 166.192 22.8505 169.216 18.3786 168.672
+\c 14.6036 168.192 14.1802 165.904 11.8927 163.952
+\c 10.2412 162.528 7.6442 161.712 6.7021 160.88
+\c 6.7021 160.88 7.5271 159.344 8.8247 157.808
+\c 10.1255 156.288 11.4193 155.696 11.4193 155.696
+\c 11.4193 155.696 7.7645 153.68 7.7645 151.216
+\c 7.7645 148.736 7.2903 144.256 7.2903 142.944
+\c 7.2903 141.648 5.7591 140.592 6.113 138.704
+\c 6.113 138.704 7.6693 138.704 9.4162 139.296
+\c 13.1881 140.592 16.0209 137.52 19.7943 138.24
+\c 19.7943 138.24 18.7317 133.04 22.8599 131.28
+\c 22.8599 131.28 23.6334 132.864 25.3943 134.464
+\c 25.7724 131.648 26.6646 126.464 28.4903 122.288
+\c 13.5162 112.352 4.1591 95.68 2.9881 74.784
+\c 1.8068 53.792 9.8271 41.76 9.8271 41.76
+\c 4.3991 37.744 -0.0011 34.288 -0.0011 34.288
+\c 8.1756 23.84 10.7708 21.936 10.7708 21.936
+\c 15.9591 25.248 20.4412 29.024 20.4412 29.024
+\l 29.6412 22.176
+\l 22.6974 15.76
+\c 21.2052 16.928 19.3333 17.616 17.2943 17.616
+\c 12.4317 17.616 8.4873 13.68 8.4873 8.816
+\o
+\m 196.5051 194.576
+\c 196.5051 198.224 199.4603 201.184 203.1083 201.184
+\c 206.7563 201.184 209.7115 198.224 209.7115 194.576
+\c 209.7115 190.928 206.7563 187.968 203.1083 187.968
+\c 199.4603 187.968 196.5051 190.928 196.5051 194.576
+\o
+\m 159.5498 191.184
+\c 156.9562 188.592 141.6234 182.704 141.8602 189.312
+\c 142.105 196.208 159.5498 191.184 159.5498 191.184
+\o
+\m 181.0154 193.072
+\c 177.4762 196.848 172.2874 200.864 172.2874 200.864
+\l 177.7114 208.176
+\l 186.6762 200.864
+\l 181.0154 193.072
+\o
+\m 180.545 170.432
+\l 189.2714 178.224
+\c 193.5178 170.192 190.2154 163.36 186.441 163.36
+\c 184.057 163.36 182.2458 165.088 180.545 170.432
+\o
+\m 173.545 182.624
+\l 181.297 189.632
+\c 182.9642 187.776 185.6026 184.544 188.073 180.336
+\c 187.073 179.44 183.7658 176.176 180.073 173.264
+\c 177.241 177.744 175.6682 179.552 173.545 182.624
+\o
+\m 171.5786 180.576
+\c 173.2314 179.392 177.9466 171.856 177.9466 171.856
+\c 166.8634 162.656 161.4362 167.84 162.3818 172.32
+\c 163.0778 175.632 171.5786 180.576 171.5786 180.576
+\o
+\m 170.6362 199.216
+\c 172.0186 198.224 175.2618 195.936 179.601 191.424
+\c 176.6906 188.128 172.2874 184.352 172.2874 184.352
+\c 167.9962 189.264 164.2698 191.888 164.2698 191.888
+\c 166.289 194 168.5242 196.56 170.6362 199.216
+\o
+\m 115.6762 94.24
+\c 115.6762 95.632 116.8042 96.768 118.1946 96.768
+\c 119.5818 96.768 120.7114 95.632 120.7114 94.24
+\c 120.7114 92.848 119.5818 91.728 118.1946 91.728
+\c 116.8042 91.728 115.6762 92.848 115.6762 94.24
+\o
+\m 77.6474 188.736
+\c 77.6474 188.736 75.9946 188.768 75.137 186.416
+\c 74.281 184.064 73.5434 181.952 69.3927 180.368
+\c 65.2428 178.768 61.6786 176.816 60.2036 172.464
+\c 58.4036 167.168 63.8756 164.864 66.2631 167.072
+\c 68.6521 169.28 68.0193 174.72 72.4954 174.416
+\c 72.4954 174.416 72.1274 173.248 73.6282 170.992
+\c 75.1338 168.72 75.673 165.184 73.7514 162.72
+\c 71.8298 160.288 67.6583 157.152 67.8631 154.672
+\c 68.0646 152.192 70.6036 156.752 74.9578 156.224
+\c 74.9578 156.224 73.6266 153.536 73.8042 149.168
+\c 73.9802 144.8 76.5002 137.472 81.6378 130.144
+\c 74.3706 135.376 67.0873 138 62.7225 138.24
+\c 58.3615 138.48 55.6474 137.168 55.6474 137.168
+\c 55.177 141.536 59.777 144.016 57.2974 144.256
+\c 54.8207 144.48 51.638 140.368 49.1591 138.48
+\c 46.6833 136.592 43.146 137.168 40.9068 138.704
+\c 38.6631 140.24 37.4833 139.888 37.4833 139.888
+\c 37.249 144.368 42.674 143.664 44.913 146.016
+\c 47.153 148.384 44.9287 153.888 39.6084 152.144
+\c 35.2428 150.736 33.2396 147.2 31.5865 143.072
+\c 29.9351 138.944 27.8146 138.24 25.4553 137.408
+\c 23.0974 136.592 23.0974 134.928 23.0974 134.928
+\c 23.0974 134.928 21.2084 136.592 22.8599 138.48
+\c 24.5114 140.368 26.2802 141.536 26.0428 142.72
+\c 25.8068 143.888 24.0396 143.664 21.9162 142.016
+\c 19.7943 140.368 17.6708 141.296 14.3679 141.424
+\c 11.0693 141.536 8.8247 141.424 8.8247 141.424
+\c 10.477 144.368 9.0617 147.904 9.8873 151.088
+\c 10.713 154.272 14.6036 153.92 15.7847 154.864
+\c 16.9629 155.808 16.0209 157.344 13.4231 157.936
+\c 10.8287 158.528 9.2973 160.528 9.2973 160.528
+\c 13.1881 161.12 15.077 166.304 18.6148 166.896
+\c 22.1521 167.488 24.6287 163.6 30.0553 164.176
+\c 35.4786 164.768 35.1257 170.08 31.3505 171.968
+\c 27.5788 173.856 24.0396 172.784 20.1473 172.208
+\c 16.2567 171.616 14.7225 174.208 12.4802 176.208
+\c 10.2412 178.224 8.2349 179.168 8.2349 179.168
+\c 8.2349 179.168 9.8873 182.704 12.2458 182.928
+\c 14.6036 183.168 16.6085 180.928 16.8458 183.296
+\c 17.0802 185.648 14.3679 185.648 11.5396 187.648
+\c 8.7084 189.648 8.8247 191.776 8.9442 196.032
+\c 9.0617 200.272 8.8247 200.736 8.2349 202.272
+\c 7.6442 203.808 8.1959 204.592 8.1959 204.592
+\c 8.1959 204.592 8.9881 205.136 10.5113 204.528
+\c 12.038 203.904 12.5052 203.664 16.7545 203.728
+\c 21.0021 203.792 23.1239 203.872 25.0905 201.024
+\c 27.0567 198.16 27.0193 195.456 29.382 195.648
+\c 31.7428 195.856 29.5318 197.888 29.7974 200.256
+\c 30.0662 202.608 33.6271 204.208 33.6271 204.208
+\c 33.6271 204.208 34.5428 202.192 36.5177 199.92
+\c 38.4919 197.648 41.0662 196.08 40.4217 192.192
+\c 39.7786 188.32 38.6694 184.8 40.5052 180.992
+\c 42.3412 177.2 47.6428 176.768 48.3052 182.192
+\c 48.9678 187.6 45.113 190.128 45.7505 193.664
+\c 46.3882 197.184 51.6036 199.008 52.2442 202.896
+\c 52.2442 202.896 54.2271 201.328 54.7847 198.72
+\c 55.3364 196.128 56.8583 195.168 57.8162 196.32
+\c 58.7756 197.488 58.4756 201.392 61.6708 202.176
+\c 64.8662 202.944 68.3833 201.488 71.3546 203.104
+\c 71.3546 203.104 71.2074 200.864 71.281 197.552
+\c 71.3514 194.256 72.2682 192.128 70.5881 190.016
+\c 68.9052 187.92 68.6474 186.144 69.8217 185.904
+\c 70.9978 185.648 72.2042 187.408 74.1114 189.024
+\c 76.0218 190.656 77.6474 188.736 77.6474 188.736
+\o
+\m 106.9834 166.592
+\c 108.785 164.272 111.3338 160.144 113.569 153.424
+\c 112.4202 153.088 111.1498 153.04 109.7818 153.216
+\c 106.1386 153.664 102.9562 161.6 106.9834 166.592
+\o
+\m 142.3322 151.568
+\c 140.209 152.736 136.4346 152.736 136.4346 152.736
+\c 138.5578 159.584 135.2538 164.064 135.2538 164.064
+\c 133.6042 156.992 123.2234 160.288 121.3402 160.528
+\c 119.4522 160.768 118.273 158.16 118.273 158.16
+\c 117.5594 156.336 116.585 155.088 115.4058 154.272
+\c 114.6346 156.528 112.2282 162.928 108.3082 167.984
+\c 113.4154 172.56 123.7226 176.192 133.1322 169.728
+\c 144.4554 161.936 142.3322 151.568 142.3322 151.568
+\o
+\m 130.145 131.36
+\c 130.145 131.36 132.9754 131.04 137.6906 134.192
+\c 137.9642 134.368 138.241 134.544 138.5194 134.72
+\c 136.9546 132.736 134.2154 129.632 130.7594 127.28
+\c 130.8106 128.576 130.6346 129.936 130.145 131.36
+\o
+\m 116.3066 132.928
+\c 113.1594 134.816 114.105 134.816 114.105 136.08
+\c 114.105 137.328 112.5306 138.592 112.5306 138.592
+\c 112.5306 138.592 116.6202 138.592 118.9802 136.464
+\c 118.9802 136.464 121.5754 136.944 120.1594 138.592
+\c 118.745 140.24 109.0746 140.24 104.3546 145.664
+\l 106.241 145.2
+\c 106.241 145.2 113.0826 140.48 120.3962 141.888
+\c 127.7082 143.312 136.6714 144.96 139.9722 142.832
+\c 139.9722 142.832 139.737 144.48 135.7274 145.2
+\c 131.7162 145.904 126.529 144.72 122.281 144.016
+\c 118.0362 143.312 116.9354 143.616 116.9354 143.616
+\c 108.7562 144.256 105.297 148.96 105.297 148.96
+\c 107.4986 149.6 108.1306 148.96 108.1306 148.96
+\c 116.3066 141.424 127.6282 154.944 127.6282 154.944
+\c 127.6282 154.944 118.1946 148.656 113.7898 148.96
+\c 109.385 149.28 109.0714 151.488 109.0714 151.488
+\c 115.361 149.6 118.1946 152.736 119.7642 154.944
+\c 121.337 157.136 123.5402 157.776 127.9418 157.152
+\c 132.3434 156.512 134.233 158.72 134.233 158.72
+\c 135.8058 151.792 130.4586 151.792 128.2554 149.6
+\c 126.0538 147.392 130.145 148.016 130.145 148.016
+\c 130.145 148.016 133.9194 151.792 141.7802 149.28
+\c 149.6426 146.768 149.0138 138.592 149.0138 138.592
+\c 145.5546 140.784 141.1498 139.856 138.0058 136.704
+\c 134.8618 133.552 129.201 134.816 126.9994 136.08
+\c 124.7946 137.328 125.425 134.496 125.425 134.496
+\c 131.7162 127.584 127.3146 124.128 127.3146 124.128
+\c 125.1114 130.72 119.4506 131.04 116.3066 132.928
+\o
+\m 115.5866 124.208
+\c 116.3658 126.064 117.1082 128.016 117.6938 129.888
+\c 120.2826 128.864 122.0794 127.632 124.4826 125.072
+\c 124.4826 125.072 121.4202 123.6 115.5866 124.208
+\o
+\m 113.249 124.544
+\c 109.5514 125.2 105.4442 126.64 101.5242 129.472
+\c 90.2042 137.648 81.7098 159.344 93.3466 179.472
+\c 93.3466 179.472 99.009 176.336 104.6698 169.088
+\c 104.6698 169.088 98.3802 160.912 99.6378 151.792
+\c 101.4842 138.416 108.7578 137.952 109.7002 135.76
+\c 110.6442 133.552 110.9578 132.608 112.8458 131.664
+\c 113.3674 131.408 114.2554 131.12 115.3498 130.752
+\c 114.9754 129.408 114.273 127.104 113.249 124.544
+\o
+\m 108.8378 116.272
+\c 107.5626 116.864 106.161 117.2 104.6698 117.2
+\c 102.2298 117.2 100.0234 116.304 98.281 114.864
+\c 87.0026 125.04 78.2922 136.416 76.4554 144.88
+\c 74.7946 152.576 77.4538 157.376 77.4538 157.376
+\c 74.2938 159.072 70.249 156.64 70.249 156.64
+\c 70.8786 159.584 76.3242 161.04 77.1898 163.984
+\c 78.0554 166.912 77.033 169.76 75.5274 171.792
+\c 74.0202 173.808 74.7642 176.288 74.7642 176.288
+\c 70.9978 176.928 68.849 175.072 67.2818 172.496
+\c 65.713 169.92 63.5788 169.008 63.1364 171.248
+\c 62.6943 173.504 65.3351 176.768 69.5959 178
+\c 73.8602 179.232 74.4714 180.768 76.4042 184.16
+\c 76.5658 184.448 76.7466 184.704 76.9226 184.96
+\c 82.4506 184.128 86.2778 182.992 88.8186 181.984
+\c 86.9466 178.432 82.017 167.216 84.8554 151.488
+\c 87.5642 136.448 98.001 124.704 112.2202 122.144
+\c 111.2826 120.112 110.153 118.048 108.8378 116.272
+\o
+\m 97.1242 107.136
+\c 97.1242 111.312 100.5002 114.688 104.6698 114.688
+\c 108.8378 114.688 112.217 111.312 112.217 107.136
+\c 112.217 102.976 108.8378 99.6 104.6698 99.6
+\c 100.5002 99.6 97.1242 102.976 97.1242 107.136
+\o
+\m 77.1434 73.408
+\c 77.3194 73.68 77.5002 73.952 77.6794 74.24
+\c 80.825 78.944 80.5114 81.776 80.5114 81.776
+\c 81.9338 81.28 83.2938 81.104 84.5818 81.168
+\c 82.2282 77.712 79.1322 74.96 77.1434 73.408
+\o
+\m 62.2694 83.664
+\c 60.0694 81.472 60.0694 76.112 53.1505 77.696
+\c 53.1505 77.696 55.3505 79.584 54.7225 83.984
+\c 54.0942 88.384 54.7239 90.592 56.9239 92.16
+\c 59.1257 93.728 62.2694 96.56 60.3849 102.848
+\c 60.3849 102.848 62.0521 102.464 62.8991 98.128
+\c 63.7847 93.616 57.8662 82.096 57.8662 82.096
+\c 57.8662 82.096 70.449 95.616 62.8991 103.792
+\c 62.8991 103.792 62.2694 104.416 62.8991 106.624
+\c 62.8991 106.624 67.6177 103.168 68.2458 94.992
+\c 68.2458 94.992 68.5591 93.888 67.8505 89.632
+\c 67.1442 85.392 65.9662 80.208 66.674 76.192
+\c 67.377 72.192 69.0302 71.952 69.0302 71.952
+\c 66.9068 75.248 68.5591 84.208 69.9756 91.52
+\c 71.3898 98.832 66.674 105.68 66.674 105.68
+\l 66.2006 107.568
+\c 71.625 102.848 71.625 93.184 73.2762 91.76
+\c 74.929 90.352 75.401 92.944 75.401 92.944
+\c 73.2762 95.296 73.2762 99.392 73.2762 99.392
+\c 73.2762 99.392 74.5338 97.824 75.7946 97.824
+\c 77.0538 97.824 77.0538 98.768 78.9402 95.616
+\c 80.825 92.464 81.1402 86.816 87.745 84.608
+\c 87.745 84.608 84.2842 80.208 77.3658 86.496
+\c 77.3658 86.496 74.5338 87.12 75.7946 84.928
+\c 77.0538 82.72 78.3114 77.056 75.1658 73.92
+\c 72.0186 70.768 71.0794 66.368 73.2762 62.912
+\c 73.2762 62.912 65.1004 62.272 62.5847 70.144
+\c 60.0694 78 63.8412 81.776 63.8412 81.776
+\c 63.8412 81.776 64.4708 85.872 62.2694 83.664
+\o
+\m 87.1146 86.176
+\c 84.5402 88.576 83.001 91.648 81.977 94.224
+\c 83.8474 94.816 85.7978 95.552 87.6618 96.336
+\c 88.2698 90.496 87.1146 86.176 87.1146 86.176
+\o
+\m 58.4428 98.352
+\c 51.7271 100.592 47.5882 103.136 45.2708 104.944
+\c 50.277 108.96 58.199 105.776 58.6522 102.144
+\c 58.8231 100.768 58.7724 99.504 58.4428 98.352
+\o
+\m 43.8802 103.616
+\c 48.9442 99.696 55.3458 97.28 57.5929 96.512
+\c 56.7849 95.344 55.5302 94.368 53.7004 93.648
+\c 53.7004 93.648 51.1054 92.464 51.3412 90.576
+\c 51.5756 88.704 54.8788 78.32 47.8036 76.672
+\c 47.8036 76.672 52.2833 73.36 59.1239 75.488
+\c 59.1239 75.488 59.1239 71.712 60.3022 69.6
+\c 60.3022 69.6 49.9239 67.472 42.1396 78.784
+\c 35.6708 88.208 39.2974 98.512 43.8802 103.616
+\o
+\m 32.3943 118.576
+\c 52.5193 130.208 74.2186 121.712 82.3994 110.4
+\c 85.2282 106.48 86.6634 102.368 87.3306 98.672
+\c 84.7674 97.648 82.4634 96.944 81.121 96.576
+\c 80.7466 97.664 80.457 98.56 80.1962 99.072
+\c 79.2522 100.96 78.3114 101.28 76.1098 102.224
+\c 73.9066 103.168 73.4506 110.432 60.0694 112.288
+\c 50.949 113.536 42.7708 107.248 42.7708 107.248
+\c 35.5364 112.912 32.3943 118.576 32.3943 118.576
+\o
+\m 29.8873 123.104
+\c 28.8334 125.728 27.6646 129.728 26.8247 135.568
+\c 27.1054 135.744 27.3833 135.936 27.6959 136.112
+\c 31.1162 138 32.649 138.592 33.9473 142.832
+\c 35.2428 147.072 38.5458 149.68 40.7865 149.2
+\c 43.0271 148.736 42.0833 146.608 39.4905 145.072
+\c 36.8943 143.536 35.0084 141.424 35.5974 137.648
+\c 35.5974 137.648 38.0756 138.352 40.0786 136.816
+\c 42.0833 135.296 44.913 134.224 47.8631 135.056
+\c 50.8098 135.872 52.3458 141.296 55.2919 141.888
+\c 55.2919 141.888 52.8177 137.888 54.4678 134.704
+\c 54.4678 134.704 59.3036 137.296 66.9678 135.52
+\c 75.4266 133.568 86.6906 124.688 96.7258 113.248
+\c 95.4154 111.552 94.6058 109.456 94.6058 107.136
+\c 94.6058 105.664 94.937 104.288 95.5018 103.024
+\c 93.7482 101.744 91.7306 100.624 89.7274 99.696
+\c 87.1594 113.92 75.4122 124.352 60.3849 127.072
+\c 44.6583 129.904 33.4271 124.976 29.8873 123.104
+\o
+\m 18.7897 30.912
+\l 11.0068 25.248
+\l 3.6959 34.208
+\l 11.0068 39.632
+\c 11.0068 39.632 15.0162 34.448 18.7897 30.912
+\o
+\m 20.677 52.368
+\c 20.677 52.368 15.6631 69.808 22.5662 70.064
+\c 29.1678 70.304 23.2694 54.96 20.677 52.368
+\o
+\m 27.5177 39.632
+\c 27.5177 39.632 23.7428 35.232 20.4412 32.32
+\c 15.9287 36.656 13.6458 39.904 12.6567 41.28
+\c 15.3068 43.392 17.8631 45.632 19.9693 47.648
+\c 19.9693 47.648 22.5974 43.92 27.5177 39.632
+\o
+\m 40.0194 33.968
+\c 40.0194 33.968 32.4708 38.688 31.2919 40.336
+\c 31.2919 40.336 36.2396 48.848 39.5474 49.536
+\c 44.0287 50.48 49.2193 45.056 40.0194 33.968
+\o
+\m 33.649 22.656
+\l 41.4318 31.376
+\c 46.7833 29.68 48.5114 27.872 48.5114 25.488
+\c 48.5114 21.712 41.6694 18.4 33.649 22.656
+\o
+\m 31.5239 23.856
+\c 27.3287 26.32 24.0974 28.96 22.2349 30.624
+\l 29.249 38.384
+\c 32.3146 36.256 34.1207 34.688 38.6036 31.856
+\c 35.6873 28.16 32.4287 24.848 31.5239 23.856
+\o
+\m 10.6889 8.816
+\c 10.6889 12.464 13.6474 15.424 17.2943 15.424
+\c 20.9428 15.424 23.9006 12.464 23.9006 8.816
+\c 23.9006 5.168 20.9428 2.208 17.2943 2.208
+\c 13.6474 2.208 10.6889 5.168 10.6889 8.816
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian64.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian64.pgf
new file mode 100644
index 0000000000..b3d1c32740
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian64.pgf
@@ -0,0 +1,655 @@
+\r 0 0 212 212
+\i
+\m 156.5672 180.656
+\c 156.8888 179.344 157.2344 177.152 157.356 173.616
+\c 157.5224 168.768 155.2904 163.568 154.5656 162.016
+\c 154.1144 161.968 153.6488 161.888 153.1512 161.76
+\c 152.8072 161.664 152.5272 161.504 152.2168 161.376
+\c 149.9272 161.312 141.5368 161.632 140.3144 169.248
+\c 140.3144 169.248 139.1832 162.048 148.8376 158.24
+\c 147.5736 155.744 147.5816 152.432 148.4904 149.52
+\c 147.748 148.784 146.4072 147.632 145.2072 147.6
+\c 143.4392 147.584 141.524 149.68 141.524 149.68
+\c 141.524 149.68 142.6904 144.448 135.8312 135.776
+\c 144.4088 142.752 149.6616 141.648 149.6616 141.648
+\c 149.6616 141.648 147.5368 143.536 147.5368 145.312
+\c 147.5368 146.512 148.6712 147.872 149.4072 148.624
+\c 152.3256 147.744 155.6424 147.792 158.1208 149.088
+\c 162.0632 139.488 169.2392 140.704 169.2392 140.704
+\c 161.6072 141.824 161.1752 150.224 161.2008 152.512
+\c 161.3256 152.816 161.484 153.104 161.572 153.456
+\c 161.6968 153.952 161.764 154.416 161.812 154.864
+\c 163.3544 155.616 168.5208 157.904 173.3672 157.808
+\c 176.916 157.744 179.1112 157.424 180.4312 157.12
+\c 179.4696 151.376 187.4776 147.488 190.5848 148.496
+\c 194.2424 149.68 193.6536 154.752 189.524 157.216
+\c 186.3016 159.152 182.6616 158.432 181.2104 158.016
+\c 179.9208 158.448 177.468 159.04 173.604 159.104
+\c 168.4472 159.216 163.2216 157.984 161.684 157.584
+\c 161.5272 158.352 161.292 158.976 161.0712 159.44
+\l 182.2664 181.68
+\c 183.1304 181.008 184.2072 180.576 185.3976 180.576
+\c 188.1992 180.576 190.468 182.848 190.468 185.648
+\c 190.468 188.448 188.1992 190.72 185.3976 190.72
+\c 182.5944 190.72 180.3272 188.448 180.3272 185.648
+\c 180.3272 184.624 180.6344 183.68 181.1544 182.88
+\l 159.1528 161.328
+\c 158.6856 161.552 158.0504 161.776 157.2856 161.92
+\c 157.66 163.472 158.8168 168.704 158.6504 173.856
+\c 158.524 177.728 157.9016 180.176 157.4568 181.456
+\c 157.8488 182.912 158.5192 186.56 156.5464 189.76
+\c 154.012 193.856 148.9352 194.368 147.8056 190.704
+\c 146.844 187.584 150.8296 179.616 156.5672 180.656
+\o
+\m 184.3352 155.92
+\c 184.3352 155.92 187.0472 157.696 189.2888 155.568
+\c 191.5304 153.456 191.1752 150.272 188.4632 150.272
+\c 185.7512 150.272 182.0936 153.68 184.3352 155.92
+\o
+\m 185.3976 188.48
+\c 186.9608 188.48 188.2248 187.216 188.2248 185.648
+\c 188.2248 184.08 186.9608 182.816 185.3976 182.816
+\c 183.8312 182.816 182.5656 184.08 182.5656 185.648
+\c 182.5656 187.216 183.8312 188.48 185.3976 188.48
+\o
+\m 159.5672 152.512
+\c 157.8408 149.184 152.3448 149.168 150.9112 151.072
+\c 149.0008 152.48 148.9352 157.968 152.236 159.744
+\c 155.3976 161.44 158.8568 159.12 158.8568 159.12
+\c 158.8568 159.12 161.2184 155.696 159.5672 152.512
+\o
+\m 154.8968 189.504
+\c 157.052 187.28 155.3192 184.544 155.3192 184.544
+\c 153.1064 182.272 149.6408 185.888 149.6024 188.608
+\c 149.5656 191.312 152.7432 191.712 154.8968 189.504
+\o
+\s
+\m 154.5368 158.224
+\c 154.3736 158.208 154.2104 158.192 154.0536 158.16
+\c 154.0104 158.16 153.972 158.144 153.9288 158.128
+\c 153.7592 158.08 153.5944 158.032 153.4344 157.968
+\c 153.4104 157.952 153.388 157.936 153.3624 157.92
+\c 153.196 157.856 153.028 157.76 152.8776 157.648
+\c 152.8664 157.648 152.8568 157.632 152.844 157.632
+\c 152.6824 157.504 152.5336 157.392 152.396 157.248
+\c 152.3928 157.248 152.3896 157.232 152.3864 157.232
+\c 152.0968 156.928 151.8664 156.576 151.7048 156.192
+\c 151.7032 156.192 151.7032 156.192 151.7032 156.192
+\c 151.6264 155.984 151.564 155.792 151.5224 155.568
+\c 151.5208 155.552 151.5224 155.552 151.5192 155.536
+\c 151.4856 155.344 151.46 155.152 151.46 154.944
+\c 151.46 154.944 151.4664 154.928 151.4664 154.912
+\c 151.4664 154.88 151.4728 154.864 151.4728 154.832
+\c 151.4792 154.64 151.4968 154.448 151.54 154.256
+\c 151.548 154.208 151.5672 154.176 151.5768 154.128
+\c 151.62 153.968 151.668 153.792 151.7368 153.648
+\c 151.7624 153.584 151.8024 153.52 151.8328 153.472
+\c 151.8968 153.344 151.9576 153.216 152.0392 153.088
+\c 152.0952 153.008 152.164 152.944 152.2248 152.864
+\c 152.2952 152.784 152.3608 152.688 152.4408 152.608
+\c 152.532 152.528 152.6344 152.448 152.7368 152.368
+\c 152.7992 152.32 152.8568 152.272 152.924 152.224
+\c 153.0552 152.128 153.1976 152.064 153.34 152
+\c 153.388 151.968 153.4296 151.936 153.4792 151.92
+\c 153.6504 151.856 153.8312 151.792 154.0184 151.76
+\c 154.0424 151.744 154.0664 151.744 154.0888 151.728
+\c 154.2952 151.696 154.5064 151.664 154.7256 151.664
+\c 154.7336 151.664 154.7416 151.664 154.7464 151.664
+\c 154.764 151.664 154.78 151.664 154.796 151.664
+\c 156.1368 151.68 157.2728 152.496 157.7688 153.664
+\c 157.7704 153.664 157.7736 153.664 157.7784 153.68
+\c 157.8504 153.856 157.9048 154.032 157.9464 154.224
+\c 157.9544 154.256 157.964 154.272 157.9688 154.288
+\c 158.0056 154.464 158.0152 154.656 158.0248 154.832
+\c 158.0248 154.88 158.0344 154.912 158.0344 154.944
+\c 158.0344 154.96 158.0344 154.96 158.0344 154.96
+\c 158.0344 154.976 158.0376 154.976 158.0376 154.992
+\c 158.0344 155.152 158.0104 155.296 157.9848 155.456
+\c 157.9768 155.504 157.9784 155.568 157.964 155.632
+\c 157.9368 155.776 157.884 155.904 157.836 156.048
+\c 157.8136 156.112 157.7976 156.176 157.7704 156.256
+\c 157.7192 156.368 157.6488 156.48 157.5848 156.592
+\c 157.54 156.656 157.5112 156.736 157.4648 156.8
+\c 157.396 156.896 157.3144 156.992 157.236 157.088
+\c 157.1784 157.152 157.1256 157.216 157.0568 157.296
+\c 156.98 157.36 156.892 157.424 156.8088 157.488
+\c 156.7288 157.568 156.6552 157.632 156.5656 157.696
+\c 156.4856 157.744 156.396 157.776 156.3096 157.824
+\c 156.212 157.888 156.1112 157.952 156.0056 157.984
+\c 155.9256 158.016 155.8376 158.032 155.7528 158.064
+\c 155.6312 158.112 155.5112 158.144 155.3848 158.176
+\c 155.3096 158.192 155.2328 158.192 155.1544 158.208
+\c 155.02 158.224 154.8856 158.24 154.7464 158.24
+\c 154.7384 158.24 154.7288 158.24 154.7192 158.24
+\c 154.7128 158.24 154.7096 158.24 154.7048 158.24
+\c 154.6488 158.24 154.596 158.224 154.5368 158.224
+\o
+\m 155.2792 156.256
+\c 155.3864 156.208 155.4728 156.128 155.5624 156.064
+\c 155.6184 156.016 155.6824 156 155.7336 155.952
+\c 155.7848 155.888 155.812 155.824 155.8584 155.76
+\c 155.9208 155.68 155.9928 155.6 156.0344 155.504
+\c 156.0552 155.456 156.052 155.408 156.0648 155.36
+\c 156.1064 155.232 156.148 155.104 156.148 154.96
+\c 156.148 154.928 156.1368 154.912 156.1368 154.896
+\c 156.1096 154.336 155.7752 153.872 155.2936 153.664
+\c 155.2792 153.664 155.2632 153.664 155.2472 153.648
+\c 155.0936 153.6 154.9272 153.552 154.7512 153.552
+\c 154.7032 153.552 154.66 153.584 154.6136 153.584
+\c 154.4744 153.6 154.3352 153.616 154.2104 153.664
+\c 154.1496 153.68 154.1032 153.744 154.0488 153.76
+\c 153.9496 153.824 153.8472 153.888 153.7656 153.952
+\c 153.6984 154.016 153.6584 154.112 153.6056 154.192
+\c 153.5576 154.256 153.4984 154.32 153.4664 154.4
+\c 153.4184 154.512 153.4056 154.64 153.388 154.752
+\c 153.3784 154.816 153.3512 154.88 153.3512 154.944
+\c 153.3496 155.104 153.388 155.264 153.4424 155.424
+\c 153.4488 155.44 153.4472 155.472 153.452 155.488
+\c 153.66 155.984 154.1512 156.336 154.7336 156.352
+\c 154.8968 156.352 155.052 156.32 155.2024 156.272
+\c 155.2264 156.256 155.2568 156.256 155.2792 156.256
+\o
+\s
+\m 107.5576 113.424
+\c 104.0824 113.424 101.268 110.608 101.268 107.136
+\c 101.268 106.88 101.2888 106.624 101.3208 106.368
+\c 101.5752 108.56 103.4808 110.288 105.828 110.288
+\c 108.348 110.288 110.3896 108.32 110.3896 105.888
+\c 110.3896 103.456 108.348 101.472 105.828 101.472
+\c 105.3064 101.472 104.8136 101.584 104.3496 101.744
+\c 105.2888 101.184 106.3816 100.848 107.5576 100.848
+\c 111.0328 100.848 113.8488 103.664 113.8488 107.136
+\c 113.8488 110.608 111.0328 113.424 107.5576 113.424
+\o
+\s
+\m 8.8056 198.976
+\c 6.3736 198.976 4.4024 197.008 4.4024 194.576
+\c 4.4024 192.144 6.3736 190.16 8.8056 190.16
+\c 11.2376 190.16 13.2072 192.144 13.2072 194.576
+\c 13.2072 197.008 11.2376 198.976 8.8056 198.976
+\o
+\m 8.8056 192.048
+\c 7.4152 192.048 6.2872 193.184 6.2872 194.576
+\c 6.2872 195.968 7.4152 197.088 8.8056 197.088
+\c 10.1944 197.088 11.3224 195.968 11.3224 194.576
+\c 11.3224 193.184 10.1944 192.048 8.8056 192.048
+\o
+\s
+\m 194.6184 13.216
+\c 192.188 13.216 190.2152 11.248 190.2152 8.816
+\c 190.2152 6.384 192.188 4.416 194.6184 4.416
+\c 197.0504 4.416 199.0216 6.384 199.0216 8.816
+\c 199.0216 11.248 197.0504 13.216 194.6184 13.216
+\o
+\m 194.6184 6.304
+\c 193.2296 6.304 192.1 7.424 192.1 8.816
+\c 192.1 10.208 193.2296 11.328 194.6184 11.328
+\c 196.0104 11.328 197.1336 10.208 197.1336 8.816
+\c 197.1336 7.424 196.0104 6.304 194.6184 6.304
+\o
+\s
+\m 0 -0.0004
+\l 211.9136 -0.0004
+\l 211.9136 211.8724
+\l 0 211.8724
+\o
+\i
+\m 194.6184 17.616
+\c 192.58 17.616 190.708 16.928 189.2152 15.76
+\l 182.2728 22.176
+\l 191.4728 29.024
+\c 191.4728 29.024 195.9528 25.248 201.1432 21.936
+\c 201.1432 21.936 203.7384 23.84 211.9144 34.288
+\c 211.9144 34.288 207.5144 37.744 202.0856 41.76
+\c 202.0856 41.76 210.1064 53.792 208.9256 74.784
+\c 207.7528 95.68 198.3976 112.352 183.4216 122.288
+\c 185.2488 126.464 186.1416 131.648 186.5192 134.464
+\c 188.2792 132.864 189.0536 131.28 189.0536 131.28
+\c 193.1816 133.04 192.1192 138.24 192.1192 138.24
+\c 195.892 137.52 198.7256 140.592 202.4968 139.296
+\c 204.244 138.704 205.8008 138.704 205.8008 138.704
+\c 206.1528 140.592 204.6216 141.648 204.6216 142.944
+\c 204.6216 144.256 204.148 148.736 204.148 151.216
+\c 204.148 153.68 200.4936 155.696 200.4936 155.696
+\c 200.4936 155.696 201.788 156.288 203.0872 157.808
+\c 204.3864 159.344 205.2104 160.88 205.2104 160.88
+\c 204.2696 161.712 201.6728 162.528 200.02 163.952
+\c 197.7336 165.904 197.3096 168.192 193.5352 168.672
+\c 189.0632 169.216 185.516 166.192 183.7448 166.784
+\c 181.9784 167.36 182.684 170.784 186.34 170.784
+\c 189.9976 170.784 191.4136 170.08 193.6536 170.08
+\c 195.892 170.08 199.1976 173.152 201.436 174.912
+\c 203.6776 176.688 204.3864 176.912 206.036 177.392
+\c 207.6856 177.872 208.5128 179.392 208.5128 179.392
+\c 208.5128 181.056 206.2728 181.52 205.4456 181.76
+\c 204.6216 181.984 204.6216 183.056 203.6776 184.112
+\c 202.7336 185.184 200.2568 185.056 200.2568 185.056
+\c 200.2568 185.056 202.2616 186.352 203.9128 188.24
+\c 205.564 190.128 205.6792 194.144 205.3288 198.384
+\c 204.9736 202.624 206.2728 203.808 206.98 205.456
+\c 207.6856 207.104 207.284 208.208 207.284 208.208
+\c 207.284 208.208 206.18 208.592 204.5384 207.872
+\c 202.8952 207.136 201.7352 205.824 197.4856 206.128
+\c 193.2344 206.416 189.228 206.24 187.3624 204.56
+\c 185.5 202.896 184.2296 200.864 184.2296 200.864
+\c 184.2296 200.864 184.3144 203.344 183.2408 204.272
+\c 182.164 205.2 181.1016 205.184 180.8552 206.016
+\c 180.6104 206.832 180.1064 209.072 178.4552 209.04
+\c 178.4552 209.04 176.9352 208.192 176.4872 206.544
+\c 176.0344 204.88 175.8104 204.176 174.0728 201.904
+\c 172.3352 199.648 169.3128 196.304 169.3448 194.064
+\c 169.3736 191.824 170.1 190.416 170.1496 186.752
+\c 170.2008 183.104 166.7912 182.352 166.1752 184.112
+\c 165.5624 185.872 168.548 189.456 167.9304 193.92
+\c 167.4072 197.696 165.116 198.08 163.124 200.336
+\c 161.6856 201.968 160.8232 204.56 159.9864 205.488
+\c 159.9864 205.488 158.4648 204.64 156.948 203.328
+\c 155.4344 202.016 154.8616 200.704 154.8616 200.704
+\c 154.8616 200.704 152.8072 204.336 150.3304 204.288
+\c 147.8536 204.256 143.3672 204.672 142.0696 204.656
+\c 140.772 204.64 139.6904 206.16 137.8088 205.776
+\c 137.8088 205.776 137.8184 204.224 138.4424 202.48
+\c 139.7928 198.72 136.7624 195.856 137.524 192.096
+\c 137.524 192.096 132.3192 193.088 130.6072 188.928
+\c 130.6072 188.928 132.2408 188.176 133.8728 186.4
+\c 130.9704 185.968 126.1832 185.088 122.276 183.376
+\c 112.3496 198.352 95.668 207.712 74.7704 208.88
+\c 53.7768 210.064 41.748 202.032 41.748 202.032
+\c 37.7384 207.472 34.276 211.872 34.276 211.872
+\c 23.82 203.696 21.9352 201.088 21.9352 201.088
+\c 25.236 195.904 29.0088 191.424 29.0088 191.424
+\l 22.172 182.224
+\l 15.7496 189.168
+\c 16.9128 190.656 17.612 192.528 17.612 194.576
+\c 17.612 199.44 13.6696 203.376 8.8056 203.376
+\c 3.94 203.376 -0.0008 199.44 -0.0008 194.576
+\c -0.0008 189.712 3.94 185.76 8.8056 185.76
+\c 10.7416 185.76 12.5288 186.4 13.9832 187.456
+\l 20.9144 180.096
+\c 14.6232 169.568 19.5064 160.016 25.788 159.664
+\c 31.3688 159.344 33.4936 169.728 33.4936 169.728
+\c 33.4936 169.728 41.828 161.232 48.7448 163.744
+\c 55.6664 166.272 53.7768 173.808 50.9464 176.016
+\c 48.1176 178.224 41.828 182.624 41.828 182.624
+\c 44.6584 186.704 49.532 190.016 49.532 190.016
+\c 49.532 190.016 55.3496 185.456 62.5848 183.872
+\c 74.364 181.312 79.5688 190.8 67.932 194.256
+\c 59.8136 196.672 50.476 192.688 50.476 192.688
+\c 49.0632 193.312 43.0856 200.544 43.0856 200.544
+\c 53.7768 207.472 75.7928 208.416 91.204 201.488
+\c 108.0968 193.904 117.308 180.736 117.308 180.736
+\c 110.3896 176.64 105.3576 170.032 105.3576 170.032
+\c 105.3576 170.032 93.1672 181.264 79.5688 173.808
+\c 63.9208 165.248 66.6728 150.544 66.6728 150.544
+\c 56.6072 141.424 59.4392 133.248 59.4392 133.248
+\c 62.492 137.824 66.1464 138.016 69.676 136.656
+\c 73.3864 130.272 79.1096 126.224 81.5816 124.672
+\c 83.1352 119.184 88.3736 115.632 88.3736 115.632
+\c 86.1736 118.784 87.116 122.24 87.116 122.24
+\c 90.6808 121.584 94.1096 121.472 97.364 121.808
+\c 98.7784 118.656 100.1416 116.032 100.7912 114.8
+\c 98.6024 112.96 97.18 110.224 97.18 107.136
+\c 97.18 105.008 97.8488 103.024 98.9848 101.392
+\l 96.1928 98.608
+\c 95.4584 99.024 94.6232 99.28 93.7192 99.28
+\c 90.9432 99.28 88.6888 97.024 88.6888 94.24
+\c 88.6888 91.472 90.9432 89.216 93.7192 89.216
+\c 96.4984 89.216 98.7528 91.472 98.7528 94.24
+\c 98.7528 95.312 98.4136 96.304 97.8456 97.12
+\l 100.4552 99.728
+\c 102.2472 98.08 104.6264 97.072 107.244 97.072
+\c 110.3576 97.072 113.108 98.528 114.9544 100.752
+\c 116.2168 100.08 118.788 98.752 121.8616 97.376
+\c 121.5128 94.112 121.6232 90.688 122.2808 87.12
+\c 122.2808 87.12 118.8216 86.176 115.6792 88.384
+\c 115.6792 88.384 119.2328 83.136 124.7256 81.584
+\c 126.2632 79.12 130.3192 73.392 136.7032 69.68
+\c 138.0616 66.16 137.8664 62.496 133.2904 59.456
+\c 133.2904 59.456 141.468 56.624 150.588 66.688
+\c 150.588 66.688 165.2904 63.936 173.86 79.584
+\c 181.308 93.184 170.0856 105.36 170.0856 105.36
+\c 170.0856 105.36 176.6904 110.4 180.78 117.312
+\c 180.78 117.312 193.9528 108.112 201.5352 91.216
+\c 208.4552 75.808 207.5144 53.792 200.5928 43.088
+\c 200.5928 43.088 193.3576 49.072 192.7288 50.48
+\c 192.7288 50.48 196.7144 59.824 194.3032 67.936
+\c 190.8456 79.584 181.3624 74.368 183.924 62.592
+\c 185.4968 55.36 190.0552 49.536 190.0552 49.536
+\c 190.0552 49.536 186.7544 44.672 182.6648 41.84
+\c 182.6648 41.84 178.2648 48.128 176.0616 50.96
+\c 173.86 53.792 166.3128 55.68 163.7944 48.752
+\c 161.2792 41.84 169.7736 33.504 169.7736 33.504
+\c 169.7736 33.504 159.3944 31.376 159.708 25.792
+\c 160.0632 19.52 169.6152 14.64 180.1496 20.928
+\l 187.5064 14
+\c 186.4456 12.544 185.812 10.752 185.812 8.816
+\c 185.812 3.952 189.7528 0 194.6184 0
+\c 199.4808 0 203.4248 3.952 203.4248 8.816
+\c 203.4248 13.68 199.4808 17.616 194.6184 17.616
+\o
+\m 8.8056 187.968
+\c 5.156 187.968 2.2024 190.928 2.2024 194.576
+\c 2.2024 198.224 5.156 201.184 8.8056 201.184
+\c 12.4536 201.184 15.4088 198.224 15.4088 194.576
+\c 15.4088 190.928 12.4536 187.968 8.8056 187.968
+\o
+\m 70.0536 189.312
+\c 70.2888 182.704 54.956 188.592 52.364 191.184
+\c 52.364 191.184 69.8088 196.208 70.0536 189.312
+\o
+\m 25.236 200.864
+\l 34.2024 208.176
+\l 39.6248 200.864
+\c 39.6248 200.864 34.4376 196.848 30.8984 193.072
+\l 25.236 200.864
+\o
+\m 25.4728 163.36
+\c 21.6984 163.36 18.396 170.192 22.6424 178.224
+\l 31.3688 170.432
+\c 29.668 165.088 27.8568 163.36 25.4728 163.36
+\o
+\m 31.8408 173.264
+\c 28.1464 176.176 24.8408 179.44 23.8408 180.336
+\c 26.3112 184.544 28.948 187.776 30.6152 189.632
+\l 38.3672 182.624
+\c 36.2456 179.552 34.6728 177.744 31.8408 173.264
+\o
+\m 49.532 172.32
+\c 50.476 167.84 45.0504 162.656 33.9656 171.856
+\c 33.9656 171.856 38.6808 179.392 40.3352 180.576
+\c 40.3352 180.576 48.8344 175.632 49.532 172.32
+\o
+\m 47.644 191.888
+\c 47.644 191.888 43.9176 189.264 39.6248 184.352
+\c 39.6248 184.352 35.2216 188.128 32.3128 191.424
+\c 36.652 195.936 39.8936 198.224 41.276 199.216
+\c 43.3896 196.56 45.6232 194 47.644 191.888
+\o
+\m 93.7192 91.728
+\c 92.332 91.728 91.2024 92.848 91.2024 94.24
+\c 91.2024 95.632 92.332 96.768 93.7192 96.768
+\c 95.1096 96.768 96.2376 95.632 96.2376 94.24
+\c 96.2376 92.848 95.1096 91.728 93.7192 91.728
+\o
+\m 137.8024 189.024
+\c 139.7096 187.408 140.916 185.648 142.0904 185.904
+\c 143.2664 186.144 143.0088 187.92 141.3256 190.016
+\c 139.6456 192.128 140.5608 194.256 140.6328 197.552
+\c 140.7064 200.864 140.5576 203.104 140.5576 203.104
+\c 143.5304 201.488 147.0472 202.944 150.2424 202.176
+\c 153.4376 201.392 153.1384 197.488 154.0968 196.32
+\c 155.0552 195.168 156.5768 196.128 157.1288 198.72
+\c 157.6856 201.328 159.6696 202.896 159.6696 202.896
+\c 160.3096 199.008 165.5256 197.184 166.1624 193.664
+\c 166.8008 190.128 162.9464 187.6 163.6088 182.192
+\c 164.2712 176.768 169.572 177.2 171.4088 180.992
+\c 173.244 184.8 172.1352 188.32 171.4904 192.192
+\c 170.8472 196.08 173.42 197.648 175.396 199.92
+\c 177.3704 202.192 178.2856 204.208 178.2856 204.208
+\c 178.2856 204.208 181.8472 202.608 182.116 200.256
+\c 182.3816 197.888 180.1704 195.856 182.532 195.648
+\c 184.8936 195.456 184.8568 198.16 186.8216 201.024
+\c 188.7896 203.872 190.9112 203.792 195.1576 203.728
+\c 199.4088 203.664 199.876 203.904 201.4024 204.528
+\c 202.9256 205.136 203.7176 204.592 203.7176 204.592
+\c 203.7176 204.592 204.2696 203.808 203.6776 202.272
+\c 203.0872 200.736 202.852 200.272 202.9688 196.032
+\c 203.0872 191.776 203.2056 189.648 200.3736 187.648
+\c 197.5448 185.648 194.8328 185.648 195.068 183.296
+\c 195.3048 180.928 197.3096 183.168 199.668 182.928
+\c 202.0248 182.704 203.6776 179.168 203.6776 179.168
+\c 203.6776 179.168 201.6728 178.224 199.4328 176.208
+\c 197.1912 174.208 195.6568 171.616 191.7656 172.208
+\c 187.8728 172.784 184.3352 173.856 180.5624 171.968
+\c 176.788 170.08 176.4344 164.768 181.8584 164.176
+\c 187.284 163.6 189.7608 167.488 193.2984 166.896
+\c 196.836 166.304 198.7256 161.12 202.6152 160.528
+\c 202.6152 160.528 201.084 158.528 198.4888 157.936
+\c 195.892 157.344 194.9496 155.808 196.1288 154.864
+\c 197.3096 153.92 201.2008 154.272 202.0248 151.088
+\c 202.852 147.904 201.436 144.368 203.0872 141.424
+\c 203.0872 141.424 200.844 141.536 197.5448 141.424
+\c 194.2424 141.296 192.1192 140.368 189.9976 142.016
+\c 187.8728 143.664 186.1064 143.888 185.8712 142.72
+\c 185.6328 141.536 187.4024 140.368 189.0536 138.48
+\c 190.7048 136.592 188.8152 134.928 188.8152 134.928
+\c 188.8152 134.928 188.8152 136.592 186.4584 137.408
+\c 184.0984 138.24 181.9784 138.944 180.3272 143.072
+\c 178.6744 147.2 176.6712 150.736 172.3048 152.144
+\c 166.9848 153.888 164.7592 148.384 167.0008 146.016
+\c 169.2392 143.664 174.6648 144.368 174.4296 139.888
+\c 174.4296 139.888 173.2504 140.24 171.0072 138.704
+\c 168.7672 137.168 165.2296 136.592 162.7528 138.48
+\c 160.276 140.368 157.092 144.48 154.6152 144.256
+\c 152.1368 144.016 156.7368 141.536 156.2664 137.168
+\c 156.2664 137.168 153.5512 138.48 149.1912 138.24
+\c 144.8248 138 137.5432 135.376 130.276 130.144
+\c 135.412 137.472 137.9336 144.8 138.1096 149.168
+\c 138.2856 153.536 136.9544 156.224 136.9544 156.224
+\c 141.3096 156.752 143.8488 152.192 144.0504 154.672
+\c 144.2552 157.152 140.0824 160.288 138.1608 162.72
+\c 136.2408 165.184 136.78 168.72 138.284 170.992
+\c 139.7864 173.248 139.4168 174.416 139.4168 174.416
+\c 143.8936 174.72 143.2616 169.28 145.6504 167.072
+\c 148.0376 164.864 153.5096 167.168 151.7096 172.464
+\c 150.2344 176.816 146.6712 178.768 142.5208 180.368
+\c 138.3704 181.952 137.6328 184.064 136.7768 186.416
+\c 135.9192 188.768 134.2664 188.736 134.2664 188.736
+\c 134.2664 188.736 135.8904 190.656 137.8024 189.024
+\o
+\m 102.132 153.216
+\c 100.7624 153.04 99.492 153.088 98.3448 153.424
+\c 100.58 160.144 103.1288 164.272 104.9304 166.592
+\c 108.956 161.6 105.7752 153.664 102.132 153.216
+\o
+\m 78.7816 169.728
+\c 88.1912 176.192 98.4984 172.56 103.6056 167.984
+\c 99.684 162.928 97.2792 156.528 96.508 154.272
+\c 95.3288 155.088 94.3528 156.336 93.6408 158.16
+\c 93.6408 158.16 92.4616 160.768 90.5736 160.528
+\c 88.6888 160.288 78.3096 156.992 76.66 164.064
+\c 76.66 164.064 73.3544 159.584 75.4792 152.736
+\c 75.4792 152.736 71.7032 152.736 69.5816 151.568
+\c 69.5816 151.568 67.4584 161.936 78.7816 169.728
+\o
+\m 81.1528 127.28
+\c 77.6968 129.632 74.9576 132.736 73.3944 134.72
+\c 73.6728 134.544 73.948 134.368 74.2216 134.192
+\c 78.9384 131.04 81.7688 131.36 81.7688 131.36
+\c 81.2776 129.936 81.1016 128.576 81.1528 127.28
+\o
+\m 84.5992 124.128
+\c 84.5992 124.128 80.1976 127.584 86.4872 134.496
+\c 86.4872 134.496 87.1192 137.328 84.9144 136.08
+\c 82.7128 134.816 77.052 133.552 73.908 136.704
+\c 70.7624 139.856 66.3576 140.784 62.8984 138.592
+\c 62.8984 138.592 62.2712 146.768 70.1336 149.28
+\c 77.9944 151.792 81.7688 148.016 81.7688 148.016
+\c 81.7688 148.016 85.86 147.392 83.6584 149.6
+\c 81.4552 151.792 76.108 151.792 77.6792 158.72
+\c 77.6792 158.72 79.5688 156.512 83.972 157.152
+\c 88.3736 157.776 90.5768 157.136 92.148 154.944
+\c 93.7192 152.736 96.5512 149.6 102.8424 151.488
+\c 102.8424 151.488 102.5288 149.28 98.124 148.96
+\c 93.7192 148.656 84.284 154.944 84.284 154.944
+\c 84.284 154.944 95.6072 141.424 103.7832 148.96
+\c 103.7832 148.96 104.4136 149.6 106.6152 148.96
+\c 106.6152 148.96 103.156 144.256 94.9784 143.616
+\c 94.9784 143.616 93.8776 143.312 89.6312 144.016
+\c 85.3848 144.72 80.1976 145.904 76.1864 145.2
+\c 72.1768 144.48 71.9416 142.832 71.9416 142.832
+\c 75.2424 144.96 84.2056 143.312 91.5176 141.888
+\c 98.8296 140.48 105.6728 145.2 105.6728 145.2
+\l 107.5576 145.664
+\c 102.8392 140.24 93.1688 140.24 91.7528 138.592
+\c 90.3384 136.944 92.9336 136.464 92.9336 136.464
+\c 95.292 138.592 99.3832 138.592 99.3832 138.592
+\c 99.3832 138.592 97.8072 137.328 97.8072 136.08
+\c 97.8072 134.816 98.7528 134.816 95.6072 132.928
+\c 92.4632 131.04 86.8024 130.72 84.5992 124.128
+\o
+\m 87.4296 125.072
+\c 89.8328 127.632 91.6312 128.864 94.2184 129.888
+\c 94.8056 128.016 95.5464 126.064 96.3272 124.208
+\c 90.492 123.6 87.4296 125.072 87.4296 125.072
+\o
+\m 96.5624 130.752
+\c 97.6584 131.12 98.5448 131.408 99.068 131.664
+\c 100.9544 132.608 101.2696 133.552 102.212 135.76
+\c 103.1544 137.952 110.428 138.416 112.276 151.792
+\c 113.5336 160.912 107.244 169.088 107.244 169.088
+\c 112.9048 176.336 118.5656 179.472 118.5656 179.472
+\c 130.204 159.344 121.7096 137.648 110.3896 129.472
+\c 106.4696 126.64 102.3608 125.2 98.6648 124.544
+\c 97.6408 127.104 96.9384 129.408 96.5624 130.752
+\o
+\m 99.692 122.144
+\c 113.9128 124.704 124.348 136.448 127.0584 151.488
+\c 129.8952 167.216 124.9656 178.432 123.0936 181.984
+\c 125.636 182.992 129.4632 184.128 134.9912 184.96
+\c 135.1656 184.704 135.3464 184.448 135.5096 184.16
+\c 137.4424 180.768 138.0536 179.232 142.3176 178
+\c 146.5784 176.768 149.2184 173.504 148.7768 171.248
+\c 148.3352 169.008 146.2008 169.92 144.6312 172.496
+\c 143.0648 175.072 140.916 176.928 137.148 176.288
+\c 137.148 176.288 137.892 173.808 136.3864 171.792
+\c 134.8792 169.76 133.8584 166.912 134.724 163.984
+\c 135.5896 161.04 141.0344 159.584 141.6648 156.64
+\c 141.6648 156.64 137.6184 159.072 134.46 157.376
+\c 134.46 157.376 137.1192 152.576 135.4584 144.88
+\c 133.62 136.416 124.9112 125.04 113.6312 114.864
+\c 111.8888 116.304 109.6824 117.2 107.244 117.2
+\c 105.7512 117.2 104.3496 116.864 103.076 116.272
+\c 101.7592 118.048 100.6296 120.112 99.692 122.144
+\o
+\m 107.244 99.6
+\c 103.076 99.6 99.6952 102.976 99.6952 107.136
+\c 99.6952 111.312 103.076 114.688 107.244 114.688
+\c 111.412 114.688 114.7896 111.312 114.7896 107.136
+\c 114.7896 102.976 111.412 99.6 107.244 99.6
+\o
+\m 127.332 81.168
+\c 128.6184 81.104 129.98 81.28 131.4024 81.776
+\c 131.4024 81.776 131.0872 78.944 134.2344 74.24
+\c 134.4136 73.952 134.5944 73.68 134.7704 73.408
+\c 132.7816 74.96 129.684 77.712 127.332 81.168
+\o
+\m 148.0728 81.776
+\c 148.0728 81.776 151.844 78 149.3288 70.144
+\c 146.812 62.272 138.6376 62.912 138.6376 62.912
+\c 140.8344 66.368 139.8936 70.768 136.7464 73.92
+\c 133.6024 77.056 134.86 82.72 136.1192 84.928
+\c 137.38 87.12 134.5464 86.496 134.5464 86.496
+\c 127.628 80.208 124.1672 84.608 124.1672 84.608
+\c 130.7736 86.816 131.0872 92.464 132.9736 95.616
+\c 134.86 98.768 134.86 97.824 136.1192 97.824
+\c 137.38 97.824 138.6376 99.392 138.6376 99.392
+\c 138.6376 99.392 138.6376 95.296 136.5128 92.944
+\c 136.5128 92.944 136.9848 90.352 138.6376 91.76
+\c 140.2872 93.184 140.2872 102.848 145.7128 107.568
+\l 145.2392 105.68
+\c 145.2392 105.68 140.524 98.832 141.9384 91.52
+\c 143.3528 84.208 145.0072 75.248 142.8824 71.952
+\c 142.8824 71.952 144.5368 72.192 145.2392 76.192
+\c 145.9464 80.208 144.7688 85.392 144.0632 89.632
+\c 143.3528 93.888 143.668 94.992 143.668 94.992
+\c 144.2952 103.168 149.0136 106.624 149.0136 106.624
+\c 149.644 104.416 149.0136 103.792 149.0136 103.792
+\c 141.4648 95.616 154.0472 82.096 154.0472 82.096
+\c 154.0472 82.096 148.1288 93.616 149.0136 98.128
+\c 149.8616 102.464 151.5288 102.848 151.5288 102.848
+\c 149.644 96.56 152.788 93.728 154.9896 92.16
+\c 157.1896 90.592 157.8184 88.384 157.1912 83.984
+\c 156.5624 79.584 158.7624 77.696 158.7624 77.696
+\c 151.844 76.112 151.844 81.472 149.644 83.664
+\c 147.4424 85.872 148.0728 81.776 148.0728 81.776
+\o
+\m 124.252 96.336
+\c 126.116 95.552 128.0664 94.816 129.9368 94.224
+\c 128.9128 91.648 127.3736 88.576 124.7992 86.176
+\c 124.7992 86.176 123.644 90.496 124.252 96.336
+\o
+\m 153.2616 102.144
+\c 153.7144 105.776 161.636 108.96 166.6424 104.944
+\c 164.3256 103.136 160.1864 100.592 153.4712 98.352
+\c 153.1416 99.504 153.0888 100.768 153.2616 102.144
+\o
+\m 169.7736 78.784
+\c 161.9896 67.472 151.612 69.6 151.612 69.6
+\c 152.7896 71.712 152.7896 75.488 152.7896 75.488
+\c 159.6296 73.36 164.1096 76.672 164.1096 76.672
+\c 157.0344 78.32 160.3384 88.704 160.572 90.576
+\c 160.8072 92.464 158.212 93.648 158.212 93.648
+\c 156.3832 94.368 155.1288 95.344 154.3208 96.512
+\c 156.5672 97.28 162.9688 99.696 168.0328 103.616
+\c 172.6152 98.512 176.2424 88.208 169.7736 78.784
+\o
+\m 169.1432 107.248
+\c 169.1432 107.248 160.964 113.536 151.844 112.288
+\c 138.4632 110.432 138.0072 103.168 135.804 102.224
+\c 133.6024 101.28 132.6616 100.96 131.7176 99.072
+\c 131.4568 98.56 131.1672 97.664 130.7928 96.576
+\c 129.4504 96.944 127.1448 97.648 124.5832 98.672
+\c 125.2504 102.368 126.684 106.48 129.5144 110.4
+\c 137.6936 121.712 159.3944 130.208 179.5192 118.576
+\c 179.5192 118.576 176.3768 112.912 169.1432 107.248
+\o
+\m 151.5288 127.072
+\c 136.5 124.352 124.7528 113.92 122.1864 99.696
+\c 120.1832 100.624 118.1656 101.744 116.4104 103.024
+\c 116.9768 104.288 117.308 105.664 117.308 107.136
+\c 117.308 109.456 116.4968 111.552 115.188 113.248
+\c 125.2216 124.688 136.4856 133.568 144.9464 135.52
+\c 152.6104 137.296 157.4456 134.704 157.4456 134.704
+\c 159.0952 137.888 156.62 141.888 156.62 141.888
+\c 159.5672 141.296 161.1032 135.872 164.0504 135.056
+\c 167.0008 134.224 169.8296 135.296 171.8344 136.816
+\c 173.8376 138.352 176.316 137.648 176.316 137.648
+\c 176.9048 141.424 175.0184 143.536 172.4216 145.072
+\c 169.8296 146.608 168.8856 148.736 171.1272 149.2
+\c 173.3672 149.68 176.6712 147.072 177.9656 142.832
+\c 179.2648 138.592 180.7976 138 184.2168 136.112
+\c 184.5304 135.936 184.8072 135.744 185.0872 135.568
+\c 184.2488 129.728 183.0792 125.728 182.0248 123.104
+\c 178.4856 124.976 167.2552 129.904 151.5288 127.072
+\o
+\m 200.9064 39.632
+\l 208.2168 34.208
+\l 200.9064 25.248
+\l 193.124 30.912
+\c 196.8968 34.448 200.9064 39.632 200.9064 39.632
+\o
+\m 189.3464 70.064
+\c 196.2504 69.808 191.236 52.368 191.236 52.368
+\c 188.644 54.96 182.7464 70.304 189.3464 70.064
+\o
+\m 191.9448 47.648
+\c 194.0504 45.632 196.6072 43.392 199.2568 41.28
+\c 198.268 39.904 195.9848 36.656 191.4728 32.32
+\c 188.1704 35.232 184.396 39.632 184.396 39.632
+\c 189.316 43.92 191.9448 47.648 191.9448 47.648
+\o
+\m 172.3656 49.536
+\c 175.6744 48.848 180.62 40.336 180.62 40.336
+\c 179.4424 38.688 171.8936 33.968 171.8936 33.968
+\c 162.6936 45.056 167.884 50.48 172.3656 49.536
+\o
+\m 163.4024 25.488
+\c 163.4024 27.872 165.1304 29.68 170.4808 31.376
+\l 178.2648 22.656
+\c 170.244 18.4 163.4024 21.712 163.4024 25.488
+\o
+\m 173.3096 31.856
+\c 177.7928 34.688 179.5992 36.256 182.6648 38.384
+\l 189.6792 30.624
+\c 187.8152 28.96 184.5848 26.32 180.3896 23.856
+\c 179.484 24.848 176.2248 28.16 173.3096 31.856
+\o
+\m 194.6184 2.208
+\c 190.9704 2.208 188.012 5.168 188.012 8.816
+\c 188.012 12.464 190.9704 15.424 194.6184 15.424
+\c 198.2664 15.424 201.2232 12.464 201.2232 8.816
+\c 201.2232 5.168 198.2664 2.208 194.6184 2.208
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian65.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian65.pgf
new file mode 100644
index 0000000000..b2ab633db9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian65.pgf
@@ -0,0 +1,298 @@
+\m -0.6745 -1.1434
+\l 133.089 -1.1434
+\l 133.089 165.7515
+\l -0.6745 165.7515
+\o
+\i
+\m 130.4624 33.816
+\c 130.4688 35.48 130.3888 37.144 130.1936 38.824
+\c 130.088 39.736 129.9168 40.632 129.72 41.528
+\c 132.9728 43.656 133.088 49.352 131.104 52.152
+\c 128.848 55.352 121.9344 58.504 121.8416 62.584
+\c 121.7472 66.776 126.8592 65.272 126.8592 65.272
+\c 126.8592 65.272 127.6784 70.152 124.0128 71.304
+\c 120.3472 72.472 116.9728 70.104 117.208 65.864
+\c 117.3312 63.736 118.3568 61.432 120.2032 59.448
+\c 123.5664 55.816 128.208 54.28 129.8512 50.76
+\c 131.0688 48.136 130.328 45.544 128.9664 44.2
+\c 127.4048 48.808 124.5696 52.968 120.5728 56.568
+\c 120.5376 56.648 120.4912 56.728 120.416 56.808
+\c 120.3536 56.856 119.9152 57.24 119.1392 57.8
+\c 115.6288 60.648 111.3536 63.112 106.3536 65.096
+\c 93.328 70.264 90.608 75.384 89.6656 79.688
+\c 88.2592 86.136 91.9936 92.776 98.5472 95.464
+\c 102.3344 97.016 106.2592 96.968 109.5968 95.336
+\c 112.9472 93.704 115.4624 90.632 116.504 86.904
+\c 117.4528 83.512 116.7568 79.784 114.6912 77.176
+\c 113.0352 75.08 110.7104 74.008 108.1728 74.12
+\c 105.4592 74.232 103.1728 75.464 101.7312 77.576
+\c 100.4032 79.528 99.976 82.04 100.6448 83.976
+\c 100.8976 84.712 101.1856 85.272 101.4848 85.704
+\l 101.9008 85.928
+\c 103.4416 87.752 104.816 86.424 104.7936 85.08
+\c 104.7696 83.656 105.3728 82.936 106.4816 82.744
+\c 107.5904 82.552 109.472 83.224 109.2528 85.544
+\c 109.0384 87.848 106.1104 89.656 103.056 88.792
+\c 100.2352 87.992 99.2448 84.52 99.2448 84.52
+\l 99.5568 84.68
+\c 99.5184 84.584 99.4784 84.504 99.4416 84.392
+\c 98.632 82.056 99.1072 79.176 100.6784 76.872
+\c 102.3504 74.408 104.9904 72.984 108.12 72.84
+\c 111.0512 72.712 113.7728 73.976 115.6848 76.376
+\c 118.0032 79.304 118.7856 83.464 117.728 87.256
+\c 116.5936 91.32 113.832 94.696 110.1568 96.488
+\c 106.4816 98.28 102.1888 98.328 98.0624 96.648
+\c 90.9344 93.704 86.8816 86.472 88.4224 79.416
+\c 89.8592 72.84 95.0816 68.2 105.8848 63.912
+\c 107.8528 63.128 109.6976 62.264 111.4384 61.336
+\c 109.3632 61.912 106.9664 62.296 104.256 62.296
+\c 104.232 62.296 104.208 62.296 104.1888 62.296
+\c 86.2624 62.248 79.5104 47.64 79.3392 37.816
+\c 79.2688 33.56 79.576 28.952 82.3008 24.232
+\c 85.5008 18.68 91.1312 15.416 97.7472 15.272
+\c 97.9008 15.272 98.048 15.272 98.1936 15.272
+\c 102.9664 15.272 106.904 16.888 109.904 20.088
+\c 114.048 24.52 115.5248 31.24 115.1472 35.624
+\c 114.7536 40.152 113.0544 43.848 110.36 46.056
+\c 108.2976 47.736 105.704 48.456 102.8416 48.136
+\c 101.472 47.976 100.3072 47.608 99.304 47.096
+\l 98.9312 47.144
+\c 98.9312 47.144 94.8448 45.224 93.072 39.832
+\c 91.104 33.848 94.7376 28.216 99.2592 28.152
+\c 103.7824 28.072 105.5888 33.352 104.216 36.648
+\c 102.8416 39.944 100.7392 39.768 100.7392 39.768
+\c 100.7392 39.768 101.1392 37.528 99.1888 37.08
+\c 98.216 36.872 97.2448 37.224 96.6912 37.912
+\c 96.0384 38.744 95.8976 40.008 96.0736 41.032
+\c 96.4 42.904 98.6448 46.376 103.3104 46.664
+\l 102.4032 46.776
+\c 102.5968 46.808 102.7792 46.856 102.9824 46.872
+\c 105.528 47.16 107.7376 46.552 109.5536 45.08
+\c 111.9424 43.112 113.5184 39.624 113.8784 35.512
+\c 114.2352 31.416 112.8512 25.112 108.9728 20.968
+\c 106.1376 17.944 102.3568 16.504 97.776 16.552
+\c 91.6128 16.68 86.376 19.72 83.4032 24.872
+\c 80.9792 29.08 80.5312 33.08 80.6128 37.8
+\c 80.7728 47.112 87.1824 60.984 104.1904 61.016
+\c 104.2128 61.016 104.232 61.016 104.2528 61.016
+\c 111.4448 61.016 116.4688 58.104 118.5232 56.664
+\c 123.1104 52.888 126.2816 48.392 127.8848 43.416
+\c 126.1344 42.488 124.3824 43.08 123.1936 45.8
+\c 121.8416 48.872 120.7344 52.456 117.7888 54.28
+\c 114.8384 56.12 110.0736 54.712 109.8816 51
+\c 109.688 47.336 112.1968 46.376 114.1248 47.144
+\c 114.1248 47.144 113.304 50.184 115.4288 50.952
+\c 117.3136 51.624 118.904 50.472 120.2544 47.384
+\c 121.6704 44.136 122.5632 39.88 127.8224 40.776
+\c 128.0784 40.824 128.3136 40.888 128.544 40.968
+\c 128.7072 40.216 128.8384 39.448 128.928 38.68
+\c 129.1104 37.096 129.1904 35.528 129.1904 33.992
+\c 128.1936 33.816 127.4384 32.952 127.4384 31.896
+\c 127.4384 30.936 128.0912 30.12 128.976 29.864
+\c 128.3312 23.784 126.272 18.104 122.9856 13.432
+\c 119.2656 12.424 116.9632 8.392 112.5824 5.464
+\c 107.3728 1.992 101.2 1.8 101.2 1.8
+\c 103.7072 2.088 105.5888 4.216 106.456 5.944
+\c 107.3248 7.688 106.3632 10.008 101.9232 9.176
+\c 97.4848 8.36 88.176 3.496 81.0384 8.024
+\c 73.9008 12.552 69.848 19.368 69.848 19.368
+\l 69.7504 19.192
+\c 67.7936 22.28 66.9808 24.488 66.9616 24.552
+\c 66.936 24.616 66.896 24.68 66.8512 24.728
+\l 66.8512 29.592
+\l 72.2848 29.592
+\c 72.9232 29.592 73.4416 30.104 73.4416 30.744
+\c 73.4416 31.384 72.9232 31.896 72.2848 31.896
+\l 66.8512 31.896
+\l 66.8512 43.16
+\c 68.1424 43.464 69.1072 44.6 69.1072 45.992
+\c 69.1072 47.368 68.1424 48.52 66.8512 48.808
+\l 66.8512 55.56
+\l 67.0592 53.72
+\c 67.0592 58.84 68.6896 64.36 71.4736 66.712
+\c 72.8256 67.848 74.1536 67.768 74.4848 67.016
+\c 74.8848 66.12 76.1792 63.352 78.728 64.504
+\c 81.6384 65.816 80.4816 71.016 76.8 71.064
+\c 73.176 71.112 67.0624 66.632 67.0624 59.8
+\c 66.992 59.576 66.9232 59.336 66.8512 59.112
+\l 66.8512 71.352
+\l 69.3888 75.896
+\c 69.3888 76.584 67.776 78.936 66.8512 80.216
+\l 66.8512 99.304
+\c 68.2112 99.592 69.2816 100.728 69.3888 102.184
+\c 69.5088 103.8 68.3952 105.208 66.8512 105.528
+\l 66.8512 114.184
+\l 67.0608 114.136
+\c 67.0608 114.136 66.936 117.448 68.1616 119.544
+\c 70.0672 122.792 72.6592 123.88 75.128 123.688
+\c 79.1824 123.368 77.8384 117.368 77.8384 117.368
+\c 77.8384 117.368 84.0224 119.752 82.2224 124.84
+\c 80.408 129.96 73.4656 128.632 70.4256 125.928
+\c 68.496 124.216 67.4176 122.392 66.8512 120.568
+\l 66.8512 128.728
+\l 68.6144 132.424
+\l 66.8512 137.096
+\l 66.8512 165.128
+\c 66.8512 165.464 66.5664 165.752 66.2144 165.752
+\c 65.8608 165.752 65.576 165.464 65.576 165.128
+\l 65.576 137.096
+\l 63.8128 132.424
+\l 65.576 128.728
+\l 65.576 120.52
+\c 65.016 122.376 63.9328 124.2 61.9888 125.928
+\c 58.9488 128.632 52.0064 129.96 50.1952 124.84
+\c 48.3952 119.752 54.576 117.368 54.576 117.368
+\c 54.576 117.368 53.2352 123.368 57.2864 123.688
+\c 59.7552 123.88 62.3488 122.792 64.256 119.544
+\c 65.48 117.448 65.352 114.136 65.352 114.136
+\l 65.576 114.184
+\l 65.576 105.528
+\c 64.2176 105.24 63.1472 104.104 63.04 102.648
+\c 62.9184 101.032 64.0336 99.624 65.576 99.304
+\l 65.576 80.216
+\c 64.6528 78.936 63.04 76.584 63.04 75.896
+\l 65.576 71.352
+\l 65.576 59.064
+\c 65.5024 59.304 65.4272 59.56 65.352 59.8
+\c 65.352 66.632 59.2384 71.112 55.616 71.064
+\c 51.9328 71.016 50.776 65.816 53.6864 64.504
+\c 56.2368 63.352 57.5296 66.12 57.9312 67.016
+\c 58.264 67.768 59.5888 67.848 60.9392 66.712
+\c 63.7264 64.36 65.3536 58.84 65.3536 53.72
+\l 65.576 55.688
+\l 65.576 48.808
+\c 64.2864 48.52 63.3216 47.368 63.3216 45.992
+\c 63.3216 44.6 64.2864 43.464 65.576 43.16
+\l 65.576 31.896
+\l 60.144 31.896
+\c 59.504 31.896 58.9888 31.384 58.9888 30.744
+\c 58.9888 30.104 59.504 29.592 60.144 29.592
+\l 65.576 29.592
+\l 65.576 24.744
+\c 65.5248 24.696 65.4816 24.616 65.456 24.552
+\c 65.4352 24.488 64.624 22.264 62.6656 19.192
+\l 62.568 19.368
+\c 62.568 19.368 58.5168 12.552 51.3792 8.024
+\c 44.2368 3.496 34.9312 8.36 30.4928 9.176
+\c 26.0544 10.008 25.0912 7.688 25.9584 5.944
+\c 26.8272 4.216 28.7072 2.088 31.216 1.8
+\c 31.216 1.8 25.0416 1.992 19.8336 5.464
+\c 15.4544 8.392 13.1472 12.424 9.4304 13.432
+\c 6.144 18.104 4.0848 23.784 3.44 29.864
+\c 4.3248 30.12 4.9808 30.936 4.9808 31.896
+\c 4.9808 32.952 4.2208 33.816 3.224 33.992
+\c 3.224 35.528 3.304 37.096 3.488 38.68
+\c 3.5792 39.448 3.712 40.216 3.8704 40.968
+\c 4.104 40.888 4.3392 40.824 4.592 40.776
+\c 9.8544 39.88 10.7456 44.136 12.1632 47.384
+\c 13.512 50.472 15.104 51.624 16.9856 50.952
+\c 19.112 50.184 18.2912 47.144 18.2912 47.144
+\c 20.2192 46.376 22.728 47.336 22.536 51
+\c 22.3408 54.712 17.5792 56.12 14.6256 54.28
+\c 11.6816 52.456 10.5728 48.872 9.224 45.8
+\c 8.0336 43.08 6.2784 42.488 4.5312 43.416
+\c 6.1376 48.408 9.3232 52.904 13.9312 56.696
+\c 16.008 58.152 21.0064 61.016 28.16 61.016
+\c 28.1824 61.016 28.2032 61.016 28.2256 61.016
+\c 45.2352 60.984 51.6448 47.112 51.8016 37.8
+\c 51.8816 33.08 51.44 29.08 49.0128 24.872
+\c 46.04 19.72 40.8 16.68 34.64 16.552
+\c 30.0608 16.488 26.2768 17.944 23.4416 20.968
+\c 19.5664 25.112 18.1824 31.416 18.5376 35.512
+\c 18.8944 39.624 20.4736 43.112 22.8624 45.08
+\c 24.6768 46.552 26.8832 47.16 29.432 46.872
+\c 29.6368 46.856 29.8224 46.808 30.0176 46.776
+\l 29.104 46.664
+\c 33.7712 46.376 36.0144 42.904 36.3408 41.032
+\c 36.5152 40.008 36.3808 38.744 35.7248 37.912
+\c 35.1712 37.224 34.2 36.872 33.2304 37.08
+\c 31.2768 37.528 31.6736 39.768 31.6736 39.768
+\c 31.6736 39.768 29.576 39.944 28.2016 36.648
+\c 26.8272 33.352 28.6368 28.072 33.1584 28.152
+\c 37.6784 28.216 41.3136 33.848 39.3424 39.832
+\c 37.5696 45.224 33.4832 47.144 33.4832 47.144
+\l 33.1152 47.096
+\c 32.1072 47.608 30.9408 47.976 29.5744 48.136
+\c 26.7152 48.456 24.1168 47.736 22.056 46.056
+\c 19.3632 43.848 17.6608 40.152 17.2688 35.624
+\c 16.8912 31.24 18.3696 24.52 22.5136 20.088
+\c 25.512 16.888 29.4496 15.272 34.2208 15.272
+\c 34.3696 15.272 34.52 15.272 34.6672 15.272
+\c 41.2832 15.416 46.9152 18.68 50.1152 24.232
+\c 52.8384 28.952 53.1472 33.56 53.0736 37.816
+\c 52.9072 47.64 46.1536 62.248 28.2272 62.296
+\c 28.2048 62.296 28.1824 62.296 28.16 62.296
+\c 25.4496 62.296 23.0544 61.912 20.9808 61.336
+\c 22.7184 62.264 24.56 63.128 26.5296 63.912
+\c 37.3328 68.2 42.5536 72.84 43.992 79.416
+\c 45.5344 86.472 41.4784 93.704 34.352 96.648
+\c 30.2272 98.328 25.9328 98.28 22.2592 96.488
+\c 18.584 94.696 15.824 91.32 14.6864 87.256
+\c 13.6288 83.464 14.4112 79.304 16.728 76.376
+\c 18.6448 73.976 21.36 72.712 24.2976 72.84
+\c 27.4224 72.984 30.064 74.408 31.7376 76.872
+\c 33.3072 79.176 33.7824 82.056 32.976 84.392
+\c 32.9392 84.504 32.8976 84.584 32.8576 84.68
+\l 33.1696 84.52
+\c 33.1696 84.52 32.1808 87.992 29.36 88.792
+\c 26.3056 89.656 23.3792 87.848 23.1616 85.544
+\c 22.9456 83.224 24.8272 82.552 25.9344 82.744
+\c 27.0448 82.936 27.6464 83.656 27.624 85.08
+\c 27.5984 86.424 28.9712 87.752 30.5184 85.928
+\l 30.9328 85.704
+\c 31.2304 85.272 31.52 84.712 31.7712 83.976
+\c 32.4384 82.04 32.0128 79.528 30.6864 77.576
+\c 29.2448 75.464 26.9568 74.232 24.2448 74.12
+\c 21.6848 74.008 19.3808 75.096 17.7264 77.176
+\c 15.6576 79.784 14.9648 83.512 15.9136 86.904
+\c 16.952 90.632 19.4672 93.704 22.8192 95.336
+\c 26.1616 96.968 30.0832 97.016 33.8672 95.464
+\c 40.4224 92.776 44.1584 86.136 42.7488 79.688
+\c 41.8064 75.384 39.0864 70.264 26.0608 65.096
+\c 21.064 63.112 16.7872 60.648 13.272 57.784
+\c 12.4992 57.24 12.0624 56.856 12 56.808
+\c 11.9264 56.728 11.8768 56.648 11.8416 56.568
+\c 7.8464 52.968 5.008 48.808 3.4496 44.2
+\c 2.0896 45.544 1.3472 48.136 2.5648 50.76
+\c 4.2048 54.28 8.8528 55.816 12.2128 59.448
+\c 14.0576 61.432 15.0848 63.736 15.2048 65.864
+\c 15.4416 70.104 12.0672 72.472 8.4016 71.304
+\c 4.736 70.152 5.5568 65.272 5.5568 65.272
+\c 5.5568 65.272 10.6688 66.776 10.5728 62.584
+\c 10.4832 58.504 3.568 55.352 1.3136 52.152
+\c -0.6736 49.352 -0.5552 43.656 2.6992 41.528
+\c 2.4992 40.632 2.3296 39.736 2.224 38.824
+\c 2.0288 37.144 1.9472 35.48 1.9552 33.816
+\c 1.2368 33.48 0.7328 32.744 0.7328 31.896
+\c 0.7328 30.984 1.328 30.2 2.152 29.912
+\c 2.7584 23.944 4.6864 18.36 7.7488 13.672
+\c 7.5488 13.672 7.3552 13.688 7.1472 13.672
+\c 1.9392 13.336 1.1184 8.552 2.3728 5.656
+\c 3.6272 2.76 5.7488 2.376 5.7488 2.376
+\c 5.7488 2.376 6.6656 6.152 9.704 6.344
+\c 12.744 6.536 14.0464 4.504 18.7232 2.68
+\c 22.1216 1.336 30.4416 -1.144 39.5616 0.6
+\c 39.5616 0.6 40.368 0.84 41.6992 1.352
+\c 43.248 1.8 44.6672 2.344 45.9392 2.936
+\c 57.6112 8.296 63.3888 17.432 65.576 21.736
+\l 65.576 7.432
+\c 64.1248 7.128 63.032 5.848 63.032 4.312
+\c 63.032 2.552 64.456 1.128 66.2144 1.128
+\c 67.9712 1.128 69.3968 2.552 69.3968 4.312
+\c 69.3968 5.848 68.304 7.128 66.8512 7.432
+\l 66.8512 21.704
+\c 69.0496 17.384 74.8256 8.28 86.4736 2.936
+\c 87.7472 2.344 89.1664 1.8 90.7168 1.352
+\c 92.048 0.84 92.856 0.6 92.856 0.6
+\c 101.9728 -1.144 110.2944 1.336 113.6912 2.68
+\c 118.3696 4.504 119.6704 6.536 122.7136 6.344
+\c 125.7504 6.152 126.6656 2.376 126.6656 2.376
+\c 126.6656 2.376 128.7888 2.76 130.0448 5.656
+\c 131.2976 8.552 130.4784 13.336 125.2656 13.672
+\c 125.0592 13.688 124.8656 13.672 124.6656 13.672
+\c 127.728 18.36 129.656 23.944 130.2624 29.912
+\c 131.088 30.2 131.6816 30.984 131.6816 31.896
+\c 131.6816 32.744 131.1824 33.48 130.4624 33.816
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian66.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian66.pgf
new file mode 100644
index 0000000000..af76c00411
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian66.pgf
@@ -0,0 +1,461 @@
+\m 171.1936 18.256
+\c 166.7328 21.088 158.792 22.368 149.8832 17.456
+\c 146.2512 15.44 143.0976 13.424 140.0448 11.472
+\c 131.8976 6.272 125.4592 2.144 115.6896 1.872
+\c 96.8496 2.4 92.1088 17.408 91.5008 19.68
+\c 91.5008 22 91.5008 27.472 91.5008 30.096
+\c 91.5008 33.472 95.6688 38.832 95.6688 38.832
+\c 95.6688 38.832 90.5072 43.792 90.5072 46.768
+\c 90.5072 49.744 90.5072 56.496 90.5072 66.416
+\c 90.5072 76.336 107.5744 89.232 111.744 92.816
+\c 115.9104 96.384 112.7344 98.176 111.3456 95.792
+\c 109.9584 93.408 105.9872 89.632 103.208 89.632
+\c 100.4304 89.632 95.0736 89.632 95.0736 89.632
+\c 95.0736 89.632 95.0736 89.632 94.08 86.256
+\c 93.088 82.88 89.912 84.08 90.1088 86.256
+\c 90.3088 88.448 94.8736 93.6 94.8736 93.6
+\c 94.8736 93.6 89.5136 98.368 89.5136 109.28
+\c 89.5136 120.192 89.7136 123.168 95.8656 130.32
+\c 89.912 133.696 88.4928 146.608 88.4928 146.608
+\c 88.4928 146.608 87.0736 133.696 81.1184 130.32
+\c 87.2704 123.168 87.4704 120.192 87.4704 109.28
+\c 87.4704 98.368 82.112 93.6 82.112 93.6
+\c 82.112 93.6 86.6768 88.448 86.8752 86.256
+\c 87.0736 84.08 83.8976 82.88 82.904 86.256
+\c 81.912 89.632 81.912 89.632 81.912 89.632
+\c 81.912 89.632 76.5552 89.632 73.776 89.632
+\c 70.9984 89.632 67.0272 93.408 65.6384 95.792
+\c 64.2512 98.176 61.0736 96.384 65.2416 92.816
+\c 69.4096 89.232 86.4768 76.336 86.4768 66.416
+\c 86.4768 56.496 86.4768 49.744 86.4768 46.768
+\c 86.4768 43.792 81.3168 38.832 81.3168 38.832
+\c 81.3168 38.832 85.4848 33.472 85.4848 30.096
+\c 85.4848 27.472 85.4848 22 85.4848 19.68
+\c 84.8752 17.408 80.136 2.4 61.296 1.872
+\c 51.5248 2.144 45.0896 6.272 36.9392 11.472
+\c 33.8896 13.424 30.7328 15.44 27.1008 17.456
+\c 18.1936 22.368 10.2528 21.088 5.7904 18.256
+\c 2.24 16 0.3488 12.56 0.5984 8.816
+\c 0.9472 3.568 5.7232 0.592 10.2592 0.352
+\c 14.4272 0.144 17.5984 2.16 18.1504 5.36
+\c 18.84 9.408 16.6768 11.664 14.424 12.432
+\c 13.3456 12.8 12.2304 12.864 11.2384 12.656
+\c 11.2384 12.656 11.224 12.688 11.224 12.688
+\c 11.2032 12.672 11.1984 12.672 11.176 12.656
+\c 9.9584 12.4 8.9344 11.76 8.424 10.8
+\c 8.0896 10.176 7.9472 9.584 7.9472 9.024
+\c 7.9472 7.76 8.7216 6.72 9.7312 6.128
+\c 10.8624 5.472 12.024 5.536 12.4896 6.288
+\c 12.6592 6.56 12.7296 6.816 12.7296 7.056
+\c 12.7296 7.776 12.0576 8.336 11.6512 8.656
+\c 11.336 8.912 11.0112 9.184 10.8464 9.472
+\c 10.776 9.6 10.7424 9.744 10.7424 9.904
+\c 10.7424 10.016 10.7584 10.128 10.7936 10.24
+\c 10.8688 10.496 11.128 10.816 11.5872 11.136
+\c 12.3264 11.28 13.136 11.296 13.9408 11.024
+\c 14.9808 10.672 17.336 9.424 16.6816 5.616
+\c 16.168 2.624 12.9424 1.712 10.336 1.84
+\c 6.5744 2.048 2.8224 4.112 2.5152 8.688
+\c 2.304 11.872 3.9472 14.816 7.024 16.768
+\c 11.1264 19.392 18.0448 20.752 26.3824 16.144
+\c 29.9712 14.176 33.1056 12.16 36.1392 10.224
+\c 36.4512 10.016 36.7648 9.824 37.0784 9.616
+\c 34.1728 10 27.9232 10.416 25.7248 7.376
+\c 22.824 3.36 25.576 -0.064 27.2144 0
+\c 28.4048 0.08 26.3744 7.968 33.0192 7.968
+\c 36.9728 7.968 40.1584 7.152 42.0688 6.512
+\c 47.9856 2.992 54.0192 0.24 61.688 0.016
+\c 78.7088 0.512 86.1904 11.856 88.4928 16.384
+\c 90.7936 11.856 98.2752 0.512 115.2992 0.016
+\c 122.968 0.24 128.9984 2.992 134.9152 6.512
+\c 136.824 7.152 140.0112 7.968 143.968 7.968
+\c 150.6096 7.968 148.5808 0.08 149.7712 0
+\c 151.408 -0.064 154.1632 3.36 151.2592 7.376
+\c 149.0608 10.416 142.8128 10 139.9072 9.616
+\c 140.2208 9.824 140.5328 10.016 140.8464 10.224
+\c 143.88 12.16 147.0128 14.176 150.6032 16.144
+\c 158.9408 20.752 165.8592 19.392 169.96 16.768
+\c 173.0384 14.816 174.68 11.872 174.4688 8.688
+\c 174.1632 4.112 170.4112 2.048 166.648 1.84
+\c 164.0416 1.712 160.8176 2.624 160.3024 5.616
+\c 159.6496 9.424 162.0032 10.672 163.0448 11.024
+\c 163.8496 11.296 164.6592 11.28 165.3968 11.136
+\c 165.856 10.816 166.1152 10.496 166.192 10.24
+\c 166.2272 10.128 166.2416 10.016 166.2416 9.904
+\c 166.2416 9.744 166.208 9.6 166.1376 9.472
+\c 165.9728 9.184 165.648 8.912 165.3328 8.656
+\c 164.9264 8.336 164.256 7.776 164.256 7.056
+\c 164.256 6.816 164.3248 6.56 164.4976 6.288
+\c 164.9616 5.536 166.1216 5.472 167.2528 6.128
+\c 168.264 6.72 169.0384 7.76 169.0384 9.024
+\c 169.0384 9.584 168.8928 10.176 168.5616 10.8
+\c 168.0512 11.76 167.0272 12.4 165.808 12.656
+\c 165.7872 12.672 165.7824 12.672 165.76 12.688
+\c 165.76 12.688 165.7472 12.656 165.7456 12.656
+\c 164.7536 12.864 163.64 12.8 162.5616 12.432
+\c 160.3072 11.664 158.1456 9.408 158.8352 5.36
+\c 159.3872 2.16 162.5568 0.144 166.7248 0.352
+\c 171.2608 0.592 176.0384 3.568 176.3872 8.816
+\c 176.6352 12.56 174.744 16 171.1936 18.256
+\o
+\s
+\m 171.0304 31.408
+\c 171.0304 29.728 172.3648 28.368 174.008 28.368
+\c 175.6528 28.368 176.984 29.728 176.984 31.408
+\c 176.984 33.104 175.6528 34.464 174.008 34.464
+\c 172.3648 34.464 171.0304 33.104 171.0304 31.408
+\o
+\s
+\m 111.8896 127.792
+\c 113.536 127.792 114.8672 129.152 114.8672 130.832
+\c 114.8672 132.528 113.536 133.888 111.8896 133.888
+\c 110.2464 133.888 108.9136 132.528 108.9136 130.832
+\c 108.9136 129.152 110.2464 127.792 111.8896 127.792
+\o
+\s
+\m 126.5328 74.88
+\c 125.6384 74.688 124.5824 74.992 123.4784 75.76
+\c 120.9088 77.536 119.2176 78.512 116.9712 76.272
+\c 115.7104 75.008 116.8768 73.408 117.8144 72.112
+\c 119.1552 70.256 119.5824 69.36 118.7584 68.528
+\c 118.2352 67.952 117.1344 68.448 115.7408 69.168
+\c 114.5312 69.808 113.3888 70.4 112.52 69.808
+\c 111.2896 68.992 104.8848 60.768 103.6128 59.136
+\c 103.1984 58.432 102.968 57.952 103.2496 57.52
+\l 103.4976 57.136
+\l 103.9792 57.168
+\c 104.8512 57.248 106.5216 59.888 106.96 60.992
+\c 109.9104 64.72 112.776 68.192 113.3456 68.576
+\c 113.5792 68.624 114.504 68.144 115.056 67.856
+\c 116.5264 67.088 118.5408 66.048 119.84 67.504
+\c 121.6688 69.328 120.136 71.44 119.0176 72.992
+\c 118.224 74.08 117.688 74.88 118.024 75.216
+\c 119.3136 76.496 119.9152 76.416 122.6304 74.528
+\c 124.0832 73.536 125.5408 73.152 126.8464 73.424
+\c 127.9904 73.68 128.9584 74.416 129.6464 75.552
+\c 130.8944 77.648 128.9856 79.312 127.3008 80.8
+\l 125.9632 82.032
+\c 125.4432 82.544 125.3824 83.12 125.7776 83.728
+\c 126.2896 84.528 127.2784 84.944 127.7552 84.768
+\c 129.6672 84.048 129.9536 84.352 133.4496 88.016
+\l 134.5056 89.12
+\l 135.6576 90.336
+\c 140.0944 95.024 147.52 102.88 152.9584 100.848
+\c 154.7872 100.16 155.1376 98.752 155.1376 97.776
+\c 155.1376 97.408 155.0896 97.104 155.0496 96.912
+\c 154.7424 95.44 153.608 93.984 152.2176 93.952
+\c 151.5648 94.24 151.2944 94.64 150.9984 95.12
+\c 150.6224 95.744 150.1552 96.512 148.8704 96.896
+\c 148.2144 97.088 147.8352 96.768 147.7008 96.624
+\c 147.376 96.272 147.3328 95.712 147.5792 95.12
+\c 148.0832 93.888 149.64 92.592 151.9872 92.464
+\c 154.3312 92.336 156.064 94.496 156.5072 96.608
+\c 157.04 99.136 155.8512 101.344 153.4816 102.24
+\c 147.1168 104.624 139.5696 96.64 134.576 91.36
+\l 133.4336 90.144
+\l 132.3728 89.04
+\c 129.2704 85.792 129.2704 85.792 128.3312 86.144
+\c 126.9328 86.672 125.2832 85.712 124.528 84.544
+\c 123.7456 83.328 123.8896 82 124.9088 80.976
+\l 126.3184 79.68
+\c 128.128 78.08 128.92 77.248 128.368 76.32
+\c 127.9008 75.536 127.264 75.04 126.5328 74.88
+\o
+\s
+\m 17.3984 40.464
+\c 20.5856 40.4 22.5856 40.912 23.912 41.584
+\c 22.9584 40.416 22.0896 38.896 22.0896 36.832
+\c 22.0896 35.648 22.3744 34.288 23.0896 32.752
+\c 25.9936 26.544 33.8032 24.88 34.1344 24.8
+\l 35.1312 24.608
+\l 35.024 25.616
+\c 35.0112 25.712 33.9456 36.448 39.5152 42.976
+\c 42.1488 46.064 45.8768 47.76 50.5952 48.016
+\c 60.3728 48.528 65.6624 44.704 68.3776 41.392
+\c 71.9472 37.04 73.2816 30.88 71.864 25.312
+\c 70.5824 20.288 66.1968 16.112 60.9552 14.928
+\c 56.2416 13.872 51.72 15.44 48.5488 19.264
+\c 45.9648 22.368 45.5168 26.256 47.3488 29.664
+\c 49.1872 33.088 52.8352 35.12 56.4272 34.72
+\c 59.792 34.352 61.1424 32.144 61.6816 30.736
+\c 61.672 30.56 61.6768 30.4 61.6768 30.24
+\c 61.6768 28.368 61.0704 27.296 60.464 26.912
+\c 60.0048 26.624 59.4608 26.64 58.8512 26.976
+\l 58.0896 27.424
+\c 57.3584 27.888 56.7296 28.288 56.0304 28.064
+\c 55.5952 27.92 55.2688 27.584 55.032 27.008
+\c 54.4816 25.712 55.024 24.256 56.4192 23.328
+\c 57.9216 22.32 60.3536 22.032 62.1392 23.824
+\c 63.696 25.376 64.1216 28.352 63.1776 31.024
+\c 62.1472 33.968 59.7472 35.84 56.592 36.192
+\c 52.4048 36.656 48.1632 34.32 46.0352 30.368
+\c 43.9072 26.4 44.4192 21.904 47.4048 18.304
+\c 50.9488 14.048 56.0048 12.288 61.2832 13.488
+\c 67.0576 14.784 71.8896 19.392 73.3056 24.96
+\c 74.8384 30.96 73.3904 37.632 69.528 42.336
+\c 66.5952 45.904 60.9168 50.048 50.5168 49.504
+\c 45.3696 49.216 41.2864 47.36 38.3776 43.936
+\c 34.0688 38.88 33.4336 31.76 33.4336 28
+\c 33.4336 27.408 33.4496 26.928 33.4704 26.528
+\c 31.408 27.152 26.4736 29.024 24.4384 33.392
+\c 23.8192 34.72 23.568 35.872 23.568 36.864
+\c 23.568 39.52 25.3328 41.12 26.6224 42.272
+\c 27.3584 42.944 27.9008 43.44 27.9008 44.064
+\c 27.9008 44.096 27.9008 44.128 27.8976 44.16
+\c 27.8752 44.4 27.7616 44.752 27.336 45.024
+\c 26.2544 45.696 25.56 44.912 25.1024 44.4
+\c 24.3008 43.504 22.8048 41.84 17.4304 41.952
+\c 10.6368 42.112 5.7776 45.52 4.1536 51.088
+\c 7.7616 50.736 9.2048 51.968 10.8896 53.552
+\c 12.1072 54.704 13.4896 56 16.136 57.2
+\c 20.224 59.072 21.9584 57.312 23.1088 56.144
+\c 23.6336 55.616 24.0848 55.152 24.7088 55.248
+\c 25.08 55.296 25.3808 55.52 25.6064 55.936
+\c 26.3424 57.264 24.8832 58.176 23.4704 59.056
+\c 21.5424 60.272 19.1408 61.792 19.3472 64.576
+\c 19.4928 66.528 20.1072 69.216 22.2176 70.912
+\c 23.9328 72.288 26.4144 72.8 29.5328 72.496
+\c 29.0512 71.024 28.752 69.648 28.752 68.464
+\c 28.752 67.072 29.0784 65.872 29.7296 64.832
+\c 32.0336 61.152 38.0896 59.92 47.1168 59.12
+\c 62.3872 57.776 71.8592 52.864 75.2704 44.496
+\l 75.6928 43.472
+\l 76.4864 44.256
+\c 80.4272 48.208 80.6464 60.544 75.0208 70.544
+\c 73.1616 73.856 70.2016 77.584 67.072 81.536
+\c 61.3648 88.736 54.8944 96.896 55.2688 102.88
+\c 55.5504 107.392 58.3552 111.52 62.5904 113.68
+\c 66.5632 115.696 70.928 115.536 74.568 113.216
+\c 78.9888 110.4 79.6624 106.48 78.824 103.728
+\c 77.9168 100.768 75.3376 98.832 72.408 98.912
+\c 69.6848 98.992 67.8592 100.208 67.4048 102.256
+\c 67.3712 102.416 67.3744 102.56 67.3584 102.704
+\c 67.4112 102.704 67.5728 102.688 67.5728 102.688
+\c 67.7152 105.12 68.9712 105.568 71.3936 105.568
+\c 72.3584 105.568 72.712 105.952 72.8416 106.288
+\c 72.9984 106.688 72.8672 107.136 72.4928 107.472
+\c 71.704 108.192 69.8896 108.464 68.0848 107.568
+\c 66.3792 106.72 65.4416 104.24 65.952 101.952
+\c 66.5568 99.2 68.9568 97.52 72.3664 97.424
+\c 75.9728 97.328 79.1392 99.68 80.2464 103.296
+\c 80.3712 103.712 80.4704 104.144 80.536 104.592
+\c 81.8704 106.32 82.5696 108.816 82.5696 111.712
+\c 82.5696 112.816 82.4672 113.984 82.2576 115.184
+\c 81.1888 121.36 77.6144 126.928 72.704 130.368
+\c 82.6752 139.904 86.8368 150.496 88.4928 158.832
+\c 90.1472 150.496 94.3104 139.904 104.28 130.368
+\c 99.3696 126.928 95.7968 121.36 94.7264 115.184
+\c 94.5168 113.984 94.4144 112.816 94.4144 111.712
+\c 94.4144 108.816 95.1136 106.32 96.4496 104.592
+\c 96.5136 104.144 96.6128 103.712 96.7376 103.296
+\c 97.8448 99.68 101.0112 97.328 104.6208 97.424
+\c 108.0304 97.52 110.4272 99.2 111.0336 101.952
+\c 111.544 104.24 110.6064 106.72 108.9008 107.568
+\c 107.0928 108.464 105.28 108.192 104.4896 107.472
+\c 104.1168 107.136 103.9872 106.688 104.144 106.288
+\c 104.272 105.952 104.6272 105.568 105.5904 105.568
+\c 108.0128 105.568 109.2688 105.12 109.4128 102.688
+\c 109.4128 102.688 109.5728 102.704 109.6272 102.704
+\c 109.6112 102.56 109.6128 102.416 109.5792 102.256
+\c 109.1264 100.208 107.3008 98.992 104.5776 98.912
+\c 101.648 98.832 99.0688 100.768 98.16 103.728
+\c 97.3216 106.48 97.9968 110.4 102.4176 113.216
+\c 106.0576 115.536 110.4224 115.696 114.3952 113.68
+\c 118.6304 111.52 121.4336 107.392 121.7168 102.88
+\c 122.0896 96.896 115.6224 88.736 109.912 81.536
+\c 106.7824 77.584 103.824 73.856 101.9648 70.544
+\c 96.3376 60.544 96.5568 48.208 100.5008 44.256
+\l 101.2928 43.472
+\l 101.7152 44.496
+\c 105.1248 52.864 114.5968 57.776 129.8672 59.12
+\c 138.8944 59.92 144.9536 61.152 147.256 64.832
+\c 147.9072 65.872 148.2336 67.072 148.2336 68.464
+\c 148.2336 69.648 147.9328 71.024 147.4512 72.496
+\c 150.5696 72.8 153.0528 72.288 154.768 70.912
+\c 156.8784 69.216 157.4928 66.528 157.6368 64.576
+\c 157.8448 61.792 155.4432 60.272 153.5136 59.056
+\c 152.1024 58.176 150.6416 57.264 151.3776 55.936
+\c 151.6048 55.52 151.904 55.296 152.2752 55.248
+\c 152.9008 55.152 153.3536 55.616 153.8768 56.144
+\c 155.024 57.312 156.76 59.072 160.8496 57.2
+\c 163.4976 56 164.8768 54.704 166.0928 53.552
+\c 167.7792 51.968 169.224 50.736 172.8304 51.088
+\c 171.2064 45.52 166.3472 42.112 159.5552 41.952
+\c 154.1792 41.84 152.6848 43.504 151.8816 44.4
+\c 151.424 44.912 150.7296 45.696 149.648 45.024
+\c 149.224 44.752 149.1088 44.4 149.0896 44.16
+\c 149.0864 44.128 149.0848 44.096 149.0848 44.064
+\c 149.0848 43.44 149.6272 42.944 150.3632 42.272
+\c 151.6512 41.12 153.4176 39.52 153.4176 36.864
+\c 153.4176 35.872 153.168 34.72 152.5456 33.392
+\c 150.512 29.024 145.576 27.152 143.5152 26.528
+\c 143.5344 26.928 143.552 27.408 143.552 28
+\c 143.552 31.76 142.9168 38.88 138.608 43.936
+\c 135.6992 47.36 131.616 49.216 126.4688 49.504
+\c 116.0672 50.048 110.3888 45.904 107.4576 42.336
+\c 103.5936 37.632 102.1472 30.96 103.68 24.96
+\c 105.0928 19.392 109.9264 14.784 115.7024 13.488
+\c 120.9792 12.288 126.0368 14.048 129.5808 18.304
+\c 132.5648 21.904 133.0768 26.4 130.9488 30.368
+\c 128.824 34.32 124.5808 36.656 120.3936 36.192
+\c 117.2368 35.84 114.8368 33.968 113.808 31.024
+\c 112.8624 28.352 113.2896 25.376 114.8448 23.824
+\c 116.6304 22.032 119.064 22.32 120.568 23.328
+\c 121.9584 24.256 122.504 25.712 121.9552 27.008
+\c 121.7152 27.584 121.3888 27.92 120.9552 28.064
+\c 120.2544 28.288 119.624 27.888 118.8944 27.424
+\l 118.1344 26.976
+\c 117.5248 26.64 116.9808 26.624 116.52 26.912
+\c 115.9152 27.296 115.3072 28.368 115.3072 30.24
+\c 115.3072 30.4 115.312 30.56 115.3216 30.736
+\c 115.8432 32.144 117.192 34.352 120.5568 34.72
+\c 124.1488 35.12 127.7968 33.088 129.6368 29.664
+\c 131.4688 26.256 131.0208 22.368 128.4368 19.264
+\c 125.264 15.44 120.7424 13.872 116.0304 14.928
+\c 110.7872 16.112 106.4032 20.288 105.12 25.312
+\c 103.7024 30.88 105.0384 37.04 108.608 41.392
+\c 111.3216 44.704 116.6112 48.528 126.3888 48.016
+\c 131.1088 47.76 134.8368 46.064 137.4704 42.976
+\c 143.0384 36.448 141.9728 25.712 141.9632 25.616
+\l 141.8528 24.608
+\l 142.8512 24.8
+\c 143.1808 24.88 150.9904 26.544 153.8944 32.752
+\c 154.6096 34.288 154.8944 35.648 154.8944 36.832
+\c 154.8944 38.896 154.0272 40.416 153.0736 41.584
+\c 154.4 40.912 156.3984 40.4 159.5872 40.464
+\c 167.5264 40.64 173.1344 44.88 174.5872 51.776
+\l 174.8128 52.848
+\l 173.7344 52.656
+\c 169.912 52 168.9184 52.944 167.1136 54.64
+\c 165.8784 55.808 164.3376 57.248 161.4688 58.56
+\c 159.3952 59.504 157.8048 59.6 156.5184 59.344
+\c 157.9104 60.48 159.1392 62.016 159.1392 64.224
+\c 159.1392 64.384 159.1328 64.528 159.1216 64.688
+\c 158.8832 67.904 157.7008 70.464 155.7008 72.08
+\c 153.4864 73.856 150.3472 74.464 146.368 73.904
+\l 145.4464 73.776
+\l 145.776 72.896
+\c 146.4224 71.2 146.7456 69.728 146.7456 68.48
+\c 146.7456 67.36 146.4944 66.416 145.9936 65.616
+\c 144.0272 62.48 138.0704 61.344 129.7376 60.608
+\c 114.5728 59.264 104.9344 54.4 100.9264 46.192
+\c 99.7648 47.952 99.1024 50.736 99.1024 54.08
+\c 99.1024 58.88 100.392 64.72 103.2624 69.824
+\c 105.064 73.024 107.9856 76.704 111.08 80.608
+\c 117.0528 88.144 123.2208 95.936 123.2208 102.368
+\c 123.2208 102.576 123.2144 102.768 123.2016 102.976
+\c 122.888 108 119.7712 112.624 115.0688 115.008
+\c 110.616 117.28 105.712 117.088 101.6208 114.48
+\c 98.5104 112.496 97.016 110 96.5376 107.632
+\c 95.8608 109.616 95.7152 112.176 96.192 114.928
+\c 97.2464 121.024 100.8352 126.544 105.792 129.696
+\l 106.6048 130.208
+\l 105.8976 130.864
+\c 93.7136 142.176 90.1424 155.152 89.2368 163.744
+\c 89.4368 165.696 89.5072 167.44 89.5072 168.88
+\c 89.5072 171.792 89.3824 172.576 89.2272 173.6
+\c 89.072 174.624 88.1376 175.12 87.7584 173.6
+\c 87.3776 172.08 87.4768 171.792 87.4768 168.88
+\c 87.4768 167.44 87.5472 165.696 87.7472 163.744
+\c 86.8432 155.152 83.272 142.176 71.0864 130.864
+\l 70.3792 130.208
+\l 71.1936 129.696
+\c 76.1488 126.544 79.7376 121.024 80.792 114.928
+\c 81.2688 112.176 81.1248 109.616 80.4464 107.632
+\c 79.9696 110 78.4752 112.496 75.3664 114.48
+\c 71.272 117.088 66.3696 117.28 61.9152 115.008
+\c 57.2144 112.624 54.0976 108 53.7824 102.976
+\c 53.7696 102.768 53.7632 102.576 53.7632 102.368
+\c 53.7632 95.936 59.9328 88.144 65.904 80.608
+\c 68.9984 76.704 71.92 73.024 73.7216 69.824
+\c 76.5936 64.72 77.8816 58.88 77.8816 54.08
+\c 77.8816 50.736 77.2192 47.952 76.0576 46.192
+\c 72.0496 54.4 62.4112 59.264 47.248 60.608
+\c 38.9136 61.344 32.9584 62.48 30.9904 65.616
+\c 30.4896 66.416 30.24 67.36 30.24 68.48
+\c 30.24 69.728 30.5632 71.2 31.208 72.896
+\l 31.5392 73.776
+\l 30.6176 73.904
+\c 26.6368 74.464 23.4992 73.856 21.2848 72.08
+\c 19.2848 70.464 18.1008 67.904 17.864 64.688
+\c 17.8512 64.528 17.8448 64.384 17.8448 64.224
+\c 17.8448 62.016 19.0736 60.48 20.4656 59.344
+\c 19.1792 59.6 17.5888 59.504 15.5168 58.56
+\c 12.6464 57.248 11.1072 55.808 9.872 54.64
+\c 8.0672 52.944 7.072 52 3.2512 52.656
+\l 2.1712 52.848
+\l 2.3984 51.776
+\c 3.8496 44.88 9.4576 40.64 17.3984 40.464
+\o
+\s
+\m 2.976 28.368
+\c 4.6208 28.368 5.9536 29.728 5.9536 31.408
+\c 5.9536 33.104 4.6208 34.464 2.976 34.464
+\c 1.3328 34.464 0 33.104 0 31.408
+\c 0 29.728 1.3328 28.368 2.976 28.368
+\o
+\s
+\m 65.0928 127.792
+\c 66.7392 127.792 68.0704 129.152 68.0704 130.832
+\c 68.0704 132.528 66.7392 133.888 65.0928 133.888
+\c 63.4496 133.888 62.1168 132.528 62.1168 130.832
+\c 62.1168 129.152 63.4496 127.792 65.0928 127.792
+\o
+\s
+\m 88.4928 6.256
+\c 86.848 6.256 85.5152 4.896 85.5152 3.2
+\c 85.5152 1.52 86.848 0.16 88.4928 0.16
+\c 90.136 0.16 91.4688 1.52 91.4688 3.2
+\c 91.4688 4.896 90.136 6.256 88.4928 6.256
+\o
+\s
+\m 24.9968 92.464
+\c 27.344 92.592 28.9008 93.888 29.4064 95.12
+\c 29.6512 95.712 29.608 96.272 29.2848 96.624
+\c 29.1504 96.768 28.7696 97.088 28.1136 96.896
+\c 26.832 96.512 26.3648 95.744 25.9872 95.12
+\c 25.6896 94.64 25.4224 94.24 24.768 93.952
+\c 23.3776 93.984 22.2416 95.44 21.9344 96.912
+\c 21.8944 97.104 21.8464 97.408 21.8464 97.776
+\c 21.8464 98.752 22.1968 100.16 24.0272 100.848
+\c 29.4656 102.88 36.8896 95.024 41.3264 90.336
+\l 42.4784 89.12
+\l 43.536 88.016
+\c 47.0304 84.352 47.3168 84.048 49.2304 84.768
+\c 49.7072 84.944 50.6944 84.528 51.2064 83.728
+\c 51.6016 83.12 51.5408 82.544 51.024 82.032
+\l 49.6848 80.8
+\c 48 79.312 46.0896 77.648 47.3392 75.552
+\c 48.0272 74.416 48.9952 73.68 50.1392 73.424
+\c 51.4448 73.152 52.9008 73.536 54.3552 74.528
+\c 57.0688 76.416 57.672 76.496 58.9616 75.216
+\c 59.2976 74.88 58.7616 74.08 57.968 72.992
+\c 56.8496 71.44 55.3168 69.328 57.144 67.504
+\c 58.4432 66.048 60.4576 67.088 61.928 67.856
+\c 62.4816 68.144 63.4064 68.624 63.6384 68.576
+\c 64.2096 68.192 67.0752 64.72 70.0304 60.992
+\c 70.4624 59.888 72.1328 57.248 73.0064 57.168
+\l 73.4896 57.136
+\l 73.7344 57.52
+\c 74.0176 57.952 73.7856 58.432 73.3712 59.136
+\c 72.1008 60.768 65.6928 68.992 64.4656 69.808
+\c 63.5952 70.4 62.4528 69.808 61.2432 69.168
+\c 59.8512 68.448 58.7488 67.952 58.2272 68.528
+\c 57.4016 69.36 57.8304 70.256 59.1712 72.112
+\c 60.1088 73.408 61.2736 75.008 60.0144 76.272
+\c 57.768 78.512 56.0768 77.536 53.5056 75.76
+\c 52.4016 74.992 51.3456 74.688 50.4528 74.88
+\c 49.72 75.04 49.0864 75.536 48.616 76.32
+\c 48.064 77.248 48.8576 78.08 50.6672 79.68
+\l 52.0752 80.976
+\c 53.0944 82 53.2384 83.328 52.4576 84.544
+\c 51.7008 85.712 50.0528 86.672 48.6544 86.144
+\c 47.7136 85.792 47.7136 85.792 44.6128 89.04
+\l 43.5536 90.144
+\l 42.408 91.36
+\c 37.416 96.64 29.8688 104.624 23.504 102.24
+\c 21.1328 101.344 19.9456 99.136 20.4784 96.608
+\c 20.92 94.496 22.6544 92.336 24.9968 92.464
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian67.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian67.pgf
new file mode 100644
index 0000000000..bed654abb2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian67.pgf
@@ -0,0 +1,235 @@
+\m 61.7664 122.7674
+\c 64.8816 122.7674 67.4208 125.3914 67.4208 128.6234
+\c 67.4208 131.8554 64.8816 134.4794 61.7664 134.4794
+\c 58.6448 134.4794 56.1088 131.8554 56.1088 128.6234
+\c 56.1088 125.3914 58.6448 122.7674 61.7664 122.7674
+\o
+\m 61.7664 133.2634
+\c 64.2096 133.2634 66.1968 131.2634 66.1968 128.8314
+\c 66.1968 126.3834 64.2096 124.3994 61.7664 124.3994
+\c 59.3184 124.3994 57.3312 126.3834 57.3312 128.8314
+\c 57.3312 131.2634 59.3184 133.2634 61.7664 133.2634
+\o
+\s
+\m 68.0336 78.8314
+\c 68.0336 80.4474 66.7312 81.7434 65.128 81.7434
+\c 63.5216 81.7434 62.2224 80.4474 62.2224 78.8314
+\c 62.2224 77.2314 63.5216 75.9354 65.128 75.9354
+\c 66.7312 75.9354 68.0336 77.2314 68.0336 78.8314
+\o
+\s
+\m 64.6688 73.7914
+\c 64.6688 73.7914 64.9424 57.2794 65.2816 57.2794
+\c 65.616 57.2794 65.8928 73.7914 65.8928 73.7914
+\c 65.8928 74.1274 65.616 74.3994 65.2816 74.3994
+\c 64.9424 74.3994 64.6688 74.1274 64.6688 73.7914
+\o
+\s
+\m -0.0007 0
+\l 79.7639 0
+\l 79.7639 154.7989
+\l -0.0007 154.7989
+\o
+\i
+\m 71.1008 6.3674
+\c 67.096 9.7274 64.8272 15.1034 62.6128 20.3514
+\c 61.6416 22.6554 60.728 24.8154 59.688 26.7674
+\c 58.1392 29.6474 56.1344 31.7274 53.888 32.8794
+\c 58.7136 35.6634 63.6032 44.4794 66.9632 48.4154
+\c 70.4784 52.5434 75.0656 51.3754 75.2192 47.8554
+\c 75.3184 44.7994 72.312 44.1274 72.312 44.1274
+\c 71.2608 43.9354 70.9088 44.7354 70.3536 45.1834
+\c 69.416 45.9194 68.184 45.0554 68.672 43.9354
+\c 68.9776 43.2314 69.7696 42.8794 70.4784 42.7674
+\c 75.5216 41.9514 77.4096 46.0794 77.4336 48.7194
+\c 77.4528 50.7994 76.44 55.9834 70.248 56.0634
+\c 62.8336 56.1594 61.6736 48.3994 59.3184 43.0714
+\c 57.04 37.9034 54.2304 34.8954 52.5904 33.4394
+\c 52.0368 33.6314 51.472 33.7914 50.896 33.8714
+\l 50.5904 33.8874
+\c 56.3008 39.6634 57.3312 44.7834 57.3312 52.0794
+\c 57.3312 59.5834 57.3312 73.1834 57.3312 81.5834
+\c 57.3312 89.9994 58.7056 98.2554 62.9872 105.9034
+\c 67.2688 113.5354 77.9696 118.5914 77.9696 118.5914
+\c 70.5728 117.4874 63.5696 113.5994 58.7536 107.9514
+\c 54.9696 104.0954 50.6304 98.3674 47.7376 90.4634
+\c 44.808 83.7754 44.0304 74.6234 44.0304 70.7354
+\l 44.2432 59.9994
+\l 44.7168 59.9034
+\c 44.7376 59.8874 46.0688 59.5834 47.9104 58.6234
+\c 51.9568 56.0314 54.656 51.5194 54.656 46.3514
+\c 54.656 40.5754 51.2816 35.5994 46.4064 33.2314
+\c 46.2528 33.1674 46.104 33.0874 45.9536 33.0074
+\l 45.7664 32.9434
+\c 40.9136 31.2954 35.8032 32.3674 33.6752 32.9594
+\l 33.544 33.0074
+\c 33.3968 33.0874 33.2464 33.1674 33.0944 33.2314
+\c 28.2192 35.5994 24.8464 40.5754 24.8464 46.3514
+\c 24.8464 50.9274 26.9584 54.9914 30.2512 57.6634
+\c 32.904 59.3914 35.0656 59.8874 35.0912 59.9034
+\l 35.5616 59.9994
+\l 35.7744 70.7354
+\c 35.7744 74.6234 34.9968 83.7754 32.056 90.4954
+\c 28.1968 101.0554 21.7536 107.7114 17.504 111.1994
+\c 13.0224 115.0714 7.4032 117.7114 1.5344 118.5914
+\c 1.5344 118.5914 12.2336 113.5354 16.5152 105.9034
+\c 20.7936 98.2554 22.1712 89.9994 22.1712 81.5834
+\c 22.1712 73.1834 22.1712 59.5834 22.1712 52.0794
+\c 22.1712 44.7834 23.2 39.6634 28.9088 33.8874
+\l 28.6032 33.8714
+\c 28.0288 33.7914 27.4656 33.6314 26.912 33.4394
+\c 25.2704 34.8954 22.4608 37.9034 20.1824 43.0714
+\c 17.8288 48.3994 16.6656 56.1594 9.2528 56.0634
+\c 3.0624 55.9834 2.0496 50.7994 2.0672 48.7194
+\c 2.0912 46.0794 3.9776 41.9514 9.0224 42.7674
+\c 9.7312 42.8794 10.5232 43.2314 10.8288 43.9354
+\c 11.3184 45.0554 10.0848 45.9194 9.1472 45.1834
+\c 8.5904 44.7354 8.24 43.9354 7.1872 44.1274
+\c 7.1872 44.1274 4.1808 44.7994 4.2848 47.8554
+\c 4.4368 51.3754 9.0224 52.5434 12.5408 48.4154
+\c 15.896 44.4794 20.7872 35.6634 25.6128 32.8794
+\c 23.3664 31.7274 21.3632 29.6474 19.816 26.7674
+\c 18.7712 24.8154 17.856 22.6554 16.888 20.3514
+\c 13.704 12.7994 8.416 3.6794 0 1.9834
+\l 2.088 1.7914
+\c 6.1568 1.5034 19.5152 1.4714 30.9392 11.6634
+\c 31.7248 10.9434 36.8784 6.0954 39.0576 1.4714
+\l 39.7504 -0.0006
+\l 40.44 1.4714
+\c 42.6192 6.0954 47.7648 10.9274 48.5584 11.6634
+\c 54.672 6.2074 61.3472 3.6794 66.8528 2.5434
+\c 71.6256 1.5674 79.7632 2.3834 79.7632 2.3834
+\c 77.1952 2.8954 72.856 4.8954 71.1008 6.3674
+\o
+\m 47.7008 71.3434
+\c 47.7008 65.7434 47.7008 62.0314 47.7008 60.1114
+\c 46.696 60.5754 45.904 60.8314 45.4464 60.9594
+\c 45.4304 61.7914 45.2528 70.7354 45.2528 70.7354
+\c 45.2528 74.5434 46.0096 83.4714 48.8704 89.9994
+\c 50.2176 93.6954 51.8816 96.8794 53.6528 99.6154
+\c 50.144 92.0634 47.9536 82.6394 47.7008 71.3434
+\o
+\m 30.9184 90.0474
+\c 33.7952 83.4714 34.5536 74.5434 34.5536 70.7354
+\c 34.5536 70.7354 34.3744 61.7914 34.36 60.9594
+\c 33.8592 60.8154 32.9472 60.5114 31.8016 59.9514
+\c 31.8016 61.8394 31.8016 65.5834 31.8016 71.3434
+\c 31.5312 83.3914 29.0736 93.3274 25.1472 101.1194
+\c 27.2816 98.0794 29.3248 94.3994 30.9184 90.0474
+\o
+\m 6.4064 3.3114
+\c 12.6432 6.5274 15.64 13.4714 18.296 19.7594
+\c 19.2496 22.0314 20.152 24.1594 21.1632 26.0474
+\c 23.1344 29.7114 25.8496 31.9514 28.8096 32.3514
+\c 30.944 32.6394 33.0544 31.9354 34.4576 30.4634
+\c 35.6624 29.1994 36.44 27.0234 36.44 24.5594
+\c 36.44 21.6314 35.3584 18.2714 32.6288 15.4714
+\c 23.6624 5.7434 12.7824 3.6314 6.4064 3.3114
+\o
+\m 39.7504 3.3914
+\c 37.2912 7.7274 33.0464 11.8074 32.0624 12.7194
+\c 32.6288 13.2474 33.1856 13.8234 33.7376 14.4154
+\c 33.8624 14.5434 33.968 14.6714 34.0848 14.7994
+\l 40.2096 8.9754
+\c 40.2096 8.9754 43.8032 12.2074 45.928 14.2394
+\c 46.4272 13.7114 46.9312 13.1994 47.4368 12.7194
+\c 46.4528 11.8074 42.2112 7.7274 39.7504 3.3914
+\o
+\m 46.8864 15.4554
+\c 44.1472 18.2714 43.0624 21.6314 43.0624 24.5594
+\c 43.0624 27.0234 43.8368 29.1994 45.0416 30.4634
+\c 46.4432 31.9354 48.5568 32.6394 50.6912 32.3514
+\c 53.6528 31.9514 56.3696 29.7114 58.3408 26.0474
+\c 59.3472 24.1594 60.2496 22.0314 61.2032 19.7594
+\c 63.856 13.4714 66.856 6.5274 73.096 3.3114
+\c 66.7184 3.6314 55.84 5.7274 46.8864 15.4554
+\o
+\s
+\m -0.0007 0
+\l 79.7639 0
+\l 79.7639 154.7989
+\l -0.0007 154.7989
+\o
+\i
+\m 38.6848 72.9594
+\c 38.6816 73.0074 39.04 60.9434 39.1232 58.1594
+\c 33.0256 57.6634 28.2096 52.5754 28.2096 46.3514
+\c 28.2096 39.8234 33.5232 34.5114 40.056 34.5114
+\c 46.5888 34.5114 51.904 39.8234 51.904 46.3514
+\c 51.904 52.7674 46.7632 58.0154 40.3792 58.1914
+\l 40.8208 73.0074
+\c 42.5328 89.1514 45.2688 98.0794 47.4656 105.2634
+\c 49.3936 111.5674 50.92 116.5434 51.0624 123.9194
+\c 51.4128 141.9994 40.312 154.1915 40.2 154.3195
+\l 39.7504 154.7995
+\l 39.3024 154.3195
+\c 39.1888 154.1915 28.088 141.9994 28.4384 123.9194
+\c 28.5808 116.5434 30.1056 111.5674 32.0368 105.2634
+\c 34.2352 98.0794 36.9696 89.1514 38.6848 72.9594
+\o
+\m 49.4592 46.3514
+\c 49.4592 41.1674 45.24 36.9434 40.056 36.9434
+\c 34.872 36.9434 30.6544 41.1674 30.6544 46.3514
+\c 30.6544 51.5354 34.872 55.7594 40.056 55.7594
+\c 45.24 55.7594 49.4592 51.5354 49.4592 46.3514
+\o
+\m 29.6528 125.1194
+\c 29.6528 140.0154 37.7536 150.5755 39.7504 152.9595
+\c 41.7472 150.5755 49.8464 140.0154 49.8464 125.1194
+\c 49.8464 124.8474 49.8448 124.5754 49.84 124.3194
+\c 49.6992 117.1834 48.1968 112.3514 46.2976 106.2074
+\c 44.1408 99.2634 41.4848 90.6074 39.7472 75.3274
+\c 38.0128 90.6234 35.3568 99.2634 33.2064 106.2074
+\c 31.304 112.3514 29.8 117.1834 29.6592 124.3194
+\c 29.6528 124.5754 29.6528 124.8474 29.6528 125.1194
+\o
+\s
+\m 17.7376 122.7674
+\c 20.8544 122.7674 23.3936 125.3914 23.3936 128.6234
+\c 23.3936 131.8554 20.8544 134.4794 17.7376 134.4794
+\c 14.6192 134.4794 12.0816 131.8554 12.0816 128.6234
+\c 12.0816 125.3914 14.6192 122.7674 17.7376 122.7674
+\o
+\m 17.7376 133.2634
+\c 20.1808 133.2634 22.1712 131.2634 22.1712 128.8314
+\c 22.1712 126.3834 20.1808 124.3994 17.7376 124.3994
+\c 15.2912 124.3994 13.304 126.3834 13.304 128.8314
+\c 13.304 131.2634 15.2912 133.2634 17.7376 133.2634
+\o
+\s
+\m 17.2784 78.8314
+\c 17.2784 80.4474 15.976 81.7434 14.3728 81.7434
+\c 12.7696 81.7434 11.4688 80.4474 11.4688 78.8314
+\c 11.4688 77.2314 12.7696 75.9354 14.3728 75.9354
+\c 15.976 75.9354 17.2784 77.2314 17.2784 78.8314
+\o
+\s
+\m 13.6096 73.7914
+\c 13.6096 73.7914 13.8816 57.2794 14.2224 57.2794
+\c 14.5584 57.2794 14.8336 73.7914 14.8336 73.7914
+\c 14.8336 74.1274 14.5584 74.3994 14.2224 74.3994
+\c 13.8816 74.3994 13.6096 74.1274 13.6096 73.7914
+\o
+\s
+\m 48.16 28.8474
+\c 43.8784 26.3994 47.3936 19.9834 47.3936 19.9834
+\c 47.3936 19.9834 47.088 25.3274 49.9936 26.0954
+\c 52.8992 26.8634 55.6496 22.8794 55.6496 22.8794
+\c 55.6496 25.0234 52.4384 31.2954 48.16 28.8474
+\o
+\s
+\m 32.7184 19.9834
+\c 32.7184 19.9834 36.2352 26.3994 31.9552 28.8474
+\c 27.6752 31.2954 24.464 25.0234 24.464 22.8794
+\c 24.464 22.8794 27.216 26.8634 30.1184 26.0954
+\c 33.0256 25.3274 32.7184 19.9834 32.7184 19.9834
+\o
+\s
+\m 44.0304 121.1834
+\c 43.4208 123.7754 39.7504 136.7834 39.7504 136.7834
+\c 39.7504 136.7834 36.0816 123.7754 35.4704 121.1834
+\c 36.2352 115.3754 39.5984 99.3274 39.7504 86.4794
+\c 39.904 99.3274 43.2656 115.3754 44.0304 121.1834
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian68.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian68.pgf
new file mode 100644
index 0000000000..bcb6b849c9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian68.pgf
@@ -0,0 +1,1911 @@
+\m 88.1185 133.4075
+\c 89.4353 133.4075 90.6433 133.8715 91.6065 134.6235
+\l 94.7009 131.6315
+\l 95.4385 129.7275
+\c 95.1473 129.9675 94.8449 130.2075 94.5185 130.4315
+\c 92.2353 132.0635 89.0657 132.4315 86.4481 131.3755
+\c 84.4353 130.5595 83.0817 129.0075 82.7329 127.1515
+\c 82.0417 123.4715 85.2481 121.5035 85.3841 121.4235
+\l 86.4481 120.7995
+\l 86.3121 122.0315
+\c 86.3073 122.0475 86.1185 123.8395 87.0225 124.8155
+\c 87.4449 125.2795 88.0449 125.5035 88.8529 125.4875
+\c 91.7873 125.4235 92.0897 122.9755 92.0449 117.8075
+\l 92.0353 117.0875
+\c 91.9809 113.4075 91.9073 108.3675 96.6081 106.1275
+\c 99.8417 104.5755 102.2225 105.6155 103.3537 106.3675
+\c 104.9153 107.4075 105.8913 109.0715 105.9649 110.7195
+\c 107.1137 110.3835 108.3313 110.3355 109.5729 110.6075
+\c 112.8689 111.3435 114.7297 112.7835 114.8033 112.8475
+\c 114.8097 112.8475 114.8225 112.8475 114.8385 112.8635
+\l 115.7729 111.9195
+\c 115.4753 111.2955 115.3457 110.4315 115.4385 109.5355
+\c 115.5345 108.5755 115.9665 106.7515 117.7729 105.3115
+\c 120.3457 103.2475 141.0513 91.3115 141.8289 90.8475
+\c 141.8289 90.8475 125.8417 109.7435 123.3761 111.9355
+\c 121.6449 113.4875 119.7729 113.5995 118.8129 113.5355
+\c 117.9473 113.4715 117.1489 113.2315 116.5841 112.8635
+\l 115.7441 113.6955
+\c 116.5409 114.5435 117.6129 116.0155 117.9729 118.0635
+\c 118.0481 118.5115 118.0849 118.9435 118.0849 119.3755
+\c 118.0849 119.8555 117.9569 120.3195 117.8561 120.7835
+\c 119.4817 120.9755 121.1105 122.0155 122.0289 123.5835
+\c 122.4065 124.2235 122.8481 125.2635 122.8481 126.5915
+\c 122.8481 127.6155 122.5937 128.7835 121.8641 130.0955
+\c 119.3729 134.5435 114.3441 134.2395 110.6721 133.9995
+\l 109.9489 133.9675
+\c 104.6017 133.6475 102.3345 133.9675 102.1265 136.6715
+\c 102.0641 137.4395 102.2417 138.0155 102.6609 138.4475
+\c 103.5921 139.3915 105.4193 139.2955 105.4369 139.2955
+\l 106.6945 139.2155
+\l 105.9825 140.2555
+\c 105.8929 140.3835 103.7713 143.4075 100.1409 142.5595
+\c 98.2673 142.1115 96.7921 140.6875 96.0945 138.6555
+\c 95.3377 136.4315 95.6385 133.8875 96.8241 131.8715
+\l 95.5841 132.4955
+\l 92.4913 135.4715
+\c 93.3041 136.4635 93.7921 137.7115 93.7921 139.0875
+\c 93.7921 142.2075 91.2481 144.7515 88.1185 144.7515
+\c 84.9921 144.7515 82.4481 142.2075 82.4481 139.0875
+\c 82.4481 135.9675 84.9921 133.4075 88.1185 133.4075
+\o
+\m 117.0161 111.6315
+\c 117.2529 111.9035 117.9473 112.2395 118.8945 112.3035
+\c 119.6625 112.3515 121.1633 112.2555 122.5601 111.0235
+\c 124.3473 109.4235 132.6641 99.7755 136.8481 94.8795
+\c 131.3233 98.1915 120.4097 104.7675 118.5425 106.2715
+\c 117.0849 107.4395 116.7393 108.8955 116.6625 109.6635
+\c 116.6449 109.8235 116.6401 109.9675 116.6401 110.1275
+\c 116.6401 110.8475 116.8193 111.3915 117.0161 111.6315
+\o
+\m 97.2609 138.2555
+\c 97.8145 139.8875 98.9681 141.0075 100.4193 141.3595
+\c 102.1201 141.7595 103.3729 141.0555 104.1361 140.4155
+\c 103.3729 140.2875 102.4641 139.9995 101.7873 139.3115
+\c 101.1873 138.7035 100.8833 137.9035 100.8833 136.9435
+\c 100.8833 136.8315 100.8881 136.7035 100.8977 136.5755
+\c 101.2353 132.2235 105.7009 132.4795 110.0193 132.7355
+\l 110.7489 132.7675
+\c 114.2817 132.9915 118.6769 133.2795 120.7921 129.4875
+\c 121.3377 128.5115 121.6113 127.5195 121.6113 126.5755
+\c 121.6113 125.7435 121.3969 124.9435 120.9681 124.2075
+\c 120.1969 122.8955 118.8257 122.0155 117.5137 121.9515
+\c 117.2913 122.4795 117.0593 123.0075 116.7009 123.4715
+\c 115.1457 125.5195 112.2817 126.9595 109.2241 127.2635
+\c 104.8033 127.6955 101.2033 128.2875 98.4353 131.6795
+\c 97.4369 132.9115 96.9041 134.4955 96.9041 136.0795
+\c 96.9041 136.8155 97.0193 137.5515 97.2609 138.2555
+\o
+\m 98.7761 129.5195
+\c 101.6513 126.9755 105.1793 126.4155 109.1041 126.0315
+\c 111.8353 125.7755 114.3681 124.5115 115.7233 122.7355
+\c 116.7009 121.4395 117.0497 119.9515 116.7585 118.2875
+\c 116.2641 115.4395 114.0897 113.8395 114.0673 113.8235
+\c 114.0305 113.7915 112.3105 112.4795 109.3041 111.8075
+\c 107.6161 111.4235 106.0449 111.7275 104.6321 112.6875
+\c 102.6849 114.0315 101.1617 116.6395 100.7537 119.3595
+\c 100.3489 122.0475 99.6065 125.0075 97.4817 127.6635
+\c 97.2993 128.1755 96.7697 129.6955 96.3729 130.7195
+\c 97.4977 130.1595 98.7761 129.5195 98.7761 129.5195
+\o
+\m 99.5377 119.1835
+\c 99.9953 116.1435 101.7201 113.1995 103.9377 111.6795
+\c 104.3217 111.4075 104.7409 111.2635 105.1505 111.0875
+\c 104.9825 111.0715 104.7585 111.0555 104.7585 111.0555
+\c 104.7633 111.0075 104.7633 110.9595 104.7633 110.9115
+\c 104.7633 109.6315 103.9377 108.2235 102.6721 107.3915
+\c 101.7569 106.7835 99.8225 105.9515 97.1377 107.2315
+\c 93.1473 109.1355 93.2129 113.5355 93.2657 117.0715
+\l 93.2753 117.8075
+\c 93.3137 122.1275 93.3505 126.6075 88.8817 126.7035
+\c 87.7105 126.7355 86.7761 126.3835 86.1105 125.6475
+\c 85.4561 124.9275 85.2113 123.9995 85.1185 123.2315
+\c 84.5297 123.8555 83.8673 124.8155 83.8673 126.1435
+\c 83.8673 126.3995 83.8881 126.6555 83.9409 126.9275
+\c 84.2097 128.3675 85.2913 129.5675 86.9105 130.2235
+\c 89.1489 131.1355 91.8545 130.8155 93.8065 129.4395
+\c 97.0945 127.0875 98.8097 124.0315 99.5377 119.1835
+\o
+\m 88.1185 143.5355
+\c 90.5697 143.5355 92.5601 141.5355 92.5601 139.0875
+\c 92.5601 138.0475 92.2017 137.0875 91.6017 136.3355
+\l 90.6977 135.5035
+\c 89.9825 134.9595 89.0881 134.6395 88.1185 134.6395
+\c 85.6689 134.6395 83.6753 136.6395 83.6753 139.0875
+\c 83.6753 141.5355 85.6689 143.5355 88.1185 143.5355
+\o
+\s
+\m 242.9585 105.3115
+\c 244.7665 106.7515 245.1985 108.5755 245.2929 109.5355
+\c 245.3841 110.4315 245.2561 111.2955 244.9569 111.9195
+\l 245.8961 112.8635
+\c 245.9073 112.8475 245.9217 112.8475 245.9265 112.8475
+\c 246.0033 112.7835 247.8609 111.3435 251.1601 110.6075
+\c 252.4017 110.3355 253.6193 110.3835 254.7665 110.7195
+\c 254.8417 109.0715 255.8193 107.4075 257.3761 106.3675
+\c 258.5105 105.6155 260.8913 104.5755 264.1233 106.1275
+\c 268.8257 108.3675 268.7505 113.4075 268.6945 117.0875
+\l 268.6881 117.8075
+\c 268.6449 122.9755 268.9409 125.4235 271.8785 125.4875
+\c 272.6881 125.5035 273.2849 125.2795 273.7105 124.8155
+\c 274.6129 123.8395 274.4225 122.0475 274.4193 122.0315
+\l 274.2849 120.7995
+\l 275.3473 121.4235
+\c 275.4849 121.5035 278.6913 123.4715 278.0001 127.1515
+\c 277.6513 129.0075 276.2977 130.5595 274.2849 131.3755
+\c 271.6641 132.4315 268.4945 132.0635 266.2129 130.4315
+\c 265.8881 130.2075 265.5825 129.9675 265.2913 129.7275
+\l 266.0289 131.6315
+\l 269.1265 134.6235
+\c 270.0881 133.8715 271.2977 133.4075 272.6129 133.4075
+\c 275.7377 133.4075 278.2849 135.9675 278.2849 139.0875
+\c 278.2849 142.2075 275.7377 144.7515 272.6129 144.7515
+\c 269.4817 144.7515 266.9377 142.2075 266.9377 139.0875
+\c 266.9377 137.7115 267.4257 136.4635 268.2385 135.4715
+\l 265.1473 132.4955
+\l 263.9105 131.8715
+\c 265.0945 133.8875 265.3953 136.4315 264.6385 138.6555
+\c 263.9377 140.6875 262.4625 142.1115 260.5921 142.5595
+\c 256.9601 143.4075 254.8385 140.3835 254.7505 140.2555
+\l 254.0385 139.2155
+\l 255.2945 139.2955
+\c 255.3137 139.2955 257.1377 139.3915 258.0721 138.4475
+\c 258.4913 138.0155 258.6673 137.4395 258.6065 136.6715
+\c 258.3985 133.9675 256.1297 133.6475 250.7825 133.9675
+\l 250.0609 133.9995
+\c 246.3873 134.2395 241.3569 134.5435 238.8673 130.0955
+\c 238.1377 128.7835 237.8817 127.6155 237.8817 126.5915
+\c 237.8817 125.2635 238.3281 124.2235 238.7057 123.5835
+\c 239.6225 122.0155 241.2513 120.9755 242.8721 120.7835
+\c 242.7761 120.3195 242.6465 119.8555 242.6465 119.3755
+\c 242.6465 118.9435 242.6849 118.5115 242.7601 118.0635
+\c 243.1169 116.0155 244.1873 114.5435 244.9841 113.6955
+\l 244.1473 112.8635
+\c 243.5809 113.2315 242.7841 113.4715 241.9185 113.5355
+\c 240.9569 113.5995 239.0849 113.4875 237.3569 111.9355
+\c 234.8913 109.7435 220.4481 92.2075 219.8625 91.5195
+\c 219.8625 91.5195 240.3841 103.2475 242.9585 105.3115
+\o
+\m 268.1697 139.0875
+\c 268.1697 141.5355 270.1633 143.5355 272.6129 143.5355
+\c 275.0625 143.5355 277.0529 141.5355 277.0529 139.0875
+\c 277.0529 136.6395 275.0625 134.6555 272.6161 134.6395
+\c 270.2193 134.6395 268.1697 136.7035 268.1697 139.0875
+\o
+\m 266.9265 129.4395
+\c 268.8721 130.8155 271.5841 131.1355 273.8225 130.2235
+\c 275.4385 129.5675 276.5185 128.3675 276.7921 126.9275
+\c 276.8417 126.6555 276.8657 126.3995 276.8657 126.1435
+\c 276.8657 124.8155 276.2033 123.8555 275.6161 123.2315
+\c 275.5217 123.9995 275.2721 124.9275 274.6225 125.6475
+\c 273.9569 126.3835 273.0225 126.7355 271.8513 126.7035
+\c 267.3825 126.6075 267.4193 122.1275 267.4561 117.8075
+\l 267.4689 117.0715
+\c 267.5169 113.5355 267.5825 109.1355 263.5921 107.2315
+\c 260.9105 105.9515 258.9761 106.7835 258.0561 107.3915
+\c 256.7953 108.2235 255.9697 109.6315 255.9697 110.9115
+\c 255.9697 110.9595 255.9697 111.0075 255.9729 111.0555
+\c 255.9729 111.0555 256.4065 111.4075 256.7953 111.6795
+\c 259.0065 113.1995 260.7377 116.1435 261.1953 119.1835
+\c 261.9217 124.0315 263.6385 127.0875 266.9265 129.4395
+\o
+\m 239.7665 124.2075
+\c 239.3329 124.9435 239.1185 125.7435 239.1185 126.5755
+\c 239.1185 127.5195 239.3937 128.5115 239.9409 129.4875
+\c 242.0529 133.2795 246.4513 132.9915 249.9825 132.7675
+\l 250.7105 132.7355
+\c 255.0321 132.4795 259.4977 132.2235 259.8321 136.5755
+\c 259.8417 136.7035 259.8481 136.8315 259.8481 136.9435
+\c 259.8481 137.9035 259.5441 138.7035 258.9409 139.3115
+\c 258.2657 139.9995 257.3569 140.2875 256.5953 140.4155
+\c 257.3601 141.0555 258.6097 141.7595 260.3105 141.3595
+\c 261.7633 141.0075 262.9169 139.8875 263.4721 138.2555
+\c 263.7105 137.5515 263.8257 136.8155 263.8257 136.0795
+\c 263.8257 134.4955 263.2945 132.9115 262.2977 131.6795
+\c 259.5265 128.2875 255.9265 127.6955 251.5041 127.2635
+\c 248.4513 126.9595 245.5841 125.5195 244.0321 123.4715
+\c 243.6721 123.0075 243.4417 122.4795 243.2225 121.9515
+\c 241.9073 122.0155 240.5329 122.8955 239.7665 124.2075
+\o
+\m 243.9729 118.2875
+\c 243.6817 119.9515 244.0289 121.4395 245.0097 122.7355
+\c 246.3601 124.5115 248.8977 125.7755 251.6257 126.0315
+\c 255.5537 126.4155 259.0785 126.9755 261.9441 129.5355
+\c 261.9537 129.5195 263.2385 130.1595 264.3569 130.7195
+\c 263.9633 129.6955 263.4321 128.1755 263.2481 127.6635
+\c 261.1217 125.0075 260.3825 122.0475 259.9793 119.3595
+\c 259.5697 116.6395 258.0481 114.0315 256.0977 112.6875
+\c 254.6881 111.7275 253.1169 111.4235 251.4289 111.8075
+\c 248.4193 112.4795 246.7009 113.7915 246.6641 113.8235
+\c 246.6449 113.8395 244.4657 115.4395 243.9729 118.2875
+\o
+\m 238.1729 111.0235
+\c 239.5697 112.2555 241.0673 112.3515 241.8353 112.3035
+\c 242.7841 112.2395 243.4785 111.9035 243.7153 111.6315
+\c 243.9121 111.3915 244.0929 110.8475 244.0929 110.1275
+\c 244.0929 109.9675 244.0849 109.8235 244.0673 109.6635
+\c 243.9921 108.8955 243.6465 107.4395 242.1873 106.2715
+\c 240.3217 104.7675 229.4065 98.1915 223.8849 94.8795
+\c 228.0689 99.7755 236.3841 109.4235 238.1729 111.0235
+\o
+\s
+\m -2.5906 0
+\l 363.7001 0
+\l 363.7001 153.919
+\l -2.5906 153.919
+\o
+\i
+\m 353.4225 106.5595
+\c 348.6609 111.7915 340.9825 114.6715 333.8689 113.9195
+\c 328.6817 113.3595 324.6017 110.9595 322.3761 107.1355
+\c 319.8033 102.7355 319.5729 97.5515 321.7569 93.2475
+\c 323.8449 89.1515 327.8753 86.4955 332.8193 85.9995
+\c 337.9169 85.4715 342.0785 87.3275 344.2417 91.0875
+\c 346.0449 94.2395 345.9665 98.1275 344.0385 100.7675
+\c 342.1041 103.4235 337.9969 104.6395 334.4913 103.5995
+\c 331.6561 102.7515 329.9473 100.7035 329.8065 97.9835
+\c 329.7265 96.3995 330.1665 95.1675 331.1217 94.3515
+\c 332.9985 92.7355 336.1505 93.3595 336.2849 93.3915
+\l 337.5105 93.6315
+\l 336.5633 94.4475
+\c 335.5073 95.3595 335.1137 96.2875 335.4529 97.0555
+\c 335.7825 97.8075 336.7601 98.2715 337.7265 98.1595
+\c 339.2097 97.9835 339.8785 96.7195 340.0033 95.7115
+\c 340.1505 94.4955 339.6417 92.8315 337.7185 92.0955
+\c 334.3041 90.7995 329.6513 90.9915 326.8417 95.4075
+\c 325.4097 97.6475 325.4353 101.0075 326.8977 103.5675
+\c 328.7265 106.7675 332.4945 108.4315 337.5073 108.2715
+\c 342.0225 108.1115 346.0353 106.0635 349.1009 102.3195
+\c 353.1345 97.3915 354.9601 90.2075 353.8673 83.5675
+\c 353.6609 82.2875 353.3985 81.1355 353.1041 80.0315
+\c 352.6529 83.3275 349.9185 85.8555 346.6161 85.8555
+\c 342.9985 85.8555 340.0561 82.8155 340.0561 79.0875
+\c 340.0561 75.3595 342.9985 72.3195 346.6161 72.3195
+\c 348.0289 72.3195 349.3329 72.7835 350.4017 73.5675
+\c 348.7793 70.8155 346.6721 68.3355 344.0625 65.3915
+\l 343.9793 65.5035
+\c 343.7761 65.3435 338.9665 61.6635 333.2945 66.8315
+\c 330.6849 69.1995 327.8689 69.5515 324.9233 67.8715
+\c 324.4785 67.6155 324.1297 67.5675 323.8817 67.7275
+\c 323.4289 67.9995 323.5505 69.7115 323.6257 70.7835
+\l 323.7169 72.0475
+\l 322.6673 71.3275
+\c 321.5873 70.5915 320.4785 68.5595 320.2321 67.1515
+\c 319.4289 67.9195 318.0097 68.7995 315.5841 69.0395
+\c 313.7633 69.2155 312.1377 70.7195 311.8017 72.5115
+\c 311.7009 76.4475 314.7041 78.1275 317.5729 78.6875
+\l 314.8129 78.7515
+\c 311.6881 78.6075 308.7537 76.4635 307.3473 73.2635
+\c 305.5601 69.2315 306.5009 64.4155 309.8609 60.3835
+\c 316.0385 52.9755 328.7217 53.1355 336.5377 56.6555
+\c 335.9217 55.8715 335.3761 55.1195 334.8945 54.3995
+\c 334.8945 54.3995 332.0625 53.3435 331.2913 52.9435
+\c 327.4097 51.2475 320.9137 48.9275 315.1601 49.3595
+\c 307.8065 49.9195 305.2609 51.7115 302.5665 53.5995
+\l 300.6817 54.8795
+\c 297.7073 56.7515 294.9697 57.0875 292.9697 57.3275
+\l 291.4561 57.5515
+\c 290.5665 57.7275 289.9441 58.0635 289.6513 58.4955
+\c 289.4417 58.8155 289.3825 59.2155 289.4785 59.6955
+\l 289.8017 61.3115
+\l 288.5009 60.3035
+\c 287.4561 59.5035 286.5409 57.6155 286.8097 55.5675
+\c 286.8641 55.1355 286.9825 54.6555 287.1761 54.1755
+\c 285.7313 54.8315 283.6257 55.4555 280.6913 55.5195
+\c 275.5921 55.6315 271.8449 57.8235 271.5841 60.8315
+\c 271.1377 62.6555 273.9793 65.2155 273.9793 65.2155
+\c 272.7569 65.2155 270.9953 64.4955 269.8193 62.8955
+\c 269.1953 62.0475 268.5953 60.7355 268.5953 58.8795
+\c 268.5953 57.9195 268.7569 56.8155 269.1569 55.5355
+\c 270.6417 50.8315 277.0945 45.5195 284.5537 44.3195
+\c 282.0673 44.3515 279.2785 44.4955 276.0977 44.8475
+\c 263.9329 46.2235 258.3073 50.1275 258.1953 52.4635
+\c 258.1921 52.5115 258.1921 52.5595 258.1921 52.5915
+\c 258.1921 53.0875 258.3377 53.4875 258.6449 53.8075
+\c 259.4625 54.6875 261.1185 54.7035 261.1361 54.7035
+\l 262.1953 54.7035
+\l 261.6641 55.6155
+\c 261.5953 55.7435 259.8449 58.6875 255.8193 58.7995
+\c 253.1729 58.8635 250.6785 56.8635 249.8785 54.0315
+\c 249.1377 51.3755 249.9761 48.6715 252.1505 46.3195
+\l 248.2257 47.7755
+\c 248.2161 47.8395 248.2097 47.9035 248.1953 47.9675
+\c 247.8977 48.9915 244.9185 51.4555 243.6353 52.4955
+\c 243.5697 56.6555 240.2433 60.0315 236.1569 60.0315
+\c 234.8609 60.0315 233.6417 59.6795 232.5793 59.0875
+\c 232.0417 59.7275 230.5777 61.2315 228.7313 61.2955
+\c 228.1009 61.3115 227.4993 61.1515 226.9265 60.8475
+\c 225.0273 62.0315 221.7889 64.7515 219.6881 66.5755
+\c 220.1009 66.4475 220.5089 66.3355 220.9073 66.2075
+\c 227.9169 63.9995 230.9729 65.2795 234.4161 66.9275
+\c 237.1025 68.2075 239.0657 66.1435 239.2721 66.1915
+\c 239.4481 66.2395 240.4433 68.5275 239.7489 70.4315
+\c 240.8865 70.4635 242.4209 70.7195 244.3009 71.5675
+\c 248.0481 73.2315 250.2785 73.2635 252.2721 71.6475
+\c 253.2129 70.8795 254.0561 69.4395 253.8257 67.9515
+\c 253.6097 66.5435 252.7297 65.0875 250.1537 63.9035
+\c 253.7537 64.0635 256.2817 65.5835 257.5537 68.2075
+\c 258.1441 69.4075 258.4385 70.7355 258.4385 72.0315
+\c 258.4385 73.4235 258.1009 74.7995 257.4321 75.9675
+\c 255.5953 79.2155 251.9041 82.1275 245.8273 82.2395
+\c 246.7313 82.7995 247.2913 83.6315 247.8881 84.6555
+\c 248.4353 85.5835 248.7137 86.6235 248.7137 87.7755
+\c 248.7137 88.9115 248.4417 90.1595 247.8977 91.4875
+\c 247.8977 91.4875 247.8849 91.5035 247.8785 91.5035
+\c 253.3761 90.3195 256.2689 88.3355 258.6449 86.6875
+\c 260.9185 85.1035 262.8849 83.7435 266.2017 83.8075
+\c 273.6065 83.9515 275.1073 81.3755 275.2097 79.8395
+\c 276.6449 81.4875 278.0977 85.5355 276.6353 89.1035
+\c 276.3697 89.7435 276.0353 90.3515 275.6353 90.9275
+\c 278.0097 90.9115 286.1073 90.5755 290.0881 86.7195
+\c 292.5505 84.3195 293.8129 79.8875 293.2289 75.6795
+\c 292.7633 72.3515 291.2193 69.7595 288.9953 68.5595
+\c 286.7329 67.3435 284.4353 67.1195 282.5265 67.9515
+\c 281.0977 68.5755 280.2353 69.6315 280.0417 70.3675
+\c 279.8193 71.1995 280.0817 72.0315 280.6353 72.5755
+\c 281.9697 73.8875 285.0065 71.4235 285.1761 71.5355
+\c 285.2721 74.3675 284.3041 77.6155 282.5953 78.9595
+\c 281.2417 80.0315 279.3873 80.2235 277.0849 79.5515
+\c 274.2849 78.7195 272.5041 76.3515 272.3169 73.2155
+\c 272.1441 70.2395 273.5697 66.5275 277.1537 64.9915
+\c 279.5825 63.9515 284.7873 63.2955 289.1761 65.7275
+\c 292.4657 67.5515 294.5601 70.8155 295.2225 75.1675
+\c 296.0513 80.5755 294.1969 86.6075 290.1345 91.7275
+\c 285.1169 98.0475 277.5505 102.0315 269.3793 102.6715
+\c 253.4625 103.8875 239.1665 101.1195 223.1409 92.7515
+\c 218.4849 90.3195 214.2753 87.4235 210.6465 84.5275
+\c 213.5185 87.3435 216.8689 90.7835 220.0497 94.3995
+\c 223.6097 98.4475 240.9729 119.4555 233.2609 135.3915
+\c 229.2289 143.7275 222.0353 147.8875 214.0193 146.5275
+\c 205.9633 145.1515 203.4081 139.3595 203.6689 134.8155
+\c 203.9441 129.9515 207.2705 126.3515 211.7553 126.0315
+\c 214.1665 125.8715 216.6033 126.7355 218.2801 128.3355
+\c 219.7793 129.7755 220.5377 131.6635 220.4753 133.7755
+\c 220.4033 136.2715 219.3265 138.3355 217.5185 139.4555
+\c 215.8513 140.4795 213.7713 140.5435 211.8129 139.6475
+\c 211.7761 139.6315 211.7457 139.5995 211.7105 139.5835
+\c 214.8561 145.0395 221.6769 144.6395 222.0065 144.6235
+\c 222.0465 144.6235 222.0817 144.6395 222.1185 144.6395
+\c 228.0449 142.9595 232.8497 136.8955 231.4289 130.6395
+\c 230.9809 128.6555 229.8161 126.5115 228.4321 125.0075
+\c 223.7873 120.0155 221.4753 117.2955 220.5569 114.4795
+\c 220.3569 114.8795 220.1233 115.2795 219.8417 115.6635
+\c 218.2945 117.7755 215.3233 119.2795 211.7633 119.3595
+\c 213.8881 117.1675 214.4305 112.5275 211.9825 109.1035
+\c 209.0817 105.0395 207.3457 102.3195 208.1841 97.6955
+\c 208.9953 93.2635 209.6609 88.5435 208.2049 83.9195
+\c 208.1985 83.9035 208.2033 83.8875 208.1985 83.8555
+\c 206.5377 82.2715 205.1185 80.9435 204.0961 80.0155
+\c 205.1729 82.3035 206.1553 84.9755 206.7953 87.9835
+\c 208.3537 95.3115 206.6625 102.6555 202.6865 105.8395
+\c 200.4065 107.6635 197.6561 107.9195 194.7313 106.5755
+\l 193.0913 105.8235
+\l 194.8513 105.4075
+\c 196.0641 105.1355 196.9665 104.4475 197.5361 103.3755
+\c 198.5009 101.5675 198.3985 98.7355 197.2737 95.3435
+\c 188.2849 107.4075 187.9873 115.9835 188.0561 117.9515
+\c 189.8097 116.9115 192.2721 116.2075 195.4257 117.0715
+\c 201.1361 118.6395 202.4913 123.7755 201.9185 127.6955
+\c 201.5009 130.5595 199.9953 133.1515 197.3185 135.6315
+\c 193.1729 139.5035 191.8753 141.6795 191.7761 144.9435
+\c 191.7345 146.3035 192.1521 147.3115 192.9185 147.7275
+\c 193.7329 148.1755 194.9073 147.9355 196.1409 147.0875
+\l 197.3697 146.2395
+\l 197.0977 147.7115
+\c 196.4977 150.9275 194.6033 152.9435 191.9041 153.2475
+\c 189.1377 153.5515 186.2433 151.8875 185.1633 149.3755
+\c 184.6033 148.0635 184.3665 146.6555 184.2785 145.4875
+\l 180.7041 153.8875
+\l 180.1409 152.5435
+\c 180.1233 152.4955 179.1073 150.0955 177.7185 146.7355
+\c 176.8385 148.9595 174.7665 153.0395 171.2609 153.5355
+\c 168.5185 153.9195 167.0145 153.0075 166.2337 152.1755
+\c 165.1665 151.0395 164.7681 149.3275 165.1409 147.4715
+\l 165.3873 146.2395
+\l 166.2097 147.1835
+\c 166.7729 147.8555 167.5873 148.0635 168.4417 147.7915
+\c 169.5009 147.4395 170.7985 146.2395 170.9729 143.9515
+\c 171.2161 140.7675 167.9985 137.4395 165.1569 134.5115
+\l 163.8609 133.1515
+\c 162.4737 131.6635 159.2881 127.7915 159.6161 123.5995
+\c 159.7841 121.4715 160.8561 119.6155 162.8033 118.0955
+\c 165.7601 115.8075 169.6033 116.0475 172.2145 117.0395
+\c 172.5729 117.1835 172.9057 117.3275 173.2289 117.5035
+\c 173.2193 114.9275 172.4385 106.7675 164.1777 95.5835
+\c 164.1105 95.5995 164.0561 95.6315 163.9921 95.6635
+\l 163.5953 95.8075
+\l 163.3185 95.4875
+\c 163.2273 95.3755 163.1505 95.2635 163.0673 95.1675
+\c 161.8849 98.6235 161.7569 101.5195 162.7377 103.3755
+\c 163.3089 104.4475 164.2113 105.1355 165.4241 105.4075
+\l 167.1841 105.8235
+\l 165.5425 106.5755
+\c 162.6177 107.9195 159.8657 107.6635 157.5873 105.8395
+\c 153.6113 102.6555 151.9201 95.3115 153.4785 87.9835
+\c 154.1185 84.9755 155.1025 82.3035 156.1793 80.0155
+\c 155.1553 80.9435 153.7361 82.2715 152.0753 83.8555
+\c 152.0721 83.8875 152.0753 83.9035 152.0689 83.9195
+\c 150.6145 88.5435 151.2817 93.2635 152.0881 97.6955
+\c 152.9297 102.3195 151.1937 105.0395 148.2913 109.1035
+\c 145.8449 112.5275 146.3841 117.1675 148.5105 119.3595
+\c 144.9505 119.2795 141.9793 117.7755 140.4321 115.6635
+\c 140.1521 115.2795 139.9169 114.8795 139.7185 114.4795
+\c 138.8001 117.2955 136.4865 120.0155 131.8433 125.0075
+\c 130.4561 126.5115 129.2945 128.6555 128.8449 130.6395
+\c 127.4273 136.8955 132.2289 142.9595 138.1553 144.6395
+\c 138.1953 144.6395 138.2289 144.6235 138.2689 144.6235
+\c 138.5985 144.6395 145.4161 145.0395 148.5649 139.5835
+\c 148.5297 139.5995 148.4977 139.6315 148.4609 139.6475
+\c 146.5041 140.5435 144.4225 140.4795 142.7569 139.4555
+\c 140.9505 138.3355 139.8721 136.2715 139.7985 133.7755
+\c 139.7361 131.6635 140.4945 129.7755 141.9953 128.3355
+\c 143.6689 126.7355 146.1089 125.8715 148.5185 126.0315
+\c 153.0033 126.3515 156.3297 129.9515 156.6065 134.8155
+\c 156.8657 139.3595 154.3121 145.1515 146.2561 146.5275
+\c 138.2417 147.8875 131.0465 143.7275 127.0129 135.3915
+\c 119.3041 119.4555 136.6673 98.4475 140.2257 94.3995
+\c 143.4033 90.7835 146.7569 87.3435 149.6289 84.5275
+\c 146.0001 87.4235 141.7889 90.3195 137.1345 92.7515
+\c 121.1105 101.1195 106.8081 103.8875 90.8945 102.6715
+\c 82.7217 102.0315 75.1586 98.0475 70.1383 91.7275
+\c 66.0789 86.6075 64.2226 80.5755 65.0508 75.1675
+\c 65.7149 70.8155 67.8071 67.5515 71.0977 65.7275
+\c 75.4884 63.2955 80.693 63.9515 83.1185 64.9915
+\c 86.7041 66.5275 88.1329 70.2395 87.9569 73.2155
+\c 87.7729 76.3515 85.9889 78.7195 83.1921 79.5515
+\c 80.8852 80.2235 79.0321 80.0315 77.6789 78.9595
+\c 75.9711 77.6155 75.0039 74.3675 75.0977 71.5355
+\c 75.2665 71.4235 78.3039 73.8875 79.6383 72.5755
+\c 80.1914 72.0315 80.4548 71.1995 80.2337 70.3675
+\c 80.0415 69.6315 79.1789 68.5755 77.7477 67.9515
+\c 75.8415 67.1195 73.5445 67.3435 71.2791 68.5595
+\c 69.0548 69.7595 67.5133 72.3515 67.0477 75.6795
+\c 66.4602 79.8875 67.7226 84.3195 70.1876 86.7195
+\c 74.1665 90.5755 82.2641 90.9115 84.6417 90.9275
+\c 84.2385 90.3515 83.9041 89.7435 83.6401 89.1035
+\c 82.1761 85.5355 83.6305 81.4875 85.0641 79.8395
+\c 85.1681 81.3755 86.6689 83.9515 94.0721 83.8075
+\c 97.3921 83.7435 99.3569 85.1035 101.6289 86.6875
+\c 104.0049 88.3355 106.8977 90.3195 112.3953 91.5035
+\c 112.3873 91.5035 112.3777 91.4875 112.3745 91.4875
+\c 111.8321 90.1595 111.5617 88.9115 111.5617 87.7755
+\c 111.5617 86.6235 111.8385 85.5835 112.3841 84.6555
+\c 112.9825 83.6315 113.5409 82.7995 114.4465 82.2395
+\c 108.3697 82.1275 104.6801 79.2155 102.8417 75.9675
+\c 102.1729 74.7995 101.8353 73.4235 101.8353 72.0315
+\c 101.8353 70.7355 102.1297 69.4075 102.7185 68.2075
+\c 103.9953 65.5835 106.5201 64.0635 110.1233 63.9035
+\c 107.5441 65.0875 106.6641 66.5435 106.4481 67.9515
+\c 106.2177 69.4395 107.0625 70.8795 108.0017 71.6475
+\c 109.9953 73.2635 112.2289 73.2315 115.9729 71.5675
+\c 117.8529 70.7195 119.3873 70.4635 120.5233 70.4315
+\c 119.8305 68.5275 120.8257 66.2395 121.0033 66.1915
+\c 121.2065 66.1435 123.1713 68.2075 125.8609 66.9275
+\c 129.3009 65.2795 132.3585 63.9995 139.3665 66.2075
+\c 140.1569 66.4475 140.9777 66.6875 141.8113 66.9115
+\c 139.7409 65.1035 136.2017 62.1115 134.1825 60.8475
+\c 133.6097 61.1515 133.0065 61.3115 132.3761 61.2955
+\c 130.5313 61.2315 129.0673 59.7275 128.5329 59.0875
+\c 127.4657 59.6795 126.2465 60.0315 124.9505 60.0315
+\c 120.8625 60.0315 117.5393 56.6555 117.4737 52.4955
+\c 116.1841 51.4555 113.2065 48.9915 112.9137 47.9675
+\c 112.8753 47.8235 112.8641 47.6795 112.8641 47.5195
+\l 112.7521 47.8235
+\l 109.0801 46.4635
+\c 111.1585 48.7835 111.9537 51.4235 111.2257 54.0315
+\c 110.4289 56.8635 107.9329 58.8635 105.2881 58.7995
+\c 101.2641 58.6875 99.5169 55.7435 99.4417 55.6155
+\l 98.9137 54.7035
+\l 99.9745 54.7035
+\c 99.9921 54.7035 101.6433 54.6875 102.4641 53.8075
+\c 102.7681 53.4875 102.9169 53.0875 102.9169 52.5915
+\c 102.9169 52.5595 102.9169 52.5115 102.9137 52.4635
+\c 102.8017 50.1275 97.1729 46.2235 85.0081 44.8475
+\c 81.8289 44.4955 79.0431 44.3515 76.554 44.3195
+\c 84.0097 45.5195 90.4673 50.8315 91.9505 55.5355
+\c 92.3537 56.8155 92.5153 57.9195 92.5153 58.8795
+\c 92.5153 60.7355 91.9153 62.0475 91.2865 62.8955
+\c 90.1121 64.4955 88.3521 65.2155 87.1297 65.2155
+\c 87.1297 65.2155 89.9697 62.6555 89.5377 60.9275
+\c 89.2625 57.8235 85.5169 55.6315 80.4165 55.5195
+\c 77.4821 55.4555 75.3757 54.8315 73.929 54.1755
+\c 74.1234 54.6555 74.2445 55.1355 74.2993 55.5675
+\c 74.5649 57.6155 73.6508 59.5035 72.6071 60.3035
+\l 71.3071 61.3115
+\l 71.6305 59.6955
+\c 71.7258 59.2155 71.6697 58.8155 71.4562 58.4955
+\c 71.1634 58.0635 70.5399 57.7275 69.6508 57.5515
+\l 68.1383 57.3275
+\c 66.1399 57.0875 63.4023 56.7515 60.4258 54.8795
+\l 58.5413 53.5995
+\c 55.8445 51.7115 53.3009 49.9195 45.9477 49.3595
+\c 40.1946 48.9275 33.6977 51.2475 29.8149 52.9435
+\c 29.0429 53.3435 28.2197 53.7275 27.3383 54.0955
+\c 26.718 54.4155 26.3602 54.6075 26.3399 54.6235
+\c 26.3399 54.6235 25.1844 55.8715 24.5681 56.6555
+\c 32.3844 53.1355 45.0695 52.9755 51.2508 60.3835
+\c 54.6101 64.4155 55.5508 69.2315 53.7634 73.2635
+\c 52.354 76.4635 49.4212 78.6075 46.2914 78.7515
+\l 43.5321 78.6875
+\c 46.4039 78.1275 49.4055 76.4475 49.3087 72.5115
+\c 48.9695 70.7195 47.3415 69.2155 45.522 69.0395
+\c 43.1009 68.7995 41.6789 67.9195 40.8773 67.1515
+\c 40.6321 68.5595 39.5205 70.5915 38.4429 71.3275
+\l 37.3914 72.0475
+\l 37.4821 70.7835
+\c 37.557 69.7115 37.6791 67.9995 37.2258 67.7275
+\c 36.9789 67.5675 36.6321 67.6155 36.1845 67.8715
+\c 33.2383 69.5515 30.4226 69.1995 27.8133 66.8315
+\c 22.1415 61.6635 17.3321 65.3435 17.129 65.5035
+\l 17.0461 65.3915
+\c 14.4321 68.3355 12.329 70.8155 10.7071 73.5675
+\c 11.7773 72.7835 13.0805 72.3195 14.4914 72.3195
+\c 18.1103 72.3195 21.0508 75.3595 21.0508 79.0875
+\c 21.0508 82.8155 18.1103 85.8555 14.4914 85.8555
+\c 11.1876 85.8555 8.4562 83.3275 8.0055 80.0315
+\c 7.7101 81.1355 7.4508 82.2875 7.2413 83.5675
+\c 6.1463 90.2075 7.9727 97.3915 12.0071 102.3195
+\c 15.0743 106.0635 19.0852 108.1115 23.6009 108.2715
+\c 28.6133 108.4315 32.3821 106.7675 34.2101 103.5675
+\c 35.6729 101.0075 35.6946 97.6475 34.2695 95.4075
+\c 31.4562 90.9915 26.8055 90.7995 23.3876 92.0955
+\c 21.4665 92.8315 20.954 94.4955 21.1039 95.7115
+\c 21.2274 96.7195 21.8993 97.9835 23.3805 98.1595
+\c 24.3492 98.2715 25.3258 97.8075 25.6516 97.0555
+\c 25.9932 96.2875 25.6009 95.3595 24.5445 94.4475
+\l 23.5993 93.6315
+\l 24.8242 93.3915
+\c 24.957 93.3595 28.1071 92.7355 29.9844 94.3515
+\c 30.9417 95.1675 31.3845 96.3995 31.3009 97.9835
+\c 31.1586 100.7035 29.4508 102.7515 26.618 103.5995
+\c 23.1101 104.6395 19.0071 103.4235 17.0729 100.7675
+\c 15.1415 98.1275 15.0602 94.2395 16.8695 91.0875
+\c 19.029 87.3275 23.1914 85.4715 28.2898 85.9995
+\c 33.2353 86.4955 37.2665 89.1515 39.3477 93.2475
+\c 41.5321 97.5515 41.3039 102.7355 38.7353 107.1355
+\c 36.5071 110.9595 32.4258 113.3595 27.2383 113.9195
+\c 20.1258 114.6715 12.4508 111.7915 7.6836 106.5595
+\c -1.5696 96.4315 -2.5913 79.9995 5.3039 68.3675
+\c 8.4821 63.6635 11.8773 59.8075 14.8727 56.3995
+\c 19.2053 51.4715 22.6258 47.5835 22.0226 44.6395
+\c 21.8649 43.8715 21.5305 43.3595 21.0009 43.0555
+\c 19.8274 42.3995 18.0711 43.0395 18.0532 43.0395
+\l 17.1977 43.3595
+\l 17.2258 42.4475
+\c 17.229 42.3675 17.3071 40.3835 18.8164 39.0715
+\c 19.8353 38.1915 21.2321 37.8395 22.9649 38.0315
+\c 25.0682 38.2555 27.7354 39.5515 28.9117 42.4475
+\c 29.7727 44.5755 29.9757 47.9355 27.2087 52.7835
+\c 27.8477 52.4795 28.6562 52.0955 29.626 51.6635
+\c 37.1477 47.7275 39.6516 42.6875 40.4821 39.8395
+\l 40.8367 38.5755
+\c 41.7914 35.1035 41.0729 33.7115 47.2226 30.8475
+\c 51.6532 28.7835 51.0508 24.9755 51.0508 24.9755
+\c 52.4757 25.8075 53.4789 26.2075 55.1492 27.3595
+\c 57.1321 28.7355 57.6665 31.5195 56.4197 32.1595
+\c 58.8634 30.9115 61.4039 30.5115 64.1164 30.2875
+\c 66.1977 30.1115 68.3477 30.0155 69.9101 28.3835
+\c 71.3009 26.9275 71.1101 25.2955 69.5681 24.2555
+\c 69.554 24.2395 67.7681 23.0395 67.7681 23.0395
+\l 69.9321 23.1355
+\c 70.09 23.1355 73.8039 23.2955 75.329 25.4395
+\c 77.9101 29.0555 74.7429 34.1115 71.7876 36.3835
+\c 70.9399 37.0555 70.0823 37.6155 69.2164 38.1275
+\c 71.9133 37.8395 74.829 37.7435 77.6837 37.6315
+\c 84.1729 37.4075 90.8849 37.1515 93.7137 34.8795
+\c 94.3185 34.3835 94.6097 33.8875 94.6049 33.3115
+\c 94.5953 32.2235 93.4705 31.1195 93.0385 30.7835
+\l 91.5137 29.5995
+\l 93.4417 29.6955
+\c 93.5105 29.6955 100.2513 30.0475 100.9953 35.5515
+\c 101.2049 37.1195 100.9633 38.4155 100.2785 39.4075
+\c 106.0753 40.2555 113.1889 43.3595 114.8033 44.0795
+\c 115.4193 43.6155 116.0945 43.3595 116.7841 43.3595
+\l 116.8513 43.3595
+\l 116.9185 43.3595
+\c 118.0689 43.6315 120.6065 45.1515 121.4033 45.6315
+\c 122.4609 45.0555 123.6673 44.7195 124.9505 44.7195
+\c 129.0737 44.7195 132.4321 48.1595 132.4321 52.3675
+\c 132.4321 52.6075 132.4161 52.8315 132.3985 53.0555
+\c 133.7841 53.0555 135.6641 53.9675 136.4305 55.4555
+\c 136.6417 55.8555 136.8481 56.5115 136.7441 57.3115
+\l 136.7873 57.2475
+\c 143.6097 61.4715 149.2513 67.0715 150.2625 68.0955
+\c 150.7329 68.0955 151.2033 68.0795 151.6753 68.0315
+\c 149.5009 67.3435 147.9313 65.1675 147.7953 63.5035
+\c 149.8449 64.0635 152.1313 63.8395 153.8033 61.3915
+\c 154.4609 60.4315 155.2033 59.7115 155.9057 59.1675
+\c 155.7841 59.1675 155.6529 59.1675 155.5377 59.1675
+\c 149.9105 59.0715 147.9985 55.1675 147.9985 55.0395
+\c 147.9985 54.9595 149.7057 53.1195 151.1393 52.8475
+\c 149.6529 52.5115 148.2641 51.4555 146.9473 50.1435
+\l 146.0689 49.2315
+\c 144.4529 47.5355 142.6193 45.6155 140.4705 45.8075
+\c 137.7889 46.0635 136.7825 50.5435 138.3313 52.3675
+\c 136.3921 52.7515 134.1569 52.0795 133.3361 50.1435
+\c 132.2657 47.6315 133.6945 44.1595 135.4561 42.3195
+\c 136.2513 41.4875 137.4289 40.5755 139.0977 39.9035
+\c 137.0241 39.5035 134.9233 38.7995 132.8561 37.7435
+\c 128.7345 35.6315 124.1073 31.6315 119.2081 27.4075
+\c 113.2305 22.2395 107.0513 16.8955 102.1409 15.5515
+\c 97.0529 14.1595 92.7489 14.3995 90.3345 16.2075
+\c 89.1633 17.0715 88.5265 18.2875 88.4945 19.6955
+\c 88.4529 21.4395 89.3361 23.1675 90.9953 23.5515
+\c 94.1329 24.2875 96.9985 21.6475 97.2913 21.8395
+\c 97.1041 24.0795 94.7537 26.0795 92.3073 26.7995
+\c 89.4385 27.6475 86.4881 27.2795 84.2097 25.8075
+\c 80.8977 23.6795 79.3188 19.0715 80.3681 14.6075
+\c 81.5809 9.4555 86.5937 5.9355 91.7985 5.3275
+\c 96.8289 4.7515 101.6657 6.0955 104.6881 7.6795
+\c 104.0513 7.2315 104.3169 4.4635 104.3809 3.7915
+\c 104.5137 2.4315 105.0321 0.8955 106.1697 -0.0005
+\c 106.7377 1.0235 109.5537 2.8955 111.1537 3.8875
+\c 112.8785 4.9435 114.5169 5.9675 115.2385 7.5835
+\c 115.3777 6.8795 115.4513 4.8155 116.5441 3.5195
+\c 116.8193 4.8795 119.0769 7.0715 120.2561 7.8875
+\c 121.7185 8.8955 123.2353 9.9355 124.2753 11.7755
+\c 125.7169 14.3195 125.8849 16.6875 126.0513 18.9755
+\c 126.1729 20.6715 126.2977 22.3195 126.9137 24.0475
+\c 126.9345 23.7755 126.9665 23.5195 127.0145 23.2475
+\c 127.4193 21.0875 128.6721 19.0555 130.9473 18.3195
+\c 130.6897 19.5675 131.9185 20.7995 133.2449 21.8235
+\c 134.4033 22.5915 136.3009 23.3275 137.6001 22.4635
+\c 137.6977 22.3995 137.8033 22.3675 137.9105 22.3515
+\c 137.4065 20.4635 137.2289 18.3675 137.4065 16.2235
+\c 138.2529 5.9195 149.7057 0.6235 157.2225 1.0555
+\c 165.7297 1.5515 171.4913 4.8315 175.0961 10.4315
+\c 175.6321 11.2635 176.0881 12.2395 176.4785 13.3435
+\c 177.2481 12.6875 179.1009 11.0235 179.9569 9.5355
+\c 181.7873 12.1755 183.0881 13.3755 183.6337 13.8235
+\c 184.0561 12.5275 184.5665 11.3755 185.1793 10.4315
+\c 188.7825 4.8315 194.5457 1.5515 203.0513 1.0555
+\c 210.5697 0.6235 222.0209 5.9195 222.8689 16.2235
+\c 223.0481 18.4155 222.8545 20.5595 222.3297 22.4635
+\c 223.6257 23.3115 225.5105 22.5755 226.6689 21.8235
+\c 228.5297 20.3835 228.9633 18.3195 228.9633 18.3195
+\c 228.9633 18.3195 231.5265 18.8475 232.8977 23.2475
+\c 232.9793 23.5035 232.9793 23.7755 233.0001 24.0475
+\c 233.6161 22.3195 233.7393 20.6715 233.8609 18.9755
+\c 234.0257 16.6875 234.1953 14.3195 235.6353 11.7755
+\c 236.6753 9.9355 238.1889 8.8955 239.6561 7.8875
+\c 240.8385 7.0715 243.0945 4.8795 243.3665 3.5195
+\c 244.4609 4.8155 244.5345 6.8795 244.6737 7.5835
+\c 245.3953 5.9675 247.0321 4.9435 248.7601 3.8875
+\c 250.3569 2.8955 253.1729 1.0235 253.7409 -0.0005
+\c 254.8785 0.8955 255.4017 2.4315 255.5329 3.7915
+\c 255.5953 4.4635 255.8609 7.2315 255.2225 7.6795
+\c 258.2449 6.0955 263.0849 4.7515 268.1169 5.3275
+\c 273.3185 5.9355 278.3329 9.4555 279.5441 14.6075
+\c 280.5953 19.0715 279.0129 23.6795 275.7009 25.8075
+\c 273.4225 27.2795 270.4753 27.6475 267.6033 26.7995
+\c 265.1569 26.0795 262.8065 24.0795 262.6161 21.8395
+\c 262.9137 21.6475 265.7793 24.2875 268.9185 23.5515
+\c 270.5729 23.1675 271.4561 21.4395 271.4161 19.6955
+\c 271.3841 18.2875 270.7473 17.0715 269.5761 16.2075
+\c 267.1601 14.3995 262.8609 14.1595 257.7697 15.5515
+\c 252.8625 16.8955 246.6785 22.2395 240.7009 27.4075
+\c 235.8033 31.6315 231.1777 35.6315 227.0545 37.7435
+\c 225.0689 38.7515 223.0513 39.4395 221.0529 39.8555
+\c 222.7921 40.5275 224.0033 41.4555 224.8177 42.3195
+\c 226.5793 44.1595 228.0065 47.6315 226.9393 50.1435
+\c 226.1185 52.0795 223.8849 52.7515 221.9409 52.3675
+\c 223.4945 50.5435 222.4849 46.0635 219.8033 45.8075
+\c 217.6529 45.6155 215.8225 47.5355 214.2033 49.2315
+\l 213.3281 50.1435
+\c 212.0097 51.4555 210.6225 52.5115 209.1345 52.8475
+\c 210.5697 53.1195 212.2753 54.9595 212.2753 55.0395
+\c 212.2753 55.1675 210.3649 59.0715 204.7361 59.1675
+\c 204.6193 59.1675 204.4913 59.1675 204.3697 59.1675
+\c 205.0689 59.7115 205.8145 60.4315 206.4689 61.3915
+\c 208.1409 63.8395 210.4321 64.0635 212.4817 63.5035
+\c 212.3441 65.1675 210.7761 67.3435 208.5985 68.0315
+\c 209.3521 68.0955 210.1041 68.0955 210.8545 68.0955
+\c 211.8881 67.0395 217.5185 61.4555 224.3217 57.2475
+\l 224.3633 57.3115
+\c 224.2593 56.5115 224.4673 55.8555 224.6753 55.4555
+\c 225.4449 53.9675 227.3233 53.0555 228.7089 53.0555
+\c 228.6881 52.8315 228.6753 52.6075 228.6753 52.3675
+\c 228.6753 48.1595 232.0321 44.7195 236.1569 44.7195
+\c 237.4417 44.7195 238.6481 45.0555 239.7041 45.6315
+\c 240.5009 45.1515 243.0417 43.6315 244.1873 43.3595
+\l 244.2561 43.3595
+\l 244.3217 43.3595
+\c 245.0097 43.3595 245.6881 43.6155 246.3041 44.0795
+\c 247.9185 43.3595 255.0321 40.2555 260.8289 39.4075
+\c 260.1441 38.4155 259.9009 37.1195 260.1137 35.5515
+\c 260.8561 30.0475 267.6017 29.6955 267.6673 29.6955
+\l 269.5953 29.5995
+\l 268.0689 30.7835
+\c 267.6385 31.1195 266.5137 32.2235 266.5041 33.3115
+\c 266.4977 33.8875 266.7921 34.3835 267.3953 34.8795
+\c 270.2225 37.1515 276.9345 37.4075 283.4225 37.6315
+\c 286.2817 37.7435 289.1953 37.8395 291.8945 38.1275
+\c 291.0257 37.6155 290.1665 37.0555 289.3169 36.3835
+\c 286.3665 34.1115 283.1953 29.0555 285.7793 25.4395
+\c 287.3041 23.2955 291.0161 23.1355 291.1761 23.1355
+\l 293.3409 23.0395
+\c 293.3409 23.0395 291.5537 24.2395 291.5409 24.2555
+\c 289.9969 25.2955 289.8065 26.9275 291.2001 28.3835
+\c 292.7601 30.0155 294.9105 30.1115 296.9921 30.2875
+\c 299.7073 30.5115 302.2449 30.9115 304.6881 32.1595
+\c 303.4417 31.5195 303.9793 28.7355 305.9569 27.3595
+\c 307.6321 26.2075 308.6321 25.8075 310.0609 24.9755
+\c 310.0609 24.9755 309.4529 28.7835 313.8849 30.8475
+\c 320.0353 33.7115 319.3185 35.1035 320.2721 38.5755
+\l 320.6257 39.8395
+\c 321.4561 42.6875 323.9601 47.7275 331.4849 51.6635
+\c 332.4513 52.0955 333.2625 52.4795 333.8977 52.7835
+\c 331.1329 47.9515 331.3377 44.5755 332.1985 42.4475
+\c 333.3729 39.5515 336.0385 38.2555 338.1409 38.0315
+\c 339.8785 37.8395 341.2721 38.1915 342.2913 39.0715
+\c 343.7985 40.3835 343.8785 42.3675 343.8817 42.4475
+\l 343.9105 43.3595
+\l 343.0529 43.0395
+\c 343.0385 43.0395 341.2817 42.3995 340.1073 43.0555
+\c 339.5761 43.3595 339.2449 43.8715 339.0849 44.6395
+\c 338.4817 47.5835 341.9041 51.4715 346.2353 56.3995
+\c 349.2289 59.8075 352.6257 63.6635 355.8017 68.3675
+\c 363.7009 79.9995 362.6785 96.4315 353.4225 106.5595
+\o
+\m 288.5793 66.7995
+\c 284.6033 64.5915 279.7601 65.2155 277.6385 66.1275
+\c 274.6017 67.4235 273.3953 70.5915 273.5473 73.1355
+\c 273.6977 75.7435 275.3185 77.9355 277.6017 78.6075
+\c 281.4913 79.7595 282.9233 77.3115 283.4785 73.7915
+\c 281.6881 74.6395 280.3793 73.9835 279.8289 73.5035
+\c 278.8945 72.6875 278.5105 71.3275 278.8513 70.0475
+\c 279.1921 68.7835 280.4417 67.5195 282.0385 66.8155
+\c 284.2513 65.8715 286.8609 66.0795 289.4097 67.4075
+\c 289.1297 67.2155 288.8881 66.9755 288.5793 66.7995
+\o
+\m 209.4289 137.1835
+\c 209.4033 137.1035 209.4033 137.0235 209.4161 136.9435
+\c 209.2321 136.3355 209.1617 135.6955 209.2481 135.0395
+\c 209.4545 133.4235 210.4913 132.1595 211.8241 131.9195
+\c 213.0449 131.6955 214.0017 131.8715 214.6753 132.4315
+\c 215.5329 133.1515 215.5569 134.1915 215.5569 134.3035
+\c 215.5569 134.6395 215.2849 134.9115 214.9473 134.9115
+\c 214.6097 134.9115 214.3361 134.6395 214.3265 134.3035
+\c 214.3265 134.3035 214.3089 133.7275 213.8785 133.3755
+\c 213.5025 133.0715 212.8689 132.9755 212.0449 133.1355
+\c 211.2417 133.2795 210.6065 134.1115 210.4673 135.1995
+\c 210.3217 136.3195 210.7361 137.7915 212.3329 138.5275
+\c 213.9073 139.2635 215.5633 139.2155 216.8689 138.3995
+\c 218.3185 137.5195 219.1841 135.8075 219.2481 133.7435
+\c 219.2977 131.9835 218.6689 130.4155 217.4289 129.2315
+\c 216.0017 127.8555 213.9105 127.1195 211.8417 127.2635
+\c 207.9921 127.5355 205.1361 130.6555 204.8977 134.8795
+\c 204.6673 138.9275 206.9713 144.0795 214.2257 145.3115
+\c 215.6289 145.5515 217.0033 145.5995 218.3377 145.4875
+\c 215.1601 144.7835 210.8897 142.7835 209.4289 137.1835
+\o
+\m 146.0497 145.3115
+\c 153.3041 144.0795 155.6097 138.9275 155.3793 134.8795
+\c 155.1377 130.6555 152.2817 127.5355 148.4337 127.2635
+\c 146.3633 127.1195 144.2753 127.8555 142.8465 129.2315
+\c 141.6033 130.4155 140.9761 131.9835 141.0289 133.7435
+\c 141.0881 135.8075 141.9537 137.5195 143.4033 138.3995
+\c 144.7137 139.2155 146.3665 139.2635 147.9441 138.5275
+\c 149.5377 137.7915 149.9505 136.3195 149.8065 135.1995
+\c 149.6689 134.1115 149.0353 133.2795 148.2305 133.1355
+\c 147.4065 132.9755 146.7729 133.0715 146.3953 133.3755
+\c 145.9665 133.7275 145.9473 134.3035 145.9473 134.3035
+\c 145.9393 134.6395 145.6641 134.9115 145.3281 134.9115
+\c 144.9873 134.9115 144.7185 134.6395 144.7185 134.3035
+\c 144.7185 134.1915 144.7409 133.1515 145.5985 132.4315
+\c 146.2721 131.8715 147.2305 131.6955 148.4513 131.9195
+\c 149.7841 132.1595 150.8193 133.4235 151.0289 135.0395
+\c 151.1137 135.6955 151.0417 136.3355 150.8593 136.9435
+\c 150.8705 137.0235 150.8689 137.1035 150.8481 137.1835
+\c 149.3841 142.7835 145.1153 144.7835 141.9345 145.4875
+\c 143.2689 145.5995 144.6465 145.5515 146.0497 145.3115
+\o
+\m 78.2353 66.8155
+\c 79.8337 67.5195 81.0849 68.7835 81.4225 70.0475
+\c 81.7633 71.3275 81.3825 72.6875 80.4445 73.5035
+\c 79.8946 73.9835 78.5868 74.6395 76.7961 73.7915
+\c 77.3508 77.3115 78.7823 79.7595 82.6721 78.6075
+\c 84.9553 77.9355 86.5777 75.7435 86.7297 73.1355
+\c 86.8801 70.5915 85.6721 67.4235 82.6353 66.1275
+\c 80.5164 65.2155 75.6711 64.5915 71.6961 66.7995
+\c 71.3876 66.9755 71.1477 67.2155 70.8634 67.4075
+\c 73.4133 66.0795 76.0242 65.8715 78.2353 66.8155
+\o
+\m 28.6415 65.9195
+\c 30.8399 67.9195 33.1087 68.2075 35.5757 66.7995
+\c 36.6602 66.1915 37.4274 66.3995 37.8821 66.6875
+\c 38.5133 67.0875 38.8445 67.8235 38.9961 68.6235
+\c 39.4633 67.9195 39.7477 67.0395 39.7477 66.1275
+\c 39.7477 65.8715 39.729 65.6155 39.6868 65.3595
+\c 39.1602 62.4155 34.7876 60.5115 34.7876 60.5115
+\c 37.929 60.2235 40.5071 62.8635 40.8994 65.1515
+\c 40.9188 65.2795 40.9226 65.4075 40.9354 65.5195
+\l 41.093 65.4555
+\c 41.129 65.5355 42.0101 67.4555 45.6445 67.8235
+\c 48.0258 68.0635 50.0743 69.9355 50.5164 72.2875
+\c 50.5602 72.5275 50.5993 72.8315 50.5993 73.1835
+\c 50.5993 74.0635 50.3556 75.2635 49.4055 76.4475
+\c 50.7602 75.6155 51.929 74.3835 52.6383 72.7835
+\c 53.1757 71.5675 53.4413 70.2875 53.4413 68.9755
+\c 53.4413 66.3675 52.3727 63.6475 50.3039 61.1675
+\c 43.8946 53.4875 29.0633 54.5755 22.3188 59.3275
+\l 18.8852 63.2955
+\c 21.1791 62.5755 24.7836 62.4155 28.6415 65.9195
+\o
+\m 14.4914 84.6235
+\c 17.4321 84.6235 19.8226 82.1435 19.8226 79.0875
+\c 19.8226 76.0315 17.4321 73.5515 14.4914 73.5515
+\c 11.554 73.5515 9.1632 76.0315 9.1632 79.0875
+\c 9.1632 82.1435 11.554 84.6235 14.4914 84.6235
+\o
+\m 27.7727 42.9115
+\c 26.7977 40.5115 24.5789 39.4395 22.829 39.2475
+\c 21.4562 39.1035 20.3821 39.3435 19.6319 39.9835
+\c 19.0562 40.4795 18.7695 41.1195 18.6197 41.6475
+\c 19.4321 41.4875 20.5977 41.4235 21.5946 41.9835
+\c 22.4461 42.4475 22.9946 43.2635 23.2258 44.3995
+\c 23.954 47.9355 20.5319 51.8235 15.7961 57.2155
+\c 12.8242 60.5915 9.4562 64.4315 6.3234 69.0555
+\c -1.2617 80.2395 -0.2883 96.0155 8.5914 105.7435
+\c 13.1039 110.6715 20.3711 113.4075 27.1087 112.6875
+\c 31.8946 112.1755 35.6477 109.9995 37.6743 106.5275
+\c 40.0305 102.4795 40.2477 97.7275 38.2532 93.8075
+\c 36.3353 90.0315 32.7525 87.6955 28.1649 87.2155
+\c 23.5695 86.7515 19.8417 88.3835 17.9369 91.6955
+\c 16.3649 94.4315 16.4164 97.7915 18.0634 100.0475
+\c 19.7071 102.3035 23.2337 103.3275 26.2665 102.4155
+\c 28.5727 101.7275 29.9586 100.0955 30.0727 97.9195
+\c 30.1354 96.7355 29.8367 95.8395 29.1876 95.2955
+\c 28.3695 94.5755 27.1477 94.4635 26.2415 94.4795
+\c 26.8103 95.2475 26.9977 95.9355 26.9977 96.4955
+\c 26.9977 96.9595 26.8791 97.3275 26.7789 97.5675
+\c 26.2321 98.7995 24.7415 99.5515 23.2337 99.3755
+\c 21.4618 99.1675 20.1149 97.7595 19.8821 95.8555
+\c 19.6805 94.2075 20.3633 91.9355 22.954 90.9435
+\c 26.8226 89.4875 32.0977 89.7115 35.3071 94.7515
+\c 36.9695 97.3595 36.957 101.2315 35.2791 104.1755
+\c 34.0823 106.2715 30.9665 109.7435 23.5602 109.5035
+\c 18.6789 109.3275 14.354 107.1195 11.0548 103.0875
+\c 6.8039 97.9035 4.8773 90.3515 6.029 83.3595
+\c 7.532 74.2235 11.1352 70.1755 17.1089 63.4715
+\l 21.2164 58.7195
+\l 21.1572 58.6555
+\c 21.262 58.5755 21.3773 58.4955 21.4852 58.4155
+\l 22.9695 56.7035
+\c 27.4633 51.2475 29.1681 46.3675 27.7727 42.9115
+\o
+\m 212.9825 108.3835
+\c 214.3441 110.3035 215.0257 112.2395 215.0257 114.0795
+\c 215.0257 115.4555 214.7841 116.7835 214.0193 117.9675
+\c 216.2241 117.4395 217.7537 116.4315 218.8417 114.9435
+\c 220.0737 113.2635 220.8865 110.8635 220.7009 107.8715
+\c 221.0353 107.8075 221.7921 110.3515 221.2545 112.5595
+\c 221.3377 112.6555 221.9793 115.5835 223.6881 117.6635
+\c 224.9441 119.3915 226.7729 121.4235 229.3313 124.1755
+\c 232.2097 127.2955 232.8913 130.6075 232.8913 133.0715
+\c 237.7841 119.3115 224.9393 102.1435 220.2017 96.4635
+\c 220.9537 99.1035 220.5473 101.0075 220.2033 101.8395
+\c 219.7953 98.2875 220.0049 97.7435 217.6897 93.7435
+\c 217.6465 93.6795 217.6193 93.5995 217.6129 93.5035
+\c 217.4753 93.3595 217.3361 93.1995 217.1985 93.0555
+\c 217.9553 95.8075 217.5841 98.4155 217.2097 98.7035
+\c 217.1985 97.6955 217.0849 93.6155 214.8273 90.4475
+\c 213.2881 88.7995 211.7841 87.2475 210.2945 85.7915
+\c 211.2033 86.6875 210.5329 91.1035 210.4321 92.2075
+\c 210.2001 94.6875 209.8449 95.4715 209.3985 97.9195
+\c 209.2689 98.6235 209.2081 99.2795 209.2081 99.9035
+\c 209.2081 102.9275 210.6641 105.1515 212.9825 108.3835
+\o
+\m 198.8161 88.5275
+\c 199.3361 90.3995 199.0529 92.2075 198.0753 93.9195
+\c 198.9761 96.3035 199.4353 98.4475 199.4353 100.2875
+\c 199.4353 101.6955 199.1649 102.9275 198.6225 103.9515
+\c 198.1601 104.8155 197.4945 105.4875 196.6913 105.9515
+\c 198.6161 106.4475 200.4017 106.0955 201.9185 104.8795
+\c 205.4897 102.0155 207.2401 94.9755 205.5953 88.2395
+\c 204.4785 83.6795 202.5185 79.8395 200.8017 77.1035
+\c 200.9025 79.0075 200.4113 80.3515 199.7441 80.9115
+\c 200.1185 80.0475 200.1729 77.6955 199.1361 74.6395
+\c 198.6609 73.9995 198.2529 73.4715 197.9601 73.1195
+\c 198.0721 75.3915 197.6657 76.8955 196.7265 77.5995
+\c 196.4177 77.8395 195.9697 78.0315 195.3729 78.0155
+\c 195.8449 79.2155 196.0625 80.5275 196.0625 81.8235
+\c 196.0625 84.1275 195.3937 86.3675 194.3185 87.7915
+\c 193.8945 88.3675 192.9953 89.3275 192.9953 89.3275
+\c 192.9889 89.3595 192.9521 89.5675 192.9521 89.8875
+\c 192.9521 90.9275 193.3601 93.0875 196.3217 94.3355
+\c 198.1329 92.8955 198.8161 88.5275 198.8161 88.5275
+\o
+\m 192.7649 72.4315
+\c 192.9825 71.0075 193.3569 68.3675 191.5281 63.9835
+\c 192.1233 69.0075 190.4369 71.8875 189.3457 72.5115
+\c 190.0481 71.5995 191.0881 65.6635 189.3729 59.9995
+\c 187.8977 57.4555 186.5105 54.7675 185.4177 52.0635
+\c 185.2961 53.5195 184.9745 55.0555 184.2673 56.0795
+\c 185.5617 57.6315 188.0353 61.9835 188.0353 66.7835
+\c 188.0353 68.1435 187.8225 69.5195 187.3441 70.8955
+\c 187.5073 70.7195 187.6081 70.6075 187.6097 70.6075
+\c 187.4961 70.7515 187.3969 70.8955 187.2977 71.0395
+\c 187.2721 71.1035 187.2529 71.1835 187.2257 71.2475
+\c 186.9841 71.8715 186.7041 72.4155 186.4017 72.8795
+\c 185.4561 75.8715 186.1921 79.5835 186.6161 80.7675
+\c 187.5345 83.3275 188.0945 84.9435 188.0945 86.1115
+\c 188.0945 87.6315 186.7873 88.2395 185.8321 88.3835
+\c 186.7505 89.0875 188.2385 89.4235 188.9601 89.4075
+\c 190.5921 89.3435 192.3105 88.4155 193.3361 87.0555
+\c 194.9569 84.8955 195.5105 80.3995 193.7105 77.3915
+\l 192.6225 75.5835
+\l 194.5121 76.5275
+\c 195.1505 76.8475 195.6465 76.8795 195.9873 76.6235
+\c 196.2721 76.4155 197.2273 73.2475 195.9505 69.8715
+\c 195.2225 68.8955 194.4257 67.7915 193.5953 66.6075
+\c 194.2097 69.6795 193.5409 71.6635 192.7649 72.4315
+\o
+\m 184.2017 75.0235
+\c 183.3169 75.5515 182.4033 75.7915 181.6129 75.8875
+\c 179.6497 76.1275 177.6449 75.5835 176.0385 74.6875
+\c 176.1729 75.6315 176.1137 77.5675 174.8161 81.1835
+\c 173.7345 84.1915 173.1457 85.9195 173.5217 86.7195
+\c 173.7105 87.1035 174.2129 87.4075 175.2561 87.7595
+\l 176.1137 88.0635
+\l 175.5217 88.7515
+\c 174.4145 90.0315 172.9441 90.6875 171.2721 90.6235
+\c 170.3505 90.5915 169.4081 90.3355 168.5361 89.9035
+\c 168.5329 90.3035 168.4785 90.8315 168.3185 91.4075
+\c 178.6353 102.5275 180.3185 117.8715 180.4225 119.6155
+\c 180.4689 119.6155 180.5089 119.6155 180.5537 119.6155
+\c 180.6561 119.6155 180.7521 119.6155 180.8529 119.6155
+\c 180.9553 117.9035 182.1201 103.4075 192.2785 92.3035
+\c 191.8529 91.3755 191.7441 90.5115 191.7345 89.9035
+\c 190.8673 90.3355 189.9233 90.5915 189.0017 90.6235
+\c 187.3297 90.6875 185.8609 90.0315 184.7505 88.7515
+\l 184.1601 88.0635
+\l 185.0177 87.7595
+\c 186.0625 87.4075 186.5649 87.1035 186.7505 86.7195
+\c 187.1297 85.9195 186.5377 84.1915 185.4593 81.1835
+\c 184.3009 77.9515 184.1297 76.0635 184.2017 75.0235
+\o
+\m 195.6945 95.4075
+\c 194.4225 94.8635 193.5425 94.1435 192.9521 93.3915
+\c 183.2257 104.2235 182.1633 118.2555 182.0817 119.7115
+\c 183.2513 119.8555 184.2385 120.1755 185.0689 120.5915
+\c 185.3745 120.1755 186.1041 119.2955 187.2353 118.4795
+\l 186.8625 118.5275
+\c 186.8129 118.1435 185.7793 109.1195 195.6945 95.4075
+\o
+\m 186.2945 148.8955
+\c 187.1665 150.9275 189.5185 152.2715 191.7665 152.0155
+\c 192.8513 151.9035 194.6417 151.2955 195.5361 148.7835
+\c 194.3601 149.2635 193.2353 149.3115 192.3297 148.8155
+\c 191.1409 148.1595 190.4929 146.7355 190.5473 144.9115
+\c 190.6593 141.2475 192.0449 138.8635 196.4833 134.7355
+\c 198.9457 132.4475 200.3233 130.0795 200.7009 127.5195
+\c 201.2017 124.0955 200.0353 119.6155 195.0977 118.2555
+\c 189.8817 116.8155 186.8817 120.2075 186.1281 121.2155
+\c 186.5409 121.5035 186.9073 121.8235 187.2225 122.1435
+\c 187.8993 121.0235 189.7329 118.7995 193.6225 118.7995
+\c 197.6561 118.7995 199.2129 123.4555 199.2129 123.4555
+\c 199.2129 123.4555 196.8673 120.0155 193.6225 120.0155
+\c 189.6881 120.0155 188.2865 122.6875 188.0721 123.1515
+\c 188.1201 123.2315 188.1697 123.2955 188.2161 123.3595
+\c 190.2193 126.3675 190.4721 130.8155 188.8609 134.7035
+\l 185.5217 142.9435
+\c 185.5169 142.9755 185.1569 146.2395 186.2945 148.8955
+\o
+\m 180.7137 150.7195
+\c 181.6849 148.4315 187.7233 134.2395 187.7233 134.2395
+\c 188.3601 132.7035 188.6721 131.0395 188.6721 129.4555
+\c 188.6721 127.4395 188.1729 125.5035 187.1953 124.0475
+\c 185.7921 121.9515 183.4977 120.8475 180.5537 120.8475
+\c 177.8193 120.8475 175.7793 121.7915 174.4977 123.6795
+\c 173.4689 125.1835 173.0529 127.1035 173.0529 129.0395
+\c 173.0529 130.9755 173.4673 132.9275 174.1041 134.5595
+\c 176.4769 140.5595 179.4849 147.7915 180.7137 150.7195
+\o
+\m 171.7761 118.1915
+\c 169.4785 117.3115 166.1137 117.0875 163.5601 119.0715
+\c 161.8961 120.3675 160.9825 121.9195 160.8417 123.6955
+\c 160.5441 127.5035 163.7633 131.2475 164.7569 132.3035
+\l 166.0417 133.6475
+\c 169.0641 136.7675 172.4881 140.3195 172.1985 144.0475
+\c 172.0161 146.4155 170.6913 148.3515 168.8257 148.9595
+\c 167.9105 149.2635 167.0113 149.1515 166.2417 148.7355
+\c 166.2417 148.7515 166.2353 148.7835 166.2353 148.8155
+\c 166.2353 149.8235 166.5409 150.7195 167.1297 151.3435
+\c 167.9633 152.2235 169.3329 152.5595 171.0897 152.3195
+\c 174.8401 151.7915 176.8065 145.7275 177.0193 145.0395
+\c 175.7377 141.9195 174.2529 138.2875 172.9617 135.0075
+\c 171.5633 131.4715 171.1825 126.3835 173.4705 123.0075
+\c 173.0929 122.2875 171.6193 120.0155 167.9985 120.0155
+\c 164.7569 120.0155 162.4049 123.4555 162.4049 123.4555
+\c 162.4049 123.4555 163.9649 118.7995 167.9985 118.7995
+\c 171.7233 118.7995 173.5617 120.8475 174.3041 121.9995
+\c 174.5921 121.6955 174.9009 121.4395 175.2321 121.1835
+\c 174.9265 120.0475 173.6001 118.8955 171.7761 118.1915
+\o
+\m 174.4417 118.2395
+\c 175.3377 118.9115 175.9969 119.6955 176.3185 120.5275
+\c 177.1729 120.0955 178.1377 119.8235 179.1985 119.6955
+\c 179.1105 118.2075 177.5457 103.5195 167.8017 92.6715
+\c 167.3281 93.5195 166.5489 94.3675 165.3169 95.0395
+\c 174.6753 107.8075 174.5649 116.5915 174.4417 118.2395
+\o
+\m 154.6817 88.2395
+\c 153.0353 94.9755 154.7841 102.0155 158.3569 104.8795
+\c 159.8721 106.0955 161.6593 106.4475 163.5825 105.9515
+\c 162.7793 105.4875 162.1137 104.8155 161.6529 103.9515
+\c 161.1105 102.9275 160.8385 101.6955 160.8385 100.2875
+\c 160.8385 98.4475 161.2977 96.3035 162.1969 93.9195
+\c 161.2193 92.2075 160.9377 90.3995 161.4593 88.5275
+\c 161.4593 88.5275 162.1409 92.8955 163.9505 94.3355
+\c 166.9153 93.0875 167.3233 90.9275 167.3233 89.8875
+\c 167.3233 89.5675 167.2849 89.3595 167.2785 89.3275
+\c 167.2785 89.3275 166.3809 88.3675 165.9553 87.7915
+\c 164.8817 86.3675 164.2129 84.1275 164.2129 81.8235
+\c 164.2129 80.5275 164.4305 79.2155 164.9009 78.0155
+\c 164.3041 78.0315 163.8561 77.8395 163.5505 77.5995
+\c 162.6097 76.8955 162.2033 75.3915 162.3137 73.1195
+\c 160.8465 74.8955 156.5569 80.5595 154.6817 88.2395
+\o
+\m 141.1473 95.2155
+\c 137.8129 99.0075 122.0481 118.0635 127.3841 133.0715
+\c 127.3841 130.6075 128.0625 127.2955 130.9409 124.1755
+\c 133.5009 121.4235 135.3313 119.3915 136.5873 117.6635
+\c 138.2945 115.5835 138.9361 112.6555 139.0193 112.5595
+\c 138.4817 110.3515 139.2385 107.8075 139.5729 107.8715
+\c 139.3873 110.8635 140.2017 113.2635 141.4337 114.9435
+\c 142.5201 116.4315 144.0513 117.4395 146.2561 117.9675
+\c 145.4913 116.7835 145.2513 115.4555 145.2513 114.0795
+\c 145.2513 112.2395 145.9313 110.3035 147.2913 108.3835
+\c 149.6097 105.1515 151.0673 102.9275 151.0673 99.9035
+\c 151.0673 99.2795 151.0049 98.6235 150.8785 97.9195
+\c 150.4289 95.4715 150.0721 94.6875 149.8449 92.2075
+\c 149.7409 91.1035 149.0689 86.6875 149.9793 85.7915
+\c 147.1441 88.5755 144.2785 91.6475 141.1473 95.2155
+\o
+\m 71.0353 35.4235
+\c 73.0517 33.8555 75.0445 30.9915 75.0445 28.4635
+\c 75.0445 27.6475 74.829 26.8475 74.329 26.1435
+\c 73.7556 25.3435 72.6882 24.8955 71.7445 24.6555
+\c 72.2101 25.2635 72.6101 26.0155 72.6101 26.8795
+\c 72.6039 28.0635 71.8977 29.1035 70.5149 29.9995
+\c 68.7477 31.1355 66.5477 31.3275 64.2197 31.5195
+\c 61.7844 31.7115 59.2679 31.9355 57.0413 33.2635
+\c 55.9649 34.5595 54.3711 36.5595 53.1009 37.6795
+\c 51.0353 39.5035 50.2602 37.2635 52.1821 35.6795
+\c 53.3876 34.6875 55.2089 33.1995 55.354 31.3435
+\c 55.3665 31.2315 55.3695 31.1195 55.3695 31.0235
+\c 55.3695 29.7755 54.7823 28.9595 54.2633 28.4955
+\c 53.554 27.8555 52.7633 27.6315 52.4697 27.5995
+\c 52.426 27.7275 52.3415 27.9835 52.3415 27.9835
+\c 52.0103 29.1195 51.3188 31.5035 47.4165 32.7995
+\c 43.329 34.1595 42.9445 35.5515 42.0226 38.9115
+\l 41.6633 40.1755
+\c 41.0946 42.1275 39.7463 45.0395 36.8133 47.9675
+\c 40.4548 46.2235 47.8757 42.8475 52.9679 41.7275
+\l 56.157 41.0555
+\c 61.6773 39.9355 66.4431 38.9755 71.0353 35.4235
+\o
+\m 99.7761 35.7115
+\c 99.3761 32.7515 96.8257 31.6315 95.0689 31.1835
+\c 95.4753 31.7755 95.8257 32.4955 95.8353 33.2955
+\c 95.8353 33.3115 95.8353 33.3275 95.8353 33.3275
+\c 95.8353 34.2715 95.3825 35.1195 94.4833 35.8395
+\c 91.3361 38.3675 84.7297 38.6075 77.729 38.8635
+\c 73.4164 39.0235 68.957 39.1835 65.4165 39.9195
+\c 62.5117 41.0235 59.5071 41.6315 56.4039 42.2715
+\l 53.2321 42.9275
+\c 48.4009 43.9835 41.1844 47.2475 37.518 48.9915
+\c 40.2681 48.3355 43.218 47.9355 46.0383 48.1435
+\c 53.729 48.7195 56.4117 50.5915 59.2492 52.5915
+\l 61.0823 53.8395
+\c 63.826 55.5675 66.3009 55.8715 68.29 56.1115
+\l 69.8946 56.3515
+\c 71.1258 56.5915 71.9946 57.0875 72.4823 57.8235
+\c 72.5665 57.9515 72.6133 58.0955 72.6743 58.2395
+\c 72.9353 57.6795 73.1164 57.0075 73.1164 56.2875
+\c 73.1164 56.0955 73.1039 55.9195 73.0791 55.7275
+\c 72.8946 54.3035 70.129 51.0395 66.629 49.5675
+\c 66.629 49.5675 70.4711 50.4315 71.0757 50.8315
+\c 71.5055 51.1195 71.8649 51.4075 72.1914 51.7115
+\l 72.2884 51.6315
+\c 72.3101 51.6475 74.5602 54.1435 80.4461 54.2875
+\c 86.1729 54.4155 90.3953 57.0555 90.7377 60.6875
+\c 90.7825 60.8795 90.8001 61.0555 90.8081 61.2475
+\c 91.0785 60.6235 91.2849 59.8555 91.2849 58.8795
+\c 91.2849 58.0315 91.1409 57.0555 90.7793 55.9035
+\c 89.2641 51.1035 81.8193 45.5355 74.1234 45.2635
+\c 66.6946 45.0075 64.9877 46.4315 63.7586 45.4075
+\c 62.9383 43.6955 67.0383 43.7595 71.5477 43.7595
+\c 74.8727 43.5995 79.0305 43.1355 85.1473 43.6315
+\c 97.4465 44.6235 103.9841 49.0875 104.1409 52.4155
+\c 104.1457 52.4795 104.1473 52.5435 104.1473 52.5915
+\c 104.1473 53.4235 103.8801 54.1115 103.3505 54.6715
+\c 102.7185 55.3275 101.8433 55.6315 101.1313 55.7755
+\c 101.8481 56.5115 103.1953 57.5035 105.3185 57.5675
+\c 107.3777 57.6155 109.4065 55.9515 110.0417 53.6955
+\c 111.1841 49.6315 107.6753 46.2235 104.4721 44.3835
+\c 98.5681 41.2955 90.7921 40.5435 86.5825 40.5435
+\c 86.5825 40.5435 91.0913 39.0395 96.4001 40.2075
+\c 96.4193 40.2075 98.0945 40.1275 99.0849 38.9595
+\c 99.5841 38.3675 99.8401 37.5675 99.8401 36.6075
+\c 99.8401 36.3195 99.8161 36.0155 99.7761 35.7115
+\o
+\m 99.1633 40.5115
+\c 99.0785 40.5755 98.9985 40.6395 98.9137 40.6875
+\c 100.7873 41.1675 102.4449 41.9355 105.0641 43.2955
+\c 105.5521 43.5835 106.0065 43.8715 106.4433 44.1755
+\l 113.0305 46.6075
+\c 113.2161 46.0475 113.5297 45.4875 113.8609 45.0395
+\c 113.8673 45.0395 113.8753 45.0235 113.8817 45.0235
+\c 111.6049 44.0315 104.4689 41.0555 99.1633 40.5115
+\o
+\m 116.7313 44.6075
+\c 116.0897 44.6235 115.4033 45.0395 114.8417 45.7915
+\c 114.3073 46.4955 114.0849 47.2315 114.0849 47.5355
+\c 114.0849 47.5675 114.0897 47.5995 114.0945 47.6315
+\c 114.2529 48.0795 115.9217 49.6315 117.5953 51.0075
+\c 117.9217 49.1515 118.9041 47.5355 120.2849 46.3995
+\c 119.1953 45.7435 117.5105 44.7995 116.7313 44.6075
+\o
+\m 124.9505 45.9515
+\c 121.5025 45.9515 118.6993 48.8315 118.6993 52.3675
+\c 118.6993 55.9195 121.5025 58.7995 124.9505 58.7995
+\c 128.3985 58.7995 131.2017 55.9195 131.2017 52.3675
+\c 131.2017 48.8315 128.3985 45.9515 124.9505 45.9515
+\o
+\m 135.3377 56.0155
+\c 134.7345 54.8475 133.1441 54.2235 132.2705 54.2875
+\l 132.2513 54.0155
+\c 131.8721 55.7915 130.8977 57.3115 129.5537 58.3995
+\c 130.0321 58.9275 131.1473 60.0315 132.4161 60.0635
+\c 133.2353 60.0795 134.0225 59.6475 134.7601 58.7515
+\c 135.5697 57.7595 135.7649 56.8475 135.3377 56.0155
+\o
+\m 136.3921 58.4475
+\c 136.2257 58.7995 136.0161 59.1515 135.7089 59.5355
+\c 135.5505 59.7275 135.3873 59.8875 135.2257 60.0475
+\c 138.3809 62.1595 143.9953 67.1995 144.2561 67.4235
+\l 144.2097 67.4875
+\c 145.6049 67.7595 147.0353 67.9835 148.4785 68.0635
+\c 146.4673 66.1115 141.8177 61.8555 136.3921 58.4475
+\o
+\m 133.5185 23.5995
+\c 131.8817 22.8955 130.1073 20.7995 130.1073 20.7995
+\c 127.6753 22.8635 127.8529 26.4635 129.9201 28.7195
+\c 135.4353 34.7835 145.5505 35.5195 145.5505 35.9035
+\c 145.5505 35.9195 145.5505 35.9195 145.5505 35.9355
+\c 145.5361 36.3355 134.7985 36.1915 128.8705 29.6955
+\c 125.0977 25.7115 124.8529 22.3355 124.6193 19.0715
+\c 124.4609 16.8475 124.3089 14.7515 123.0257 12.4795
+\c 122.1489 10.9275 120.8337 10.0155 119.4417 9.0555
+\c 118.5665 8.4635 117.6705 7.8395 116.8737 7.0395
+\c 116.6017 8.0475 116.4353 8.9755 116.4353 9.7595
+\c 116.4353 12.0315 116.9537 14.1755 118.2817 15.5835
+\c 115.5073 15.5035 114.7169 10.6075 114.6321 9.3915
+\c 114.5025 7.5675 112.4481 6.3675 110.4033 5.1035
+\c 109.0913 4.3035 107.6513 3.3915 106.4833 2.1435
+\c 106.5377 2.1915 106.2033 3.1035 106.1761 3.2475
+\c 105.6785 5.4235 105.9985 7.8235 106.8993 9.8555
+\c 107.1569 10.4475 107.4673 11.0235 107.8033 11.5675
+\c 107.9985 11.8875 108.2065 12.1755 108.4193 12.4795
+\c 108.5073 12.5915 108.9537 13.3595 109.0817 13.3595
+\c 106.4305 13.3275 104.0417 5.9835 92.0129 7.0075
+\c 86.6849 7.4555 82.0753 12.1435 81.6753 16.0155
+\c 81.2001 20.6235 82.6065 23.1995 85.4193 25.0075
+\c 87.3185 26.2395 90.4129 26.6395 92.5169 25.2955
+\c 89.2881 25.1355 87.4193 23.5675 86.8289 21.2155
+\c 86.2289 18.8155 87.5761 16.4635 89.4753 15.0395
+\c 92.2481 12.9755 97.0001 12.6555 102.5185 14.1595
+\c 107.7409 15.5995 114.0481 21.0395 120.1473 26.3195
+\c 124.7649 30.3035 129.5409 34.4315 133.5105 36.4635
+\c 142.7409 41.1835 152.3985 38.7835 156.6529 33.5195
+\c 158.5617 31.1515 159.4353 28.7835 159.8129 26.8475
+\c 159.4353 27.4235 158.9985 27.9675 158.4993 28.4635
+\c 156.4017 30.5275 153.5137 31.5995 150.3633 31.4715
+\c 146.2033 31.2795 142.6481 29.7435 140.3569 27.1515
+\c 139.5073 26.1915 138.8321 25.0075 138.3361 23.6955
+\c 137.2161 24.3835 135.2513 24.3515 133.5185 23.5995
+\o
+\m 173.5185 36.4795
+\c 173.1169 37.0715 172.6257 37.9355 172.2241 38.3195
+\c 170.5729 39.8875 168.3313 40.8155 166.2257 40.7515
+\c 163.6865 40.6875 161.5169 40.0315 160.2769 38.2235
+\c 159.2689 36.7675 158.7137 34.4155 159.0545 32.7355
+\c 158.7521 33.2155 158.4129 33.6955 158.0321 34.1755
+\c 155.9185 36.7835 152.5329 38.8155 148.5345 39.7595
+\c 150.6641 40.5435 152.5745 41.8395 154.4433 43.1035
+\c 157.9393 45.4555 161.2449 47.6955 165.8689 46.9115
+\c 170.5825 46.1275 172.6561 40.7515 173.5185 36.4795
+\o
+\m 166.7441 32.5595
+\c 167.8641 32.7355 169.1665 32.2875 170.2257 31.3755
+\c 172.0193 29.8235 173.0065 27.1195 173.0065 23.7435
+\c 173.0065 18.3995 168.7361 8.3675 158.4449 8.2235
+\c 153.1569 8.1595 149.2193 9.3435 147.0513 11.6475
+\c 145.6017 13.1835 144.9505 15.1675 145.1281 17.5515
+\c 145.2417 19.1035 145.7105 20.2715 146.3169 21.1515
+\c 146.1665 19.3755 146.6193 17.7755 147.6481 16.4955
+\c 148.8529 15.0235 150.7841 14.1275 153.0817 13.9675
+\c 155.3361 13.8235 157.4225 14.5115 158.9553 15.9035
+\c 160.4529 17.2635 161.3233 19.2155 161.3921 21.4075
+\c 161.4065 21.8715 161.3713 22.3515 161.3105 22.8155
+\c 161.4673 24.7355 161.3873 27.5835 160.1873 30.5115
+\c 161.4673 29.0715 163.4753 28.3515 165.2161 28.2555
+\c 164.6689 29.8875 164.6161 32.2395 166.7441 32.5595
+\o
+\m 174.1697 11.7115
+\c 170.7921 6.4795 165.5841 3.4395 157.4945 2.9755
+\c 149.3009 2.6715 139.4881 7.3915 138.7025 16.9595
+\c 138.3809 20.8795 139.2481 24.0315 141.2785 26.3355
+\c 144.0689 29.5035 148.2017 30.1435 150.4161 30.2395
+\c 153.2193 30.3515 155.7841 29.4235 157.6353 27.5835
+\c 160.4257 24.8155 161.2897 19.6795 158.1297 16.8155
+\c 156.8449 15.6475 155.0801 15.0715 153.1633 15.1995
+\c 151.2097 15.3275 149.5889 16.0635 148.6033 17.2795
+\c 147.7009 18.3835 147.3473 19.8395 147.5825 21.4715
+\c 147.8657 23.4555 149.6113 23.6955 150.1409 23.7275
+\c 151.4129 23.7915 152.8737 23.1515 153.2097 21.8075
+\c 153.3553 21.2315 153.4129 20.5595 153.0785 20.0315
+\c 152.8065 19.5995 151.9361 19.1035 152.3377 18.4955
+\c 152.5233 18.2075 152.7649 17.9355 153.4817 18.2395
+\c 153.5649 18.2875 155.2033 19.6475 154.5585 22.2395
+\c 154.0609 24.2235 151.8513 25.0395 150.0785 24.9435
+\c 149.9297 24.9435 149.7873 24.9115 149.6449 24.8955
+\c 149.6193 24.8955 149.5953 24.8955 149.5697 24.8955
+\c 149.5697 24.8955 149.5441 24.8795 149.5329 24.8795
+\c 148.7265 24.7355 148.0289 24.3835 147.4913 23.8875
+\c 145.9873 22.8795 144.1729 20.9915 143.9009 17.6315
+\c 143.2033 9.1515 150.4033 6.0475 157.4977 6.3835
+\c 168.9761 6.9275 174.2369 16.8155 174.2369 23.7435
+\c 174.2369 27.4875 173.0977 30.5275 171.0289 32.3035
+\c 169.7009 33.4555 168.0321 33.9995 166.5601 33.7755
+\c 164.4609 33.4555 163.7393 31.6475 163.5953 30.2395
+\c 160.6849 31.4875 159.4529 34.3835 161.3761 37.1835
+\c 162.0913 38.2075 163.5185 39.4555 166.2561 39.5195
+\c 169.4289 39.5995 172.2225 37.2955 173.3601 34.4475
+\c 173.7793 33.4075 173.3153 30.1275 174.7169 29.9675
+\c 176.2097 29.7755 175.3569 32.7515 175.0017 35.2795
+\c 174.7009 37.4235 174.1281 40.0315 173.0481 42.3835
+\c 173.0417 42.4475 173.0289 42.5275 172.9953 42.5915
+\c 168.6481 51.8555 160.7633 51.8395 160.7553 51.5035
+\c 160.7505 51.2795 163.9729 50.9435 167.3009 48.1595
+\c 166.9009 48.2875 166.4817 48.3995 166.0385 48.4795
+\c 160.9329 49.3275 157.2977 46.5115 153.7537 44.1115
+\c 151.0289 42.2875 148.4337 40.5435 145.2625 40.2715
+\c 144.3681 40.3355 143.4529 40.3515 142.5297 40.3195
+\c 139.3185 40.6555 137.2689 41.8715 136.1761 43.0075
+\c 134.5969 44.6555 132.9889 48.5115 135.0513 50.4795
+\c 136.1761 51.5515 136.9505 51.3275 136.9537 51.3435
+\c 136.7921 50.7515 136.4513 48.3355 137.4289 46.5275
+\c 138.0513 45.3755 139.1281 44.7035 140.3537 44.5915
+\c 145.3329 44.1115 147.2257 50.7995 152.4881 51.8875
+\c 152.8977 51.6155 153.5457 51.4875 154.1265 51.4875
+\c 154.5505 51.4875 155.1761 51.8555 155.1041 52.3675
+\c 154.9601 53.4075 150.9345 52.7195 149.6385 55.0875
+\c 150.9633 56.7675 153.1377 57.8395 155.5921 57.9515
+\c 157.9665 58.0475 160.3601 56.9595 162.3793 55.8075
+\c 163.4625 55.1835 164.4993 54.4955 165.4945 53.7435
+\c 166.1329 53.2635 167.9761 52.2075 168.2497 51.4555
+\c 167.2129 54.2875 164.2609 56.1915 161.6913 57.4875
+\c 159.2241 58.7035 156.5265 59.2475 154.8609 61.6635
+\c 153.1009 64.2395 151.4833 65.4235 149.3825 64.9435
+\c 150.0241 65.8555 151.1617 66.7675 152.8321 67.1355
+\c 154.2193 67.4395 155.7105 67.2315 157.2193 66.6555
+\c 158.8257 65.9515 161.7265 62.4475 162.7281 63.6315
+\c 163.7281 64.8315 158.4609 67.6635 156.7377 68.1595
+\c 150.5761 70.3995 143.9377 68.9275 139.0017 67.3755
+\c 132.4161 65.3115 129.9345 66.6395 126.7457 68.1595
+\c 124.5169 69.2155 122.5489 68.3515 121.5937 67.8395
+\c 121.5841 67.9515 121.3953 69.3595 121.7585 70.1435
+\c 122.7585 72.2715 126.6785 72.9755 130.0609 73.1835
+\c 127.4417 74.1115 123.1009 73.2475 121.3681 71.6955
+\c 120.4097 71.5995 118.7297 71.6635 116.4753 72.6875
+\c 112.2881 74.5595 109.6097 74.5435 107.2257 72.5915
+\c 105.9393 71.5515 105.1809 69.9835 105.1809 68.4475
+\c 105.1809 68.2235 105.1969 67.9995 105.2321 67.7755
+\c 105.2945 67.3595 105.4353 66.9115 105.6705 66.4475
+\c 104.9233 67.0715 104.2753 67.8235 103.8273 68.7355
+\c 103.3169 69.7915 103.0641 70.9275 103.0641 72.0315
+\c 103.0641 73.2155 103.3457 74.3675 103.9121 75.3755
+\c 105.9601 78.9755 111.0289 81.6955 120.8705 80.5915
+\c 120.8753 80.6235 115.0945 82.4635 113.4433 85.2795
+\c 113.0113 86.0155 112.7953 86.8475 112.7953 87.7915
+\c 112.7953 88.1755 112.8625 88.5915 112.9393 89.0235
+\c 113.5409 87.8075 114.6433 86.7355 116.5233 86.8155
+\c 117.7697 86.8635 119.2913 87.3915 121.0545 88.0155
+\c 124.1009 89.0875 128.8417 89.8875 132.4193 89.0715
+\c 136.7841 87.8875 138.6513 84.2075 139.8593 86.3995
+\c 140.6385 87.8235 135.8081 89.7595 130.4225 91.6315
+\c 126.3073 93.0555 121.0113 94.0635 115.0465 93.2315
+\c 107.3521 92.1435 103.7889 89.6795 100.9281 87.6955
+\c 98.6561 86.1115 97.0161 84.9755 94.0961 85.0395
+\c 88.5409 85.1515 85.8945 84.4635 84.7473 82.5275
+\c 84.4513 83.3435 84.2001 84.3995 84.2001 85.5995
+\c 84.2001 86.5755 84.3601 87.6155 84.7793 88.6395
+\c 88.3441 94.9435 98.3217 96.2875 98.3217 96.5755
+\c 98.3217 96.6235 91.3873 96.8315 86.3425 92.7515
+\c 84.2657 92.6875 73.9477 92.0795 69.3321 87.5995
+\c 68.8914 87.1675 68.5226 86.6555 68.157 86.1275
+\c 68.9445 87.7915 69.8821 89.4235 71.1009 90.9595
+\c 75.9101 97.0075 83.1569 100.8315 90.9889 101.4395
+\c 106.6561 102.6395 120.0865 99.6315 135.8913 91.3915
+\c 148.2641 84.9275 157.9169 75.2155 161.3073 71.5515
+\c 150.0161 81.1035 138.3217 80.1595 138.3441 79.8715
+\c 138.3681 79.5355 152.7921 80.1275 164.7889 66.4155
+\c 163.0017 67.9515 161.1441 69.2475 159.3073 70.3195
+\c 151.8081 74.7035 142.1889 75.5035 142.1697 75.1675
+\c 142.1505 74.8315 161.6721 73.2315 171.2257 56.7835
+\c 171.2465 56.7355 171.2769 56.7195 171.3041 56.6875
+\c 171.6129 56.1115 171.9105 55.5195 172.1985 54.9435
+\c 167.9953 59.5995 162.3569 61.1835 162.2849 60.9595
+\c 162.1969 60.6715 170.8065 57.5835 174.3489 49.9195
+\c 175.0017 48.0955 175.4881 46.2875 175.7473 44.5595
+\c 177.5537 32.4475 178.1633 17.9195 174.1697 11.7115
+\o
+\m 113.3553 91.6955
+\c 113.9569 91.8075 114.5537 91.9195 115.2161 92.0155
+\c 120.0865 92.6875 124.5233 92.0635 128.2049 90.9915
+\c 125.4849 90.8315 122.8753 89.9515 120.6481 89.1835
+\c 118.9793 88.5915 117.5361 88.0795 116.4705 88.0475
+\c 113.8353 87.9355 113.5681 91.1675 113.5569 91.2955
+\c 113.5473 91.4555 113.4673 91.5835 113.3553 91.6955
+\o
+\m 179.9569 11.9835
+\c 178.9617 13.6795 177.7553 15.0715 177.1697 15.7115
+\c 179.0065 23.3915 178.4065 35.0395 176.9649 44.7355
+\c 175.6449 53.5995 168.7073 64.0155 164.3217 69.8715
+\c 163.0481 73.2475 164.0001 76.4155 164.2865 76.6235
+\c 164.6289 76.8795 165.1265 76.8475 165.7633 76.5275
+\l 167.6513 75.5835
+\l 166.5633 77.3915
+\c 164.7649 80.3995 165.3169 84.8955 166.9377 87.0555
+\c 167.9633 88.4155 169.6817 89.3435 171.3137 89.4075
+\c 172.0353 89.4235 173.5233 89.0875 174.4417 88.3835
+\c 173.4849 88.2395 172.1809 87.6315 172.1809 86.1115
+\c 172.1809 84.9435 172.7377 83.3275 173.6561 80.7675
+\c 174.0721 79.5995 174.7873 76.0315 173.9329 73.0715
+\c 173.7521 72.8795 173.5841 72.6715 173.4417 72.4795
+\c 170.9697 68.9915 172.7361 63.4235 172.8113 63.1835
+\c 172.8113 63.1835 172.3297 68.7835 174.4449 71.7595
+\c 175.6257 73.4235 178.6449 75.0075 181.4625 74.6715
+\c 182.9585 74.4795 184.9729 73.6635 186.0785 70.7995
+\c 188.6337 64.2235 183.8785 57.3755 183.0721 56.5595
+\l 182.6385 56.1275
+\l 183.0721 55.6955
+\c 184.3761 54.3995 184.3217 50.3675 184.1633 48.5115
+\c 183.7841 47.2315 183.4945 45.9675 183.3105 44.7355
+\c 181.8913 35.2155 181.2865 23.8075 183.0113 16.1115
+\c 182.3329 15.3435 180.2977 13.0075 179.9569 11.9835
+\o
+\m 226.4001 36.4635
+\c 230.3729 34.4315 235.1441 30.3035 239.7633 26.3195
+\c 245.8641 21.0395 252.1729 15.5995 257.3921 14.1595
+\c 262.9073 12.6555 267.6673 12.9755 270.4321 15.0395
+\c 272.3377 16.4635 273.6817 18.8155 273.0817 21.2155
+\c 272.4913 23.5675 270.6225 25.1355 267.3953 25.2955
+\c 269.4977 26.6395 272.5921 26.2395 274.4913 25.0075
+\c 277.3041 23.1995 278.7137 20.6235 278.2353 16.0155
+\c 277.8353 12.1435 273.2257 7.4555 267.8977 7.0075
+\c 255.8721 5.9835 253.4785 13.3275 250.8321 13.3595
+\c 250.9601 13.3595 251.4033 12.5915 251.4913 12.4795
+\c 251.7073 12.1755 251.9137 11.8875 252.1073 11.5675
+\c 252.4449 11.0235 252.7537 10.4475 253.0129 9.8555
+\c 253.9105 7.8235 254.2321 5.4235 253.7377 3.2475
+\c 253.7073 3.1035 253.3761 2.1915 253.4289 2.1435
+\c 252.2609 3.3915 250.8193 4.3035 249.5073 5.1035
+\c 247.4625 6.3675 245.4081 7.5675 245.2785 9.3915
+\c 245.1953 10.6075 244.4049 15.5035 241.6321 15.5835
+\c 242.9585 14.1755 243.4785 12.0315 243.4785 9.7595
+\c 243.4785 8.9755 243.3105 8.0475 243.0385 7.0395
+\c 242.2385 7.8395 241.3473 8.4635 240.4689 9.0555
+\c 239.0785 10.0155 237.7633 10.9275 236.8849 12.4795
+\c 235.6033 14.7515 235.4513 16.8475 235.2945 19.0715
+\c 235.0561 22.3355 234.8161 25.7115 231.0417 29.6955
+\c 225.1137 36.1915 214.3761 36.3355 214.3617 35.9355
+\c 214.3601 35.9195 214.3601 35.9195 214.3601 35.9035
+\c 214.3601 35.5195 224.4785 34.7835 229.9921 28.7195
+\c 232.0561 26.4635 232.2353 22.8635 229.8033 20.7995
+\c 229.8033 20.7995 228.0289 22.8955 226.3953 23.5995
+\c 224.8017 24.3035 223.0193 24.3835 221.8721 23.8395
+\c 221.3825 25.1035 220.7329 26.2235 219.9185 27.1515
+\c 217.6257 29.7435 214.0705 31.2795 209.9121 31.4715
+\c 206.7633 31.5995 203.8721 30.5275 201.7761 28.4635
+\c 201.0337 27.7275 200.4257 26.8955 199.9569 25.9995
+\c 200.2321 28.0635 201.0593 30.7835 203.2561 33.5195
+\c 205.8721 36.7515 210.5233 38.8955 215.8609 38.9755
+\c 215.8721 38.9755 215.8865 38.9755 215.8993 38.9755
+\c 216.0225 38.9755 216.1377 38.9915 216.2609 38.9915
+\c 219.5041 38.9755 222.9825 38.2075 226.4001 36.4635
+\o
+\m 213.9569 21.1515
+\c 214.5633 20.2715 215.0353 19.1035 215.1473 17.5515
+\c 215.3233 15.1675 214.6737 13.1835 213.2225 11.6475
+\c 211.0545 9.3435 207.1169 8.1595 201.8289 8.2235
+\c 191.5377 8.3675 187.2673 18.3995 187.2673 23.7435
+\c 187.2673 27.1195 188.2545 29.8235 190.0497 31.3755
+\c 191.1089 32.2875 192.4097 32.7355 193.5313 32.5595
+\c 195.6561 32.2395 195.6049 29.8875 195.0561 28.2555
+\c 196.7841 28.3515 198.5921 29.1835 199.7809 30.6555
+\c 197.6513 25.5995 198.8961 20.7515 198.9505 20.4955
+\c 198.9649 20.4475 198.9777 20.3995 198.9889 20.3355
+\c 199.2673 18.5915 200.0657 17.0395 201.3185 15.9035
+\c 202.8529 14.5115 204.9377 13.8235 207.1921 13.9675
+\c 209.4913 14.1275 211.4209 15.0235 212.6257 16.4955
+\c 213.6529 17.7755 214.1073 19.3755 213.9569 21.1515
+\o
+\m 199.9121 37.8715
+\c 198.6689 39.6635 196.5873 40.6875 194.0481 40.7515
+\c 191.9441 40.8155 189.7009 39.8875 188.0513 38.3195
+\c 187.6481 37.9355 187.1569 37.0715 186.7553 36.4795
+\c 187.6161 40.7515 189.6945 46.1275 194.4065 46.9115
+\c 199.0305 47.6955 202.3361 45.4555 205.8321 43.1035
+\c 207.6609 41.8555 209.5265 40.6075 211.6033 39.8075
+\c 207.5073 38.8955 204.0337 36.8315 201.8785 34.1755
+\c 201.4801 33.6795 201.1409 33.1675 200.8321 32.6715
+\c 201.3137 34.3195 200.9713 36.3355 199.9121 37.8715
+\o
+\m 203.5377 68.1595
+\c 201.8145 67.6635 196.5473 64.8315 197.5473 63.6315
+\c 198.5473 62.4475 201.4497 65.9515 203.0529 66.6555
+\c 204.5649 67.2315 206.0529 67.4395 207.4449 67.1355
+\c 209.1137 66.7675 210.2513 65.8555 210.8913 64.9435
+\c 208.7921 65.4235 207.1729 64.2395 205.4129 61.6795
+\c 203.8209 59.3435 200.7313 58.4155 200.6417 58.3035
+\c 196.8785 56.8635 192.9473 53.8875 191.9985 51.4235
+\c 195.1601 54.4155 200.6913 58.1275 204.6849 57.9515
+\c 207.1361 57.8395 209.3105 56.7675 210.6353 55.0875
+\c 209.3377 52.7195 205.3137 53.4075 205.1697 52.3675
+\c 205.0001 51.1355 206.4449 52.1915 208.4513 51.6155
+\c 213.7105 50.5275 214.9425 44.1115 219.9185 44.5915
+\c 221.1473 44.7035 222.2241 45.3755 222.8465 46.5275
+\c 223.8241 48.3355 223.4817 50.7515 223.3185 51.3435
+\c 223.3265 51.3275 224.0977 51.5515 225.2225 50.4795
+\c 227.2849 48.5115 225.6785 44.6555 224.0977 43.0075
+\c 222.9953 41.8555 220.9201 40.6395 217.6641 40.3035
+\c 216.6977 40.3515 215.7441 40.3515 214.8129 40.2875
+\c 211.7297 40.6235 209.1873 42.3195 206.5185 44.1115
+\c 202.9761 46.5115 199.3441 49.3275 194.2385 48.4795
+\c 192.3473 48.1595 190.4609 47.0555 189.2225 45.6155
+\c 187.0481 43.0875 186.0497 38.2875 185.4225 35.0875
+\c 185.2753 34.3355 183.7841 29.7435 185.5601 29.9675
+\c 186.9601 30.1275 186.4977 33.4075 186.9169 34.4475
+\c 188.0529 37.2955 190.8449 39.5995 194.0161 39.5195
+\c 196.7569 39.4555 198.1825 38.2075 198.8993 37.1835
+\c 200.8193 34.3835 199.5889 31.4875 196.6785 30.2395
+\c 196.5345 31.6475 195.8145 33.4555 193.7137 33.7755
+\c 192.2433 33.9995 190.5729 33.4555 189.2449 32.3035
+\c 187.1777 30.5275 186.0385 27.4875 186.0385 23.7435
+\c 186.0385 16.8155 191.2977 6.9275 202.7793 6.3835
+\c 209.8721 6.0475 217.0689 9.1515 216.3761 17.6315
+\c 216.1009 20.9915 214.2865 22.8795 212.7825 23.8875
+\c 212.2449 24.3835 211.5473 24.7355 210.7409 24.8795
+\c 210.7297 24.8795 210.7073 24.8955 210.7041 24.8955
+\c 210.6785 24.8955 210.6529 24.8955 210.6305 24.8955
+\c 210.4849 24.9115 210.3457 24.9435 210.1969 24.9435
+\c 208.4225 25.0395 206.2129 24.2235 205.7169 22.2395
+\c 205.0689 19.6475 206.7105 18.2875 206.7937 18.2395
+\c 207.5105 17.9355 207.7505 18.2075 207.9361 18.4955
+\c 208.3377 19.1035 207.4689 19.5995 207.1953 20.0315
+\c 206.8609 20.5595 206.9185 21.2315 207.0673 21.8075
+\c 207.3985 23.1515 208.8625 23.7915 210.1329 23.7275
+\c 210.6641 23.6955 212.4097 23.4555 212.6929 21.4715
+\c 212.9281 19.8395 212.5729 18.3835 211.6689 17.2795
+\c 210.6849 16.0635 209.0657 15.3275 207.1137 15.1995
+\c 205.1953 15.0715 203.4289 15.6475 202.1441 16.8155
+\c 200.8945 17.9515 200.1729 19.5995 200.1137 21.4395
+\c 200.0417 23.6795 200.9601 25.9195 202.6401 27.5835
+\c 204.4913 29.4235 207.0561 30.3515 209.8561 30.2395
+\c 212.0721 30.1435 216.2033 29.5035 218.9953 26.3355
+\c 221.0289 24.0315 221.8945 20.8795 221.5729 16.9595
+\c 220.7841 7.3915 210.9761 2.6715 202.7793 2.9755
+\c 194.6881 3.4395 189.4817 6.4795 186.1057 11.7115
+\c 182.1105 17.9195 182.7217 32.4475 184.5281 44.5595
+\c 184.6929 45.6795 184.9633 46.8315 185.3057 47.9995
+\c 185.3537 48.0475 185.3633 48.1435 185.3745 48.2395
+\c 187.8913 56.5915 194.3265 65.7115 197.9425 70.4315
+\c 199.8113 72.5435 210.3505 84.0635 224.3825 91.3915
+\c 240.1873 99.6315 253.6193 102.6395 269.2849 101.4395
+\c 277.1169 100.8315 284.3665 97.0075 289.1729 90.9595
+\c 290.3953 89.4235 291.3297 87.7915 292.1169 86.1275
+\c 291.7505 86.6555 291.3841 87.1675 290.9441 87.5995
+\c 286.3297 92.0795 276.0097 92.6875 273.9297 92.7515
+\c 268.8881 96.8315 261.9537 96.6235 261.9537 96.5755
+\c 261.9537 96.2875 271.9297 94.9435 275.4945 88.6395
+\c 275.9137 87.6155 276.0753 86.5755 276.0753 85.5995
+\c 276.0753 84.3995 275.8225 83.3435 275.5265 82.5275
+\c 274.3825 84.4635 271.7329 85.1515 266.1793 85.0395
+\c 263.2561 84.9755 261.6161 86.1115 259.3441 87.6955
+\c 256.4849 89.6795 252.9233 92.1435 245.2305 93.2315
+\c 239.2641 94.0635 233.9697 93.0555 229.8513 91.6315
+\c 224.4673 89.7595 219.6369 87.8235 220.4161 86.3995
+\c 221.6257 84.2075 223.4881 87.8875 227.8545 89.0715
+\c 231.4321 89.8875 236.1729 89.0875 239.2177 88.0155
+\c 240.9825 87.3915 242.5073 86.8635 243.7505 86.8155
+\c 245.6305 86.7355 246.7313 87.8075 247.3361 89.0235
+\c 247.4097 88.5915 247.4785 88.1755 247.4785 87.7915
+\c 247.4785 86.8475 247.2641 86.0155 246.8321 85.2795
+\c 245.1793 82.4635 239.3985 80.6235 239.4033 80.5915
+\c 249.2449 81.6955 254.3169 78.9755 256.3601 75.3755
+\c 256.9297 74.3675 257.2097 73.2155 257.2097 72.0315
+\c 257.2097 70.9275 256.9569 69.7915 256.4481 68.7355
+\c 256.0017 67.8235 255.3537 67.0715 254.6001 66.4475
+\c 254.8417 66.9115 254.9793 67.3595 255.0449 67.7755
+\c 255.0785 67.9995 255.0945 68.2235 255.0945 68.4475
+\c 255.0945 69.9835 254.3361 71.5515 253.0481 72.5915
+\c 250.6641 74.5435 247.9841 74.5595 243.8001 72.6875
+\c 241.5473 71.6635 239.8641 71.5995 238.9057 71.6955
+\c 237.1761 73.2475 232.8321 74.1115 230.2129 73.1835
+\c 233.5953 72.9755 237.5169 72.2715 238.5169 70.1435
+\c 238.8801 69.3595 238.6913 67.9515 238.6833 67.8395
+\c 237.7281 68.3515 235.7569 69.2155 233.5297 68.1595
+\c 230.3377 66.6395 227.8561 65.3115 221.2753 67.3755
+\c 216.3345 68.9275 209.6977 70.3995 203.5377 68.1595
+\o
+\m 246.9169 91.6955
+\c 246.8065 91.5835 246.7297 91.4555 246.7169 91.2955
+\c 246.7073 91.1675 246.4385 87.9355 243.8017 88.0475
+\c 242.7377 88.0795 241.2945 88.5915 239.6257 89.1835
+\c 237.3985 89.9515 234.7873 90.8315 232.0673 90.9915
+\c 235.7505 92.0635 240.1873 92.6875 245.0561 92.0155
+\c 245.7185 91.9195 246.3169 91.8075 246.9169 91.6955
+\o
+\m 225.3985 59.5355
+\c 225.0913 59.1515 224.8801 58.7995 224.7153 58.4475
+\c 219.3633 61.8075 214.7729 65.9995 212.7153 67.9835
+\c 214.1825 67.8395 215.6289 67.5835 217.0321 67.2635
+\c 218.0321 66.3675 222.9873 61.9835 225.8817 60.0475
+\c 225.7185 59.8875 225.5569 59.7275 225.3985 59.5355
+\o
+\m 228.8385 54.2875
+\c 227.9633 54.2235 226.3729 54.8475 225.7713 56.0155
+\c 225.3441 56.8475 225.5377 57.7595 226.3505 58.7515
+\c 227.0849 59.6475 227.8721 60.0795 228.6913 60.0635
+\c 229.9601 60.0315 231.0753 58.9275 231.5537 58.3995
+\c 230.2097 57.3115 229.2385 55.7915 228.8561 54.0155
+\l 228.8385 54.2875
+\o
+\m 236.1569 45.9515
+\c 234.6449 45.9515 233.2561 46.5115 232.1729 47.4235
+\c 232.4881 47.3755 232.8017 47.3435 233.0977 47.3115
+\c 234.3505 47.2315 236.7137 47.3275 238.4593 48.9915
+\c 240.7665 51.1675 240.2721 54.1595 239.6881 55.4235
+\c 239.5489 55.7435 239.1841 55.8715 238.8785 55.7275
+\c 238.5681 55.5835 238.4321 55.2315 238.5713 54.9275
+\c 238.6225 54.7995 239.8513 51.9995 237.6145 49.8875
+\c 235.3361 47.7275 231.3633 48.6555 230.8561 49.1515
+\c 230.8097 49.1995 230.7553 49.2155 230.7009 49.2475
+\c 230.1953 50.1755 229.9073 51.2475 229.9073 52.3675
+\c 229.9073 55.9195 232.7137 58.7995 236.1569 58.7995
+\c 239.6065 58.7995 242.4097 55.9195 242.4097 52.3675
+\c 242.4097 48.8315 239.6065 45.9515 236.1569 45.9515
+\o
+\m 246.2657 45.7915
+\c 245.7041 45.0395 245.0193 44.6235 244.3761 44.6075
+\c 243.6017 44.7995 241.9121 45.7435 240.8209 46.3995
+\c 242.2033 47.5355 243.1841 49.1515 243.5153 51.0075
+\c 245.1841 49.6315 246.8529 48.0795 247.0129 47.6155
+\c 247.0193 47.5995 247.0257 47.5675 247.0257 47.5355
+\c 247.0257 47.2315 246.8033 46.4955 246.2657 45.7915
+\o
+\m 247.2257 45.0235
+\c 247.2321 45.0235 247.2417 45.0395 247.2513 45.0395
+\c 247.5633 45.4555 247.8641 45.9995 248.0513 46.5275
+\l 254.9729 43.9675
+\c 255.3137 43.7435 255.6673 43.5195 256.0449 43.2955
+\c 258.6641 41.9355 260.3185 41.1675 262.1953 40.6875
+\c 262.1105 40.6395 262.0289 40.5755 261.9473 40.5115
+\c 256.6417 41.0555 249.5009 44.0315 247.2257 45.0235
+\o
+\m 283.3793 38.8635
+\c 276.3825 38.6075 269.7697 38.3675 266.6257 35.8395
+\c 265.7265 35.1195 265.2721 34.2715 265.2721 33.3275
+\c 265.2721 33.3275 265.2721 33.3115 265.2721 33.2955
+\c 265.2817 32.4955 265.6321 31.7755 266.0385 31.1835
+\c 264.2817 31.6315 261.7361 32.7515 261.3313 35.7115
+\c 261.2913 36.0155 261.2689 36.3195 261.2689 36.6075
+\c 261.2689 37.5675 261.5217 38.3675 262.0225 38.9595
+\c 263.0129 40.1275 264.6881 40.2075 264.7073 40.2075
+\c 270.0161 39.0395 274.5265 40.5435 274.5265 40.5435
+\c 270.3169 40.5435 262.5409 41.2955 256.6353 44.3835
+\c 252.2289 46.9115 250.1377 50.3835 251.0657 53.6955
+\c 251.7041 55.9515 253.7329 57.6155 255.7841 57.5675
+\c 257.9169 57.5035 259.2609 56.5115 259.9729 55.7755
+\c 259.2641 55.6315 258.3873 55.3275 257.7569 54.6715
+\c 257.2289 54.1115 256.9601 53.4235 256.9601 52.5915
+\c 256.9601 52.5435 256.9633 52.4795 256.9665 52.4155
+\c 257.1265 49.0875 263.6625 44.6235 275.9601 43.6315
+\c 282.0753 43.1355 286.2353 43.5995 289.5569 43.7595
+\c 294.0689 43.7595 298.1697 43.6955 297.3505 45.4075
+\c 296.1185 46.4315 294.4129 45.0075 286.9825 45.2635
+\c 279.2913 45.5355 271.8449 51.1035 270.3297 55.9035
+\c 269.9665 57.0555 269.8257 58.0315 269.8257 58.8795
+\c 269.8257 59.8555 270.0289 60.6235 270.2977 61.2475
+\c 270.3073 61.0555 270.3265 60.8795 270.3697 60.6875
+\c 270.7169 57.0555 274.9361 54.4155 280.6609 54.2875
+\c 284.5265 54.1915 287.2689 51.9355 290.0289 50.8315
+\c 291.9601 50.0635 292.7825 49.8075 294.4785 49.5675
+\c 290.9825 51.0395 288.2129 54.3035 288.0289 55.7275
+\c 288.0033 55.9195 287.9921 56.0955 287.9921 56.2875
+\c 287.9921 57.0075 288.1729 57.6795 288.4353 58.2395
+\c 288.4913 58.0955 288.5409 57.9515 288.6257 57.8235
+\c 289.1137 57.0875 289.9825 56.5915 291.2129 56.3515
+\l 292.8193 56.1115
+\c 294.8065 55.8715 297.2849 55.5675 300.0257 53.8395
+\l 301.8561 52.5915
+\c 304.6977 50.5915 307.3793 48.7195 315.0689 48.1435
+\c 317.8913 47.9355 320.8417 48.3355 323.5873 48.9915
+\c 319.9217 47.2475 312.7073 43.9835 307.8785 42.9275
+\l 304.7041 42.2715
+\c 301.6033 41.6315 298.5985 41.0235 295.6913 39.9195
+\c 292.1505 39.1835 287.6913 39.0235 283.3793 38.8635
+\o
+\m 319.4449 40.1755
+\l 319.0849 38.9115
+\c 318.1633 35.5515 317.7825 34.1595 313.6913 32.7995
+\c 309.7921 31.5035 309.0977 29.1195 308.7665 27.9835
+\c 308.7665 27.9835 308.6849 27.7275 308.6385 27.5995
+\c 308.3441 27.6315 307.5537 27.8555 306.8449 28.4955
+\c 306.3265 28.9595 305.7377 29.7755 305.7377 31.0235
+\c 305.7377 31.1195 305.7441 31.2315 305.7505 31.3435
+\c 305.9009 33.1995 307.7185 34.6875 308.9265 35.6795
+\c 310.8481 37.2635 310.0721 39.5035 308.0065 37.6795
+\c 306.7377 36.5595 305.1441 34.5595 304.0673 33.2635
+\c 301.8417 31.9355 299.3265 31.7115 296.8881 31.5195
+\c 294.5601 31.3275 292.3601 31.1355 290.5921 29.9995
+\c 289.2097 29.1035 288.5073 28.0635 288.4945 26.8795
+\c 288.4945 26.0155 288.8945 25.2635 289.3633 24.6555
+\c 288.4225 24.8955 287.3537 25.3435 286.7793 26.1435
+\c 286.2817 26.8475 286.0641 27.6475 286.0641 28.4635
+\c 286.0641 30.9915 288.0529 33.8555 290.0689 35.4235
+\c 294.6673 38.9755 299.4321 39.9355 304.9505 41.0555
+\l 308.1409 41.7275
+\c 313.2321 42.8475 320.6529 46.2235 324.2945 47.9675
+\c 321.3633 45.0395 320.0129 42.1275 319.4449 40.1755
+\o
+\m 346.6161 73.5515
+\c 343.6753 73.5515 341.2849 76.0315 341.2849 79.0875
+\c 341.2849 82.1435 343.6753 84.6235 346.6161 84.6235
+\c 349.5537 84.6235 351.9473 82.1435 351.9473 79.0875
+\c 351.9473 76.0315 349.5537 73.5515 346.6161 73.5515
+\o
+\m 310.8033 61.1675
+\c 308.7345 63.6475 307.6689 66.3675 307.6689 68.9755
+\c 307.6689 70.2875 307.9313 71.5675 308.4689 72.7835
+\c 309.1793 74.3835 310.3473 75.6155 311.7009 76.4475
+\c 310.7537 75.2635 310.5105 74.0635 310.5105 73.1835
+\c 310.5105 72.8315 310.5473 72.5275 310.5921 72.2875
+\c 311.0353 69.9355 313.0817 68.0635 315.4641 67.8235
+\c 319.0977 67.4555 320.1729 65.5195 320.1729 65.5195
+\c 320.1841 65.4075 320.1921 65.2795 320.2097 65.1515
+\c 320.5969 62.8635 323.1793 60.2235 326.3185 60.5115
+\c 326.3185 60.5115 321.9473 62.4155 321.4225 65.3595
+\c 321.3793 65.6155 321.3569 65.8715 321.3569 66.1275
+\c 321.3569 67.0395 321.6449 67.9195 322.1105 68.6235
+\c 322.2641 67.8235 322.5985 67.0875 323.2257 66.6875
+\c 323.6817 66.3995 324.4481 66.1915 325.5345 66.7995
+\c 328.0017 68.2075 330.2657 67.9195 332.4673 65.9195
+\c 336.3217 62.4155 339.9329 62.5755 342.2225 63.2955
+\l 338.7873 59.3275
+\c 332.0449 54.5755 317.2129 53.4875 310.8033 61.1675
+\o
+\m 354.4417 69.1835
+\c 351.3073 64.5595 348.2817 60.5915 345.3105 57.2155
+\c 340.5761 51.8235 337.1537 47.9355 337.8785 44.3995
+\c 338.1137 43.2635 338.6609 42.4475 339.5137 41.9835
+\c 340.5105 41.4235 342.0417 41.6635 342.8561 41.8075
+\c 342.2977 39.9035 340.0689 39.0395 338.2753 39.2475
+\c 336.5297 39.4395 334.3105 40.5115 333.3345 42.9115
+\c 331.9377 46.3675 333.6449 51.2475 338.1377 56.7035
+\l 344.0001 63.4715
+\c 349.9729 70.1755 353.5761 74.2235 355.0817 83.3595
+\c 356.2321 90.3515 354.3073 97.9035 350.0529 103.0875
+\c 346.7537 107.1195 342.4289 109.3275 337.5473 109.5035
+\c 330.1409 109.7435 327.0257 106.2715 325.8289 104.1755
+\c 324.1505 101.2315 324.1377 97.3595 325.8033 94.7515
+\c 329.0097 89.7115 334.2881 89.4875 338.1537 90.9435
+\c 340.7441 91.9355 341.4257 94.2075 341.2257 95.8555
+\c 340.9953 97.7595 339.6481 99.1675 337.8753 99.3755
+\c 335.0257 99.7275 333.0881 96.8635 334.8673 94.4795
+\c 332.6225 94.4315 330.9073 95.5035 331.0353 97.9195
+\c 331.1505 100.0955 332.5345 101.7275 334.8417 102.4155
+\c 337.8753 103.3275 341.4033 102.3035 343.0449 100.0475
+\c 344.6881 97.7915 344.7441 94.4315 343.1729 91.6955
+\c 341.2641 88.3835 337.5377 86.7515 332.9441 87.2155
+\c 328.3569 87.6955 324.7761 90.0315 322.8561 93.8075
+\c 320.8609 97.7275 321.0785 102.4795 323.4353 106.5275
+\c 325.4609 109.9995 329.2129 112.1755 334.0017 112.6875
+\c 340.7361 113.4075 348.0033 110.6715 352.5169 105.7435
+\c 361.3953 96.0155 362.0289 80.3675 354.4417 69.1835
+\o
+\s
+\m 264.0673 97.2635
+\c 264.5185 97.2155 265.3697 97.5675 264.2721 98.4155
+\c 262.4481 99.7275 256.5169 100.0315 253.0817 98.2235
+\c 258.7825 99.0395 264.0161 97.2635 264.0673 97.2635
+\o
+\s
+\m 261.9873 93.9835
+\c 262.1473 94.4155 261.2977 95.1355 260.8753 95.2955
+\c 260.6881 95.3755 255.6321 97.4715 250.7473 96.3355
+\c 256.1441 95.8395 260.4097 94.1115 260.4513 94.0955
+\c 260.8753 93.9355 261.8289 93.5675 261.9873 93.9835
+\o
+\s
+\m 258.1953 91.0075
+\c 258.5729 90.7675 259.2193 90.0955 259.9921 90.4635
+\c 260.3985 90.6555 260.2289 91.3275 259.8785 91.6155
+\c 255.0449 95.5995 248.6625 95.0075 247.4689 94.4955
+\c 247.4881 94.0475 253.0689 94.3995 258.1953 91.0075
+\o
+\s
+\m 227.5505 84.9915
+\c 227.5857 85.0075 231.2849 86.0475 234.0737 84.1755
+\c 234.3601 83.9995 234.7393 84.0635 234.9297 84.3515
+\c 235.1169 84.6395 235.0385 85.0075 234.7569 85.1995
+\c 231.4817 87.3915 227.3793 86.2235 227.2065 86.1755
+\c 226.8785 86.0795 226.6945 85.7275 226.7873 85.4075
+\c 226.8849 85.0875 227.2257 84.8955 227.5505 84.9915
+\o
+\s
+\m 222.5185 81.1515
+\c 224.4673 81.3435 228.2193 79.9195 229.8225 78.3675
+\c 230.0657 78.1435 230.4529 78.1435 230.6913 78.3835
+\c 230.8033 78.5115 230.8641 78.6715 230.8641 78.8155
+\c 230.8641 78.9755 230.7985 79.1355 230.6721 79.2635
+\c 229.3921 80.4955 227.0625 81.5995 224.9809 82.0955
+\c 228.7409 83.0875 232.0641 81.5675 232.1009 81.5355
+\c 232.4065 81.3915 232.7761 81.5195 232.9185 81.8235
+\c 233.0689 82.1435 232.9361 82.4955 232.6321 82.6555
+\c 232.4161 82.7515 227.2993 85.1515 222.1601 82.2875
+\c 221.9041 82.1435 221.7841 81.8555 221.8721 81.5675
+\c 221.9601 81.2955 222.2289 81.1195 222.5185 81.1515
+\o
+\s
+\m 216.7729 77.0075
+\c 221.1377 79.7435 226.1441 76.1755 226.1953 76.1275
+\c 226.4689 75.9355 226.8545 75.9995 227.0545 76.2715
+\c 227.2545 76.5435 227.1953 76.9275 226.9201 77.1195
+\c 226.6881 77.2955 221.1953 81.2315 216.1185 78.0315
+\c 215.8305 77.8555 215.7441 77.4875 215.9265 77.1835
+\c 216.1073 76.8955 216.4849 76.8155 216.7729 77.0075
+\o
+\s
+\m 214.6385 74.1275
+\c 218.5025 75.2635 221.9329 73.5035 221.9681 73.4875
+\c 222.2689 73.3275 222.6385 73.4395 222.7969 73.7435
+\c 222.9553 74.0475 222.8417 74.4155 222.5409 74.5755
+\c 222.3841 74.6555 218.6481 76.5915 214.2881 75.3115
+\c 213.9633 75.2155 213.7761 74.8635 213.8721 74.5435
+\c 213.9697 74.2235 214.3137 74.0315 214.6385 74.1275
+\o
+\s
+\m 221.2257 71.4715
+\c 221.0945 71.5515 217.9793 73.5675 212.3681 73.1515
+\c 212.0289 73.1195 211.7761 72.8315 211.8017 72.4795
+\c 211.8257 72.1435 212.1233 71.8875 212.4593 71.9195
+\c 217.6225 72.3035 220.5201 70.4635 220.5489 70.4475
+\c 220.8321 70.2555 221.2129 70.3355 221.4017 70.6235
+\c 221.5841 70.9115 221.5073 71.2955 221.2257 71.4715
+\o
+\s
+\m 180.8161 43.3755
+\c 180.7617 50.6075 179.0001 56.6395 179.0001 56.6395
+\c 179.0177 56.5435 179.5937 48.8635 179.9921 43.4075
+\c 178.5009 51.6155 175.2449 54.6875 175.2449 54.6875
+\c 177.1329 51.0395 178.2673 46.8315 180.1137 39.6955
+\l 180.5089 38.1595
+\l 180.9073 39.6955
+\c 182.5361 45.9515 182.5537 54.2875 182.5537 54.3675
+\c 182.5537 54.3675 181.7073 48.7675 180.8161 43.3755
+\o
+\s
+\m 257.7169 129.9355
+\c 260.4913 130.8955 261.6385 134.0635 261.6817 134.3035
+\c 261.6817 134.3035 258.8065 129.0395 248.8321 130.0635
+\c 248.8321 130.0635 252.7601 128.4155 257.7169 129.9355
+\o
+\s
+\m 269.6753 128.1595
+\c 269.6753 128.1595 267.1377 128.0635 265.3729 125.0875
+\c 264.4129 122.9595 264.8721 120.4795 264.8721 120.4795
+\c 266.3841 126.5435 269.6417 128.1435 269.6753 128.1595
+\o
+\s
+\m 258.6721 125.2155
+\c 257.2385 123.2315 258.3041 121.2795 258.3041 121.2795
+\c 258.2625 124.9435 262.8417 128.5595 262.8417 128.5595
+\c 262.8417 128.5595 257.5825 124.8795 254.9329 125.1995
+\c 254.9329 125.1995 255.8689 123.7115 258.6721 125.2155
+\o
+\s
+\m 103.0129 129.9355
+\c 107.9697 128.4155 111.8977 130.0635 111.8977 130.0635
+\c 101.9217 129.0395 99.0529 134.3035 99.0529 134.3035
+\c 99.0929 134.0635 100.2417 130.8955 103.0129 129.9355
+\o
+\s
+\m 95.8609 120.4795
+\c 95.8609 120.4795 96.3185 122.9595 95.3617 125.0875
+\c 93.5921 128.0635 91.0561 128.1595 91.0561 128.1595
+\c 91.0897 128.1435 94.3473 126.5435 95.8609 120.4795
+\o
+\s
+\m 102.4257 121.2795
+\c 102.4257 121.2795 103.4945 123.2315 102.0609 125.2155
+\c 104.8609 123.7115 105.8001 125.1995 105.8001 125.1995
+\c 103.1537 124.8795 97.8897 128.5595 97.8897 128.5595
+\c 97.8897 128.5595 102.4689 124.9435 102.4257 121.2795
+\o
+\s
+\m 90.7473 60.7195
+\c 90.7473 60.7035 90.7377 60.7035 90.7377 60.6875
+\c 90.7361 60.6715 90.7361 60.6395 90.7313 60.6235
+\l 90.7473 60.7195
+\o
+\s
+\m 13.3103 77.0715
+\c 14.5399 76.4315 16.0562 76.5115 17.8164 77.2955
+\c 18.1258 77.4395 18.2681 77.8075 18.129 78.1115
+\c 17.993 78.4155 17.629 78.5595 17.3188 78.4155
+\c 15.9165 77.8075 14.7602 77.7115 13.8789 78.1595
+\c 12.6413 78.7835 12.2944 80.3035 12.293 80.3195
+\c 12.2196 80.6395 11.8914 80.8475 11.5602 80.7835
+\c 11.2304 80.7195 11.0196 80.3835 11.0898 80.0635
+\c 11.1071 79.9675 11.5508 77.9675 13.3103 77.0715
+\o
+\s
+\m 128.1489 55.0395
+\c 127.8497 54.8795 127.7329 54.4955 127.8913 54.2075
+\c 127.9009 54.1915 128.7441 52.5275 128.1009 51.0395
+\c 127.6641 50.0155 126.6129 49.2635 124.9841 48.7995
+\c 124.6609 48.7035 124.4689 48.3675 124.5633 48.0315
+\c 124.6561 47.7115 124.9969 47.5195 125.3233 47.6155
+\c 127.3297 48.1915 128.6449 49.1835 129.2353 50.5595
+\c 130.1073 52.6075 129.0257 54.6875 128.9793 54.7835
+\c 128.8193 55.0875 128.4497 55.1835 128.1489 55.0395
+\o
+\s
+\m 349.5441 80.7835
+\c 349.2161 80.8475 348.8881 80.6395 348.8161 80.3195
+\c 348.8129 80.3035 348.4673 78.7835 347.2289 78.1595
+\c 346.3473 77.7115 345.1921 77.8075 343.7921 78.4155
+\c 343.4817 78.5595 343.1169 78.4155 342.9793 78.1115
+\c 342.8417 77.8075 342.9793 77.4395 343.2913 77.2955
+\c 345.0513 76.5115 346.5665 76.4315 347.7985 77.0715
+\c 349.5569 77.9675 350.0001 79.9675 350.0193 80.0635
+\c 350.0881 80.3835 349.8753 80.7195 349.5441 80.7835
+\o
+\s
+\m 180.6033 122.1755
+\c 185.6785 122.1755 186.9841 126.9435 186.9841 126.9435
+\c 186.9841 126.9435 184.8225 123.4075 180.6033 123.4075
+\c 177.3633 123.4075 175.0129 126.8315 175.0129 126.8315
+\c 175.0129 126.8315 176.5729 122.1755 180.6033 122.1755
+\o
+\s
+\m 179.6817 135.3275
+\c 180.6401 141.6155 181.1169 142.4315 181.1169 142.4315
+\c 181.1169 142.4315 182.1441 137.0395 182.6209 135.4555
+\c 182.8945 138.3355 182.4849 140.2555 182.4849 140.2555
+\c 182.4849 140.2555 185.1473 136.0795 185.8321 134.7195
+\c 185.8321 134.7195 183.6465 142.6395 181.1169 145.1675
+\c 178.0417 141.2635 176.5409 135.9355 176.4721 134.7835
+\c 177.6321 137.3115 178.7265 139.0875 179.6817 140.4475
+\c 179.6817 140.4475 179.3409 136.7675 179.6817 135.3275
+\o
+\s
+\m 172.7825 137.6475
+\c 174.9697 141.5515 173.8753 145.0235 173.8753 145.0235
+\c 173.8753 145.0235 173.7377 141.3435 172.2353 138.6075
+\c 170.6609 135.7435 169.0225 132.8635 169.0225 132.8635
+\c 169.0225 132.8635 170.5953 133.7595 172.7825 137.6475
+\o
+\s
+\m 190.4097 137.9995
+\c 188.4289 142.2235 188.1553 145.9835 189.5217 148.7195
+\c 189.5217 148.7195 186.4481 147.9035 187.5409 142.3675
+\c 188.0193 140.1115 189.2497 138.7515 190.4097 137.9995
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian69.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian69.pgf
new file mode 100644
index 0000000000..c84aed6395
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian69.pgf
@@ -0,0 +1,376 @@
+\r 0 0 448 227
+\i
+\m 103.2417 80.4
+\c 113.4529 80.4 118.6721 73.248 118.6721 73.248
+\c 113.3697 81.68 118.3489 89.632 118.3489 89.632
+\c 112.8881 82.32 103.2417 81.6 103.2417 81.6
+\l 71.4177 81.6
+\l 70.0561 81.12
+\l 71.1777 80.4
+\c 71.1777 80.4 93.0369 80.4 103.2417 80.4
+\o
+\s
+\m 344.8785 80.4
+\c 355.0817 80.4 376.9441 80.4 376.9441 80.4
+\l 378.0657 81.12
+\l 376.7025 81.6
+\l 344.8785 81.6
+\c 344.8785 81.6 335.2337 82.32 329.7713 89.632
+\c 329.7713 89.632 334.7505 81.68 329.4497 73.248
+\c 329.4497 73.248 334.6721 80.4 344.8785 80.4
+\o
+\s
+\m 445.0305 16.88
+\c 439.7809 20.256 435.0977 15.44 436.1601 11.568
+\c 437.2225 7.696 441.0337 7.872 441.0337 7.872
+\c 442.9089 7.808 444.2881 9.632 445.0305 7.808
+\c 445.2721 7.248 445.1217 6.608 444.8369 6
+\c 443.0033 3.856 438.7121 1.072 428.7217 1.072
+\c 428.7217 1.072 253.4849 1.072 252.4337 1.072
+\c 252.4369 1.248 252.4401 1.424 252.4401 1.68
+\c 252.4401 6.24 251.5409 22.976 238.8561 30.928
+\c 246.5153 43.152 257.7313 50.768 270.6897 52.016
+\c 279.1937 52.832 285.6065 50.72 289.5969 48.72
+\c 294.0305 45.744 300.1649 40.128 300.6241 31.632
+\c 301.1681 21.584 294.1937 17.024 287.9681 15.248
+\l 277.4753 15.248
+\c 277.3873 15.248 268.9249 15.76 266.0001 23.472
+\c 264.6129 27.136 264.9185 30.704 266.8721 33.52
+\c 268.7649 36.256 271.9217 37.84 275.5505 37.84
+\c 275.6337 37.84 283.2881 38.032 284.4497 32.864
+\c 284.4273 32.624 284.3841 32.384 284.2977 32.176
+\c 283.7505 30.912 281.9841 32.224 281.9841 32.224
+\c 281.9841 32.224 280.2817 33.536 278.6257 32.624
+\c 276.9681 31.728 275.7633 27.76 278.8721 26.144
+\c 281.9841 24.544 285.0433 26.656 285.5025 29.968
+\c 285.6337 30.944 285.5809 31.776 285.4433 32.512
+\l 285.5745 32.528
+\c 284.6721 39.12 275.6097 38.864 275.5377 38.864
+\c 271.5809 38.864 268.1121 37.136 266.0257 34.096
+\c 263.9121 31.04 263.5569 27.04 265.0401 23.12
+\c 268.2129 14.768 277.3377 14.224 277.4465 14.224
+\l 290.6401 14.224
+\l 290.6401 14.304
+\l 309.3249 14.304
+\c 307.0785 15.392 305.5569 17.52 305.5569 19.984
+\c 305.5569 23.536 308.7649 26.432 312.7249 26.432
+\c 316.6881 26.432 319.8993 23.536 319.8993 19.984
+\c 319.8993 17.52 318.3745 15.392 316.1377 14.304
+\l 382.4913 14.304
+\c 382.4913 14.304 394.8721 14 396.7681 21.872
+\c 398.6529 29.744 389.6001 30.816 387.8273 25.968
+\c 387.8273 25.968 386.0657 21.456 390.5121 20.336
+\c 390.5121 20.336 392.6753 20.272 392.6097 19.168
+\c 392.5473 18.048 389.2033 15.632 382.2625 15.632
+\c 375.3249 15.632 359.4225 15.632 359.4225 15.632
+\c 359.4225 15.632 340.2993 15.776 326.1121 25.6
+\c 314.0993 33.92 302.7377 43.84 291.2817 48.992
+\c 287.2993 51.216 280.2305 53.952 270.5937 53.04
+\c 257.2993 51.76 245.8065 43.968 237.9713 31.472
+\c 237.0753 31.968 236.1089 32.448 235.0881 32.864
+\c 250.2129 67.984 277.2721 69.696 277.5681 69.728
+\l 278.2097 69.744
+\l 278.0433 70.368
+\c 275.0721 81.248 279.7153 88.32 279.7601 88.384
+\l 280.5281 89.52
+\l 279.2033 89.168
+\c 279.0785 89.136 271.3633 87.2 261.3409 90.64
+\c 270.4529 98.608 281.6881 102.88 292.9569 102.32
+\c 303.2625 101.792 311.6785 97.296 316.0289 89.968
+\c 316.2849 89.504 322.1601 78.416 313.1153 69.024
+\c 313.0369 68.944 305.2625 61.888 294.7121 66.736
+\c 288.7377 69.472 287.8753 74.352 287.8881 77.024
+\c 287.9153 81.632 290.4993 86.112 294.0369 87.68
+\c 297.0305 89.008 300.0097 89.04 302.4241 87.776
+\c 303.7153 87.12 304.7185 86.112 305.3441 84.96
+\c 305.3969 84.48 305.4161 84 305.3057 83.584
+\c 304.9409 82.176 303.2849 84.752 300.6497 83.52
+\c 298.0161 82.304 297.8273 77.52 300.5281 75.744
+\c 303.2273 73.968 306.4753 75.744 307.2097 79.536
+\c 307.5841 81.488 307.2193 83.2 306.6225 84.56
+\c 306.0001 86.256 304.6881 87.76 302.8993 88.688
+\c 300.2033 90.096 296.9025 90.064 293.6225 88.608
+\c 289.7409 86.896 286.8897 82.016 286.8625 77.024
+\c 286.8369 72.064 289.5377 67.968 294.2849 65.792
+\c 305.4753 60.672 313.7313 68.192 313.8337 68.304
+\c 323.4241 78.256 316.9969 90.336 316.9185 90.464
+\c 312.3809 98.112 303.6625 102.8 293.0065 103.344
+\c 281.2945 103.92 269.6337 99.424 260.2465 91.024
+\c 255.0305 92.992 249.2689 96.448 243.6529 102.352
+\c 246.2881 108.176 248.6305 112.16 250.0689 114.368
+\c 250.3809 114.128 250.7537 113.664 251.1441 112.752
+\c 252.2625 110.144 257.3025 104.912 261.9745 114.992
+\c 266.6497 125.072 267.9505 144.128 290.1777 147.488
+\c 290.1777 147.488 291.4785 147.52 291.5681 147.888
+\c 291.6689 148.272 291.1745 148.448 290.7377 148.432
+\c 290.7377 148.432 270.4529 147.536 250.7969 117.152
+\c 250.6753 117.056 247.1809 112.56 242.9057 103.168
+\c 242.1185 104.032 241.3281 104.944 240.5409 105.904
+\c 233.1473 115.072 230.1249 125.376 230.2225 134.048
+\l 232.5601 134.048
+\c 233.5409 134.048 234.3345 134.848 234.3345 135.824
+\c 234.3345 136.8 233.5409 137.6 232.5601 137.6
+\l 230.4657 137.6
+\c 230.8945 141.328 231.9281 144.64 233.4689 147.232
+\c 235.5713 150.784 238.4561 152.752 241.5473 152.832
+\c 241.9841 152.624 242.3745 152.32 242.5505 151.792
+\c 243.1089 150.112 240.3089 150.672 241.0593 146.736
+\c 241.8001 142.816 247.0305 141.888 249.0881 145.808
+\c 250.7345 148.96 248.1649 153.44 243.3089 153.712
+\c 239.1809 154.48 235.2753 152.304 232.5873 147.76
+\c 230.9281 144.976 229.8289 141.488 229.3713 137.6
+\l 224.5777 137.6
+\l 224.5777 143.744
+\c 226.3153 152.16 233.1185 175.216 254.5025 165.984
+\l 238.2561 174.592
+\c 238.2561 174.592 227.4465 166.176 224.5777 145.632
+\l 224.5777 161.696
+\c 226.3521 174.176 231.3505 176.816 231.3505 176.816
+\c 226.3073 180.176 225.1841 188.768 225.1841 188.768
+\l 224.0625 227.456
+\c 224.0625 227.456 223.6897 196.24 222.9409 188.768
+\c 222.1969 181.296 216.2209 177.2 216.2209 177.2
+\c 220.9153 172.608 222.7921 165.872 223.5521 161.344
+\l 223.5521 145.616
+\c 220.6833 166.176 209.8689 174.592 209.8689 174.592
+\l 193.6177 165.984
+\c 215.0177 175.232 221.8193 152.128 223.5521 143.728
+\l 223.5521 137.6
+\l 218.7537 137.6
+\c 218.2929 141.488 217.1905 144.976 215.5361 147.76
+\c 212.8497 152.304 208.9393 154.48 204.8097 153.728
+\c 199.9617 153.44 197.3841 148.96 199.0353 145.808
+\c 201.0881 141.888 206.3217 142.816 207.0625 146.736
+\c 207.8113 150.672 205.0081 150.112 205.5729 151.792
+\c 205.7489 152.32 206.1377 152.624 206.5761 152.832
+\c 209.6657 152.752 212.5505 150.784 214.6513 147.232
+\c 216.1953 144.64 217.2273 141.328 217.6577 137.6
+\l 214.6289 137.6
+\c 213.6497 137.6 212.8577 136.8 212.8577 135.824
+\c 212.8577 134.848 213.6497 134.048 214.6289 134.048
+\l 217.9025 134.048
+\c 217.9921 125.376 214.9745 115.072 207.5777 105.904
+\c 206.7969 104.944 206.0049 104.032 205.2145 103.168
+\c 200.9393 112.56 197.4481 117.056 197.3585 117.168
+\c 177.6689 147.536 157.3857 148.432 157.3857 148.432
+\c 156.9441 148.448 156.4545 148.272 156.5537 147.888
+\c 156.6465 147.52 157.9393 147.488 157.9393 147.488
+\c 180.1697 144.128 181.4769 125.072 186.1457 114.992
+\c 190.8161 104.912 195.8593 110.144 196.9793 112.752
+\c 197.3729 113.664 197.7409 114.128 198.0577 114.368
+\c 199.4929 112.16 201.8385 108.176 204.4625 102.352
+\c 198.8529 96.448 193.0897 92.992 187.8737 91.024
+\c 178.4897 99.424 166.8225 103.92 155.1153 103.344
+\c 144.4577 102.8 135.7425 98.112 131.2017 90.464
+\c 131.1249 90.336 124.6945 78.256 134.2865 68.304
+\c 134.3905 68.192 142.6449 60.672 153.8385 65.792
+\c 158.5857 67.968 161.2865 72.064 161.2577 77.024
+\c 161.2321 82.016 158.3857 86.896 154.4977 88.608
+\c 151.2145 90.064 147.9217 90.096 145.2225 88.688
+\c 143.4305 87.76 142.1233 86.256 141.4977 84.56
+\c 140.9009 83.2 140.5377 81.488 140.9153 79.536
+\c 141.6481 75.744 144.8977 73.968 147.5921 75.744
+\c 150.2929 77.52 150.1073 82.304 147.4689 83.52
+\c 144.8369 84.752 143.1825 82.176 142.8129 83.584
+\c 142.7057 84 142.7217 84.48 142.7793 84.96
+\c 143.4033 86.112 144.4065 87.12 145.6897 87.776
+\c 148.1137 89.04 151.0897 89.008 154.0849 87.68
+\c 157.6193 86.112 160.2049 81.632 160.2337 77.024
+\c 160.2497 74.352 159.3841 69.472 153.4113 66.736
+\c 142.8593 61.888 135.0865 68.944 135.0065 69.024
+\c 125.9649 78.416 131.8353 89.504 132.0897 89.968
+\c 136.4449 97.296 144.8593 101.792 155.1665 102.32
+\c 166.4337 102.88 177.6689 98.608 186.7841 90.64
+\c 176.7617 87.2 169.0449 89.136 168.9169 89.168
+\l 167.5921 89.52
+\l 168.3585 88.384
+\c 168.4033 88.32 173.0497 81.248 170.0785 70.368
+\l 169.9137 69.744
+\l 170.5521 69.728
+\c 170.8513 69.696 197.9121 67.984 213.0337 32.864
+\c 212.0129 32.448 211.0481 31.968 210.1521 31.472
+\c 202.3169 43.968 190.8225 51.76 177.5249 53.04
+\c 167.8753 53.952 160.8113 51.2 156.8369 48.992
+\c 145.3761 43.84 134.0193 33.92 122.0081 25.6
+\c 107.8241 15.776 88.7009 15.632 88.7009 15.632
+\c 88.7009 15.632 72.7921 15.632 65.8545 15.632
+\c 58.9137 15.632 55.5793 18.048 55.5105 19.168
+\c 55.4465 20.272 57.6081 20.336 57.6081 20.336
+\c 62.0577 21.456 60.2897 25.968 60.2897 25.968
+\c 58.5265 30.816 49.4625 29.744 51.3585 21.872
+\c 53.2497 14 65.6321 14.304 65.6321 14.304
+\l 131.9873 14.304
+\c 129.7473 15.392 128.2257 17.52 128.2257 19.984
+\c 128.2257 23.536 131.4369 26.432 135.3969 26.432
+\c 139.3569 26.432 142.5681 23.536 142.5681 19.984
+\c 142.5681 17.52 141.0449 15.392 138.7985 14.304
+\l 157.4833 14.304
+\l 157.4833 14.224
+\l 170.6721 14.224
+\c 170.7889 14.224 179.9089 14.768 183.0801 23.12
+\c 184.5665 27.04 184.2113 31.04 182.0977 34.096
+\c 180.0065 37.136 176.5393 38.864 172.5825 38.864
+\c 172.5121 38.864 163.4513 39.12 162.5473 32.528
+\l 162.6769 32.512
+\c 162.5361 31.776 162.4865 30.944 162.6209 29.968
+\c 163.0753 26.656 166.1361 24.544 169.2497 26.144
+\c 172.3601 27.76 171.1569 31.728 169.4929 32.624
+\c 167.8417 33.536 166.1361 32.224 166.1361 32.224
+\c 166.1361 32.224 164.3761 30.912 163.8273 32.176
+\c 163.7361 32.384 163.6929 32.624 163.6705 32.88
+\c 164.8465 38.032 172.4881 37.84 172.5665 37.84
+\c 176.2033 37.84 179.3537 36.256 181.2577 33.52
+\c 183.2033 30.704 183.5105 27.136 182.1217 23.472
+\c 179.1921 15.76 170.7361 15.248 170.6465 15.248
+\l 160.1553 15.248
+\c 153.9249 17.024 146.9537 21.584 147.4961 31.632
+\c 147.9553 40.128 154.0913 45.744 158.5265 48.72
+\c 162.5153 50.72 168.9329 52.832 177.4305 52.016
+\c 190.3889 50.768 201.6033 43.152 209.2657 30.928
+\c 196.5809 22.976 195.6785 6.24 195.6785 1.68
+\c 195.6785 1.424 195.6833 1.248 195.6849 1.072
+\c 194.6385 1.072 19.4001 1.072 19.4001 1.072
+\c 9.4129 1.072 5.1201 3.856 3.2817 6
+\c 2.9985 6.608 2.8497 7.248 3.0849 7.808
+\c 3.8369 9.632 5.2129 7.808 7.0865 7.872
+\c 7.0865 7.872 10.9025 7.696 11.9649 11.568
+\c 13.0241 15.44 8.3393 20.256 3.0849 16.88
+\c -1.1247 14.176 -0.7551 8.416 2.5553 5.232
+\c 4.5937 2.864 9.1489 0.064 19.4001 0.064
+\l 196.7537 0.064
+\l 196.7217 0.592
+\c 196.6593 1.616 195.6417 21.408 209.7905 30.128
+\c 212.3265 25.92 214.4497 21.184 216.0961 15.984
+\c 215.0145 14.336 214.3825 12.352 214.3825 10.208
+\c 214.3825 4.576 218.7265 0 224.1009 0
+\c 229.4625 0 233.8129 4.576 233.8129 10.208
+\c 233.8129 12.384 233.1537 14.384 232.0529 16.048
+\c 233.6913 21.216 235.8065 25.936 238.3313 30.128
+\c 252.4849 21.408 251.4625 1.616 251.3969 0.592
+\l 251.3649 0.064
+\l 428.7217 0.064
+\c 438.9745 0.064 443.5281 2.864 445.5649 5.232
+\c 448.8817 8.416 449.2465 14.176 445.0305 16.88
+\o
+\m 278.3441 87.968
+\c 277.4929 86.336 276.0033 82.736 276.0033 77.632
+\c 276.0033 75.568 276.2929 73.232 276.9313 70.672
+\c 272.8721 70.24 248.2993 66.144 234.1409 33.248
+\c 233.5025 33.488 232.8369 33.696 232.1537 33.904
+\c 235.0433 46.016 241.2001 65.488 253.3681 81.968
+\c 255.5217 84.88 257.9057 87.504 260.4689 89.84
+\c 268.8721 86.816 275.7937 87.536 278.3441 87.968
+\o
+\m 229.9153 22.4
+\c 230.0161 23.184 230.5777 27.088 231.9185 32.896
+\c 232.5505 32.72 233.1537 32.528 233.7505 32.304
+\c 232.4561 29.216 231.2593 25.872 230.1713 22.272
+\c 230.0977 22.32 230.0001 22.352 229.9153 22.4
+\o
+\m 217.9169 22.352
+\c 216.8417 25.936 215.6577 29.248 214.3745 32.304
+\c 214.9681 32.528 215.5729 32.72 216.2017 32.896
+\c 217.5121 27.264 218.0737 23.408 218.1921 22.496
+\c 218.1073 22.448 218.0065 22.4 217.9169 22.352
+\o
+\m 219.1665 22.944
+\c 218.9793 24.272 218.3937 27.984 217.1873 33.168
+\c 217.9601 33.36 218.7601 33.536 219.5937 33.68
+\c 219.7905 30.304 219.9297 26.848 220.0017 23.264
+\c 219.7137 23.152 219.4305 23.056 219.1665 22.944
+\o
+\m 221.0161 23.552
+\c 220.9457 27.088 220.8049 30.496 220.6065 33.808
+\c 221.1441 33.888 221.6689 33.968 222.2209 34.016
+\l 223.5521 34.016
+\l 223.5521 23.92
+\c 222.6449 23.888 221.8049 23.744 221.0161 23.552
+\o
+\m 224.5777 34.016
+\l 225.9025 34.016
+\c 226.4593 33.968 226.9777 33.888 227.5121 33.808
+\c 227.3217 30.496 227.1777 27.072 227.0993 23.536
+\c 226.3233 23.744 225.4817 23.872 224.5777 23.92
+\l 224.5777 34.016
+\o
+\m 228.5249 33.68
+\c 229.3585 33.536 230.1601 33.36 230.9313 33.168
+\c 229.7121 27.92 229.1281 24.176 228.9473 22.896
+\c 228.6849 23.008 228.4065 23.104 228.1217 23.216
+\c 228.1905 26.816 228.3345 30.304 228.5249 33.68
+\o
+\m 259.3873 90.24
+\c 256.9249 87.952 254.6257 85.408 252.5473 82.576
+\c 240.2913 65.968 234.0817 46.368 231.1649 34.16
+\c 230.3377 34.368 229.4817 34.544 228.5841 34.704
+\c 230.5281 66.512 237.4593 88.304 243.2033 101.344
+\c 248.6753 95.664 254.2721 92.256 259.3873 90.24
+\o
+\m 229.1153 134.048
+\c 228.9873 125.184 232.1025 114.736 239.7473 105.264
+\c 240.6401 104.144 241.5377 103.12 242.4401 102.144
+\c 236.6193 89.04 229.5441 67.04 227.5617 34.848
+\c 227.0513 34.912 226.5329 34.992 225.9921 35.04
+\l 224.5777 35.04
+\l 224.5777 89.344
+\c 225.3665 93.904 227.3681 99.824 232.4689 102.112
+\c 232.4689 102.112 226.5073 104.816 224.5777 113.792
+\l 224.5777 134.048
+\l 229.1153 134.048
+\o
+\m 208.3777 105.264
+\c 216.0161 114.736 219.1297 125.184 219.0049 134.048
+\l 223.5521 134.048
+\l 223.5521 113.856
+\c 222.7505 110.368 220.7009 105.008 215.4689 101.92
+\c 215.4689 101.92 221.7057 100.528 223.5521 89.488
+\l 223.5521 35.04
+\l 222.1265 35.04
+\c 221.5857 34.992 221.0769 34.912 220.5585 34.848
+\c 218.5761 67.04 211.5009 89.04 205.6769 102.144
+\c 206.5825 103.12 207.4801 104.144 208.3777 105.264
+\o
+\m 204.9153 101.344
+\c 210.6641 88.304 217.5921 66.512 219.5361 34.704
+\c 218.6433 34.544 217.7857 34.368 216.9553 34.16
+\c 214.0401 46.368 207.8305 65.968 195.5777 82.576
+\c 193.4961 85.408 191.1953 87.952 188.7345 90.256
+\c 193.8497 92.256 199.4481 95.664 204.9153 101.344
+\o
+\m 171.1921 70.672
+\c 171.8289 73.232 172.1185 75.568 172.1185 77.632
+\c 172.1185 82.736 170.6289 86.336 169.7777 87.968
+\c 172.3249 87.536 179.2513 86.816 187.6577 89.84
+\c 190.2129 87.504 192.5985 84.88 194.7569 81.968
+\c 206.9233 65.488 213.0753 46.016 215.9665 33.904
+\c 215.2801 33.696 214.6177 33.488 213.9809 33.248
+\c 199.8193 66.144 175.2465 70.24 171.1921 70.672
+\o
+\m 213.4049 31.952
+\c 214.7073 28.832 215.9185 25.472 217.0145 21.824
+\c 216.3313 21.392 215.8161 21.008 215.4881 20.736
+\c 214.1137 24.288 212.5121 27.6 210.6849 30.624
+\c 211.5441 31.104 212.4401 31.552 213.4049 31.952
+\o
+\m 223.8097 5.92
+\c 219.9377 5.92 216.7921 8.848 216.7921 12.464
+\c 216.7921 16.08 219.9377 19.008 223.8097 19.008
+\c 227.6945 19.008 230.8369 16.08 230.8369 12.464
+\c 230.8369 8.848 227.6945 5.92 223.8097 5.92
+\o
+\m 224.1009 20.416
+\c 221.1937 20.416 218.6225 19.056 216.8417 16.944
+\c 216.5361 17.872 216.2257 18.816 215.8929 19.728
+\c 216.4433 20.224 219.6305 22.944 224.0625 22.944
+\c 228.8977 22.944 232.1185 19.536 232.1537 19.504
+\c 231.8561 18.688 231.5777 17.856 231.2977 17.008
+\c 229.5217 19.088 226.9681 20.416 224.1009 20.416
+\o
+\m 232.5505 20.544
+\c 232.2529 20.816 231.7505 21.248 231.0721 21.696
+\c 232.1713 25.392 233.4001 28.8 234.7153 31.952
+\c 235.6849 31.552 236.5777 31.104 237.4337 30.624
+\c 235.5745 27.536 233.9441 24.16 232.5505 20.544
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian7.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian7.pgf
new file mode 100644
index 0000000000..2b5e31ff6a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian7.pgf
@@ -0,0 +1,174 @@
+\m 119.3227 118.5663
+\l 15.907 118.5663
+\l 15.907 16.9065
+\l 119.3227 16.9065
+\l 119.3227 118.5663
+\o
+\m 116.3937 19.771
+\l 18.8335 19.771
+\l 18.8335 115.7018
+\l 116.3937 115.7018
+\l 116.3937 19.771
+\o
+\s
+\m 110.6276 110.0274
+\l 24.5996 110.0274
+\l 24.5996 25.4428
+\l 110.6276 25.4428
+\l 110.6276 110.0274
+\o
+\m 46.3125 99.6807
+\c 46.9424 102.8204 48.5495 105.2881 50.8311 106.6298
+\c 52.5275 107.6243 55.1662 108.2244 56.8973 108.3608
+\c 60.9944 108.6783 63.5215 107.2051 64.9153 105.913
+\c 65.5527 105.3228 65.9867 104.7425 66.2818 104.2365
+\c 63.2686 103.5719 61.0142 100.8959 61.0142 97.6842
+\c 61.0142 93.9741 64.025 90.9633 67.7351 90.9633
+\c 71.4478 90.9633 74.4561 93.9741 74.4561 97.6842
+\c 74.4561 100.9331 72.1521 103.6413 69.0892 104.2688
+\c 69.3844 104.7673 69.8134 105.3352 70.4359 105.913
+\c 71.8322 107.2051 74.3594 108.6783 78.4539 108.3608
+\c 80.19 108.2244 82.8262 107.6243 84.5226 106.6298
+\c 86.8042 105.2881 88.4113 102.8204 89.0413 99.6807
+\c 89.8349 95.7299 88.9668 91.4643 86.7794 88.5477
+\c 85.0558 86.2512 74.4313 75.6391 72.3183 73.9725
+\c 72.0256 73.7418 71.7355 73.5236 71.4478 73.3078
+\c 70.5128 73.9353 69.4216 74.3544 68.2361 74.4759
+\l 68.2361 80.9712
+\l 66.8225 80.9712
+\l 66.8225 74.4759
+\c 65.7065 74.3643 64.6772 73.9725 63.7745 73.4021
+\c 63.5315 73.5905 63.2834 73.779 63.0354 73.9725
+\c 60.9249 75.6391 50.3004 86.2512 48.5743 88.5477
+\c 46.3869 91.4643 45.5213 95.7299 46.3125 99.6807
+\o
+\m 97.714 60.9869
+\c 100.9009 60.9869 103.557 63.214 104.2489 66.1901
+\c 104.7921 65.8999 105.4542 65.4287 106.1189 64.712
+\c 107.4085 63.3157 108.8841 60.791 108.5617 56.694
+\c 108.4278 54.9604 107.8301 52.3241 106.8356 50.6253
+\c 105.4964 48.3411 103.0263 46.7366 99.884 46.1091
+\c 95.9333 45.3155 91.6651 46.1785 88.7536 48.3684
+\c 86.4546 50.0921 75.8474 60.7166 74.1783 62.8321
+\c 73.9377 63.1346 73.7046 63.4397 73.4765 63.7423
+\c 74.0394 64.64 74.4214 65.6544 74.533 66.763
+\l 81.0307 66.763
+\l 81.0307 68.1791
+\l 74.533 68.1791
+\c 74.4214 69.2876 74.0394 70.3045 73.4765 71.1998
+\c 73.7046 71.5023 73.9377 71.8074 74.1783 72.1099
+\c 75.8474 74.2229 86.4546 84.85 88.7536 86.5736
+\c 91.6676 88.761 95.9333 89.629 99.884 88.8379
+\c 103.0263 88.203 105.4964 86.5984 106.8356 84.3143
+\c 107.8301 82.6204 108.4278 79.9816 108.5617 78.2506
+\c 108.8841 74.1535 107.4085 71.6263 106.1189 70.2301
+\c 105.484 69.5456 104.8565 69.0868 104.3233 68.7966
+\c 103.8 71.9859 101.0521 74.4263 97.714 74.4263
+\c 94.0014 74.4263 90.9931 71.418 90.9931 67.7054
+\c 90.9931 63.9952 94.0014 60.9869 97.714 60.9869
+\o
+\m 37.7588 74.4263
+\c 34.4008 74.4263 31.6405 71.9537 31.142 68.7346
+\c 30.5865 69.0248 29.9168 69.4985 29.2373 70.2301
+\c 27.9427 71.6263 26.4696 74.1535 26.7895 78.2481
+\c 26.9259 79.9816 27.5186 82.6204 28.5156 84.3168
+\c 29.8598 86.5984 32.3299 88.203 35.4672 88.8379
+\c 39.4179 89.629 43.6861 88.7635 46.6001 86.5736
+\c 48.8992 84.85 59.5113 74.2229 61.1754 72.1099
+\c 61.3589 71.8843 61.5375 71.6511 61.7111 71.4205
+\c 61.0712 70.4781 60.6447 69.3745 60.5232 68.1791
+\l 54.0304 68.1791
+\l 54.0304 66.763
+\l 60.5232 66.763
+\c 60.6447 65.5676 61.0712 64.464 61.7111 63.524
+\c 61.535 63.2934 61.3589 63.0602 61.1754 62.8321
+\c 59.5113 60.7166 48.8992 50.0921 46.6001 48.3684
+\c 43.6836 46.181 39.4179 45.3155 35.4672 46.1091
+\c 32.3299 46.7366 29.8598 48.3411 28.5156 50.6277
+\c 27.5186 52.3241 26.9259 54.9604 26.7895 56.694
+\c 26.7622 57.0784 26.7473 57.4504 26.7473 57.805
+\c 26.7473 61.2548 28.0643 63.4471 29.2373 64.712
+\c 29.9441 65.4758 30.6435 65.9545 31.209 66.2397
+\c 31.881 63.2363 34.5521 60.9869 37.7588 60.9869
+\c 41.4689 60.9869 44.4797 63.9952 44.4797 67.7054
+\c 44.4797 71.418 41.4689 74.4263 37.7588 74.4263
+\o
+\m 61.6342 67.4698
+\c 61.6342 70.7286 64.2755 73.3673 67.5293 73.3673
+\c 70.7856 73.3673 73.4269 70.7286 73.4269 67.4698
+\c 73.4269 64.2135 70.7856 61.5747 67.5293 61.5747
+\c 64.2755 61.5747 61.6342 64.2135 61.6342 67.4698
+\o
+\m 45.4692 102.8948
+\c 45.0898 102.002 44.7823 101.0497 44.5789 100.0279
+\c 43.8101 96.1937 44.4524 92.0868 46.2455 88.9024
+\c 43.0636 90.6954 38.9542 91.3378 35.12 90.569
+\c 33.7684 90.2962 32.5184 89.8621 31.4024 89.2868
+\c 28.5107 93.7533 25.0907 100.8413 25.0609 109.4769
+\c 33.6865 109.1346 40.3727 106.2181 45.4692 102.8948
+\o
+\m 25.0609 26.0554
+\c 25.0907 34.4107 28.2974 41.3276 31.1222 45.814
+\c 32.3126 45.1617 33.6518 44.6682 35.12 44.3731
+\c 38.9542 43.6042 43.0636 44.2441 46.2455 46.0397
+\c 44.4499 42.8578 43.8101 38.7458 44.5789 34.9142
+\c 44.7476 34.0709 44.9856 33.2699 45.2783 32.511
+\c 40.2016 29.2398 33.5774 26.3902 25.0609 26.0554
+\o
+\m 89.0413 35.2638
+\c 88.4113 32.1216 86.8042 29.654 84.5226 28.3123
+\c 82.8262 27.3202 80.19 26.7176 78.4539 26.5837
+\c 74.3594 26.2662 71.8322 27.7369 70.4359 29.029
+\c 69.6175 29.7879 69.1264 30.5369 68.8512 31.1222
+\c 72.0281 31.6554 74.4561 34.3983 74.4561 37.729
+\c 74.4561 41.4416 71.4478 44.4499 67.7351 44.4499
+\c 64.025 44.4499 61.0142 41.4416 61.0142 37.729
+\c 61.0142 34.4355 63.3826 31.7124 66.51 31.1296
+\c 66.2372 30.5468 65.7387 29.7904 64.9153 29.029
+\c 63.5215 27.7369 60.9944 26.2662 56.8973 26.5837
+\c 55.1662 26.7176 52.5275 27.3202 50.8311 28.3123
+\c 48.5495 29.654 46.9424 32.1216 46.3125 35.2638
+\c 45.5213 39.2146 46.3893 43.4802 48.5743 46.3943
+\c 50.3004 48.6933 60.9249 59.303 63.0354 60.9696
+\c 63.281 61.163 63.5315 61.3515 63.7745 61.54
+\c 64.6772 60.9696 65.7015 60.5802 66.8225 60.4686
+\l 66.8225 53.9709
+\l 68.2361 53.9709
+\l 68.2361 60.4686
+\c 69.4216 60.5852 70.5103 61.0092 71.4478 61.6367
+\c 71.7355 61.4184 72.0256 61.1977 72.3183 60.9696
+\c 74.4313 59.303 85.0558 48.6933 86.7794 46.3943
+\c 88.9668 43.4802 89.8349 39.2146 89.0413 35.2638
+\o
+\m 90.0308 32.387
+\c 90.3433 33.1806 90.5987 34.0238 90.7748 34.9142
+\c 91.5436 38.7458 90.9013 42.8578 89.1082 46.0421
+\c 92.2901 44.2466 96.402 43.6042 100.2337 44.3731
+\c 101.6275 44.6533 102.9122 45.1121 104.0555 45.7123
+\c 106.8703 41.2234 110.0299 34.3512 110.0547 26.0554
+\c 101.6523 26.3877 95.0777 29.1704 90.0308 32.387
+\o
+\m 103.7703 89.3686
+\c 102.6989 89.9018 101.5134 90.311 100.2337 90.569
+\c 96.402 91.3378 92.2901 90.6954 89.1107 88.9048
+\c 90.9013 92.0868 91.5436 96.1962 90.7748 100.0279
+\c 90.5615 101.0968 90.2342 102.0888 89.8249 103.0114
+\c 94.9016 106.2875 101.5357 109.1396 110.0547 109.4769
+\c 110.0274 100.8984 106.6521 93.8426 103.7703 89.3686
+\o
+\s
+\m 134.9792 135.4728
+\l 0 135.4728
+\l 0 0
+\l 136.063 0
+\l 136.063 135.4728
+\l 134.9792 135.4728
+\o
+\m 133.8979 2.1502
+\c 131.78 2.1502 4.283 2.1502 2.1676 2.1502
+\c 2.1676 4.2483 2.1676 131.2244 2.1676 133.3226
+\c 4.283 133.3226 131.78 133.3226 133.8979 133.3226
+\c 133.8979 131.2244 133.8979 4.2483 133.8979 2.1502
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian70.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian70.pgf
new file mode 100644
index 0000000000..69d98f683d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian70.pgf
@@ -0,0 +1,173 @@
+\r 0 0 226 79
+\i
+\m 199.0251 68.6723
+\c 186.7051 68.4003 182.3083 62.8803 175.3723 56.0483
+\c 168.4363 49.2323 167.6379 47.4083 164.9099 47.4083
+\c 162.1803 47.4083 160.5883 48.7683 161.0443 52.0643
+\c 155.3595 50.2563 157.2923 44.3363 161.2715 43.6643
+\c 165.2507 42.9763 167.4123 44.2243 170.9371 48.8963
+\c 172.4747 50.9283 174.0971 52.4963 175.4395 53.6323
+\c 174.3787 51.4243 173.5323 47.8563 174.1211 42.1763
+\c 175.3723 30.1283 186.0603 23.1843 194.7051 24.2083
+\c 203.3451 25.2323 209.7131 30.3523 210.1691 38.8803
+\c 210.6235 47.4083 205.7339 51.2803 201.4123 52.1923
+\c 197.0923 53.0883 190.2683 51.2803 189.5851 45.0243
+\c 188.9051 38.7683 194.4763 37.1683 194.4763 37.1683
+\c 194.4763 37.1683 192.2011 39.5683 192.6571 42.8643
+\c 192.8891 44.5443 193.9099 45.9363 195.4539 46.6563
+\c 197.1835 47.4723 201.0715 47.4083 200.7307 44.3363
+\c 200.7307 44.3363 196.4091 44.9123 196.2955 42.0643
+\c 196.4091 40.2403 200.5035 39.5683 200.3883 35.5843
+\c 200.2763 31.6003 196.9771 27.3923 190.4971 27.5043
+\c 184.0139 27.6163 176.8507 33.3123 175.7131 43.2003
+\c 174.5755 53.0883 178.4411 55.8243 178.4411 55.8243
+\c 178.4411 55.8243 177.5323 50.1443 180.2619 47.8563
+\c 182.9915 45.5843 186.8571 47.7443 187.0859 49.0083
+\c 183.9019 50.2563 177.1915 56.6243 186.6299 63.2163
+\c 196.0683 69.8083 214.9451 67.7603 221.9947 52.7523
+\c 224.9515 44.5603 224.1563 39.5683 224.1563 39.5683
+\c 224.1435 39.4563 224.1259 39.3443 224.1115 39.2323
+\c 223.4587 40.6723 222.2139 42.1923 219.8347 42.6403
+\c 214.9451 43.5363 214.0363 39.5683 215.5131 37.7443
+\c 216.9915 35.9203 219.1515 36.8323 220.9707 36.4963
+\c 222.6971 36.1763 223.0891 34.2083 221.6683 29.8243
+\c 217.5883 19.8243 208.2971 9.8883 190.3819 12.2723
+\c 166.3883 15.4563 158.2011 32.9603 141.9403 49.2323
+\c 125.6795 65.4883 106.4619 68.6723 95.8859 65.7123
+\c 95.5755 65.6323 95.2875 65.5203 94.9867 65.4243
+\c 101.5403 69.6323 104.8075 69.7603 112.8299 68.8963
+\c 116.7947 68.4803 120.5483 67.7603 123.2539 67.1523
+\c 126.8075 65.1363 132.0763 63.2163 138.8699 61.5043
+\c 152.5147 58.0963 160.2475 60.9443 163.4331 66.1763
+\c 166.6171 71.4083 162.0667 75.7283 160.2475 75.8403
+\c 160.2475 75.8403 162.8635 71.5203 160.1339 69.0083
+\c 157.4059 66.5123 153.0827 67.9843 151.2651 70.6083
+\c 149.9019 70.8323 148.5355 69.0083 146.9435 69.4723
+\c 148.6491 73.2163 147.3979 74.3523 146.6027 75.0403
+\c 145.5787 72.5443 144.3275 71.6323 141.4859 72.6563
+\c 138.6411 73.6803 137.3915 73.2163 135.7995 72.6563
+\c 135.7995 72.6563 139.7787 77.0883 134.4347 79.0243
+\c 132.8427 76.7523 131.1371 77.2003 127.1579 78.2243
+\c 123.1771 79.2483 118.1739 77.6643 117.9467 73.4563
+\c 117.8779 72.1763 118.5291 70.8963 119.8379 69.6163
+\c 118.2587 69.7283 116.0059 69.9203 112.8795 70.2563
+\c 102.5979 71.3603 96.9483 70.1123 86.7083 61.0723
+\c 84.4235 59.2643 82.8811 57.4403 81.9787 56.1923
+\c 81.0683 55.7283 80.2363 55.1043 79.6251 54.3523
+\c 80.0795 58.2083 80.3067 58.4323 81.1051 61.3923
+\c 81.9003 64.3523 80.3067 71.5203 73.0299 70.7203
+\c 75.9851 69.2483 75.5323 67.9843 75.4171 64.6883
+\c 75.3051 61.3923 76.5547 60.9443 78.2603 59.4563
+\c 78.9243 58.1283 79.3595 51.9683 74.7707 48.2883
+\c 74.4347 48.5923 74.1067 48.9123 73.7659 49.2163
+\c 66.2347 55.9523 57.8699 62.0003 48.3307 65.5363
+\c 43.0171 67.5043 37.0715 68.4963 31.3915 68.3363
+\c 20.6139 68.0323 11.9707 64.2563 6.3899 57.4243
+\c 1.0907 50.9443 -1.0597 42.1123 0.4923 33.2003
+\c 2.0907 24.0003 9.7723 14.9923 19.1723 11.3123
+\c 22.5595 9.9683 26.0331 9.3603 29.5051 9.4563
+\c 29.2539 9.3123 29.2491 9.3123 29.2491 9.3123
+\c 29.2491 9.3123 41.8731 9.2003 50.7419 17.1683
+\c 59.6123 25.1203 56.8827 28.9923 62.6827 30.3523
+\c 68.4811 31.7123 69.3915 24.6723 65.8651 24.0963
+\c 65.8651 24.0963 68.8235 20.1123 73.1435 23.1843
+\c 77.4651 26.2563 75.0763 34.2243 68.2539 34.3363
+\c 61.4315 34.4483 58.1323 29.9043 54.9483 25.0083
+\c 57.3371 34.1123 55.6315 46.6083 43.9195 51.3923
+\c 32.2075 56.1603 16.8427 50.4643 17.6507 37.4083
+\c 18.4475 24.5603 27.9995 24.0963 30.9563 24.3203
+\c 35.3899 24.4483 41.0763 29.6643 36.8683 37.2963
+\c 36.8683 37.2963 38.0059 30.2403 33.1163 28.8803
+\c 28.2267 27.5043 25.8379 30.4643 25.6107 32.0643
+\c 30.9563 31.4883 32.4347 32.8483 33.4571 36.0323
+\c 29.2491 37.9683 27.4315 42.1763 30.6139 46.4963
+\c 33.7979 50.8163 44.0331 52.5283 49.9467 44.9123
+\c 55.8587 37.2963 55.4043 26.8323 50.6283 22.9603
+\c 51.0827 28.1923 49.4923 30.9283 46.6475 31.2643
+\c 43.8059 31.6003 41.6443 29.6643 41.0763 27.6163
+\c 45.2827 27.6163 46.6475 25.8083 46.6475 22.8483
+\c 46.6475 19.9523 44.1227 14.6723 34.0011 11.6803
+\c 29.1819 10.5603 24.2795 10.7683 19.6715 12.5763
+\c 10.6923 16.0963 3.3579 24.6723 1.8347 33.4243
+\c 1.4539 35.6163 1.3099 37.8083 1.3867 39.9523
+\c 3.1483 33.4723 9.4795 35.1363 9.8043 37.8563
+\c 10.1467 40.7043 7.5307 41.3923 7.5307 41.3923
+\c 7.5307 41.3923 5.0299 38.7683 3.2107 40.8163
+\c 2.0459 41.9363 1.9675 44.0323 2.2315 46.0323
+\c 3.1979 49.9203 4.9547 53.5203 7.4443 56.5603
+\c 12.7691 63.0723 21.0619 66.6723 31.4299 66.9763
+\c 40.3275 67.2163 49.9643 64.2563 57.4731 59.6483
+\c 64.9691 55.0243 71.6667 48.9603 77.8827 42.7683
+\c 83.8555 36.8163 88.8491 30.3043 95.9035 25.4883
+\c 98.8827 23.4403 102.1227 21.6643 105.5259 20.3523
+\c 105.3243 20.3523 105.2107 20.3523 105.2107 20.3523
+\c 105.2107 20.3523 113.2923 15.5843 126.7547 15.9843
+\c 121.3483 14.6723 114.4667 14.0323 106.2939 15.3443
+\c 104.1547 16.3683 101.4315 17.3283 97.9707 18.1443
+\c 84.4779 21.3283 73.5611 19.3603 69.4667 10.1123
+\c 65.9787 1.7763 75.0763 -1.4077 75.6827 0.7203
+\c 76.2907 2.8323 74.1675 2.6883 72.8027 2.9923
+\c 71.4379 3.2963 69.0123 6.9283 72.6507 10.1123
+\c 76.2907 13.2963 80.2315 10.7203 80.6859 10.4163
+\c 82.1259 12.8323 88.9483 14.3203 88.4955 12.0483
+\c 86.5243 9.7763 80.3835 9.8083 82.2027 0.5603
+\c 84.6299 4.1923 85.2347 4.3523 88.2667 3.2963
+\c 91.3003 2.2243 94.3339 6.1763 95.5451 5.2643
+\c 96.7595 4.3523 92.5883 2.9443 94.4827 -0.0477
+\c 94.4827 -0.0477 96.9019 2.5123 99.7899 1.3123
+\c 105.2107 -0.9117 113.5883 0.2563 113.7387 7.3763
+\c 113.7675 8.5923 113.0363 10.8483 109.9707 13.1683
+\c 127.0075 10.9923 137.0651 17.7123 140.2939 20.3683
+\c 141.2891 20.9923 142.2827 21.6643 143.3051 22.4003
+\c 140.2347 16.8163 138.0747 10.1123 140.8027 6.3523
+\c 143.5323 2.6083 147.5115 3.9683 149.5595 5.7923
+\c 144.5563 5.2163 144.6699 6.1283 145.0107 9.6483
+\c 145.3515 13.1843 145.0107 14.2083 142.0539 15.7923
+\c 142.8491 20.1123 145.8075 22.8483 148.8763 26.1443
+\c 151.2715 28.7203 152.7547 31.2803 153.2955 33.0403
+\c 153.4139 32.8963 153.5339 32.7683 153.6523 32.6243
+\c 167.1851 17.0563 181.7403 9.7763 196.2955 10.1123
+\c 210.8507 10.4483 225.5195 20.9123 225.6347 41.1523
+\c 225.7483 61.3923 209.1451 68.8963 199.0251 68.6723
+\o
+\m 137.7323 26.5923
+\c 137.7323 26.5923 137.2779 24.5603 141.1451 23.7603
+\c 135.7995 19.6643 128.2955 17.1683 121.5851 18.5283
+\c 123.6315 23.0723 120.7883 26.7203 115.6731 26.4963
+\c 110.5563 26.2563 110.1019 31.4883 110.5563 33.4243
+\c 108.1675 33.8723 106.4619 30.8003 107.0299 26.7203
+\c 103.1643 28.6403 102.1403 32.7363 104.8699 36.9443
+\c 107.5979 41.1523 104.9835 42.9763 103.5051 43.8883
+\c 102.7083 46.8483 104.3019 48.6563 104.3019 48.6563
+\c 104.3019 48.6563 99.2987 50.5923 98.7291 43.4243
+\c 95.5451 46.0483 95.5451 51.9523 101.0043 54.5763
+\c 95.4315 56.0483 89.8587 52.1923 92.1339 41.3923
+\c 94.4075 30.5763 106.4619 23.1843 111.4651 20.2403
+\c 111.4235 20.2403 111.3787 20.2403 111.3355 20.2403
+\c 109.9915 20.5763 108.6283 20.9283 108.5275 20.9603
+\c 103.5787 22.5443 99.0507 25.0563 95.0203 28.3203
+\c 88.8315 33.3443 83.6651 39.4723 78.0523 45.1203
+\c 78.6219 47.2643 81.2107 54.8803 88.9483 53.2003
+\c 89.5691 56.4963 87.0795 57.5043 84.3867 57.0243
+\l 84.6299 57.1843
+\c 85.4235 58.3843 89.2571 61.4083 94.8971 63.2323
+\c 95.2571 62.2563 96.5403 60.5763 101.1067 60.4963
+\c 106.4251 60.3843 110.4347 59.9843 114.3435 56.9923
+\c 105.5083 54.9443 108.0491 47.4563 111.1227 45.4723
+\c 114.3067 43.4243 114.4219 41.1523 112.4891 38.9923
+\c 118.1739 39.5683 118.7419 44.2243 117.6059 47.1843
+\c 123.4043 47.0723 118.8555 40.0163 121.1307 37.4083
+\c 122.3467 36.0003 123.5179 36.2723 123.9723 32.7363
+\c 129.2043 35.3603 127.7259 40.1283 127.7259 40.1283
+\c 127.7259 40.1283 130.0011 39.4563 130.9099 36.2723
+\c 132.3883 32.1763 130.1131 27.8563 126.2475 25.0083
+\c 137.6203 27.1683 136.2539 39.9043 129.3179 48.5443
+\c 125.4347 53.3923 121.5195 55.5043 118.8235 56.4483
+\c 113.8251 60.6563 107.3483 61.6323 101.6859 61.7443
+\c 97.7723 61.8083 96.3611 62.9283 95.8827 63.5363
+\c 99.7547 64.6403 104.3819 65.1363 109.4171 64.1283
+\c 127.5323 61.7603 138.0075 50.6403 149.8667 36.9923
+\c 149.1083 34.4163 146.3915 28.0483 137.7323 26.5923
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian71.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian71.pgf
new file mode 100644
index 0000000000..f229337656
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian71.pgf
@@ -0,0 +1,931 @@
+\r 0 0 443 81
+\i
+\m 49.6387 55.2774
+\c 50.7134 52.4966 52.7706 52.5096 54.6485 53.7571
+\c 56.5241 55.0045 58.0457 53.2243 58.0457 53.2243
+\c 57.4201 55.9011 54.5584 56.5248 52.7706 56.4339
+\c 50.9827 56.3429 50.8924 56.4339 48.6571 58.7598
+\c 46.4231 61.0858 43.2024 64.7502 43.2024 64.7502
+\c 37.926 70.5586 32.2057 70.5586 28.6277 70.3896
+\c 25.0505 70.2077 23.89 69.493 24.6044 68.5964
+\c 25.3202 67.6998 26.3911 68.8693 26.3911 68.8693
+\c 31.5787 70.1168 36.2283 69.493 41.0552 65.114
+\c 45.8877 60.7349 41.1467 54.7446 38.3734 56.2519
+\c 35.6014 57.7853 37.3919 61.2677 37.3919 61.2677
+\c 36.4085 61.9824 32.83 60.9948 33.0964 56.6158
+\c 33.3667 52.2367 37.926 49.8198 42.217 52.4187
+\c 46.5119 55.0045 45.6185 59.8383 45.6185 59.8383
+\c 45.6185 59.8383 48.5677 58.0451 49.6387 55.2774
+\o
+\s
+\m 26.244 16.8145
+\c 31.3567 17.6851 35.7904 20.6348 38.6569 24.8839
+\c 40.0618 24.2342 41.3243 24.0913 41.5985 24.611
+\c 41.8611 25.1048 41.0858 26.0534 39.8156 26.833
+\c 40.3079 27.7946 40.7343 28.7822 41.0763 29.8347
+\c 43.0717 35.981 41.7749 42.1792 37.6088 46.4283
+\c 33.4124 50.7034 28.1677 52.0808 23.5843 50.0927
+\c 20.2393 48.6373 17.8967 45.6487 17.2115 42.2702
+\c 16.2126 39.0736 16.7953 35.6301 19.242 33.3431
+\c 22.7543 30.0686 27.9432 31.5889 28.5814 35.825
+\c 29.2184 40.0482 25.9471 41.3216 23.8712 40.6849
+\c 21.7963 40.0482 20.9993 37.3454 19.0033 38.9307
+\c 17.6349 40.0222 18.3256 43.0108 18.8967 44.804
+\c 19.962 46.8052 21.6833 48.4684 23.8774 49.417
+\c 28.2363 51.3012 33.0507 50.0277 37.0847 45.9215
+\c 41.0541 41.8674 42.2888 35.942 40.3771 30.0556
+\c 40.0522 29.0551 39.6443 28.1065 39.1747 27.1969
+\c 37.6482 27.9765 36.2029 28.1715 35.9095 27.6257
+\c 35.6242 27.0929 36.5505 26.0404 37.9995 25.2218
+\c 35.2397 21.1806 31.0027 18.3608 26.1222 17.5422
+\c 17.8777 16.1518 11.8641 19.8682 8.4201 22.9868
+\c 7.3388 24.4161 6.3181 26.4692 6.8669 28.7952
+\c 7.9049 33.1872 10.3008 32.0697 10.6992 31.2771
+\c 11.0976 30.4714 12.5366 30.0686 13.1737 31.7449
+\c 13.8146 33.4211 10.9378 35.7471 7.745 33.2652
+\c 5.6221 31.6149 5.136 27.8986 6.613 24.806
+\c 5.6118 25.9235 5.0802 26.7161 5.0611 26.7421
+\c 3.0042 30.2505 1.8189 33.668 1.2263 36.8646
+\c 1.2174 37.8391 1.484 38.3069 2.4002 39.0086
+\c 3.8354 40.1261 5.2705 39.5674 5.1108 40.6069
+\c 4.9533 41.6465 2.8771 40.9318 1.5194 42.0493
+\c 1.1312 42.3741 0.8977 42.8679 0.7555 43.4267
+\c 1.0792 51.587 4.6449 57.2265 4.702 57.3175
+\c 5.4139 58.435 6.1512 59.4615 6.896 60.4621
+\c 6.9279 60.4231 6.9571 60.3971 6.9887 60.3581
+\c 10.6649 56.8497 16.1303 56.5898 19.1873 59.7864
+\c 22.101 62.827 21.7823 67.9078 18.5743 71.4162
+\c 24.659 75.2365 30.7107 76.7048 35.5227 77.1596
+\c 40.4919 77.2116 44.0013 75.6393 47.1565 73.8981
+\c 51.6818 71.4162 52.9937 69.9738 52.9278 68.6614
+\c 52.8616 67.349 52.9937 65.7767 54.4367 66.7513
+\c 55.8781 67.7388 60.4045 73.9631 60.4045 73.9631
+\c 61.3233 75.5354 59.2879 75.3404 58.0443 74.6907
+\c 56.7969 74.028 55.5495 74.8207 55.5495 74.8207
+\c 48.2555 78.2122 41.3575 78.511 36.3069 77.9653
+\c 32.4835 77.6794 27.7972 76.7958 22.8857 74.5738
+\c 21.8128 74.4698 20.2927 74.7037 20.0641 76.9387
+\c 20.0641 76.9387 21.4029 78.2122 20.1174 79.3037
+\c 18.8308 80.3822 17.0313 79.1997 17.8519 76.8348
+\c 18.4246 75.1975 19.8599 73.9241 21.5768 73.9501
+\c 20.4068 73.3653 19.2317 72.7156 18.0501 71.9619
+\c 14.3741 75.4574 8.9264 75.7173 5.872 72.5207
+\c 2.9902 69.506 3.2681 64.5033 6.3808 60.9948
+\c 5.6004 59.9553 4.8317 58.8768 4.0853 57.7073
+\c 3.9921 57.5774 -5.2898 42.9329 4.4381 26.3523
+\c 4.5119 26.2483 10.3945 17.3603 21.0743 16.5676
+\c 21.1111 14.2287 20.3522 14.5015 17.0873 14.3456
+\c 13.7319 14.1897 8.3045 12.7473 4.2325 8.0434
+\c 0.1615 3.3265 0.64 0.2989 0.64 0.2989
+\c 3.1969 6.1203 5.9901 6.679 8.1448 4.7689
+\c 10.3008 2.8457 11.2574 3.0926 13.5714 8.1993
+\c 15.8892 13.3061 18.1233 13.6309 19.4017 12.2665
+\c 20.6784 10.9151 19.0819 9.3948 17.6442 6.6011
+\c 16.209 3.8073 19.5618 1.7282 19.5618 1.7282
+\c 20.2012 5.1717 22.4345 6.0423 22.4345 6.0423
+\c 22.4345 6.0423 22.9141 4.0412 25.5486 3.1706
+\c 28.1832 2.287 28.3429 0.7797 28.3429 0.7797
+\c 36.1673 8.992 27.6234 10.8372 25.3087 12.2665
+\c 23.3635 13.475 24.121 15.8659 24.4141 16.5936
+\c 25.013 16.6456 25.6197 16.7106 26.244 16.8145
+\o
+\m 18.825 64.3733
+\c 17.2115 62.801 14.0974 63.3858 11.8692 65.6727
+\c 11.7919 65.7637 11.7308 65.8547 11.6573 65.9326
+\c 13.7294 67.9727 15.8505 69.662 17.9805 71.0524
+\c 19.962 68.7914 20.3661 65.8807 18.825 64.3733
+\o
+\m 10.7595 72.6636
+\c 12.3158 74.171 15.2516 73.6772 17.4551 71.5981
+\c 15.3449 70.2077 13.2384 68.5185 11.1788 66.5044
+\c 9.5636 68.6614 9.3325 71.2733 10.7595 72.6636
+\o
+\s
+\m 78.9619 56.6288
+\c 78.5476 56.6288 78.1612 56.5118 77.8439 56.2909
+\c 77.0357 57.0446 69.0513 64.5682 66.2875 67.1281
+\c 64.3384 68.9343 64.2572 70.7925 64.4126 71.819
+\c 65.2368 72.4687 66.2723 71.897 69.5894 70.0648
+\l 70.2415 69.701
+\l 73.2396 67.9727
+\c 77.7741 65.3089 83.9515 61.6965 89.6681 60.9818
+\c 97.9763 59.0977 102.7076 64.5033 104.4449 67.1021
+\c 105.5702 68.2326 106.3278 69.3891 106.6877 70.5586
+\c 107.1607 72.0659 106.9567 73.5992 106.0861 75.0806
+\c 104.836 77.2246 103.178 78.0043 101.7226 78.2382
+\c 100.8415 78.563 99.6334 78.7839 98.0091 78.55
+\c 94.22 78.0173 94.0677 74.5348 95.659 73.6252
+\c 97.2503 72.7156 99.1486 73.5472 99.7553 75.2105
+\c 100.212 76.4709 100.457 77.4715 101.7889 77.4975
+\c 103.0181 77.2506 104.3864 76.5229 105.452 74.7167
+\c 106.2108 73.4173 106.3927 72.0789 105.986 70.7665
+\c 105.5741 69.4411 104.5463 68.0897 102.9727 66.7513
+\c 102.1059 66.4784 101.2639 66.6213 100.2107 66.8682
+\c 98.3136 67.336 98.9203 66.4134 95.357 63.5417
+\c 94.0385 62.4762 92.7309 61.9044 91.6084 61.5926
+\c 89.4601 61.5926 87.1874 62.0993 84.926 62.905
+\c 86.2457 63.1649 88.554 63.9705 89.139 66.4134
+\c 89.9742 69.9089 87.5477 68.9213 87.6252 72.4817
+\c 87.6987 76.0551 84.6641 77.7184 80.7232 74.6907
+\c 77.2387 72.0009 79.0736 66.6083 74.9951 67.8038
+\c 74.5205 68.0767 74.0561 68.3496 73.6121 68.6094
+\l 70.5969 70.3507
+\l 69.9446 70.7145
+\c 64.8155 73.5342 64.5084 73.7032 62.605 70.5846
+\l 62.0974 69.7529
+\l 60.8183 67.8168
+\c 59.1711 65.3869 57.9782 63.6327 60.3132 62.0214
+\l 60.7117 61.7615
+\c 63.1303 60.1242 68.4187 56.5378 72.994 45.9475
+\c 73.0106 44.5701 72.6031 42.738 70.409 42.2832
+\c 66.7862 41.5425 66.7037 44.0894 63.0821 45.4148
+\c 59.4605 46.7272 56.0064 42.8679 56.0064 42.8679
+\c 56.0064 42.8679 61.1887 39.0736 60.1203 37.2674
+\c 59.0512 35.4482 57.4841 38.3329 54.2767 35.4482
+\c 51.0688 32.5765 50.2453 27.7167 50.2453 27.7167
+\c 50.2453 27.7167 52.7959 33.5641 55.9226 30.6793
+\c 59.0512 27.7946 62.3411 27.7167 62.3411 27.7167
+\c 62.3411 27.7167 61.5993 25.3257 61.4381 22.7009
+\c 61.4381 22.7009 67.4467 21.6224 71.7238 25.8195
+\c 74.7197 28.7562 76.1765 32.4985 76.193 36.1239
+\c 77.0458 31.7838 76.8911 28.0285 76.094 24.702
+\c 75.023 22.0642 72.7631 18.6077 68.0259 17.0354
+\c 59.8566 14.3066 57.5876 14.1637 55.3949 11.279
+\c 55.3949 11.279 58.1192 10.7592 58.0443 8.0304
+\c 57.9782 5.6525 53.7627 2.6508 48.7197 2.0271
+\c 46.439 2.0791 44.3484 2.6768 42.6834 4.0152
+\c 38.8905 7.0429 38.6598 11.5129 40.6253 14.0857
+\c 40.695 14.1767 40.7686 14.2676 40.8421 14.3456
+\c 41.4488 14.7484 42.3211 15.1123 43.4512 14.9693
+\c 45.7989 14.6835 44.3902 11.4609 46.6261 10.8242
+\c 48.8697 10.1615 50.9989 13.1631 48.7961 16.1258
+\c 46.9763 18.5687 42.5476 17.7111 40.6544 15.2032
+\c 40.4266 14.9953 40.2215 14.7744 40.0403 14.5405
+\c 37.8601 11.6818 38.0809 6.757 42.2254 3.4435
+\c 44.0629 1.9751 46.3851 1.3384 48.9104 1.3124
+\c 51.7447 0.8576 56.8819 0.7147 63.412 3.4954
+\c 71.8442 7.0818 75.2433 15.2682 76.4963 23.2856
+\c 77.9619 28.2624 78.0269 34.1488 75.4812 41.5555
+\c 70.5056 56.018 63.9291 60.4621 61.1202 62.3722
+\l 60.7294 62.6321
+\c 60.1533 63.0219 59.8576 63.4118 59.7777 63.8536
+\c 60.1051 64.7112 61.2116 65.7897 64.9373 64.3214
+\c 70.0944 62.2813 76.985 56.9536 77.8351 56.2909
+\c 77.3249 55.9401 76.9873 55.3683 76.9873 54.7056
+\c 76.9873 53.6531 77.8706 52.7825 78.9619 52.7825
+\c 80.0532 52.7825 80.9364 53.6531 80.9364 54.7056
+\c 80.9364 55.7712 80.0532 56.6288 78.9619 56.6288
+\o
+\s
+\m 186.5358 38.3719
+\c 186.9101 38.216 187.2375 37.9951 187.5065 37.7222
+\c 186.4917 42.9719 180.9041 44.1154 180.9041 44.1154
+\c 177.6452 44.843 175.0048 42.2312 173.04 39.8143
+\c 171.4418 37.8262 168.279 38.138 167.2004 38.2939
+\c 167.3512 38.8137 167.4356 39.3465 167.4356 39.9052
+\c 167.4356 41.7634 166.5416 43.4397 165.137 44.5442
+\c 166.9172 47.6368 170.9896 46.8571 170.9896 46.8571
+\c 174.6903 45.9345 178.3625 47.6108 180.1297 50.9633
+\c 181.3343 53.2503 180.9782 57.4864 178.1949 60.3191
+\c 178.4547 59.2926 178.2052 58.2011 177.4204 57.4734
+\c 176.2392 56.3689 174.3148 56.5118 173.1219 57.7983
+\c 171.9277 59.0717 171.9186 61.0078 173.1024 62.1123
+\c 173.3974 62.3852 173.7417 62.5801 174.1043 62.6971
+\c 168.9404 64.0745 165.4761 59.5395 165.4761 59.5395
+\c 163.4009 56.9276 164.5938 53.4192 165.9218 50.5995
+\c 166.9614 48.3775 165.4761 45.7786 164.8095 44.791
+\c 163.7414 45.5317 162.4277 45.9735 161.0022 45.9735
+\c 159.7574 45.9735 158.5996 45.6357 157.6146 45.0639
+\c 155.4654 48.0396 158.0252 51.4441 158.0252 51.4441
+\c 160.4642 54.3808 160.5669 58.409 158.3202 61.4626
+\c 156.7947 63.5547 152.8275 65.075 149.0605 63.8146
+\c 150.0975 63.6067 150.9707 62.905 151.2851 61.8784
+\c 151.7568 60.3321 150.7875 58.6689 149.1151 58.1491
+\c 147.444 57.6293 145.7028 58.474 145.2285 60.0203
+\c 145.1103 60.4101 145.0817 60.7999 145.1337 61.1768
+\c 141.6382 57.1356 144.1981 52.0418 144.1981 52.0418
+\c 145.6405 49.0272 149.3178 48.5724 152.4455 48.5334
+\c 155.0197 48.4944 156.7518 45.7526 157.2638 44.843
+\c 155.6343 43.7385 154.5688 41.9323 154.5688 39.9052
+\c 154.5688 39.3465 154.6545 38.8007 154.8027 38.2939
+\c 151.4281 37.2934 149.0034 40.6069 149.0034 40.6069
+\c 146.923 43.8035 143.0936 45.0769 139.5098 43.8295
+\c 137.0734 42.9849 134.4485 39.6453 134.5499 35.6691
+\c 135.0606 36.5917 135.9871 37.2284 137.0604 37.2284
+\c 138.6743 37.2284 139.9867 35.812 139.9867 34.0578
+\c 139.9867 32.3036 138.6743 30.8872 137.0604 30.8872
+\c 136.6537 30.8872 136.269 30.9782 135.9208 31.1341
+\c 138.7613 26.6121 144.38 27.5607 144.38 27.5607
+\c 147.6831 28.0675 149.2061 31.446 150.1624 34.4217
+\c 150.9083 36.7476 153.7709 37.6312 154.9326 37.9041
+\c 155.7538 35.6821 157.9005 34.0448 160.4772 33.8499
+\c 161.0867 30.3415 157.4587 28.3404 157.4587 28.3404
+\c 154.0334 26.6641 152.2896 23.0257 153.0861 19.3224
+\c 153.6267 16.7885 156.6167 13.7739 160.5682 13.384
+\c 159.7119 14.0078 159.2038 14.9953 159.3364 16.0608
+\c 159.5378 17.6721 161.1049 18.7896 162.8422 18.5687
+\c 164.5821 18.3608 165.8218 16.8795 165.6217 15.2812
+\c 165.5736 14.8784 165.4371 14.5015 165.2344 14.1767
+\c 170.0787 16.4377 169.8305 22.1291 169.8305 22.1291
+\c 169.7499 25.4687 166.5819 27.3918 163.7492 28.7172
+\c 161.561 29.7308 161.0217 32.6155 160.8879 33.8239
+\c 160.9268 33.8239 160.9619 33.8239 161.0022 33.8239
+\c 163.8025 33.8239 166.1869 35.5262 167.0653 37.8911
+\c 170.7778 37.7742 171.8836 33.616 171.8836 33.616
+\c 172.6749 29.8867 175.7818 27.3138 179.5761 27.1839
+\c 182.1542 27.0929 185.8082 29.263 187.1492 33.0053
+\c 186.3383 32.3296 185.2455 32.0697 184.2476 32.4595
+\c 182.7389 33.0443 182.0307 34.8375 182.661 36.4748
+\c 183.2912 38.099 185.0272 38.9566 186.5358 38.3719
+\o
+\m 161.0022 34.5646
+\c 157.8615 34.5646 155.3016 36.9555 155.3016 39.9052
+\c 155.3016 42.8549 157.8615 45.2458 161.0022 45.2458
+\c 164.1442 45.2458 166.7015 42.8549 166.7015 39.9052
+\c 166.7015 36.9555 164.1442 34.5646 161.0022 34.5646
+\o
+\s
+\m 161.305 41.8154
+\c 160.0861 41.8154 159.1025 40.8278 159.1025 39.6064
+\c 159.1025 38.3849 160.0861 37.3973 161.305 37.3973
+\c 162.5225 37.3973 163.5075 38.3849 163.5075 39.6064
+\c 163.5075 40.8278 162.5225 41.8154 161.305 41.8154
+\o
+\s
+\m 198.8336 42.9849
+\c 198.8154 43.3617 198.8063 43.7515 198.7764 44.1283
+\c 198.4268 48.8582 197.2937 53.3153 195.4655 57.3694
+\c 194.8391 59.4095 193.8178 62.4242 192.3507 65.8157
+\c 189.6609 72.0399 190.0872 74.6647 191.714 75.7952
+\c 193.3396 76.9257 196.3114 75.7952 196.6687 72.4687
+\c 196.6687 72.4687 199.851 75.2235 197.0897 78.1992
+\c 194.3311 81.1748 188.9541 79.4076 188.9541 73.3913
+\c 188.9541 73.3913 188.5785 70.4286 191.9505 63.4897
+\c 190.1768 65.9586 188.0886 68.1806 185.712 70.1038
+\c 168.7182 83.9036 147.5272 79.8234 137.2527 75.0676
+\c 135.5193 74.4438 133.4311 73.5732 131.0908 72.3648
+\c 124.5301 68.9733 120.0068 69.0512 118.7996 71.3122
+\c 117.5937 73.5732 119.8547 76.445 123.1748 74.7817
+\c 123.1748 74.7817 122.7226 79.3037 118.3487 78.8489
+\c 113.9723 78.4071 112.617 72.2218 116.614 69.8049
+\c 120.6097 67.388 125.8879 68.5964 129.3574 70.5586
+\c 130.827 71.3902 132.4136 72.2608 134.1562 73.1314
+\c 131.3338 71.0264 126.791 66.9072 123.6205 60.4621
+\c 120.5993 60.9039 117.699 59.4095 116.7647 56.7457
+\c 115.7642 53.9 117.3456 50.7164 120.3264 49.2741
+\c 120.2212 48.4294 120.138 47.5718 120.0886 46.6752
+\c 120.0886 46.6492 120.0886 46.0255 120.1783 45.0249
+\c 119.3467 44.5831 114.9 41.7504 114.9 30.9132
+\c 114.9 26.1573 114.7428 21.2195 113.8709 16.7885
+\c 108.2197 20.9597 104.3786 24.741 102.8297 26.3523
+\c 103.1052 29.0031 102.3359 29.5878 102.3359 29.5878
+\c 104.6125 29.5878 105.3987 29.5878 107.1477 31.0692
+\c 108.8993 32.5505 110.8225 30.4584 110.8225 30.4584
+\c 108.8097 34.1358 105.3987 32.0307 102.7751 32.1217
+\c 100.1493 32.2127 95.0753 37.4623 92.2759 39.7363
+\c 91.4434 40.412 90.908 40.7758 90.5634 40.9708
+\c 90.5031 41.4905 90.474 42.0493 90.4905 42.712
+\l 90.4994 42.8029
+\l 90.5984 42.8159
+\c 94.5449 42.8159 94.9611 41.3606 102.3385 40.6329
+\c 109.7141 39.9052 111.8958 43.7515 110.6483 47.4938
+\c 109.4035 51.2362 105.7677 49.0532 106.6006 47.182
+\c 107.4297 45.3108 109.4035 46.1424 109.4035 46.1424
+\c 110.2351 43.8555 108.0508 42.608 108.0508 42.608
+\c 104.8308 41.0487 99.2197 43.3357 95.1685 47.182
+\c 91.1186 51.0283 88.1035 51.0283 85.7166 50.8204
+\c 83.3285 50.6125 81.6636 51.9639 81.6636 51.9639
+\l 81.5709 51.8599
+\c 81.5709 51.8599 82.8831 50.1707 82.614 47.7797
+\c 82.3475 45.4018 82.2739 42.3871 86.0174 38.242
+\c 89.7583 34.0968 91.9028 28.4313 90.2659 25.2478
+\c 90.2659 25.2478 88.9691 23.1037 86.7026 23.9873
+\c 86.7026 23.9873 87.5832 25.9364 85.7331 26.8201
+\c 83.8855 27.6907 81.6128 24.1173 85.322 22.7789
+\c 89.0312 21.4405 92.927 23.5195 92.3825 30.9132
+\c 91.9688 36.5137 91.0427 38.138 90.6592 40.2951
+\c 92.0823 39.0476 95.5549 35.942 98.1385 33.0833
+\c 101.4601 29.4059 100.7614 27.6517 100.7614 23.6365
+\c 100.7614 19.6083 103.1234 19.1665 103.1234 19.1665
+\c 103.1234 19.1665 101.8136 20.9207 102.5984 24.8579
+\c 102.64 25.0528 102.6725 25.2478 102.705 25.4297
+\c 104.5086 23.5845 108.3146 19.9461 113.7111 15.9959
+\c 112.3363 9.7327 109.4126 4.587 103.2234 2.5599
+\c 98.0143 0.8576 93.2301 1.4294 90.1036 4.1452
+\c 87.8036 6.1463 86.7444 9.083 87.2686 12.0067
+\c 87.9234 15.645 90.6644 17.4642 93.0361 17.3863
+\c 93.1819 17.3863 93.3304 17.3603 93.4791 17.3343
+\c 95.532 16.4117 96.2693 14.4626 94.8736 13.371
+\c 93.121 11.9937 92.8724 8.4462 96.036 8.3813
+\c 99.1956 8.3033 101.516 12.6953 98.5624 15.8919
+\c 96.8968 17.6981 94.9103 18.0879 93.4942 18.0749
+\c 93.3494 18.0879 93.2048 18.1139 93.0614 18.1269
+\c 90.3724 18.2179 87.2736 16.1778 86.5452 12.1366
+\c 85.9743 8.953 87.1265 5.7694 89.6189 3.5994
+\c 92.9479 0.7017 97.9889 0.065 103.4495 1.8582
+\c 109.7063 3.9113 112.8002 9.057 114.2997 15.5671
+\c 116.627 13.8778 119.231 12.1496 122.0884 10.4993
+\c 120.0834 10.1875 117.7874 9.4988 117.3495 7.9395
+\c 116.5503 5.0677 120.8852 4.535 123.154 4.8728
+\c 125.4215 5.2107 129.2236 6.6011 129.0897 0
+\c 129.0897 0 130.6724 2.1181 128.9156 6.9259
+\c 129.8369 6.4971 130.7699 6.0813 131.7275 5.6785
+\c 146.641 -0.5977 167.7995 -1.2474 182.2231 8.1344
+\c 184.0007 8.6022 186.8867 9.2129 190.0677 9.2779
+\c 188.624 8.7191 187.4129 7.7705 186.9075 6.5231
+\c 185.6743 3.4695 188.2004 1.5203 190.3172 2.9367
+\c 192.4339 4.3531 192.7276 6.9389 195.7825 6.757
+\c 198.8375 6.5751 198.0773 1.5853 198.0773 1.5853
+\c 198.8401 3.7553 199.1909 6.757 196.3712 8.8101
+\c 195.3108 9.5897 193.8841 9.8886 192.4534 9.7976
+\c 190.8356 9.9925 187.9327 10.0835 183.8058 9.2259
+\c 185.621 10.5513 187.3181 12.0326 188.8605 13.7219
+\c 189.7857 14.7354 190.6472 15.801 191.4541 16.9315
+\c 191.9609 16.6976 192.521 16.5546 193.12 16.5546
+\c 195.2991 16.5546 197.0676 18.3218 197.0676 20.5049
+\c 197.0676 21.8563 196.379 23.0647 195.3303 23.7664
+\c 197.2769 28.1974 198.4658 33.0963 198.7933 38.112
+\c 199.4872 38.8917 200.9503 41.0097 198.8336 42.9849
+\o
+\m 119.5429 50.2096
+\c 117.2091 51.8859 116.2982 54.6147 117.5093 56.2909
+\c 118.4345 57.5774 120.3355 57.8762 122.2249 57.2005
+\c 121.3894 54.9265 120.7435 52.4316 120.3758 49.6899
+\c 120.0938 49.8328 119.8145 50.0147 119.5429 50.2096
+\o
+\m 123.9336 56.2909
+\c 126.2687 54.6017 127.1796 51.8859 125.9685 50.1966
+\c 125.0134 48.8712 123.0227 48.6113 121.0788 49.378
+\c 121.427 52.1328 122.0664 54.6407 122.898 56.9017
+\c 123.2501 56.7327 123.5971 56.5378 123.9336 56.2909
+\o
+\m 193.12 24.4551
+\c 190.9383 24.4551 189.1685 22.6749 189.1685 20.5049
+\c 189.1685 19.1795 189.8208 18.023 190.8187 17.2953
+\c 190.0391 16.2168 189.2074 15.1902 188.3186 14.2157
+\c 185.5808 11.227 182.3426 8.8361 178.7861 6.9649
+\c 182.4128 11.4219 180.2765 17.3603 176.8603 17.1004
+\c 173.1843 16.8275 173.2765 12.6044 173.2765 12.6044
+\c 173.2765 12.6044 177.3164 16.6456 178.2351 11.7728
+\c 178.7692 8.953 177.9168 7.1598 177.1007 6.1333
+\c 171.2131 3.4045 164.5561 2.0271 157.8277 1.7802
+\c 160.9268 3.8333 160.2992 7.5236 158.3943 8.953
+\c 156.3152 10.5123 154.2868 8.2773 154.9105 6.9259
+\c 155.5342 5.5745 157.2508 6.2502 157.2508 6.2502
+\c 157.2508 6.2502 158.7074 5.2107 157.5639 3.2356
+\c 157.126 2.4689 156.4451 2.0141 155.772 1.7412
+\c 147.3804 1.7152 139.0017 3.4045 132.0121 6.3542
+\c 131.7717 6.4581 131.5352 6.5621 131.2935 6.666
+\c 135.3101 6.3152 143.2248 6.6141 145.9679 13.7999
+\c 145.9679 13.7999 143.9005 9.4728 138.6963 9.6027
+\c 133.4948 9.7457 133.1621 14.2806 129.8252 17.945
+\c 126.4896 21.6094 122.5549 19.2184 123.0201 15.9439
+\c 123.0201 15.9439 123.0201 13.0722 125.2226 10.7462
+\c 125.2226 10.7462 124.4092 10.7462 123.3112 10.6423
+\c 120.0315 12.5004 117.0714 14.4496 114.4725 16.3337
+\c 115.3964 20.7907 115.6342 25.8065 115.6342 30.9132
+\c 115.6342 40.36 119.153 43.4656 120.2628 44.2063
+\c 120.6903 40.6329 122.1703 33.8369 127.3576 28.7042
+\c 132.1486 23.9743 138.964 21.6873 147.6143 21.8952
+\c 147.8183 21.9082 147.9807 22.0772 147.9729 22.2721
+\c 147.969 22.48 147.8001 22.6359 147.5974 22.6359
+\c 139.155 22.428 132.5215 24.637 127.88 29.224
+\c 120.7695 36.2539 120.8228 46.5453 120.8228 46.6492
+\c 120.8644 47.4419 120.9385 48.2215 121.0281 48.9752
+\c 121.0554 48.9752 121.0788 48.9622 121.1035 48.9492
+\c 124.5807 47.7407 128.2763 49.2481 129.3574 52.3277
+\c 130.4385 55.4203 128.4946 58.9028 125.0173 60.1242
+\c 124.7951 60.2022 124.5729 60.2412 124.3507 60.2931
+\c 127.8631 67.349 133.0478 71.5072 135.5699 73.2354
+\c 133.4857 71.1693 132.1979 67.9078 132.4487 64.1524
+\c 132.8243 58.4999 137.8777 58.344 139.0836 60.605
+\c 140.2907 62.866 138.4053 64.6072 138.4053 64.6072
+\c 138.556 62.5671 134.2588 60.9039 133.9561 66.4134
+\c 133.73 70.5586 136.8473 73.5602 138.3923 74.7687
+\c 144.0214 77.2246 152.5391 79.3557 161.7598 78.6929
+\c 152.5859 76.4969 151.5944 69.1422 151.5944 69.1422
+\c 151.5944 69.1422 153.2226 73.8071 156.5465 73.5992
+\c 159.8743 73.3913 161.1451 70.6235 164.4717 71.767
+\c 167.7969 72.8975 166.7379 76.7828 166.7379 76.7828
+\c 166.6638 77.4585 167.2017 77.7444 167.9359 77.8093
+\c 173.8028 76.5489 179.7503 74.002 185.2481 69.545
+\c 189.4959 66.0886 192.7938 61.6835 194.9964 56.6288
+\c 193.4747 58.396 190.4419 61.0208 186.263 60.1632
+\c 186.263 60.1632 183.1508 59.2406 183.4354 55.6282
+\c 183.7187 52.0158 187.6105 52.5226 187.821 54.6407
+\c 188.0367 56.7587 185.2026 57.1875 186.4761 58.8898
+\c 187.6403 60.4361 192.5833 59.3186 195.6942 54.9005
+\c 196.9611 51.5221 197.7615 47.8837 198.0435 44.0764
+\c 198.0643 43.7905 198.0695 43.5046 198.0851 43.2188
+\c 197.7836 43.1798 197.399 43.0368 197.004 42.595
+\c 196.1606 41.6724 195.6799 40.9578 192.3923 40.5939
+\c 192.3923 40.5939 196.2022 39.7883 196.9221 38.8267
+\c 197.3132 38.3069 197.7381 38.0471 198.0461 37.9171
+\c 197.707 33.0963 196.5505 28.3924 194.6832 24.1173
+\c 194.2024 24.3382 193.6762 24.4551 193.12 24.4551
+\o
+\s
+\m 416.5698 68.8693
+\c 416.5698 68.8693 417.6431 67.6998 418.3591 68.5964
+\c 419.0764 69.493 417.9108 70.2077 414.3348 70.3896
+\c 410.7614 70.5586 405.0348 70.5586 399.7592 64.7502
+\c 399.7592 64.7502 396.5405 61.0858 394.3094 58.7598
+\c 392.0692 56.4339 391.9834 56.3429 390.1915 56.4339
+\c 388.4061 56.5248 385.5435 55.9011 384.9185 53.2243
+\c 384.9185 53.2243 386.4375 55.0045 388.3126 53.7571
+\c 390.1915 52.5096 392.2485 52.4966 393.3231 55.2774
+\c 394.3965 58.0451 397.3461 59.8383 397.3461 59.8383
+\c 397.3461 59.8383 396.4521 55.0045 400.7454 52.4187
+\c 405.0374 49.8198 409.5971 52.2367 409.8648 56.6158
+\c 410.1337 60.9948 406.5551 61.9824 405.5728 61.2677
+\c 405.5728 61.2677 407.3608 57.7853 404.5891 56.2519
+\c 401.8174 54.7446 397.0785 60.7349 401.9058 65.114
+\c 406.7345 69.493 411.3864 70.1168 416.5698 68.8693
+\o
+\s
+\m 425.8775 14.3456
+\c 422.6121 14.5015 421.8532 14.2287 421.887 16.5676
+\c 432.5696 17.3603 438.452 26.2483 438.5261 26.3523
+\c 448.2536 42.9329 438.9718 57.5774 438.8782 57.7073
+\c 438.1324 58.8768 437.3605 59.9553 436.5835 60.9948
+\c 439.693 64.5033 439.9711 69.506 437.0915 72.5207
+\c 434.0366 75.7173 428.5881 75.4574 424.9121 71.9619
+\c 423.7348 72.7156 422.5549 73.3653 421.388 73.9501
+\c 423.1046 73.9241 424.5391 75.1975 425.1096 76.8348
+\c 425.9321 79.1997 424.1324 80.3822 422.846 79.3037
+\c 421.5609 78.2122 422.898 76.9387 422.898 76.9387
+\c 422.6693 74.7037 421.1515 74.4698 420.0743 74.5738
+\c 415.1664 76.7958 410.482 77.6794 406.6578 77.9653
+\c 401.6056 78.511 394.7083 78.2122 387.4121 74.8207
+\c 387.4121 74.8207 386.1646 74.028 384.9198 74.6907
+\c 383.6736 75.3404 381.6413 75.5354 382.5561 73.9631
+\c 382.5561 73.9631 387.0859 67.7388 388.527 66.7513
+\c 389.9706 65.7767 390.0993 67.349 390.0356 68.6614
+\c 389.9706 69.9738 391.283 71.4162 395.8076 73.8981
+\c 398.96 75.6393 402.4737 77.2116 407.4413 77.1596
+\c 412.2531 76.7048 418.3045 75.2365 424.3897 71.4162
+\c 421.1801 67.9078 420.8631 62.827 423.7738 59.7864
+\c 426.8339 56.5898 432.2967 56.8497 435.9727 60.3581
+\c 436.0065 60.3971 436.0364 60.4231 436.0676 60.4621
+\c 436.8135 59.4615 437.5476 58.435 438.261 57.3175
+\c 438.3195 57.2265 441.8825 51.587 442.2087 43.4267
+\c 442.0657 42.8679 441.8305 42.3741 441.4433 42.0493
+\c 440.0867 40.9318 438.0128 41.6465 437.8504 40.6069
+\c 437.6932 39.5674 439.129 40.1261 440.5636 39.0086
+\c 441.4797 38.3069 441.7448 37.8391 441.7383 36.8646
+\c 441.1431 33.668 439.9581 30.2505 437.9011 26.7421
+\c 437.8816 26.7161 437.3527 25.9235 436.3496 24.806
+\c 437.8296 27.8986 437.3423 31.6149 435.2165 33.2652
+\c 432.0238 35.7471 429.1521 33.4211 429.7875 31.7449
+\c 430.4255 30.0686 431.8666 30.4714 432.2655 31.2771
+\c 432.6631 32.0697 435.0592 33.1872 436.0949 28.7952
+\c 436.6445 26.4692 435.6232 24.4161 434.5447 22.9868
+\c 431.0999 19.8682 425.0862 16.1518 416.8414 17.5422
+\c 411.9607 18.3608 407.7233 21.1806 404.9672 25.2218
+\c 406.4109 26.0404 407.34 27.0929 407.0528 27.6257
+\c 406.7617 28.1715 405.3142 27.9765 403.79 27.1969
+\c 403.3183 28.1065 402.9103 29.0551 402.5854 30.0556
+\c 400.6753 35.942 401.9084 41.8674 405.8781 45.9215
+\c 409.9128 50.0277 414.7272 51.3012 419.0868 49.417
+\c 421.2789 48.4684 423.0019 46.8052 424.0648 44.804
+\c 424.6379 43.0108 425.3279 40.0222 423.9596 38.9307
+\c 421.965 37.3454 421.1671 40.0482 419.0933 40.6849
+\c 417.0168 41.3216 413.7422 40.0482 414.3829 35.825
+\c 415.0196 31.5889 420.2095 30.0686 423.7218 33.3431
+\c 426.1686 35.6301 426.7507 39.0736 425.7489 42.2702
+\c 425.0693 45.6487 422.7238 48.6373 419.3804 50.0927
+\c 414.7909 52.0808 409.549 50.7034 405.3519 46.4283
+\c 401.1872 42.1792 399.8917 35.981 401.8889 29.8347
+\c 402.2268 28.7822 402.6556 27.7946 403.1481 26.833
+\c 401.8785 26.0534 401.1002 25.1048 401.3652 24.611
+\c 401.6368 24.0913 402.9038 24.2342 404.3071 24.8839
+\c 407.1737 20.6348 411.6047 17.6851 416.7205 16.8145
+\c 417.3442 16.7106 417.9511 16.6456 418.5488 16.5936
+\c 418.8425 15.8659 419.6 13.475 417.6548 12.2665
+\c 415.3405 10.8372 406.7968 8.992 414.6206 0.7797
+\c 414.6206 0.7797 414.7805 2.287 417.4157 3.1706
+\c 420.047 4.0412 420.5291 6.0423 420.5291 6.0423
+\c 420.5291 6.0423 422.7628 5.1717 423.4021 1.7282
+\c 423.4021 1.7282 426.752 3.8073 425.3175 6.6011
+\c 423.8816 9.3948 422.2833 10.9151 423.562 12.2665
+\c 424.838 13.6309 427.0743 13.3061 429.3912 8.1993
+\c 431.7067 3.0926 432.6631 2.8457 434.8175 4.7689
+\c 436.9733 6.679 439.7657 6.1203 442.323 0.2989
+\c 442.323 0.2989 442.8012 3.3265 438.7288 8.0434
+\c 434.659 12.7473 429.2287 14.1897 425.8775 14.3456
+\o
+\m 432.2031 72.6636
+\c 433.6312 71.2733 433.4012 68.6614 431.7834 66.5044
+\c 429.7251 68.5185 427.6188 70.2077 425.5059 71.5981
+\c 427.711 73.6772 430.6477 74.171 432.2031 72.6636
+\o
+\m 424.1376 64.3733
+\c 422.5978 65.8807 423.0019 68.7914 424.9835 71.0524
+\c 427.1107 69.662 429.2352 67.9727 431.3065 65.9326
+\c 431.2337 65.8547 431.1727 65.7637 431.0921 65.6727
+\c 428.8662 63.3858 425.7528 62.801 424.1376 64.3733
+\o
+\s
+\m 402.3099 15.2032
+\c 400.4141 17.7111 395.9869 18.5687 394.1652 16.1258
+\c 391.9626 13.1631 394.095 10.1615 396.3352 10.8242
+\c 398.5715 11.4609 397.1655 14.6835 399.5136 14.9693
+\c 400.6415 15.1123 401.5108 14.7484 402.1189 14.3456
+\c 402.1956 14.2676 402.2696 14.1767 402.3372 14.0857
+\c 404.3019 11.5129 404.0706 7.0429 400.2789 4.0152
+\c 398.6144 2.6768 396.5236 2.0791 394.2444 2.0271
+\c 389.2014 2.6508 384.986 5.6525 384.9198 8.0304
+\c 384.8444 10.7592 387.5693 11.279 387.5693 11.279
+\c 385.3733 14.1637 383.1071 14.3066 374.9376 17.0354
+\c 370.2012 18.6077 367.9376 22.0642 366.8669 24.702
+\c 366.073 28.0285 365.9209 31.7838 366.7708 36.1239
+\c 366.7877 32.4985 368.2443 28.7562 371.2408 25.8195
+\c 375.5185 21.6224 381.5244 22.7009 381.5244 22.7009
+\c 381.3633 25.3257 380.6213 27.7167 380.6213 27.7167
+\c 380.6213 27.7167 383.914 27.7946 387.0391 30.6793
+\c 390.1681 33.5641 392.7189 27.7167 392.7189 27.7167
+\c 392.7189 27.7167 391.8951 32.5765 388.6868 35.4482
+\c 385.4772 38.3329 383.914 35.4482 382.8433 37.2674
+\c 381.7726 39.0736 386.9599 42.8679 386.9599 42.8679
+\c 386.9599 42.8679 383.5008 46.7272 379.8819 45.4148
+\c 376.2604 44.0894 376.176 41.5425 372.5571 42.2832
+\c 370.3598 42.738 369.953 44.5701 369.9699 45.9475
+\c 374.5439 56.5378 379.8312 60.1242 382.2547 61.7615
+\l 382.651 62.0214
+\c 384.9834 63.6327 383.7932 65.3869 382.1429 67.8168
+\l 380.8669 69.7529
+\l 380.3614 70.5846
+\c 378.4539 73.7032 378.1485 73.5342 373.0197 70.7145
+\l 372.3674 70.3507
+\l 369.3527 68.6094
+\c 368.9083 68.3496 368.4431 68.0767 367.9714 67.8038
+\c 363.8899 66.6083 365.7234 72.0009 362.241 74.6907
+\c 358.2972 77.7184 355.2657 76.0551 355.3397 72.4817
+\c 355.4164 68.9213 352.9891 69.9089 353.822 66.4134
+\c 354.4107 63.9705 356.7158 63.1649 358.036 62.905
+\c 355.7764 62.0993 353.505 61.5926 351.3557 61.5926
+\c 350.2304 61.9044 348.9245 62.4762 347.6069 63.5417
+\c 344.0413 66.4134 344.6494 67.336 342.7549 66.8682
+\c 341.6997 66.6213 340.8564 66.4784 339.991 66.7513
+\c 338.4174 68.0897 337.3895 69.4411 336.9789 70.7665
+\c 336.5709 72.0789 336.7489 73.4173 337.5104 74.7167
+\c 338.572 76.5229 339.9429 77.2506 341.1748 77.4975
+\c 342.5054 77.4715 342.7523 76.4709 343.2084 75.2105
+\c 343.8165 73.5472 345.711 72.7156 347.3028 73.6252
+\c 348.8959 74.5348 348.7439 78.0173 344.9522 78.55
+\c 343.3305 78.7839 342.1207 78.563 341.2397 78.2382
+\c 339.7844 78.0043 338.1263 77.2246 336.8776 75.0806
+\c 336.0057 73.5992 335.803 72.0659 336.2759 70.5586
+\c 336.6359 69.3891 337.3921 68.2326 338.5187 67.1021
+\c 340.2548 64.5033 344.9886 59.0977 353.2932 60.9818
+\c 359.0132 61.6965 365.1868 65.3089 369.7217 67.9727
+\l 372.7195 69.701
+\l 373.3731 70.0648
+\c 376.6918 71.897 377.7275 72.4687 378.5487 71.819
+\c 378.7072 70.7925 378.6254 68.9343 376.6762 67.1281
+\c 373.9124 64.5682 365.9274 57.0446 365.1192 56.2909
+\c 364.8034 56.5118 364.4149 56.6288 363.9991 56.6288
+\c 362.9115 56.6288 362.0253 55.7712 362.0253 54.7056
+\c 362.0253 53.6531 362.9115 52.7825 363.9991 52.7825
+\c 365.088 52.7825 365.9742 53.6531 365.9742 54.7056
+\c 365.9742 55.3683 365.639 55.9401 365.127 56.2909
+\c 365.9794 56.9536 372.8689 62.2813 378.0263 64.3214
+\c 381.7505 65.7897 382.8563 64.7112 383.1863 63.8536
+\c 383.1071 63.4118 382.8095 63.0219 382.2352 62.6321
+\l 381.8427 62.3722
+\c 379.0334 60.4621 372.4557 56.018 367.4815 41.5555
+\c 364.9386 34.1488 364.9996 28.2624 366.4667 23.2856
+\c 367.7219 15.2682 371.1212 7.0818 379.5493 3.4954
+\c 386.0815 0.7147 391.2181 0.8576 394.0508 1.3124
+\c 396.5795 1.3384 398.9002 1.9751 400.7389 3.4435
+\c 404.8828 6.757 405.1011 11.6818 402.922 14.5405
+\c 402.7426 14.7744 402.5347 14.9953 402.3099 15.2032
+\o
+\s
+\m 361.3002 51.9639
+\c 361.3002 51.9639 359.6369 50.6125 357.2473 50.8204
+\c 354.8577 51.0283 351.8456 51.0283 347.794 47.182
+\c 343.7424 43.3357 338.1302 41.0487 334.9089 42.608
+\c 334.9089 42.608 332.7298 43.8555 333.5589 46.1424
+\c 333.5589 46.1424 335.5314 45.3108 336.3643 47.182
+\c 337.1959 49.0532 333.5589 51.2362 332.3127 47.4938
+\c 331.0666 43.7515 333.2496 39.9052 340.6251 40.6329
+\c 348.0006 41.3606 348.419 42.8159 352.3641 42.8159
+\l 352.4641 42.8029
+\l 352.4732 42.712
+\c 352.4901 42.0493 352.4589 41.4905 352.3992 40.9708
+\c 352.0561 40.7758 351.5208 40.412 350.6878 39.7363
+\c 347.8889 37.4623 342.8133 32.2127 340.1885 32.1217
+\c 337.5624 32.0307 334.1501 34.1358 332.1399 30.4584
+\c 332.1399 30.4584 334.0643 32.5505 335.8133 31.0692
+\c 337.5624 29.5878 338.3511 29.5878 340.6251 29.5878
+\c 340.6251 29.5878 339.8584 29.0031 340.1339 26.3523
+\c 338.5824 24.741 334.7426 20.9597 329.0927 16.7885
+\c 328.2208 21.2195 328.0623 26.1573 328.0623 30.9132
+\c 328.0623 41.7504 323.617 44.5831 322.7853 45.0249
+\c 322.8724 46.0255 322.8724 46.6492 322.8724 46.6752
+\c 322.8269 47.5718 322.7399 48.4294 322.6372 49.2741
+\c 325.6155 50.7164 327.1969 53.9 326.2015 56.7457
+\c 325.2633 59.4095 322.3617 60.9039 319.3432 60.4621
+\c 316.1726 66.9072 311.6285 71.0264 308.8075 73.1314
+\c 310.5513 72.2608 312.1366 71.3902 313.6062 70.5586
+\c 317.0757 68.5964 322.3513 67.388 326.3484 69.8049
+\c 330.3441 72.2218 328.9901 78.4071 324.6162 78.8489
+\c 320.2398 79.3037 319.7915 74.7817 319.7915 74.7817
+\c 323.105 76.445 325.3699 73.5732 324.1614 71.3122
+\c 322.9543 69.0512 318.4336 68.9733 311.8702 72.3648
+\c 309.5352 73.5732 307.4431 74.4438 305.7084 75.0676
+\c 295.4364 79.8234 274.2455 83.9036 257.2542 70.1038
+\c 254.875 68.1806 252.7881 65.9586 251.0157 63.4897
+\c 254.3825 70.4286 254.0083 73.3913 254.0083 73.3913
+\c 254.0083 79.4076 248.6313 81.1748 245.8713 78.1992
+\c 243.1126 75.2235 246.2975 72.4687 246.2975 72.4687
+\c 246.651 75.7952 249.6214 76.9257 251.2496 75.7952
+\c 252.8778 74.6647 253.3027 72.0399 250.6116 65.8157
+\c 249.1458 62.4242 248.1258 59.4095 247.4956 57.3694
+\c 245.6686 53.3153 244.5368 48.8582 244.1873 44.1283
+\c 244.1587 43.7515 244.1496 43.3617 244.1275 42.9849
+\c 242.012 41.0097 243.4778 38.8917 244.1717 38.112
+\c 244.4991 33.0963 245.6829 28.1974 247.6294 23.7664
+\c 246.5847 23.0647 245.8973 21.8563 245.8973 20.5049
+\c 245.8973 18.3218 247.6619 16.5546 249.8436 16.5546
+\c 250.4414 16.5546 251.0027 16.6976 251.5082 16.9315
+\c 252.3164 15.801 253.178 14.7354 254.1005 13.7219
+\c 255.643 12.0326 257.34 10.5513 259.1592 9.2259
+\c 255.0283 10.0835 252.1267 9.9925 250.5102 9.7976
+\c 249.0796 9.8886 247.6528 9.5897 246.5951 8.8101
+\c 243.7714 6.757 244.1249 3.7553 244.8863 1.5853
+\c 244.8863 1.5853 244.1249 6.5751 247.1785 6.757
+\c 250.2361 6.9389 250.531 4.3531 252.6478 2.9367
+\c 254.7619 1.5203 257.2893 3.4695 256.0562 6.5231
+\c 255.5481 7.7705 254.3383 8.7191 252.896 9.2779
+\c 256.0757 9.2129 258.963 8.6022 260.7419 8.1344
+\c 275.1642 -1.2474 296.3226 -0.5977 311.2387 5.6785
+\c 312.1925 6.0813 313.1255 6.4971 314.0454 6.9259
+\c 312.2912 2.1181 313.8713 0 313.8713 0
+\c 313.7375 6.6011 317.5409 5.2107 319.8097 4.8728
+\c 322.0772 4.535 326.412 5.0677 325.6142 7.9395
+\c 325.1763 9.4988 322.8776 10.1875 320.8765 10.4993
+\c 323.7352 12.1496 326.3367 13.8778 328.6626 15.5671
+\c 330.1635 9.057 333.2574 3.9113 339.5128 1.8582
+\c 344.9704 0.065 350.0121 0.7017 353.3412 3.5994
+\c 355.8387 5.7694 356.9874 8.953 356.417 12.1366
+\c 355.6906 16.1778 352.5889 18.2179 349.903 18.1269
+\c 349.7587 18.1139 349.6145 18.0879 349.4703 18.0749
+\c 348.0526 18.0879 346.0632 17.6981 344.3986 15.8919
+\c 341.4476 12.6953 343.7684 8.3033 346.9286 8.3813
+\c 350.0914 8.4462 349.8458 11.9937 348.089 13.371
+\c 346.6934 14.4626 347.4315 16.4117 349.4846 17.3343
+\c 349.634 17.3603 349.7808 17.3863 349.9277 17.3863
+\c 352.2978 17.4642 355.0409 15.645 355.6945 12.0067
+\c 356.2182 9.083 355.1565 6.1463 352.8605 4.1452
+\c 349.7327 1.4294 344.9496 0.8576 339.7415 2.5599
+\c 333.5524 4.587 330.6287 9.7327 329.2526 15.9959
+\c 334.6465 19.9461 338.4525 23.5845 340.2626 25.4297
+\c 340.2899 25.2478 340.3249 25.0528 340.3639 24.8579
+\c 341.1501 20.9207 339.8364 19.1665 339.8364 19.1665
+\c 339.8364 19.1665 342.2013 19.6083 342.2013 23.6365
+\c 342.2013 27.6517 341.5009 29.4059 344.8261 33.0833
+\c 347.4094 35.942 350.8814 39.0476 352.3043 40.2951
+\c 351.921 38.138 350.9958 36.5137 350.5813 30.9132
+\c 350.0368 23.5195 353.9338 21.4405 357.6423 22.7789
+\c 361.3509 24.1173 359.0782 27.6907 357.2304 26.8201
+\c 355.3813 25.9364 356.261 23.9873 356.261 23.9873
+\c 353.9948 23.1037 352.698 25.2478 352.698 25.2478
+\c 351.0582 28.4313 353.2074 34.0968 356.9471 38.242
+\c 360.6895 42.3871 360.6154 45.4018 360.3503 47.7797
+\c 360.0839 50.1707 361.3938 51.8599 361.3938 51.8599
+\l 361.3002 51.9639
+\o
+\m 325.4544 56.2909
+\c 326.6654 54.6147 325.7558 51.8859 323.4182 50.2096
+\c 323.1492 50.0147 322.8698 49.8328 322.5878 49.6899
+\c 322.2201 52.4316 321.5743 54.9265 320.7388 57.2005
+\c 322.6281 57.8762 324.5266 57.5774 325.4544 56.2909
+\o
+\m 320.0657 56.9017
+\c 320.8986 54.6407 321.534 52.1328 321.8874 49.378
+\c 319.9409 48.6113 317.9515 48.8712 316.9964 50.1966
+\c 315.7828 51.8859 316.695 54.6017 319.03 56.2909
+\c 319.3653 56.5378 319.7122 56.7327 320.0657 56.9017
+\o
+\m 319.6524 10.6423
+\c 318.5557 10.7462 317.7397 10.7462 317.7397 10.7462
+\c 319.9435 13.0722 319.9435 15.9439 319.9435 15.9439
+\c 320.41 19.2184 316.4741 21.6094 313.1384 17.945
+\c 309.8015 14.2806 309.4702 9.7457 304.266 9.6027
+\c 299.0618 9.4728 296.9957 13.7999 296.9957 13.7999
+\c 299.7362 6.6141 307.6536 6.3152 311.6701 6.666
+\c 311.431 6.5621 311.1932 6.4581 310.9489 6.3542
+\c 303.9619 3.4045 295.5833 1.7152 287.1916 1.7412
+\c 286.5185 2.0141 285.8376 2.4689 285.3997 3.2356
+\c 284.2549 5.2107 285.7116 6.2502 285.7116 6.2502
+\c 285.7116 6.2502 287.4281 5.5745 288.0531 6.9259
+\c 288.6781 8.2773 286.6484 10.5123 284.5668 8.953
+\c 282.6631 7.5236 282.0342 3.8333 285.1359 1.7802
+\c 278.4075 2.0271 271.7532 3.4045 265.8629 6.1333
+\c 265.0495 7.1598 264.1957 8.953 264.7259 11.7728
+\c 265.6459 16.6456 269.6884 12.6044 269.6884 12.6044
+\c 269.6884 12.6044 269.7755 16.8275 266.1033 17.1004
+\c 262.6884 17.3603 260.5535 11.4219 264.1776 6.9649
+\c 260.6223 8.8361 257.3829 11.227 254.6424 14.2157
+\c 253.7549 15.1902 252.922 16.2168 252.1449 17.2953
+\c 253.1403 18.023 253.7952 19.1795 253.7952 20.5049
+\c 253.7952 22.6749 252.0254 24.4551 249.8436 24.4551
+\c 249.2875 24.4551 248.7599 24.3382 248.2778 24.1173
+\c 246.4119 28.3924 245.2567 33.0963 244.9149 37.9171
+\c 245.2242 38.0471 245.6478 38.3069 246.0389 38.8267
+\c 246.7627 39.7883 250.5713 40.5939 250.5713 40.5939
+\c 247.2825 40.9578 246.803 41.6724 245.961 42.595
+\c 245.562 43.0368 245.1774 43.1798 244.8798 43.2188
+\c 244.8941 43.5046 244.8993 43.7905 244.9214 44.0764
+\c 245.2034 47.8837 246.0012 51.5221 247.2695 54.9005
+\c 250.3803 59.3186 255.322 60.4361 256.4876 58.8898
+\c 257.7584 57.1875 254.927 56.7587 255.1427 54.6407
+\c 255.3532 52.5226 259.245 52.0158 259.5269 55.6282
+\c 259.8102 59.2406 256.6968 60.1632 256.6968 60.1632
+\c 252.5204 61.0208 249.4876 58.396 247.9686 56.6288
+\c 250.1685 61.6835 253.4677 66.0886 257.7155 69.545
+\c 263.2134 74.002 269.1608 76.5489 275.0264 77.8093
+\c 275.7593 77.7444 276.2999 77.4585 276.2271 76.7828
+\c 276.2271 76.7828 275.1668 72.8975 278.4907 71.767
+\c 281.8159 70.6235 283.0906 73.3913 286.412 73.5992
+\c 289.7411 73.8071 291.3692 69.1422 291.3692 69.1422
+\c 291.3692 69.1422 290.3765 76.4969 281.2013 78.6929
+\c 290.4246 79.3557 298.9397 77.2246 304.5688 74.7687
+\c 306.1138 73.5602 309.2337 70.5586 309.0076 66.4134
+\c 308.7061 60.9039 304.4076 62.5671 304.5584 64.6072
+\c 304.5584 64.6072 302.6729 62.866 303.8814 60.605
+\c 305.0872 58.344 310.1394 58.4999 310.5162 64.1524
+\c 310.7631 67.9078 309.478 71.1693 307.3937 73.2354
+\c 309.9133 71.5072 315.1019 67.349 318.6142 60.2931
+\c 318.3894 60.2412 318.1685 60.2022 317.9463 60.1242
+\c 314.4691 58.9028 312.5264 55.4203 313.6062 52.3277
+\c 314.6848 49.2481 318.3829 47.7407 321.8589 48.9492
+\c 321.8874 48.9622 321.9108 48.9752 321.9355 48.9752
+\c 322.0239 48.2215 322.098 47.4419 322.1395 46.6492
+\c 322.1421 46.5453 322.1941 36.2539 315.0824 29.224
+\c 310.4421 24.637 303.8073 22.428 295.3663 22.6359
+\c 295.1636 22.6359 294.9946 22.48 294.9907 22.2721
+\c 294.9855 22.0772 295.1428 21.9082 295.3468 21.8952
+\c 304.0035 21.6873 310.8138 23.9743 315.6034 28.7042
+\c 320.7907 33.8369 322.2734 40.6329 322.7009 44.2063
+\c 323.808 43.4656 327.3281 40.36 327.3281 30.9132
+\c 327.3281 25.8065 327.5646 20.7907 328.4898 16.3337
+\c 325.8923 14.4496 322.9309 12.5004 319.6524 10.6423
+\o
+\s
+\m 298.5797 27.5607
+\c 298.5797 27.5607 304.2036 26.6121 307.0429 31.1341
+\c 306.6959 30.9782 306.3074 30.8872 305.9033 30.8872
+\c 304.2868 30.8872 302.9783 32.3036 302.9783 34.0578
+\c 302.9783 35.812 304.2868 37.2284 305.9033 37.2284
+\c 306.9779 37.2284 307.9018 36.5917 308.4138 35.6691
+\c 308.5125 39.6453 305.889 42.9849 303.4526 43.8295
+\c 299.8688 45.0769 296.042 43.8035 293.9577 40.6069
+\c 293.9577 40.6069 291.5369 37.2934 288.1584 38.2939
+\c 288.3078 38.8007 288.3962 39.3465 288.3962 39.9052
+\c 288.3962 41.9323 287.3293 43.7385 285.7038 44.843
+\c 286.2092 45.7526 287.9427 48.4944 290.5194 48.5334
+\c 293.6458 48.5724 297.3232 49.0272 298.7655 52.0418
+\c 298.7655 52.0418 301.3254 57.1356 297.83 61.1768
+\c 297.8819 60.7999 297.8534 60.4101 297.7351 60.0203
+\c 297.2595 58.474 295.5196 57.6293 293.8459 58.1491
+\c 292.1762 58.6689 291.2042 60.3321 291.6785 61.8784
+\c 291.9904 62.905 292.8649 63.6067 293.9018 63.8146
+\c 290.1387 65.075 286.1716 63.5547 284.6434 61.4626
+\c 282.3967 58.409 282.4968 54.3808 284.9371 51.4441
+\c 284.9371 51.4441 287.4983 48.0396 285.349 45.0639
+\c 284.3641 45.6357 283.205 45.9735 281.9601 45.9735
+\c 280.536 45.9735 279.2197 45.5317 278.1541 44.791
+\c 277.4875 45.7786 275.9997 48.3775 277.0431 50.5995
+\c 278.3698 53.4192 279.5653 56.9276 277.4849 59.5395
+\c 277.4849 59.5395 274.0207 64.0745 268.8607 62.6971
+\c 269.2219 62.5801 269.5676 62.3852 269.8599 62.1123
+\c 271.0463 61.0078 271.0359 59.0717 269.8404 57.7983
+\c 268.6489 56.5118 266.7244 56.3689 265.5406 57.4734
+\c 264.7558 58.2011 264.5089 59.2926 264.7675 60.3191
+\c 261.988 57.4864 261.6294 53.2503 262.8314 50.9633
+\c 264.6012 47.6108 268.2733 45.9345 271.9715 46.8571
+\c 271.9715 46.8571 276.0504 47.6368 277.8241 44.5442
+\c 276.422 43.4397 275.528 41.7634 275.528 39.9052
+\c 275.528 39.3465 275.6125 38.8137 275.7619 38.2939
+\c 274.6847 38.138 271.5193 37.8262 269.9223 39.8143
+\c 267.9563 42.2312 265.3184 44.843 262.0582 44.1154
+\c 262.0582 44.1154 256.4694 42.9719 255.4571 37.7222
+\c 255.7261 37.9951 256.0536 38.216 256.4278 38.3719
+\c 257.9364 38.9566 259.6699 38.099 260.304 36.4748
+\c 260.9355 34.8375 260.2247 33.0443 258.7174 32.4595
+\c 257.7181 32.0697 256.6266 32.3296 255.8145 33.0053
+\c 257.1529 29.263 260.8069 27.0929 263.3849 27.1839
+\c 267.1792 27.3138 270.2861 29.8867 271.0814 33.616
+\c 271.0814 33.616 272.1859 37.7742 275.8931 37.8911
+\c 276.7767 35.5262 279.1586 33.8239 281.9601 33.8239
+\c 281.9991 33.8239 282.0368 33.8239 282.0758 33.8239
+\c 281.9406 32.6155 281.4027 29.7308 279.2132 28.7172
+\c 276.383 27.3918 273.2137 25.4687 273.1306 22.1291
+\c 273.1306 22.1291 272.885 16.4377 277.7318 14.1767
+\c 277.5278 14.5015 277.3901 14.8784 277.3407 15.2812
+\c 277.1406 16.8795 278.3828 18.3608 280.1202 18.5687
+\c 281.8562 18.7896 283.4259 17.6721 283.626 16.0608
+\c 283.7598 14.9953 283.2518 14.0078 282.3915 13.384
+\c 286.3457 13.7739 289.3356 16.7885 289.8775 19.3224
+\c 290.6728 23.0257 288.9276 26.6641 285.5037 28.3404
+\c 285.5037 28.3404 281.8744 30.3415 282.4864 33.8499
+\c 285.0619 34.0448 287.2085 35.6821 288.0297 37.9041
+\c 289.194 37.6312 292.054 36.7476 292.8012 34.4217
+\c 293.7589 31.446 295.2766 28.0675 298.5797 27.5607
+\o
+\m 281.9601 34.5646
+\c 278.8181 34.5646 276.2622 36.9555 276.2622 39.9052
+\c 276.2622 42.8549 278.8181 45.2458 281.9601 45.2458
+\c 285.1034 45.2458 287.6594 42.8549 287.6594 39.9052
+\c 287.6594 36.9555 285.1034 34.5646 281.9601 34.5646
+\o
+\s
+\m 281.6587 41.8154
+\c 280.4398 41.8154 279.4535 40.8278 279.4535 39.6064
+\c 279.4535 38.3849 280.4398 37.3973 281.6587 37.3973
+\c 282.8762 37.3973 283.8625 38.3849 283.8625 39.6064
+\c 283.8625 40.8278 282.8762 41.8154 281.6587 41.8154
+\o
+\s
+\m 239.3248 41.0357
+\l 228.806 41.0357
+\c 228.6631 43.9594 226.8387 46.4283 224.3035 47.4419
+\c 224.6738 49.3 225.9096 54.8486 227.3221 54.2898
+\c 229.0165 53.6141 230.1171 50.2226 233.0824 52.0938
+\c 236.0503 53.952 232.0663 63.8666 238.0852 69.0383
+\c 238.0852 69.0383 225.0169 60.709 223.8799 47.5978
+\c 223.2029 47.8187 222.4869 47.9356 221.7437 47.9356
+\c 221.5851 47.9356 221.4357 47.9227 221.2798 47.9227
+\c 221.3421 49.1441 221.5942 54.4847 221.6618 58.305
+\c 221.7437 62.6321 224.9753 64.6852 228.129 67.6869
+\c 231.2827 70.6755 229.3128 74.7037 229.3128 74.7037
+\c 229.3128 74.7037 228.2083 73.5992 227.2636 73.8331
+\c 226.3163 74.067 225.842 73.6772 225.842 73.6772
+\c 225.1312 78.563 221.3473 80.85 221.3473 80.85
+\l 221.1706 80.9539
+\l 221.0147 80.85
+\c 221.0147 80.85 217.2269 78.563 216.52 73.6772
+\c 216.52 73.6772 216.0457 74.067 215.0997 73.8331
+\c 214.1537 73.5992 213.0505 74.7037 213.0505 74.7037
+\c 213.0505 74.7037 211.0793 70.6755 214.2317 67.6869
+\c 217.3867 64.6852 220.621 62.6321 220.7002 58.305
+\c 220.7691 54.4717 221.0199 49.1051 221.0809 47.9097
+\c 220.3728 47.8447 219.6945 47.6628 219.0603 47.3899
+\c 217.8935 60.4751 204.8629 68.7784 204.8629 68.7784
+\c 210.8792 63.6067 206.8965 53.6921 209.8604 51.8339
+\c 212.8283 49.9627 213.9289 53.3542 215.6247 54.0299
+\c 217.0359 54.6017 218.2677 49.0791 218.6393 47.195
+\c 216.3368 46.0385 214.7333 43.6476 214.6683 40.8538
+\l 203.9143 40.8538
+\c 203.7103 40.8538 203.5466 40.6979 203.5466 40.49
+\c 203.5466 40.2951 203.7103 40.1261 203.9143 40.1261
+\l 214.6826 40.1261
+\c 214.8775 37.4883 216.4485 35.2403 218.6627 34.1358
+\c 218.3158 32.3816 217.0631 26.6251 215.6247 27.1969
+\c 213.9289 27.8726 212.8283 31.2641 209.8604 29.4059
+\c 206.8965 27.5347 210.8792 17.6202 204.8629 12.4485
+\c 204.8629 12.4485 217.9688 20.8037 219.0733 33.9409
+\c 219.7036 33.681 220.3806 33.5121 221.0848 33.4341
+\c 221.0407 32.5375 220.7717 26.911 220.7002 22.9348
+\c 220.621 18.5947 217.3867 16.5416 214.2317 13.553
+\c 211.0793 10.5513 213.0505 6.5361 213.0505 6.5361
+\c 213.0505 6.5361 214.1537 7.6406 215.0997 7.3937
+\c 216.0457 7.1598 216.52 7.5496 216.52 7.5496
+\c 217.2269 2.6638 221.0147 0.3768 221.0147 0.3768
+\l 221.1706 0.2729
+\l 221.3473 0.3768
+\c 221.3473 0.3768 225.1312 2.6638 225.842 7.5496
+\c 225.842 7.5496 226.3163 7.1598 227.2636 7.3937
+\c 228.2083 7.6406 229.3128 6.5361 229.3128 6.5361
+\c 229.3128 6.5361 231.2827 10.5513 228.129 13.553
+\c 224.9753 16.5416 221.7437 18.5947 221.6618 22.9348
+\c 221.5903 26.898 221.3213 32.4985 221.2759 33.4341
+\c 221.4318 33.4211 221.5851 33.4081 221.7437 33.4081
+\c 222.4817 33.4081 223.1977 33.5251 223.8708 33.746
+\c 224.9415 20.5828 238.0852 12.2016 238.0852 12.2016
+\c 232.0663 17.3603 236.0503 27.2878 233.0824 29.146
+\c 230.1171 31.0172 229.0165 27.6257 227.3221 26.95
+\c 225.8797 26.3653 224.6232 32.1477 224.2814 33.9019
+\c 226.827 34.9025 228.6631 37.3843 228.806 40.308
+\l 239.3248 40.308
+\c 239.5262 40.308 239.6913 40.477 239.6913 40.6719
+\c 239.6913 40.8798 239.5262 41.0357 239.3248 41.0357
+\o
+\m 221.7437 34.1358
+\c 218.2417 34.1358 215.3921 37.0725 215.3921 40.6719
+\c 215.3921 44.2713 218.2417 47.208 221.7437 47.208
+\c 225.2404 47.208 228.0874 44.2713 228.0874 40.6719
+\c 228.0874 37.0725 225.2404 34.1358 221.7437 34.1358
+\o
+\s
+\m 221.984 43.1798
+\c 220.7028 43.1798 219.6646 42.1402 219.6646 40.8538
+\c 219.6646 39.5804 220.7028 38.5408 221.984 38.5408
+\c 223.2679 38.5408 224.3035 39.5804 224.3035 40.8538
+\c 224.3035 42.1402 223.2679 43.1798 221.984 43.1798
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian72.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian72.pgf
new file mode 100644
index 0000000000..47b8807043
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian72.pgf
@@ -0,0 +1,63 @@
+\r 0 0 216 58
+\i
+\m 0.0198 30.944
+\c 0.9158 12.736 24.8422 3.744 46.223 3.744
+\c 64.3878 3.744 80.6134 9.952 92.6103 19.952
+\c 96.0567 22.816 99.4263 26.512 100.6423 28.784
+\c 103.8759 25.728 108.2103 22.384 119.5543 22.672
+\c 134.0343 23.024 143.6279 26.704 153.9911 31.488
+\c 158.3479 33.504 166.4695 37.696 171.2103 39.392
+\c 193.1655 47.264 208.8535 42.176 209.0343 42.128
+\c 209.4279 42.048 209.8151 42.288 209.9031 42.688
+\c 209.9911 43.072 209.7447 43.456 209.3511 43.552
+\c 209.1655 43.584 190.6039 47.6 168.2311 39.568
+\c 163.4279 37.856 158.8903 35.76 154.5063 33.728
+\c 143.8183 28.784 132.7031 23.6 118.5415 23.6
+\c 108.8135 23.6 103.7607 26.608 100.9175 29.568
+\c 101.7799 30.992 102.1047 32.24 102.1047 33.28
+\c 102.1047 34.336 101.8695 35.168 101.5447 35.728
+\c 100.9383 36.768 99.9159 37.2 98.9415 36.832
+\c 98.0695 36.512 97.5703 35.504 97.5703 34.192
+\c 97.5703 33.856 97.6039 33.52 97.6663 33.152
+\c 97.8983 31.872 98.8167 30.608 100.2071 29.472
+\c 99.1511 27.312 96.5351 24.496 92.9575 21.52
+\c 81.2134 11.728 63.5542 5.888 45.7206 5.888
+\c 25.007 5.888 1.6982 13.616 0.8502 30.88
+\c 0.5734 36.544 4.1734 42.144 9.8502 46.416
+\c 19.5798 53.744 40.1478 60.864 65.8422 50.352
+\c 66.2134 50.208 66.639 50.432 66.767 50.8
+\c 66.8982 51.184 66.695 51.6 66.3142 51.728
+\c 40.007 60.72 18.9846 55.12 8.9766 47.584
+\c 2.8982 43.008 -0.2842 37.104 0.0198 30.944
+\o
+\m 100.3735 30.352
+\c 99.5975 31.168 99.0295 31.984 98.8231 32.784
+\c 98.7511 33.056 98.7207 33.296 98.7207 33.52
+\c 98.7207 34.256 99.0599 34.672 99.3079 34.736
+\c 99.8663 34.88 100.2951 34.464 100.4519 34.272
+\c 100.7319 33.952 100.9671 33.376 100.9671 32.624
+\c 100.9671 32 100.7799 31.232 100.3735 30.352
+\o
+\s
+\m 158.0167 44.992
+\c 157.8663 45.104 144.5783 56.816 116.9223 56.816
+\c 86.1846 56.816 63.4886 42.88 62.6326 30.64
+\c 61.895 20.032 70.3734 15.408 70.7014 15.216
+\c 71.0486 15.008 71.1638 14.56 70.9606 14.208
+\c 70.7574 13.856 70.311 13.744 69.9638 13.952
+\c 69.8758 14 61.2038 19.2 62.007 30.736
+\c 62.9078 43.632 83.423 57.552 114.9975 57.552
+\c 143.1687 57.552 158.7287 46.272 158.8807 46.16
+\c 159.2071 45.92 159.2759 45.472 159.0343 45.136
+\c 158.7943 44.816 158.3383 44.752 158.0167 44.992
+\o
+\s
+\m 168.1719 17.312
+\c 198.5559 30.08 216.1815 26.736 216.1815 26.736
+\c 216.1815 26.736 201.2903 27.344 185.7943 21.872
+\c 170.2967 16.4 140.8247 0 116.5159 0
+\c 92.2071 0 78.535 9.104 78.535 9.104
+\c 113.4791 -5.168 139.0375 5.072 168.1719 17.312
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian73.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian73.pgf
new file mode 100644
index 0000000000..e52336f8f4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian73.pgf
@@ -0,0 +1,63 @@
+\r 0 0 216 58
+\i
+\m 207.1879 47.584
+\c 197.1751 55.12 176.1559 60.72 149.8503 51.728
+\c 149.4695 51.6 149.2663 51.184 149.3975 50.8
+\c 149.5287 50.416 149.9495 50.192 150.3223 50.352
+\c 176.0151 60.864 196.5847 53.728 206.3127 46.416
+\c 211.9911 42.144 215.5911 36.528 215.3127 30.88
+\c 214.4663 13.616 191.1559 5.888 170.4471 5.888
+\c 152.6103 5.888 134.9495 11.728 123.2039 21.52
+\c 119.6279 24.496 117.0151 27.312 115.9559 29.472
+\c 117.3463 30.608 118.2631 31.872 118.4935 33.152
+\c 118.5591 33.52 118.5911 33.856 118.5911 34.192
+\c 118.5911 35.488 118.0903 36.512 117.2215 36.832
+\c 116.2471 37.2 115.2215 36.752 114.6183 35.728
+\c 114.2935 35.152 114.0599 34.336 114.0599 33.264
+\c 114.0599 32.24 114.3847 30.992 115.2439 29.568
+\c 112.4039 26.608 107.3495 23.6 97.6215 23.6
+\c 83.4599 23.6 72.3447 28.784 61.6567 33.728
+\c 57.2727 35.76 52.7367 37.856 47.9319 39.568
+\c 25.5591 47.6 6.9975 43.584 6.8119 43.552
+\c 6.4183 43.456 6.1719 43.072 6.2599 42.672
+\c 6.3463 42.288 6.7383 42.032 7.1319 42.128
+\c 7.3127 42.16 22.9975 47.264 44.9527 39.392
+\c 49.6967 37.696 57.8151 33.504 62.1687 31.488
+\c 72.5351 26.704 82.1287 23.024 96.6071 22.656
+\c 107.9527 22.368 112.2871 25.728 115.5223 28.784
+\c 116.7367 26.496 120.1063 22.816 123.5495 19.952
+\c 135.5463 9.952 151.7719 3.744 169.9399 3.744
+\c 191.3223 3.744 215.2471 12.736 216.1447 30.944
+\c 216.4439 37.104 213.2663 43.008 207.1879 47.584
+\o
+\m 115.1975 32.624
+\c 115.1975 33.376 115.4311 33.936 115.7127 34.272
+\c 115.8695 34.464 116.2967 34.88 116.8567 34.736
+\c 117.1031 34.672 117.4439 34.256 117.4439 33.52
+\c 117.4439 33.296 117.4119 33.056 117.3415 32.784
+\c 117.1319 31.984 116.5655 31.168 115.7911 30.352
+\c 115.3815 31.232 115.1975 32 115.1975 32.624
+\o
+\s
+\m 58.1463 44.976
+\c 58.2999 45.088 71.5847 56.816 99.2407 56.816
+\c 129.9783 56.816 152.6759 42.864 153.5319 30.624
+\c 154.2695 20.032 145.7911 15.408 145.4631 15.2
+\c 145.1159 15.008 145.0007 14.56 145.2039 14.208
+\c 145.4071 13.856 145.8503 13.744 146.2007 13.952
+\c 146.2871 14 154.9591 19.2 154.1559 30.736
+\c 153.2567 43.632 132.7399 57.536 101.1655 57.536
+\c 72.9943 57.536 57.4343 46.272 57.2775 46.16
+\c 56.9559 45.92 56.8871 45.456 57.1287 45.136
+\c 57.3687 44.816 57.8247 44.752 58.1463 44.976
+\o
+\s
+\m 47.9911 17.312
+\c 17.6071 30.064 -0.0185 26.736 -0.0185 26.736
+\c -0.0185 26.736 14.8711 27.344 30.3687 21.872
+\c 45.8663 16.4 75.3383 0 99.6471 0
+\c 123.9527 0 137.6279 9.104 137.6279 9.104
+\c 102.6839 -5.168 77.1255 5.072 47.9911 17.312
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian74.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian74.pgf
new file mode 100644
index 0000000000..a462c5053c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian74.pgf
@@ -0,0 +1,73 @@
+\r 0 0 308 93
+\i
+\m 146.6618 56.704
+\c 63.9437 51.216 0 1.216 0 1.216
+\c 0 1.216 73.7702 51.088 152.3338 53.872
+\c 232.145 56.704 267.393 45.36 301.0186 30.784
+\c 301.0186 30.784 250.377 63.6 146.6618 56.704
+\o
+\s
+\m 216.345 81.824
+\c 270.2282 81.424 308.313 57.52 308.313 57.52
+\c 259.6954 89.936 216.345 81.824 216.345 81.824
+\o
+\s
+\m 36.2499 29.296
+\l 37.4898 30.64
+\c 37.3813 30.736 26.5562 41.008 29.6594 56.528
+\c 33.8954 77.696 68.1 89.92 99.7002 91.04
+\c 133.1034 92.272 156.1594 81.12 156.3914 81.008
+\l 153.953 83.04
+\c 153.721 83.152 133.5034 94.08 99.6346 92.864
+\c 67.3187 91.712 32.2936 78.992 27.8718 56.88
+\c 24.5688 40.368 35.7702 29.744 36.2499 29.296
+\o
+\s
+\m 261.3162 23.888
+\c 197.305 49.008 146.257 10.928 109.3882 10.112
+\c 76.8938 9.408 51.4562 21.056 51.4562 21.056
+\c 116.681 -12.976 160.8426 28.752 207.8378 29.968
+\c 239.593 30.8 261.3162 23.888 261.3162 23.888
+\o
+\s
+\m 84.7586 27.632
+\c 82.8 27.84 80.7499 28.08 78.5986 28.352
+\c 78.5986 28.352 80.8344 27.904 84.7586 27.632
+\o
+\s
+\m 140.585 35.232
+\c 157.5994 40.912 175.0218 39.28 175.0218 39.28
+\c 150.7146 42.944 138.5578 36.448 116.681 30.784
+\c 102.9242 27.216 91.4122 27.168 84.7586 27.632
+\c 114.529 24.528 123.0938 29.408 140.585 35.232
+\o
+\s
+\m 184.745 1.216
+\c 239.441 15.392 285.625 0 285.625 0
+\c 239.8442 19.84 184.745 1.216 184.745 1.216
+\o
+\s
+\m 96.4234 70.48
+\l 104.1226 70.896
+\c 112.225 73.312 130.4554 74.544 130.4554 74.544
+\c 110.1994 74.944 103.313 73.312 103.313 73.312
+\l 96.4234 70.48
+\o
+\s
+\m 78.5266 65.216
+\l 85.6531 68.144
+\l 78.2157 67.76
+\c 78.2157 67.76 71.3 66.272 53.1718 57.216
+\c 53.1718 57.216 70.1658 63.936 78.5266 65.216
+\o
+\s
+\m 89.4815 71.056
+\c 88.8688 70.784 88.5562 70.144 88.7813 69.648
+\l 90.0058 66.96
+\c 90.233 66.464 90.9114 66.288 91.5242 66.56
+\c 92.1338 66.848 92.4474 67.472 92.2218 67.968
+\l 90.993 70.656
+\c 90.769 71.152 90.0922 71.344 89.4815 71.056
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian75.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian75.pgf
new file mode 100644
index 0000000000..5bc76567ec
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian75.pgf
@@ -0,0 +1,108 @@
+\r 0 0 373 120
+\i
+\m 236.441 119.408
+\c 236.441 119.408 213.9562 113.328 187.8218 112.72
+\c 161.6938 112.112 136.4714 120.32 136.4714 120.32
+\c 186.6058 97.84 236.441 119.408 236.441 119.408
+\o
+\s
+\m 305.2586 120.32
+\c 280.6458 119.088 269.0986 111.504 269.0986 111.504
+\c 269.0986 111.504 303.4746 123.68 338.9866 113.632
+\c 380.7899 101.824 382.9211 62.096 336.577 48.976
+\c 330.7434 61.056 309.905 77.392 262.5802 76.576
+\c 244.7994 76.256 230.313 72.272 218.9434 67.184
+\c 212.8106 70.832 202.4346 77.52 189.7434 83.744
+\c 207.2522 92.176 217.7994 94.16 227.6282 95.408
+\c 241.9098 97.232 259.2298 92.672 262.8746 89.936
+\c 266.521 87.2 268.9514 86.592 270.7738 87.504
+\c 272.5994 88.416 275.337 91.152 278.0714 88.416
+\c 280.8058 85.68 282.9306 89.632 285.9706 89.024
+\c 289.009 88.416 292.3514 89.024 292.3514 89.024
+\c 288.705 92.064 285.0586 91.456 283.5402 90.544
+\c 282.0202 89.632 280.1962 89.328 280.1962 89.328
+\c 274.4234 94.496 271.993 89.936 270.7738 89.632
+\c 269.5578 89.328 267.737 89.632 267.737 89.632
+\c 241.409 104.992 210.4682 96.368 186.681 85.2
+\c 162.8938 96.368 131.9514 104.992 105.625 89.632
+\c 105.625 89.632 103.801 89.328 102.585 89.632
+\c 101.3722 89.936 98.9402 94.496 93.1658 89.328
+\c 93.1658 89.328 91.3434 89.632 89.825 90.544
+\c 88.305 91.456 84.6586 92.064 81.0122 89.024
+\c 81.0122 89.024 84.3546 88.416 87.393 89.024
+\c 90.4314 89.632 92.5594 85.68 95.2938 88.416
+\c 98.0282 91.152 100.7626 88.416 102.585 87.504
+\c 104.409 86.592 106.841 87.2 110.4874 89.936
+\c 114.1322 92.672 131.4522 97.232 145.7338 95.408
+\c 155.5626 94.16 166.1098 92.176 183.6186 83.744
+\c 170.9786 77.536 160.6314 70.88 154.4906 67.216
+\c 143.1338 72.304 128.681 76.256 110.9482 76.576
+\c 63.569 77.392 42.7402 61.024 36.9338 48.944
+\c -9.5638 62.016 -7.4694 101.808 34.3802 113.632
+\c 69.8906 123.68 104.265 111.504 104.265 111.504
+\c 104.265 111.504 92.7178 119.088 68.1066 120.32
+\c 37.7194 121.84 -1.4774 108.464 0.0426 81.728
+\c 1.1578 62.096 16.9322 51.808 36.0186 46.656
+\c 32.2698 34.656 44.7882 19.056 71.1434 16.704
+\c 98.4906 14.272 115.5066 27.648 115.5066 27.648
+\c 115.5066 27.648 91.8058 14.272 65.3706 19.44
+\c 38.9354 24.608 37.8362 39.696 38.0234 43.44
+\c 38.057 44.112 38.2074 44.976 38.5258 46.016
+\c 47.5466 43.824 57.1818 42.704 66.281 42.224
+\c 94.097 40.8 121.3722 44.784 154.9962 64.128
+\c 176.0442 54.912 185.3898 42.224 185.3898 42.224
+\c 185.3898 42.224 179.3162 34.944 177.4922 25.216
+\c 173.9578 6.352 182.041 0 186.9114 0
+\c 192.9898 0 198.6714 6.064 196.9402 20.96
+\c 195.4186 34.032 188.137 42.224 188.137 42.224
+\c 188.137 42.224 197.4586 54.88 218.4378 64.096
+\c 252.0282 44.784 279.2858 40.8 307.0794 42.224
+\c 316.233 42.704 325.9274 43.84 334.993 46.048
+\c 335.321 45.008 335.4746 44.112 335.5082 43.44
+\c 335.6954 39.696 334.5962 24.608 308.161 19.44
+\c 281.7274 14.272 258.0202 27.648 258.0202 27.648
+\c 258.0202 27.648 275.0426 14.272 302.3898 16.704
+\c 328.7738 19.056 341.2922 34.688 337.5018 46.704
+\c 356.521 51.872 372.2091 62.144 373.3211 81.728
+\c 374.8395 108.464 335.6426 121.84 305.2586 120.32
+\o
+\m 44.7098 47.088
+\c 42.8762 47.456 41.1114 47.856 39.4026 48.272
+\c 43.6602 57.52 59.3594 73.792 107.9114 73.52
+\c 125.7754 73.424 140.2154 70.048 151.5882 65.552
+\c 135.9722 56.816 98.3178 36.608 44.7098 47.088
+\o
+\m 194.2058 17.92
+\c 194.8106 3.648 188.1242 3.952 186.6058 3.952
+\c 185.0874 3.952 178.1002 5.152 179.0122 18.528
+\c 180.0282 33.408 187.2154 39.504 187.2154 39.504
+\c 187.2154 39.504 193.609 31.92 194.2058 17.92
+\o
+\m 186.7658 43.44
+\c 186.7658 43.44 177.4266 56.048 157.713 65.712
+\c 158.8282 66.368 159.953 67.056 161.0842 67.76
+\c 171.025 73.888 179.4234 78.576 186.681 82.224
+\c 193.937 78.576 202.3338 73.888 212.2762 67.76
+\c 213.4346 67.04 214.5834 66.352 215.7274 65.664
+\c 196.0746 56.016 186.7658 43.44 186.7658 43.44
+\o
+\m 328.6554 47.088
+\c 275.1242 36.624 237.5034 56.768 221.8442 65.504
+\c 233.2314 70.032 247.7034 73.424 265.617 73.52
+\c 314.105 73.792 329.8266 57.568 334.1114 48.32
+\c 332.3546 47.872 330.5402 47.456 328.6554 47.088
+\o
+\s
+\m 120.7754 87.92
+\c 121.9898 90.336 119.9642 91.968 117.1274 89.936
+\c 114.2938 87.904 113.0762 89.12 113.0762 89.12
+\c 113.0762 86.688 119.5594 85.488 120.7754 87.92
+\o
+\s
+\m 252.3994 87.92
+\c 253.6154 85.488 260.0954 86.688 260.0954 89.12
+\c 260.0954 89.12 258.881 87.904 256.0474 89.936
+\c 253.209 91.968 251.1834 90.336 252.3994 87.92
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian76.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian76.pgf
new file mode 100644
index 0000000000..34d69930e6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian76.pgf
@@ -0,0 +1,73 @@
+\r 0 0 308 93
+\i
+\m 161.6496 56.72
+\c 244.3712 51.216 308.3088 1.216 308.3088 1.216
+\c 308.3088 1.216 234.544 51.088 155.9776 53.872
+\c 76.168 56.72 40.9216 45.376 7.2928 30.784
+\c 7.2928 30.784 57.9376 63.6 161.6496 56.72
+\o
+\s
+\m 91.968 81.824
+\c 38.0832 81.424 0 57.52 0 57.52
+\c 48.6144 89.936 91.968 81.824 91.968 81.824
+\o
+\s
+\m 272.0624 29.312
+\l 270.8192 30.64
+\c 270.9312 30.752 281.7536 41.008 278.6528 56.528
+\c 274.4176 77.712 240.216 89.92 208.616 91.056
+\c 175.2096 92.272 152.1504 81.12 151.9216 81.008
+\l 154.3584 83.056
+\c 154.5936 83.168 174.8128 94.08 208.6768 92.88
+\c 240.9936 91.712 276.0176 78.992 280.44 56.896
+\c 283.744 40.384 272.5408 29.76 272.0624 29.312
+\o
+\s
+\m 46.9968 23.904
+\c 111.0064 49.024 162.056 10.944 198.9248 10.128
+\c 231.4176 9.408 256.8592 21.056 256.8592 21.056
+\c 191.6304 -12.976 147.472 28.768 100.4752 29.968
+\c 68.7184 30.8 46.9968 23.904 46.9968 23.904
+\o
+\s
+\m 223.5504 27.632
+\c 225.512 27.84 227.5616 28.08 229.712 28.352
+\c 229.712 28.352 227.4768 27.904 223.5504 27.632
+\o
+\s
+\m 167.728 35.248
+\c 150.712 40.912 133.2896 39.296 133.2896 39.296
+\c 157.6 42.944 169.7504 36.464 191.6304 30.784
+\c 205.3904 27.216 216.8992 27.184 223.5504 27.632
+\c 193.784 24.544 185.2176 29.408 167.728 35.248
+\o
+\s
+\m 123.5648 1.216
+\c 68.8752 15.392 22.6848 0 22.6848 0
+\c 68.4656 19.856 123.5648 1.216 123.5648 1.216
+\o
+\s
+\m 211.8848 70.496
+\l 204.1904 70.896
+\c 196.0896 73.328 177.856 74.544 177.856 74.544
+\c 198.112 74.944 205 73.328 205 73.328
+\l 211.8848 70.496
+\o
+\s
+\m 229.7872 65.216
+\l 222.6592 68.16
+\l 230.096 67.76
+\c 230.096 67.76 237.0128 66.272 255.1408 57.216
+\c 255.1408 57.216 238.1504 63.936 229.7872 65.216
+\o
+\s
+\m 218.8304 71.056
+\c 219.4432 70.784 219.7536 70.16 219.5312 69.664
+\l 218.3056 66.96
+\c 218.08 66.464 217.4032 66.288 216.7904 66.56
+\c 216.1776 66.848 215.8656 67.472 216.0896 67.968
+\l 217.3184 70.672
+\c 217.544 71.168 218.2192 71.344 218.8304 71.056
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian77.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian77.pgf
new file mode 100644
index 0000000000..fde50a172d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian77.pgf
@@ -0,0 +1,153 @@
+\m 131.4064 75.0395
+\c 132.8608 75.0395 134.1888 75.5515 135.2352 76.3995
+\c 137.0128 74.5275 138.776 71.4235 139.4448 70.0955
+\l 140.6 70.6715
+\c 140.4944 70.8795 138.4752 74.8795 136.1472 77.3115
+\c 136.9968 78.3515 137.5104 79.6955 137.5104 81.1515
+\c 137.5104 84.5275 134.776 87.2475 131.4064 87.2475
+\c 128.0352 87.2475 125.304 84.5275 125.304 81.1515
+\c 125.304 77.7755 128.0352 75.0395 131.4064 75.0395
+\o
+\s
+\m -0.0011 0
+\l 206.8011 0
+\l 206.8011 89.407
+\l -0.0011 89.407
+\o
+\i
+\m 201.0576 41.2955
+\c 195.672 50.9915 187.4128 54.5755 187.4128 54.5755
+\c 170.1824 66.4315 150.0752 61.7595 150.0752 61.7595
+\c 148.544 61.7595 147.8128 66.0155 147.5136 69.8555
+\c 150.5728 69.9195 153.0384 72.4155 153.0384 75.4875
+\c 153.0384 78.6235 150.504 81.1515 147.3824 81.1515
+\c 144.2608 81.1515 141.7264 78.6235 141.7264 75.4875
+\c 141.7264 72.8475 143.5504 70.6555 146 70.0315
+\c 146.0544 69.8715 146.064 69.7755 146.016 69.7915
+\c 145.7168 65.7755 147.56 61.7595 147.56 61.7595
+\l 138.5856 61.4075
+\c 141.816 64.6395 137.1472 72.8955 131.7632 68.9435
+\c 126.3792 64.9915 132.1232 59.9675 132.1232 59.9675
+\c 102.3264 57.8075 96.9376 59.9675 87.96 66.4315
+\c 78.9856 72.8955 77.5504 83.6635 77.5504 83.6635
+\c 77.5504 83.6635 72.1632 79.3595 61.3952 81.1515
+\c 50.6224 82.9435 45.2352 89.4075 45.2352 89.4075
+\c 45.2352 89.4075 45.2352 82.5915 39.8509 81.5035
+\c 34.4656 80.4315 22.2602 81.5035 22.2602 81.5035
+\c 24.4134 76.4795 21.9008 72.8955 13.2821 71.1035
+\c 4.6658 69.2955 0 66.4315 0 66.4315
+\c 2.869 63.5515 4.307 66.4315 16.5133 62.1275
+\c 28.7227 57.8075 24.0539 48.4795 24.0539 48.4795
+\c 28.6008 49.6635 34.2851 49.9195 34.2851 49.9195
+\c 34.2851 49.9195 34.4946 49.9515 34.7968 49.9835
+\c 32.4539 46.7675 27.4851 40.3195 22.6195 36.9915
+\c 15.7968 32.3195 11.4883 35.1995 11.4883 35.1995
+\c 14.7195 25.1355 3.9477 19.7595 3.9477 19.7595
+\c 15.4382 11.4875 0.7166 4.3195 0.7166 4.3195
+\c 5.3851 3.5995 7.1789 6.4635 12.5664 8.6235
+\c 17.9509 10.7835 19.029 8.9755 19.029 8.9755
+\c 18.6688 16.8795 28.3634 16.8795 28.3634 16.8795
+\c 27.2851 26.5755 33.7477 28.0155 33.7477 28.0155
+\c 29.0821 29.4555 27.6446 34.1115 28.7227 37.3435
+\c 29.5101 39.7115 34.6976 46.7515 37.2539 50.1275
+\c 37.2688 50.1115 37.2758 50.0955 37.2539 50.0635
+\c 47.3824 49.2155 47.392 42.0155 47.392 42.0155
+\c 47.392 42.0155 51.3408 45.5995 59.5968 45.5995
+\c 67.8576 45.5995 71.448 39.5035 71.448 39.5035
+\c 71.448 39.5035 71.8032 44.5275 82.576 50.9915
+\c 93.3472 57.4555 111.3008 56.0155 122.4288 57.0875
+\c 133.56 58.1755 146.1264 58.8955 146.1264 58.8955
+\c 138.5856 55.6635 128.8912 46.3195 119.5568 45.2475
+\c 110.2224 44.1755 105.1952 48.1115 105.1952 48.1115
+\c 105.1952 33.7595 82.9344 30.1595 82.9344 30.1595
+\c 91.9136 20.1115 73.96 4.3195 73.96 4.3195
+\c 73.96 4.3195 78.2688 6.8315 86.1664 9.3435
+\c 94.0656 11.8555 98.3728 9.6955 95.1408 6.1115
+\c 91.9104 2.5275 92.6288 -0.0005 92.6288 -0.0005
+\c 107.3504 10.4155 113.4544 0.7195 113.4544 0.7195
+\c 120.9952 19.0395 134.6352 17.2475 134.6352 17.2475
+\c 129.2512 30.5275 141.816 34.1115 141.816 34.1115
+\c 127.4544 46.3195 149.3568 58.1755 149.3568 58.1755
+\c 161.5632 39.8555 179.5168 47.4075 179.5168 47.4075
+\c 175.5664 39.1355 165.5136 40.2235 165.5136 40.2235
+\c 167.6656 31.9675 155.4608 25.5035 155.4608 25.5035
+\c 161.5632 23.3435 158.3312 16.5275 156.5376 12.9275
+\c 154.7408 9.3435 155.1008 7.9035 155.1008 7.9035
+\c 163.0016 17.2315 168.3856 11.1355 168.3856 11.1355
+\c 174.1296 21.9035 180.592 17.5995 180.592 17.5995
+\c 178.4384 30.1595 188.8512 32.6715 188.8512 32.6715
+\c 177.36 37.7115 185.6192 49.9195 185.6192 49.9195
+\c 189.9296 49.9195 197.1072 38.7835 200.3376 33.3915
+\c 203.5696 28.0155 201.776 24.0635 201.776 24.0635
+\l 198.1824 23.7115
+\c 193.8752 22.2715 194.9536 15.0875 200.3376 15.4395
+\c 205.7232 15.8075 206.8 21.1995 206.8 26.2235
+\c 206.8 31.2475 206.4416 31.5995 201.0576 41.2955
+\o
+\m 12.2072 14.0155
+\c 12.2072 14.0155 20.8227 25.5035 23.3342 33.0395
+\c 23.3342 33.0395 25.4914 34.4795 25.4914 31.2475
+\c 25.4914 28.0155 17.9509 14.3675 12.2072 14.0155
+\o
+\m 54.9312 72.1755
+\c 56.0096 72.1755 48.8288 68.2235 44.8789 80.0795
+\c 44.8789 80.0795 53.8576 72.1755 54.9312 72.1755
+\o
+\m 49.9072 61.0395
+\c 46.6758 58.1755 40.2133 54.2235 36.9821 56.3835
+\c 36.9821 56.3835 49.5472 64.2715 50.9856 66.0635
+\c 52.4192 67.8715 53.1376 63.9195 49.9072 61.0395
+\o
+\m 85.4512 58.1755
+\c 82.5344 58.3835 80.7008 60.6395 75.1312 62.7835
+\c 72.3376 61.1995 67.0352 58.0315 61.3952 53.8715
+\c 61.3952 53.8715 64.7968 60.3035 71.5856 63.9515
+\c 67.744 65.0395 62.5664 65.9835 55.2912 66.4315
+\c 31.9539 67.8715 31.5946 62.4795 16.8758 66.4315
+\c 16.8758 66.4315 36.9821 70.0155 54.5728 69.6635
+\c 60.32 69.5515 65.6352 68.6555 70.3632 67.4555
+\c 69.032 70.1755 67.6576 74.0635 68.9344 76.8475
+\c 68.9344 76.8475 72.4352 70.0955 75.472 65.9835
+\c 82.6256 63.6795 87.9104 60.9595 90.4752 59.9675
+\c 90.4752 59.9675 90.4752 57.8075 85.4512 58.1755
+\o
+\m 132.1232 40.9435
+\c 130.5408 39.1515 127.9696 36.3995 123.8288 33.1995
+\c 123.0064 30.3195 121.4096 23.1835 124.2256 18.6875
+\c 124.2256 18.6875 118.8416 20.1115 120.2752 30.5275
+\l 120.5856 30.8315
+\c 117.7408 28.8795 114.3296 26.8315 110.2224 24.7835
+\c 109.776 24.5595 109.3296 24.3355 108.8848 24.1115
+\c 107.6656 20.5435 105.6848 14.5435 105.1952 11.8555
+\c 105.1952 11.8555 102.7856 15.1995 105.4576 22.4315
+\c 94.4512 17.0715 85.0912 12.9275 85.0912 12.9275
+\c 85.0912 12.9275 90.8352 19.3915 103.76 25.1355
+\c 103.76 25.1355 103.9888 25.2315 104.392 25.3755
+\c 102.344 26.4795 99.3296 28.2715 99.0912 29.4555
+\c 99.0912 29.4555 104.6288 27.3435 108.2448 26.9595
+\c 112.6448 28.8795 119.2352 32.0795 123.1472 35.5835
+\c 116.7664 36.0315 113.4544 38.7835 113.4544 38.7835
+\c 116.4784 37.7755 122.3232 37.8235 125.544 37.9515
+\c 129.832 42.5275 130.7728 45.5515 133.92 47.7595
+\c 133.92 47.7595 134.9968 44.1755 132.1232 40.9435
+\o
+\m 169.104 28.3675
+\c 169.104 28.3675 168.744 24.0635 163.0016 24.4155
+\c 163.0016 24.4155 164.7952 28.3675 169.104 28.3675
+\o
+\m 179.1568 37.3435
+\c 178.4384 34.1115 174.848 31.5995 177.0032 26.2235
+\l 174.488 28.7355
+\c 174.488 28.7355 165.872 15.4555 162.6416 17.2475
+\c 162.6416 17.2475 170.8976 28.3675 174.1312 32.6715
+\c 174.1312 32.6715 171.2576 31.9675 169.104 34.1115
+\c 169.104 34.1115 175.5664 33.7595 179.1568 42.3835
+\c 179.1568 42.3835 179.8752 40.5755 179.1568 37.3435
+\o
+\m 167.3072 48.4795
+\c 155.8192 49.9195 151.8688 59.2475 151.8688 59.2475
+\c 151.8688 59.2475 170.5376 62.1275 183.104 52.0635
+\c 183.104 52.0635 178.7968 47.0395 167.3072 48.4795
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian78.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian78.pgf
new file mode 100644
index 0000000000..939362784b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian78.pgf
@@ -0,0 +1,293 @@
+\m 142.5136 92.304
+\c 142.5072 86.288 145.4064 87.248 145.4064 87.248
+\c 144.5408 87.68 144.0688 90.336 143.8288 92.368
+\c 146.1568 92.8 147.9184 94.848 147.9184 97.296
+\c 147.9184 100.08 145.6688 102.32 142.8944 102.32
+\c 140.1152 102.32 137.8656 100.08 137.8656 97.296
+\c 137.8656 94.656 139.9184 92.512 142.5136 92.304
+\o
+\s
+\m 9.3344 108.064
+\c 9.3344 110.64 7.2448 112.736 4.6656 112.736
+\c 2.0912 112.736 0 110.64 0 108.064
+\c 0 105.488 2.0912 103.408 4.6656 103.408
+\c 7.2448 103.408 9.3344 105.488 9.3344 108.064
+\o
+\s
+\m 199.4416 23.168
+\c 192.9792 24.784 183.2848 38.784 183.2848 38.784
+\c 183.2848 38.784 185.9792 44.704 189.2096 45.248
+\c 192.4416 45.776 195.6688 43.088 195.6688 43.088
+\c 195.6688 54.4 203.2096 57.088 203.2096 57.088
+\l 201.056 60.864
+\c 197.8256 66.24 203.7504 74.32 203.7504 74.32
+\c 197.8256 74.32 198.3632 79.712 198.3632 82.944
+\c 198.3632 86.176 201.5936 93.168 201.5936 93.168
+\c 192.9792 87.792 192.4416 100.704 193.5152 104.48
+\c 194.5936 108.256 194.0528 108.784 194.0528 108.784
+\c 191.9008 105.552 186.5152 98.016 186.5152 98.016
+\c 184.9008 94.256 181.128 97.472 181.128 97.472
+\c 183.2848 78.096 173.5904 83.472 173.5904 83.472
+\c 179.5136 61.392 168.2064 62.464 168.2064 62.464
+\c 178.976 55.472 179.5136 42.016 179.5136 42.016
+\c 169.2816 44.16 152.5872 64.624 150.432 73.248
+\c 148.7408 80 151.3568 84.112 152.5632 85.552
+\c 153.4784 84.608 154.7568 84.016 156.1792 84.016
+\c 158.9536 84.016 161.2032 86.272 161.2032 89.04
+\c 161.2032 91.808 158.9536 94.064 156.1792 94.064
+\c 153.4 94.064 151.1504 91.808 151.1504 89.04
+\c 151.1504 88.448 151.2688 87.904 151.456 87.376
+\c 147.648 84.576 146.6624 79.712 146.6624 79.712
+\c 144.7184 83.984 141.0976 86.288 139.232 87.248
+\c 139.2592 87.488 139.304 87.712 139.304 87.968
+\c 139.304 91.136 136.7312 93.712 133.56 93.712
+\c 130.3872 93.712 127.816 91.136 127.816 87.968
+\c 127.816 84.8 130.3872 82.224 133.56 82.224
+\c 135.776 82.224 137.6752 83.488 138.6352 85.328
+\c 143 83.616 146.6624 75.392 146.6624 75.392
+\c 147.7408 64.096 163.3568 49.552 163.3568 49.552
+\c 157.9728 53.856 148.2784 52.24 127.8128 71.088
+\c 107.3504 89.936 120.8128 99.632 120.8128 99.632
+\c 106.8096 101.792 106.272 119.024 106.272 119.024
+\c 93.8848 113.104 85.2688 128.72 85.2688 128.72
+\c 79.344 115.248 61.5728 131.952 61.5728 131.952
+\c 71.8064 120.64 64.2656 108.256 64.2656 108.256
+\c 61.0352 109.872 52.416 110.944 45.9536 110.944
+\c 39.4912 110.944 30.3376 109.504 20.1072 113.808
+\c 5.6512 119.904 9.3344 122.784 9.3344 122.784
+\c 12.5632 121.712 15.256 124.944 13.6416 128.72
+\c 12.0256 132.48 5.0256 131.952 5.0256 125.488
+\c 5.0256 119.024 7.7184 114.176 22.7968 109.872
+\c 37.8752 105.552 58.8784 109.872 70.1904 102.32
+\c 81.4976 94.784 75.0384 88.32 75.0384 88.32
+\c 92.2688 89.408 97.1152 75.392 97.1152 75.392
+\c 103.5792 83.472 111.1184 82.4 119.7344 74.32
+\c 128.3536 66.24 139.1216 58.704 139.1216 58.704
+\c 139.1216 58.704 132.1216 58.704 129.4288 58.704
+\c 126.7376 58.704 122.4288 61.392 107.888 61.936
+\c 93.3472 62.464 83.1136 54.4 83.1136 54.4
+\c 83.1136 54.4 82.0656 54.736 80.0064 54.88
+\c 75.4256 63.872 82.5792 70.368 82.5792 70.368
+\c 70.3696 71.44 68.9312 88.688 68.9312 88.688
+\c 68.9312 88.688 65.344 81.504 57.8032 87.248
+\c 50.2656 92.992 48.8288 101.968 48.8288 101.968
+\c 43.0848 92.272 31.9536 101.968 30.8752 103.04
+\c 29.7968 104.128 29.0816 103.76 29.0816 103.76
+\c 39.8528 87.6 28.7216 83.296 28.7216 83.296
+\c 47.7504 74.32 37.3376 62.832 37.3376 62.832
+\c 54.216 64.912 55.7104 54.768 55.7136 51.152
+\c 55.6912 51.152 55.6688 51.168 55.6464 51.168
+\c 51.3376 51.696 51.3376 50.624 47.032 48.48
+\c 42.7216 46.32 42.7216 43.632 35.7216 42.016
+\c 28.7216 40.384 30.3376 37.696 25.4912 33.936
+\c 21.1728 30.576 17.2912 31.488 16.4944 31.728
+\c 16.4944 31.808 16.5168 31.872 16.5168 31.952
+\c 16.5168 34.736 14.2656 36.976 11.488 36.976
+\c 8.7136 36.976 6.4624 34.736 6.4624 31.952
+\c 6.4624 29.184 8.7136 26.928 11.488 26.928
+\c 13.504 26.928 15.2288 28.128 16.032 29.84
+\c 20.0064 29.36 24.4128 30.16 24.4128 30.16
+\l 23.8752 28.544
+\c 19.1136 25.52 17.1376 21.44 16.544 19.968
+\c 15.704 20.496 14.7136 20.832 13.6416 20.832
+\c 10.6688 20.832 8.256 18.416 8.256 15.44
+\c 8.256 12.464 10.6688 10.048 13.6416 10.048
+\c 16.616 10.048 19.0288 12.464 19.0288 15.44
+\c 19.0288 16.784 18.5184 17.984 17.7136 18.928
+\l 17.9504 18.848
+\c 19.0256 22.08 25.4912 25.856 28.1824 29.088
+\c 30.8752 32.32 31.4128 37.168 38.416 39.856
+\c 45.416 42.544 53.4944 49.008 53.4944 49.008
+\c 53.4944 49.008 62.1104 47.936 65.8816 47.936
+\c 69.6512 47.936 77.1904 53.328 77.1904 53.328
+\l 78.5376 53.008
+\c 78.0688 50.768 75.6256 48.512 68.9312 45.952
+\c 61.3936 43.088 56.0096 45.6 56.0096 45.6
+\c 56.0096 45.6 58.5216 39.136 52.4192 35.552
+\c 46.3168 31.952 42.0064 34.464 42.0064 34.464
+\c 44.16 22.624 33.0288 17.952 33.0288 17.952
+\c 33.0288 17.952 40.5696 15.44 38.416 10.416
+\c 36.2624 5.392 28.3632 2.16 26.5696 2.16
+\c 24.7728 2.16 24.4128 1.072 24.4128 1.072
+\c 33.7472 -1.44 47.3904 4.672 48.8288 4.672
+\c 50.2624 4.672 53.4944 0 53.4944 0
+\c 59.9568 14.368 70.728 10.768 70.728 10.768
+\c 65.7008 22.976 78.6288 26.208 78.6288 26.208
+\c 73.6 29.808 74.3184 40.928 77.1904 45.232
+\c 79.2096 48.272 80.1632 51.12 80.5504 52.544
+\l 81.904 52.24
+\c 83.9248 44.784 79.344 38.784 79.344 38.784
+\c 88.3216 34.464 82.216 23.696 82.216 23.696
+\c 95.144 17.6 92.6288 3.952 92.6288 3.952
+\c 98.3728 10.416 105.1968 7.536 112.7344 5.392
+\c 120.2752 3.232 124.944 2.88 124.944 2.88
+\l 125.6592 3.952
+\c 122.0688 5.024 115.9664 8.976 115.9664 8.976
+\c 105.9136 16.512 117.4032 25.136 117.4032 25.136
+\c 98.7312 30.528 106.9904 38.784 106.9904 38.784
+\c 94.0656 39.488 96.9376 49.552 96.9376 49.552
+\c 89.7808 45.968 85.584 49.776 84.0128 51.744
+\l 84.1904 51.696
+\c 86.3472 53.328 95.5008 57.088 107.3504 58.16
+\c 119.1968 59.248 122.9664 56.544 126.7376 55.472
+\c 130.5072 54.4 133.1968 56.016 133.1968 56.016
+\c 155.2784 50.624 177.8976 38.24 177.8976 38.24
+\c 181.056 33.136 185.4192 28.8 189.2592 25.584
+\c 174.1344 23.008 174.128 35.184 174.128 35.184
+\c 159.7696 31.6 157.9728 42.72 157.9728 42.72
+\c 157.9728 42.72 156.1792 35.904 147.9184 34.832
+\c 139.6624 33.76 133.56 37.696 133.56 37.696
+\c 143.6096 21.904 122.4288 14.72 122.4288 14.72
+\c 145.7664 15.088 147.9184 1.44 147.9184 1.44
+\c 147.9184 1.44 150.7904 11.488 158.6912 11.856
+\c 169.0976 12.32 172.6944 5.744 172.6944 5.744
+\c 173.5904 22.192 186.432 24.192 190.704 24.4
+\c 194.7072 21.216 197.8256 19.392 197.8256 19.392
+\c 197.2848 10.24 206.9824 13.472 206.9824 19.392
+\c 206.9824 25.312 199.4416 23.168 199.4416 23.168
+\o
+\m 99.8096 112.736
+\c 99.8096 112.736 97.2976 105.2 98.7312 102.688
+\c 98.7312 102.688 99.4496 100.176 97.656 100.176
+\c 95.8592 100.176 95.8592 104.128 95.8592 106.64
+\c 95.8592 109.152 95.8624 112.384 99.8096 112.736
+\o
+\m 94.784 93.344
+\c 94.784 93.344 91.5536 95.856 82.9344 93.712
+\c 82.9344 93.712 85.0912 96.576 91.1936 97.296
+\c 97.2944 98.016 97.656 95.136 94.784 93.344
+\o
+\m 105.5536 87.968
+\c 102.3216 91.92 94.4256 100.528 86.8848 105.2
+\c 85.4224 106.096 83.8816 107.024 82.3376 107.968
+\c 79.7504 107.808 75.904 107.456 72.1632 106.64
+\c 72.1632 106.64 70.9216 110.064 79.1664 109.952
+\c 73.9536 113.312 69.416 117.008 68.9312 121.36
+\c 68.9312 121.36 75.7312 114.88 81.3344 111.152
+\c 81.776 113.76 83.048 119.44 85.8096 120.272
+\c 85.8096 120.272 84.2 111.904 85.2528 108.576
+\c 90.2688 105.168 98.448 99.136 104.7536 93.376
+\c 104.8096 96.064 105.4816 100.288 109.144 100.528
+\c 109.144 100.528 106.9344 95.488 107.5472 90.72
+\c 109.8352 88.416 111.6816 86.24 112.7344 84.368
+\c 112.7344 84.368 108.7856 84.016 105.5536 87.968
+\o
+\m 54.2128 68.576
+\c 51.7008 68.576 49.1872 69.648 43.8 66.784
+\c 43.8 66.784 45.9568 72.88 54.5728 71.44
+\c 54.5728 71.44 56.728 68.576 54.2128 68.576
+\o
+\m 45.1184 81.232
+\c 43.6064 81.52 38.8448 82.576 37.3376 84.368
+\c 37.3376 84.368 40.36 85.12 43.2352 83.68
+\c 40.7664 87.104 38.7936 90.72 37.6976 94.432
+\c 37.6976 94.432 42.0224 88.992 48.4528 82.16
+\c 48.1136 84.32 48.0384 87.824 50.9824 88.32
+\c 50.9824 88.32 50.2976 83.872 50.2288 80.288
+\c 52.8816 77.536 55.8288 74.624 58.9312 71.792
+\c 59.128 73.968 60.072 80.608 64.2656 81.504
+\c 64.2656 81.504 61.8688 73.584 62.1696 68.928
+\c 64.4848 66.944 66.8592 65.04 69.248 63.328
+\c 69.1632 65.632 69.1728 71.872 71.8064 72.16
+\c 71.8064 72.16 71.272 64.656 72.288 61.232
+\c 73.8128 60.24 75.3312 59.328 76.832 58.528
+\c 76.832 58.528 76.4752 57.44 74.6784 57.808
+\c 74.1968 57.904 71.7312 59.184 68.2784 61.376
+\c 67.0224 61.312 62.0032 61.04 58.8816 61.04
+\c 58.8816 61.04 61.2624 63.104 65.4784 63.216
+\c 59.256 67.424 51.144 73.792 45.1184 81.232
+\o
+\m 67.4976 51.168
+\c 65.4752 49.648 60.6064 50.512 56.456 51.056
+\c 63.2224 60.08 72.9152 56.736 76.856 54.816
+\c 73.6448 54.368 69.3632 52.56 67.4976 51.168
+\o
+\m 74.3184 44.16
+\c 74.3184 44.16 72.6944 42.32 70.656 39.936
+\c 70.4128 39.024 69.6512 36.032 69.6512 34.832
+\c 69.6512 33.392 69.6512 31.6 69.6512 31.6
+\c 69.6512 31.6 67.4528 33.504 67.1872 35.824
+\c 65.7536 34.096 64.4192 32.432 63.5472 31.232
+\c 63.1536 30.688 62.5536 29.776 61.8032 28.608
+\c 62.7344 28 63.9072 26.576 63.9072 23.344
+\c 63.9072 17.952 63.5472 14.72 63.5472 14.72
+\c 63.5472 14.72 61.0352 20.832 60.6752 23.344
+\c 60.5152 24.464 60.2128 25.216 59.9248 25.712
+\c 57.328 21.728 53.832 16.528 50.3504 12.496
+\l 50.9824 6.816
+\l 48.648 10.624
+\c 45.6032 7.456 42.6976 5.52 40.5696 6.464
+\c 40.5696 6.464 46.3168 9.696 52.0592 18.672
+\c 52.1136 18.752 52.1664 18.832 52.2192 18.912
+\c 50.2688 17.84 47.4192 17.248 44.16 19.744
+\c 44.16 19.744 50.2848 20.544 53.5872 20.992
+\c 54.8192 22.832 56.216 24.832 57.6912 26.864
+\c 55.6848 27.28 52.328 28.096 51.3408 29.088
+\l 59.3136 29.088
+\c 61.0496 31.424 62.8384 33.76 64.5408 35.888
+\c 62.9008 35.728 60.9152 35.68 59.9568 36.256
+\l 66.8816 38.752
+\c 69.5248 41.904 71.7408 44.24 72.8816 44.88
+\c 72.8816 44.88 75.0384 45.952 74.3184 44.16
+\o
+\m 84.7312 48.464
+\c 84.7312 48.464 86.784 44.144 89.8624 38.352
+\l 96.5792 34.112
+\c 96.5792 34.112 94.128 33.968 92.0256 34.352
+\c 94.3344 30.176 96.9904 25.632 99.7072 21.536
+\l 99.8096 21.536
+\l 105.1968 19.744
+\c 105.1968 19.744 103.1072 19.616 101.2288 19.312
+\c 103.4448 16.144 105.656 13.392 107.7104 11.488
+\c 107.7104 11.488 104.0288 12.592 99.0416 18.752
+\c 98.7248 18.624 98.4816 18.48 98.3728 18.304
+\c 97.656 17.232 99.0912 14.368 95.8592 14
+\l 97.4784 20.8
+\c 95.9344 22.928 94.3008 25.536 92.6288 28.72
+\c 92.2752 29.392 91.9472 30.032 91.616 30.656
+\c 91.576 28.896 90.7824 27.344 88.3184 26.928
+\c 88.3184 26.928 89.8224 30.32 90.1072 33.552
+\c 84.2224 44.88 82.5104 48.784 84.7312 48.464
+\o
+\m 188.1312 51.344
+\c 188.1312 51.344 188.8464 57.808 194.2352 57.808
+\c 194.2352 57.808 189.9248 51.696 188.1312 51.344
+\o
+\m 179.1536 61.76
+\c 179.1536 61.76 184.5408 62.464 184.9008 57.088
+\l 184.1824 54.208
+\c 184.1824 54.208 181.3104 61.76 179.1536 61.76
+\o
+\m 182.3872 43.808
+\c 182.3872 43.808 181.6688 45.6 182.3872 47.392
+\c 183.104 49.184 185.6192 55.296 185.6192 63.552
+\c 185.6192 65.408 185.528 67.728 185.448 70.272
+\c 184.6128 71.536 180.7504 77.28 179.1536 77.904
+\c 179.1536 77.904 183.4096 79.2 185.3536 74
+\c 185.216 82.08 185.5968 91.184 189.2096 94.784
+\c 189.2096 94.784 187.4224 85.264 187.6464 77.6
+\c 189.016 79.936 191.0288 82.4 193.5152 82.576
+\c 193.5152 82.576 189.8 76.88 187.928 73.296
+\c 188.0688 70.896 188.1408 67.936 188.0512 64.816
+\c 189.3504 66.592 192.3904 70.448 194.5936 70.736
+\c 194.5936 70.736 192.2624 62.112 187.9312 62.096
+\c 187.4848 54.608 186.016 46.784 182.3872 43.808
+\o
+\m 177.7184 22.256
+\c 177.7184 22.256 175.2064 23.344 170.6032 24.048
+\c 169.16 22.384 165.7936 18.256 165.5136 15.44
+\c 165.5136 15.44 162.8512 20.464 167.8624 24.368
+\c 163.4384 24.784 157.6352 24.736 150.672 23.408
+\c 149.2752 22.272 146.5568 19.776 145.7664 16.88
+\c 145.7664 16.88 144.6384 20.064 146.3504 22.448
+\c 142.8096 21.552 139.0192 20.32 134.9968 18.672
+\c 134.9968 18.672 138.7008 22.736 146.8912 25.232
+\c 145.2656 26.736 142.8816 29.408 143.6096 31.6
+\c 143.6096 31.6 148.2688 27.232 151.5536 26.368
+\c 155.3184 27.056 159.7792 27.36 164.9664 26.976
+\c 163.4192 28.32 162.1136 30.192 162.9968 32.32
+\c 162.9968 32.32 168.384 27.296 171.256 26.208
+\c 171.256 26.208 182.0288 25.488 177.7184 22.256
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian79.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian79.pgf
new file mode 100644
index 0000000000..298250d497
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian79.pgf
@@ -0,0 +1,296 @@
+\r 0 0 249 122
+\i
+\m 198.5439 18.6138
+\c 195.7695 18.6138 193.5183 16.3578 193.5183 13.5898
+\c 193.5183 10.8058 195.7695 8.5658 198.5439 8.5658
+\c 201.3183 8.5658 203.5727 10.8058 203.5727 13.5898
+\c 203.5727 16.3578 201.3183 18.6138 198.5439 18.6138
+\o
+\s
+\m 0 -0.0581
+\l 248.8094 -0.0581
+\l 248.8094 123.8137
+\l 0 123.8137
+\o
+\i
+\m 10.0495 86.4698
+\c 10.0495 89.2378 7.8015 91.4938 5.0255 91.4938
+\c 2.2495 91.4938 -0.0001 89.2378 -0.0001 86.4698
+\c -0.0001 83.6858 2.2495 81.4458 5.0255 81.4458
+\c 7.8015 81.4458 10.0495 83.6858 10.0495 86.4698
+\o
+\s
+\m 46.6751 82.1658
+\c 47.3903 82.1658 48.0687 82.3098 48.6815 82.5818
+\c 49.5695 81.3658 53.0623 76.7738 54.9311 76.7738
+\c 57.0847 76.7738 59.2415 74.9818 59.2415 74.9818
+\l 59.9567 76.4218
+\c 59.5967 78.5658 57.4463 78.2138 54.2127 80.3578
+\c 52.4447 81.5418 51.3215 83.0458 50.6671 84.1658
+\c 51.3071 84.9978 51.7007 86.0378 51.7007 87.1898
+\c 51.7007 89.9578 49.4495 92.2138 46.6751 92.2138
+\c 43.8975 92.2138 41.6463 89.9578 41.6463 87.1898
+\c 41.6463 84.4058 43.8975 82.1658 46.6751 82.1658
+\o
+\s
+\m 147.9183 53.4298
+\c 147.9183 53.4298 147.7119 53.4778 147.3759 53.5258
+\c 147.6655 53.3978 147.9183 53.4298 147.9183 53.4298
+\o
+\s
+\m 0 -0.0581
+\l 248.8094 -0.0581
+\l 248.8094 123.8137
+\l 0 123.8137
+\o
+\i
+\m 225.4671 36.1978
+\c 205.7247 36.5658 194.5935 32.6138 188.8495 29.7338
+\c 183.1039 26.8698 181.3087 25.0618 176.2847 25.0618
+\c 171.2559 25.0618 162.9999 35.4778 162.6415 42.3098
+\c 162.2815 49.1258 168.0255 54.1498 175.2047 53.7978
+\c 182.3871 53.4298 186.3359 44.1018 186.3359 44.1018
+\c 186.3359 44.1018 187.4159 48.7738 196.7471 52.3578
+\c 206.0847 55.9418 213.2623 48.4058 213.2623 48.4058
+\c 213.2623 48.4058 208.9567 53.7978 215.4191 60.9818
+\c 221.8815 68.1498 229.4223 68.5178 229.4223 68.5178
+\c 218.6495 88.9818 248.8095 99.0298 248.8095 99.0298
+\c 219.3695 96.1498 220.0847 115.1898 220.0847 115.1898
+\c 217.5711 106.5658 208.5967 104.4218 201.7759 104.4218
+\c 194.9535 104.4218 189.5695 111.9578 189.5695 111.9578
+\c 189.5695 111.9578 192.7999 106.9338 185.6191 97.2378
+\c 178.4383 87.5418 165.8703 89.3338 165.8703 89.3338
+\c 170.8975 84.3098 170.8975 81.0778 168.3839 73.5418
+\c 165.8703 66.0058 158.6911 60.6138 159.7663 44.8218
+\c 160.8447 29.0138 173.4127 22.5498 173.4127 22.5498
+\c 168.7439 18.2458 156.5343 17.5258 152.5871 18.2458
+\c 150.2847 18.6618 148.4751 20.6778 147.3663 22.2778
+\c 148.7711 23.1578 149.7151 24.7258 149.7151 26.5018
+\c 149.7151 29.2858 147.4655 31.5258 144.6911 31.5258
+\c 141.9119 31.5258 139.6623 29.2858 139.6623 26.5018
+\c 139.6623 23.7338 141.9119 21.4778 144.6911 21.4778
+\c 145.1359 21.4778 145.5631 21.5578 145.9743 21.6698
+\l 148.9967 17.8938
+\c 146.1247 17.5258 142.5343 17.8938 138.2255 19.3338
+\c 133.9183 20.7578 130.3279 23.2858 122.7871 24.7098
+\c 115.2495 26.1498 109.5039 32.2458 108.7871 37.6378
+\c 108.0687 43.0298 112.0191 49.4778 121.3535 50.9178
+\c 130.6879 52.3578 132.8415 47.6858 132.8415 47.6858
+\c 134.2783 52.3578 140.7407 54.5178 143.2527 54.1498
+\c 145.0191 53.9098 146.5871 53.6538 147.3759 53.5258
+\c 146.7599 53.7978 145.9775 54.7898 147.1999 58.4698
+\c 148.9967 63.8458 156.1775 64.5658 156.1775 64.5658
+\c 151.1535 67.4298 153.6655 72.8218 154.7407 74.6138
+\c 155.8191 76.4218 158.3311 83.5898 158.3311 86.4698
+\c 158.3311 89.3338 155.8191 88.2618 155.8191 88.2618
+\c 156.5343 76.0538 143.6095 71.7498 140.7407 72.8218
+\c 137.8655 73.8938 135.7119 76.0538 135.7119 76.0538
+\c 138.9439 71.3818 135.3535 68.5178 132.4815 64.9178
+\c 129.6095 61.3338 126.0191 66.0058 126.0191 66.0058
+\c 127.0975 55.9418 122.0687 56.6618 115.6047 52.0058
+\c 109.1439 47.3338 106.2703 42.6618 106.2703 42.6618
+\c 102.6847 67.0778 119.9151 76.0538 122.7871 76.0538
+\c 125.6591 76.0538 126.3775 76.4218 126.3775 76.4218
+\c 126.3775 76.4218 122.4287 78.5658 122.4287 82.8698
+\c 122.4287 87.1898 129.9695 92.5658 131.4047 92.5658
+\c 132.8415 92.5658 132.1215 94.0058 132.1215 94.0058
+\c 129.2495 94.0058 126.7359 95.0778 125.6591 98.3098
+\c 124.5807 101.5418 126.7359 104.7738 128.5311 106.9338
+\c 130.3279 109.0938 129.9695 110.5178 129.9695 110.5178
+\c 126.0159 107.2858 121.3535 108.7258 120.2751 113.3978
+\c 119.1967 118.0538 123.5071 121.2858 123.5071 121.2858
+\c 120.6351 123.8138 118.4783 119.8618 116.3247 116.2618
+\c 114.1727 112.6778 113.0943 111.6058 109.8623 112.6778
+\c 106.6319 113.7498 106.6319 113.3978 106.6319 113.3978
+\c 106.6319 113.3978 109.5039 109.7978 107.3503 105.8458
+\c 105.1967 101.9098 103.0415 101.9098 100.1695 101.9098
+\c 97.2975 101.9098 98.3711 101.1898 98.3711 101.1898
+\c 103.3967 97.5898 103.3999 93.6538 102.6815 89.7018
+\c 101.9663 85.7498 97.6559 85.3818 94.7839 85.7498
+\c 91.9087 86.1018 92.6319 84.3098 92.6319 84.3098
+\c 105.1967 79.2858 103.3999 72.8218 103.7599 54.1498
+\c 104.1183 35.4778 107.7103 32.6138 107.7103 32.6138
+\l 106.2703 32.2458
+\c 99.8095 34.4058 84.7311 54.1498 81.1407 58.4698
+\c 77.5503 62.7738 74.3183 63.8458 74.3183 63.8458
+\c 70.7279 67.4298 65.3439 71.3818 65.3439 71.3818
+\l 65.9935 81.4778
+\c 68.6319 81.6218 70.7279 83.7818 70.7279 86.4698
+\c 70.7279 89.2378 68.4783 91.4938 65.7039 91.4938
+\c 62.9279 91.4938 60.6783 89.2378 60.6783 86.4698
+\c 60.6783 84.4858 61.8351 82.7898 63.5007 81.9738
+\l 63.1871 73.1738
+\c 57.3871 75.1098 52.4447 74.0698 50.4703 73.4938
+\c 49.5663 74.8218 48.0447 75.7018 46.3151 75.7018
+\c 43.5407 75.7018 41.2911 73.4458 41.2911 70.6618
+\c 41.2911 67.8938 43.5407 65.6378 46.3151 65.6378
+\c 49.0911 65.6378 51.3391 67.8938 51.3391 70.6618
+\c 51.3391 70.9498 51.3039 71.2058 51.2591 71.4618
+\l 51.3391 71.3818
+\c 66.4191 73.5418 69.6495 63.8458 72.8815 61.6858
+\c 76.1119 59.5418 78.6287 56.3098 81.5007 52.3578
+\c 84.3711 48.4058 95.1407 37.9898 95.1407 37.9898
+\c 95.1407 37.9898 92.2671 38.3578 69.6495 48.7738
+\c 47.0319 59.1738 26.5695 72.8218 18.3103 84.3098
+\c 10.0527 95.7978 9.3343 102.9818 9.3343 102.9818
+\c 15.4383 100.1018 21.9007 108.7258 16.1567 111.9578
+\c 10.4095 115.1898 3.5871 110.1658 5.3839 101.5418
+\c 7.1775 92.9338 15.0783 78.5658 29.0815 68.5178
+\c 43.0847 58.4698 60.3151 48.0538 60.3151 48.0538
+\c 45.2383 44.4538 40.2095 54.8698 40.2095 54.8698
+\c 39.4943 53.0778 40.9279 50.5658 40.9279 50.5658
+\c 30.5151 37.9898 20.8223 40.1498 17.9503 41.5898
+\c 15.0783 43.0298 16.5151 40.8698 16.5151 40.8698
+\c 18.3103 38.3578 25.4911 34.0378 17.2319 28.3098
+\c 11.0159 23.9738 2.5119 14.6618 2.5119 14.6618
+\c 13.6415 20.4058 29.7967 15.3818 29.7967 15.3818
+\c 23.3359 11.4298 22.2591 4.6138 22.2591 4.6138
+\c 27.2879 8.1978 35.1839 7.4778 42.3631 6.4058
+\c 49.5439 5.3178 54.9311 -0.0582 54.9311 -0.0582
+\c 54.9311 -0.0582 56.7247 6.4058 65.3439 7.4778
+\c 73.9599 8.5498 77.9071 3.5258 77.9071 3.5258
+\c 76.8319 12.5018 82.2159 13.5898 84.7311 14.2938
+\c 87.2415 15.0138 90.8351 20.4058 90.8351 20.4058
+\c 96.2191 23.6378 109.8623 22.5498 115.9663 21.1258
+\c 122.0687 19.6858 127.4527 18.9658 127.4527 18.9658
+\c 131.4047 14.6618 144.3311 14.6618 144.3311 14.6618
+\c 140.9535 9.3178 135.3839 9.4778 133.1311 9.7978
+\c 132.2383 11.2058 130.6783 12.1498 128.8943 12.1498
+\c 126.1151 12.1498 123.8671 9.8938 123.8671 7.1258
+\c 123.8671 4.3418 126.1151 2.1018 128.8943 2.1018
+\c 131.6687 2.1018 133.9183 4.3418 133.9183 7.1258
+\c 133.9183 7.2698 133.8879 7.4138 133.8703 7.5738
+\c 135.3071 7.7018 137.9151 7.9418 139.6623 8.1978
+\c 142.1711 8.5658 149.7151 14.6618 149.7151 14.6618
+\c 166.2319 11.7818 178.7967 19.3338 187.4159 23.6378
+\c 196.0319 27.9418 205.3663 31.1738 207.8783 31.8938
+\c 210.3903 32.6138 210.3903 30.4538 210.3903 30.4538
+\c 207.8751 27.5898 204.6463 20.4058 204.6463 18.9658
+\c 204.6463 17.5258 205.7247 16.4538 209.3119 23.9898
+\c 212.9039 31.5418 219.3695 31.5258 221.5215 31.1738
+\c 223.6751 30.8218 226.5471 26.5018 226.5471 24.7098
+\c 226.5471 22.9178 229.0591 22.1978 229.0591 24.3578
+\c 229.0591 26.5018 225.8287 32.6138 225.8287 32.6138
+\c 229.7807 32.6138 235.8815 32.2458 240.1903 28.6618
+\c 244.5007 25.0618 240.5503 23.9898 239.4703 22.5498
+\c 238.3935 21.1258 238.3935 17.5258 242.3471 17.1738
+\c 246.2943 16.8218 248.0911 18.6138 248.0911 23.2858
+\c 248.0911 27.9418 245.2159 35.8458 225.4671 36.1978
+\o
+\m 199.6223 97.2378
+\c 199.6223 97.2378 192.7999 86.4698 192.4415 83.5898
+\c 192.4415 83.5898 190.2847 82.1498 190.2847 85.3818
+\c 190.2847 88.6138 193.5151 96.8858 199.6223 97.2378
+\o
+\m 164.0783 57.3818
+\c 164.9087 59.2698 168.7567 63.6218 174.3439 68.7418
+\l 174.1311 68.8698
+\c 174.1311 68.8698 174.1279 82.1498 179.1567 82.8698
+\c 179.1567 82.8698 176.6255 76.2298 177.5039 71.5578
+\c 186.9151 79.6858 199.8911 88.8538 212.0447 92.9818
+\c 212.6047 95.3658 214.4879 100.7418 220.0879 100.4698
+\l 215.1711 93.9258
+\c 219.9663 95.2058 224.5759 95.6058 228.7039 94.7258
+\c 228.7039 94.7258 221.6783 93.4298 211.6879 89.2698
+\c 213.6319 88.7738 216.8687 87.8938 219.0095 87.1898
+\c 222.2415 86.1018 219.7247 84.6778 219.7247 84.6778
+\c 219.7247 84.6778 212.3775 87.2058 208.7535 88.0058
+\c 205.1183 86.3898 201.1807 84.3898 197.0943 81.9738
+\c 200.7039 81.5258 208.9503 80.0058 213.6255 75.3338
+\c 213.6255 75.3338 198.9039 78.9338 192.4447 78.9338
+\l 192.7807 79.3018
+\c 188.9631 76.8218 185.0751 73.9418 181.2415 70.6618
+\c 186.4095 70.4218 196.2351 69.0938 203.5727 62.7738
+\c 203.5727 62.7738 190.4015 67.5898 178.0447 67.7978
+\c 173.2815 63.3818 168.6591 58.2618 164.4383 52.3578
+\c 164.4383 52.3578 161.2015 50.9178 164.0783 57.3818
+\o
+\m 137.8671 58.1018
+\l 142.1743 58.4698
+\c 142.1743 58.4698 140.3807 54.1498 137.8671 58.1018
+\o
+\m 132.8415 58.8218
+\c 134.0559 59.6538 135.8095 60.8538 137.7391 62.1498
+\c 137.4447 63.4138 137.6495 65.4778 141.1007 67.0778
+\l 140.3743 63.9418
+\c 145.2255 67.2378 150.2095 70.7098 150.4351 71.3818
+\c 150.4351 71.3818 146.8447 61.3338 127.8159 53.7978
+\c 127.8159 53.7978 124.9439 52.7098 124.9439 54.1498
+\c 124.9439 55.5898 128.1759 55.5898 132.8415 58.8218
+\o
+\m 112.0191 76.7738
+\l 112.3775 80.0058
+\l 117.7631 81.7978
+\c 117.7631 81.7978 115.2495 76.7738 112.0191 76.7738
+\o
+\m 114.8911 88.2618
+\c 112.0191 89.3338 118.1215 92.9338 121.3535 92.9338
+\c 121.3535 92.9338 117.7631 87.1898 114.8911 88.2618
+\o
+\m 122.0703 102.9818
+\c 122.0703 102.9818 119.9151 97.5898 117.0447 97.5898
+\c 117.0447 97.5898 115.6095 97.5898 117.0447 99.7498
+\c 118.4783 101.9098 122.0703 102.9818 122.0703 102.9818
+\o
+\m 108.3279 80.8218
+\c 108.6975 83.2218 109.1279 85.7658 109.6415 88.3258
+\l 109.5071 88.2618
+\c 109.5071 88.2618 106.6319 91.8458 108.7871 94.3578
+\c 108.7871 94.3578 109.2623 92.4858 110.2015 90.9978
+\c 110.6703 93.1098 111.1935 95.2058 111.7743 97.2058
+\c 111.1775 98.0538 109.7871 100.5338 110.9391 103.7018
+\l 113.1695 101.4778
+\c 114.4591 104.9818 115.9775 107.9418 117.7631 109.7978
+\c 117.7631 109.7978 110.5839 79.2858 109.8623 73.8938
+\c 109.1471 68.5178 106.6319 66.3578 106.6319 66.3578
+\c 106.6319 66.3578 106.9871 71.2378 107.8911 77.7978
+\c 106.8287 79.1098 105.1967 81.5258 105.1967 83.9578
+\l 108.3279 80.8218
+\o
+\m 68.2159 46.2618
+\c 70.0127 44.8218 77.1903 41.2218 79.3471 41.2218
+\c 79.3471 41.2218 80.7807 39.0778 78.6287 39.0778
+\c 78.6287 39.0778 68.9343 41.9418 65.7039 46.2618
+\c 65.7039 46.2618 66.4191 47.6858 68.2159 46.2618
+\o
+\m 33.3903 31.5418
+\c 33.3903 31.5418 28.0015 31.5418 26.2095 34.0378
+\c 26.2095 34.0378 33.3903 35.8458 33.3903 31.5418
+\o
+\m 90.1151 26.5018
+\c 86.5279 27.2218 80.7807 25.7978 72.1663 16.8218
+\c 72.1663 16.8218 70.7279 17.5258 72.5247 19.6858
+\c 74.3183 21.8458 78.6287 26.8698 83.2975 28.3098
+\c 83.2975 28.3098 79.2447 30.0058 73.5871 31.3498
+\c 70.5007 29.7978 64.1247 25.7818 54.5711 15.7338
+\c 54.5711 15.7338 58.1695 26.8218 69.3775 32.2138
+\c 66.7183 32.6618 63.8783 32.9658 61.0351 32.9658
+\c 58.6815 32.9658 56.2703 32.8698 53.7599 32.6298
+\c 50.9839 30.1018 44.0751 23.7658 42.3663 21.4778
+\c 42.3663 21.4778 40.6191 26.7418 49.2383 32.0538
+\c 40.8751 30.7578 31.0847 27.8138 17.9535 21.8458
+\c 17.9535 21.8458 25.8495 30.8218 46.3151 34.7738
+\c 47.9663 35.0778 49.6463 35.3178 51.3359 35.4778
+\c 51.3391 35.4778 45.9535 41.2218 43.4447 41.9418
+\c 43.4447 41.9418 48.1967 45.1098 53.8351 35.6698
+\c 59.3743 35.9898 64.9743 35.5738 70.1279 34.7738
+\c 69.2943 36.4378 68.2159 38.8378 68.2159 40.1498
+\c 68.2159 40.1498 69.2911 39.7978 70.7279 37.6378
+\c 71.4463 36.5658 72.7087 35.2058 73.7839 34.1338
+\c 84.1071 32.0858 91.8703 28.6618 92.2671 26.8698
+\c 92.2671 26.8698 93.7071 25.7978 90.1151 26.5018
+\o
+\m 84.7311 37.9898
+\c 84.7311 37.9898 92.2703 35.4778 100.1695 31.8938
+\c 108.0687 28.3098 113.0943 24.3578 113.0943 24.3578
+\c 113.0943 24.3578 91.1935 25.0618 84.7311 37.9898
+\o
+\s
+\m 211.1087 18.2458
+\c 208.3343 18.2458 206.0847 16.0058 206.0847 13.2218
+\c 206.0847 10.4538 208.3343 8.1978 211.1087 8.1978
+\c 213.8879 8.1978 216.1359 10.4538 216.1359 13.2218
+\c 216.1359 16.0058 213.8879 18.2458 211.1087 18.2458
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian8.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian8.pgf
new file mode 100644
index 0000000000..3479c8e602
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian8.pgf
@@ -0,0 +1,876 @@
+\r 0 0 134 134
+\i
+\m 62.2243 106.224
+\c 62.4634 107.5937 61.6807 109.5941 61.0423 110.5527
+\c 60.8347 110.863 60.4117 110.948 60.1014 110.7405
+\c 59.7911 110.5329 59.7081 110.11 59.9136 109.7996
+\c 60.3722 109.1098 61.483 107.9713 62.2243 106.224
+\o
+\s
+\m 57.1938 102.9527
+\c 57.4152 103.3737 55.8181 108.4239 54.6144 107.5424
+\c 54.476 107.4376 54.3633 107.2913 54.3258 107.1253
+\c 54.1914 106.5323 54.8792 105.9512 55.2054 105.5381
+\c 55.8735 104.6822 56.5277 103.8145 57.1938 102.9527
+\o
+\s
+\m 48.7399 99.7783
+\c 49.07 99.9542 47.5164 103.5595 47.5164 103.5595
+\c 47.3444 103.8916 46.9313 104.0181 46.5993 103.8441
+\c 46.2712 103.6682 46.1427 103.2591 46.3166 102.927
+\c 46.3166 102.927 47.0934 100.9662 48.7399 99.7783
+\o
+\s
+\m 46.9274 98.3789
+\c 47.3029 98.3571 44.6998 101.747 44.6998 101.747
+\c 44.4448 102.0237 44.0119 102.0336 43.7431 101.7786
+\c 43.4683 101.5256 43.4545 101.0947 43.7095 100.8219
+\c 43.7095 100.8219 45.2868 98.4816 46.9274 98.3789
+\o
+\s
+\m 64.954 108.0405
+\c 65.2524 109.7028 63.9696 112.2388 63.9696 112.2388
+\c 63.8273 112.5847 63.432 112.7527 63.0841 112.6123
+\c 62.7382 112.468 62.5722 112.0727 62.7145 111.7248
+\c 62.7145 111.7248 64.8907 107.6728 64.954 108.0405
+\o
+\s
+\m 26.5091 53.0337
+\c 26.6238 53.0792 30.8201 54.7059 32.012 56.0658
+\c 30.2192 56.0639 26.0703 54.3166 26.0387 54.3067
+\c 25.6889 54.1742 25.509 53.7868 25.6375 53.437
+\c 25.7699 53.0832 26.1573 52.9053 26.5091 53.0337
+\o
+\s
+\m 87.0879 20.2598
+\c 87.5425 18.5243 90.2643 14.9408 90.2821 14.917
+\c 90.4936 14.6087 90.9185 14.5316 91.2249 14.7431
+\c 91.5333 14.9566 91.6103 15.3796 91.3988 15.6879
+\c 91.3277 15.7907 88.7047 19.4474 87.0879 20.2598
+\o
+\s
+\m 32.4409 52.7966
+\c 28.9502 51.4268 28.1043 51.1481 24.2163 50.5749
+\c 23.8447 50.5175 23.5877 50.1736 23.645 49.804
+\c 23.6984 49.4324 24.0443 49.1774 24.4139 49.2327
+\c 25.7225 49.4265 26.9677 49.7526 28.0608 50.1123
+\c 30.4248 50.8891 32.7868 52.9349 32.4409 52.7966
+\o
+\s
+\m 42.318 53.5556
+\c 41.9681 53.431 41.7803 53.0416 41.9088 52.6878
+\c 42.0333 52.336 42.4227 52.1522 42.7726 52.2767
+\c 42.7726 52.2767 44.8322 53.518 45.2967 53.8955
+\c 45.5853 54.1347 42.318 53.5556 42.318 53.5556
+\o
+\s
+\m 46.9254 52.1087
+\c 45.7375 51.5987 43.3774 50.9188 43.3774 50.9188
+\c 43.0651 50.7112 42.9821 50.2922 43.1877 49.9799
+\c 43.3972 49.6676 43.8182 49.5826 44.1285 49.7901
+\c 44.1285 49.7901 46.6408 50.5808 46.9254 52.1087
+\o
+\s
+\m 50.9517 9.6593
+\c 50.926 9.2877 51.2087 8.9655 51.5803 8.9359
+\c 51.9539 8.9102 52.278 9.1928 52.3057 9.5644
+\c 52.3057 9.5644 51.7285 11.9541 51.5823 13.235
+\c 50.3963 12.2348 50.9517 9.6593 50.9517 9.6593
+\o
+\s
+\m 45.0279 49.2743
+\c 44.7176 49.0647 44.6405 48.6398 44.85 48.3334
+\c 45.0635 48.0231 45.4845 47.946 45.7948 48.1575
+\c 45.7948 48.1575 47.8841 49.2268 48.3802 50.7587
+\c 48.4948 51.1164 45.0279 49.2743 45.0279 49.2743
+\o
+\s
+\m 55.1303 39.8498
+\c 55.1085 39.4782 55.3912 39.1561 55.7648 39.1323
+\c 56.1383 39.1066 56.4605 39.3932 56.4862 39.7688
+\c 56.4862 39.7688 56.3044 42.3324 56.0019 42.8938
+\c 55.6284 42.9175 55.1303 39.8498 55.1303 39.8498
+\o
+\s
+\m 58.7534 40.0139
+\c 58.8067 39.6423 59.1487 39.3853 59.5203 39.4387
+\c 59.8879 39.4901 60.1488 39.836 60.0935 40.2056
+\c 59.8385 42.0024 60.3722 43.6884 60.562 44.2833
+\c 60.2556 44.4929 58.4173 42.3601 58.7534 40.0139
+\o
+\s
+\m 86.4791 46.7225
+\c 86.236 46.4339 88.3727 44.2577 88.3727 44.2577
+\c 88.6593 44.0185 89.0862 44.056 89.3274 44.3446
+\c 89.5665 44.6332 89.527 45.0582 89.2404 45.2993
+\c 89.2404 45.2993 86.7183 47.0091 86.4791 46.7225
+\o
+\s
+\m 84.6626 18.8861
+\c 84.3622 18.6587 85.9494 16.0595 85.9494 16.0595
+\c 86.1747 15.7611 86.5997 15.6998 86.9001 15.9271
+\c 87.1986 16.1524 87.2559 16.5774 87.0325 16.8778
+\c 87.0325 16.8778 84.9591 19.1114 84.6626 18.8861
+\o
+\s
+\m 56.7076 10.2187
+\c 56.4447 10.1732 56.6088 8.0128 56.6088 8.0128
+\c 56.6562 7.7519 56.9092 7.576 57.1681 7.6214
+\c 57.431 7.6669 57.605 7.9179 57.5595 8.1808
+\c 57.5595 8.1808 56.9705 10.2661 56.7076 10.2187
+\o
+\s
+\m 78.7961 17.789
+\c 78.5529 17.6863 79.2052 15.6187 79.2052 15.6187
+\c 79.31 15.3756 79.5907 15.261 79.8357 15.3657
+\c 80.0808 15.4705 80.1955 15.7531 80.0907 15.9963
+\c 80.0907 15.9963 79.0431 17.8938 78.7961 17.789
+\o
+\s
+\m 90.1121 21.4971
+\c 89.8907 21.3489 90.9067 19.4355 90.9067 19.4355
+\c 91.051 19.2142 91.3494 19.1529 91.5728 19.3011
+\c 91.7942 19.4435 91.8535 19.7439 91.7092 19.9673
+\c 91.7092 19.9673 90.3354 21.6414 90.1121 21.4971
+\o
+\s
+\m 90.5548 46.0148
+\c 90.8731 45.8132 91.2921 45.9121 91.4917 46.2283
+\c 91.6874 46.5466 91.5945 46.9656 91.2723 47.1632
+\c 91.2723 47.1632 88.1296 48.7722 87.9299 48.454
+\c 87.7303 48.1377 90.5548 46.0148 90.5548 46.0148
+\o
+\s
+\m 82.0772 18.2278
+\c 81.6681 17.9808 83.6367 13.9406 83.6367 13.9406
+\c 83.8799 13.5315 84.4096 13.399 84.8188 13.6441
+\c 85.2279 13.8872 85.3603 14.413 85.1152 14.8241
+\c 85.1152 14.8241 82.4844 18.471 82.0772 18.2278
+\o
+\s
+\m 49.5108 14.2055
+\c 49.1787 14.3715 47.6429 12.0134 48.2893 9.7324
+\c 48.392 9.3707 48.7676 9.1632 49.1273 9.264
+\c 49.4891 9.3668 49.6966 9.7403 49.5938 10.1021
+\c 49.0977 11.8494 49.406 13.5888 49.5108 14.2055
+\o
+\s
+\m 45.2868 9.3905
+\c 45.3362 8.9359 45.7474 8.6058 46.204 8.6611
+\c 46.6566 8.7125 46.9827 9.1217 46.9313 9.5783
+\c 46.6803 11.7822 47.3958 13.82 47.6508 14.5395
+\c 47.2812 14.8083 44.9626 12.2684 45.2868 9.3905
+\o
+\s
+\m 85.4177 84.432
+\c 87.25 84.6909 88.0268 85.695 88.0268 85.695
+\c 88.3213 85.9302 88.3628 86.3572 88.1256 86.6458
+\c 87.8884 86.9363 87.4615 86.9798 87.1709 86.7426
+\c 87.1709 86.7426 85.048 84.3826 85.4177 84.432
+\o
+\s
+\m 41.7942 98.7248
+\c 42.2923 98.7248 42.6955 99.13 42.6955 99.63
+\c 42.6955 100.1262 42.2923 100.5333 41.7942 100.5333
+\c 41.2921 100.5333 40.8909 100.1262 40.8909 99.63
+\c 40.8909 99.13 41.2921 98.7248 41.7942 98.7248
+\o
+\s
+\m 49.0246 102.5673
+\c 49.5246 102.5673 49.9298 102.9725 49.9298 103.4706
+\c 49.9298 103.9687 49.5246 104.3739 49.0246 104.3739
+\c 48.5265 104.3739 48.1213 103.9687 48.1213 103.4706
+\c 48.1213 102.9725 48.5265 102.5673 49.0246 102.5673
+\o
+\s
+\m 51.8511 105.2792
+\c 52.1634 105.2792 52.4164 105.5302 52.4164 105.8445
+\c 52.4164 106.1548 52.1634 106.4078 51.8511 106.4078
+\c 51.5408 106.4078 51.2858 106.1548 51.2858 105.8445
+\c 51.2858 105.5302 51.5408 105.2792 51.8511 105.2792
+\o
+\s
+\m 58.0655 106.6331
+\c 58.5676 106.6331 58.9708 107.0403 58.9708 107.5404
+\c 58.9708 108.0385 58.5676 108.4437 58.0655 108.4437
+\c 57.5674 108.4437 57.1622 108.0385 57.1622 107.5404
+\c 57.1622 107.0403 57.5674 106.6331 58.0655 106.6331
+\o
+\s
+\m 74.6274 111.4797
+\c 75.1255 111.4797 75.5327 111.8869 75.5327 112.387
+\c 75.5327 112.8871 75.1255 113.2883 74.6274 113.2883
+\c 74.1254 113.2883 73.7221 112.8871 73.7221 112.387
+\c 73.7221 111.8869 74.1254 111.4797 74.6274 111.4797
+\o
+\s
+\m 78.6656 107.1727
+\c 79.1657 107.1727 79.5689 107.5779 79.5689 108.078
+\c 79.5689 108.5781 79.1657 108.9813 78.6656 108.9813
+\c 78.1675 108.9813 77.7603 108.5781 77.7603 108.078
+\c 77.7603 107.5779 78.1675 107.1727 78.6656 107.1727
+\o
+\s
+\m 28.1181 89.9111
+\c 28.6182 89.9111 29.0214 90.3124 29.0214 90.8144
+\c 29.0214 91.3125 28.6182 91.7177 28.1181 91.7177
+\c 27.62 91.7177 27.2148 91.3125 27.2148 90.8144
+\c 27.2148 90.3124 27.62 89.9111 28.1181 89.9111
+\o
+\s
+\m 28.2308 83.2104
+\c 28.5608 83.2104 28.8277 83.4753 28.8277 83.8054
+\c 28.8277 84.1375 28.5608 84.4023 28.2308 84.4023
+\c 27.9026 84.4023 27.6358 84.1375 27.6358 83.8054
+\c 27.6358 83.4753 27.9026 83.2104 28.2308 83.2104
+\o
+\s
+\m 30.9446 82.1115
+\c 31.4447 82.1115 31.8499 82.5167 31.8499 83.0167
+\c 31.8499 83.5148 31.4447 83.92 30.9446 83.92
+\c 30.4445 83.92 30.0413 83.5148 30.0413 83.0167
+\c 30.0413 82.5167 30.4445 82.1115 30.9446 82.1115
+\o
+\s
+\m 27.1041 76.913
+\c 27.6022 76.913 28.0054 77.3162 28.0054 77.8163
+\c 28.0054 78.3164 27.6022 78.7216 27.1041 78.7216
+\c 26.602 78.7216 26.1968 78.3164 26.1968 77.8163
+\c 26.1968 77.3162 26.602 76.913 27.1041 76.913
+\o
+\s
+\m 30.2666 77.1383
+\c 30.577 77.1383 30.832 77.3913 30.832 77.7056
+\c 30.832 78.0179 30.577 78.269 30.2666 78.269
+\c 29.9543 78.269 29.7013 78.0179 29.7013 77.7056
+\c 29.7013 77.3913 29.9543 77.1383 30.2666 77.1383
+\o
+\s
+\m 31.2846 58.0405
+\c 31.7847 58.0405 32.1879 58.4457 32.1879 58.9438
+\c 32.1879 59.4458 31.7847 59.849 31.2846 59.849
+\c 30.7845 59.849 30.3773 59.4458 30.3773 58.9438
+\c 30.3773 58.4457 30.7845 58.0405 31.2846 58.0405
+\o
+\s
+\m 24.2776 55.6666
+\c 24.7757 55.6666 25.1809 56.0737 25.1809 56.5719
+\c 25.1809 57.07 24.7757 57.4732 24.2776 57.4732
+\c 23.7775 57.4732 23.3743 57.07 23.3743 56.5719
+\c 23.3743 56.0737 23.7775 55.6666 24.2776 55.6666
+\o
+\s
+\m 17.4959 48.6615
+\c 17.4959 49.1616 17.0907 49.5648 16.5926 49.5648
+\c 16.0925 49.5648 15.6892 49.1616 15.6892 48.6615
+\c 15.6892 48.1595 16.0925 47.7562 16.5926 47.7562
+\c 17.0907 47.7562 17.4959 48.1595 17.4959 48.6615
+\o
+\s
+\m 17.8358 45.3823
+\c 17.3358 45.3823 16.9305 44.9791 16.9305 44.479
+\c 16.9305 43.979 17.3358 43.5757 17.8358 43.5757
+\c 18.3339 43.5757 18.7411 43.979 18.7411 44.479
+\c 18.7411 44.9791 18.3339 45.3823 17.8358 45.3823
+\o
+\s
+\m 29.9267 48.3215
+\c 29.4286 48.3215 29.0214 47.9183 29.0214 47.4202
+\c 29.0214 46.9182 29.4286 46.5129 29.9267 46.5129
+\c 30.4268 46.5129 30.832 46.9182 30.832 47.4202
+\c 30.832 47.9183 30.4268 48.3215 29.9267 48.3215
+\o
+\s
+\m 24.0522 34.0841
+\c 23.5521 34.0841 23.1469 33.6789 23.1469 33.1768
+\c 23.1469 32.6787 23.5521 32.2755 24.0522 32.2755
+\c 24.5503 32.2755 24.9555 32.6787 24.9555 33.1768
+\c 24.9555 33.6789 24.5503 34.0841 24.0522 34.0841
+\o
+\s
+\m 27.3275 35.3808
+\c 26.9993 35.3808 26.7345 35.1159 26.7345 34.7898
+\c 26.7345 34.4616 26.9993 34.1948 27.3275 34.1948
+\c 27.6556 34.1948 27.9244 34.4616 27.9244 34.7898
+\c 27.9244 35.1159 27.6556 35.3808 27.3275 35.3808
+\o
+\s
+\m 25.6335 31.0322
+\c 25.1315 31.0322 24.7282 30.627 24.7282 30.1289
+\c 24.7282 29.6269 25.1315 29.2217 25.6335 29.2217
+\c 26.1316 29.2217 26.5368 29.6269 26.5368 30.1289
+\c 26.5368 30.627 26.1316 31.0322 25.6335 31.0322
+\o
+\s
+\m 42.5828 56.1172
+\c 42.9742 56.1172 43.2904 56.4335 43.2904 56.8249
+\c 43.2904 57.2162 42.9742 57.5325 42.5828 57.5325
+\c 42.1954 57.5325 41.8772 57.2162 41.8772 56.8249
+\c 41.8772 56.4335 42.1954 56.1172 42.5828 56.1172
+\o
+\s
+\m 62.8133 43.0084
+\c 62.3152 43.0084 61.91 42.6072 61.91 42.1051
+\c 61.91 41.607 62.3152 41.2018 62.8133 41.2018
+\c 63.3114 41.2018 63.7166 41.607 63.7166 42.1051
+\c 63.7166 42.6072 63.3114 43.0084 62.8133 43.0084
+\o
+\s
+\m 68.0671 41.5972
+\c 67.569 41.5972 67.1638 41.1919 67.1638 40.6938
+\c 67.1638 40.1938 67.569 39.7905 68.0671 39.7905
+\c 68.5672 39.7905 68.9724 40.1938 68.9724 40.6938
+\c 68.9724 41.1919 68.5672 41.5972 68.0671 41.5972
+\o
+\s
+\m 81.4625 42.6289
+\c 81.0889 42.6289 80.7885 42.3285 80.7885 41.9569
+\c 80.7885 41.5833 81.0889 41.2848 81.4625 41.2848
+\c 81.8301 41.2848 82.1326 41.5833 82.1326 41.9569
+\c 82.1326 42.3285 81.8301 42.6289 81.4625 42.6289
+\o
+\s
+\m 83.3818 44.5897
+\c 82.8817 44.5897 82.4765 44.1865 82.4765 43.6884
+\c 82.4765 43.1883 82.8817 42.7851 83.3818 42.7851
+\c 83.8799 42.7851 84.2831 43.1883 84.2831 43.6884
+\c 84.2831 44.1865 83.8799 44.5897 83.3818 44.5897
+\o
+\s
+\m 84.7338 46.2876
+\c 84.2357 46.2876 83.8324 45.8844 83.8324 45.3823
+\c 83.8324 44.8823 84.2357 44.479 84.7338 44.479
+\c 85.2378 44.479 85.643 44.8823 85.643 45.3823
+\c 85.643 45.8844 85.2378 46.2876 84.7338 46.2876
+\o
+\s
+\m 92.65 51.9565
+\c 92.2982 51.9565 92.0136 51.6738 92.0136 51.324
+\c 92.0136 50.9741 92.2982 50.6915 92.65 50.6915
+\c 92.9979 50.6915 93.2825 50.9741 93.2825 51.324
+\c 93.2825 51.6738 92.9979 51.9565 92.65 51.9565
+\o
+\s
+\m 92.8734 56.0046
+\c 93.3754 56.0046 93.7767 56.4117 93.7767 56.9098
+\c 93.7767 57.4099 93.3754 57.8132 92.8734 57.8132
+\c 92.3733 57.8132 91.9701 57.4099 91.9701 56.9098
+\c 91.9701 56.4117 92.3733 56.0046 92.8734 56.0046
+\o
+\s
+\m 90.1635 75.1044
+\c 90.1635 74.6063 90.5667 74.2011 91.0668 74.2011
+\c 91.5649 74.2011 91.9701 74.6063 91.9701 75.1044
+\c 91.9701 75.6045 91.5649 76.0077 91.0668 76.0077
+\c 90.5667 76.0077 90.1635 75.6045 90.1635 75.1044
+\o
+\s
+\m 90.9304 77.5594
+\c 90.8256 78.0476 90.3433 78.3539 89.8571 78.2492
+\c 89.3669 78.1405 89.0586 77.6582 89.1673 77.1719
+\c 89.272 76.6837 89.7543 76.3754 90.2425 76.4841
+\c 90.7308 76.5869 91.0371 77.0711 90.9304 77.5594
+\o
+\s
+\m 89.5053 79.8858
+\c 89.608 79.3936 90.0943 79.0873 90.5825 79.196
+\c 91.0688 79.3007 91.3771 79.783 91.2704 80.2712
+\c 91.1636 80.7595 90.6833 81.0678 90.1951 80.9591
+\c 89.7049 80.8543 89.3985 80.3721 89.5053 79.8858
+\o
+\s
+\m 87.922 82.5957
+\c 88.0268 82.1095 88.511 81.8011 88.9993 81.9079
+\c 89.4875 82.0126 89.7938 82.4949 89.6891 82.9831
+\c 89.5823 83.4733 89.1001 83.7797 88.6138 83.673
+\c 88.1236 83.5682 87.8153 83.0859 87.922 82.5957
+\o
+\s
+\m 85.7221 87.1063
+\c 86.2103 87.2131 86.5166 87.6914 86.4099 88.1836
+\c 86.3071 88.6678 85.8248 88.9801 85.3346 88.8714
+\c 84.8464 88.7647 84.5381 88.2844 84.6468 87.7942
+\c 84.7496 87.3079 85.2338 86.9996 85.7221 87.1063
+\o
+\s
+\m 96.8641 31.3505
+\c 96.3739 31.2418 96.0656 30.7614 96.1723 30.2713
+\c 96.2791 29.785 96.7594 29.4767 97.2496 29.5834
+\c 97.7358 29.6882 98.0442 30.1724 97.9374 30.6606
+\c 97.8327 31.1469 97.3504 31.4552 96.8641 31.3505
+\o
+\s
+\m 96.4095 25.3594
+\c 95.9213 25.2546 95.6129 24.7704 95.7197 24.2822
+\c 95.8264 23.7939 96.3087 23.4856 96.7969 23.5943
+\c 97.2832 23.6971 97.5935 24.1833 97.4848 24.6716
+\c 97.38 25.1578 96.8977 25.4661 96.4095 25.3594
+\o
+\s
+\m 82.1701 12.138
+\c 81.6839 12.0312 81.3735 11.5509 81.4823 11.0607
+\c 81.587 10.5745 82.0673 10.2661 82.5555 10.3709
+\c 83.0438 10.4776 83.3541 10.9579 83.2474 11.4481
+\c 83.1426 11.9344 82.6603 12.2447 82.1701 12.138
+\o
+\s
+\m 77.8414 14.5316
+\c 77.3551 14.4268 77.0448 13.9426 77.1515 13.4544
+\c 77.2583 12.9681 77.7425 12.6598 78.2308 12.7665
+\c 78.717 12.8732 79.0273 13.3536 78.9186 13.8418
+\c 78.8138 14.33 78.3296 14.6383 77.8414 14.5316
+\o
+\s
+\m 76.0367 17.2435
+\c 75.5446 17.1387 75.2382 16.6565 75.3449 16.1682
+\c 75.4517 15.68 75.9339 15.3717 76.4222 15.4804
+\c 76.9084 15.5832 77.2168 16.0674 77.11 16.5537
+\c 77.0053 17.0419 76.523 17.3522 76.0367 17.2435
+\o
+\s
+\m 73.2102 15.5496
+\c 72.722 15.4408 72.4117 14.9625 72.5204 14.4743
+\c 72.5421 14.3715 72.5876 14.2845 72.639 14.2055
+\c 72.4294 14.4664 72.0895 14.6087 71.7416 14.5316
+\c 71.2514 14.4268 70.943 13.9426 71.0498 13.4544
+\c 71.1565 12.9681 71.6388 12.6598 72.127 12.7665
+\c 72.6152 12.8732 72.9236 13.3536 72.8169 13.8418
+\c 72.7951 13.9426 72.7496 14.0276 72.6983 14.1106
+\c 72.9058 13.8477 73.2478 13.7074 73.5956 13.7825
+\c 74.0839 13.8892 74.3922 14.3715 74.2855 14.8597
+\c 74.1787 15.3479 73.6964 15.6543 73.2102 15.5496
+\o
+\s
+\m 63.6652 11.5805
+\c 63.5565 12.0688 63.0722 12.3771 62.588 12.2724
+\c 62.0978 12.1656 61.7894 11.6814 61.8981 11.1931
+\c 62.0029 10.7069 62.4872 10.4005 62.9714 10.5053
+\c 63.4616 10.612 63.768 11.0943 63.6652 11.5805
+\o
+\s
+\m 41.5827 19.1015
+\c 41.4028 19.566 40.9541 19.8981 40.4264 19.8981
+\c 39.7385 19.8981 39.1851 19.3446 39.1851 18.6568
+\c 39.1851 17.9689 39.7385 17.4115 40.4264 17.4115
+\c 40.7011 17.4115 40.9442 17.5202 41.1498 17.6685
+\c 41.5985 17.8029 41.8811 18.2555 41.7784 18.72
+\c 41.7467 18.8702 41.6736 18.9908 41.5827 19.1015
+\o
+\s
+\m 63.9439 8.5425
+\c 63.4537 8.4358 63.1454 7.9535 63.2521 7.4653
+\c 63.3588 6.9771 63.8411 6.6687 64.3293 6.7754
+\c 64.8195 6.8822 65.1259 7.3645 65.0172 7.8547
+\c 64.9105 8.3389 64.4302 8.6473 63.9439 8.5425
+\o
+\s
+\m 109.4056 34.853
+\c 108.9174 34.7463 108.6091 34.264 108.7178 33.7758
+\c 108.8206 33.2875 109.3029 32.9812 109.7911 33.0879
+\c 110.2813 33.1927 110.5916 33.675 110.4809 34.1632
+\c 110.3761 34.6534 109.8919 34.9597 109.4056 34.853
+\o
+\s
+\m 112.4575 37.5649
+\c 111.9693 37.4601 111.6609 36.9778 111.7677 36.4876
+\c 111.8724 35.9994 112.3547 35.6911 112.8429 35.7998
+\c 113.3312 35.9046 113.6415 36.3868 113.5328 36.8751
+\c 113.428 37.3633 112.9437 37.6697 112.4575 37.5649
+\o
+\s
+\m 116.8653 42.7614
+\c 116.3751 42.6566 116.0668 42.1743 116.1755 41.6861
+\c 116.2802 41.1979 116.7625 40.8895 117.2527 40.9963
+\c 117.739 41.101 118.0473 41.5833 117.9406 42.0735
+\c 117.8339 42.5598 117.3535 42.8701 116.8653 42.7614
+\o
+\s
+\m 117.7706 45.4752
+\c 117.2804 45.3685 116.9721 44.8862 117.0788 44.4
+\c 117.1855 43.9098 117.6678 43.6034 118.1541 43.7101
+\c 118.6443 43.8149 118.9506 44.2972 118.8459 44.7874
+\c 118.7391 45.2756 118.2588 45.582 117.7706 45.4752
+\o
+\s
+\m 117.4267 50.7607
+\c 116.638 50.5907 116.1419 49.8158 116.3138 49.0272
+\c 116.4838 48.2425 117.2606 47.7463 118.0473 47.9183
+\c 118.834 48.0883 119.3301 48.8631 119.1582 49.6518
+\c 118.9882 50.4365 118.2114 50.9306 117.4267 50.7607
+\o
+\s
+\m 80.5533 41.1959
+\c 80.1164 41.1959 79.7646 40.846 79.7646 40.4092
+\c 79.7646 39.9724 80.1164 39.6206 80.5533 39.6206
+\c 80.9881 39.6206 81.3419 39.9724 81.3419 40.4092
+\c 81.3419 40.846 80.9881 41.1959 80.5533 41.1959
+\o
+\s
+\m 65.8355 39.4486
+\c 65.4777 39.4486 65.1852 39.158 65.1852 38.8003
+\c 65.1852 38.4425 65.4777 38.1519 65.8355 38.1519
+\c 66.1953 38.1519 66.4858 38.4425 66.4858 38.8003
+\c 66.4858 39.158 66.1953 39.4486 65.8355 39.4486
+\o
+\s
+\m 24.4475 37.9246
+\c 24.4475 38.5809 23.9158 39.1106 23.2596 39.1106
+\c 22.6054 39.1106 22.0737 38.5809 22.0737 37.9246
+\c 22.0737 37.2684 22.6054 36.7387 23.2596 36.7387
+\c 23.9158 36.7387 24.4475 37.2684 24.4475 37.9246
+\o
+\s
+\m 108.4964 41.6327
+\c 107.2887 40.8816 110.4552 39.9763 111.3565 39.9763
+\c 112.2618 39.9763 114.3017 42.03 113.4675 43.1389
+\c 113.0169 43.7418 109.7021 42.3898 108.4964 41.6327
+\o
+\s
+\m 131.0593 53.688
+\c 131.0593 53.688 132.4152 56.0639 132.0772 59.1157
+\c 130.494 65.2175 124.5049 66.3461 124.5049 66.3461
+\c 124.5049 66.3461 124.1669 67.1368 124.2815 68.8327
+\c 124.3942 70.5286 130.3852 75.2724 129.9306 79.6822
+\c 134.2258 82.7301 134.3384 88.7232 130.9486 90.8698
+\c 132.6425 98.2148 128.6854 101.492 122.2456 102.3953
+\c 118.8558 111.7743 112.2638 107.3684 112.2638 107.3684
+\c 112.2638 107.3684 112.3014 108.3844 110.303 109.4023
+\c 111.0581 112.7191 108.4589 116.4094 105.1817 116.6347
+\c 105.1817 119.5719 103.0706 122.2107 100.5821 122.8887
+\c 100.5821 126.9585 99.5306 130.4215 96.2553 132.57
+\c 91.8456 134.7166 87.4022 133.1709 84.4649 129.6704
+\c 82.3164 131.477 76.8511 133.0227 74.3665 127.2569
+\c 70.7493 128.4627 68.4525 125.4503 68.4525 125.4503
+\c 68.4525 125.4503 65.8553 128.9529 61.4455 128.0496
+\c 60.5442 131.3248 54.1005 132.908 51.7285 130.0815
+\c 50.0326 133.0227 45.1722 135.0566 41.217 133.4753
+\c 37.2618 131.8921 34.8899 128.7275 35.4532 120.9298
+\c 25.6216 117.6527 30.3694 109.6277 30.3694 109.6277
+\c 30.3694 109.6277 28.6735 108.9497 27.2049 106.8051
+\c 22.1191 107.5937 20.5359 106.2398 18.6166 102.17
+\c 13.8688 103.2255 10.3287 102.0968 10.1034 97.272
+\c 8.1821 97.3866 1.438 97.0466 0.2342 90.9449
+\c -1.1494 83.9536 4.0392 81.4888 4.0392 81.4888
+\c 4.0392 81.4888 2.6062 78.9983 3.0212 75.9524
+\c 3.6992 70.9793 10.4789 70.1886 10.4789 70.1886
+\c 10.4789 70.1886 10.7062 70.414 11.3803 67.3621
+\c 2.116 64.0849 3.6992 57.9831 5.1678 55.1586
+\c -1.7246 47.3965 6.6364 42.8404 6.6364 42.8404
+\c 6.6364 42.8404 4.1499 39.585 4.3021 35.4934
+\c 4.4543 31.4256 8.8225 26.4525 16.6953 27.3558
+\c 18.7648 20.7302 26.0012 21.1789 26.0012 21.1789
+\c 26.0012 21.1789 26.7523 20.4634 27.8829 18.2021
+\c 31.0474 7.0146 37.2618 9.0505 37.2618 9.0505
+\c 37.2618 9.0505 39.1851 0.2369 45.3995 0.0076
+\c 51.6159 -0.2178 54.6282 4.6032 54.6282 4.6032
+\c 54.6282 4.6032 56.9804 1.241 60.9573 1.4406
+\c 66.9839 1.7411 69.1305 6.6766 69.1305 6.6766
+\c 69.1305 6.6766 71.0537 4.4549 73.5403 6.6766
+\c 76.4775 0.8397 82.5793 2.0415 86.4218 6.7893
+\c 94.7828 1.8181 100.0959 6.3366 101.9045 14.247
+\c 107.4409 16.8462 109.0242 20.6887 108.3462 26.0018
+\c 114.5626 24.5332 116.5945 27.1324 118.4031 29.957
+\c 123.0363 30.4076 126.2008 33.6848 126.4281 38.7726
+\c 129.0253 39.4486 133.8878 42.2751 133.8878 46.5683
+\c 133.8878 50.8615 131.0593 53.688 131.0593 53.688
+\o
+\m 69.9251 121.7205
+\c 70.3758 127.2569 75.7244 125.2981 75.7244 125.2981
+\c 75.7244 125.2981 77.3808 129.4035 80.2073 129.4035
+\c 83.0299 129.4035 85.0678 126.6936 85.0678 126.6936
+\c 85.0678 126.6936 87.6137 131.3821 92.9011 130.4215
+\c 96.2158 129.8206 98.2873 126.6936 98.6273 121.7205
+\c 103.2604 120.9298 103.2604 118.8959 103.5984 115.0534
+\c 106.1976 114.7154 107.1029 113.1322 107.3638 111.5114
+\c 103.634 111.624 98.8526 111.2109 96.4807 105.3345
+\c 94.1068 99.4581 95.9391 92.2277 97.044 91.6604
+\c 97.7437 91.3026 97.0302 93.7516 96.9175 97.5941
+\c 97.5975 106.7478 103.0331 109.9676 106.8756 109.0643
+\c 110.7181 108.1591 111.736 104.3146 111.736 104.3146
+\c 111.736 104.3146 113.2047 106.2398 115.3532 106.2398
+\c 119.761 106.1251 118.8558 100.136 118.8558 100.136
+\c 118.8558 100.136 122.4729 100.474 124.8448 99.3454
+\c 127.8967 97.7622 129.14 96.4082 127.5548 90.6444
+\c 131.5119 86.798 131.1739 82.8448 126.7661 80.3602
+\c 127.8829 75.3436 125.3726 73.5172 121.8681 69.7874
+\c 116.6716 76.1164 108.6862 73.3532 103.7111 70.3013
+\c 102.1278 73.1259 99.6432 74.5964 99.6432 74.5964
+\c 99.6432 74.5964 102.3531 77.5337 102.0171 81.0362
+\c 101.6791 84.5407 99.9832 86.2346 95.0121 88.6085
+\c 93.6541 97.7622 84.6132 95.7302 84.6132 95.7302
+\c 83.8225 99.5688 79.642 103.8659 75.5742 101.2627
+\c 75.1216 107.8211 70.6011 107.4791 70.6011 107.4791
+\c 70.6011 107.4791 71.1664 111.7743 68.9052 112.0035
+\c 66.9839 115.2807 66.8732 118.4433 69.9251 121.7205
+\o
+\m 32.6287 108.6097
+\c 33.194 109.857 29.8041 111.6616 31.838 115.5041
+\c 35.3426 121.4952 37.9398 117.0893 39.2957 118.1053
+\c 38.2798 122.7365 36.8112 127.9369 41.4423 130.4215
+\c 46.0755 132.908 48.7874 131.2141 51.8392 126.9189
+\c 54.1005 131.6667 59.1862 129.5182 61.1075 125.1104
+\c 62.6868 127.3696 66.3059 126.8082 67.7746 122.8511
+\c 65.9679 119.5719 64.4974 115.6187 66.3059 111.7743
+\c 68.1126 107.9357 66.7586 106.5778 66.7586 106.5778
+\c 62.9161 107.2538 61.6708 101.6066 59.7515 101.492
+\c 57.8283 101.3774 57.4923 100.814 56.587 100.5867
+\c 55.6817 100.3614 53.8751 104.4292 53.0845 103.6386
+\c 52.2938 102.846 54.6658 100.3614 54.5531 99.0054
+\c 54.4424 97.6515 52.9698 98.1002 53.1972 96.4082
+\c 53.4225 94.7123 54.3278 89.2865 56.587 86.2346
+\c 58.8463 83.1848 58.9609 82.2795 57.943 81.8288
+\c 56.927 81.3762 55.1164 84.3134 54.2131 83.9734
+\c 53.3078 83.6354 54.2131 82.8448 54.7784 82.2795
+\c 55.3457 81.7142 54.7784 81.6015 53.4225 80.5855
+\c 52.0646 79.5676 51.9539 80.1329 52.1792 77.5337
+\c 49.58 77.6483 51.3905 75.7271 49.6926 75.9524
+\c 47.9967 76.1757 46.8701 75.6124 48.904 74.7071
+\c 50.9359 73.8038 51.1613 72.7859 49.1273 73.1259
+\c 47.0934 73.4638 45.3995 74.9364 44.8322 73.9165
+\c 44.2689 72.9005 47.0934 72.1099 47.8841 71.9972
+\c 48.6767 71.8845 47.9967 68.8327 46.7554 68.9453
+\c 45.5121 69.06 37.2618 69.6233 36.8112 73.3532
+\c 36.3585 77.081 38.7304 79.6822 38.7304 79.6822
+\c 38.7304 79.6822 35.1152 84.0881 37.6018 87.8179
+\c 40.0884 91.5458 44.6069 90.5298 44.6069 90.5298
+\c 44.6069 90.5298 44.7235 93.129 48.1094 93.469
+\c 51.5012 93.807 52.1792 93.2417 52.1792 94.7123
+\c 52.1792 96.1829 50.0326 96.0682 47.6587 95.7302
+\c 45.2868 95.3883 44.2689 97.8768 43.1382 97.7622
+\c 42.0076 97.6515 43.4782 96.6315 44.0416 94.9396
+\c 44.6069 93.2417 40.879 97.0822 40.199 96.6315
+\c 39.5191 96.1829 42.4603 94.3723 41.4423 93.469
+\c 40.4264 92.5637 38.3924 97.7622 36.8112 97.7622
+\c 35.2279 97.7622 38.5051 94.5976 37.3765 94.5976
+\c 35.4532 94.5976 29.6895 99.6834 29.5788 103.4152
+\c 29.4661 107.1411 32.0634 107.3684 32.6287 108.6097
+\o
+\m 61.7855 74.1438
+\c 60.2259 74.1438 58.9609 75.4088 58.9609 76.9664
+\c 58.9609 78.5299 60.2259 79.7929 61.7855 79.7929
+\c 63.345 79.7929 64.61 78.5299 64.61 76.9664
+\c 64.61 75.4088 63.345 74.1438 61.7855 74.1438
+\o
+\m 65.29 73.0132
+\c 66.2269 73.0132 66.9839 72.0763 66.9839 70.9219
+\c 66.9839 69.7676 66.2269 68.8327 65.29 68.8327
+\c 64.3511 68.8327 63.5921 69.7676 63.5921 70.9219
+\c 63.5921 72.0763 64.3511 73.0132 65.29 73.0132
+\o
+\m 61.4455 69.1134
+\c 61.4455 67.0854 60.1805 65.4408 58.6209 65.4408
+\c 57.0574 65.4408 55.7964 67.0854 55.7964 69.1134
+\c 55.7964 71.1413 57.0574 72.7859 58.6209 72.7859
+\c 60.1805 72.7859 61.4455 71.1413 61.4455 69.1134
+\o
+\m 55.4564 65.1028
+\c 56.0217 63.7469 55.3457 61.6003 53.8751 62.9563
+\c 52.4045 64.3122 50.258 68.6054 53.1972 72.2206
+\c 55.4564 74.2584 55.5691 74.7071 55.7964 76.2904
+\c 56.0217 77.8736 55.4564 79.1149 56.4743 79.1149
+\c 58.1683 79.1149 59.0736 74.4818 56.927 73.6892
+\c 54.7784 72.9005 52.8572 69.06 55.4564 65.1028
+\o
+\m 6.1838 81.3762
+\c 1.6633 84.6909 1.2127 88.4939 3.2466 92.2257
+\c 5.2785 95.9536 9.9117 95.2776 11.8349 95.1629
+\c 11.4969 99.5688 14.8492 101.2627 19.4072 100.474
+\c 21.6685 103.8659 22.7951 105.5618 26.8649 104.8838
+\c 26.8649 104.8838 27.9955 97.7622 32.2907 94.5976
+\c 32.6287 94.0323 32.178 93.2417 31.4981 93.2417
+\c 30.8201 93.2417 30.0295 91.8877 31.9507 91.6604
+\c 33.872 91.4331 33.7593 91.8877 33.872 92.791
+\c 33.9866 93.6943 35.1152 93.469 36.0185 93.129
+\c 36.9219 92.791 37.4872 91.7731 35.7932 91.6604
+\c 34.0973 91.5458 34.5499 90.7551 35.6786 90.7551
+\c 36.8112 90.7551 36.4692 89.1738 35.3426 89.1738
+\c 34.21 89.1738 30.9347 90.8698 30.3694 90.8698
+\c 29.8041 90.8698 29.5788 89.9645 31.0474 89.2865
+\c 32.516 88.6085 34.7772 88.0432 34.8899 87.0273
+\c 35.0006 86.0093 34.21 86.0093 32.9667 86.2346
+\c 31.7254 86.4639 30.2568 86.9166 28.5608 88.0432
+\c 26.8649 89.1738 26.1889 87.7052 27.4283 87.0273
+\c 28.6735 86.3493 33.872 84.9914 34.7772 83.5228
+\c 35.6786 82.0541 36.2478 80.3602 35.3426 80.3602
+\c 34.4373 80.3602 33.0813 81.1508 31.6127 81.1508
+\c 30.1441 81.1508 29.9168 79.9076 31.7254 79.6822
+\c 33.532 79.4529 34.8899 79.1149 34.3246 78.1009
+\c 33.7593 77.081 35.1152 75.1617 33.3067 75.1617
+\c 31.4981 75.1617 29.5788 75.7271 29.3515 74.7071
+\c 29.1262 73.6892 30.3694 73.5805 31.6127 73.5805
+\c 32.856 73.5805 34.6646 74.1438 34.6646 72.9005
+\c 34.6646 71.6572 33.0813 72.2206 31.2727 72.2206
+\c 29.4661 72.2206 29.4661 70.752 30.7094 70.752
+\c 31.9507 70.752 35.5659 71.5446 35.6786 70.6413
+\c 35.7932 69.736 34.0973 69.8506 34.4373 68.8327
+\c 34.7772 67.8147 34.21 67.4767 32.4034 67.4767
+\c 30.5948 67.4767 28.1082 66.2315 25.849 64.8775
+\c 23.5877 63.5216 18.7787 62.1123 15.0014 65.1028
+\c 13.1908 66.5339 12.2875 69.398 11.6096 71.2046
+\c 7.0911 72.5625 3.2466 74.8218 6.1838 81.3762
+\o
+\m 24.6057 23.9679
+\c 21.2158 24.3059 18.9546 25.3238 17.484 29.617
+\c 10.3643 29.0537 7.6544 31.5382 6.7511 35.3808
+\c 5.8458 39.2233 9.3483 43.8564 9.3483 43.8564
+\c 9.3483 43.8564 5.2785 46.343 5.1678 49.5095
+\c 5.0552 52.67 7.4271 54.1406 8.3304 55.0459
+\c 5.1678 58.4338 6.6364 63.4069 11.7222 66.3461
+\c 14.5468 59.9044 22.4571 61.035 22.4571 61.035
+\c 22.4571 61.035 22.5698 59.4518 25.0563 59.4518
+\c 27.5429 59.4518 32.856 63.6342 32.856 63.6342
+\c 34.3246 62.2763 35.5659 58.2085 35.5659 58.2085
+\c 33.872 53.1227 35.0006 49.8455 37.2618 48.0389
+\c 39.5191 46.2303 41.1043 44.8724 39.7484 37.98
+\c 38.3924 31.0876 36.8863 28.7868 32.4785 28.5635
+\c 31.8025 25.9642 27.9955 23.6279 24.6057 23.9679
+\o
+\m 104.6163 19.5581
+\c 103.4857 15.2649 99.0779 15.4527 99.0779 15.4527
+\c 99.0779 15.4527 99.3803 8.2203 92.7489 7.3546
+\c 89.021 7.1293 85.5165 9.5783 85.5165 9.5783
+\c 85.5165 9.5783 83.4845 4.9827 79.7527 4.9827
+\c 76.0249 4.9827 75.5742 6.4137 74.5187 8.3725
+\c 73.7636 7.7677 71.957 6.4137 69.6938 8.673
+\c 69.9982 12.4404 68.0019 14.8123 68.0019 14.8123
+\c 68.0019 14.8123 68.8577 8.6888 66.2308 6.1113
+\c 60.0895 0.0827 54.1775 7.6194 54.1775 7.6194
+\c 54.1775 7.6194 51.9539 2.0415 47.0934 2.7214
+\c 42.2369 3.3994 38.5051 8.5979 40.4264 9.6138
+\c 40.7841 9.8036 41.0688 9.9815 41.3178 10.1515
+\c 41.3949 10.1475 41.474 10.1357 41.557 10.1534
+\c 41.9997 10.2523 42.2725 10.6555 42.2508 11.0904
+\c 42.4484 11.4758 42.4504 11.8652 42.3476 12.3277
+\c 42.1203 13.3437 40.6517 14.1363 40.537 12.553
+\c 40.4264 10.9718 39.4104 9.5031 39.0704 10.7444
+\c 38.7304 11.9858 37.8271 11.6517 36.1332 11.9858
+\c 34.4373 12.3277 33.0813 12.553 31.3854 18.6568
+\c 29.3159 19.3723 27.8058 21.3311 27.8058 21.3311
+\c 27.8058 21.3311 31.7254 22.3846 33.532 26.6778
+\c 36.3961 27.2075 43.2489 27.6957 43.7036 39.3379
+\c 46.8701 39.6739 48.564 38.7726 51.5012 40.1266
+\c 52.2938 36.7367 51.9539 34.4774 57.605 34.7028
+\c 61.5582 30.1843 62.6868 30.7476 64.3867 30.8623
+\c 67.8872 28.2611 69.5812 25.7765 69.1305 22.4993
+\c 68.6779 19.2221 65.9679 18.4295 65.9679 17.0735
+\c 65.9679 15.7176 68.6779 16.7355 70.9391 21.0287
+\c 73.1983 25.3238 71.8424 28.3737 69.0198 31.4256
+\c 68.4525 32.7815 71.2771 34.1375 70.7118 35.4934
+\c 70.1484 36.8494 68.2272 36.3967 66.7586 34.7028
+\c 65.29 33.0088 61.5582 33.4595 58.9609 37.5293
+\c 55.7964 36.7367 52.2938 39.5613 53.1972 43.1784
+\c 54.1005 46.7936 56.6997 49.0568 55.2311 50.2981
+\c 53.7625 51.5414 53.1972 47.5882 52.2938 47.5882
+\c 51.3905 47.5882 50.8272 49.9621 49.58 49.1675
+\c 48.3387 48.3769 44.2689 46.4556 44.8322 45.665
+\c 45.3995 44.8724 48.3387 46.343 47.7753 44.8724
+\c 47.2061 43.4038 47.2061 43.9691 50.0326 45.8923
+\c 52.8572 47.8096 53.0845 46.005 51.8392 45.0977
+\c 50.596 44.1944 49.242 42.5005 46.5281 42.7258
+\c 43.8182 42.9531 42.5729 44.4217 42.6856 46.681
+\c 42.8003 48.9442 38.7304 50.7508 37.8271 52.4447
+\c 36.9219 54.1406 37.3765 55.9492 38.2798 57.5325
+\c 39.1851 59.1157 36.4692 61.1477 36.0185 62.5036
+\c 35.5659 63.8596 37.2618 68.2674 40.3137 68.2674
+\c 43.3656 68.2674 49.242 65.6682 48.1094 68.1527
+\c 46.9808 70.6413 49.92 68.8327 50.0326 67.1368
+\c 50.1433 65.4408 51.1613 61.9383 53.4225 61.9383
+\c 55.6817 61.9383 54.8911 60.357 54.8911 60.357
+\c 54.8911 60.357 57.1523 55.4946 59.8662 54.9313
+\c 62.5761 54.366 63.1394 54.2533 64.8354 55.9492
+\c 66.5313 57.6451 68.1126 54.5953 69.1305 55.2713
+\c 70.1484 55.9492 69.1305 58.5465 66.9839 58.4338
+\c 64.8354 58.3211 63.9321 56.9652 62.2381 56.9652
+\c 60.5442 56.9652 57.8283 58.7758 59.1862 59.6771
+\c 60.5442 60.5824 62.1235 57.3052 64.3867 58.8864
+\c 66.6439 60.4697 67.8872 60.0171 68.5672 60.0171
+\c 69.2432 60.0171 69.1305 60.5824 68.0019 61.373
+\c 66.8732 62.1676 65.5153 63.8596 69.0198 65.2175
+\c 69.9251 67.8147 70.3758 72.6732 71.6171 72.9005
+\c 72.8623 73.1259 71.8424 75.2724 70.7118 74.4818
+\c 69.5812 73.6892 69.1305 73.8038 67.6599 75.8397
+\c 66.1913 77.8736 67.5492 80.8109 69.8104 81.0362
+\c 72.0717 81.2635 72.7457 83.2974 71.2771 83.5228
+\c 69.8104 83.7481 71.0537 85.5567 71.8424 86.4639
+\c 72.635 87.3653 71.957 89.7372 70.8264 87.4779
+\c 69.6938 85.2187 67.7746 84.8807 67.7746 86.3493
+\c 67.7746 87.8179 66.9839 88.2686 65.628 87.3653
+\c 64.272 86.4639 64.3867 86.124 65.29 84.8807
+\c 66.1913 83.6354 64.272 82.1668 62.6868 83.0721
+\c 61.1075 83.9734 62.9161 84.766 63.3667 85.6713
+\c 63.8214 86.5746 63.7067 87.9325 62.6868 88.0432
+\c 61.6708 88.1579 61.5582 86.5746 61.5582 86.5746
+\c 59.7515 86.0093 59.7515 88.3812 58.7336 88.3812
+\c 57.7176 88.3812 54.1005 93.3563 55.5691 96.7462
+\c 57.0397 100.136 60.3169 97.8768 61.7855 99.9087
+\c 63.2541 101.9446 63.8214 105.1072 68.0019 104.8838
+\c 72.1824 104.6565 73.651 98.8928 74.5563 98.7801
+\c 75.4576 98.6674 76.8155 100.814 79.4147 98.6674
+\c 82.0159 96.5189 81.9013 94.2576 80.8833 92.5637
+\c 79.8674 90.8698 78.3968 88.1579 78.2841 86.2346
+\c 78.1715 84.3134 80.0927 83.5228 80.318 85.6713
+\c 80.5473 87.8179 82.1286 93.3563 85.8565 93.3563
+\c 89.5863 93.3563 90.7149 86.6853 93.5415 86.0093
+\c 96.366 85.3313 97.8366 84.2007 98.1746 80.4709
+\c 98.5126 76.741 95.9134 74.5964 96.366 73.2385
+\c 96.8187 71.8845 100.2105 71.2046 100.0959 67.2494
+\c 99.9832 63.2962 96.1407 61.1477 94.2214 61.2603
+\c 92.2982 61.373 90.6023 62.389 89.4736 63.2962
+\c 88.341 64.1976 87.3251 62.2763 88.4557 61.373
+\c 89.5863 60.4697 91.5076 59.3371 95.0121 59.6771
+\c 98.5126 60.0171 99.8686 56.0639 95.2354 51.7687
+\c 97.384 47.4736 95.0121 43.1784 92.2982 42.2751
+\c 89.5863 41.3718 86.4218 42.6131 86.4218 42.6131
+\c 86.4218 42.6131 87.4377 39.7886 84.2732 38.32
+\c 81.1087 36.8494 78.2841 38.2053 77.2662 42.0498
+\c 76.2482 45.8923 75.1216 49.3929 73.1983 48.6022
+\c 71.2771 47.8096 75.3449 43.9691 75.7976 40.5812
+\c 76.2482 37.1893 73.991 35.6061 72.7457 34.7028
+\c 71.5044 33.7975 72.4057 31.3129 75.2342 32.5542
+\c 78.0588 33.7975 77.7188 36.7367 79.0767 36.3967
+\c 80.4327 36.0607 81.168 33.7639 85.5165 34.9281
+\c 87.6275 35.4934 89.4381 38.5097 89.4381 38.9604
+\c 93.3537 36.6991 98.477 39.411 98.477 39.411
+\c 98.477 39.411 104.051 35.8334 104.389 32.2162
+\c 104.731 28.601 102.6951 27.8104 102.6951 27.8104
+\c 102.6951 27.8104 105.747 23.8552 104.6163 19.5581
+\o
+\m 123.8289 40.4665
+\c 123.4869 34.9281 120.777 32.6708 116.1419 33.0088
+\c 113.5446 27.9211 110.4928 27.4704 106.5376 28.7137
+\c 109.1368 34.4774 105.2568 38.658 100.3232 42.7258
+\c 101.3391 47.4736 99.5306 50.2606 99.5306 50.2606
+\c 99.5306 50.2606 102.3927 51.6185 102.3927 54.3304
+\c 102.3927 57.0423 99.7954 58.6255 99.6808 59.7542
+\c 99.6808 59.7542 104.1657 61.711 104.5037 68.1527
+\c 110.0421 72.2206 119.3084 73.3532 121.455 64.0849
+\c 126.9934 63.2962 131.2866 58.5465 128.2347 53.1227
+\c 132.3045 48.7169 132.5279 42.6131 123.8289 40.4665
+\o
+\s
+\m 77.1555 58.2085
+\c 79.5274 61.035 82.4646 65.3282 84.1625 65.3282
+\c 85.8565 65.3282 86.8724 66.0081 85.5165 67.2494
+\c 84.1625 68.4947 82.9173 67.9294 82.9173 70.9793
+\c 82.9173 74.0292 82.8046 76.0651 80.658 78.3243
+\c 78.5095 80.5855 76.8155 83.9734 75.3449 83.8627
+\c 73.2695 83.7026 73.7636 82.7301 74.7816 80.5855
+\c 75.7976 78.437 76.5922 77.3083 74.5563 76.405
+\c 72.5223 75.4997 72.7457 74.1438 74.329 74.1438
+\c 75.9142 74.1438 76.5922 73.5805 76.4775 70.8646
+\c 76.3629 68.1527 76.8155 67.1368 74.7816 66.6861
+\c 72.7457 66.2315 70.9391 64.5375 71.5044 63.4069
+\c 72.0717 62.2763 71.957 61.9383 71.0537 60.9223
+\c 70.1484 59.9044 70.9391 59.2244 72.635 60.1297
+\c 74.329 61.035 75.2342 60.4697 74.7816 59.2244
+\c 74.329 57.9831 72.973 57.7578 71.8424 57.7578
+\c 70.7118 57.7578 70.1484 55.6092 72.0717 55.4946
+\c 73.991 55.3819 74.7816 55.3819 77.1555 58.2085
+\o
+\m 76.266 64.1877
+\c 77.3176 65.1542 78.0232 65.682 78.6379 65.5061
+\c 79.812 65.17 77.4955 62.0787 76.0861 62.2526
+\c 74.6808 62.4285 75.2085 63.2191 76.266 64.1877
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian80.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian80.pgf
new file mode 100644
index 0000000000..48b93e1b9c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian80.pgf
@@ -0,0 +1,32 @@
+\m 163.6859 28.4848
+\c 138.0308 28.4848 108.7226 16.2681 89.17 16.2681
+\c 69.6292 16.2681 0 15.0762 0 15.0762
+\c 0 15.0762 51.3042 12.6329 89.17 12.6329
+\c 127.0417 12.6329 131.9344 0.4162 160.0208 0.4162
+\c 188.1192 0.4162 196.6709 13.8247 196.6709 13.8247
+\c 196.6709 13.8247 189.3469 28.4848 163.6859 28.4848
+\o
+\s
+\m 364.3734 16.2681
+\c 344.8207 16.2681 315.5066 28.4848 289.8575 28.4848
+\c 264.2024 28.4848 256.8724 13.8247 256.8724 13.8247
+\c 256.8724 13.8247 265.4241 0.4162 293.5225 0.4162
+\c 321.609 0.4162 326.5016 12.6329 364.3734 12.6329
+\c 402.2332 12.6329 453.5434 15.0762 453.5434 15.0762
+\c 453.5434 15.0762 383.9142 16.2681 364.3734 16.2681
+\o
+\s
+\m 0 0
+\l 453.5434 0
+\l 453.5434 30.9271
+\l 0 30.9271
+\o
+\i
+\m 225.5858 30.9281
+\c 206.8555 30.9281 203.5957 13.8247 203.5957 13.8247
+\c 208.4824 5.6604 215.8184 -0.001 226.3962 -0.001
+\c 236.992 -0.001 245.943 10.5471 245.943 10.5471
+\c 245.943 10.5471 244.316 30.9281 225.5858 30.9281
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian81.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian81.pgf
new file mode 100644
index 0000000000..b6abd53e38
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian81.pgf
@@ -0,0 +1,137 @@
+\m 53.3564 27.9064
+\c 53.3564 27.9064 58.4696 26.9701 58.4696 22.3113
+\c 58.4696 17.6754 52.895 17.6754 52.895 17.6754
+\c 52.895 17.6754 61.2625 15.8028 61.2625 22.3113
+\c 61.2625 28.8199 53.3564 27.9064 53.3564 27.9064
+\o
+\s
+\m 0 -0.6171
+\l 175.6075 -0.6171
+\l 175.6075 44.7373
+\l 0 44.7373
+\o
+\i
+\m 175.4774 24.3667
+\c 156.7008 24.3667 133.5029 30.7154 129.0451 31.9942
+\c 123.2559 33.6613 113.4132 33.6613 109.7159 27.3811
+\c 108.9599 29.5963 107.7199 30.9437 106.6146 31.743
+\c 104.34 33.3873 100.5628 34.0952 98.2243 33.7527
+\c 98.5189 34.7347 100.7752 37.6578 98.6673 40.9007
+\c 97.0208 43.4127 93.8304 44.7373 89.0369 44.7373
+\c 82.3754 44.7373 78.0774 43.1615 76.2482 40.0557
+\c 75.5494 38.8453 75.3027 37.5893 75.3027 36.4018
+\c 75.3027 35.2142 75.5539 34.1637 75.8303 33.2959
+\c 73.5055 33.6157 70.6828 33.3644 68.4197 31.743
+\c 67.3988 31.0122 66.2753 29.779 65.5125 27.8836
+\c 63.0849 31.0122 58.5107 32.8849 53.1257 32.8849
+\c 48.5035 32.8849 41.641 30.898 34.3788 28.797
+\c 28.2196 26.9929 21.8504 25.166 16.7349 24.5265
+\l -0.0001 22.4255
+\l 0.1278 20.3473
+\c 18.9067 20.3473 42.1 13.9758 46.5601 12.7198
+\c 52.2602 11.0755 61.886 11.0527 65.7089 17.0588
+\c 66.3004 15.6886 67.1271 14.5239 68.2118 13.5419
+\c 70.6189 11.3952 73.6311 10.7786 75.7572 10.5959
+\c 75.4991 9.7053 75.2685 8.5863 75.0926 6.8507
+\c 75.0721 6.6223 75.0629 6.3939 75.0629 6.1884
+\c 75.0629 4.7497 75.5608 3.5165 76.5565 2.5345
+\c 79.7582 -0.6171 87.1049 0.0224 87.9385 0.1137
+\c 88.7857 -0.0461 93.4216 -0.2517 96.5914 1.8722
+\c 100.7752 4.6583 97.6807 10.1849 97.5209 11.1669
+\c 99.5762 11.1897 104.0066 11.0298 106.8293 13.5419
+\c 108.0465 14.6381 108.9554 16.0083 109.5537 17.6069
+\c 109.6428 17.447 109.7159 17.31 109.8118 17.173
+\c 112.1617 13.816 116.9004 11.8291 122.484 11.8291
+\c 127.0994 11.8291 133.9665 13.816 141.231 15.917
+\c 147.3924 17.6982 153.7616 19.548 158.8726 20.1875
+\l 175.6075 22.2885
+\l 175.4774 24.3667
+\o
+\m 64.6972 19.6394
+\c 62.2171 12.834 51.7966 13.382 47.1355 14.7294
+\c 43.5136 15.7571 27.6441 20.0961 11.6628 21.7632
+\c 13.9785 22.0601 16.993 22.4483 16.993 22.4483
+\c 22.2706 23.0878 28.7198 24.9833 34.9588 26.7874
+\c 42.0771 28.8427 48.8004 30.8067 53.1257 30.8067
+\c 57.9512 30.8067 62.1532 29.0939 64.0806 26.3306
+\c 64.3752 25.9196 64.6059 25.4628 64.7909 25.0061
+\c 64.6972 24.321 64.6287 23.5902 64.6287 22.7909
+\c 64.6287 21.8317 64.7041 20.9411 64.8342 20.119
+\c 64.7909 19.9591 64.7497 19.7993 64.6972 19.6394
+\o
+\m 105.4408 15.1177
+\c 102.7414 12.6969 95.6505 13.9073 94.2643 13.953
+\c 94.109 14.0443 96.1233 11.6236 96.2489 6.8735
+\c 96.2808 5.6175 96.089 4.704 95.3833 4.0645
+\c 93.5495 2.4203 89.7015 1.895 88.1942 2.1919
+\l 88.0367 2.2147
+\l 87.8768 2.1919
+\c 85.874 1.9864 80.1967 1.8722 78.0249 4.0189
+\c 77.4449 4.6126 77.1548 5.3206 77.1548 6.1884
+\c 77.1548 6.3482 77.164 6.4853 77.1754 6.6451
+\c 77.4174 9.0202 79.8564 12.5599 79.8564 12.5599
+\c 79.5322 13.0395 77.0498 12.7426 76.8808 12.6284
+\c 75.1566 12.6741 71.9366 13.0167 69.5935 15.1177
+\c 68.2552 16.328 67.3897 17.9723 66.9901 20.0048
+\c 67.4788 21.8546 67.4491 23.6359 66.9261 25.2345
+\c 67.3006 27.404 68.2118 29.0026 69.6483 30.0531
+\c 71.9754 31.7202 75.1749 31.5375 77.1982 30.8524
+\l 79.7445 30.0074
+\l 78.4474 32.3596
+\c 78.4246 32.3825 76.3784 36.1506 78.0546 39.0052
+\c 79.4636 41.3802 83.2637 42.6591 89.0369 42.6591
+\c 93.0585 42.6591 95.6985 41.7 96.886 39.8045
+\c 98.7381 36.8357 95.6597 33.7527 95.6368 33.707
+\l 94.5498 31.469
+\l 96.9088 32.2454
+\c 98.9368 32.9305 103.0589 31.7202 105.3928 30.0531
+\c 107.3088 28.66 108.2885 26.2621 108.3091 22.9051
+\c 108.2794 22.5397 108.2703 22.1743 108.2794 21.8089
+\c 108.1081 18.9086 107.1627 16.6706 105.4408 15.1177
+\o
+\m 158.6145 22.2657
+\c 153.3369 21.6034 146.8877 19.7307 140.6463 17.9266
+\c 133.528 15.8484 126.8071 13.9073 122.484 13.9073
+\c 117.654 13.9073 113.4566 15.6201 111.5245 18.3834
+\c 110.8075 19.411 110.4284 20.53 110.3667 21.7632
+\c 110.3873 22.083 110.4055 22.4255 110.4055 22.7909
+\c 110.4055 22.8137 110.401 22.8366 110.401 22.8822
+\c 110.4786 23.5674 110.6362 24.2981 110.9148 25.0518
+\c 113.3903 31.8572 123.8132 31.3091 128.4696 29.9846
+\c 132.0961 28.9569 147.961 24.595 163.9447 22.9279
+\c 161.629 22.6539 158.6145 22.2657 158.6145 22.2657
+\o
+\s
+\m 114.3449 22.4027
+\c 114.3449 15.8941 122.2465 16.8076 122.2465 16.8076
+\c 122.2465 16.8076 117.1379 17.7439 117.1379 22.4027
+\c 117.1379 27.0386 122.7124 27.0386 122.7124 27.0386
+\c 122.7124 27.0386 114.3449 28.9112 114.3449 22.4027
+\o
+\s
+\m 93.3508 24.321
+\c 92.7913 26.5133 91.0831 28.2261 88.9068 28.8199
+\c 87.685 31.3548 86.5842 38.3201 86.5842 38.3201
+\c 86.5842 35.0544 84.7276 28.5458 84.7276 28.5458
+\l 84.8578 28.5458
+\c 83.0993 27.7922 81.7473 26.2621 81.2495 24.3667
+\c 78.0911 23.2933 72.6491 21.375 72.6491 21.375
+\l 78.1802 21.0325
+\c 79.998 21.0325 81.0348 20.5985 81.624 20.1418
+\c 82.3274 18.6346 83.6154 17.447 85.1866 16.8761
+\c 86.3193 14.0443 87.2922 7.9012 87.2922 7.9012
+\c 87.2922 10.4132 88.3861 14.7979 88.8931 16.7163
+\c 90.6332 17.1958 92.0697 18.3834 92.8735 19.9591
+\l 92.8735 19.5252
+\c 96.5914 22.3113 102.6364 22.3113 102.6364 22.3113
+\l 96.7079 23.476
+\c 94.7896 23.476 93.8304 23.9099 93.3508 24.321
+\o
+\m 87.2967 17.9038
+\c 84.602 17.9038 82.4119 20.0961 82.4119 22.7909
+\c 82.4119 25.4628 84.602 27.6552 87.2967 27.6552
+\c 89.9869 27.6552 92.1747 25.4628 92.1747 22.7909
+\c 92.1747 20.0961 89.9869 17.9038 87.2967 17.9038
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian82.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian82.pgf
new file mode 100644
index 0000000000..b72978c315
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian82.pgf
@@ -0,0 +1,51 @@
+\r 0 0 454 24
+\i
+\m 221.4917 12.678
+\c 221.4917 12.678 219.3787 6.8544 226.2434 6.8544
+\c 233.1133 6.8544 232.0568 12.1369 232.0568 12.1369
+\c 223.6048 5.2825 221.4917 12.678 221.4917 12.678
+\o
+\s
+\m 353.6601 11.0288
+\c 343.711 12.1884 311.8819 15.9506 295.9674 18.6047
+\c 276.9529 21.7742 242.6192 27.0568 242.6192 13.3222
+\c 242.6192 13.0903 242.645 12.8842 242.6579 12.678
+\l 238.0891 12.678
+\c 237.6768 18.8624 232.5386 23.7584 226.2434 23.7584
+\c 219.9508 23.7584 214.8126 18.8624 214.4003 12.678
+\l 210.8623 12.678
+\c 209.5327 25.2272 184.3235 23.14 158.1016 19.5324
+\c 144.4625 17.6513 129.4704 16.5948 117.9958 16.0279
+\c 117.9958 16.0279 0 15.5383 0 14.9714
+\c 0 14.3787 99.8832 13.9149 99.8832 13.9149
+\c 109.8324 12.7553 141.6589 8.9931 157.5734 6.339
+\c 176.3327 3.1953 209.981 -1.9584 210.8803 11.0804
+\l 214.4003 11.0804
+\c 214.8126 4.896 219.9508 0 226.2434 0
+\c 232.5386 0 237.6768 4.896 238.0891 11.0804
+\l 242.8924 11.0804
+\c 245.6547 -0.1546 270.0728 1.9326 295.4391 5.4114
+\c 309.0783 7.2667 324.0729 8.3232 335.5527 8.9158
+\c 335.5527 8.9158 453.5434 9.4054 453.5434 9.9723
+\c 453.5434 10.565 353.6601 11.0288 353.6601 11.0288
+\o
+\m 179.7599 8.9674
+\c 162.3302 10.0239 135.9177 14.2499 135.9177 14.2499
+\c 135.9177 14.2499 167.0819 18.4759 181.8729 20.0735
+\c 196.664 21.6454 209.3368 18.4759 209.3368 13.7345
+\c 209.3368 8.9674 197.1922 7.9109 179.7599 8.9674
+\o
+\m 226.7743 4.226
+\c 222.2519 4.226 218.5877 7.8851 218.5877 12.4203
+\c 218.5877 16.9298 222.2519 20.5889 226.7743 20.5889
+\c 231.2966 20.5889 234.9609 16.9298 234.9609 12.4203
+\c 234.9609 7.8851 231.2966 4.226 226.7743 4.226
+\o
+\m 272.0209 8.0397
+\c 257.235 6.4421 244.557 9.6374 244.557 14.3787
+\c 244.557 19.1201 256.7068 20.2024 274.1365 19.1201
+\c 291.5636 18.0894 317.9761 13.8376 317.9761 13.8376
+\c 317.9761 13.8376 286.8119 9.6374 272.0209 8.0397
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian83.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian83.pgf
new file mode 100644
index 0000000000..de1494c6b8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian83.pgf
@@ -0,0 +1,97 @@
+\m 202.9569 15.4668
+\c 200.3535 16.0481 197.719 14.0758 197.065 11.0862
+\c 196.681 9.3423 197.0775 7.6192 197.9993 6.3943
+\c 198.0076 6.851 198.0221 7.3285 198.0636 7.806
+\c 198.3709 11.9167 200.6068 13.0793 202.249 12.7263
+\c 203.8912 12.3734 204.9686 11.0655 204.0074 6.5189
+\c 203.9015 6.0206 203.7604 5.5431 203.5943 5.1071
+\c 204.9873 5.8338 206.1001 7.2455 206.4925 9.0517
+\c 207.1423 12.0412 205.5603 14.9062 202.9569 15.4668
+\o
+\s
+\m 225.8872 14.8439
+\c 223.398 15.363 220.8755 13.5568 220.2506 10.8163
+\c 219.8873 9.197 220.2672 7.6192 221.1433 6.4981
+\c 221.1516 6.9133 221.1703 7.3493 221.2077 7.806
+\c 221.5046 11.5845 223.6367 12.6433 225.2083 12.3319
+\c 226.7778 11.9997 227.8117 10.7956 226.892 6.6019
+\c 226.7903 6.1452 226.6553 5.73 226.4975 5.3148
+\c 227.8283 5.9791 228.8912 7.287 229.267 8.9479
+\c 229.8898 11.6883 228.3785 14.3249 225.8872 14.8439
+\o
+\s
+\m 248.2299 14.8439
+\c 245.7386 15.363 243.2182 13.5568 242.5975 10.8163
+\c 242.228 9.197 242.6099 7.6192 243.4881 6.4981
+\c 243.4923 6.9133 243.5151 7.3493 243.5504 7.806
+\c 243.8473 11.5845 245.9815 12.6433 247.5531 12.3319
+\c 249.1226 11.9997 250.1565 10.7956 249.2347 6.6019
+\c 249.133 6.1452 248.998 5.73 248.8423 5.3148
+\c 250.1689 5.9791 251.236 7.287 251.6118 8.9479
+\c 252.2326 11.6883 250.7191 14.3249 248.2299 14.8439
+\o
+\s
+\m 448.5088 10.2143
+\c 448.5088 10.2143 376.4503 9.9236 365.3848 11.0655
+\c 354.3194 12.2073 298.4314 16.7332 288.5036 16.7332
+\c 279.0762 16.7332 265.071 17.2314 260.5182 10.5049
+\l 256.6961 10.5049
+\c 256.4138 15.7159 252.3779 19.868 247.387 19.868
+\c 242.3982 19.868 238.3602 15.7159 238.08 10.5049
+\l 234.3513 10.5049
+\c 234.0711 15.7159 230.0331 19.868 225.0443 19.868
+\c 220.0576 19.868 216.0175 15.7159 215.7352 10.5049
+\l 210.5201 10.5049
+\c 210.2377 15.7159 206.2018 19.868 201.2109 19.868
+\c 196.2221 19.868 192.1842 15.7159 191.9039 10.5049
+\l 188.0611 10.5049
+\c 183.502 17.2314 169.4968 16.7332 160.0735 16.7332
+\c 150.1457 16.7332 94.2558 12.2073 83.1923 11.0655
+\c 72.1269 9.9236 0.0684 10.2143 0.0684 10.2143
+\c -2.4852 9.3631 66.1727 7.9514 83.1944 7.1002
+\c 100.2162 6.249 134.2576 1.7024 160.358 1.4117
+\c 181.2557 1.2041 186.8715 6.4151 188.2832 8.5119
+\l 191.9849 8.5119
+\c 192.6388 3.6954 196.4983 0 201.2109 0
+\c 205.9257 0 209.7851 3.6954 210.4391 8.5119
+\l 215.8161 8.5119
+\c 216.4722 3.6954 220.3337 0 225.0443 0
+\c 229.759 0 233.6185 3.6954 234.2704 8.5119
+\l 238.1609 8.5119
+\c 238.8149 3.6954 242.6743 0 247.387 0
+\c 252.1018 0 255.9633 3.6954 256.6151 8.5119
+\l 260.296 8.5119
+\c 261.7057 6.4151 267.3215 1.2041 288.2151 1.4117
+\c 314.3176 1.7024 348.361 6.249 365.3848 7.1002
+\c 382.4066 7.9514 451.0582 9.3631 448.5088 10.2143
+\o
+\m 166.3163 3.9653
+\c 146.7389 3.6954 104.1856 5.1071 104.1856 8.8026
+\l 184.4716 8.8026
+\c 184.4716 8.8026 185.8916 4.256 166.3163 3.9653
+\o
+\m 201.2109 1.993
+\c 197.1398 1.993 193.8409 5.4808 193.8409 9.7991
+\c 193.8409 14.1173 197.1398 17.6259 201.2109 17.6259
+\c 205.2842 17.6259 208.5831 14.1173 208.5831 9.7991
+\c 208.5831 5.4808 205.2842 1.993 201.2109 1.993
+\o
+\m 225.0443 1.993
+\c 220.9731 1.993 217.6721 5.4808 217.6721 9.7991
+\c 217.6721 14.1173 220.9731 17.6259 225.0443 17.6259
+\c 229.1175 17.6259 232.4143 14.1173 232.4143 9.7991
+\c 232.4143 5.4808 229.1175 1.993 225.0443 1.993
+\o
+\m 247.387 1.993
+\c 243.3137 1.993 240.019 5.4808 240.019 9.7991
+\c 240.019 14.1173 243.3137 17.6259 247.387 17.6259
+\c 251.4603 17.6259 254.7571 14.1173 254.7571 9.7991
+\c 254.7571 5.4808 251.4603 1.993 247.387 1.993
+\o
+\m 282.2609 3.9653
+\c 262.6877 4.256 264.1035 8.8026 264.1035 8.8026
+\l 344.3916 8.8026
+\c 344.3916 5.1071 301.8362 3.6954 282.2609 3.9653
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian84.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian84.pgf
new file mode 100644
index 0000000000..ba0508f21b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian84.pgf
@@ -0,0 +1,362 @@
+\r 0 -5.5 290 51.1
+\i
+\m 271.4794 19.2345
+\c 269.8391 19.2345 267.5125 20.3063 264.8213 21.5529
+\l 261.7958 22.9276
+\c 259.4692 23.9296 255.3194 24.9431 253.0872 23.184
+\c 252.8123 22.9626 252.5886 22.683 252.4523 22.2985
+\c 251.7766 20.4112 253.9155 19.2462 255.4336 18.9549
+\c 254.5202 19.1297 253.0604 18.0346 252.6503 17.3006
+\c 251.483 15.2152 253.8794 14.0968 255.5233 14.0152
+\c 257.6378 13.8987 259.8397 14.1317 261.7958 14.9822
+\l 264.8213 16.3453
+\c 267.5125 17.5918 269.8391 18.6753 271.4794 18.6753
+\l 290.1769 18.6753
+\l 290.1769 19.2345
+\l 271.4794 19.2345
+\o
+\m 264.6128 16.7996
+\l 261.6 15.4366
+\c 258.5791 14.1317 255.8087 14.2948 254.7346 15.122
+\c 254.3722 15.4016 254.1882 15.7395 254.1882 16.1472
+\c 254.1882 16.2171 254.1928 16.2754 254.2045 16.3453
+\c 254.4911 18.419 257.8591 18.6171 260.2113 19.0481
+\c 257.3628 19.0714 254.4911 19.4792 254.2045 21.5529
+\c 254.1334 22.0539 254.314 22.4616 254.7346 22.7878
+\c 255.8087 23.6034 258.5791 23.7665 261.6 22.4733
+\l 264.6128 21.1102
+\c 266.6388 20.1665 268.455 19.3277 269.9754 18.9549
+\c 268.455 18.5705 266.6388 17.7316 264.6128 16.7996
+\o
+\s
+\m 243.2509 19.6423
+\c 242.7686 19.7821 241.9123 21.7393 240.3081 23.5684
+\c 237.7602 20.3063 233.3401 19.9918 232.0551 19.9801
+\l 231.7615 19.9801
+\c 231.7184 19.9801 231.6939 19.9801 231.6939 19.9801
+\l 173.0711 19.9801
+\c 172.7274 22.5548 170.5209 24.5587 167.8402 24.5587
+\c 164.923 24.5587 162.5568 22.1937 162.5568 19.2695
+\c 162.5568 16.3569 164.923 13.9919 167.8402 13.9919
+\c 170.6595 13.9919 172.9581 16.2055 173.1096 18.9782
+\l 231.9001 18.9782
+\c 232.9335 18.9083 237.6437 18.3608 240.3081 14.9239
+\c 241.9123 16.753 242.7686 19.1879 243.2509 19.3277
+\c 243.2509 19.3277 244.268 18.0812 244.8027 17.0326
+\c 245.8175 18.1744 246.2986 19.4908 246.2986 19.4908
+\c 246.2986 19.4908 245.8175 20.5277 244.8027 21.6811
+\c 244.268 20.6326 243.2509 19.6423 243.2509 19.6423
+\o
+\m 168.5835 15.2734
+\c 166.5318 15.2734 164.8682 17.0559 164.8682 19.2695
+\c 164.8682 21.483 166.5318 23.2772 168.5835 23.2772
+\c 170.4137 23.2772 171.9294 21.8558 172.2381 19.9801
+\l 171.4541 19.9801
+\c 171.1873 20.8306 170.3951 21.4597 169.4514 21.4597
+\c 168.2864 21.4597 167.3462 20.5161 167.3462 19.351
+\c 167.3462 18.186 168.2864 17.254 169.4514 17.254
+\c 170.4859 17.254 171.3422 17.9996 171.517 18.9782
+\l 172.2847 18.9782
+\c 172.1449 16.9045 170.543 15.2734 168.5835 15.2734
+\o
+\s
+\m 249.5304 21.5529
+\c 248.2151 21.5529 247.1479 20.4811 247.1479 19.1646
+\c 247.1479 17.8481 248.2151 16.788 249.5304 16.788
+\c 250.848 16.788 251.9152 17.8481 251.9152 19.1646
+\c 251.9152 20.4811 250.848 21.5529 249.5304 21.5529
+\o
+\s
+% \m -0.0001 0
+% \l 290.177 0
+% \l 290.177 45.3543
+% \l -0.0001 45.3543
+% \o
+% \i
+\m 222.2828 14.423
+\l 177.0438 14.423
+\l 176.6687 14.3997
+\c 174.9713 11.4172 171.8583 9.4134 168.2957 9.4134
+\c 166.2359 9.4134 164.2601 10.0774 162.5813 11.3473
+\l 162.1176 11.7085
+\l 161.845 11.1842
+\c 158.5538 4.8931 152.103 0.9903 145.0174 0.9903
+\c 137.9294 0.9903 131.481 4.8931 128.1886 11.1842
+\l 127.9172 11.7085
+\l 127.4512 11.3473
+\c 125.7724 10.0774 123.7965 9.4134 121.7391 9.4134
+\c 118.1741 9.4134 115.0611 11.4172 113.3637 14.3997
+\l 113.1319 14.3997
+\l 67.894 14.423
+\c 57.4927 14.4696 54.6186 11.4638 54.3483 8.6911
+\c 54.1339 6.4892 55.3782 4.8698 56.4826 4.3339
+\c 56.7075 4.1941 56.9323 4.1009 57.1409 4.0426
+\c 58.5599 3.7164 60.8748 3.9028 61.3 6.2678
+\c 61.7252 8.6328 59.9777 9.6697 58.9385 9.7163
+\c 57.8981 9.7629 56.7622 9.2503 56.7168 7.5027
+\c 55.7661 7.7591 55.7021 8.5979 55.7859 9.1804
+\c 56.4325 11.2541 59.8705 13.4327 67.894 13.4327
+\l 112.7905 13.4327
+\c 114.7116 10.4153 118.0017 8.4231 121.7391 8.4231
+\c 123.8361 8.4231 125.8399 9.0755 127.5921 10.2639
+\c 131.1256 3.9261 137.7383 -0 145.0174 -0
+\c 152.2918 -0 158.9044 3.9261 162.4403 10.2639
+\c 164.1925 9.0755 166.1975 8.4231 168.2957 8.4231
+\c 172.0308 8.4231 175.3219 10.4153 177.2442 13.4327
+\l 222.2828 13.4327
+\c 230.3052 13.4327 233.7408 11.2541 234.3874 9.1804
+\c 234.4713 8.5979 234.4107 7.7591 233.4589 7.5027
+\c 233.4111 9.2503 232.2787 9.7629 231.2384 9.7163
+\c 230.198 9.6697 228.4493 8.6328 228.8734 6.2678
+\c 229.2998 3.9028 231.6158 3.7164 233.0337 4.0426
+\c 233.2399 4.1009 233.4659 4.1941 233.6919 4.3339
+\c 234.7964 4.8698 236.0394 6.4892 235.8262 8.6911
+\c 235.5571 11.4638 232.6807 14.4696 222.2828 14.423
+\o
+\s
+\m 201.5326 26.5975
+\c 202.912 26.5975 204.0293 27.5528 204.0293 28.7528
+\c 204.0293 29.9411 202.912 30.9081 201.5326 30.9081
+\c 200.1556 30.9081 199.0383 29.9411 199.0383 28.7528
+\c 199.0383 27.5528 200.1556 26.5975 201.5326 26.5975
+\o
+\s
+\m 201.5326 12.4191
+\c 200.1556 12.4191 199.0383 11.4522 199.0383 10.2639
+\c 199.0383 9.0639 200.1556 8.1086 201.5326 8.1086
+\c 202.912 8.1086 204.0293 9.0639 204.0293 10.2639
+\c 204.0293 11.4522 202.912 12.4191 201.5326 12.4191
+\o
+\s
+\m 117.0661 18.9782
+\c 117.2164 16.2055 119.515 13.9919 122.3344 13.9919
+\c 125.2528 13.9919 127.6178 16.3569 127.6178 19.2695
+\c 127.6178 22.1937 125.2528 24.5587 122.3344 24.5587
+\c 119.656 24.5587 117.4459 22.5548 117.1023 19.9801
+\l 58.4806 19.9801
+\c 58.4806 19.9801 58.4573 19.9801 58.4119 19.9801
+\l 58.1183 19.9801
+\c 56.8345 19.9918 52.4144 20.3063 49.8676 23.5684
+\c 48.2611 21.7393 47.4083 19.7821 46.926 19.6423
+\c 46.926 19.6423 45.9089 20.6326 45.3741 21.6811
+\c 44.3571 20.5277 43.8736 19.4908 43.8736 19.4908
+\c 43.8736 19.4908 44.3571 18.1744 45.3741 17.0326
+\c 45.9089 18.0812 46.926 19.3277 46.926 19.3277
+\c 47.4083 19.1879 48.2611 16.753 49.8676 14.9239
+\c 52.5297 18.3608 57.2422 18.9083 58.2733 18.9782
+\l 117.0661 18.9782
+\o
+\m 120.7255 21.4597
+\c 119.7783 21.4597 118.9884 20.8306 118.7228 19.9801
+\l 117.9376 19.9801
+\c 118.244 21.8558 119.762 23.2772 121.5911 23.2772
+\c 123.645 23.2772 125.3052 21.483 125.3052 19.2695
+\c 125.3052 17.0559 123.645 15.2734 121.5911 15.2734
+\c 119.6304 15.2734 118.0285 16.9045 117.8898 18.9782
+\l 118.6564 18.9782
+\c 118.8347 17.9996 119.6898 17.254 120.7255 17.254
+\c 121.8882 17.254 122.8295 18.186 122.8295 19.351
+\c 122.8295 20.5161 121.8882 21.4597 120.7255 21.4597
+\o
+\s
+\m 40.643 21.5529
+\c 39.3277 21.5529 38.2593 20.4811 38.2593 19.1646
+\c 38.2593 17.8481 39.3277 16.788 40.643 16.788
+\c 41.9583 16.788 43.0278 17.8481 43.0278 19.1646
+\c 43.0278 20.4811 41.9583 21.5529 40.643 21.5529
+\o
+\s
+\m 37.7211 22.2985
+\c 37.5871 22.683 37.3646 22.9626 37.0873 23.184
+\c 34.8552 24.9431 30.7042 23.9296 28.3811 22.9276
+\l 25.3521 21.5529
+\c 22.6609 20.3063 20.3343 19.2345 18.6963 19.2345
+\l 0 19.2345
+\l 0 18.6753
+\l 18.6963 18.6753
+\c 20.3343 18.6753 22.6609 17.5918 25.3521 16.3453
+\l 28.3811 14.9822
+\c 30.3349 14.1317 32.5356 13.8987 34.6513 14.0152
+\c 36.2974 14.0968 38.6916 15.2152 37.5242 17.3006
+\c 37.1141 18.0346 35.6555 19.1297 34.741 18.9549
+\c 36.259 19.2462 38.398 20.4112 37.7211 22.2985
+\o
+\m 35.9724 21.5529
+\c 35.6835 19.4792 32.8105 19.0714 29.9644 19.0481
+\c 32.3177 18.6171 35.6835 18.419 35.9724 16.3453
+\c 35.9806 16.2754 35.9852 16.2171 35.9852 16.1472
+\c 35.9852 15.7395 35.8035 15.4016 35.4388 15.122
+\c 34.3682 14.2948 31.5954 14.1317 28.5768 15.4366
+\l 25.5618 16.7996
+\c 23.5358 17.7316 21.7184 18.5705 20.198 18.9549
+\c 21.7184 19.3277 23.5358 20.1665 25.5618 21.1102
+\l 28.5768 22.4733
+\c 31.5954 23.7665 34.3682 23.6034 35.4388 22.7878
+\c 35.8629 22.4616 36.04 22.0539 35.9724 21.5529
+\o
+\s
+\m 67.894 24.9315
+\l 112.335 24.9315
+\l 113.1319 24.9315
+\l 113.4837 24.9315
+\c 115.2068 27.7974 118.258 29.7197 121.7391 29.7197
+\c 123.68 29.7197 125.5557 29.1139 127.1622 27.9955
+\l 127.6399 27.6576
+\l 127.895 28.1819
+\c 131.0394 34.7293 137.7581 38.9584 145.0174 38.9584
+\c 152.2731 38.9584 158.9953 34.7293 162.1397 28.1819
+\l 162.3925 27.6576
+\l 162.8702 27.9955
+\c 164.4767 29.1139 166.3513 29.7197 168.2957 29.7197
+\c 171.7745 29.7197 174.8256 27.7974 176.551 24.9315
+\l 177.0438 24.9315
+\l 177.6974 24.9315
+\l 222.2828 24.9315
+\c 232.6807 24.8849 235.5571 27.8906 235.8262 30.6634
+\c 236.0394 32.8536 234.7964 34.4847 233.6919 35.0089
+\c 233.4659 35.1487 233.2399 35.2536 233.0337 35.3002
+\c 231.6158 35.638 229.2998 35.4516 228.8734 33.0866
+\c 228.4493 30.7217 230.198 29.6731 231.2384 29.6382
+\c 232.2787 29.5799 233.4111 30.1042 233.4589 31.8517
+\c 234.4107 31.5838 234.4713 30.7566 234.3874 30.1741
+\c 233.7408 28.0887 230.3052 25.9218 222.2828 25.9218
+\l 177.0963 25.9218
+\c 175.1553 28.811 171.9387 30.6983 168.2957 30.6983
+\c 166.3291 30.6983 164.436 30.1275 162.7665 29.079
+\c 159.3611 35.6846 152.4724 39.9486 145.0174 39.9486
+\c 137.5612 39.9486 130.6678 35.6846 127.2694 29.079
+\c 125.5988 30.1275 123.7056 30.6983 121.7391 30.6983
+\c 118.096 30.6983 114.8771 28.811 112.9361 25.9218
+\l 67.894 25.9218
+\c 59.8705 25.9218 56.4325 28.0887 55.7859 30.1741
+\c 55.7021 30.7566 55.7661 31.5838 56.7168 31.8517
+\c 56.7622 30.1042 57.8981 29.5799 58.9385 29.6382
+\c 59.9777 29.6731 61.7252 30.7217 61.3 33.0866
+\c 60.8748 35.4516 58.5599 35.638 57.1409 35.3002
+\c 56.9323 35.2536 56.7075 35.1487 56.4826 35.0089
+\c 55.3782 34.4847 54.1339 32.8536 54.3483 30.6634
+\c 54.6186 27.8906 57.4927 24.8849 67.894 24.9315
+\o
+\s
+\m 88.6419 26.5975
+\c 90.0201 26.5975 91.1374 27.5528 91.1374 28.7528
+\c 91.1374 29.9411 90.0201 30.9081 88.6419 30.9081
+\c 87.2649 30.9081 86.1453 29.9411 86.1453 28.7528
+\c 86.1453 27.5528 87.2649 26.5975 88.6419 26.5975
+\o
+\s
+\m 88.6419 12.4191
+\c 87.2649 12.4191 86.1453 11.4522 86.1453 10.2639
+\c 86.1453 9.0639 87.2649 8.1086 88.6419 8.1086
+\c 90.0201 8.1086 91.1374 9.0639 91.1374 10.2639
+\c 91.1374 11.4522 90.0201 12.4191 88.6419 12.4191
+\o
+\s
+\m 145.0954 21.6694
+\c 143.9141 21.6694 142.953 20.7025 142.953 19.5258
+\c 142.953 18.3375 143.9141 17.3821 145.0954 17.3821
+\c 146.2756 17.3821 147.2332 18.3375 147.2332 19.5258
+\c 147.2332 20.7025 146.2756 21.6694 145.0954 21.6694
+\o
+\s
+\m 145.0954 33.6342
+\c 137.3038 33.6342 130.987 27.3198 130.987 19.5258
+\c 130.987 11.7318 137.3038 5.4174 145.0954 5.4174
+\c 152.8836 5.4174 159.2027 11.7318 159.2027 19.5258
+\c 159.2027 27.3198 152.8836 33.6342 145.0954 33.6342
+\o
+\m 145.3704 27.9605
+\c 145.3913 30.1391 146.0368 31.2576 147.4616 31.5721
+\c 148.8899 31.8867 151.2701 31.211 152.0145 29.976
+\c 152.816 28.6363 152.6285 27.5644 151.3772 26.248
+\l 148.7886 23.6616
+\l 147.6748 22.5432
+\c 147.0445 23.0791 146.2465 23.4286 145.368 23.4869
+\l 145.3727 27.8207
+\c 145.3727 27.8673 145.3704 27.9139 145.3704 27.9605
+\o
+\m 138.2276 29.976
+\c 138.9721 31.211 141.351 31.8867 142.7782 31.5721
+\c 144.203 31.2576 144.8496 30.1391 144.8694 27.9605
+\c 144.8694 27.9139 144.8694 27.8673 144.8694 27.8207
+\l 144.8717 23.4869
+\c 143.9887 23.4403 143.179 23.1024 142.5417 22.5665
+\l 141.4524 23.6616
+\l 138.8649 26.248
+\c 137.6102 27.5644 137.4272 28.6363 138.2276 29.976
+\o
+\m 134.7873 26.5392
+\c 136.1213 27.3314 137.1989 27.1567 138.5119 25.8985
+\l 142.1852 22.2286
+\c 141.6015 21.5995 141.2171 20.784 141.1355 19.8869
+\l 136.9403 19.8869
+\c 134.6638 19.8753 133.5058 20.5277 133.1854 21.984
+\c 132.8708 23.4053 133.5477 25.7936 134.7873 26.5392
+\o
+\m 134.7873 12.4774
+\c 133.5477 13.223 132.8708 15.5997 133.1854 17.021
+\c 133.5058 18.4773 134.6638 19.1297 136.9403 19.118
+\l 141.1378 19.118
+\c 141.2287 18.221 141.6178 17.4171 142.2027 16.7996
+\l 138.5119 13.1065
+\c 137.1989 11.8599 136.1213 11.6735 134.7873 12.4774
+\o
+\m 144.8694 11.0444
+\c 144.8496 8.8658 144.203 7.7474 142.7782 7.4328
+\c 141.351 7.1183 138.9721 7.794 138.2276 9.0406
+\c 137.4272 10.3687 137.6102 11.4522 138.8649 12.757
+\l 142.5615 16.4618
+\c 143.1941 15.9375 143.998 15.5997 144.8717 15.5531
+\l 144.8694 11.1842
+\c 144.8694 11.1376 144.8694 11.091 144.8694 11.0444
+\o
+\m 141.6132 19.5258
+\c 141.6132 21.4481 143.1743 23.0092 145.0954 23.0092
+\c 147.0154 23.0092 148.5788 21.4481 148.5788 19.5258
+\c 148.5788 17.6035 147.0154 16.0424 145.0954 16.0424
+\c 143.1743 16.0424 141.6132 17.6035 141.6132 19.5258
+\o
+\m 152.0145 9.0406
+\c 151.2701 7.794 148.8899 7.1183 147.4639 7.4328
+\c 146.0368 7.7474 145.3913 8.8658 145.3704 11.0444
+\c 145.3704 11.091 145.3727 11.1376 145.3727 11.1842
+\c 145.3727 11.1842 145.368 14.6327 145.368 15.5531
+\c 146.2348 15.623 147.0282 15.9492 147.655 16.4851
+\l 151.3772 12.757
+\c 152.6285 11.4522 152.8137 10.3687 152.0145 9.0406
+\o
+\m 155.4525 12.4774
+\c 154.1185 11.6735 153.0409 11.8599 151.7279 13.1065
+\c 151.7256 13.1065 149.8895 14.9472 148.742 16.1006
+\c 148.5346 16.2987 148.3517 16.4851 148.2037 16.6365
+\c 148.2037 16.6365 148.2014 16.6365 148.1991 16.6365
+\c 148.1257 16.7064 148.0639 16.7763 148.0126 16.8229
+\c 148.5835 17.4404 148.9633 18.2326 149.0518 19.118
+\l 153.3007 19.118
+\c 155.5748 19.1297 156.734 18.4773 157.0544 17.021
+\c 157.3701 15.5997 156.6932 13.223 155.4525 12.4774
+\o
+\m 157.0544 21.984
+\c 156.734 20.5277 155.5748 19.8753 153.3007 19.8869
+\l 149.0565 19.8869
+\c 148.9715 20.7724 148.5987 21.5762 148.0301 22.1937
+\l 151.7302 25.8985
+\c 153.0409 27.1567 154.122 27.3314 155.4525 26.5392
+\c 156.6956 25.7936 157.3701 23.4053 157.0544 21.984
+\o
+\s
+\m 145.4764 40.8806
+\c 146.7952 40.8806 147.86 41.8826 147.86 43.1175
+\c 147.86 44.3524 146.7952 45.3543 145.4764 45.3543
+\c 144.1599 45.3543 143.0928 44.3524 143.0928 43.1175
+\c 143.0928 41.8826 144.1599 40.8806 145.4764 40.8806
+\o
+\s
+\m 145.4764 -5.2194
+\c 146.7952 -5.2194 147.86 -4.2174 147.86 -2.9825
+\c 147.86 -1.7476 146.7952 -0.7457 145.4764 -0.7457
+\c 144.1599 -0.7457 143.0928 -1.7476 143.0928 -2.9825
+\c 143.0928 -4.2174 144.1599 -5.2194 145.4764 -5.2194
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian85.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian85.pgf
new file mode 100644
index 0000000000..c3f82023b3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian85.pgf
@@ -0,0 +1,95 @@
+\r 0 0 453 22
+\i
+\m 452.2573 19.6814
+\c 451.9573 19.7987 444.6934 22.6982 428.7677 22.0446
+\c 416.8779 21.5585 407.5575 18.9272 397.6974 16.1449
+\l 387.2205 13.2957
+\c 373.13 9.776 365.5661 11.2342 353.9378 15.8097
+\c 348.6616 17.9048 344.3559 19.1953 340.6317 19.7149
+\c 339.4585 20.2512 332.7493 22.9496 321.654 20.9216
+\c 311.0229 18.9607 303.2796 10.128 294.2559 9.1559
+\c 285.2338 8.1838 277.4603 13.5974 266.0566 18.4914
+\c 250.1828 25.3296 239.0037 21.9943 231.2789 18.6422
+\c 229.4905 18.0221 227.8966 17.0835 226.5793 15.8265
+\c 225.2552 17.0835 223.6529 18.0221 221.8512 18.659
+\c 214.1246 21.9943 202.9539 25.3128 187.0986 18.4914
+\c 175.6932 13.5974 167.9231 8.1838 158.8976 9.1559
+\c 149.8722 10.128 142.1373 18.9774 131.5012 20.9216
+\c 120.865 22.8491 113.9346 19.9495 113.9346 19.9495
+\c 113.9346 19.9495 113.9196 19.9328 113.8944 19.8825
+\c 109.8636 19.497 105.1539 18.1562 99.2207 15.8097
+\c 87.5941 11.2342 80.0301 9.776 65.9397 13.2957
+\l 55.4611 16.1449
+\c 45.5994 18.9272 36.284 21.5585 24.3942 22.0446
+\c 8.4685 22.6982 1.2029 19.7987 0.8995 19.6814
+\c 0.1604 19.3797 -0.1933 18.5417 0.1067 17.7875
+\c 0.4084 17.05 1.2532 16.698 1.9973 16.9997
+\c 2.066 17.0165 9.0769 19.7652 24.2752 19.145
+\c 35.823 18.6757 44.9792 16.0947 54.6734 13.346
+\l 65.2358 10.4799
+\c 80.0989 6.7759 88.0617 8.3011 100.285 13.1281
+\c 112.4949 17.9383 118.9862 18.307 125.097 14.5359
+\l 126.6943 13.5303
+\c 134.1309 8.8542 146.5771 1.0439 161.8709 0.1388
+\c 178.8525 -0.8836 187.5327 3.7758 198.8375 10.9995
+\c 208.4563 17.1338 218.8427 18.5081 224.1641 14.6365
+\c 223.4752 13.3627 220.8975 9.005 222.2165 6.1055
+\c 222.6205 5.2172 223.5205 4.0775 225.5032 3.692
+\c 228.2117 3.1724 230.4073 4.3792 231.2336 6.8094
+\c 232.0415 9.2062 231.3593 12.4912 229.1922 14.3516
+\c 234.4415 18.4746 244.5363 17.2511 254.3227 10.9995
+\c 265.6275 3.7758 274.3077 -0.8836 291.2893 0.1388
+\c 306.5797 1.0439 319.0293 8.8542 326.4642 13.5303
+\l 328.0615 14.5359
+\c 334.1723 18.307 340.6636 17.9383 352.8735 13.1281
+\c 365.0968 8.3011 373.058 6.7759 387.9194 10.4799
+\l 398.4834 13.346
+\c 408.1759 16.0947 417.3355 18.6757 428.885 19.145
+\c 444.0799 19.7652 451.0925 17.0165 451.1645 16.9997
+\c 451.9037 16.698 452.7518 17.05 453.0501 17.7875
+\c 453.3501 18.5417 452.9981 19.3797 452.2573 19.6814
+\o
+\m 148.3922 5.787
+\c 139.9886 8.6195 133.0331 12.9772 128.2379 15.9773
+\l 126.6239 16.9997
+\c 124.1886 18.5081 121.7282 19.43 119.0113 19.8155
+\c 125.3401 21.7932 134.5197 18.7428 141.0076 14.4689
+\c 144.0463 12.4744 149.371 9.2397 155.2807 7.4798
+\c 155.2372 5.0328 150.8309 5.4016 148.3922 5.787
+\o
+\m 197.2755 13.4298
+\c 186.45 6.5245 178.1486 2.0662 162.0452 3.0216
+\c 160.9089 3.0886 159.7943 3.2227 158.6898 3.3568
+\c 162 3.9602 163.6224 4.6976 164.5375 5.653
+\c 165.89 5.9044 169.2153 7.2452 170.4991 7.8653
+\c 180.9744 12.8599 195.6397 20.754 204.0198 20.5864
+\c 208.9809 20.5026 211.4463 19.8993 212.6397 19.4132
+\c 207.8529 18.7931 202.5516 16.7986 197.2755 13.4298
+\o
+\m 228.4849 7.748
+\c 228.1296 6.6921 227.3335 6.3066 226.0463 6.5413
+\c 225.2267 6.7089 224.982 7.0273 224.858 7.3122
+\c 224.7373 7.5636 224.6853 7.8988 224.6853 8.2676
+\c 224.6853 9.4576 225.2384 11.0833 225.8669 12.3906
+\c 225.8669 12.3906 228.4748 10.966 228.6642 8.9045
+\c 228.7011 8.5022 228.6022 8.1 228.4849 7.748
+\o
+\m 291.1166 3.0216
+\c 275.01 2.0662 266.7102 6.5245 255.883 13.4298
+\c 250.6086 16.8153 245.3056 18.7931 240.5155 19.4132
+\c 241.7071 19.8993 244.1726 20.5026 249.132 20.5864
+\c 257.5121 20.754 272.1791 12.8599 282.6543 7.8653
+\c 283.9399 7.2452 285.2656 6.8429 286.6182 6.5748
+\c 287.5316 5.6362 290.0121 3.5747 294.4553 3.3568
+\c 293.3558 3.2227 292.2446 3.0886 291.1166 3.0216
+\o
+\m 326.5346 16.9997
+\l 324.9239 15.9773
+\c 320.1288 12.9772 313.18 8.6195 304.7797 5.787
+\c 302.3478 5.4016 297.9146 5.0161 297.8761 7.4798
+\c 303.7808 9.2397 309.1072 12.4744 312.1459 14.4689
+\c 317.3952 17.9215 324.8569 19.5305 331.1906 19.145
+\c 329.5934 18.6422 328.0581 17.9383 326.5346 16.9997
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian86.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian86.pgf
new file mode 100644
index 0000000000..8bc7130448
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian86.pgf
@@ -0,0 +1,119 @@
+\m 229.9635 12.027
+\c 229.9635 8.8412 229.2251 6.182 226.4578 6.263
+\c 223.6892 6.3575 222.9508 8.8412 222.9508 12.027
+\c 222.9508 12.1485 222.9589 12.27 222.9643 12.3914
+\c 222.3798 11.4195 222.0316 10.2181 222.0316 8.8952
+\c 222.0316 5.7095 224.0537 3.1312 226.5496 3.1312
+\c 229.0469 3.1312 231.069 5.7095 231.069 8.8952
+\c 231.069 10.3531 230.6411 11.6895 229.9365 12.7019
+\c 229.9527 12.4859 229.9635 12.2565 229.9635 12.027
+\o
+\s
+\m 244.6273 13.2824
+\c 243.4826 13.2554 242.809 13.0799 242.0274 12.3509
+\c 242.2002 12.3779 242.3743 12.3914 242.5525 12.3914
+\c 245.0457 12.4454 245.5978 10.6501 245.5978 9.2597
+\c 245.5978 6.4925 243.7984 5.534 242.7037 5.3855
+\c 242.6092 5.372 242.5147 5.3855 242.4202 5.3855
+\c 243.1937 4.8186 244.1508 4.4946 245.1807 4.5216
+\c 247.6753 4.5756 249.6529 6.6409 249.5975 9.1382
+\c 249.5422 11.6355 247.1219 13.3364 244.6273 13.2824
+\o
+\s
+\m 210.0581 12.3914
+\c 210.2363 12.3914 210.4091 12.3779 210.5832 12.3509
+\c 209.803 13.0799 209.128 13.2554 207.9806 13.2824
+\c 205.4887 13.3364 203.067 11.6355 203.0117 9.1382
+\c 202.9591 6.6409 204.9353 4.5756 207.4312 4.5216
+\c 208.4612 4.4946 209.4156 4.8186 210.1904 5.3855
+\c 210.0959 5.3855 210.0014 5.372 209.9056 5.3855
+\c 208.8122 5.534 207.0141 6.4925 207.0141 9.2597
+\c 207.0141 10.6501 207.5649 12.4454 210.0581 12.3914
+\o
+\s
+\m -0.0054 0
+\l 453.538 0
+\l 453.538 16.9671
+\l -0.0054 16.9671
+\o
+\i
+\m 347.0996 9.3137
+\c 336.4018 9.1247 330.4947 10.2316 330.4947 10.2316
+\c 314.8158 13.3634 313.7089 11.892 305.2249 11.3385
+\c 296.7409 10.7851 297.1094 12.081 286.7774 13.3634
+\c 276.4467 14.6592 273.6822 12.8099 263.72 12.8099
+\c 253.7606 12.8099 249.5975 16.4006 242.8738 15.2127
+\c 237.7604 14.3083 237.3082 10.0966 237.3149 8.5713
+\l 235.2159 8.5713
+\c 235.1646 13.2149 231.3917 16.9675 226.7319 16.9675
+\c 222.0788 16.9675 218.3018 13.2149 218.2532 8.5713
+\l 216.219 8.5713
+\c 216.2257 10.0966 215.7722 14.3083 210.6574 15.2127
+\c 203.9364 16.4006 199.7747 12.8099 189.8125 12.8099
+\c 179.8517 12.8099 177.0845 14.6592 166.7538 13.3634
+\c 156.4245 12.081 156.7944 10.7851 148.3063 11.3385
+\c 139.8236 11.892 138.7154 13.3634 123.0365 10.2316
+\c 123.0365 10.2316 117.1335 9.1247 106.4343 9.3137
+\c 106.4343 9.3137 -0.0054 7.4914 0 7.1809
+\c 0.0027 6.8704 108.9302 8.0988 108.9302 8.0988
+\c 115.5514 7.7343 124.1893 7.2754 126.9107 7.2754
+\c 131.5219 7.2754 133.7357 8.2068 145.1719 5.993
+\c 156.6081 3.7792 159.5603 4.6971 173.7651 4.6971
+\c 187.9672 4.6971 191.103 1.3764 202.5392 1.3764
+\c 213.31 1.3764 215.7384 3.4282 216.138 7.2754
+\l 218.3437 7.2754
+\c 218.9268 3.1582 222.4554 -0.0005 226.7319 -0.0005
+\c 231.0123 -0.0005 234.5423 3.1582 235.1254 7.2754
+\l 237.3932 7.2754
+\c 237.7955 3.4282 240.2226 1.3764 250.992 1.3764
+\c 262.4295 1.3764 265.564 4.6971 279.7688 4.6971
+\c 293.9723 4.6971 296.9218 3.7792 308.3593 5.993
+\c 319.7955 8.2068 322.0107 7.2754 326.6219 7.2754
+\c 329.3433 7.2754 337.9825 7.7343 344.5996 8.0988
+\c 344.5996 8.0988 453.5299 6.8704 453.5326 7.1809
+\c 453.538 7.4914 347.0996 9.3137 347.0996 9.3137
+\o
+\m 188.1522 8.2068
+\c 183.3574 9.3137 180.0353 10.9741 168.4155 8.9357
+\c 156.7944 6.9109 154.0258 6.7354 147.1994 8.2068
+\c 140.3758 9.6782 137.7948 9.4892 133.7343 8.9357
+\c 133.7343 8.9357 132.9973 11.1495 140.7456 10.9741
+\c 148.4913 10.7851 149.7831 8.5713 166.2004 11.5275
+\c 182.619 14.4703 186.9535 10.6501 192.5785 11.703
+\c 199.4021 12.9989 202.3557 13.5523 202.3557 13.5523
+\c 202.3557 13.5523 199.4048 12.4454 199.5897 7.0999
+\c 199.5897 7.0999 192.9483 7.0999 188.1522 8.2068
+\o
+\m 214.6504 8.5713
+\l 214.6504 7.5319
+\c 214.2103 4.6836 211.3553 2.4833 207.8915 2.4833
+\c 204.1213 2.4833 201.0652 5.0886 201.0652 8.3013
+\c 201.0652 11.5005 204.1213 14.1058 207.8915 14.1058
+\c 211.5511 14.1058 214.5289 11.649 214.7003 8.5713
+\l 214.6504 8.5713
+\o
+\m 226.7319 1.1874
+\c 222.7349 1.1874 219.4938 4.4406 219.4938 8.4363
+\c 219.4938 12.4319 222.7349 15.6717 226.7319 15.6717
+\c 230.7329 15.6717 233.974 12.4319 233.974 8.4363
+\c 233.974 4.4406 230.7329 1.1874 226.7319 1.1874
+\o
+\m 245.6424 2.4833
+\c 241.8722 2.4833 238.8174 5.0886 238.8174 8.3013
+\c 238.8174 11.5005 241.8722 14.1058 245.6424 14.1058
+\c 249.4126 14.1058 252.4687 11.5005 252.4687 8.3013
+\c 252.4687 5.0886 249.4126 2.4833 245.6424 2.4833
+\o
+\m 319.7955 8.9357
+\c 315.7391 9.4892 313.1568 9.6782 306.3318 8.2068
+\c 299.5054 6.7354 296.7409 6.9109 285.1184 8.9357
+\c 273.4972 10.9741 270.1752 9.3137 265.379 8.2068
+\c 260.5842 7.0999 253.9428 7.0999 253.9428 7.0999
+\c 254.1291 12.4454 251.1756 13.5523 251.1756 13.5523
+\c 251.1756 13.5523 254.1291 12.9989 260.9528 11.703
+\c 266.5818 10.6501 270.9163 14.4703 287.3308 11.5275
+\c 303.7481 8.5713 305.04 10.7851 312.7883 10.9741
+\c 320.5353 11.1495 319.7955 8.9357 319.7955 8.9357
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian87.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian87.pgf
new file mode 100644
index 0000000000..d8c556dcde
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian87.pgf
@@ -0,0 +1,513 @@
+\r 79 0 356.5 44
+\i
+\m 430.7596 22.4588
+\c 426.0989 22.5333 419.3224 21.888 415.6531 19.7041
+\c 413.0398 20.126 408.4522 21.5406 405.9829 21.5406
+\c 403.511 21.5406 403.2294 21.7515 401.6758 22.6698
+\c 400.1222 23.588 398.7113 24.0099 398.8528 24.3698
+\c 398.993 24.7172 402.3818 26.3428 406.7584 28.4647
+\c 411.135 30.5742 415.0153 31.7034 414.6641 32.7706
+\c 414.3105 33.8253 412.6154 33.118 408.3815 30.6487
+\c 404.1451 28.1793 397.5821 25.4866 396.6638 25.0647
+\c 395.7456 24.6428 393.9103 25.0647 385.9351 22.5953
+\c 380.5013 21.1187 378.0307 20.2004 378.7368 21.5406
+\c 379.4416 22.8807 385.2998 27.6829 383.8194 28.7377
+\c 382.9707 29.234 380.3598 25.6355 377.6771 22.5953
+\c 375.9832 20.7588 372.8761 19.4931 368.4995 18.2894
+\c 364.1241 17.0982 359.3231 14.9018 356.7111 14.9763
+\c 356.2023 14.4303 355.5111 14.1697 354.9316 14.0332
+\c 352.5975 15.2865 349.1714 16.8376 345.4897 17.0237
+\c 343.9027 17.2099 340.4245 19.1208 337.2205 20.9698
+\c 339.8834 20.9325 343.822 22.3968 345.9886 23.3026
+\c 351.9175 19.7289 353.2577 21.9873 351.9361 22.7194
+\c 350.5724 23.4763 351.137 24.1712 353.017 23.4267
+\c 354.9006 22.6698 358.0537 22.1486 358.6642 23.1413
+\c 359.2772 24.1216 356.5944 25.0274 356.7346 25.3501
+\c 356.8786 25.6851 357.9135 25.4866 361.3954 25.4494
+\c 363.3076 25.4245 364.8711 26.4048 365.1106 27.3355
+\c 365.3104 28.08 364.3214 28.7501 364.4058 29.0727
+\c 364.4976 29.4078 366.1964 29.383 367.7475 29.9662
+\c 369.4401 30.6114 370.9713 31.8895 370.4303 32.9815
+\c 369.3941 35.0414 364.8302 31.6165 364.4542 32.0881
+\c 364.0757 32.5472 364.8302 34.1976 363.325 34.5326
+\c 361.5356 35.091 357.5834 30.1523 357.0188 30.6238
+\c 356.4542 31.0954 357.8179 33.6764 355.8424 33.6764
+\c 353.4413 33.6392 351.7959 27.5216 351.0415 27.3727
+\c 350.2882 27.2362 350.761 29.1224 349.2533 28.9735
+\c 347.567 28.7997 346.2454 25.9209 345.6858 24.4691
+\c 339.6241 21.553 335.8679 22.1362 334.4161 22.5829
+\c 333.7497 22.9676 333.1293 23.3274 332.5957 23.6128
+\c 329.1138 25.4866 325.0635 28.3158 316.0287 31.0457
+\c 315.4653 31.418 317.4408 32.3611 329.8645 35.6618
+\c 342.2883 38.9502 346.6189 39.9925 347.4652 41.8663
+\c 348.3128 43.7524 346.7133 44.2239 346.0543 43.6531
+\c 345.3954 43.0947 346.9006 41.8663 342.0066 40.1787
+\c 337.1113 38.4786 323.6527 35.091 322.5235 34.5326
+\c 323.5583 36.3195 325.7659 37.9451 326.1952 40.8363
+\c 326.5712 43.3801 325.0077 42.4247 324.7819 40.9232
+\c 324.5014 39.0494 322.6178 35.7487 319.2301 34.148
+\c 315.8413 32.5472 311.4188 32.6465 309.0648 31.8895
+\c 306.9007 31.2071 303.1681 30.2888 301.1157 30.5742
+\c 300.4419 31.4676 299.4269 32.1874 300.1007 32.6961
+\c 301.3006 33.5896 305.6747 31.5669 307.8624 32.9071
+\c 311.8891 35.9348 306.0519 35.9348 306.5235 36.8531
+\c 306.9925 37.7713 312.2402 39.1239 311.394 40.948
+\c 309.7709 43.9137 305.4638 40.1042 305.4638 40.1042
+\c 305.4638 40.1042 305.3235 41.8042 304.1943 42.0152
+\c 300.8055 42.5115 299.4653 37.4487 298.4763 37.9202
+\c 297.4874 38.3918 299.3251 40.6006 297.5581 40.5261
+\c 294.9473 40.3151 294.0054 34.4334 292.5462 34.6691
+\c 291.0869 34.9049 292.4754 36.8531 291.5597 36.6421
+\c 289.3422 35.6866 287.6136 32.4603 287.5925 30.4129
+\c 286.7897 29.4946 284.6591 27.5837 279.5578 25.561
+\c 278.1904 25.0274 277.5588 25.288 277.2622 25.5734
+\c 277.9757 26.1442 279.0317 27.2238 279.2761 28.8742
+\c 279.538 30.6487 278.642 31.8647 278.07 32.4355
+\c 278.889 33.3166 279.4461 34.4954 279.5119 35.848
+\c 279.6521 38.764 276.9234 40.8363 276.499 40.1787
+\c 276.499 40.1787 276.1963 39.8188 275.7309 39.2852
+\c 274.4243 40.1662 269.6407 43.194 267.9828 41.3079
+\c 266.2642 39.3597 269.8975 35.1779 271.2613 34.0115
+\c 271.1434 33.875 271.0441 33.7509 270.9932 33.6764
+\c 270.4286 32.9319 271.8867 30.9961 274.4292 30.8596
+\c 275.4815 30.7976 276.499 31.1574 277.3552 31.7903
+\c 277.7163 31.5297 278.6222 30.6611 278.2388 28.6508
+\c 277.8764 26.7151 275.7359 25.7223 274.7903 25.3625
+\c 274.3635 25.2384 273.9813 25.1391 273.7703 25.0647
+\c 273.0655 24.8537 270.9473 24.1464 264.9464 23.6625
+\c 258.948 23.1661 257.7468 23.2406 257.5358 22.5333
+\c 257.3224 21.826 257.6761 20.5479 258.2419 20.6968
+\c 258.804 20.8333 262.0527 22.2479 265.0159 21.7515
+\c 267.0696 21.4165 268.5251 20.8705 269.2436 20.5727
+\c 270.0278 16.1303 271.4027 12.358 272.6411 12.358
+\c 273.9106 12.358 273.5594 15.1872 274.4057 14.4055
+\c 275.1812 11.1668 275.8885 6.3645 277.3689 6.1536
+\c 278.853 5.9426 278.9225 7.8412 278.7823 8.9084
+\c 278.642 9.9631 279.9115 10.385 280.2626 8.1266
+\c 280.6175 5.8682 282.3808 2.4806 284.0051 2.4806
+\c 285.6295 2.4806 283.5113 5.1609 284.7807 5.5828
+\c 286.0526 6.0171 285.7697 1.6988 287.3928 1.8477
+\c 289.0171 1.9842 287.6744 3.5477 288.6634 4.0317
+\c 289.6524 4.528 290.7109 0.6441 292.051 2.4061
+\c 293.3937 4.1806 287.5342 6.0171 287.3233 7.1463
+\c 287.1123 8.2755 289.8634 7.1463 290.0768 8.3376
+\c 290.217 12.085 284.1454 11.7252 283.7235 12.6434
+\c 283.3003 13.5617 287.1123 12.9288 286.5452 15.1872
+\c 285.9831 17.4456 279.2761 17.5201 279.2761 17.5201
+\c 279.2761 17.5201 281.676 18.4384 281.1821 19.9895
+\c 280.687 21.5406 277.4421 21.0442 273.6996 20.9077
+\c 269.9583 20.7588 268.334 21.888 268.334 21.888
+\l 268.4209 21.7887
+\c 267.8079 22.0369 267.144 22.2727 266.4293 22.4588
+\c 269.6047 23.0917 272.6411 23.7245 273.4862 23.799
+\c 273.8411 23.2406 274.0533 22.3844 275.5349 22.4588
+\c 276.3799 22.496 277.0587 22.9304 277.4905 23.2902
+\c 278.7028 23.2778 280.826 23.2654 284.5698 23.2406
+\c 291.5187 23.1785 296.1522 21.3668 297.7306 20.6347
+\c 297.3571 19.1457 298.6029 15.2617 299.1117 15.3237
+\c 299.6763 15.3982 300.9457 18.2274 301.0872 16.6763
+\c 301.4408 12.296 304.1236 10.9558 304.7589 10.8814
+\c 305.393 10.8069 305.0394 12.6434 305.8174 13.0653
+\c 306.593 13.4872 307.3685 10.323 308.5002 8.7595
+\c 309.6294 7.2083 311.7451 7.4937 311.3245 8.9704
+\c 310.9001 10.4595 312.2402 10.385 313.3694 8.1266
+\c 314.4986 5.8682 317.6058 5.7937 317.1814 8.2755
+\c 316.7571 10.7449 314.0048 10.2485 313.5097 11.4522
+\c 313.0183 12.6434 316.7571 11.3777 315.5584 14.1945
+\c 314.3584 17.0237 310.4757 15.3982 309.8404 16.7383
+\c 309.2063 18.0785 313.0183 17.3091 312.5939 18.0785
+\c 311.183 22.2479 304.4748 19.9895 304.2638 20.6968
+\c 304.0529 21.4041 305.393 21.6771 305.393 22.5953
+\c 305.393 23.4391 299.7954 22.2106 298.2443 21.2924
+\c 294.5527 23.5136 288.5083 24.2333 283.4405 24.4318
+\c 283.6292 25.0026 288.3507 26.0202 291.5088 26.653
+\c 293.0065 26.0946 294.4733 25.9457 294.9473 26.4793
+\c 295.9338 27.6085 292.5002 28.7873 293.6046 29.0976
+\c 294.2524 29.2713 296.0244 28.2289 297.779 27.745
+\c 298.5098 27.3107 299.3226 26.9756 299.8413 27.1866
+\c 300.9705 27.6581 303.3232 29.9165 310.0997 30.2019
+\c 316.6603 30.4749 322.521 27.6457 329.7193 23.3771
+\c 329.9737 22.5829 330.3981 21.3048 331.0235 19.5924
+\c 332.1043 16.6391 331.5273 12.8296 326.8492 8.3003
+\c 325.9135 7.5806 324.4046 6.9974 324.9084 6.0667
+\c 325.4122 5.1361 323.469 4.9872 324.0435 3.7587
+\c 324.6193 2.5426 322.6053 1.5375 323.2531 0.7433
+\c 323.8996 -0.0508 327.4969 -0.4851 327.4969 0.8922
+\c 327.4969 2.2572 325.8416 3.1879 326.4186 3.8331
+\c 326.9944 4.4784 326.2027 4.9127 326.7065 5.9923
+\c 327.2078 7.0718 328.6485 8.2259 330.9528 11.3901
+\c 333.2546 14.5544 333.3986 17.5821 332.6056 19.5179
+\c 332.1502 20.6471 332.0795 21.4661 332.0994 21.9749
+\c 338.6214 18.2274 342.5935 16.788 345.1113 11.75
+\c 346.4303 8.5485 346.9006 7.5186 348.0298 8.077
+\c 349.159 8.6478 346.0543 13.8223 343.7959 15.6091
+\c 343.7959 15.6091 348.6887 15.5223 351.9821 14.0084
+\c 355.2766 12.5069 354.7108 11.1916 356.5944 11.1916
+\c 358.4781 11.1916 360.5479 11.1916 361.4872 10.72
+\c 361.9042 10.5091 362.5035 10.112 363.0433 9.7398
+\c 362.5929 7.6178 362.5321 5.347 364.69 4.4536
+\c 366.4533 3.5477 368.4995 4.1061 368.4995 4.1061
+\c 368.4995 4.1061 369.347 3.0514 372.8066 3.6098
+\c 376.2649 4.1806 375.3479 5.8682 373.5114 7.7047
+\c 371.6761 9.5412 370.336 9.1193 370.336 9.1193
+\c 370.336 9.1193 369.4885 12.5069 367.513 12.6434
+\c 365.8403 12.7675 364.0273 11.5266 363.4218 10.7945
+\c 362.7765 11.1419 361.3346 11.9113 360.8283 12.1222
+\c 360.2029 12.3952 359.1444 11.9113 357.746 12.5193
+\c 357.7795 12.7551 357.7025 13.115 357.3476 13.6361
+\c 361.2304 14.4055 367.7239 16.4653 372.5224 17.5201
+\c 377.3234 18.5748 383.4645 20.9077 384.0999 20.7588
+\c 384.7352 20.6223 386.0071 20.6223 387.8424 20.2004
+\c 388.5249 20.0391 389.1093 19.915 389.5771 19.8157
+\c 389.8799 18.9968 390.9682 17.7807 391.982 17.4953
+\c 393.2973 17.123 394.7107 13.0653 395.8399 13.45
+\c 396.9691 13.8223 397.1589 14.6661 397.1589 14.6661
+\c 397.1589 14.6661 399.7933 11.4646 400.9225 11.6631
+\c 402.0518 11.8493 400.9225 13.1646 402.2404 13.1646
+\c 403.5594 13.1646 405.4394 10.4346 406.6641 11.6631
+\c 407.8876 12.8792 405.2532 14.8522 403.2753 14.9515
+\c 401.2973 15.0507 404.3102 16.1799 405.2532 16.1799
+\c 406.1938 16.1799 404.8748 18.7113 399.982 18.1529
+\c 398.0983 18.3391 400.6409 20.126 399.2275 20.8829
+\c 397.8179 21.6398 395.4639 21.069 395.0891 21.2552
+\c 394.7107 21.4413 395.181 22.5705 393.5815 22.5705
+\c 392.1731 22.5705 390.4768 21.553 389.7658 20.734
+\c 388.6341 20.9573 387.3932 21.3048 387.8424 21.7515
+\c 388.6179 22.5333 395.8175 24.7172 396.2394 23.799
+\c 396.6638 22.8807 398.0065 23.3771 399.6978 22.2479
+\c 401.3941 21.1187 401.6758 19.9895 404.3586 19.9895
+\c 407.0389 19.9895 415.9335 17.8055 422.2186 13.5617
+\c 424.0526 12.9288 424.6172 15.3982 422.1454 16.5274
+\c 419.676 17.6566 418.0517 17.8055 418.6871 18.7113
+\c 419.3224 19.6296 427.9354 21.1187 434.9228 19.915
+\c 436.4056 20.2749 435.4179 22.3844 430.7596 22.4588
+\o
+\m 353.3222 27.3975
+\c 354.171 28.3158 354.7356 29.445 354.7356 28.7377
+\c 354.7356 28.0304 353.8868 27.472 354.7356 27.6085
+\c 355.5819 27.7574 356.2892 27.7574 357.1354 28.5267
+\c 357.983 29.3085 359.4646 31.418 359.2536 30.2888
+\c 359.0427 29.1596 358.1232 29.234 359.0427 29.1596
+\c 359.9585 29.0976 361.3011 29.8669 360.9474 29.0976
+\c 360.9474 29.0976 359.3231 28.1793 358.5476 27.8194
+\c 357.7695 27.472 361.1584 26.9012 360.5231 26.5537
+\c 359.8877 26.1939 357.2757 27.261 356.2892 26.9756
+\c 355.3002 26.6902 354.8063 26.7647 355.2294 26.3428
+\c 355.6538 25.9209 356.3599 24.7172 355.3002 25.2756
+\c 354.2417 25.8464 352.6174 26.2683 351.8418 25.772
+\c 351.0663 25.2756 349.159 24.2953 349.2298 24.7917
+\c 349.2993 25.2756 352.4772 26.4793 353.3222 27.3975
+\o
+\m 300.9457 37.7093
+\c 301.864 38.8385 302.4993 40.1042 302.4993 39.2604
+\c 302.4993 38.4166 301.2299 36.9275 302.0762 37.3494
+\c 302.9237 37.7713 305.6065 39.3969 305.7479 39.0494
+\c 305.9043 38.6524 302.9944 36.5056 301.7945 35.6618
+\c 300.5921 34.8056 300.0299 36.5801 300.9457 37.7093
+\o
+\m 284.2868 9.1814
+\c 284.71 9.3303 287.1123 8.623 286.7587 8.1266
+\c 286.405 7.6302 286.7587 8.1266 286.1233 7.9901
+\c 285.4855 7.8412 286.1233 7.9901 286.3343 6.9974
+\c 286.5452 6.0171 286.5452 5.0244 285.9124 6.228
+\c 285.2746 7.4193 283.5088 8.9208 284.2868 9.1814
+\o
+\m 282.4516 10.8814
+\c 284.0051 10.5339 284.0051 9.6777 283.2296 9.6777
+\c 282.4516 9.6777 281.8845 11.0055 282.4516 10.8814
+\o
+\m 275.1812 17.731
+\c 275.8153 17.8055 277.4421 15.969 279.0627 15.5471
+\c 280.687 15.1128 282.1711 14.9763 282.1711 14.5544
+\c 282.1711 14.1325 281.4626 14.3434 280.3359 14.1945
+\c 279.2042 14.058 281.6053 12.7923 281.0407 12.5814
+\c 280.4761 12.358 278.9225 13.7106 278.2884 14.1325
+\c 277.6531 14.5544 278.4286 12.5814 277.864 12.358
+\c 277.2994 12.1471 277.2287 12.9288 277.0885 14.6164
+\c 276.9482 16.3164 274.16 17.6194 275.1812 17.731
+\o
+\m 300.1218 20.4114
+\c 300.6888 21.069 302.194 19.853 303.2289 18.9968
+\c 304.2638 18.1529 305.7715 17.3091 306.4279 16.7383
+\c 307.0881 16.1799 311.1346 13.5369 310.7599 13.1646
+\c 310.3839 12.7923 310.0054 13.45 309.1604 13.8223
+\c 308.3116 14.1945 308.9705 12.5938 308.5002 13.3507
+\c 308.0299 14.1077 307.2767 15.0507 304.1695 17.0237
+\c 301.0648 18.9968 302.6643 17.8675 302.6643 16.9245
+\c 302.6643 15.9814 301.9136 17.5946 300.9705 18.6245
+\c 300.0299 19.6544 299.5447 19.7413 300.1218 20.4114
+\o
+\m 288.1708 26.6902
+\c 286.2549 26.5165 285.045 26.8143 284.4097 27.0625
+\c 286.0948 27.8815 287.6012 28.5516 288.2341 28.7005
+\c 288.7838 28.0676 289.6375 27.4968 290.5632 27.0501
+\c 289.8361 26.9012 289.032 26.7771 288.1708 26.6902
+\o
+\m 290.5707 29.9414
+\c 289.8634 29.5195 289.9353 31.145 290.7109 31.2815
+\c 291.4864 31.418 292.051 31.9144 293.2535 32.6217
+\c 294.4534 33.329 294.24 36.0837 294.8046 35.9348
+\c 295.3692 35.7983 294.4534 33.7509 295.7936 34.1728
+\c 297.1362 34.5947 299.3921 36.2202 299.4653 35.8728
+\c 299.6614 34.8801 296.3582 33.4034 295.7228 32.8326
+\c 295.0887 32.2742 297.7715 31.629 297.2044 31.145
+\c 296.6423 30.6487 295.2984 31.8523 293.8888 31.7779
+\c 292.4754 31.7034 291.2755 30.3633 290.5707 29.9414
+\o
+\s
+\m 256.2155 23.6873
+\c 255.6497 23.5508 252.4023 22.1362 249.4378 22.6325
+\c 247.3854 22.98 245.9261 23.5136 245.2114 23.8114
+\c 244.4234 28.2537 243.0522 32.026 241.8138 32.026
+\c 240.5444 32.026 240.8956 29.1968 240.0493 29.9786
+\c 239.2737 33.2173 238.5664 38.0195 237.0848 38.2305
+\c 235.602 38.4414 235.5312 36.5429 235.6727 35.4757
+\c 235.8129 34.4209 234.5435 33.999 234.1911 36.2575
+\c 233.8374 38.5159 232.0729 41.9035 230.4498 41.9035
+\c 228.8255 41.9035 230.9437 39.2232 229.6743 38.8013
+\c 228.4011 38.3794 228.6853 42.6852 227.0609 42.5363
+\c 225.4379 42.3998 226.778 40.8487 225.789 40.3524
+\c 224.8025 39.856 223.7441 43.74 222.4014 41.9779
+\c 221.06 40.2159 226.9207 38.3794 227.1317 37.2502
+\c 227.3426 36.121 224.5891 37.2502 224.3782 36.0465
+\c 224.2379 32.299 230.3096 32.6589 230.7302 31.7406
+\c 231.1546 30.8224 227.3426 31.4552 227.9072 29.1968
+\c 228.4718 26.9384 235.1776 26.864 235.1776 26.864
+\c 235.1776 26.864 232.7789 25.9457 233.2728 24.3946
+\c 233.7679 22.8435 237.0128 23.3398 240.7554 23.4763
+\c 244.4966 23.6252 246.1209 22.496 246.1209 22.496
+\l 246.0328 22.5953
+\c 246.6458 22.3471 247.3109 22.1238 248.0257 21.9252
+\c 244.8478 21.2924 241.8138 20.6595 240.9675 20.5851
+\c 240.6139 21.1559 240.4005 21.9997 238.9201 21.9252
+\c 238.0738 21.888 237.395 21.4537 236.9644 21.0938
+\c 235.7521 21.1063 233.629 21.1187 229.8852 21.1559
+\c 222.9362 21.2055 218.3028 23.0172 216.7244 23.7493
+\c 217.0979 25.2508 215.852 29.1224 215.3433 29.0603
+\c 214.7787 28.9859 213.508 26.1691 213.3678 27.7202
+\c 213.0141 32.0881 210.3313 33.4282 209.696 33.5027
+\c 209.0607 33.5771 209.4131 31.7406 208.6375 31.3187
+\c 207.862 30.8968 207.0839 34.0735 205.9547 35.6246
+\c 204.8243 37.1757 202.7061 36.8903 203.1305 35.4137
+\c 203.5549 33.9246 202.2147 33.999 201.0855 36.2575
+\c 199.9563 38.5159 196.8491 38.5903 197.2735 36.121
+\c 197.6967 33.6392 200.4502 34.1355 200.9428 32.9443
+\c 201.4367 31.7406 197.6967 33.0063 198.8966 30.1895
+\c 200.0965 27.3603 203.9793 28.9859 204.6146 27.6457
+\c 205.2487 26.3056 201.4367 27.0749 201.8611 26.3056
+\c 203.2707 22.1362 209.9802 24.3946 210.1911 23.6873
+\c 210.4008 22.9924 209.0607 22.707 209.0607 21.7887
+\c 209.0607 20.9449 214.6595 22.1734 216.2107 23.0917
+\c 219.9023 20.8705 225.9466 20.1508 231.0144 19.9522
+\c 230.8246 19.3814 226.1017 18.3639 222.9437 17.731
+\c 221.4484 18.2894 219.9817 18.4508 219.5064 17.9048
+\c 218.5187 16.7756 221.9547 15.5967 220.8503 15.2865
+\c 220.2026 15.1128 218.4281 16.1551 216.6735 16.6391
+\c 215.9414 17.0734 215.1323 17.4084 214.6136 17.1975
+\c 213.4844 16.7259 211.1305 14.4675 204.354 14.1821
+\c 197.7934 13.9091 191.934 16.7259 184.7331 21.0194
+\c 184.4812 21.8011 184.0544 23.0793 183.4314 24.7917
+\c 182.3506 27.745 182.9276 31.5545 187.6045 36.0837
+\c 188.5377 36.8034 190.0503 37.3867 189.5465 38.3173
+\c 189.0427 39.248 190.9859 39.3969 190.4114 40.6254
+\c 189.8344 41.8414 191.8484 42.8466 191.2043 43.6407
+\c 190.5541 44.4349 186.958 44.8692 186.958 43.5042
+\c 186.958 42.1268 188.6134 41.1962 188.0364 40.5509
+\c 187.4594 39.9057 188.2523 39.4713 187.7485 38.3918
+\c 187.2459 37.3122 185.804 36.1582 183.5047 32.9939
+\c 181.1991 29.8297 181.0564 26.8019 181.8493 24.8661
+\c 182.3072 23.7369 182.3754 22.9179 182.3556 22.4092
+\c 175.8335 26.1567 171.8639 27.5961 169.3437 32.6341
+\c 168.0246 35.8356 167.5518 36.8655 166.4251 36.3071
+\c 165.2959 35.7363 168.4006 30.5618 170.659 28.7749
+\c 170.659 28.7749 165.7662 28.8742 162.4717 30.3757
+\c 159.1784 31.8771 159.743 33.1925 157.8605 33.1925
+\c 155.9769 33.1925 153.9071 33.2049 152.9665 33.664
+\c 152.5495 33.875 151.9514 34.272 151.4117 34.6443
+\c 151.8621 36.7662 151.9229 39.037 149.765 39.9305
+\c 148.0005 40.8487 145.953 40.2779 145.953 40.2779
+\c 145.953 40.2779 145.1067 41.3451 141.6459 40.7743
+\c 138.19 40.2159 139.107 38.5159 140.9436 36.6794
+\c 142.7776 34.8428 144.119 35.2647 144.119 35.2647
+\c 144.119 35.2647 144.9665 31.8771 146.942 31.7406
+\c 148.6159 31.6165 150.4264 32.8574 151.0332 33.5896
+\c 151.6772 33.2421 153.1191 32.4728 153.6266 32.2618
+\c 154.252 31.9888 155.3105 32.4728 156.709 31.8771
+\c 156.6755 31.629 156.7524 31.2691 157.1061 30.7479
+\c 153.2233 29.9786 146.731 27.9311 141.9325 26.864
+\c 137.1316 25.8092 130.9892 23.4763 130.3551 23.6252
+\c 129.7197 23.7617 128.4478 23.7617 126.6126 24.1836
+\c 125.9288 24.345 125.3431 24.4691 124.8753 24.5683
+\c 124.575 25.3873 123.4843 26.6034 122.473 26.8888
+\c 121.1552 27.2735 119.7443 31.3187 118.6126 30.9341
+\c 117.4834 30.5618 117.2935 29.718 117.2935 29.718
+\c 117.2935 29.718 114.6591 32.9195 113.5299 32.7209
+\c 112.4007 32.5348 113.5299 31.2195 112.2121 31.2195
+\c 110.8955 31.2195 109.0119 33.9494 107.7884 32.7209
+\c 106.5648 31.5049 109.2017 29.5319 111.1772 29.4326
+\c 113.1539 29.3333 110.1423 28.2041 109.2017 28.2041
+\c 108.2586 28.2041 109.5777 25.6727 114.473 26.2311
+\c 116.3567 26.045 113.8141 24.2581 115.2237 23.5012
+\c 116.6371 22.7566 118.9886 23.315 119.3658 23.1289
+\c 119.7443 22.9428 119.2715 21.8136 120.871 21.8136
+\c 122.2819 21.8136 123.9807 22.8311 124.6855 23.6501
+\c 125.8172 23.4391 127.0605 23.0793 126.6126 22.6325
+\c 125.837 21.8508 118.6362 19.6668 118.213 20.5851
+\c 117.7886 21.5033 116.4485 21.007 114.7547 22.1362
+\c 113.0596 23.2654 112.7767 24.3946 110.0964 24.3946
+\c 107.4124 24.3946 98.5189 26.591 92.2363 30.8224
+\c 90.4011 31.4552 89.8365 28.9859 92.3071 27.8567
+\c 94.7789 26.7275 96.3995 26.591 95.7654 25.6727
+\c 95.1301 24.7545 86.5171 23.2654 79.5297 24.4691
+\c 78.0481 24.1216 79.0371 21.9997 83.6953 21.9252
+\c 88.3536 21.8508 95.1301 22.496 98.8019 24.68
+\c 101.4127 24.2581 106.0002 22.8435 108.4721 22.8435
+\c 110.9414 22.8435 111.2256 22.6325 112.7767 21.7143
+\c 114.3303 20.796 115.7424 20.3741 115.5997 20.0267
+\c 115.4595 19.6668 112.0706 18.0413 107.6965 15.9318
+\c 103.3199 13.8099 99.4347 12.6806 99.7884 11.6259
+\c 100.142 10.5587 101.8358 11.266 106.0697 13.7354
+\c 110.3073 16.2048 116.8716 18.8975 117.7886 19.3194
+\c 118.7069 19.7413 120.5409 19.3194 128.5198 21.7887
+\c 133.9536 23.2654 136.423 24.1836 135.7182 22.8435
+\c 135.0134 21.5033 129.1527 16.7011 130.6355 15.6464
+\c 131.4818 15.15 134.0939 18.7486 136.7779 21.7887
+\c 138.4717 23.6252 141.5789 24.891 145.953 26.0946
+\c 150.3296 27.2983 155.1306 29.4822 157.7414 29.4078
+\c 158.2527 29.9538 158.9438 30.2143 159.5208 30.3508
+\c 161.8562 29.0976 165.2835 27.5464 168.9652 27.3603
+\c 170.5523 27.1742 174.033 25.2632 177.2369 23.4143
+\c 174.5728 23.4515 170.633 21.9873 168.4664 21.0814
+\c 162.5374 24.6552 161.1998 22.3968 162.5188 21.6647
+\c 163.8825 20.9201 163.3179 20.2128 161.4355 20.9573
+\c 159.5543 21.7143 156.4013 22.2355 155.7907 21.2428
+\c 155.1777 20.2625 157.8605 19.369 157.7203 19.034
+\c 157.5789 18.6989 156.5415 18.8975 153.0595 18.9347
+\c 151.1473 18.9595 149.5813 17.9792 149.3419 17.061
+\c 149.1446 16.304 150.1311 15.634 150.0467 15.3113
+\c 149.9573 14.9763 148.2586 15.0135 146.7062 14.4179
+\c 145.0124 13.785 143.4836 12.4945 144.0234 11.4149
+\c 145.0583 9.3427 149.6248 12.7799 150.0008 12.3084
+\c 150.378 11.8368 149.6248 10.1865 151.13 9.8514
+\c 152.9181 9.293 156.8715 14.2318 157.4361 13.7602
+\c 158.0008 13.2887 156.6358 10.7076 158.6113 10.7076
+\c 161.0136 10.7573 162.659 16.8748 163.4122 17.0113
+\c 164.1667 17.1478 163.6964 15.2741 165.2016 15.4106
+\c 166.8904 15.5843 168.2095 18.4756 168.7691 19.915
+\c 174.8445 22.8311 178.6019 22.2479 180.0463 21.7887
+\c 180.7102 21.4165 181.3306 21.0566 181.8617 20.7712
+\c 185.3436 18.8975 189.3889 16.0683 198.4238 13.3383
+\c 198.9884 12.9661 197.0142 12.023 184.5904 8.7222
+\c 172.1642 5.4339 167.836 4.3915 166.9897 2.5178
+\c 166.1422 0.6317 167.7417 0.1601 168.4006 0.7309
+\c 169.0595 1.2893 167.5518 2.5178 172.4484 4.2054
+\c 177.3437 5.9054 190.8023 9.293 191.9315 9.8514
+\c 190.8966 8.0646 188.6891 6.439 188.2597 3.5477
+\c 187.8837 1.0039 189.4473 1.9594 189.6731 3.4609
+\c 189.956 5.3346 191.8372 8.6354 195.2248 10.2361
+\c 198.6137 11.8368 203.0362 11.7376 205.3901 12.4945
+\c 207.5542 13.1894 211.2856 14.0953 213.3392 13.8099
+\c 214.0106 12.9164 215.0281 12.1967 214.3543 11.6879
+\c 213.1544 10.7945 208.7778 12.8171 206.5913 11.477
+\c 202.5659 8.4492 208.4018 8.4492 207.9315 7.531
+\c 207.4612 6.6127 202.2147 5.2726 203.0598 3.4361
+\c 204.6841 0.4703 208.9912 4.2799 208.9912 4.2799
+\c 208.9912 4.2799 209.1314 2.5923 210.2606 2.3689
+\c 213.6495 1.8849 214.9896 6.9354 215.9786 6.4638
+\c 216.9676 5.9923 215.1298 3.7835 216.8969 3.858
+\c 219.5064 4.0689 220.4495 9.9507 221.9088 9.7149
+\c 223.3681 9.4792 221.9795 7.531 222.8953 7.7419
+\c 225.1128 8.6974 226.8413 11.9237 226.8624 13.9712
+\c 227.6653 14.9018 229.7946 16.8004 234.8971 18.823
+\c 236.2634 19.369 236.8962 19.096 237.1915 18.8106
+\c 236.4793 18.2398 235.4258 17.1602 235.1776 15.5099
+\c 234.9157 13.7354 235.8129 12.5317 236.385 11.9485
+\c 235.566 11.0675 235.0088 9.8887 234.943 8.5361
+\c 234.8028 5.62 237.5315 3.5477 237.9559 4.2054
+\c 237.9559 4.2054 238.2587 4.5653 238.7215 5.0988
+\c 240.0307 4.2178 244.8143 1.2025 246.4721 3.0762
+\c 248.1907 5.0244 244.5599 9.2186 243.1925 10.3726
+\c 243.3116 10.5091 243.4084 10.6332 243.4617 10.7076
+\c 244.0263 11.4522 242.567 13.388 240.0257 13.5244
+\c 238.9734 13.5865 237.9559 13.2266 237.0997 12.5938
+\c 236.7386 12.8544 235.8328 13.723 236.215 15.7456
+\c 236.581 17.6814 238.734 18.6741 239.6758 19.0216
+\c 240.0952 19.1457 240.4737 19.2573 240.6846 19.3194
+\c 241.3894 19.5303 243.5076 20.2376 249.5086 20.7216
+\c 255.507 21.2179 256.7094 21.1559 256.9204 21.8508
+\c 257.1338 22.5581 256.7801 23.8362 256.2155 23.6873
+\o
+\m 230.1656 35.2027
+\c 229.7437 35.0538 227.3426 35.7611 227.6963 36.2575
+\c 228.0499 36.7538 227.6963 36.2575 228.3316 36.394
+\c 228.9669 36.5429 228.3316 36.394 228.1207 37.3867
+\c 227.9072 38.3794 227.9072 39.3597 228.5426 38.1684
+\c 229.1767 36.9648 230.9462 35.4633 230.1656 35.2027
+\o
+\m 232.0034 33.5027
+\c 230.4498 33.8501 230.4498 34.7064 231.2254 34.7064
+\c 232.0034 34.7064 232.5705 33.3786 232.0034 33.5027
+\o
+\m 239.2737 26.653
+\c 238.6384 26.591 237.0128 28.4275 235.391 28.8494
+\c 233.7679 29.2713 232.2838 29.4078 232.2838 29.8297
+\c 232.2838 30.2516 232.9899 30.0406 234.1191 30.1895
+\c 235.2508 30.326 232.8484 31.5917 233.4143 31.8151
+\c 233.9789 32.026 235.5312 30.6859 236.1666 30.2516
+\c 236.8019 29.8297 236.0263 31.8151 236.5909 32.026
+\c 237.1555 32.237 237.2263 31.4552 237.3665 29.7676
+\c 237.5067 28.0676 240.2937 26.7771 239.2737 26.653
+\o
+\m 214.3332 23.9727
+\c 213.7661 23.315 212.2609 24.5435 211.226 25.3873
+\c 210.1911 26.2311 208.6834 27.0749 208.027 27.6457
+\c 207.3669 28.2041 203.3203 30.8472 203.6951 31.2195
+\c 204.0711 31.5917 204.4495 30.9341 205.2946 30.5618
+\c 206.1434 30.1895 205.4844 31.7903 205.9547 31.0333
+\c 206.425 30.2764 207.1783 29.3333 210.2854 27.3603
+\c 213.3901 25.3873 211.7906 26.5165 211.7906 27.4596
+\c 211.7906 28.4027 212.5414 26.8019 213.4844 25.7596
+\c 214.425 24.7296 214.909 24.6428 214.3332 23.9727
+\o
+\m 161.129 16.9865
+\c 160.284 16.0683 159.7194 14.9391 159.7194 15.6464
+\c 159.7194 16.3537 160.5669 16.9121 159.7194 16.7756
+\c 158.8731 16.6391 158.1658 16.6391 157.3195 15.8573
+\c 156.472 15.0756 154.9904 12.9661 155.2013 14.0953
+\c 155.4123 15.2245 156.3305 15.15 155.4123 15.2245
+\c 154.4965 15.2865 153.1539 14.5172 153.5075 15.2865
+\c 153.5075 15.2865 155.1306 16.2048 155.9061 16.5646
+\c 156.6854 16.9121 153.2966 17.4829 153.9319 17.8303
+\c 154.566 18.1902 157.1793 17.123 158.1658 17.4084
+\c 159.1548 17.6938 159.6486 17.6194 159.2243 18.0413
+\c 158.8011 18.4632 158.0951 19.6668 159.1548 19.1084
+\c 160.2132 18.5376 161.8376 18.1157 162.6131 18.6121
+\c 163.3887 19.1084 165.2959 20.0887 165.2252 19.5924
+\c 165.1557 19.1084 161.9778 17.9048 161.129 16.9865
+\o
+\m 213.508 6.6748
+\c 212.5898 5.5456 211.9557 4.2799 211.9557 5.1237
+\c 211.9557 5.9799 213.2251 7.4565 212.3788 7.0346
+\c 211.5313 6.6127 208.8485 4.9872 208.707 5.3346
+\c 208.5494 5.7317 211.4605 7.8784 212.6605 8.7222
+\c 213.8629 9.5784 214.425 7.804 213.508 6.6748
+\o
+\m 223.7441 13.1025
+\c 222.9673 12.9661 222.4014 12.4697 221.2015 11.7624
+\c 220.0016 11.0551 220.2125 8.3003 219.6504 8.4492
+\c 219.0858 8.5857 220.0016 10.6332 218.6614 10.2113
+\c 217.3188 9.7894 215.0616 8.1638 214.9896 8.5113
+\c 214.7936 9.504 218.0968 10.993 218.7309 11.5514
+\c 219.3662 12.1098 216.6834 12.7551 217.2505 13.2515
+\c 217.8126 13.7354 219.1553 12.5441 220.5662 12.6062
+\c 221.9795 12.6806 223.1782 14.0208 223.8843 14.4427
+\c 224.5891 14.8646 224.5196 13.2515 223.7441 13.1025
+\o
+\m 226.2209 15.6836
+\c 225.6699 16.3164 224.8174 16.8872 223.8917 17.334
+\c 224.6189 17.4829 225.423 17.607 226.2829 17.6938
+\c 228.2001 17.8675 229.4099 17.5697 230.0453 17.3216
+\c 228.3602 16.515 226.8525 15.8325 226.2209 15.6836
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian88.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian88.pgf
new file mode 100644
index 0000000000..274c3467e4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian88.pgf
@@ -0,0 +1,100 @@
+\r 0 0 454 15
+\i
+\m 181.6199 11.9278
+\c 178.5663 11.9278 176.0909 9.842 176.0274 7.2479
+\l 173.8822 7.2479
+\c 170.421 7.2479 163.7019 11.9278 163.7019 11.9278
+\c 156.8526 8.3067 127.4752 7.0679 126.8633 7.0468
+\l 0.9153 7.0468
+\c 0.4114 7.0468 -0.0005 6.6338 -0.0005 6.1256
+\c -0.0005 5.6174 0.4114 5.215 0.9153 5.215
+\l 126.6462 5.215
+\c 151.4855 4.8021 164.9238 1.9539 164.9238 1.9539
+\c 167.5888 5.3315 173.3507 6.0727 176.1301 6.1997
+\c 176.6425 4.008 178.9052 2.3563 181.6199 2.3563
+\c 184.7126 2.3563 187.2188 4.5056 187.2188 7.142
+\c 187.2188 9.789 184.7126 11.9278 181.6199 11.9278
+\o
+\m 163.4986 3.1716
+\c 163.4986 3.1716 150.8746 6.0197 140.2867 6.2315
+\c 140.2867 6.2315 156.5752 7.0468 162.8866 10.0961
+\c 162.8866 10.0961 167.3675 7.2479 169.2002 6.6338
+\c 169.2002 6.6338 164.7194 4.6009 163.4986 3.1716
+\o
+\m 181.3076 3.7857
+\c 179.6251 3.7857 178.2604 5.1939 178.2604 6.9409
+\c 178.2604 8.6879 179.6251 10.0961 181.3076 10.0961
+\c 182.9921 10.0961 184.3569 8.6879 184.3569 6.9409
+\c 184.3569 5.1939 182.9921 3.7857 181.3076 3.7857
+\o
+\s
+\m 452.6291 7.0468
+\l 326.6759 7.0468
+\c 326.066 7.0679 296.6887 8.3067 289.8372 11.9278
+\c 289.8372 11.9278 283.1192 7.2479 279.6569 7.2479
+\l 277.515 7.2479
+\c 277.4483 9.842 274.9707 11.9278 271.9203 11.9278
+\c 268.8276 11.9278 266.3203 9.789 266.3203 7.142
+\c 266.3203 4.5056 268.8276 2.3563 271.9203 2.3563
+\c 274.6361 2.3563 276.8988 4.008 277.4112 6.1997
+\c 280.1884 6.0727 285.9515 5.3315 288.6154 1.9539
+\c 288.6154 1.9539 302.0526 4.8021 326.8951 5.2044
+\l 452.6291 5.215
+\c 453.1342 5.215 453.5428 5.6174 453.5428 6.1256
+\c 453.5428 6.6338 453.1342 7.0468 452.6291 7.0468
+\o
+\m 272.2305 3.7857
+\c 270.5481 3.7857 269.1823 5.1939 269.1823 6.9409
+\c 269.1823 8.6879 270.5481 10.0961 272.2305 10.0961
+\c 273.914 10.0961 275.2788 8.6879 275.2788 6.9409
+\c 275.2788 5.1939 273.914 3.7857 272.2305 3.7857
+\o
+\m 290.0426 3.1716
+\c 288.8197 4.6009 284.3389 6.6338 284.3389 6.6338
+\c 286.1706 7.2479 290.6525 10.0961 290.6525 10.0961
+\c 296.964 7.0468 313.2525 6.2315 313.2525 6.2315
+\c 302.6667 6.0197 290.0426 3.1716 290.0426 3.1716
+\o
+\s
+\m 205.0712 8.042
+\c 209.1539 5.0245 217.2706 7.0468 223.7674 9.8949
+\c 230.2821 12.7431 236.3903 14.776 236.3903 14.776
+\c 232.7237 16.0042 224.2883 11.229 215.6221 8.6667
+\c 208.0654 6.4327 205.392 7.8408 205.0712 8.042
+\o
+\s
+\m 249.2166 6.5809
+\c 248.1461 7.6503 244.6765 8.7832 237.6111 6.4327
+\c 232.1138 4.6009 224.1729 1.3928 224.1729 1.3928
+\c 230.1286 0.7787 231.6554 3.3727 239.4449 5.8186
+\c 246.4764 8.0314 249.2166 6.5809 249.2166 6.5809
+\o
+\s
+\m 253.1013 14.8289
+\c 245.0534 15.4112 238.2326 12.5101 231.6384 9.7043
+\l 228.785 8.4973
+\c 221.9208 5.575 212.5177 1.5728 203.8927 1.8481
+\c 196.0132 2.1022 191.4953 4.1668 191.4953 7.502
+\c 191.4953 10.4243 194.2926 12.1184 199.81 12.5419
+\c 205.3539 12.976 210.165 9.6832 210.2127 9.6514
+\c 210.6277 9.3655 211.1984 9.4608 211.4853 9.8843
+\c 211.7755 10.2973 211.6738 10.869 211.2588 11.1549
+\c 211.0428 11.3031 205.8801 14.8501 199.6702 14.3736
+\c 191.3979 13.7383 189.6625 10.2867 189.6625 7.502
+\c 189.6625 4.8762 191.5038 0.4187 203.8345 0.0164
+\c 212.8628 -0.2695 222.0394 3.2351 229.0592 6.2315
+\l 231.9106 7.4385
+\c 238.3067 10.1596 245.3615 13.5478 252.9668 12.9972
+\c 261.9592 12.3513 263.1133 9.4714 263.1133 7.0468
+\c 263.1133 6.3374 262.8443 5.7338 262.2906 5.2044
+\c 260.8135 3.7645 257.4529 2.9492 253.5216 3.0763
+\c 248.7465 3.2139 245.1815 4.5903 245.136 4.6115
+\c 244.6807 4.8339 244.1322 4.6433 243.9109 4.188
+\c 243.6918 3.7327 243.8824 3.1822 244.3376 2.9598
+\c 244.5399 2.8645 248.2901 1.4034 253.4655 1.2446
+\c 257.9432 1.1069 261.7199 2.0916 263.5664 3.8915
+\c 264.4823 4.7703 264.945 5.8397 264.945 7.0468
+\c 264.945 11.769 261.1831 14.2466 253.1013 14.8289
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian89.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian89.pgf
new file mode 100644
index 0000000000..87d28e8e5e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian89.pgf
@@ -0,0 +1,219 @@
+\r 0 0 454 10
+\i
+\m 249.9054 6.2807
+\c 252.5093 6.3427 253.143 7.7735 253.143 7.7735
+\c 253.143 7.7735 251.9054 6.8506 249.4929 6.8506
+\c 247.0809 6.8506 245.1137 7.7735 243.1136 7.7425
+\c 241.3044 7.7115 240.7333 6.417 240.7333 5.2216
+\c 240.7333 4.0261 241.3044 2.7316 243.1136 2.7068
+\c 245.1137 2.6758 247.0809 3.5925 249.4929 3.5925
+\c 251.9054 3.5925 253.143 2.6758 253.143 2.6758
+\c 253.143 2.6758 252.5093 4.1004 249.9054 4.1624
+\c 247.3033 4.2305 245.2078 3.2085 243.1768 3.2085
+\c 241.1458 3.2085 241.2084 5.2216 241.2084 5.2216
+\c 241.2084 5.2216 241.1458 7.2346 243.1768 7.2346
+\c 245.2078 7.2346 247.3033 6.2188 249.9054 6.2807
+\o
+\s
+\m 255.2068 6.7886
+\c 255.1245 6.4851 255.5116 6.4727 255.6218 5.6799
+\l 255.2589 5.6799
+\c 255.1319 5.9339 254.9008 6.1135 254.6357 6.1135
+\c 254.3694 6.1135 254.1384 5.9339 254.0114 5.6799
+\l 253.0464 5.6799
+\c 253.7711 6.3179 254.8897 7.662 254.8897 9.8361
+\c 254.8897 9.8361 253.1535 8.4796 250.3606 8.4796
+\c 247.5671 8.4796 246.298 9.4892 243.4624 9.4892
+\c 241.0535 9.4892 239.7181 8.1761 239.3997 6.2807
+\l 237.0832 6.2807
+\l 237.0832 4.1624
+\l 239.3997 4.1624
+\c 239.7181 2.267 241.0535 0.9601 243.4624 0.9601
+\c 246.298 0.9601 247.5671 1.9635 250.3606 1.9635
+\c 253.1535 1.9635 254.8897 0.6132 254.8897 0.6132
+\c 254.8897 2.7873 253.7711 4.1252 253.0464 4.7694
+\l 254.0114 4.7694
+\c 254.1384 4.5092 254.3694 4.3358 254.6357 4.3358
+\c 254.9008 4.3358 255.1319 4.5092 255.2589 4.7694
+\l 255.6218 4.7694
+\c 255.5116 3.9704 255.1245 3.958 255.2068 3.6545
+\c 255.3022 3.3076 255.9687 3.3695 256.0951 3.9456
+\c 256.222 4.5154 256.222 5.9339 256.0951 6.5037
+\c 255.9687 7.0736 255.3022 7.1355 255.2068 6.7886
+\o
+\m 239.3359 4.7013
+\l 237.6542 4.7013
+\l 237.6542 5.7418
+\l 239.3359 5.7418
+\c 239.3248 5.5684 239.3204 5.4012 239.3235 5.2216
+\c 239.3204 5.0481 239.3248 4.8747 239.3359 4.7013
+\o
+\m 243.5893 3.9146
+\c 245.1769 3.9766 246.573 4.8623 249.0494 4.9862
+\c 253.9302 5.2401 254.1594 1.5299 254.1594 1.5299
+\c 250.6679 3.5616 246.6684 2.5457 244.9223 2.2298
+\c 243.1768 1.9078 241.7795 1.8768 240.8919 2.8616
+\c 240.0036 3.8465 240.1294 5.2216 240.1294 5.2216
+\c 240.1294 5.2216 240.0036 6.5966 240.8919 7.5815
+\c 241.7795 8.5663 243.1768 8.5353 244.9223 8.2133
+\c 246.6684 7.8974 250.6679 6.8815 254.1594 8.9132
+\c 254.1594 8.9132 253.9302 5.203 249.0494 5.4569
+\c 246.573 5.5808 245.1769 6.4727 243.5893 6.5347
+\c 242.607 6.5718 241.7795 6.194 241.7795 5.2216
+\c 241.7795 4.2491 242.607 3.8713 243.5893 3.9146
+\o
+\s
+\m 210.8844 7.7425
+\c 208.8849 7.7735 206.9177 6.8506 204.5058 6.8506
+\c 202.092 6.8506 200.8544 7.7735 200.8544 7.7735
+\c 200.8544 7.7735 201.4893 6.3427 204.0914 6.2807
+\c 206.6953 6.2188 208.7908 7.2346 210.8212 7.2346
+\c 212.8528 7.2346 212.789 5.2216 212.789 5.2216
+\c 212.789 5.2216 212.8528 3.2085 210.8212 3.2085
+\c 208.7908 3.2085 206.6953 4.2305 204.0914 4.1624
+\c 201.4893 4.1004 200.8544 2.6758 200.8544 2.6758
+\c 200.8544 2.6758 202.092 3.5925 204.5058 3.5925
+\c 206.9177 3.5925 208.8849 2.6758 210.8844 2.7068
+\c 212.6942 2.7316 213.2653 4.0261 213.2653 5.2216
+\c 213.2653 6.417 212.6942 7.7115 210.8844 7.7425
+\o
+\s
+\m 210.535 9.4892
+\c 207.7006 9.4892 206.4302 8.4796 203.6367 8.4796
+\c 200.8432 8.4796 199.1089 9.8361 199.1089 9.8361
+\c 199.1089 7.662 200.2276 6.3179 200.9523 5.6799
+\l 199.9872 5.6799
+\c 199.8603 5.9339 199.6286 6.1135 199.3623 6.1135
+\c 199.0965 6.1135 198.8667 5.9339 198.7385 5.6799
+\l 198.3768 5.6799
+\c 198.4864 6.4727 198.8742 6.4851 198.7918 6.7886
+\c 198.6964 7.1355 198.0293 7.0736 197.9023 6.5037
+\c 197.7754 5.9339 197.7754 4.5154 197.9023 3.9456
+\c 198.0293 3.3695 198.6964 3.3076 198.7918 3.6545
+\c 198.8742 3.958 198.4864 3.9704 198.3768 4.7694
+\l 198.7385 4.7694
+\c 198.8667 4.5092 199.0965 4.3358 199.3623 4.3358
+\c 199.6286 4.3358 199.8603 4.5092 199.9872 4.7694
+\l 200.9523 4.7694
+\c 200.2276 4.1252 199.1089 2.7873 199.1089 0.6132
+\c 199.1089 0.6132 200.8432 1.9635 203.6367 1.9635
+\c 206.4302 1.9635 207.7006 0.9601 210.535 0.9601
+\c 212.9451 0.9601 214.2799 2.267 214.5983 4.1624
+\l 216.9155 4.1624
+\l 216.9155 6.2807
+\l 214.5983 6.2807
+\c 214.2799 8.1761 212.9451 9.4892 210.535 9.4892
+\o
+\m 213.1068 2.8616
+\c 212.2179 1.8768 210.8212 1.9078 209.0757 2.2298
+\c 207.3302 2.5457 203.3308 3.5616 199.8392 1.5299
+\c 199.8392 1.5299 200.0678 5.2401 204.9493 4.9862
+\c 207.4244 4.8623 208.8217 3.9766 210.408 3.9146
+\c 211.3916 3.8713 212.2179 4.2491 212.2179 5.2216
+\c 212.2179 6.194 211.3916 6.5718 210.408 6.5347
+\c 208.8217 6.4727 207.4244 5.5808 204.9493 5.4569
+\c 200.0678 5.203 199.8392 8.9132 199.8392 8.9132
+\c 203.3308 6.8815 207.3302 7.8974 209.0757 8.2133
+\c 210.8212 8.5353 212.2179 8.5663 213.1068 7.5815
+\c 213.995 6.5966 213.8674 5.2216 213.8674 5.2216
+\c 213.8674 5.2216 213.995 3.8465 213.1068 2.8616
+\o
+\m 214.6615 5.7418
+\l 216.3438 5.7418
+\l 216.3438 4.7013
+\l 214.6615 4.7013
+\c 214.6726 4.8747 214.6782 5.0481 214.6751 5.2216
+\c 214.6782 5.4012 214.6726 5.5684 214.6615 5.7418
+\o
+\s
+\m 227.1777 5.4507
+\c 226.8327 5.4507 226.5509 5.172 226.5509 4.8251
+\c 226.5509 4.4845 226.8327 4.1995 227.1777 4.1995
+\c 227.5239 4.1995 227.8039 4.4845 227.8039 4.8251
+\c 227.8039 5.172 227.5239 5.4507 227.1777 5.4507
+\o
+\s
+\m 225.2421 8.7769
+\l 217.4946 4.8251
+\l 227.4657 0
+\l 236.7759 4.8251
+\l 226.7032 9.5697
+\l 225.2421 8.7769
+\o
+\m 226.9578 0.5946
+\l 222.1333 3.0475
+\c 222.1333 3.0475 222.116 3.927 223.6558 3.8093
+\c 224.7571 3.7288 224.7571 1.8644 224.7571 1.8644
+\c 224.7571 1.8644 224.9262 2.8802 226.1105 2.7935
+\c 227.296 2.713 226.9578 0.5946 226.9578 0.5946
+\o
+\m 224.0132 4.8251
+\l 227.1269 6.6895
+\l 230.7838 4.8251
+\l 227.3809 2.7935
+\l 224.0132 4.8251
+\o
+\m 227.8039 0.7681
+\c 227.8039 0.7681 226.938 1.9078 227.9736 2.6263
+\c 229.0737 3.3881 229.7507 1.6104 229.7507 1.6104
+\l 227.8039 0.7681
+\o
+\m 227.2118 8.8079
+\c 227.2118 8.8079 227.9736 6.4356 229.7507 7.8726
+\c 229.7507 7.8726 229.6665 6.8568 230.681 6.5223
+\c 231.6975 6.1816 232.629 6.6028 232.629 6.6028
+\c 232.629 6.6028 233.0509 5.4198 234.491 5.4198
+\c 235.9292 5.4198 236.0661 4.8251 236.0661 4.8251
+\c 236.0661 4.8251 235.9292 4.4039 234.9989 4.2367
+\l 230.1744 1.6972
+\c 230.1744 1.6972 229.2793 3.128 230.0895 3.8093
+\c 231.2924 4.8251 232.0357 3.0475 232.0357 3.0475
+\c 232.0357 3.0475 232.0357 4.5712 232.966 4.5712
+\c 233.8982 4.5712 234.914 4.5712 234.914 4.5712
+\c 234.914 4.5712 235.4888 5.1658 234.6601 4.9986
+\l 233.3067 4.9986
+\c 233.3067 4.9986 232.2902 4.8251 232.2902 5.7604
+\c 232.2902 5.7604 230.1744 4.4907 229.2428 6.6895
+\c 229.2428 6.6895 227.8039 6.4356 227.296 7.5381
+\c 227.296 7.5381 226.2802 6.0144 224.7571 6.6895
+\c 224.7571 6.6895 224.2479 3.8093 222.0478 5.6737
+\c 222.0478 5.6737 220.778 4.8251 220.1512 4.8251
+\c 219.5269 4.8251 223.3176 4.5712 221.3708 3.2209
+\l 218.459 4.8251
+\c 218.459 4.8251 221.286 4.9118 221.6248 6.4356
+\c 221.6248 6.4356 222.6412 5.6737 223.7406 6.2621
+\c 224.8407 6.8568 224.3322 7.7921 224.3322 7.7921
+\c 224.3322 7.7921 226.1105 6.6895 227.2118 8.8079
+\o
+\s
+\m 353.4965 3.4748
+\c 339.6993 3.7288 323.1948 4.3172 300.5111 6.2621
+\c 277.828 8.2133 267.077 7.7053 267.077 7.7053
+\c 257.5971 7.4514 256.7516 5.1658 256.7516 5.1658
+\c 256.6668 0.1734 277.4037 0.9353 299.4104 1.6972
+\c 321.4171 2.459 350.6187 2.7935 353.6662 2.7935
+\c 356.7136 2.7935 453.5434 1.4432 453.5434 1.4432
+\c 453.5434 1.4432 367.293 3.2209 353.4965 3.4748
+\o
+\m 283.4986 1.6972
+\c 270.4633 1.6972 258.6984 2.2051 257.7668 4.4039
+\l 326.0725 3.3881
+\c 326.0725 3.3881 296.5326 1.6972 283.4986 1.6972
+\o
+\s
+\m 186.4657 7.7053
+\c 186.4657 7.7053 175.7166 8.2133 153.0323 6.2621
+\c 130.3486 4.3172 113.8434 3.7288 100.0469 3.4748
+\c 86.2497 3.2209 0 1.4432 0 1.4432
+\c 0 1.4432 96.8303 2.7935 99.8772 2.7935
+\c 102.9246 2.7935 132.1257 2.459 154.133 1.6972
+\c 176.1403 0.9353 196.8766 0.1734 196.7917 5.1658
+\c 196.7917 5.1658 195.945 7.4514 186.4657 7.7053
+\o
+\m 170.0448 1.6972
+\c 157.0107 1.6972 127.4709 3.3881 127.4709 3.3881
+\l 195.7772 4.4039
+\c 194.8456 2.2051 183.0807 1.6972 170.0448 1.6972
+\o
+\s
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian9.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian9.pgf
new file mode 100644
index 0000000000..6e37fc93fa
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian9.pgf
@@ -0,0 +1,183 @@
+\m 38.1028 73.7216
+\c 38.1028 73.7216 39.0724 79.2832 40.7444 84.2912
+\c 42.4132 89.2992 43.1076 91.6624 41.858 96.392
+\c 40.6052 101.1216 39.2132 105.2944 38.1028 105.2944
+\c 36.9892 105.2944 35.5972 101.1216 34.3444 96.392
+\c 33.0948 91.6624 33.7908 89.2992 35.458 84.2912
+\c 37.1268 79.2832 38.1028 73.7216 38.1028 73.7216
+\o
+\s
+\m 36.9204 73.3712
+\c 36.9204 73.3712 34.3124 82.136 30.9732 86.2032
+\c 27.6356 90.272 21.586 93.9216 20.7508 93.2976
+\c 19.9172 92.672 23.2548 85.0576 26.4884 80.9872
+\c 29.7236 76.9184 36.9204 73.3712 36.9204 73.3712
+\o
+\s
+\m 28.3652 69.408
+\c 25.3412 66.072 24.298 62.0032 24.298 62.0032
+\c 24.298 62.0032 28.2612 62.1056 32.642 65.1312
+\c 37.0244 68.1568 36.7108 72.6416 36.7108 72.6416
+\c 35.666 72.9568 31.3892 72.7472 28.3652 69.408
+\o
+\s
+\m 49.7508 80.9872
+\c 52.9828 85.0576 56.3236 92.672 55.4884 93.2976
+\c 54.6548 93.9216 48.6036 90.272 45.266 86.2032
+\c 41.9268 82.136 39.3204 73.3712 39.3204 73.3712
+\c 39.3204 73.3712 46.5172 76.9184 49.7508 80.9872
+\o
+\s
+\m 51.938 62.0032
+\c 51.938 62.0032 50.898 66.072 47.8724 69.408
+\c 44.8484 72.7472 40.57 72.9568 39.5284 72.6416
+\c 39.5284 72.6416 39.2132 68.1568 43.5956 65.1312
+\c 47.9796 62.1056 51.938 62.0032 51.938 62.0032
+\o
+\s
+\m 66.01 46.3728
+\c 70.2708 47.6224 72.2372 48.2752 74.9172 51.4384
+\c 77.5956 54.6032 79.8228 57.5968 79.2916 58.376
+\c 78.7668 59.1584 75.2164 58.12 71.3444 56.7104
+\c 67.4788 55.3024 66.17 53.6736 63.498 50.0832
+\c 60.8228 46.4912 57.4356 43.1184 57.4356 43.1184
+\c 57.4356 43.1184 61.7476 45.1264 66.01 46.3728
+\o
+\s
+\m 68.6436 41.296
+\c 64.3668 42.1408 56.9508 40.6192 56.9508 40.6192
+\c 56.9508 40.6192 62.354 36.752 66.5892 35.984
+\c 70.826 35.2128 77.6884 35.7536 77.8164 36.6096
+\c 77.9476 37.4624 72.9172 40.4512 68.6436 41.296
+\o
+\s
+\m 52.4916 34.8144
+\c 51.6852 31.2624 52.7252 28.688 52.7252 28.688
+\c 52.7252 28.688 55.162 30.3504 56.554 33.1088
+\c 57.946 35.8688 56.89 38.6688 56.3892 39.264
+\c 56.3892 39.264 53.2948 38.3728 52.4916 34.8144
+\o
+\s
+\m 54.93 43.5984
+\c 54.93 43.5984 59.1012 50.5136 59.658 55.0064
+\c 60.2132 59.4976 58.7332 65.368 57.7764 65.488
+\c 56.8164 65.6096 53.8852 58.952 53.2644 54.5232
+\c 52.6388 50.096 54.93 43.5984 54.93 43.5984
+\o
+\s
+\m 54.3076 43.1648
+\c 53.8548 43.8816 51.2388 45.944 47.7572 45.528
+\c 44.2788 45.1152 41.5892 43.2592 41.5892 43.2592
+\c 41.5892 43.2592 43.97 41.296 48.0852 40.8352
+\c 52.202 40.3728 54.3076 43.1648 54.3076 43.1648
+\o
+\s
+\m 64.8756 20.52
+\c 64.042 20.52 64.4612 19.1968 63.7636 17.5296
+\c 63.0708 15.8576 61.1204 15.2352 57.3636 17.0416
+\c 53.61 18.8512 48.882 19.4064 44.498 15.2352
+\c 41.6452 12.5168 40.8036 8.4256 40.5572 5.8928
+\c 39.482 13.1632 40.0516 27.384 55.634 41.8272
+\c 55.8884 42.0592 55.9028 42.4576 55.6676 42.712
+\c 55.4324 42.9632 55.042 42.976 54.7828 42.744
+\c 40.5268 30.0032 38.1028 17.4688 38.45 9.4544
+\c 35.1172 26.8192 37.0324 39.5536 38.714 49.6576
+\l 39.2132 52.7184
+\c 39.7412 56.0672 39.9332 59.4128 39.842 62.7984
+\c 39.7828 64.9312 39.538 66.304 39.3204 68.4176
+\c 39.2596 68.9888 38.8708 71.7376 38.066 71.2608
+\c 37.4948 70.9216 37.858 69.984 38.1636 67.7968
+\c 38.4452 65.7984 38.5636 63.784 38.5636 61.7632
+\c 38.5636 59.4 38.3924 56.6224 37.978 52.9152
+\l 37.4772 49.8624
+\c 36.5396 45.1088 35.3044 38.8512 34.9396 31.5824
+\c 34.1156 32.248 32.5108 33.9952 31.7044 37.9728
+\c 30.5924 43.4688 30.6628 48.6848 23.3572 54.5248
+\c 19.1172 57.448 17.3764 57.448 17.0324 56.6128
+\c 16.682 55.776 18.0708 55.776 19.4628 55.0128
+\c 20.7236 54.32 22.802 52.6512 23.778 46.9456
+\c 24.7204 41.4192 28.2852 34.3376 34.8964 30.6096
+\c 34.8548 29.584 34.8324 28.5376 34.8324 27.472
+\c 34.8324 21.344 35.7092 14.4544 37.4548 7.6608
+\c 34.7108 13.9296 31.5444 19.9376 22.2756 27.4976
+\c 21.234 28.344 20.57 27.2512 21.6196 26.4304
+\c 34.8132 16.1136 37.9796 0.6336 38.034 0.4496
+\c 38.1076 0.1984 38.33 0.0192 38.5908 0
+\l 41.258 0.072
+\c 41.5156 0.0576 41.7604 0.1984 41.8708 0.4368
+\c 41.9764 0.672 41.93 0.952 41.7444 1.1376
+\c 41.4148 2.9504 41.1796 6.4192 43.178 10.016
+\c 45.266 13.7728 47.5588 13.9088 52.0116 13.008
+\c 56.4612 12.1024 60.0068 11.7568 63.138 14.6784
+\c 66.2692 17.5968 65.7124 20.52 64.8756 20.52
+\o
+\m 39.738 1.7024
+\c 39.786 1.6288 39.8308 1.5632 39.8756 1.4976
+\c 39.8852 1.4704 39.8932 1.4512 39.9012 1.4256
+\c 39.8756 1.4256 39.8516 1.4272 39.826 1.432
+\c 39.8036 1.504 39.7668 1.6112 39.738 1.7024
+\o
+\s
+\m 22.0356 30.672
+\c 22.314 31.5072 21.8292 36.1632 18.6276 36.4448
+\c 15.4292 36.7232 12.4388 34.0784 11.5364 30.184
+\c 10.6308 26.2912 12.4388 23.7184 14.8724 23.7184
+\c 17.3076 23.7184 18.9764 24.76 19.0452 25.8032
+\c 19.1172 26.848 18.3508 27.2624 19.0452 28.7248
+\c 19.8356 30.384 21.7572 29.8368 22.0356 30.672
+\o
+\s
+\m 14.5604 40.72
+\c 15.1172 39.5376 15.1508 38.4272 15.9156 38.808
+\c 16.7812 39.2448 14.3172 46.8752 12.9268 47.8512
+\c 12.0196 48.1296 10.9412 47.2224 11.4292 46.5296
+\c 11.9188 45.8304 13.7268 42.8752 14.5604 40.72
+\o
+\s
+\m 8.37 43.7456
+\c 9.2756 42.944 10.666 41.1024 11.6756 39.3296
+\c 12.682 37.5552 12.9604 36.304 13.482 36.8256
+\c 14.0036 37.3472 13.098 40.2304 11.5012 43.1184
+\c 9.9012 46.0064 9.0484 46.2192 8.162 45.5536
+\c 7.466 45.0304 7.7444 44.3008 8.37 43.7456
+\o
+\s
+\m 11.7428 36.3408
+\c 11.7428 36.3408 8.3892 40.2512 6.6324 41.3472
+\c 5.402 42.1152 4.8228 41.7984 4.442 41.2752
+\c 4.058 40.7568 4.2068 40.0912 5.1044 39.5712
+\c 7.2916 38.304 9.482 36.6528 11.1172 35.3664
+\c 11.4852 35.0768 12.2324 35.7472 11.7428 36.3408
+\o
+\s
+\m 7.2484 25.4384
+\c 5.1764 25.1344 2.042 25.2352 1.2788 25.3056
+\c 0.514 25.3824 0.282 24.1264 0.906 23.5408
+\c 2.2932 22.88 9.4036 24.3488 9.3572 25.2256
+\c 9.3188 25.9984 8.426 25.5296 7.2484 25.4384
+\o
+\s
+\m 6.706 29.2944
+\c 4.7972 29.3312 2.6692 29.6688 1.6132 30.0816
+\c 0.882 30.3664 0.154 30.2608 0.026 29.4
+\c -0.1372 28.304 0.4052 27.6592 3.4916 27.6352
+\c 6.5764 27.6096 9.3572 28.1968 9.5636 28.9024
+\c 9.7668 29.6096 8.61 29.2544 6.706 29.2944
+\o
+\s
+\m 9.3604 31.528
+\c 7.3732 32.1376 4.7636 32.9952 2.4724 34.072
+\c 1.538 34.5088 0.9076 34.2544 0.698 33.6448
+\c 0.4852 33.0304 0.5588 32.3792 1.8884 31.8048
+\c 3.7924 30.9856 8.9172 30.4592 8.9172 30.4592
+\c 9.6788 30.3968 9.8052 31.392 9.3604 31.528
+\o
+\s
+\m 6.3508 36.7584
+\c 3.2756 38.72 2.354 38.5984 1.8324 37.6064
+\c 1.314 36.6128 1.8132 35.9136 5.2068 34.5664
+\c 8.2324 33.3664 9.5508 32.808 10.0196 33.3216
+\c 10.1764 34 9.3796 34.8288 6.3508 36.7584
+\o
+\s
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian90.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian90.pgf
new file mode 100644
index 0000000000..191df3ec96
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian90.pgf
@@ -0,0 +1,223 @@
+\m 4.1485 25.9381
+\c 4.1485 25.9381 5.9844 25.2168 5.5466 24.54
+\c 5.1095 23.8617 3.5789 23.3146 3.8425 21.8735
+\c 3.8425 21.8735 3.9067 22.7252 5.2195 23.5776
+\c 6.5295 24.43 6.8587 24.736 5.0658 25.8513
+\c 5.0658 25.8513 6.0056 25.8295 6.7706 25.6109
+\c 6.7706 25.6109 6.399 27.0084 4.6956 27.7303
+\c 4.6956 27.7303 5.5473 28.2986 6.3116 27.9052
+\c 6.3116 27.9052 6.5964 27.5999 7.011 27.5999
+\c 7.011 27.5999 7.0547 27.8171 6.4427 28.1019
+\c 6.4427 28.1019 6.0712 28.6701 6.5309 29.0854
+\c 6.9892 29.5007 7.3184 29.1728 7.3389 28.8457
+\c 7.3607 28.5171 7.3389 28.1893 7.7118 28.1674
+\c 7.7118 28.1674 7.7118 28.8225 7.4912 29.3251
+\c 7.4912 29.3251 8.0601 29.6106 8.8695 29.3484
+\c 8.8695 29.3484 8.2357 29.7841 7.121 29.6325
+\c 6.0056 29.4788 5.8752 28.276 5.8752 28.276
+\c 5.8752 28.276 4.6519 28.3635 4.0181 27.621
+\c 4.0181 27.621 5.6136 27.0302 6.1388 26.0467
+\c 6.1388 26.0467 4.3015 26.2885 4.1485 25.9381
+\s
+\m 7.9939 26.7686
+\c 7.9939 26.7686 7.7323 27.4031 7.3177 27.162
+\c 6.9017 26.9223 7.3587 26.3486 7.6954 26.253
+\c 8.0335 26.158 8.1216 26.3943 7.9939 26.7686
+\s
+\m 16.9011 7.565
+\c 16.927 7.1661 17.7261 7.1778 17.7261 7.1778
+\c 17.3518 7.8492 16.8744 7.9653 16.9011 7.565
+\m 21.9806 12.0545
+\c 22.1514 11.9479 22.6411 12.4069 22.6411 12.4069
+\c 22.2579 12.4069 21.8106 12.161 21.9806 12.0545
+\m 19.5703 12.8338
+\c 19.8257 12.6733 20.7539 13.5482 20.7539 13.5482
+\c 20.3913 13.7825 19.3135 12.9929 19.5703 12.8338
+\m 16.4339 11.5525
+\c 15.602 11.6809 15.2707 11.159 16.2003 10.8503
+\c 17.1271 10.5395 18.3962 10.754 18.3962 10.754
+\c 18.3962 10.754 17.2665 11.4254 16.4339 11.5525
+\m 9.0362 28.8703
+\c 9.6017 29.6578 10.9322 29.2405 11.1036 28.2549
+\c 11.2758 27.2713 10.4876 26.8772 10.4876 26.8772
+\c 11.8427 25.5228 11.0804 23.652 10.2669 21.1406
+\c 9.4542 18.6298 11.1535 16.1177 14.477 15.6027
+\c 17.7992 15.085 19.769 17.6449 20.7539 20.7472
+\c 21.7388 23.8487 22.846 27.5404 26.1689 28.9679
+\c 29.4924 30.3975 29.7144 28.8703 29.7144 28.8703
+\c 26.5384 28.9932 24.4955 25.2762 23.264 21.9281
+\c 22.0353 18.5807 20.7287 16.5863 20.7287 16.5863
+\c 23.8562 19.737 23.4614 21.6091 25.4551 24.6369
+\c 27.4495 27.6647 29.7397 27.4667 29.7397 27.4667
+\c 27.5479 26.2359 26.7856 23.8487 25.5794 20.3292
+\c 24.3725 16.8082 22.6739 14.9368 22.6739 14.9368
+\c 24.4456 16.1177 24.8158 17.399 26.2686 19.3682
+\c 27.7207 21.338 29.3701 21.8543 29.3701 21.8543
+\c 29.3701 21.8543 28.263 20.5751 27.2767 17.522
+\c 26.2932 14.4696 25.1956 13.9225 25.1956 13.9225
+\c 28.7349 14.8309 28.3286 13.4731 26.0609 11.8953
+\c 23.7933 10.3176 20.9117 10.1864 20.9117 10.1864
+\c 21.7224 8.8163 21.9956 9.0902 22.5653 9.1681
+\c 23.1356 9.2439 23.6608 8.9372 23.3542 8.4441
+\c 23.0482 7.9509 21.6562 8.7835 21.6562 8.7835
+\c 21.2723 8.565 20.605 8.5315 20.605 8.5315
+\c 20.605 8.5315 21.0872 7.7207 21.7764 7.634
+\c 22.4676 7.5459 22.5762 7.2385 22.3344 7.0528
+\c 22.0947 6.867 21.7764 6.8219 21.1412 7.2945
+\c 20.5053 7.7645 19.5313 7.7098 19.5313 7.7098
+\c 19.5313 7.7098 19.5969 7.5671 19.7922 7.009
+\c 19.9903 6.4497 20.2874 6.4606 20.7246 6.3841
+\c 21.1631 6.3069 21.493 5.9463 21.1412 5.7598
+\c 20.7901 5.5727 20.3305 5.6608 19.9582 6.2202
+\c 19.5867 6.7782 18.5225 6.6805 18.5225 6.6805
+\c 18.8955 4.5434 19.5969 4.0181 20.034 3.9949
+\c 20.4725 3.9731 20.7246 3.9949 21.1084 3.7005
+\c 21.493 3.4048 21.9082 3.2511 21.9082 3.2511
+\c 21.6337 2.5934 20.9117 2.6152 20.9117 2.6152
+\c 21.3714 2.0449 22.0503 2.1118 22.7196 1.6624
+\c 23.3876 1.213 23.5188 0.545 23.5188 0.545
+\c 22.872 0.2158 21.7873 0.9391 21.426 0.8947
+\c 21.064 0.8517 21.536 0.0847 21.536 0.0847
+\c 20.9657 0.0519 20.4288 0.4132 19.6953 0.8735
+\c 18.9624 1.3339 18.556 0.0628 18.556 0.0628
+\c 18.556 0.0628 18.2596 0.9937 17.7234 1.0921
+\c 17.1866 1.1911 15.8718 0.0847 15.8718 0.0847
+\c 15.8718 0.0847 15.9803 1.0921 16.6927 1.7164
+\c 17.4058 2.3413 18.0082 2.0668 18.3265 2.6808
+\c 18.6448 3.2941 18.084 3.9731 16.3867 5.6608
+\c 14.6881 7.3485 12.0913 7.634 10.3605 6.91
+\c 8.6298 6.186 7.7746 4.6861 7.7746 4.6861
+\c 6.9864 2.9438 8.0055 1.4097 8.0055 1.4097
+\c 8.0055 1.4097 7.3915 1.9588 7.2159 1.9144
+\c 7.0404 1.8701 7.0513 1.2239 7.0513 1.2239
+\c 6.1532 2.3413 6.1859 3.2074 6.1859 3.2074
+\c 6.6354 2.6917 7.1271 3.0093 7.1271 3.0093
+\c 6.6798 4.083 7.2712 5.4531 9.002 6.8
+\c 10.7334 8.1483 13.0338 7.688 13.0338 7.688
+\c 15.2686 7.4571 16.9011 5.7052 18.0198 4.3904
+\c 19.1352 3.0756 18.8401 2.5503 18.0629 2.1118
+\c 17.2856 1.6733 16.858 1.2349 16.858 1.2349
+\c 16.858 1.2349 17.0991 1.366 17.6141 1.4425
+\c 18.1291 1.5197 18.5225 1.8045 18.5225 1.8045
+\c 18.4679 1.4097 18.6448 1.0921 18.6448 1.0921
+\c 18.8183 1.5197 19.4767 1.8701 19.4767 1.8701
+\c 19.782 1.2239 20.6706 0.8626 20.6706 0.8626
+\c 20.4404 1.5743 20.7348 1.7601 20.7348 1.7601
+\c 21.2075 1.366 21.9738 1.3448 21.9738 1.3448
+\c 21.9738 1.3448 21.8973 1.6945 21.1412 2.0777
+\c 20.3851 2.4615 20.3851 2.8563 20.3851 2.8563
+\c 20.8024 2.8679 21.2621 3.1193 21.2621 3.1193
+\c 20.8236 3.6015 20.5941 3.5687 19.9036 3.6555
+\c 19.2137 3.7436 18.8183 4.4566 18.3374 5.585
+\c 17.8545 6.7133 17.7022 6.8772 17.7022 6.8772
+\c 16.6497 6.9544 16.3751 7.688 16.8683 8.0056
+\c 17.3628 8.3232 17.8976 7.5561 18.2493 7.1395
+\c 18.599 6.7242 19.5969 6.8882 19.5969 6.8882
+\l 19.1468 7.5794
+\c 17.9317 7.7317 18.2596 8.455 18.61 8.4878
+\c 18.9624 8.5206 19.0273 8.1702 19.3018 7.9837
+\c 19.5757 7.7979 20.6808 7.897 20.6808 7.897
+\c 20.6808 7.897 20.407 8.356 20.1775 8.5096
+\c 19.9473 8.6626 19.5867 8.7179 19.4425 9.0902
+\c 19.3018 9.4624 19.5908 9.528 19.5908 9.528
+\c 19.9965 9.6386 20.1078 9.1025 20.1078 9.1025
+\c 20.5504 8.5868 21.5667 9.011 21.5667 9.011
+\c 20.9377 9.4167 20.4964 10.1741 20.4964 10.1741
+\c 17.763 9.9153 15.2345 10.4692 15.3069 11.2635
+\c 15.3807 12.0579 16.5814 11.9097 17.8361 11.3373
+\c 19.0922 10.7649 19.2035 10.6727 21.105 10.95
+\c 23.0058 11.226 26.9748 12.6671 27.1422 13.4786
+\c 27.3068 14.2913 24.9087 13.5899 24.9087 13.5899
+\c 24.9087 13.5899 23.6335 12.6104 22.637 12.021
+\c 21.6398 11.4295 21.1234 11.743 21.4554 12.1487
+\c 21.7873 12.5565 23.0434 12.704 23.0434 12.704
+\c 25.1116 14.0509 26.0159 15.7127 26.7911 17.7809
+\c 27.5656 19.8477 28.3975 20.9015 28.3975 20.9015
+\c 28.3975 20.9015 27.2159 20.476 26.1996 18.7774
+\c 25.186 17.0794 23.6526 14.9928 22.6008 14.3467
+\c 21.5469 13.7005 21.5838 13.719 20.8277 13.1466
+\c 20.0702 12.5742 19.3135 12.2416 19.3135 12.704
+\c 19.3135 13.165 19.8489 13.7559 20.3284 13.8289
+\c 20.8099 13.9034 21.2525 14.1247 21.2525 14.1247
+\c 23.5044 15.7127 24.7974 19.5348 25.8499 22.5811
+\c 26.9024 25.6266 28.6195 26.9196 28.6195 26.9196
+\c 26.3471 26.4394 25.018 23.1166 23.6158 20.0888
+\c 22.2128 17.0603 19.6823 15.3247 18.7964 14.6417
+\c 17.9112 13.958 17.4857 14.0878 17.4857 14.0878
+\c 17.4857 14.6048 17.9652 14.4382 19.627 15.8418
+\c 21.2894 17.2454 22.0824 21.1782 23.947 24.8521
+\c 25.813 28.5253 28.933 29.1161 28.933 29.1161
+\c 28.5457 29.3566 26.9748 29.7998 24.5187 27.5104
+\c 22.0653 25.2216 21.9533 22.747 20.717 19.6632
+\c 19.4801 16.5808 17.8743 15.3807 15.8062 15.2141
+\c 13.7373 15.0474 10.8024 16.212 9.9152 18.6114
+\c 9.0307 21.0115 9.9616 22.9151 9.9616 22.9151
+\c 10.4794 23.7627 10.9732 25.0864 10.6959 26.0808
+\c 10.4193 27.0739 10.0825 26.5466 9.685 26.6505
+\c 9.2868 26.7543 9.1222 27.0316 9.1222 27.0316
+\c 9.1222 27.0316 9.4166 27.2297 9.8305 27.1525
+\c 10.2465 27.0739 10.4971 27.0493 10.7218 27.6886
+\c 10.9472 28.3286 10.4616 29.0458 9.7622 28.942
+\c 9.0607 28.8382 8.9317 27.6716 8.9317 27.6716
+\c 8.5321 28.2193 9.0362 28.8703 9.0362 28.8703
+\s
+\m 19.0683 9.7029
+\c 19.0683 9.7029 17.2583 7.5841 13.2797 8.9638
+\c 9.3012 10.3456 6.4667 12.4916 6.037 14.9928
+\c 5.6081 17.494 7.6565 17.9461 9.3954 17.0883
+\c 11.1357 16.2311 11.493 14.9928 10.7532 14.4443
+\c 10.0156 13.8966 8.4665 14.5154 8.1339 15.1827
+\c 8.1339 15.1827 7.8095 15.682 8.2077 15.8923
+\c 8.6045 16.1034 9.155 15.8923 9.0034 16.2209
+\c 8.8511 16.5473 7.832 16.49 7.7268 15.682
+\c 7.6223 14.8733 8.3948 13.8672 9.7048 13.7149
+\c 11.0169 13.5626 12.1876 14.7332 10.911 16.2441
+\c 9.6352 17.7542 7.2125 18.5854 5.8772 16.9688
+\c 5.8772 16.9688 4.8759 15.7981 5.9838 13.4109
+\c 7.0909 11.0231 9.086 9.3245 12.1377 8.5124
+\c 15.1908 7.6996 18.3688 7.9892 19.0683 9.7029
+\s
+\m 8.6844 8.0261
+\c 8.6844 8.0261 9.3278 8.1449 9.3606 8.3307
+\c 9.3954 8.5171 8.8879 8.4994 8.6844 8.0261
+\m 4.3008 21.6693
+\c 4.3008 21.6693 5.2823 21.2963 5.688 21.7198
+\c 6.0951 22.1426 5.4517 22.4137 4.3008 21.6693
+\m 0.6105 13.8487
+\c 1.0326 11.0901 3.6574 8.9065 5.7222 8.3307
+\c 7.7876 7.7556 8.1776 8.0595 8.6673 8.4495
+\c 9.1584 8.8388 9.9207 8.6018 9.4282 8.1271
+\c 8.9385 7.6531 7.72 7.5357 7.72 7.5357
+\c 7.72 7.5357 6.7542 5.9101 5.3329 4.1158
+\c 3.9122 2.3208 3.234 2.5251 2.0318 2.1692
+\c 0.8304 1.8147 0.5593 1.2055 0.5593 1.2055
+\c 0.5593 1.2055 0.661 1.3899 1.3727 1.3899
+\c 2.0831 1.3899 2.2689 1.7799 2.2689 1.7799
+\l 2.5557 1.0183
+\c 2.5557 1.0183 2.7606 0.8155 3.3521 1.6945
+\c 3.945 2.5763 4.1649 2.4233 4.1649 2.4233
+\c 3.7428 1.4247 4.5535 1.0853 4.5535 1.0853
+\c 4.9429 1.1877 5.2823 2.3891 5.2823 2.3891
+\c 5.2823 2.3891 5.8403 1.9158 6.4496 1.3066
+\c 7.0581 0.6973 7.1613 1.103 7.3812 0.9166
+\c 7.6005 0.7308 7.1941 0.0191 7.1941 0.0191
+\c 7.1941 0.0191 7.0937 -0.0485 6.4667 0.5785
+\c 5.8403 1.2055 5.3827 1.3571 5.3827 1.3571
+\c 4.7236 0.1393 4.0966 0.0703 4.0966 0.0703
+\c 4.0966 0.0703 4.5037 0.6632 4.1478 0.8496
+\c 3.7927 1.0354 3.6902 1.3735 3.6902 1.3735
+\c 3.6902 1.3735 3.4703 1.1208 3.0127 0.8831
+\c 2.5557 0.6454 2.6923 -0.0144 2.6923 -0.0144
+\c 2.2689 0.2062 2.1165 1.1372 2.1165 1.1372
+\c 2.1165 1.1372 1.6261 0.8496 0.9998 0.866
+\c 0.3735 0.8831 0.0866 0.4596 0.0866 0.4596
+\c -0.1511 1.577 0.6959 2.0504 2.3023 2.5415
+\c 3.9108 3.0332 4.2312 3.3378 5.2652 4.641
+\c 6.2973 5.9435 7.4154 7.5691 7.4154 7.5691
+\c 4.4012 7.5691 1.9642 9.0929 0.6781 11.631
+\c -0.6073 14.1704 0.0183 18.3006 1.8454 20.0778
+\c 3.6738 21.8543 4.8411 22.5831 5.9243 22.4308
+\c 7.0083 22.2785 6.6688 21.5846 5.5699 21.2963
+\c 4.4688 21.0088 4.0112 21.5668 4.0112 21.5668
+\c 1.0326 19.6544 0.187 16.6081 0.6105 13.8487
+\o \s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian91.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian91.pgf
new file mode 100644
index 0000000000..14d4e4c546
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian91.pgf
@@ -0,0 +1,201 @@
+\m 6.3749 25.8786
+\c 6.3749 25.8786 4.2064 27.7972 5.1086 29.5048
+\c 5.1086 29.5048 4.0151 29.1202 3.3813 27.4325
+\c 2.7488 25.7441 3.9571 24.6123 4.2446 24.5741
+\c 4.5335 24.5365 4.6476 24.8043 4.3225 25.1102
+\c 3.996 25.4176 3.4776 25.8397 3.593 26.9728
+\c 3.7078 28.1039 4.61 28.9092 4.61 28.9092
+\c 4.61 28.9092 4.4946 26.8376 6.3749 25.8786
+\s
+\m 17.8216 11.508
+\c 17.8216 11.508 18.663 13.6807 19.01 17.2167
+\c 19.3583 20.7526 18.6924 22.1446 18.1125 21.9704
+\c 17.5326 21.7963 16.78 19.9118 17.0101 17.1873
+\c 17.2424 14.4627 17.8216 11.508 17.8216 11.508
+\m 33.9782 7.578
+\c 33.9782 7.578 33.8444 8.901 33.326 8.6134
+\c 32.8089 8.3252 33.3458 7.6538 33.9782 7.578
+\m 31.7728 7.1361
+\c 31.7728 7.1361 32.1949 7.8075 32.0603 8.1913
+\c 31.9265 8.5745 31.4272 8.0561 31.7728 7.1361
+\m 30.6977 8.7473
+\c 30.6977 8.7473 31.2359 9.2274 31.2749 9.6106
+\c 31.3118 9.9945 30.4498 9.6489 30.6977 8.7473
+\m 29.8166 12.3154
+\c 29.6056 12.7573 29.2989 12.5838 29.2593 11.9513
+\c 29.2211 11.3182 29.6233 11.0497 29.6233 11.0497
+\c 29.6233 11.0497 30.027 11.8748 29.8166 12.3154
+\m 20.7421 12.0661
+\c 20.7039 12.775 20.0905 12.9868 19.8972 12.1808
+\c 19.706 11.3755 20.4546 10.435 20.4546 10.435
+\c 20.4546 10.435 20.7817 11.3564 20.7421 12.0661
+\m 9.3276 18.9146
+\c 9.0025 18.6073 9.5393 17.9366 9.5393 17.9366
+\c 9.9614 18.6271 9.6548 19.2206 9.3276 18.9146
+\m 0.4088 27.2597
+\c 0.2743 25.5713 1.0795 25.0911 2.1341 24.669
+\c 3.1894 24.2476 3.5356 23.0393 3.0172 22.1753
+\c 2.4988 21.312 2.7673 21.3899 3.0937 20.6604
+\c 3.4202 19.9316 3.037 19.2985 2.3069 17.8204
+\c 1.5795 16.3431 1.6744 16.4203 2.3458 16.1908
+\c 3.0172 15.9606 3.496 15.5774 3.6688 15.9797
+\c 3.8423 16.3827 3.4202 16.1136 3.1327 16.2475
+\c 2.8444 16.3827 3.0937 16.7269 3.2659 16.5159
+\c 3.4393 16.3048 3.8034 16.4783 3.9571 16.229
+\c 4.1107 15.9797 3.5356 15.4422 3.5356 15.4422
+\c 3.5356 15.4422 4.399 14.8282 4.6093 15.6915
+\c 4.8211 16.5541 5.416 17.0541 6.5662 17.035
+\c 7.7171 17.0152 8.4841 16.9762 9.0414 17.5711
+\c 9.5974 18.1667 8.8106 18.3962 9.1555 18.9146
+\c 9.5011 19.4324 10.404 19.125 10.0953 18.416
+\c 9.7886 17.705 9.7306 17.7815 9.7306 17.7815
+\c 9.7306 17.7815 12.2249 16.5541 13.2604 14.9047
+\c 14.2972 13.2552 14.3553 11.9889 15.1605 9.4761
+\c 15.9658 6.9633 17.3851 8.9385 17.5586 10.0518
+\c 17.7307 11.1645 16.9056 13.4287 16.6946 16.4018
+\c 16.4828 19.3743 17.0211 21.868 18.0367 22.1186
+\c 19.0544 22.3679 19.7449 20.4302 19.2279 16.6887
+\c 18.7102 12.9485 17.9035 10.7431 17.8072 10.2431
+\c 17.7123 9.7452 18.383 7.6162 18.4028 5.5241
+\c 18.4219 3.4341 17.3475 2.3017 16.9452 1.5149
+\c 16.5423 0.7287 17.2519 0.8441 17.6351 0.7861
+\c 18.0189 0.7294 18.5182 1.2082 18.594 1.8605
+\c 18.6705 2.5127 18.939 2.0326 19.4574 2.1678
+\c 19.9758 2.3017 19.6295 2.7238 19.2081 3.8555
+\c 18.786 4.9873 19.8214 8.0759 20.1479 8.9385
+\c 20.4751 9.8025 19.8795 10.3394 19.6875 11.5101
+\c 19.4956 12.6794 20.2244 13.4464 20.7817 12.6794
+\c 21.337 11.9124 20.6663 10.3783 20.6663 10.3783
+\c 20.8972 8.8812 24.4645 7.7118 26.8435 8.5362
+\c 29.2224 9.3606 29.4902 10.7813 29.4902 10.7813
+\c 29.4902 10.7813 28.9342 11.1255 29.0681 12.1624
+\c 29.2033 13.1985 30.277 13.1213 30.2189 11.9902
+\c 30.1616 10.8571 29.663 9.7452 29.663 9.7452
+\c 29.8358 9.1878 30.3542 8.9201 30.3542 8.9201
+\c 30.7175 9.9562 30.9286 10.1857 31.2749 10.0901
+\c 31.6205 9.9945 31.6389 9.3996 31.0256 8.8047
+\c 30.4109 8.2111 30.3146 7.4427 30.6212 6.6757
+\c 30.9286 5.9087 31.6389 6.0617 31.6389 6.0617
+\c 30.8917 8.3252 31.7728 8.9583 32.1382 8.4987
+\c 32.5016 8.0376 32.1191 7.3669 31.9463 6.714
+\c 31.7728 6.0617 32.9244 5.1027 33.5377 5.2947
+\c 34.151 5.4866 34.3628 6.4845 34.3628 6.4845
+\c 33.4612 6.7529 32.6744 7.8075 33.0015 8.6517
+\c 33.326 9.4952 34.0172 8.4987 34.095 7.789
+\c 34.1715 7.078 34.5171 6.9633 35.1687 7.2317
+\c 35.821 7.5008 36.2431 8.4208 36.2431 8.4208
+\c 35.9556 6.5418 34.5547 6.4264 34.5547 6.4264
+\c 34.5547 6.4264 34.1907 4.9689 33.1928 4.8336
+\c 32.1949 4.6998 31.9073 5.7734 31.9073 5.7734
+\c 31.9073 5.7734 31.0836 5.4087 30.43 6.3492
+\c 29.7784 7.2891 30.2968 8.6899 30.2968 8.6899
+\c 29.8931 8.8429 29.4519 9.4761 29.4519 9.4761
+\c 29.4519 9.4761 28.2819 7.3471 25.3272 7.1552
+\c 22.3745 6.9639 20.6465 9.2274 20.6465 9.2274
+\c 20.6465 9.2274 19.9758 8.0185 19.6295 6.3492
+\c 19.2853 4.6799 19.4772 4.1048 19.6691 3.6438
+\c 19.8604 3.1841 20.3207 2.801 19.8214 2.1678
+\c 19.3235 1.5347 18.6139 1.3994 18.3632 0.6522
+\c 18.1146 -0.0964 17.7505 -0.0581 17.463 0.0764
+\c 17.1761 0.2117 16.9644 0.2875 16.4651 0.2677
+\c 15.9658 0.2499 15.7937 0.8633 16.196 1.2082
+\c 16.5983 1.5545 17.3865 2.4356 17.9609 4.1048
+\c 18.5374 5.7734 17.6549 9.6106 17.6549 9.6106
+\c 17.6549 9.6106 17.1556 7.5199 15.8313 7.731
+\c 14.5083 7.9413 13.8553 11.9704 12.9926 14.3111
+\c 12.1293 16.6511 9.5195 17.5909 9.5195 17.5909
+\c 9.0025 16.9394 7.7936 16.3445 6.5471 16.5371
+\c 5.3006 16.7283 5.0888 15.5966 4.7432 14.8678
+\c 4.3997 14.139 4.0342 14.4067 3.2863 14.9238
+\c 2.5378 15.4422 2.2502 15.3083 1.6164 15.712
+\c 0.9846 16.115 1.3876 16.8437 2.1163 18.1667
+\c 2.8458 19.4897 2.8827 20.1044 2.5378 20.9678
+\c 2.1922 21.8304 2.6532 21.9076 2.9414 22.5783
+\c 3.229 23.2497 2.5951 23.8262 1.0215 24.8616
+\c -0.5495 25.8971 0.1595 28.162 0.1595 28.162
+\c 0.333 26.9148 2.1348 26.895 2.1348 26.895
+\c 1.0037 26.7426 0.4088 27.2597 0.4088 27.2597
+\s
+\m 5.2247 19.6304
+\c 5.2247 19.6304 4.6804 19.961 5.2828 20.3756
+\c 5.2828 20.3756 5.0239 20.7772 4.4215 20.5641
+\c 3.8184 20.3517 3.8662 19.5478 4.2084 19.3115
+\c 4.5513 19.0745 4.9768 19.2882 5.2247 19.6304
+\s
+\m 5.9419 23.5619
+\c 5.9419 23.1917 6.4583 23.3399 6.7041 23.5619
+\c 6.9507 23.7825 7.5169 23.6595 7.5169 23.6595
+\c 7.0491 24.3985 5.9419 23.9307 5.9419 23.5619
+\m 32.8485 15.24
+\c 31.4934 15.5863 30.9525 14.6506 31.6901 13.0988
+\c 32.4292 11.5483 35.9494 9.8736 35.9494 9.8736
+\c 35.6298 12.0654 34.2016 14.8965 32.8485 15.24
+\m 6.9036 22.5148
+\c 6.9036 22.5148 6.3469 21.592 6.6673 20.4104
+\c 6.9862 19.2288 8.3099 19.1462 8.7477 20.4692
+\c 9.1848 21.7935 7.6952 24.0277 6.8209 23.4136
+\c 6.8209 23.4136 6.5607 23.2244 6.4419 23.1418
+\c 6.3237 23.0592 5.6277 23.1418 5.8272 23.8269
+\c 6.0286 24.5126 7.116 24.4061 7.577 24.1103
+\c 7.577 24.1103 9.7162 25.3158 12.9558 24.9258
+\c 16.1946 24.5365 19.7757 23.6103 23.4926 23.6356
+\c 27.2103 23.6595 30.1889 24.5208 32.2086 24.891
+\c 34.2255 25.2605 38.1153 25.1123 40.3323 22.2074
+\c 42.5473 19.3033 41.8814 15.9305 41.7339 14.4525
+\c 41.5863 12.9758 41.1676 12.2368 42.6955 10.1447
+\c 44.22 8.0527 44.3921 5.7147 42.6955 3.8931
+\c 42.6955 3.8931 43.162 5.8124 41.5863 8.2746
+\c 40.0113 10.7355 40.208 12.385 40.4785 15.1184
+\c 40.7496 17.8505 40.3064 20.239 38.2382 21.592
+\c 38.2382 21.592 38.855 20.3114 38.7566 17.5056
+\c 38.6569 14.6991 38.855 11.8195 39.5926 10.5388
+\c 40.3323 9.2596 41.1437 9.1605 41.1198 7.83
+\c 41.0932 6.5015 41.3657 4.6315 41.71 3.6957
+\c 42.0542 2.76 42.227 2.5633 40.8241 0.6427
+\c 40.8241 0.6427 40.5044 0.3729 40.0844 0.3729
+\l 38.9035 0.3729
+\c 38.9035 0.3729 38.2887 0.4951 38.3379 1.1604
+\c 38.3864 1.8243 38.7067 2.1446 39.4936 2.76
+\c 40.2818 3.3761 40.6021 3.5482 40.3064 4.6069
+\c 40.012 5.6649 39.051 6.9448 37.0334 8.0527
+\c 35.0137 9.1605 32.9223 9.7759 31.6662 12.1883
+\c 30.4109 14.6 31.1485 15.6594 32.6013 15.5364
+\c 34.0534 15.4135 35.6298 13.2231 36.1953 9.7759
+\c 36.1953 9.7759 39.0257 8.2002 39.7907 6.576
+\c 40.5529 4.9511 41.1922 3.5967 40.3562 2.8338
+\c 39.5188 2.0702 38.5346 1.2587 39.1002 1.1358
+\c 39.6657 1.0128 40.4539 0.7656 40.9955 1.3325
+\c 41.5378 1.8987 41.809 2.4888 41.5132 3.5714
+\c 41.2175 4.6554 40.8733 5.5173 40.8979 6.7973
+\c 40.9218 8.0779 41.0461 8.4461 39.986 9.5539
+\c 38.928 10.6618 38.2635 13.1732 38.3379 15.4381
+\c 38.411 17.7023 38.6569 20.7055 37.7464 21.9363
+\c 37.7464 21.9363 36.3196 22.232 36.3435 22.8481
+\c 36.3435 22.8481 36.3797 23.4608 37.2512 22.7156
+\c 38.1207 21.9684 38.6589 22.062 39.7572 20.7151
+\c 40.8541 19.3695 41.2687 17.5568 40.8856 15.1444
+\c 40.8856 15.1444 40.4047 12.6309 40.7742 10.7355
+\c 41.1437 8.8402 42.7932 7.5848 42.9899 5.3944
+\c 42.9899 5.3944 43.9011 7.3888 42.8171 9.0861
+\c 41.7339 10.7854 41.07 11.3516 41.4142 14.1574
+\c 41.7591 16.9633 41.9811 20.017 39.5188 22.7238
+\c 37.0573 25.4319 32.8724 24.8411 29.8187 23.8071
+\c 26.767 22.7737 21.992 22.4287 17.1413 23.6595
+\c 12.2926 24.891 10.2251 25.087 7.812 23.9799
+\c 7.812 23.9799 9.2388 22.5769 9.2388 21.0012
+\c 9.2388 19.4255 7.7143 18.0711 6.6802 19.6468
+\c 5.6462 21.2225 6.9036 22.5148 6.9036 22.5148
+\s
+\m 23.3314 21.8933
+\c 23.3314 21.8933 23.1115 21.8618 23.063 21.592
+\c 23.0166 21.3229 22.477 21.3386 22.477 21.3386
+\c 22.477 21.3386 22.2243 22.0988 23.3314 21.8933
+\s
+\m 23.8089 21.9568
+\c 23.8089 21.9568 23.5384 22.273 23.3649 22.3058
+\c 23.1914 22.3372 24.078 22.6855 23.8089 21.9568
+\s
+\m 24.6162 21.6084
+\c 24.6162 21.6084 24.345 21.5135 24.3785 21.4179
+\c 24.4106 21.3229 24.901 21.5606 24.6162 21.6084
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian92.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian92.pgf
new file mode 100644
index 0000000000..a75b6ac329
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian92.pgf
@@ -0,0 +1,80 @@
+\m 10.9169 27.4782
+\c 10.9169 27.4782 13.4734 27.2856 14.6311 26.4161
+\c 15.7895 25.548 15.3551 24.4388 11.2058 24.3418
+\c 7.0579 24.2455 1.9441 25.6443 2.0404 27.0923
+\c 2.1361 28.5396 8.3125 28.8279 12.2686 28.0567
+\c 16.2232 27.2856 16.0791 25.9332 16.2232 24.3903
+\c 16.3673 22.846 16.8509 20.241 17.7668 18.1203
+\c 17.7668 18.1203 18.1035 17.3464 19.5515 14.3077
+\c 20.9988 11.2676 23.4597 8.5178 30.7926 5.8171
+\c 30.7926 5.8171 35.1823 4.1765 38.2695 4.2722
+\c 41.3561 4.3691 41.8874 4.5146 42.466 3.7899
+\c 43.0452 3.0673 42.3218 1.6678 36.7259 1.0415
+\c 31.1293 0.4138 25.823 2.7777 20.951 4.6116
+\c 16.0791 6.4441 7.7327 5.671 4.211 4.1765
+\c 4.211 4.1765 6.2867 4.7066 8.6493 4.8985
+\c 8.6493 4.8985 7.2026 3.5488 8.0223 1.2334
+\c 8.0223 1.2334 6.2867 0.5101 3.7773 1.523
+\c 3.7773 1.523 4.0663 2.1507 3.1975 3.8883
+\c 2.33 5.6238 0.1594 8.2773 1.3164 12.2334
+\c 2.4741 16.1901 3.2466 21.0128 1.5575 26.0296
+\c 1.5575 26.0296 2.8129 21.7368 1.4134 17.3942
+\c 0.0139 13.0537 -0.6117 11.7512 0.7864 8.2773
+\c 2.1852 4.8035 3.584 3.0673 3.1503 1.0415
+\c 3.1503 1.0415 5.6099 -0.6954 8.1677 0.3168
+\c 8.1677 0.3168 8.6008 0.4623 8.456 1.3311
+\c 8.3125 2.1992 7.7327 3.6936 9.18 4.8035
+\c 9.18 4.8035 13.039 6.203 19.4552 3.9839
+\c 25.8708 1.7648 30.8404 -0.552 36.5818 0.4623
+\c 42.3218 1.4759 43.2869 2.9225 42.9973 3.6936
+\c 42.7084 4.4661 41.55 4.6116 39.6192 4.5618
+\c 39.6192 4.5618 35.9411 4.0099 29.544 6.6607
+\c 23.1462 9.3121 21.2871 11.3632 19.6731 14.4805
+\c 18.0605 17.5977 16.9397 21.0415 16.6658 23.8856
+\c 16.3946 26.7276 16.4206 27.8764 9.7216 28.6148
+\c 3.024 29.3517 0.9736 27.6305 1.8219 26.2905
+\c 2.6688 24.9497 8.1643 22.8727 11.8 23.3105
+\c 15.4364 23.7476 18.1261 27.078 10.9169 27.4782
+\s
+\m 20.238 11.9
+\c 20.238 11.9 17.0988 8.0786 13.0363 7.5554
+\c 8.9723 7.0322 3.4611 9.6065 3.8641 13.2271
+\c 4.265 16.8485 9.4962 18.6175 14.2425 17.9748
+\c 18.9901 17.3307 22.1675 14.9975 28.1213 9.7281
+\c 28.1213 9.7281 33.6332 4.8602 38.9437 4.9811
+\c 38.9437 4.9811 33.5922 5.5849 28.846 10.0095
+\c 24.0984 14.4354 21.0419 18.4577 14.806 19.181
+\c 8.5714 19.9063 4.9494 16.9291 3.9447 14.5563
+\c 2.9386 12.1828 3.8641 9.0444 9.0536 7.595
+\c 14.2425 6.1484 18.5072 8.9617 20.238 11.9
+\s
+\m 17.4458 15.8328
+\c 17.4458 15.4114 17.1009 15.0713 16.674 15.0713
+\c 16.2457 15.0713 15.9008 15.4114 15.9008 15.8328
+\c 15.9008 16.2543 16.2457 16.5951 16.674 16.5951
+\c 17.1009 16.5951 17.4458 16.2543 17.4458 15.8328
+\s
+\m 22.1026 13.861
+\c 22.1026 13.5167 21.8574 13.2394 21.5534 13.2394
+\c 21.2516 13.2394 21.0057 13.5167 21.0057 13.861
+\c 21.0057 14.2025 21.2516 14.4805 21.5534 14.4805
+\c 21.8574 14.4805 22.1026 14.2025 22.1026 13.861
+\s
+\m 25.073 11.105
+\c 25.073 10.7 24.7493 10.3728 24.3497 10.3728
+\c 23.9522 10.3728 23.6291 10.7 23.6291 11.105
+\c 23.6291 11.5087 23.9522 11.8365 24.3497 11.8365
+\c 24.7493 11.8365 25.073 11.5087 25.073 11.105
+\s
+\m 27.6965 8.9686
+\c 27.6965 8.6325 27.4192 8.3593 27.0763 8.3593
+\c 26.7334 8.3593 26.4561 8.6325 26.4561 8.9686
+\c 26.4561 9.306 26.7334 9.5799 27.0763 9.5799
+\c 27.4192 9.5799 27.6965 9.306 27.6965 8.9686
+\s
+\m 30.867 7.2296
+\c 30.867 6.9776 30.6587 6.7733 30.3998 6.7733
+\c 30.1417 6.7733 29.932 6.9776 29.932 7.2296
+\c 29.932 7.4837 30.1417 7.6879 30.3998 7.6879
+\c 30.6587 7.6879 30.867 7.4837 30.867 7.2296
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian93.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian93.pgf
new file mode 100644
index 0000000000..00367a25d6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian93.pgf
@@ -0,0 +1,172 @@
+\m 14.708 28.2001
+\c 14.708 28.2001 17.3929 26.2351 23.5653 27.3976
+\c 29.7364 28.5601 33.3843 27.5185 35.7079 24.8329
+\c 35.7079 24.8329 32.702 27.8381 27.7727 26.9161
+\c 22.8441 25.9954 18.8355 25.2734 14.708 28.2001
+\s
+\m 13.9075 25.1539
+\c 13.9075 25.1539 16.9927 23.3097 21.4828 24.393
+\c 25.9689 25.4742 30.1776 25.9544 33.4246 21.9874
+\c 33.4246 21.9874 30.8203 25.1539 24.6875 23.7496
+\c 24.6875 23.7496 17.2734 22.0277 13.9075 25.1539
+\s
+\m 11.823 24.0303
+\c 11.823 24.0303 14.5489 21.7873 17.2727 22.0673
+\c 19.998 22.3481 27.2113 24.1116 31.8209 19.823
+\c 31.8209 19.823 27.8922 22.6281 22.7245 21.7067
+\c 17.5541 20.7846 14.8692 21.1856 11.823 24.0303
+\s
+\m 10.5799 21.8679
+\c 10.5799 21.8679 13.0251 19.7028 18.1156 20.0238
+\c 23.2054 20.3448 25.6082 21.1856 29.9372 18.2199
+\c 29.9372 18.2199 27.1723 20.144 22.243 19.422
+\c 17.3123 18.7015 13.385 18.9405 10.5799 21.8679
+\s
+\m 9.2582 19.3428
+\c 9.2582 19.3428 11.7431 17.2582 17.9154 17.8593
+\c 24.0872 18.4604 26.5303 17.7794 29.0158 15.9359
+\c 29.0158 15.9359 26.2496 17.9399 21.642 17.0588
+\c 17.033 16.1764 12.2232 16.4974 9.2582 19.3428
+\s
+\m 7.8956 16.6586
+\c 7.8956 16.6586 10.6598 14.854 14.3078 15.1744
+\c 17.9544 15.4954 22.7245 17.539 27.3328 13.6116
+\c 27.3328 13.6116 25.3296 15.4544 20.8811 14.9346
+\c 16.4306 14.4128 11.7431 13.0106 7.8956 16.6586
+\s
+\m 5.932 14.3329
+\c 5.932 14.3329 8.4974 12.4095 12.9855 13.0502
+\c 17.4735 13.6922 21.321 14.3732 25.7694 11.288
+\c 25.7694 11.288 22.2826 13.4511 17.7549 12.5694
+\c 13.2266 11.6883 9.4987 11.5278 5.932 14.3329
+\s
+\m 4.0482 11.247
+\c 4.0482 11.247 6.4121 9.4432 10.5 10.3257
+\c 14.5885 11.2061 19.1169 12.8091 23.7661 9.1236
+\c 23.7661 9.1236 19.7582 11.3276 15.2298 10.3257
+\c 10.7015 9.3237 7.2147 8.7622 4.0482 11.247
+\s
+\m 2.6446 9.2827
+\c 2.6446 9.2827 5.8111 6.9994 9.5383 7.8012
+\c 13.2641 8.6017 17.3929 10.4063 20.8804 7.5205
+\c 20.8804 7.5205 17.9134 8.8825 13.7866 7.6797
+\c 9.6592 6.4796 6.4121 5.716 2.6446 9.2827
+\s
+\m 1.3619 7.3593
+\c 1.3619 7.3593 5.5713 4.6355 9.7787 5.3561
+\c 13.9868 6.0773 16.5918 7.1599 20.5205 6.1586
+\c 20.5205 6.1586 18.0739 6.2378 15.1089 5.1969
+\c 12.1426 4.154 6.9333 3.4327 1.3619 7.3593
+\s
+\m 0.8825 5.5972
+\c 0.8825 5.5972 9.819 0.467 20.9207 5.0753
+\c 20.9207 5.0753 17.9947 2.7114 12.5039 2.3911
+\c 7.0132 2.0701 2.8454 4.3548 0.8825 5.5972
+\s
+\m 0 4.1949
+\c 0 4.1949 6.3322 0.6262 12.5832 0.9076
+\c 18.8355 1.1883 22.924 3.3125 22.924 3.3125
+\c 22.924 3.3125 20.1585 0.3878 14.068 0.0258
+\c 7.9749 -0.3355 1.002 3.0721 0 4.1949
+\s
+\m 23.773 7.1244
+\c 22.8161 8.2691 21.0423 7.638 20.9945 5.9578
+\c 20.948 4.2783 23.0032 3.5078 23.0032 3.5078
+\c 23.8659 4.1601 24.7292 5.981 23.773 7.1244
+\m 22.5347 3.0167
+\c 22.5347 3.0167 20.5737 4.4873 20.7622 6.4475
+\c 20.948 8.4091 23.773 8.9221 24.3563 6.494
+\c 24.3563 6.494 25.0099 4.4873 22.5347 3.0167
+\s
+\m 23.5606 7.5519
+\l 35.7701 24.2257
+\c 35.7701 24.2257 37.2406 24.9121 38.8109 25.8437
+\c 40.3804 26.776 44.0086 27.1674 47.0992 26.8744
+\c 50.1892 26.5787 53.4752 26.776 55.9265 29.2779
+\c 55.9265 29.2779 58.2324 26.5315 59.1148 23.9812
+\c 59.1148 23.9812 60.2903 17.7534 53.2778 9.3169
+\c 46.2653 0.8816 32.202 -2.8907 22.5347 3.0167
+\l 22.7744 3.3337
+\c 22.7744 3.3337 25.5707 0.8816 31.7984 0.9315
+\c 38.0275 0.98 46.4613 3.531 51.7089 8.9747
+\c 56.9572 14.4183 58.6237 20.0572 58.5254 24.5685
+\c 58.5254 24.5685 57.4455 27.0212 56.3677 28.2473
+\c 56.3677 28.2473 57.8881 17.5062 48.7658 9.7096
+\c 48.7658 9.7096 51.8066 13.2408 54.2586 18.4378
+\c 56.7106 23.6369 55.5843 28.4918 55.5843 28.4918
+\c 55.5843 28.4918 52.4937 25.9919 48.2269 25.8936
+\c 43.9608 25.7952 41.2151 26.7269 35.9183 24.0296
+\l 23.7559 7.3552
+\o
+\s
+\m 34.5448 21.7238
+\c 34.5448 21.7238 38.3205 24.0296 44.3528 24.0296
+\c 50.3845 24.0296 53.4752 24.0788 56.1232 27.2664
+\c 56.1232 27.2664 55.3371 23.9313 48.7658 23.2455
+\c 42.1952 22.5591 39.8415 23.9812 34.5448 21.7238
+\s
+\m 32.9759 19.3708
+\c 32.9759 19.3708 36.3602 21.9212 43.2266 21.775
+\c 50.0922 21.6268 53.7204 21.3816 56.0249 24.8636
+\c 56.0249 24.8636 55.0454 21.676 49.2583 20.8413
+\c 43.4711 20.0087 40.3818 22.4116 32.9759 19.3708
+\s
+\m 30.2773 16.1832
+\c 30.2773 16.1832 35.2319 19.5183 41.7034 19.1263
+\c 48.1784 18.7329 51.6112 18.0956 55.6813 22.2641
+\l 55.7305 21.9704
+\c 55.7305 21.9704 52.8851 17.7036 45.7257 17.9488
+\c 38.5664 18.1933 37.8308 19.2731 30.2773 16.1832
+\s
+\m 28.1217 13.2899
+\c 28.1217 13.2899 34.0551 17.4591 40.6256 16.9188
+\c 47.1969 16.3792 48.9625 14.2209 55.0447 19.3216
+\c 55.0447 19.3216 52.3953 15.7911 47.2953 15.4476
+\c 42.1952 15.104 39.3013 16.4291 35.5256 15.9387
+\c 31.7492 15.4476 28.1217 13.2899 28.1217 13.2899
+\s
+\m 27.2871 11.3276
+\c 27.2871 11.3276 32.4356 15.3492 39.3996 14.1232
+\c 46.3636 12.8979 48.718 12.1616 53.7204 16.6237
+\c 53.7204 16.6237 50.6796 12.7005 45.6287 12.26
+\c 40.5778 11.818 37.7331 14.4681 33.5141 13.583
+\c 29.2972 12.7005 27.2871 11.3276 27.2871 11.3276
+\s
+\m 25.669 8.9255
+\c 25.669 8.9255 28.8068 11.6227 35.0844 10.6412
+\c 41.3606 9.6604 46.3636 8.7281 50.5314 12.7504
+\c 50.5314 12.7504 47.5897 9.7588 40.7732 10.9855
+\c 33.9567 12.2108 28.4147 11.5728 25.669 8.9255
+\s
+\m 24.639 6.7173
+\c 24.639 6.7173 28.5124 9.0238 33.9075 7.9932
+\c 39.3013 6.9625 43.5189 5.7365 48.2276 9.3175
+\c 48.2276 9.3175 44.1561 6.6189 37.438 8.2384
+\c 30.7199 9.8578 27.7283 8.7281 24.639 6.7173
+\s
+\m 24.2456 5.5418
+\c 24.2456 5.5418 27.2864 7.4536 32.2403 6.1299
+\c 37.1928 4.8069 42.1952 4.2175 45.8241 7.1599
+\c 45.8241 7.1599 42.1952 4.8547 35.0844 6.3751
+\c 27.9735 7.8948 24.9819 6.1299 24.2955 5.7372
+\o
+\s
+\m 24.0994 4.9039
+\c 24.0994 4.9039 25.962 5.7372 31.5047 4.8062
+\c 37.0453 3.8725 42.2437 3.1868 48.0302 7.7971
+\c 53.8174 12.4068 57.4968 20.0081 57.4968 25.5009
+\l 57.7898 24.9613
+\c 57.7898 24.9613 58.4277 19.224 52.3953 11.4253
+\c 52.3953 11.4253 46.5098 4.0693 38.468 3.4819
+\c 38.468 3.4819 35.7701 3.4819 31.0136 4.266
+\c 26.2557 5.0507 25.7161 5.1484 23.9512 4.6088
+\o
+\s
+\m 23.7033 4.2455
+\c 23.7033 4.2455 25.3726 4.1096 29.1374 3.0721
+\c 32.9021 2.0352 36.2393 2.1261 38.9222 3.3883
+\l 38.9898 3.2975
+\c 38.9898 3.2975 36.4873 1.495 31.978 1.9683
+\c 27.4681 2.441 26.408 3.7264 23.5906 3.9975
+\o
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian94.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian94.pgf
new file mode 100644
index 0000000000..9e990d2034
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian94.pgf
@@ -0,0 +1,118 @@
+\m 23.9866 13.2414
+\c 22.9696 13.417 22.7701 12.4519 23.1963 12.1138
+\c 23.6232 11.775 25.5035 12.1008 25.5035 12.1008
+\c 25.5035 12.1008 25.0009 13.0659 23.9866 13.2414
+\m 29.9165 15.7112
+\c 28.7253 15.8861 28.5621 15.1593 29.0129 14.7837
+\c 29.4657 14.408 32.1991 14.4831 32.1991 14.4831
+\c 32.1991 14.4831 31.107 15.535 29.9165 15.7112
+\m 35.8717 18.3702
+\c 34.8055 18.1188 34.6928 17.4788 36.1852 17.291
+\c 37.6769 17.1025 39.7717 17.3416 39.7717 17.3416
+\c 38.5184 18.0553 36.9372 18.6195 35.8717 18.3702
+\m 44.3219 21.6534
+\c 43.5952 21.6281 43.2564 21.0278 43.9968 20.7512
+\c 44.7365 20.4752 46.2146 20.801 46.2146 20.801
+\c 46.2146 20.801 45.05 21.6794 44.3219 21.6534
+\m 49.5012 24.0863
+\c 50.09 23.9859 51.2812 24.475 51.2812 24.475
+\c 49.351 25.1272 48.9111 24.1867 49.5012 24.0863
+\m 45.1388 24.826
+\c 45.6381 24.865 46.203 25.968 46.203 25.968
+\c 45.0377 25.6286 44.6348 24.7885 45.1388 24.826
+\m 38.2158 22.4812
+\c 38.8565 22.7196 39.532 23.9982 39.532 23.9982
+\c 37.8408 23.3213 37.5765 22.2435 38.2158 22.4812
+\m 31.2586 20.0996
+\c 31.8474 20.3379 32.249 21.6534 32.249 21.6534
+\c 31.0578 21.0148 30.6692 19.8612 31.2586 20.0996
+\m 23.5966 16.5267
+\c 23.8479 16.2747 24.2864 16.6647 24.2864 16.6647
+\c 24.9633 17.3163 25.2399 18.5198 25.2399 18.5198
+\c 24.0105 17.8552 23.3459 16.7767 23.5966 16.5267
+\m 1.2012 0.648
+\l 3.1062 0.6849
+\c 3.1062 0.6849 7.1817 5.1047 12.9716 7.847
+\c 18.7615 10.59 25.1217 9.142 25.9987 11.4273
+\c 25.9987 11.4273 22.9136 11.1227 22.723 12.4949
+\c 22.5324 13.8657 25.0084 13.9046 25.8082 12.1507
+\c 25.8082 12.1507 31.5598 11.885 32.1315 13.8657
+\c 32.1315 13.8657 28.2841 13.9033 28.5122 15.2372
+\c 28.7404 16.5704 30.7225 16.2269 32.4751 14.5514
+\c 32.4751 14.5514 39.3312 14.7044 39.7498 16.7241
+\c 39.7498 16.7241 34.6846 16.6094 34.7973 17.7896
+\c 34.9127 18.9719 38.6843 19.1235 40.1317 17.3327
+\c 40.1317 17.3327 47.6339 18.5512 46.7965 20.228
+\c 46.7965 20.228 43.3288 20.0374 43.2926 21.1043
+\c 43.253 22.1705 45.3116 22.208 46.72 20.8755
+\c 46.72 20.8755 53.5768 21.9048 52.3952 24.2277
+\c 52.3952 24.2277 49.3496 23.5037 48.9678 24.0754
+\c 48.5874 24.6464 49.8059 25.4844 51.8255 24.5706
+\c 51.8255 24.5706 54.1485 25.0664 56.0903 25.9796
+\c 58.0341 26.8942 58.3264 27.2097 58.1031 27.8805
+\c 58.1031 27.8805 53.8411 26.955 47.8845 24.9749
+\c 41.93 22.9949 38.6249 21.829 31.9983 18.9227
+\c 25.3717 16.0179 15.4899 10.6043 10.6671 7.5868
+\c 5.8457 4.5699 1.2012 0.648 1.2012 0.648
+\m 10.6849 7.9993
+\c 10.6849 7.9993 20.4759 14.0945 29.8072 18.3224
+\c 39.1413 22.5509 44.0159 24.074 49.7676 25.8266
+\c 55.5206 27.5786 58.0717 27.9986 58.0717 27.9986
+\c 58.0717 27.9986 58.0341 29.0655 55.9011 28.8374
+\c 53.768 28.6085 50.8727 26.7419 50.8727 26.7419
+\c 51.9403 27.6933 51.9403 28.4938 51.9403 28.4938
+\c 47.5581 27.3511 46.6442 26.246 45.9981 25.2939
+\c 45.3485 24.3424 44.8547 24.4948 44.8547 24.4948
+\c 44.3588 24.8369 44.8158 25.7508 46.0343 26.1702
+\c 47.2541 26.5882 47.1783 28.0744 47.1783 28.0744
+\c 45.8061 26.7419 43.2926 25.675 41.693 25.1033
+\c 40.0927 24.531 39.9022 24.1512 39.9022 24.1512
+\c 38.7977 21.8276 37.1209 21.7511 37.7302 22.8931
+\c 38.3401 24.0371 39.674 24.2666 39.674 24.2666
+\c 40.2833 24.8752 40.5114 26.3601 40.5114 26.3601
+\c 40.5114 26.3601 39.4835 24.8363 36.7405 23.8835
+\c 33.9982 22.932 32.7039 22.1705 32.7039 22.1705
+\c 32.2831 20.4561 31.484 19.6932 30.9506 19.8844
+\c 30.4165 20.0743 30.9895 21.1801 31.9027 21.7128
+\c 32.8173 22.247 32.7797 23.9224 32.7797 23.9224
+\c 32.7797 23.9224 30.9123 21.7128 28.5518 20.495
+\c 26.1893 19.2752 25.5425 18.5512 25.5425 18.5512
+\c 24.7044 15.7331 22.9511 15.8847 23.3698 17.0281
+\c 23.7892 18.1701 25.2747 18.8175 25.2747 18.8175
+\c 25.8833 19.7697 25.7317 20.9888 25.7317 20.9888
+\c 24.9687 19.6174 22.9894 18.0177 20.4001 16.3027
+\c 17.8094 14.5897 16.2473 12.456 16.2473 12.456
+\l 16.1326 14.3616
+\c 14.1901 11.0087 10.6849 7.9993 10.6849 7.9993
+\m 16.5527 16.4181
+\l 16.9707 13.9804
+\c 16.9707 13.9804 18.6468 15.9612 21.8084 18.0177
+\c 24.9687 20.0757 25.8471 21.8652 25.8471 21.8652
+\c 25.8471 21.8652 26.2275 21.2559 25.9229 19.4657
+\c 25.9229 19.4657 28.6645 21.1043 30.2635 22.1705
+\c 31.8651 23.2373 33.2742 25.1423 33.2742 25.1423
+\l 32.9313 22.7039
+\c 32.9313 22.7039 35.1409 24.0371 37.6926 24.9517
+\c 40.245 25.8662 41.1207 28.0369 41.1207 28.0369
+\l 40.5879 25.1798
+\c 40.5879 25.1798 45.6156 27.2371 47.5212 28.8756
+\l 47.2534 27.1612
+\c 47.2534 27.1612 49.6535 28.4569 52.6247 29.295
+\l 52.167 27.9993
+\c 52.167 27.9993 56.8518 30.0565 58.3005 28.4938
+\c 59.7478 26.9324 54.8335 24.7987 52.5468 24.2284
+\c 52.5468 24.2284 53.462 23.7318 52.0905 22.3235
+\c 50.7197 20.9144 47.0239 20.495 47.0239 20.495
+\c 47.0239 20.495 47.9781 19.0477 45.2351 17.8661
+\c 42.4921 16.6852 39.9022 16.7999 39.9022 16.7999
+\c 39.9022 16.7999 40.1317 14.8561 37.3129 14.1703
+\c 34.4927 13.4853 32.3221 13.8281 32.3221 13.8281
+\c 32.3221 13.8281 32.3979 12.4949 30.5688 11.8098
+\c 28.7404 11.1234 26.1886 11.3529 26.1886 11.3529
+\c 26.1886 11.3529 25.9987 9.6385 21.5796 9.1809
+\c 17.1619 8.724 15.1805 8.1127 10.648 5.7139
+\c 6.1142 3.3138 2.9142 0.1522 2.9142 0.1522
+\l -0.0186 -0.0384
+\c -0.0186 -0.0384 -0.0179 0.3052 4.2489 3.5044
+\c 8.5136 6.7043 14.9899 10.9718 16.5527 16.4181
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian95.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian95.pgf
new file mode 100644
index 0000000000..116f6fa218
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian95.pgf
@@ -0,0 +1,56 @@
+\m 2.0456 23.1992
+\c 2.0456 23.1992 10.8264 27.9966 21.8134 27.7091
+\c 32.7997 27.4222 42.1078 22.8153 42.1078 22.8153
+\c 42.1078 22.8153 35.0079 28.3812 21.7656 28.6202
+\c 21.7656 28.6202 10.1066 29.0519 2.0456 23.1992
+\s
+\m 0.1749 11.2054
+\c 0.1749 11.2054 3.0053 12.5004 8.2344 16.2427
+\c 13.4649 19.9849 18.7439 21.6644 24.7394 21.1371
+\c 30.737 20.6085 36.4825 17.164 37.8711 12.5004
+\c 37.8711 12.5004 37.1949 18.7282 29.4352 21.2198
+\c 21.6761 23.7114 15.0195 21.2922 10.9275 18.5513
+\c 6.8349 15.8096 3.8023 13.4334 0.1749 11.2054
+\s
+\m 42.2492 11.5388
+\c 40.7199 12.2518 38.0493 10.6139 38.0493 10.6139
+\c 41.8578 8.7275 43.7791 10.8277 42.2492 11.5388
+\m 22.9943 11.2546
+\c 25.9846 12.4642 24.5953 15.7748 24.5953 15.7748
+\c 21.6761 16.4148 18.6511 15.6689 18.6511 15.6689
+\c 17.2632 12.4642 20.0041 10.0443 22.9943 11.2546
+\m 26.9797 8.1585
+\c 30.8954 11.4684 29.33 14.2797 29.33 14.2797
+\c 27.4783 15.3466 24.8091 15.7386 24.8091 15.7386
+\c 26.3391 12.0018 23.4923 10.7212 23.4923 10.7212
+\c 20.7165 9.3333 18.7938 11.2546 18.7938 11.2546
+\c 17.0152 13.2115 18.4024 15.6327 18.4024 15.6327
+\c 15.7332 14.9559 13.8461 14.1376 13.8461 14.1376
+\c 14.0954 5.88 23.0647 4.8486 26.9797 8.1585
+\m 0 8.6919
+\c 0 8.6919 4.7695 9.7943 9.681 13.0694
+\c 14.5933 16.3438 20.3948 18.6933 26.6949 16.5924
+\c 32.9943 14.4928 34.4533 12.1439 37.6566 10.7212
+\c 37.6566 10.7212 40.2917 12.3939 42.1057 11.9308
+\c 43.9205 11.4684 43.3871 8.2657 37.9059 10.2588
+\c 37.9059 10.2588 37.5138 5.4538 27.6197 2.9259
+\c 17.7249 0.3974 9.1114 5.0617 5.4463 9.2254
+\c 5.4463 9.2254 10.9986 3.4607 20.2165 3.0687
+\c 29.4352 2.6766 36.8745 6.0924 37.6921 10.3646
+\l 37.3725 10.4712
+\c 37.3725 10.4712 31.9971 5.169 24.5236 4.2421
+\c 17.0501 3.318 10.3217 5.0966 6.0863 10.0443
+\c 6.0863 10.0443 11.4965 4.4204 19.8252 4.3145
+\c 28.1545 4.208 32.6023 7.162 37.1594 10.6139
+\c 37.1594 10.6139 33.5278 12.5359 29.6496 14.2442
+\c 29.6496 14.2442 31.1079 9.7943 26.4463 6.7337
+\c 21.7834 3.6732 13.5968 6.3069 13.5612 14.0304
+\c 13.5612 14.0304 11.4261 13.0332 7.7604 11.1119
+\c 4.0947 9.1899 1.3517 8.7978 0 8.6919
+\s
+\m 4.2039 8.8087
+\c 4.2039 8.8087 10.556 0.0949 23.0599 0.7355
+\c 23.0599 0.7355 34.9252 0.489 40.7855 9.0553
+\c 40.7855 9.0553 37.5835 1.2273 24.6855 0.1434
+\c 24.6855 0.1434 11.9336 -1.8237 4.2039 8.8087
+\s
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian96.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian96.pgf
new file mode 100644
index 0000000000..9a041b1cb0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian96.pgf
@@ -0,0 +1,28 @@
+\m 20.2027 7.9981
+\c 20.3331 6.3384 22.4156 5.2319 22.4156 5.2319
+\c 22.7735 9.2685 20.0729 9.6578 20.2027 7.9981
+\m 7.6673 5.2319
+\c 7.6673 5.2319 9.7498 6.3384 9.8803 7.9981
+\c 10.0101 9.6578 7.3101 9.2685 7.6673 5.2319
+\m 14.9879 0
+\c 9.7826 0 7.5696 4.4191 7.5696 4.4191
+\c 4.8697 3.6063 2.5925 4.5489 2.5925 4.5489
+\c -0.6614 5.8193 -0.9209 10.573 2.2018 13.0456
+\c 5.3253 15.5112 8.1885 14.5072 8.1885 14.5072
+\c 1.8112 14.8351 -0.5965 9.4324 1.0633 6.8643
+\c 2.723 4.2893 7.3101 5.1363 7.3101 5.1363
+\c 6.789 9.5622 10.0749 10.2794 10.2047 8.2303
+\c 10.3352 6.1813 7.9931 4.8767 7.9931 4.8767
+\c 9.2943 1.3319 14.8574 1.2294 14.8574 1.2294
+\l 15.2255 1.2294
+\c 15.2255 1.2294 20.7887 1.3319 22.0898 4.8767
+\c 22.0898 4.8767 19.7478 6.1813 19.8782 8.2303
+\c 20.008 10.2794 23.294 9.5622 22.7735 5.1363
+\c 22.7735 5.1363 27.3606 4.2893 29.0204 6.8643
+\c 30.6787 9.4324 28.2711 14.8351 21.8952 14.5072
+\c 21.8952 14.5072 24.7584 15.5112 27.8818 13.0456
+\c 31.0038 10.573 30.7443 5.8193 27.4904 4.5489
+\c 27.4904 4.5489 25.2133 3.6063 22.5126 4.4191
+\c 22.5126 4.4191 20.301 0 15.0958 0
+\o
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian97.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian97.pgf
new file mode 100644
index 0000000000..b012462d6d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian97.pgf
@@ -0,0 +1,56 @@
+\m 0 10.7835
+\c 0 10.7835 4.3515 9.3492 10.2992 11.9037
+\c 16.2468 14.4581 22.6337 15.8925 27.1443 12.3408
+\c 27.1443 12.3408 29.8586 10.1073 28.302 6.9928
+\c 28.302 6.9928 26.9845 4.6364 24.43 5.8317
+\c 24.43 5.8317 23.1726 6.4737 23.2539 7.8944
+\c 23.3345 9.3082 24.65 9.4926 24.65 9.4926
+\c 24.65 9.4926 21.8981 10.9474 18.7999 8.7003
+\c 15.7038 6.4532 12.424 4.773 8.1538 6.3166
+\c 8.1538 6.3166 11.7369 5.3399 15.7646 7.6485
+\c 19.793 9.9571 22.0798 11.1114 25.4197 9.3492
+\c 25.4197 9.3492 23.6794 9.2467 23.6794 7.8944
+\c 23.6794 6.5352 24.9949 5.5038 26.4722 5.9478
+\c 27.9496 6.3917 28.9215 8.1129 28.274 10.2439
+\c 27.6258 12.3681 24.0434 14.8338 19.4283 13.7615
+\c 14.8132 12.6891 12.1016 11.1114 8.1128 10.3191
+\c 8.1128 10.3191 2.8598 9.0009 0 10.7835
+\s
+\m 2.0511 8.8369
+\c 2.0511 8.8369 7.1095 7.2455 13.0913 10.0185
+\c 19.0738 12.7847 23.1357 13.4131 25.794 11.2753
+\c 25.794 11.2753 27.3451 9.8683 26.5692 7.99
+\l 26.1266 8.5432
+\c 26.1266 8.5432 26.7912 8.5432 26.4586 9.8341
+\c 26.1266 11.125 23.5783 13.0443 18.9256 11.4187
+\c 14.2736 9.8 10.3224 6.3644 2.0511 8.8369
+\s
+\m 23.4683 8.1744
+\c 23.4683 8.1744 19.6838 8.6457 17.3465 5.8931
+\c 17.3465 5.8931 15.9989 4.09 16.9449 2.7376
+\c 16.9449 2.7376 17.3943 2.0546 18.3164 2.1707
+\c 19.2398 2.2868 19.7118 3.1884 19.7118 3.1884
+\c 19.7118 3.1884 18.8607 2.2458 17.7727 2.6693
+\c 16.6847 3.0928 16.7086 5.4082 19.192 6.8084
+\c 21.6754 8.2017 23.4963 8.0105 23.4963 8.0105
+\o
+\s
+\m 25.223 5.8112
+\c 25.223 5.8112 22.006 6.6649 20.2083 4.3973
+\c 18.4113 2.1229 19.901 0.3949 20.918 0.2993
+\c 21.9357 0.2105 23.118 0.6544 22.952 2.362
+\c 22.952 2.362 22.8577 0.6544 21.2492 0.6544
+\c 19.6414 0.6544 19.4994 3.045 20.8948 4.3973
+\c 22.2901 5.7429 23.9929 5.859 25.223 5.8112
+\s
+\m 26.5248 5.7224
+\c 26.5248 5.7224 24.2606 5.2853 23.9444 2.8742
+\c 23.6275 0.4632 25.8924 -0.2676 27.4018 0.7842
+\c 28.9106 1.8292 28.6913 4.0968 27.4988 4.411
+\c 26.3056 4.7252 25.5754 3.5094 25.7216 2.2663
+\c 25.7216 2.2663 25.113 3.366 26.087 4.3837
+\c 27.0603 5.4082 29.2753 4.6501 28.6913 2.2937
+\c 28.1067 -0.0696 25.6478 -0.4316 24.2845 0.4154
+\c 24.2845 0.4154 23.0681 1.194 23.3113 3.0723
+\c 23.5544 4.9438 25.1615 5.8453 26.5248 5.7224
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian98.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian98.pgf
new file mode 100644
index 0000000000..cd1839f354
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian98.pgf
@@ -0,0 +1,56 @@
+\m 28.7874 10.7835
+\c 28.7874 10.7835 24.4359 9.3492 18.4889 11.9037
+\c 12.5406 14.4581 6.1537 15.8925 1.6431 12.3408
+\c 1.6431 12.3408 -1.0712 10.1073 0.4854 6.9928
+\c 0.4854 6.9928 1.8029 4.6364 4.3574 5.8317
+\c 4.3574 5.8317 5.6141 6.4737 5.5335 7.8944
+\c 5.4529 9.3082 4.1368 9.4926 4.1368 9.4926
+\c 4.1368 9.4926 6.8893 10.9474 9.9868 8.7003
+\c 13.0836 6.4532 16.3634 4.773 20.6336 6.3166
+\c 20.6336 6.3166 17.0505 5.3399 13.0221 7.6485
+\c 8.9944 9.9571 6.7076 11.1114 3.3677 9.3492
+\c 3.3677 9.3492 5.1087 9.2467 5.1087 7.8944
+\c 5.1087 6.5352 3.7925 5.5038 2.3152 5.9478
+\c 0.8371 6.3917 -0.1341 8.1129 0.5134 10.2439
+\c 1.1616 12.3681 4.744 14.8338 9.3591 13.7615
+\c 13.9742 12.6891 16.6865 11.1114 20.6739 10.3191
+\c 20.6739 10.3191 25.927 9.0009 28.7874 10.7835
+\s
+\m 26.737 8.8369
+\c 26.737 8.8369 21.6772 7.2455 15.6954 10.0185
+\c 9.7136 12.7847 5.6524 13.4131 2.9927 11.2753
+\c 2.9927 11.2753 1.443 9.8683 2.2182 7.99
+\l 2.6608 8.5432
+\c 2.6608 8.5432 1.9962 8.5432 2.3295 9.8341
+\c 2.6608 11.125 5.2098 13.0443 9.8618 11.4187
+\c 14.5145 9.8 18.4657 6.3644 26.737 8.8369
+\s
+\m 5.3198 8.1744
+\c 5.3198 8.1744 9.1043 8.6457 11.4409 5.8931
+\c 11.4409 5.8931 12.7892 4.09 11.8425 2.7376
+\c 11.8425 2.7376 11.3931 2.0546 10.471 2.1707
+\c 9.5483 2.2868 9.0756 3.1884 9.0756 3.1884
+\c 9.0756 3.1884 9.9274 2.2458 11.0147 2.6693
+\c 12.1034 3.0928 12.0789 5.4082 9.5961 6.8084
+\c 7.1127 8.2017 5.2911 8.0105 5.2911 8.0105
+\o
+\s
+\m 3.5651 5.8112
+\c 3.5651 5.8112 6.7814 6.6649 8.5784 4.3973
+\c 10.3768 2.1229 8.8864 0.3949 7.8694 0.2993
+\c 6.8524 0.2105 5.6701 0.6544 5.8354 2.362
+\c 5.8354 2.362 5.9297 0.6544 7.5382 0.6544
+\c 9.1467 0.6544 9.2887 3.045 7.8927 4.3973
+\c 6.4973 5.7429 4.7945 5.859 3.5651 5.8112
+\s
+\m 2.2626 5.7224
+\c 2.2626 5.7224 4.5268 5.2853 4.8437 2.8742
+\c 5.1599 0.4632 2.8957 -0.2676 1.387 0.7842
+\c -0.1232 1.8292 0.0961 4.0968 1.2886 4.411
+\c 2.4818 4.7252 3.212 3.5094 3.0658 2.2663
+\c 3.0658 2.2663 3.6751 3.366 2.7011 4.3837
+\c 1.7264 5.4082 -0.4879 4.6501 0.0961 2.2937
+\c 0.68 -0.0696 3.1389 -0.4316 4.5029 0.4154
+\c 4.5029 0.4154 5.7193 1.194 5.4762 3.0723
+\c 5.233 4.9438 3.6266 5.8453 2.2626 5.7224
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian99.pgf b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian99.pgf
new file mode 100644
index 0000000000..45329775a6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/generic/vectorian/vectorian99.pgf
@@ -0,0 +1,90 @@
+\m 11.0228 7.8321
+\c 11.0228 7.8321 12.3465 6.8131 13.2126 7.4503
+\c 14.0786 8.0869 12.6791 9.5888 11.0228 7.8321
+\m 39.5878 7.5268
+\c 39.5878 7.5268 41.1922 5.9989 41.9046 6.7885
+\c 42.617 7.5774 40.8862 8.6463 39.5878 7.5268
+\m 24.6947 3.174
+\c 26.5279 2.3325 27.9793 1.7226 29.6083 1.9001
+\c 31.2373 2.0784 31.8985 3.3509 31.8985 3.3509
+\c 28.8693 4.2436 26.0437 5.8971 26.0437 5.8971
+\c 25.4078 3.9888 24.6947 3.174 24.6947 3.174
+\m 22.5815 9.2077
+\c 23.0903 7.7816 25.7131 6.7885 25.7131 6.7885
+\c 25.0499 11.9056 22.0726 10.6325 22.5815 9.2077
+\m 13.5438 7.2461
+\c 12.5009 6.3302 10.8193 7.4763 10.8193 7.4763
+\c 10.3357 5.5666 12.7802 2.2567 17.7457 1.6208
+\c 22.7085 0.9849 24.1599 3.1494 24.1599 3.1494
+\c 20.57 5.4142 17.7703 8.1634 14.6387 9.9447
+\c 11.5071 11.7267 7.2813 10.862 7.2813 10.862
+\c 8.8338 9.1811 10.5898 8.0869 10.5898 8.0869
+\c 12.908 10.0219 14.5875 8.1634 13.5438 7.2461
+\m 17.3878 10.8367
+\c 17.3878 11.4719 16.2424 11.7779 16.2424 11.7779
+\c 16.3695 10.5307 17.3878 10.1994 17.3878 10.8367
+\m 6.2622 12.0326
+\l 6.9753 11.168
+\c 6.9753 11.168 10.7947 12.1597 14.3587 10.3524
+\c 17.9226 8.5459 20.9532 5.363 24.3635 3.3509
+\c 24.3635 3.3509 25.4836 4.6759 25.6366 6.4818
+\c 25.6366 6.4818 22.5569 7.7816 22.1498 9.5376
+\c 21.7414 11.2943 24.0841 11.6263 25.2548 9.4884
+\c 25.2548 9.4884 25.9924 8.3669 26.0942 6.2537
+\c 26.0942 6.2537 29.0216 4.5475 32.0009 3.6582
+\c 32.0009 3.6582 32.7147 5.057 31.2885 6.5603
+\c 29.8624 8.0609 27.4445 7.6798 27.4445 7.6798
+\c 27.4445 7.6798 27.2915 11.0156 24.5936 12.9752
+\c 21.895 14.9348 17.0825 14.9355 16.3182 12.0586
+\c 16.3182 12.0586 17.5668 11.6768 17.6166 10.7588
+\c 17.6686 9.8429 16.5218 9.5888 15.8866 12.0074
+\c 15.8866 12.0074 14.8682 12.771 12.4483 12.9991
+\c 10.0304 13.2293 6.2622 12.0326 6.2622 12.0326
+\m 0.8152 13.2539
+\c 1.5276 12.5934 4.7603 13.0258 4.7603 13.0258
+\c 1.5788 14.859 0.1021 13.9164 0.8152 13.2539
+\m 2.4947 4.4976
+\c 2.4947 4.4976 3.3096 3.4533 4.4044 3.6828
+\c 5.4986 3.9109 4.9386 5.7182 2.4947 4.4976
+\m 1.85 5.0113
+\c 1.1021 10.0622 6.6188 11.1167 6.6188 11.1167
+\l 5.836 11.9568
+\c 5.836 11.9568 3.2713 11.7185 1.7325 12.2314
+\c 0.1943 12.745 -0.8718 13.9676 0.9825 14.3631
+\c 2.8383 14.7572 5.1653 13.021 5.1653 13.021
+\c 5.1653 13.021 7.1775 13.4943 10.1766 13.6924
+\c 13.175 13.8884 15.9364 12.271 15.9364 12.271
+\c 16.7656 14.4013 19.5673 16.0597 23.6319 14.2046
+\c 27.6952 12.3489 27.6563 8.0486 27.6563 8.0486
+\c 27.6563 8.0486 30.7339 9.0356 32.1942 7.063
+\c 33.6552 5.0898 32.6662 3.3536 32.6662 3.3536
+\c 39.7695 1.0648 43.8348 1.6174 43.8348 1.6174
+\c 40.8357 2.0122 38.6248 3.1562 38.6248 3.1562
+\c 35.2323 5.0509 34.6797 7.9694 33.2194 10.8907
+\c 31.7591 13.8092 28.6822 14.4403 28.6822 14.4403
+\c 39.6117 17.0453 44.6223 10.5341 44.8204 6.865
+\c 45.0171 3.1958 41.7031 3.1173 40.2435 4.4191
+\c 38.7846 5.7209 39.2559 7.3779 39.2559 7.3779
+\c 39.2559 7.3779 38.0333 10.0615 36.4555 12.1132
+\c 34.8778 14.1643 33.259 14.0858 33.259 14.0858
+\c 35.5874 14.3235 37.3626 12.6262 38.0333 10.6926
+\c 38.7047 8.7583 39.415 7.8915 39.415 7.8915
+\c 42.492 9.1551 43.7556 6.9046 42.5712 6.1949
+\c 41.3876 5.4839 39.454 7.2201 39.454 7.2201
+\c 39.1384 5.0509 41.3473 3.4711 43.399 4.3802
+\c 45.4508 5.2879 44.3867 9.8648 39.8481 12.745
+\c 35.3108 15.6253 29.5899 14.3235 29.5899 14.3235
+\c 32.6272 13.4943 33.3779 11.2861 34.8778 8.4045
+\c 36.377 5.5235 37.3236 4.6568 37.3236 4.6568
+\c 39.7306 2.2498 45.2145 1.6174 45.2145 1.6174
+\c 39.5325 0.4337 32.5883 3.0777 32.5883 3.0777
+\c 29.9054 -0.2766 24.4994 2.9588 24.4994 2.9588
+\c 23.3553 1.5395 18.62 -0.1564 14.0042 1.9343
+\c 9.387 4.0257 10.4136 7.8123 10.4136 7.8123
+\c 8.7163 8.8778 6.823 10.7855 6.823 10.7855
+\c 1.35 9.6653 2.2065 5.3664 2.2065 5.3664
+\c 4.8491 6.826 6.599 4.6008 5.2049 3.5899
+\c 3.5391 2.3851 2.0617 4.4211 2.0617 4.4211
+\c 0.4839 3.1972 0.1943 0 0.1943 0
+\c -0.2742 3.1145 1.85 5.0113 1.85 5.0113
+\s \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgflibraryam.code.tex b/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgflibraryam.code.tex
new file mode 100644
index 0000000000..498ac1b246
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgflibraryam.code.tex
@@ -0,0 +1,29 @@
+% utf8
+% author Alain Matthes d'après des travaux de F Fradin et H Voss sur un fichier
+% 21/01/2012
+\makeatletter
+
+% dimensions des motifs
+\def\@pgfornamentDim#1{% dim en bp
+\ifcase#1\relax%
+\or\def\@pgfornamentX{136}\def\@pgfornamentY{107}% 1
+\or\def\@pgfornamentX{133}\def\@pgfornamentY{48}% 2
+\fi%
+}%
+% appels des motifs
+\def\pgf@@ornament#1{%
+\begingroup
+\def\i{\pgfusepath{clip}}
+\let\o\pgfpathclose
+\let\s\pgfusepathqfillstroke
+\def\p ##1##2{\pgfqpoint{##1bp}{##2bp}}
+\def\m ##1 ##2 {\pgfpathmoveto{\p{##1}{##2}}}
+\def\l ##1 ##2 {\pgfpathlineto{\p{##1}{##2}}}
+\def\r ##1 ##2 ##3 ##4 {\pgfpathrectangle{\p{##1}{##2}}{\p{##3}{##4}}}
+\def\c ##1 ##2 ##3 ##4 ##5 ##6 {%
+\pgfpathcurveto{\p{##1}{##2}}{\p{##3}{##4}}{\p{##5}{##6}}}%
+\@@input am#1.pgf
+%\@nameuse{pgf@@am@#1}%
+\endgroup}%
+\makeatother
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgflibraryvectorian.code.tex b/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgflibraryvectorian.code.tex
new file mode 100644
index 0000000000..ef2ed4e693
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgflibraryvectorian.code.tex
@@ -0,0 +1,208 @@
+% utf8
+% author Alain Matthes d'après des travaux de F Fradin et H Voss sur un fichier
+% 21/01/2012
+\makeatletter
+% dimensions des motifs
+\def\@pgfornamentDim#1{% dim en bp
+\ifcase#1\relax%
+\or\def\@pgfornamentX{136}\def\@pgfornamentY{107}% 1
+\or\def\@pgfornamentX{134}\def\@pgfornamentY{48}% 2
+\or\def\@pgfornamentX{130}\def\@pgfornamentY{65}% 3
+\or\def\@pgfornamentX{133}\def\@pgfornamentY{133}% 4
+\or\def\@pgfornamentX{129}\def\@pgfornamentY{146}% 5
+\or\def\@pgfornamentX{134}\def\@pgfornamentY{148}% 6
+\or\def\@pgfornamentX{136}\def\@pgfornamentY{135}% 7
+\or\def\@pgfornamentX{134}\def\@pgfornamentY{134}% 8
+\or\def\@pgfornamentX{79}\def\@pgfornamentY{105}% 9
+\or\def\@pgfornamentX{80}\def\@pgfornamentY{99}% 10
+\or\def\@pgfornamentX{123}\def\@pgfornamentY{67}% 11
+\or\def\@pgfornamentX{136}\def\@pgfornamentY{136}% 12
+\or\def\@pgfornamentX{136}\def\@pgfornamentY{236}% 13
+\or\def\@pgfornamentX{123}\def\@pgfornamentY{67}% 14
+\or\def\@pgfornamentX{103}\def\@pgfornamentY{52}% 15
+\or\def\@pgfornamentX{103}\def\@pgfornamentY{52}% 16
+\or\def\@pgfornamentX{74}\def\@pgfornamentY{59}% 17
+\or\def\@pgfornamentX{74}\def\@pgfornamentY{59}% 18
+\or\def\@pgfornamentX{81}\def\@pgfornamentY{81}% 19
+\or\def\@pgfornamentX{81}\def\@pgfornamentY{81}% 20
+\or\def\@pgfornamentX{70}\def\@pgfornamentY{58}% 21
+\or\def\@pgfornamentX{34}\def\@pgfornamentY{61}% 22
+\or\def\@pgfornamentX{68}\def\@pgfornamentY{55}% 23
+\or\def\@pgfornamentX{79}\def\@pgfornamentY{76}% 24
+\or\def\@pgfornamentX{80}\def\@pgfornamentY{88}% 25
+\or\def\@pgfornamentX{59}\def\@pgfornamentY{120}% 26
+\or\def\@pgfornamentX{101}\def\@pgfornamentY{98}% 27
+\or\def\@pgfornamentX{52}\def\@pgfornamentY{102}% 28
+\or\def\@pgfornamentX{65}\def\@pgfornamentY{65}% 29
+\or\def\@pgfornamentX{63}\def\@pgfornamentY{64}% 30
+\or\def\@pgfornamentX{48}\def\@pgfornamentY{48}% 31
+\or\def\@pgfornamentX{48}\def\@pgfornamentY{48}% 32
+\or\def\@pgfornamentX{85}\def\@pgfornamentY{85}% 33
+\or\def\@pgfornamentX{85}\def\@pgfornamentY{85}% 34
+\or\def\@pgfornamentX{97}\def\@pgfornamentY{97}% 35
+\or\def\@pgfornamentX{97}\def\@pgfornamentY{97}% 36
+\or\def\@pgfornamentX{105}\def\@pgfornamentY{104}% 37
+\or\def\@pgfornamentX{105}\def\@pgfornamentY{104}% 38
+\or\def\@pgfornamentX{112}\def\@pgfornamentY{112}% 39
+\or\def\@pgfornamentX{112}\def\@pgfornamentY{112}% 40
+\or\def\@pgfornamentX{111}\def\@pgfornamentY{113}% 41
+\or\def\@pgfornamentX{111}\def\@pgfornamentY{113}% 42
+\or\def\@pgfornamentX{123}\def\@pgfornamentY{63}% 43
+\or\def\@pgfornamentX{123}\def\@pgfornamentY{63}% 44
+\or\def\@pgfornamentX{385}\def\@pgfornamentY{64}% 45
+\or\def\@pgfornamentX{453}\def\@pgfornamentY{97}% 46
+\or\def\@pgfornamentX{114}\def\@pgfornamentY{32}% 47
+\or\def\@pgfornamentX{114}\def\@pgfornamentY{32}% 48
+\or\def\@pgfornamentX{163}\def\@pgfornamentY{61}% 49
+\or\def\@pgfornamentX{164}\def\@pgfornamentY{125}% 50
+\or\def\@pgfornamentX{164}\def\@pgfornamentY{125}% 51
+\or\def\@pgfornamentX{248}\def\@pgfornamentY{197}% 52
+\or\def\@pgfornamentX{134}\def\@pgfornamentY{134}% 53
+\or\def\@pgfornamentX{134}\def\@pgfornamentY{134}% 54
+\or\def\@pgfornamentX{269}\def\@pgfornamentY{116}% 55
+\or\def\@pgfornamentX{269}\def\@pgfornamentY{116}% 56
+\or\def\@pgfornamentX{207}\def\@pgfornamentY{103}% 57
+\or\def\@pgfornamentX{228}\def\@pgfornamentY{116}% 58
+\or\def\@pgfornamentX{204}\def\@pgfornamentY{102}% 59
+\or\def\@pgfornamentX{451}\def\@pgfornamentY{189}% 60
+\or\def\@pgfornamentX{205}\def\@pgfornamentY{205}% 61
+\or\def\@pgfornamentX{205}\def\@pgfornamentY{205}% 62
+\or\def\@pgfornamentX{212}\def\@pgfornamentY{212}% 63
+\or\def\@pgfornamentX{212}\def\@pgfornamentY{212}% 64
+\or\def\@pgfornamentX{132}\def\@pgfornamentY{166}% 65
+\or\def\@pgfornamentX{177}\def\@pgfornamentY{175}% 66
+\or\def\@pgfornamentX{80} \def\@pgfornamentY{155}% 67
+\or\def\@pgfornamentX{361}\def\@pgfornamentY{154}% 68
+\or\def\@pgfornamentX{448}\def\@pgfornamentY{227}% 69
+\or\def\@pgfornamentX{226}\def\@pgfornamentY{79}% 70
+\or\def\@pgfornamentX{443}\def\@pgfornamentY{81}% 71
+\or\def\@pgfornamentX{216}\def\@pgfornamentY{58}% 72
+\or\def\@pgfornamentX{216}\def\@pgfornamentY{58}% 73
+\or\def\@pgfornamentX{308}\def\@pgfornamentY{93}% 74
+\or\def\@pgfornamentX{373}\def\@pgfornamentY{120}% 75
+\or\def\@pgfornamentX{308}\def\@pgfornamentY{93}% 76
+\or\def\@pgfornamentX{207}\def\@pgfornamentY{89}% 77
+\or\def\@pgfornamentX{207}\def\@pgfornamentY{132}% 78
+\or\def\@pgfornamentX{249}\def\@pgfornamentY{122}% 79
+\or\def\@pgfornamentX{454}\def\@pgfornamentY{31}% 80
+\or\def\@pgfornamentX{176}\def\@pgfornamentY{45}% 81
+\or\def\@pgfornamentX{454}\def\@pgfornamentY{24}% 82
+\or\def\@pgfornamentX{449}\def\@pgfornamentY{20}% 83
+\or\def\@pgfornamentX{290}\def\@pgfornamentY{57}% 84
+\or\def\@pgfornamentX{453}\def\@pgfornamentY{22}% 85
+\or\def\@pgfornamentX{454}\def\@pgfornamentY{17}% 86
+\or\def\@pgfornamentX{360}\def\@pgfornamentY{44}% 87
+\or\def\@pgfornamentX{454}\def\@pgfornamentY{15}% 88
+\or\def\@pgfornamentX{454}\def\@pgfornamentY{10}% 89
+\or\def\@pgfornamentX{30} \def\@pgfornamentY{30}% 90
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}% 91
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{29}% 92
+\or\def\@pgfornamentX{59}\def\@pgfornamentY{29}% 93
+\or\def\@pgfornamentX{59}\def\@pgfornamentY{29}% 94
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{29}% 95
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{15}% 96
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{14}% 97
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{14}% 98
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{15}% 99
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{30}% 100
+\or\def\@pgfornamentX{132}\def\@pgfornamentY{30}% 101
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{29}%102
+\or\def\@pgfornamentX{42}\def\@pgfornamentY{30}%103
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%104
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{30}%105
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{30}%106
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%107
+\or\def\@pgfornamentX{59}\def\@pgfornamentY{29}%108
+\or\def\@pgfornamentX{72}\def\@pgfornamentY{29}%109
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{15}%110
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{28}%111
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{59}%112
+\or\def\@pgfornamentX{57}\def\@pgfornamentY{28}%113
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%114
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{29}%115
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{29}%116
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{29}%117
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{29}%118
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%119
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{44}%120
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{44}%121
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%122
+\or\def\@pgfornamentX{59}\def\@pgfornamentY{29}%123
+\or\def\@pgfornamentX{58}\def\@pgfornamentY{59}%124
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{44}%125
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{43}%126
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{28}%127
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{29}%128
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%129
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{29}%130
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{44}%131
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{44}%132
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{15}%133
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{15}%134
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{14}%135
+\or\def\@pgfornamentX{72}\def\@pgfornamentY{44}%136
+\or\def\@pgfornamentX{149}\def\@pgfornamentY{74}%137
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{7}%138
+\or\def\@pgfornamentX{73}\def\@pgfornamentY{37}%139
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{15}%140
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{15}%141
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{30}%142
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{30}%143
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{30}%144
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{15}%145
+\or\def\@pgfornamentX{15}\def\@pgfornamentY{15}%146
+\or\def\@pgfornamentX{31}\def\@pgfornamentY{29}%147
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{44}%148
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{28}%149
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{44}%150
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{29}%151
+\or\def\@pgfornamentX{57}\def\@pgfornamentY{28}%152
+\or\def\@pgfornamentX{57}\def\@pgfornamentY{28}%153
+\or\def\@pgfornamentX{34}\def\@pgfornamentY{17}%154
+\or\def\@pgfornamentX{34}\def\@pgfornamentY{17}%155
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{28}%156
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%157
+\or\def\@pgfornamentX{58}\def\@pgfornamentY{29}%158
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{29}%159
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{30}%160
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%161
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{44}%162
+\or\def\@pgfornamentX{46}\def\@pgfornamentY{29}%163
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{44}%164
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{26}%165
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%166
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%167
+\or\def\@pgfornamentX{59}\def\@pgfornamentY{30}%168
+\or\def\@pgfornamentX{58}\def\@pgfornamentY{29}%169
+\or\def\@pgfornamentX{59}\def\@pgfornamentY{30}%170
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{29}%171
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{15}%172
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{44}%173
+\or\def\@pgfornamentX{28}\def\@pgfornamentY{44}%174
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{42}%175
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{43}%176
+\or\def\@pgfornamentX{31}\def\@pgfornamentY{44}%177
+\or\def\@pgfornamentX{28}\def\@pgfornamentY{44}%178
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{44}%179
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{45}%180
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{30}%181
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{29}%182
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{27}%183
+\or\def\@pgfornamentX{42}\def\@pgfornamentY{29}%184
+\or\def\@pgfornamentX{45}\def\@pgfornamentY{29}%185
+\or\def\@pgfornamentX{43}\def\@pgfornamentY{14}%186
+\or\def\@pgfornamentX{28}\def\@pgfornamentY{29}%187
+\or\def\@pgfornamentX{30}\def\@pgfornamentY{30}%188
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%189
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{29}%190
+\or\def\@pgfornamentX{73}\def\@pgfornamentY{58}%191
+\or\def\@pgfornamentX{29}\def\@pgfornamentY{44}%192
+\or\def\@pgfornamentX{44}\def\@pgfornamentY{14}%193
+\or\def\@pgfornamentX{90}\def\@pgfornamentY{90}%194
+\or\def\@pgfornamentX{90}\def\@pgfornamentY{90}%195
+\or\def\@pgfornamentX{148}\def\@pgfornamentY{30}%196
+
+\fi%
+}%
+\makeatother
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgfornament.sty b/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgfornament.sty
new file mode 100644
index 0000000000..59702dc8df
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/latex/pgfornament.sty
@@ -0,0 +1,171 @@
+% utf8
+% ------------------------------------------------
+% Created by Alain Matthes le 2012-02-22.
+% Copyright (C) 2016 Alain Matthes
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+% ------------------------------------------------
+%% pgfornament.sty 0.2 du 05/03/2016 inspired from psvectorian P Fradin H Voss
+%% ------------------------------------------------
+% Les options de \pgfornament sont:
+%
+% scale : nombre (échelle, 1 par défaut)
+% width : nombre + unité (largeur, naturelle par défaut)
+% height : nombre + unité (hauteur, naturelle par défaut)
+% color : couleur ( par défaut couleur courante )
+% symmetry=h : true/false (symétrie horizontale, false par défaut)
+% symmetry=v : true/false (symétrie verticale, false par défaut)
+% symmetry=c : true/false (symétrie centrale h+v,false par défaut)
+\NeedsTeXFormat{LaTeX2e}%
+\RequirePackage{tikz,pgfopts}%
+\ProvidesPackage{pgfornament}[2016/03/05 v0.21 vector ornaments]%
+\gdef\pgfOrnamentsObject{pgflibraryvectorian.code.tex}
+\gdef\OrnamentsFamily{vectorian}
+\pgfkeys{
+/pgfOrnaments/object/.cd,
+/pgfOrnaments/object/.code = \gdef\pgfOrnamentsObject{pgflibrary#1.code.tex}
+\gdef\OrnamentsFamily{#1}
+}
+\ProcessPgfOptions{/pgfOrnaments}
+\input{\pgfOrnamentsObject}%
+\makeatletter
+
+% appels des motifs
+\def\pgf@@ornament#1{%
+\begingroup
+\def\i{\pgfusepath{clip}}%
+\def\k{\pgfusepath{stroke}}%
+\let\o\pgfpathclose
+\let\s\pgfusepathqfillstroke
+\def\p ##1##2{\pgfqpoint{##1bp}{##2bp}}%
+\def\m ##1 ##2 {\pgfpathmoveto{\p{##1}{##2}}}%
+\def\l ##1 ##2 {\pgfpathlineto{\p{##1}{##2}}}%
+\def\r ##1 ##2 ##3 ##4 {\pgfpathrectangle{\p{##1}{##2}}{\p{##3}{##4}}}%
+\def\c ##1 ##2 ##3 ##4 ##5 ##6 {%
+\pgfpathcurveto{\p{##1}{##2}}{\p{##3}{##4}}{\p{##5}{##6}}}%
+\@@input \OrnamentsFamily#1.pgf%
+\endgroup}%
+
+\tikzset{pgfornamentstyle/.style={}}%
+\pgfkeys{%
+/ornament/.cd,
+scale/.code = {\def\pgfornamentscale{#1}},
+width/.code = {\def\pgfornamentwidth{#1}},
+height/.code = {\def\pgfornamentheight{#1}},
+color/.code = {\def\pgfornamentcolor{#1}},
+opacity/.code = {\def\pgfornamentopacity{#1}},
+anchor/.code = {\def\pgfornamentanchor{#1}},
+ydelta/.code = {\def\pgfornamentydelta{#1}},
+symmetry/.is choice,
+symmetry/v/.code = {\tikzset{pgfornamentstyle/.append style={cm={-1,0,0,1,(0,0)}}}},
+symmetry/c/.code = {\tikzset{pgfornamentstyle/.append style={cm={-1,0,0,-1,(0,0)}}}},
+symmetry/h/.code = {\tikzset{pgfornamentstyle/.append style={cm={1,0,0,-1,(0,0)}}}},
+symmetry/none/.code = {\tikzset{pgfornamentstyle/.append style={cm={1,0,0,1,(0,0)}}}}}%
+\def\pgfornament{\pgfutil@ifnextchar[{\pgf@ornament}{\pgf@ornament[]}}%
+\def\pgf@ornament[#1]#2{%
+\pgfkeys{/ornament/.cd,
+ scale = 1,
+ opacity = {},
+ width = {},
+ height = {},
+ color = {},
+ ydelta = 0 pt,
+ symmetry = none ,
+ anchor = center}%
+%
+\pgfqkeys{/ornament}{#1}%
+\ifx\pgfornamentcolor\empty
+ \tikzset{pgfornamentstyle/.append style={}}%
+\else
+ \tikzset{pgfornamentstyle/.append style={color=\pgfornamentcolor}}%
+\fi
+\ifx\pgfornamentopacity\empty
+ \tikzset{pgfornamentstyle/.append style={}}%
+\else
+ \tikzset{pgfornamentstyle/.append style={opacity=\pgfornamentopacity}}%
+\fi
+\ifx\pgfornamentwidth\empty
+ \else
+ \@pgfornamentDim{#2}%
+ \pgfmathsetmacro{\pgfornamentscale}{\pgfornamentwidth/\@pgfornamentX bp}%
+\fi
+\ifx\pgfornamentheight\empty
+ \else
+ \@pgfornamentDim{#2}%
+ \pgfmathsetmacro{\pgfornamentscale}{\pgfornamentheight/\@pgfornamentY bp}%
+\fi
+\begin{tikzpicture}[%
+ baseline={([yshift=\pgfornamentydelta]current bounding box.\pgfornamentanchor)},pgfornamentstyle]
+ \pgftransformscale{\pgfornamentscale}%
+ \pgf@@ornament{#2}%
+\end{tikzpicture}%
+\tikzset{pgfornamentstyle/.style={cm={1,0,0,1,(0,0)}}}%
+}%
+\gdef\ornamenttopos{.5}
+\gdef\ornamenttoanchor{center}
+\gdef\ornamenttosymmetry{none}
+\tikzset{options default/.style={anchor=center,sloped,allow upside down,inner sep=0pt}}
+\tikzset{%
+ornament/at/.code={\def\ornamenttopos{#1}},
+options/.style={options default,#1},
+ornament symmetry/.code={\def\ornamenttosymmetry{#1}},
+node anchor/.code={\def\ornamenttoanchor{#1}},
+ornament/.style={%
+to path={%
+\pgfextra{%
+ \tikz@scan@one@point\pgfutil@firstofone(\tikztostart)\relax
+ \pgf@xa=\pgf@x
+ \pgf@ya=\pgf@y
+ \tikz@scan@one@point\pgfutil@firstofone(\tikztotarget)\relax
+ \pgf@xb=\pgf@x
+ \pgf@yb=\pgf@y
+ \advance\pgf@xa by-\pgf@xb
+ \advance\pgf@ya by-\pgf@yb
+ \pgfmathveclen{\pgf@xa}{\pgf@ya}%
+ \global\let\ornamentlen\pgfmathresult}
+ -- node [pos=\ornamenttopos,options,
+ anchor=\ornamenttoanchor]{%
+ \pgfornament[width = \ornamentlen,
+ symmetry=\ornamenttosymmetry]{#1}}
+ (\tikztotarget)\tikztonodes %end pgfextra
+ }% end to path
+ }% end style
+}%
+\def\pgfornamenthline#1#2#3#4{%
+ \pgfextractx{\pgf@x}{\pgfpointanchor{#1}{#3 east}}
+ \pgf@xa=\pgf@x
+ \pgfextractx{\pgf@x}{\pgfpointanchor{#2}{#3 west}}
+ \pgf@xb=\pgf@x
+ \advance\pgf@xb by -\pgf@xa
+\node[inner sep=0pt] at ($(#1.#3 east)!.5!(#2.#3 west)$) {\pgfornament[width=\pgf@xb]{#4}} ;
+}
+\def\pgfornamentvline#1#2#3#4{%
+ \pgfextracty{\pgf@y}{\pgfpointanchor{#1}{south #3}}
+ \pgf@ya=\pgf@y
+ \pgfextracty{\pgf@y}{\pgfpointanchor{#2}{north #3}}
+ \pgf@yb=\pgf@y
+ \advance\pgf@yb by -\pgf@ya
+\node[inner sep=0pt,rotate=90] at ($(#1.south #3)!.5!(#2.north #3)$) {\pgfornament[width=\pgf@yb]{#4}} ;
+}%
+\def\getornamentlength#1#2#3#4{%
+ \pgfpointdiff{\pgfpointanchor{#1}{#2}}%
+ {\pgfpointanchor{#3}{#4}}%
+ \pgf@xa=\pgf@x
+ \pgf@ya=\pgf@y
+ \pgfmathveclen{\pgf@xa}{\pgf@ya}%
+ \global\let\ornamentlen\pgfmathresult
+}%
+\def\getornamentangle#1#2#3{%
+ \pgfpointdiff{\pgfpointanchor{#2}{center}}{\pgfpointanchor{#3}{center}}%
+ \pgfmathsetmacro{#1}{atan2(\pgf@x,\pgf@y)}%
+}%
+\makeatother
+
+\newcommand{\resetpgfornamentstyle}{\tikzset{pgfornamentstyle/.style={}}}
+
+
+\endinput
+% End
diff --git a/obsolete/macros/latex/contrib/tkz/pgfornament/latex/tikzrput.sty b/obsolete/macros/latex/contrib/tkz/pgfornament/latex/tikzrput.sty
new file mode 100644
index 0000000000..53d1efa824
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/pgfornament/latex/tikzrput.sty
@@ -0,0 +1,112 @@
+% utf8
+% tikzrput.sty 0.3 du 05/03/2016 inspired from rput (pstricks)
+% ------------------------------------------------
+% Created by Alain Matthes le 2012-02-22.
+% Copyright (c) 2012 __AlterMundus__.
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+% ------------------------------------------------
+% Options are the same of /rput in pstricks
+%
+\NeedsTeXFormat{LaTeX2e}%
+\RequirePackage{tikz,ifpdf}%
+\ProvidesPackage{tikzrput}[2016/03/05 v0.3 rput for tikz]%
+\edef\tikzrputPtVirCode{\the\catcode`\;}
+\edef\tikzrputAtCode{\the\catcode`\@}
+\edef\tikzrputTwoPtCode{\the\catcode`\:}
+\catcode`\;=12\relax
+\catcode`\:=12\relax
+\catcode`\@=11\relax
+
+\newif\ifrput@polar\rput@polarfalse
+\def\rput@empty{}
+
+\def\rput@parsecoordinate#1{%
+\rput@getseparator#1,\@nil
+\ifrput@polar
+ \rput@getfrompolar#1\@nil
+\fi
+}%
+\def\rput@getseparator#1,#2\@nil{%
+\ifx\rput@empty#2\rput@empty%
+ \rput@polartrue
+\else
+ \rput@polarfalse
+\fi
+}%
+\def\rput@getfrompolar#1;#2\@nil{%
+ \def\pos@rput{#1:#2}%
+}%
+
+\def\rput@pos@ {\def\rput@anchor{center}}
+\def\rput@pos@B {\def\rput@anchor{base}}
+\def\rput@pos@Br {\def\rput@anchor{base east}}
+\def\rput@pos@Bl {\def\rput@anchor{base west}}
+\def\rput@pos@tr {\def\rput@anchor{north east}}
+\def\rput@pos@tl {\def\rput@anchor{north west}}
+\def\rput@pos@br {\def\rput@anchor{south east}}
+\def\rput@pos@bl {\def\rput@anchor{south west}}
+\def\rput@pos@t {\def\rput@anchor{north}}
+\def\rput@pos@b {\def\rput@anchor{south}}
+\def\rput@pos@r {\def\rput@anchor{east}}
+\def\rput@pos@l {\def\rput@anchor{west}}
+\let\rput@pos@mc\rput@pos@
+\let\rput@pos@rB\rput@pos@Br
+\let\rput@pos@lB\rput@pos@Bl
+\let\rput@pos@rt\rput@pos@tr
+\let\rput@pos@lt\rput@pos@tl
+\let\rput@pos@rb\rput@pos@br
+\let\rput@pos@lb\rput@pos@bl
+\newbox\mybox
+\ifpdf
+\pgfutil@ifundefined{rput}{%
+ \tikzset{rput style/.style={}}
+ \def\rput{\pgfutil@ifnextchar[{\rput@i}{%
+ \global\edef\opt@rput{}\rput@ii}}%
+ \def\rput@i[#1]{\global\edef\opt@rput{#1}\rput@ii}%
+ \def\rput@ii{\pgfutil@ifnextchar({%
+ \def\angle@rput{0}\rput@iv}{\rput@iii}}%
+ \def\rput@iii#1{%
+ \ifx\rput@empty#1\rput@empty\def\angle@rput{0}\else%
+ \def\angle@rput{#1}\fi%
+ \pgfutil@ifnextchar({\rput@iv}{\rput@iv(0,0)}}%,
+ \def\rput@iv(#1){\def\pos@rput{#1}%
+ \rput@parsecoordinate{#1}%
+ \rput@v}%
+ \def\rput@v#1{%
+ \sbox\mybox{%
+ \pgfinterruptpicture#1\endpgfinterruptpicture}%
+ \begingroup
+ \tikzifinpicture{%
+ \let\begin@my@tikz@env\scope
+ \let\end@my@tikz@env\endscope
+ }{%
+ \let\begin@my@tikz@env\tikzpicture
+ \let\end@my@tikz@env\endtikzpicture
+ }%
+ \@nameuse{rput@pos@\opt@rput}%
+ \begin{pgfinterruptboundingbox}%
+ \begin@my@tikz@env[overlay]
+ \path (0,0)--(\pos@rput);
+ \protected@edef\rput@temp{%
+ \noexpand\node[inner sep = 0pt,
+ anchor = \rput@anchor,
+ rotate = \angle@rput,
+ rput style]}%
+ \rput@temp at (\pos@rput){\box\mybox};
+ \end@my@tikz@env
+ \end{pgfinterruptboundingbox}%
+ \endgroup
+ \ignorespaces
+ }%
+ }{%
+ }%
+\fi
+\catcode`\;=\tikzrputPtVirCode\relax
+\catcode`\@=\tikzrputAtCode\relax
+\catcode`\:=\tikzrputTwoPtCode\relax
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/README b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/README
new file mode 100644
index 0000000000..2f491181b6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/README
@@ -0,0 +1,33 @@
+% encodage utf8
+-------------------- english readme ----------------------------------------
+readme-namedgraphs.txt V 1.00 c 26/05/2011
+
+The file namedgraphs.pdf is not a beginner or advanced tutorial, not a study
+ of graphs, it's only a gallery of undirected graphs made with the package
+ tkz-berge.sty v 1.00 c. Some of graphs have names, sometimes inspired by
+ the graph's topology, and sometimes after their discoverer. NamedGraphs.pdf
+ presents some of them. A lot of references can be found here:
+http://mathworld.wolfram.com.
+
+Licence
+-------
+
+This document can be redistributed and/or modified under the terms
+of the LaTeX Project Public License Distributed from CTAN
+archives in directory macros/latex/base/lppl.txt.
+
+Compilation of the sources
+--------------------------
+
+-- Encoding = utf8
+-- Engine = pdflatex
+-- You need the tkz-doc.cls class and tkzexample.sty package.
+
+
+ Alain Matthes
+ 5 rue de Valence
+ Paris 75005
+
+ al (dot) ma (at) mac (dot) com
+
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/NamedGraphs.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/NamedGraphs.pdf
new file mode 100644
index 0000000000..02529feae7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/NamedGraphs.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Andrasfai.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Andrasfai.tex
new file mode 100644
index 0000000000..41c7b2b578
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Andrasfai.tex
@@ -0,0 +1,63 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-berge/NamedGraphs/doc/NamedGraphs-main.tex
+\newpage\section{Andrasfai graph}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Andrasfai
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grAndrasfai}{\oarg{options}\var{$k$}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/AndrasfaiGraph.html}
+
+\emph{The k-Andrásfai graph is a circulant graph on $3k-1$ nodes whose indices are given by the integers 1,\dots,$3k-1$ that are congruent to 1 (mod 3).
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+}
+
+\medskip
+\end{NewMacroBox}
+
+\bigskip
+
+\subsection{\tkzname{Andrásfai graph : k=7, order 20}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.7]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grAndrasfai[RA=7]{7}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Andrásfai graph : k=8, order 23}}
+
+\bigskip\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grAndrasfai[RA=7]{8}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+\subsection{\tkzname{Andrásfai graph : k=9, order 26}}
+
+\bigskip\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grAndrasfai[RA=7]{9}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Balaban.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Balaban.tex
new file mode 100644
index 0000000000..cbdd5a235c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Balaban.tex
@@ -0,0 +1,91 @@
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage\section{Balaban}\label{balaban}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––– Balaban's graph ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\begin{NewMacroBox}{grBalaban}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/Balaban10-Cage.html}
+
+\emph{The Balaban 10-cage is one of the three(3,10)-cage graphs (Read 1998, p. 272). The Balaban (3,10)-cage was the first known example of a 10-cage (Balaban 1973; Pisanski 2001). Embeddings of all three possible (3,10)-cages (the others being the Harries graph and Harries-Wong graph) are given by Pisanski et al. (2001). Several embeddings are illustrated below, with the three rightmost being given by Pisanski and Randić (2000)
+It is a Hamiltonian graph and has Hamiltonian cycles. It has 1003 distinct LCF notations, with four of length two (illustrated above) and 999 of length 1.
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+}
+\end{NewMacroBox}
+
+\subsection{\tkzname{Balaban graph : first form}}
+\begin{center}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}[scale=.6]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grBalaban[form=1,RA=7,RB=3,RC=3]
+ \end{tikzpicture}
+\end{tkzexample}
+
+\end{center}
+
+
+\vfill\newpage
+\subsection{\tkzname{Balaban graph : second form}}
+\begin{center}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{gray}{blue!50}
+ \grBalaban[form=2,RA=7,RB=7,RC=4,RD=2.5]
+ \end{tikzpicture}
+\end{tkzexample}
+
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Balaban graph : third form} }
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{brown}{orange}
+ \grBalaban[form=3,RA=7,RB=6.5,RC=5.6,RD=5.6,RE=4.6]
+ \end{tikzpicture}
+ \end{tkzexample}
+
+\end{center}
+
+
+\vfill\newpage
+
+\subsection{\tkzname{Balaban graph : Balaban 11-Cage}}
+
+
+The Balaban 11-cage is the unique 11-cage graph, discovered by Balaban (1973) and proven unique by McKay and Myrvold (2003). It has 112 vertices, 168 edges, girth 11 (by definition), diameter 8 and chromatic number 3.
+
+
+\begin{center}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}[scale=.7]
+ \renewcommand*{\VertexInnerSep}{3pt}
+ \renewcommand*{\VertexLineWidth}{0.4pt}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{blue!50!black}
+ \grLCF[Math,RA=7]{%
+ 44,26,-47,-15,35,-39,11,-27,38,-37,43,14,28,51,-29,-16,41,-11,%
+ -26,15,22,-51,-35,36,52,-14,-33,-26,-46,52,26,16,43,33,-15,%
+ 17,-53,23,-42,-35,-28,30,-22, 45,-44,16,-38,-16,50,-55,20,28,%
+ -17,-43,47, 34,-26,-41,11,-36,-23,-16,41,17,-51,26,-33,47,17,%
+ -11,-20 ,-30,21,29,36,-43,-52,10,39,-28,-17,-52,51,26,37,-17,%
+ 10,-10,-45,-34,17,-26,27,-21,46,53,-10,29,-50,35,15,-47,-29,-41,%
+ 26,33,55,-17,42,-26,-36,16}{1}
+ \end{tikzpicture}
+\end{tkzexample}
+
+\end{center}
+
+
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Bipartite.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Bipartite.tex
new file mode 100644
index 0000000000..169ff1a4fc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Bipartite.tex
@@ -0,0 +1,134 @@
+\newpage\section{Complete BiPartite Graph}\label{bipart}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––– Complete BiPartite graph ––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grCompleteBipartite}{\oarg{options}\var{$p$}\var{$q$}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/CompleteBipartiteGraph.html}
+
+\emph{A complete bipartite graph is a bipartite graph (i.e., a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent) such that every pair of graph vertices in the two sets are adjacent. If there are $p$ and $q$ graph vertices in the two sets, the complete bipartite graph (sometimes also called a complete bigraph) is denoted $K_{p,q}$ . The below figures show $K_{3,2}$ and $K_{3,3}$. $K_{3,3}$ is also known as the utility graph (and the circulant graph $Ci_{1,3}(6)$), and is the unique 4-cage graph.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Complete_bipartite_graph}
+
+\emph{In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set. the graph $K_{1,3}$ is also called a claw.}
+\end{NewMacroBox}
+
+\subsection{\tkzname{Complete bipartite graphs $K_{3,2}$ and $K_{3,3}$} }
+ %G=LCF_graph(6,[3,-3],3)
+\begin{center}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCompleteBipartite[RA=2,RB=2,RS=3]{3}{2}
+\end{tikzpicture}\hspace*{2cm}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCompleteBipartite[RA=2,RB=2,RS=3]{3}{3}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{\tkzname{Complete bipartite graphs $K_{3,5}$}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.5]
+ \GraphInit[vstyle=Art]
+ \grCompleteBipartite[RA=3,RB=2,RS=5]{3}{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+
+\subsection{\tkzname{Complete bipartite graph : $K_{18,18}$ }}
+
+The complete bipartite graph illustrated below plays an important role in the novel Foucault's Pendulum by Umberto Eco.
+
+\href{http://mathworld.wolfram.com/CycleGraph.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\vfill
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90,scale=1.4]
+ \GraphInit[vstyle=Art]
+ \grCompleteBipartite[RA=0.5,RB=0.5,RS=9]{18}{18}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+A complete bipartite graph $K_{n,n}$ is a circulant graph (if the order is equal to $2n$ then $L=1,3,\dots,n$).
+The code is on the next page
+
+\bigskip
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{6}{1,3}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{8}{1,3}
+\end{tikzpicture}
+
+\vspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{10}{1,3,5}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{12}{1,3,5}
+\end{tikzpicture}
+
+\vspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{14}{1,3,5,7}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{16}{1,3,5,7}
+\end{tikzpicture}
+
+\vfill\newpage
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{6}{1,3}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{8}{1,3}
+\end{tikzpicture}
+
+\vspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{10}{1,3,5}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{12}{1,3,5}
+\end{tikzpicture}
+
+\vspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+\grCirculant[RA=3]{14}{1,3,5,7}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+\grCirculant[RA=3]{16}{1,3,5,7}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Bull.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Bull.tex
new file mode 100644
index 0000000000..49fb3bb21b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Bull.tex
@@ -0,0 +1,24 @@
+\newpage\section{Bull}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Bull
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+The bull graph, 5 vertices, 5 edges, resembles to the head of a bull if drawn properly.
+The bull graph is a simple graph on 5 nodes and 5 edges whose name derives from its resemblance to a schematic illustration of a bull
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[node distance=4cm]
+ \GraphInit[vstyle=Shade]
+ \Vertex{a0}
+ \NOEA(a0){a2}
+ \NOEA(a2){a4}
+ \NOWE(a0){a1}
+ \NOWE(a1){a3}
+ \Edges(a0,a1,a3)
+ \Edges(a0,a2,a4)
+ \Edge(a1)(a2)
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Cage.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Cage.tex
new file mode 100644
index 0000000000..520b38555f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Cage.tex
@@ -0,0 +1,43 @@
+\newpage\section{Cage}\label{cage}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Cage –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{Cage Graphs}{}
+
+\medskip
+From Wikipedia \url{http://en.wikipedia.org/wiki/Cage_(graph_theory)}\\
+\emph{In the mathematical area of graph theory, a cage is a regular graph that has as few vertices as possible for its girth.\\
+Formally, an $(r,g)$-graph is defined to be a graph in which each vertex has exactly $r$ neighbors, and in which the shortest cycle has length exactly $g$. It is known that an $(r,g)$-graph exists for any combination of $r \geq 2$ and $g \geq 3$. An $(r,g)$-cage is an $(r,g)$-graph with the fewest possible number of vertices, among all $(r,g)$-graphs.}
+
+\medskip
+From MathWorld \url{http://mathworld.wolfram.com/CageGraph.html}\\
+\emph{A $(r,g)$-cage graph is a $v$-regular graph of girth $g$ having the minimum possible number of nodes. When $v$ is not explicitly stated, the term "$g$-cage" generally refers to a $(3,g)$-cage.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+Examples :
+
+\medskip
+\begin{tabular}{ll}
+ \bottomrule
+$(r,g)$ & Names \\
+\midrule
+$(3,3)$ & complete graph $K_4$ \\
+$(3,4)$ & complete bipartite graph $K_{3,3}$ Utility Graph\ref{bipart} \\
+$(3,5)$ & Petersen graph \ref{petersen} \\
+$(3,6)$ & Heawood graph \ref{heawood} \\
+$(3,7)$ & McGee graph \ref{mcgee} \\
+$(3,8)$ & Levi graph \ref{levi} \\
+$(3,10)$ & Balaban 10-cage \ref{balaban} \\
+$(3,11)$ & Balaban 11-cage \ref{balaban} \\
+$(3,12)$ & Tutte 12-cage \\
+$(4,3)$ & complete graph $K_5$ \\
+$(4,4)$ & complete bipartite graph $K_{4,4}$ \ref{bipart} \\
+$(4,5)$ & Robertson graph\ref{robertson} \\
+$(4,6)$ & Wong (1982)\ref{wong} \\
+\end{tabular}
+\end{NewMacroBox}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Chvatal.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Chvatal.tex
new file mode 100644
index 0000000000..72b5cd7e46
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Chvatal.tex
@@ -0,0 +1,73 @@
+\newpage\section{Chvatal}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grChvatal}{\oarg{options}}
+
+\medskip
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Václav_Chvátal}
+
+\emph{Chvátal first learned of graph theory in 1964, on finding a book by Claude Berge in a Pilsen bookstore, and his first mathematical publication, at the age of 19, concerned directed graphs that cannot be mapped to themselves by any nontrivial graph homomorphism.\hfill\break
+Gallery Theorem—which determines the number of guards required to survey the
+walls of a polygonal art gallery (and has prompted much research), and constructed the smallest triangle-free 4-chromatic 4-regular graph, a beautiful graph now known as the Chvatal graph.}
+
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/ChvatalGraph.html}
+
+\emph{The Chvátal graph is a quartic graph on 12 nodes and 24 edges. It has chromatic number 4, and girth 4.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+The Chvátal graph is implemented in \tkzname{tkz-berge} as \tkzcname{grChvatal} with three forms.
+\end{NewMacroBox}
+
+\medskip
+\subsection{\tkzname{Chvatal graph I}}
+
+\bigskip
+
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}[scale=.7]
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \SetGraphShadeColor{blue!50!black}{blue}{gray}
+ \grChvatal[RA=6,RB=2]
+ \end{tikzpicture}
+ \end{tkzexample}
+
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Chvatal graph II}}
+
+\bigskip
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue!50!black}{gray}
+ \grChvatal[form=2,RA=7,RB=4,RC=1.4]
+ \end{tikzpicture}
+ \end{tkzexample}
+
+\end{center}
+
+
+\vfill\newpage
+\subsection{\tkzname{Chvatal graph III}}
+
+\bigskip
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue!50!black}{gray}
+ \grChvatal[form=3,RA=7]
+ \end{tikzpicture}
+ \end{tkzexample}
+
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Cocktail_Party.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Cocktail_Party.tex
new file mode 100644
index 0000000000..3ed5e45ced
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Cocktail_Party.tex
@@ -0,0 +1,50 @@
+\newpage\section{Cocktail Party graph}\label{cocktail}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Cocktail Party –––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grCocktailParty}{\oarg{options}\var{integer}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/CocktailPartyGraph.html}
+
+\emph{The cocktail party graph of order , also called the hyperoctahedral graph (Biggs 1993, p. 17) is the graph consisting of two rows of paired nodes in which all nodes but the paired ones are connected with a graph edge. It is the graph complement of the ladder graph , and the dual graph of the hypercube graph.\hfill\break
+This graph arises in the handshake problem. It is a complete n-partite graph that is denoted by Brouwer et al. (1989, pp. 222-223), and is distance-transitive, and hence also distance-regular.\hfill\break
+The cocktail party graph of order is isomorphic to the circulant graph.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+The Chvátal graph is implemented in \tkzname{tkz-berge} as \tkzcname{grCocktailParty} with two forms.
+\end{NewMacroBox}
+
+\subsection{\tkzname{Cocktail Party graph form 1 }}
+\tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,%
+ ball color = green,%
+ minimum size = 24pt,%
+ draw]
+\SetVertexMath
+\tikzstyle{EdgeStyle} = [thick,%
+ double = orange,%
+ double distance = 1pt]
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \grCocktailParty[RA=3,RS=5]{4}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Cocktail Party graph form 2 }}
+
+\vspace*{2cm}
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \grCocktailParty[form=2,RA=4,RS=6]{4}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Coxeter.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Coxeter.tex
new file mode 100644
index 0000000000..937ef0194f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Coxeter.tex
@@ -0,0 +1,122 @@
+\newpage\section{Coxeter}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Coxeter ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+From MathWorld : \url{http://mathworld.wolfram.com/CoxeterGraph.html}
+
+The Coxeter graph is a nonhamiltonian cubic symmetric graph on 28 vertices and 42 edges.
+
+
+\subsection{\tkzname{Coxeter graph I}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90,scale=1]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{magenta}{gray}
+ \grCycle[RA=5,prefix=a]{7}
+ \begin{scope}[rotate=-20]\grEmptyCycle[RA=4,prefix=b]{7}\end{scope}
+ \grCirculant[RA=3,prefix=c]{7}{2}
+ \grCirculant[RA=1.4,prefix=d]{7}{3}
+ \EdgeIdentity{a}{b}{7}
+ \EdgeIdentity{b}{c}{7}
+ \EdgeIdentity{b}{d}{7}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+\subsection{\tkzname{Coxeter graph II}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{magenta}{gray}
+ \grCycle[RA=7,prefix=b]{24}
+ \grEmptyStar[RA=3,prefix=a]{4}
+ \EdgeDoubleMod{a}{3}{0}{1}{b}{24}{0}{8}{2}
+ \EdgeDoubleMod{a}{3}{0}{1}{b}{24}{7}{8}{2}
+ \EdgeDoubleMod{a}{3}{0}{1}{b}{24}{18}{8}{2}
+ \EdgeDoubleMod{a}{4}{3}{0}{b}{24}{22}{8}{2}
+ \EdgeInGraphMod*{b}{24}{6}{5}{8}
+ \EdgeInGraphMod*{b}{24}{11}{1}{8}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+
+\subsection{\tkzname{Coxeter graph III}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{magenta}{gray}
+ \grCycle[RA=7,prefix=c]{7}
+ \grEmptyCycle[RA=6,prefix=b]{7}
+ \begin{scope}[rotate=12.85]\grEmptyCycle[RA=5,prefix=a]{14}\end{scope}
+ \EdgeIdentity{b}{c}{7}
+ \EdgeDoubleMod{b}{7}{0}{1}{a}{14}{0}{2}{6}
+ \EdgeDoubleMod{b}{7}{0}{1}{a}{14}{13}{2}{6}
+ \EdgeInGraphModLoop{a}{14}{4}{0}{0}
+ \EdgeInGraphModLoop{a}{14}{6}{1}{1}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Tutte-Coxeter graph ––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\vfill\newpage
+\subsection{\tkzname{Tutte-Coxeter graph I}}
+
+\tikzstyle{VertexStyle} = [very thin,draw,
+ shape = circle,
+ color = white,
+ fill = black,
+ inner sep = 0pt,
+ minimum size = 18pt]
+\tikzstyle{EdgeStyle} = [thick,
+ double = brown,
+ double distance = 1pt]
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=3]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue}{cyan}
+ \begin{scope}[rotate=5]\grCycle[RA=2.5,prefix=a]{10}\end{scope}
+ \begin{scope}[rotate=-10]\grCirculant[RA=1.8,prefix=b]{10}{5}\end{scope}
+ \begin{scope}[rotate=36]\grCirculant[RA=1.1,prefix=c]{10}{3}\end{scope}
+ \EdgeIdentity{a}{b}{10}
+ \EdgeIdentity{b}{c}{10}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+%
+
+\vfill\newpage
+\subsection{\tkzname{Tutte-Coxeter graph II}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue}{darkgray}
+ \grLCF[RA=7]{-13,-9,7,-7,9,13}{5}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Crown.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Crown.tex
new file mode 100644
index 0000000000..c880642ca7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Crown.tex
@@ -0,0 +1,55 @@
+\newpage\section{Crown}\label{crown}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Crown ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grCrown}{\oarg{options}\var{integer}}
+
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/CrownGraph.html}
+
+\emph{The Crown graph for an integer is the graph with vertex set
+$\{x_0,x_1,\dots,x_{n-1},y_0,y_1,\dots,y_{n-1}\}$\hfill\break
+and edge set \hfill\break
+$\{(x_i,x_j): 0\leq i,j\leq n-1,i \not=j\}$.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+The Crown graph is implemented in \tkzname{tkz-berge} as \tkzcname{grCrown} with two forms.
+\end{NewMacroBox}
+
+
+\subsection{\tkzname{Crown graph form 1}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+\tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,
+ ball color = green,
+ minimum size = 24pt,
+ draw]
+\tikzstyle{EdgeStyle} = [thick,
+ double = orange,
+ double distance = 1pt]
+\SetVertexLabel\SetVertexMath
+\grCrown[RA=3,RS=6]{4}
+ \end{tikzpicture}
+\end{tkzexample}
+
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Crown graph form 2}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCrown[form=2,RA=4,RS=6]{4}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-CubicSymmetric.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-CubicSymmetric.tex
new file mode 100644
index 0000000000..3281249060
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-CubicSymmetric.tex
@@ -0,0 +1,44 @@
+\newpage\section{Cubic Symmetric Graphs}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––--–––––––––––––––––––––––>
+%<–––––––––––––––––––––––Cubic Symmetric Graphs –––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+A cubic symmetric graph is a symmetric cubic (i.e., regular of order 3). Such graphs were first studied by Foster (1932). They have since been the subject of much interest and study. Since cubic graphs must have an even number of vertices, so must cubic symmetric graphs.
+
+The circulant graph , is illustrated below.
+
+\subsection{\tkzname{Cubic Symmetric Graph form 1}}
+
+\vspace*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \SetVertexNoLabel
+ \grLCF[RA=6]{3,-3}{4}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+
+\subsection{\tkzname{Cubic Symmetric Graph form 2}}
+
+\vspace*{1cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \tikzstyle{VertexStyle} = [shape = circle,%
+ color = white,
+ fill = black,
+ very thin,
+ inner sep = 0pt,%
+ minimum size = 18pt,
+ draw]
+ \tikzstyle{EdgeStyle} = [thick,%
+ double = brown,%
+ double distance = 1pt]
+ \grLCF[Math,RA=6]{3,-3}{4}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Desargues.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Desargues.tex
new file mode 100644
index 0000000000..496041579b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Desargues.tex
@@ -0,0 +1,88 @@
+\newpage\section{Desargues}\label{desargues}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Desargues –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grDesargues}{\oarg{options}}
+
+\medskip
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Desargues_graph}
+
+\emph{ In the mathematical field of graph theory, the Desargues graph is a 3-regular graph with 20 vertices and 30 edges, formed as the Levi graph of the Desargues configuration.The Desargues graph can also be formed as a double cover of the Petersen graph, as the generalized Petersen graph G(10,3), or as the bipartite Kneser graph $H_{5,2}$.}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/DesarguesGraph.html}
+
+\emph{ The Desargues graph is a cubic symmetric graph distance-regular graph on 20 vertices and 30 edges, illustrated above in several embeddings. It can be represented in LCF notation as (Frucht 1976) and is isomorphic to the bipartite Kneser graph . It is the incidence graph of the Desargues configuration.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+The Desargues graph is implemented in \tkzname{tkz-berge} as \tkzcname{grDesargues} with two forms.
+\end{NewMacroBox}
+
+
+\tikzstyle{VertexStyle} = [shape = circle,%
+ color = white,
+ fill = black,
+ very thin,
+ inner sep = 0pt,%
+ minimum size = 18pt,
+ draw]
+\tikzstyle{EdgeStyle} = [thick,%
+ double = brown,%
+ double distance = 1pt]
+\SetVertexMath
+\subsection{\tkzname{The Desargues graph : form 1}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.6]
+ \grDesargues[Math,RA=6]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{The Desargues graph : form 2}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grDesargues[form=2,Math,RA=7]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{The Desargues graph wth \tkzname{LCF notation}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \grLCF[Math,RA=6]{5,-5,9,-9}{5}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+\subsection{The Desargues graph with \tkzcname{grGeneralizedPetersen}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \tikzstyle{VertexStyle} = [shape = circle,%
+ color = white,
+ fill = black,
+ very thin,
+ inner sep = 0pt,%
+ minimum size = 18pt,
+ draw]
+ \tikzstyle{EdgeStyle} = [thick,%
+ double = brown,%
+ double distance = 1pt]
+ \grGeneralizedPetersen[Math,RA=6]{10}{3}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Doyle.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Doyle.tex
new file mode 100644
index 0000000000..4f6a55c1fc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Doyle.tex
@@ -0,0 +1,85 @@
+\newpage\section{Doyle}\label{doyle}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Doyle ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grDoyle}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/DoyleGraph.html}
+
+\emph{The Doyle graph, sometimes also known as the Holt graph (Marušič et al. 2005), is the symmetric quartic graph on 27 nodes illustrated. It is a Symmetric Graph. Three embeddings are illustrated below.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+The Doyle graph is implemented in \tkzname{tkz-berge} as \tkzcname{grDoyle} with three forms.
+\end{NewMacroBox}
+
+\subsection{\tkzname{The Doyle graph : form 1}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.6]
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{red}{Maroon}{fondpaille}
+ \SetVertexNoLabel
+ \grDoyle[RA=7,RB=5,RC=3]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{The Doyle graph : form 2}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{red}{Magenta}{white}
+ \SetVertexNoLabel
+ \grDoyle[form=2,RA=7]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{The Doyle graph : form 3}}
+\begin{center}
+ \begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetGraphArtColor{red}{Magenta}{red}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grDoyle[form=3,RA=7,RB=2]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+
+\subsection{27 nodes but not isomorphic to the Doyle graph}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.6]
+ \tikzstyle{VertexStyle} = [shape = circle,
+ ball color = gray!60,
+ minimum size = 16pt,draw]
+ \tikzstyle{EdgeStyle} = [thick,color=black,%
+ double = orange,%
+ double distance = 1pt]
+ \SetVertexNoLabel
+ \grCycle[RA=7.5]{9}
+ \grEmptyCycle[prefix=b,RA=5.5]{9}
+ \grCirculant[prefix=c,RA=3.5]{9}{4}
+ \EdgeIdentity{b}{c}{9}
+ \EdgeMod{a}{c}{9}{1}
+ \EdgeMod{a}{b}{9}{1}
+ \EdgeInGraphMod{b}{9}{2}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Dyck.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Dyck.tex
new file mode 100644
index 0000000000..dfa3a2aab5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Dyck.tex
@@ -0,0 +1,39 @@
+\newpage\section{Dyck graph}\label{dyck}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Nauru ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grDick}{\oarg{options}}
+
+From Wikipedia \url{http://en.wikipedia.org/wiki/Dyck_graph}
+
+\emph{In the mathematical field of graph theory, the Dyck graph is a 3-regular graph with 32 vertices and 48 edges, named after Walther von Dyck. It has chromatic number 2, radius 5, diameter 5 and girth 6. It is also a 3-vertex-connected and a 3-edge-connected graph.
+}
+
+\medskip
+From MathWorld \url{http://mathworld.wolfram.com/DyckGraph.html}
+
+\emph{The Dyck graph is unique cubic symmetric graph on 32 nodes, illustrated below in one of embeddings.}
+
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{NewMacroBox}
+
+\subsection{\tkzname{Dyck graph}}
+
+It can be represented in LCF notation as $\big[5,-5,13,-13\big]^8$
+
+
+
+\subsection{\tkzname{Dyck graph with LCF notation}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \grLCF[RA=7]{5,-5,13,-13}{8}%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Folkman.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Folkman.tex
new file mode 100644
index 0000000000..2c357f15cc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Folkman.tex
@@ -0,0 +1,118 @@
+\newpage\section{Folkman}\label{folkman}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Folkman –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grFolkman}{\oarg{options}}
+
+\medskip
+From MathWorld : \url{http://mathworld.wolfram.com/FolkmanGraph.html}
+
+\emph{The Folkman graph is a semisymmetric graph that has the minimum possible number of nodes 20.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{NewMacroBox}
+
+
+\subsection{\tkzname{Folkman Graph LCF embedding}}
+The code is
+
+\begin{tkzexample}[code only]
+\grLCF[RA=7]{5,-7,-7,5}{5}\end{tkzexample}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.8]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue}{darkgray}
+ \grFolkman[RA=6]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+
+
+\subsection{\tkzname{Folkman Graph embedding 1}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=45]%
+ \tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,
+ ball color = gray!60,
+ inner sep = 3pt,
+ draw]
+ \tikzstyle{EdgeStyle} = [thick,orange]
+ \SetVertexNoLabel
+ \grCycle[prefix=a,RA=3]{4}%
+ \grCycle[prefix=b,RA=4]{4}%
+ \grCycle[prefix=c,RA=5]{4}%
+ \grCycle[prefix=d,RA=6]{4}%
+ \grCycle[prefix=e,RA=7]{4}%
+ \foreach \r/\s/\t in {a/d/e,b/e/a,c/a/b,d/b/c,e/c/d}{%
+ \Edges(\r0,\s1,\r2,\t3,\r0)
+ }
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+
+\subsection{\tkzname{Folkman Graph embedding 1 new code}}
+{ \tikzstyle{VertexStyle} =[shape = circle,%
+ shading = ball,%
+ inner sep = 4pt,%
+ draw]
+ \tikzstyle{EdgeStyle} = [thin,blue]
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+\begin{scope}[shift={(1,1)},rotate=45]\grEmptyPath[prefix=a,RA=1]{5}
+ \end{scope}
+\begin{scope}[shift={(-1,1)},rotate=135]\grEmptyPath[prefix=b,RA=1]{5}
+ \end{scope}
+\begin{scope}[shift={(-1,-1)},rotate=225]\grEmptyPath[prefix=c,RA=1]{5}
+ \end{scope}
+\begin{scope}[shift={(1,-1)},rotate=315]\grEmptyPath[prefix=d,RA=1]{5}
+ \end{scope}
+ \EdgeIdentity*{a}{b}{0,...,4} \EdgeIdentity*{b}{c}{0,...,4}
+ \EdgeIdentity*{c}{d}{0,...,4} \EdgeIdentity*{d}{a}{0,...,4}
+ \EdgeDoubleMod{a}{5}{0}{1}{b}{5}{3}{1}{1}
+ \EdgeDoubleMod{a}{5}{2}{1}{b}{5}{0}{1}{2}
+ \EdgeDoubleMod{a}{5}{1}{1}{d}{5}{0}{1}{3}
+ \EdgeDoubleMod{c}{5}{2}{1}{b}{5}{0}{1}{2}
+ \EdgeDoubleMod{c}{5}{0}{1}{b}{5}{3}{1}{1}
+ \EdgeDoubleMod{c}{5}{1}{1}{d}{5}{0}{1}{3}
+ \Edges(a0,d4,c0)
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+}
+\vfill\newpage
+
+\subsection{\tkzname{Folkman Graph embedding 3}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.8]
+ \SetVertexNoLabel
+ \tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,
+ ball color = gray!60,
+ inner sep = 3pt,
+ draw]
+ \tikzstyle{EdgeStyle} = [thick,orange]
+ \grEmptyCycle[prefix=a,RA=1.85]{5} \grEmptyCycle[prefix=b,RA=3.7]{5}
+ \grCycle[prefix=c,RA=6]{10}
+ \EdgeDoubleMod{a}{5}{0}{1}{b}{5}{1}{1}{4}
+ \EdgeDoubleMod{a}{5}{0}{1}{b}{5}{4}{1}{4}
+ \EdgeDoubleMod{b}{5}{0}{1}{c}{10}{9}{2}{4}
+ \EdgeDoubleMod{b}{5}{0}{1}{c}{10}{1}{2}{4}
+ \EdgeDoubleMod{a}{5}{0}{1}{c}{10}{8}{2}{4}
+ \EdgeDoubleMod{a}{5}{0}{1}{c}{10}{2}{2}{4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Foster.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Foster.tex
new file mode 100644
index 0000000000..3f05835387
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Foster.tex
@@ -0,0 +1,39 @@
+\newpage\section{Foster}\label{foster}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Foster –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\begin{NewMacroBox}{grFoster}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/FosterGraph.html}
+
+\emph{The Foster graph is a graph on 90 vertices and 135 arcs. It has a unique order-15 LCF notations.}
+
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+ \end{NewMacroBox}
+
+\subsection{\tkzname{Foster graph}}
+
+The macros is based on
+
+\begin{tkzexample}[code only]
+\grLCF[Math,RA=7]{17, -9, 37, -37, 9, -17}{15}\end{tkzexample}
+
+\vspace*{1cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.6]
+ \renewcommand*{\VertexInnerSep}{2pt}
+ \renewcommand*{\EdgeLineWidth}{0.5pt}
+ \GraphInit[vstyle=Art]
+ \tikzset{VertexStyle/.append style={minimum size=2pt}}
+ \SetGraphColor{red}{blue}
+ \grLCF[Math,RA=6]{17, -9, 37, -37, 9, -17}{15}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Franklin.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Franklin.tex
new file mode 100644
index 0000000000..b7f5bc4d66
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Franklin.tex
@@ -0,0 +1,71 @@
+\newpage\section{Franklin}\label{franklin}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Franklin ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grFranklin}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/FranklinGraph.html}
+
+\emph{The Franklin graph is the 12-vertex cubic graph shown above whose embedding on the Klein bottle divides it into regions having a minimal coloring using six colors, thus providing the sole counterexample to the Heawood conjecture.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+The Franklin graph is implemented in \tkzname{tkz-berge} as \tkzcname{grFranklin}.
+\end{NewMacroBox}
+
+\tikzstyle{VertexStyle} = [shape = circle,%
+ color = white,
+ fill = black,
+ very thin,
+ inner sep = 0pt,%
+ minimum size = 18pt,
+ draw]
+\tikzstyle{EdgeStyle} = [thick,%
+ double = brown,%
+ double distance = 1pt]
+\newcounter{tempi}\setcounter{tempi}{0}
+
+\subsection{\tkzname{The Franklin graph : embedding 1}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.7]
+ \grFranklin[Math,RA=7]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{The Franklin graph : embedding 2}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCycle[Math,RA=4,prefix=a]{6}
+ \grCycle[Math,RA=6,prefix=b]{6}
+ \foreach \x in {0,...,5}{%
+ \ifthenelse{\isodd{\x}}{%
+ \pgfmathsetcounter{tempi}{\x-1}}{%
+ \pgfmathsetcounter{tempi}{\x+1}}
+ \Edge(a\x)(b\thetempi)
+}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+\subsection{\tkzname{The Franklin graph : with LCF notation embedding 3}}
+
+\space*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grLCF[Math,RA=7]{-5,-3,3,5}{3}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Gray.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Gray.tex
new file mode 100644
index 0000000000..d2f16f9124
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Gray.tex
@@ -0,0 +1,32 @@
+\newpage\section{Gray}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Gray –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+From MathWorld :\url{ http://mathworld.wolfram.com/GrayGraph.html}
+
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+
+The Gray graph is a cubic semisymmetric graph on 54 vertices. It was discovered by Marion C. Gray in 1932, and was first published by Bouwer (1968). Malnic et al. (2004) showed that the Gray graph is indeed the smallest possible cubic semisymmetric graph.
+
+It is the incidence graph of the Gray configuration.
+
+The Gray graph has a single order-9 LCF Notation and five distinct order-1 LCF notations.
+
+The Gray graph has girth 8, graph diameter 6
+
+It can be represented in LCF notation as $\big[-25,7,-7,13,-13,25\big]^9$
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{gray}{red}
+ \grLCF[Math,RA=6]{-25,7,-7,13,-13,25}{9}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Groetzsch.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Groetzsch.tex
new file mode 100644
index 0000000000..491f9450d8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Groetzsch.tex
@@ -0,0 +1,88 @@
+\newpage\section{Groetzsch}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– groetzsch ––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grGrotzsch}{\oarg{options}\var{$k$}}
+
+\medskip
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Grötzsch_graph}
+
+\emph{The Grötzsch graph is a triangle-free graph with 11 vertices, 20 edges, and chromatic number 4. It is named after German mathematician Herbert Grötzsch, and its existence demonstrates that the assumption of planarity is necessary in Grötzsch's theorem (Grötzsch 1959) that every triangle-free planar graph is 3-colorable.}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/GroetzschGraph.html}
+
+\emph{The Grötzsch graph is smallest triangle-free graph with chromatic number four. It is identical to the Mycielski Graph of order four.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\end{NewMacroBox}
+
+
+%GrotzschGraph
+\tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,
+ ball color = gray!60,
+ inner sep = 3pt,
+ draw]
+\SetVertexNoLabel
+\tikzstyle{EdgeStyle} = [thick,orange]
+
+\subsection{\tkzname{Grotzsch Graph : first form}}
+
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \grGrotzsch[RA=3,RB=6]{6}%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage\null
+\subsection{\tkzname{Grotzsch Graph : second form}}
+\SetVertexLabel
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grGrotzsch[form=2,RA=6,RB=3]{6}%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+
+\vfill\newpage\null
+\subsection{\tkzname{Grotzsch Graph : third form}}
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Complete_bipartite_graph}
+
+\tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,
+ ball color = blue!60,
+ inner sep = 6pt,
+ draw]
+\SetVertexNoLabel
+\tikzstyle{EdgeStyle} = [thick,double= red,
+ double distance = 1pt]
+
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}[rotate=-18]
+ \draw[scale=.5,samples at={-6.4,-6.3,...,6.4},
+ smooth,thick,
+ variable=\t,
+ double= red,
+ double distance = 1pt]
+ plot ({3*(1.5*cos(\t r) +3*cos(1.5*\t r))},%
+ {3*(1.5*sin(\t r) -3*sin(1.5*\t r))});
+ \begin{scope}[rotate=36]
+ \grStar[prefix=a,RA=2.2]{6}%
+ \grEmptyCycle[prefix=b,RA=4.4]{5}%
+ \end{scope}
+ \end{tikzpicture}
+ \end{tkzexample}
+
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Harries.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Harries.tex
new file mode 100644
index 0000000000..88e5ca6df8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Harries.tex
@@ -0,0 +1,48 @@
+\newpage\section{Harries graph}\label{harries}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Nauru ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grHarries}{\oarg{options}}
+
+From Wikipedia \url{http://en.wikipedia.org/wiki/Harries_graph}
+
+\emph{In the mathematical field of graph theory, the Harries graph or Harries (3-10)-cage is a 3-regular undirected graph with 70 vertices and 105 edges.
+The Harries graph has chromatic number 2, chromatic index 3, radius 6, diameter 6, girth 10 and is Hamiltonian. It is also a 3-vertex-connected and 3-edge-connected non-planar cubic graph.}
+
+\medskip
+From MathWorld \url{http://mathworld.wolfram.com/HarriesGraph.html}
+
+\emph{The Harries graph has 678 distinct LCF notations, two of which are order 5 (illustrated below) and 674 of which are order 1..}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{NewMacroBox}
+
+\subsection{\tkzname{Harries graph} with \tkzcname{grHarries}}
+
+The macro uses the LCF notation : $\big[-29,-19,-13,13,21,-27,27,33,-13,13,19,-21,-33,29\big]^5$
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \grHarries[RA=7]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsection{\tkzname{Harries graph with LCF notation}}
+It can be also represented in LCF notation as $\big[-35,9,15,-15,23,-27,27,-35,15,-15,-9,-27,27,-23\big]^5$
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \grLCF[RA=7]{-35,9,15,-15,23,-27,27,-35,15,-15,-9,-27,27,-23}{5}%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Heawood.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Heawood.tex
new file mode 100644
index 0000000000..c93a1c99ac
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Heawood.tex
@@ -0,0 +1,47 @@
+\newpage\section{Heawood graph}\label{heawood}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– HEAWOOD ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grHeawood}{\oarg{options}}
+
+\medskip
+From Wikipedia \url{http://en.wikipedia.org/wiki/Heawood_graph}
+
+\emph{The Heawood graph is an undirected graph with 14 vertices and 21 edges. Each vertex is adjacent to exactly three edges (that is, it is a cubic graph), and all cycles in the graph have six or more edges. Percy John Heawood (1861-1955) was an English mathematician who spent a large amount of time on questions related to the four colour theorem.}
+
+\medskip
+From MathWorld \url{http://mathworld.wolfram.com/HeawoodGraph.html}
+
+\emph{The Heawood graph is the unique $(3,6)$-cage graph and Moore graph and is graph illustrated below in one of his embeddings.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{NewMacroBox}
+
+\subsection{\tkzname{Heawood graph}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Shade]
+ \grHeawood[RA=7]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+It can be represented in LCF notation as $\big[5,-5\big]^7$
+
+\tkzcname{grLCF[RA=5]\{5,9\}\{7\}} gives the result because $-5 = 9\ mod\ 14$.
+
+\subsection{\tkzname{Heawood graph with LCF notation}}\label{lcf2}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \grLCF[RA=7]{5,9}{7}%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Hypercube.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Hypercube.tex
new file mode 100644
index 0000000000..4e77e63bd2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Hypercube.tex
@@ -0,0 +1,41 @@
+\newpage\section{Hypercube}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Hypercube –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+From Wikipedia :\url{http://en.wikipedia.org/wiki/Hypercube_graph}
+
+In the mathematical field of graph theory, the hypercube graph $Q_n$ is a special regular graph with $2n$ vertices, which correspond to the subsets of a set with $n$ elements. Two vertices labelled by subsets S and T are joined by an edge if and only if S can be obtained from T by adding or removing a single element. Each vertex of $Q_n$ is incident to exactly $n$ edges (that is, $Q_n$ is $n$-regular), so the total number of edges is $2^{n-1}n$.
+The name comes from the fact that the hypercube graph is the one-dimensional skeleton of the geometric hypercube.
+Hypercube graphs should not be confused with cubic graphs, which are graphs that are 3-regular. The only hypercube that is a cubic graph is $Q_3$.
+
+\tikzstyle{VertexStyle} = [shape = circle,%
+ fill = red,%
+ inner sep = 3pt,%
+ outer sep = 0pt,%
+ draw]
+\SetVertexNoLabel
+
+\subsection{\tkzname{The hypercube graph $Q_4$} }
+
+The code is on the next page.
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCycle[RA=8]{8}
+ \pgfmathparse{8*(1-4*sin(22.5)*sin(22.5))}
+ \let\tkzbradius\pgfmathresult
+ \grCirculant[prefix=b,RA=\tkzbradius]{8}{3}
+ \makeatletter
+ \foreach \vx in {0,...,7}{%
+ \pgfmathsetcounter{tkz@gr@n}{mod(\vx+1,8)}
+ \pgfmathsetcounter{tkz@gr@a}{mod(\vx+7,8)}
+ \pgfmathsetcounter{tkz@gr@b}{mod(\thetkz@gr@n+1,8)}
+ \Edge(a\thetkz@gr@n)(b\thetkz@gr@b)
+ \Edge(b\thetkz@gr@a)(a\vx)
+ }
+ \makeatother
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Koenisberg.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Koenisberg.tex
new file mode 100644
index 0000000000..525d493fe1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Koenisberg.tex
@@ -0,0 +1,61 @@
+\newpage\section{The Seven Bridges of Königsberg}\label{seven}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––– Königsberg ––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grKonisberg}{\oarg{options}\var{$k$}}
+
+\medskip
+From MathWorld : \url{http://mathworld.wolfram.com/KoenigsbergBridgeProblem.html}
+
+\emph{The Königsberg bridge problem asks if the seven bridges of the city of Königsberg (left figure; Kraitchik 1942), formerly in Germany but now known as Kaliningrad and part of Russia, over the river Preger can all be traversed in a single trip without doubling back, with the additional requirement that the trip ends in the same place it began. This is equivalent to asking if the multigraph on four nodes and seven edges (right figure) has an Eulerian circuit. This problem was answered in the negative by Euler (1736), and represented the beginning of graph theory.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg}
+
+\emph{The paper written by Leonhard Euler on the Seven Bridges of Königsberg and published in 1736 is regarded as the first paper in the history of graph theory.\hfill\break
+The Seven Bridges of Königsberg is a famous solved mathematics problem inspired by an actual place and situation. The city of Königsberg, Prussia (now Kaliningrad, Russia) is set on the Pregel River, and included two large islands which were connected to each other and the mainland by seven bridges. The problem is to decide whether it is possible to walk a route that crosses each bridge exactly once.\hfill\break
+In 1736, Leonhard Euler proved that it was not possible. In proving the result, Euler formulated the problem in terms of graph theory, by abstracting the case of Königsberg — first, by eliminating all features except the landmasses and the bridges connecting them; second, by replacing each landmass with a dot, called a vertex or node, and each bridge with a line, called an edge or link. The resulting mathematical structure is called a graph.}
+\end{NewMacroBox}
+
+\subsection{\tkzname{Königsberg graph} with \tkzcname{grKonisberg}}
+\begin{center}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}[node distance=4cm]
+ \grKonisberg
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzcname{Königsberg graph} : fine embedding}
+\begin{center}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \renewcommand*{\VertexBallColor}{orange!50!red}
+ \renewcommand*{\EdgeDoubleDistance}{2pt}
+ \SetGraphUnit{4}
+ \GraphInit[vstyle=Shade]
+ \tikzset{LabelStyle/.style = {draw,
+ fill = yellow,
+ text = red}}
+ \Vertex{A}
+ \EA(A){B}
+ \EA(B){C}
+ {\SetGraphUnit{8}
+ \NO(B){D}}
+ \Edge[label=1](B)(D)
+ \tikzset{EdgeStyle/.append style = {bend left}}
+ \Edge[label=4](A)(B)
+ \Edge[label=5](B)(A)
+ \Edge[label=6](B)(C)
+ \Edge[label=7](C)(B)
+ \Edge[label=2](A)(D)
+ \Edge[label=3](D)(C)
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Levi.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Levi.tex
new file mode 100644
index 0000000000..b0d5053f6f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Levi.tex
@@ -0,0 +1,79 @@
+\newpage\section{Levi Graph}\label{levi}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Levy –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grLevi}{\oarg{options}}
+
+\medskip
+
+From Wikipedia \url{http://en.wikipedia.org/wiki/Levi_graph}
+
+\emph{In combinatorics a Levi graph or incidence graph is a bipartite graph associated with an incidence structure. From a collection of points and lines in an incidence geometry or a projective configuration, we form a graph with one vertex per point, one vertex per line, and an edge for every incidence between a point and a line.\hfil\break
+In the mathematical field of graph theory, the Tutte–Coxeter graph or Tutte eight-cage is a 3-regular graph with 30 vertices and 45 edges. As the unique smallest cubic graph of girth 8 it is a cage and a Moore graph. It is bipartite, and can be constructed as the Levi graph of the generalized quadrangle. }
+
+From MathWord : \url{http://mathworld.wolfram.com/LeviGraph.html}
+
+\emph{It has 30 nodes and 45 edges. It has girth 8, diameter 4, chromatic number 2. The Levi graph is a generalized polygon which is the point/line incidence graph of the generalized quadrangle . The graph was first discovered by Tutte (1947), and is also called the Tutte-Coxeter graph , Tutte's cage or "Tutte's (3,8)-cage".The Levi graph is the unique (3,8)-cage graph.\hfil\break
+The incidence graph of a generic configuration is sometimes known as a Levi graph (Coxeter 1950).}
+
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+Some examples of Levi Graphs with this definition are~:
+\begin{itemize}
+\item Desargues graph
+\item Heawood graph
+\item Heawood graph
+\item Pappus graph
+\item Gray graph
+\item Tutte eight-cage
+\end{itemize}
+
+\end{NewMacroBox}
+
+The two forms can be draw with :
+
+ \begin{tkzexample}[code only]
+ \grLevi[RA=7]\end{tkzexample}
+
+and
+
+ \begin{tkzexample}[code only]
+ \grLevi[form=2,RA=7,RB=5,RC=3]\end{tkzexample}
+
+You can see on the next pages, the two forms.
+\vfill\newpage
+Now I show you how to code this graph.
+
+\subsection{\tkzname{Levy graph :form 1}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grLCF[prefix=a,RA=6]{-13,-9,7,-7,9,13}{5}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+
+\subsection{\tkzname{Levy graph :form 2}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCycle[prefix=a,RA=7]{10}
+ \EdgeInGraphMod{a}{10}{5}
+ \grEmptyCycle[prefix=b,RA=5]{10}
+ \grEmptyCycle[prefix=c,RA=3]{10}
+ \EdgeInGraphMod{c}{10}{4}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-McGee.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-McGee.tex
new file mode 100644
index 0000000000..b72ec439db
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-McGee.tex
@@ -0,0 +1,59 @@
+\newpage\section{Mc Gee}\label{mcgee}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Mc Gee –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grMcGee}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/McGeeGraph.html}
+
+\emph{The McGee graph is the unique 7-cage graph. It has 24 nodes, 36 edges, girth 7, diameter 4, and is a cubic graph. It has chromatic number 3.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\end{NewMacroBox}
+
+\bigskip
+\subsection{\tkzname{McGee graph with }\tkzcname{grMcGee}}
+
+\bigskip
+The same result is obtained with
+
+\begin{tkzexample}[code only]
+ \grLCF[Math,RA=6]{-12,7,-7}{8}\end{tkzexample}
+
+\medskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \grMcGee[Math,RA=6]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+Others embeddings
+\subsection{\tkzname{McGee graph with }\tkzcname{grLCF}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \grLCF[Math,RA=6]{-12,-6,6,-12,7,-7,-12,6,-6,-12,7,-7}{2}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{McGee graph with }\tkzcname{grLCF}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \grLCF[Math,RA=6]{-12,6,-7,-12,7,-8,11,-6,6,-11,8,%
+ -7,-12,7,-6,-12,7,-11,-8,7,-7,8,11,-7}{1}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Moebius.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Moebius.tex
new file mode 100644
index 0000000000..111d503453
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Moebius.tex
@@ -0,0 +1,167 @@
+\newpage\section{Möbius-Kantor Graph}\label{moebius}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Moebius –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grMobiusKantor}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/Moebius-KantorGraph.html}
+
+\emph{The unique cubic symmetric graph on 16 nodes, illustrated above in several embeddings. It is 24 edges, girth 6, diameter 4, chromatic number 2, and is nonplanar but Hamiltonian. It can be represented in LCF notation and is identical to a generalized Petersen graph .
+}
+
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{NewMacroBox}
+
+
+
+
+\subsection{\tkzname{Möbius Graph : form I}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetGraphArtColor{red}{olive}
+ \SetVertexNoLabel
+ \grMobiusKantor[RA=7]
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Möbius Graph : form II}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=22.5]
+ \GraphInit[vstyle=Shade]
+ \SetGraphArtColor{red!50}{brown!50}
+ \SetVertexNoLabel
+ \grMobiusKantor[form=2,RA=7,RB=3]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+ \subsection{\tkzname{Möbius Graph : form III}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grMobiusKantor[form=3,RA=7,RB=2]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Möbius Graph with LCF notation}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grLCF[RA=7]{5,-5}{8}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Möbius Graph with \tkzcname{grGeneralizedPetersen}} }
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grGeneralizedPetersen[RA=7,RB=4]{8}{3}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Moebius Ladder –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+A Möbius ladder of order $2n$ is a simple graph obtained by introducing a twist in a prism graph of order $2n$ that is isomorphic to the circulant graph with order $2n$ and $L=\{1,n\}$
+
+\url{http://mathworld.wolfram.com/MoebiusLadder.html}
+
+\subsection{\tkzname{Möbius Ladder Graph}}
+
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grMobiusLadder[RA=7,RB=2]{8}%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+\subsection{\tkzname{Circulant Graph isomorphic to the last graph}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grCirculant[RA=7]{16}{1,8}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput
+
+\newpage\section{Möbius-Kantor Graph}\label{MK}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––Möbius-Kantor Graph –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{%
+\newmacro{Möbius-Kantor Graph : \tkzcname{grMobiusKantor}}}{lightgray}
+ \tkzcname{grMobiusKantor[|RA|=\meta{Number}]\var{Number}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/Moebius-KantorGraph.html}
+
+\emph{The unique cubic symmetric graph on 16 nodes, illustrated above in two embeddings. It is 24 edges, girth 6, diameter 4, chromatic number 2, and is nonplanar but Hamiltonian. It is identical to the generalized Petersen graph.}
+\href{http://mathworld.wolfram.com/Moebius-KantorGraph.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+The Möbius-Kantor Graph is implemented in \tkzname{tkz-berge} as \tkzcname{grMobiusKantor}.
+\end{NewMacroBox}
+
+\subsection{Möbius-Kantor Graph with \tkzcname{grGeneralizedPetersen}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grGeneralizedPetersen[RA=7,RB=4]{3}{1}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage\null
+
+
+\subsection{\tkzname{MobiusKantor graph}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grMobiusKantor[RA=5]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Nauru.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Nauru.tex
new file mode 100644
index 0000000000..52d55f2d52
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Nauru.tex
@@ -0,0 +1,37 @@
+\newpage\section{Nauru graph}\label{nauru}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Nauru ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grNauru}{\oarg{options}}
+
+From Wikipedia \url{http://en.wikipedia.org/wiki/Nauru_graph}
+
+\emph{TIn the mathematical field of graph theory, the Nauru graph is a symmetric bipartite cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru. It has chromatic number 2, , diameter 4, radius 4 and girth 6. It is also a 3-vertex-connected and 3-edge-connected graph.}
+
+\medskip
+From MathWorld \url{http://mathworld.wolfram.com/NauruGraph.html}
+
+\emph{The Nauru graph is the name given by Eppstein (2007) to the generalized Petersen graph GP(12,5) , which is also cubic symmetric graph , the permutation star graph of order 4, and the incidence graph of the Coxeter configuration. The name derives from the resemblance of the central star polygon in the generalized Petersen embedding to the 12-point star on the flag of the Pacific island nation of Nauru. The Nauru graph is graph illustrated below in one of his embeddings.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{NewMacroBox}
+
+\subsection{\tkzname{Nauru graph}}
+
+It can be represented in LCF notation as $\big[5, −9, 7, −7, 9, −5\big]^4$
+
+\tkzcname{grLCF[RA=5]\{5,9\}\{7\}} gives the result because $-5 = 9\ mod\ 14$.
+
+\subsection{\tkzname{Nauru graph with LCF notation}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \grLCF[RA=7]{5, −9, 7, −7, 9, −5}{4}%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Pappus.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Pappus.tex
new file mode 100644
index 0000000000..539790b1d9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Pappus.tex
@@ -0,0 +1,61 @@
+\newpage\section{Pappus}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– Pappus ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grPappus}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/PappusGraph.html}
+
+\emph{A cubic symmetric distance-regular graph on 18 vertices, illustrated below in three embeddings. It can be represented in LCF notation $[5,7,-7,7,-7,-5]^3$ (Frucht 1976).}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Pappus_graph}
+\emph{In the mathematical field of graph theory, the Pappus graph is a 3-regular graph with 18 vertices and 27 edges, formed as the Levi graph of the Pappus configuration. It is a distance-regular graph, one of only 14 such cubic graphs according to Cubic symmetric graphs.}
+
+This macro can be used with three different forms.
+\end{NewMacroBox}
+
+\bigskip
+
+
+\subsection{\tkzname{Pappus Graph : form 1}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.7]
+ \GraphInit[vstyle=Art]
+ \grPappus[RA=7]
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Pappus Graph : form 2}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grPappus[form=2,RA=7,RB=5,RC=3]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Pappus Graph : form 3}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{gray}{blue}
+ \grPappus[form=3,RA=7,RB=5,RC=2.5]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Petersen.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Petersen.tex
new file mode 100644
index 0000000000..1029e3252d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Petersen.tex
@@ -0,0 +1,175 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-berge/NamedGraphs/doc/NamedGraphs-main.tex
+\newpage\section{Petersen}\label{petersen}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Petersen –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grPetersen}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/PetersenGraph.html}
+
+\emph{The Petersen graph is the graph , illustrated below in several embeddings, possessing 10 nodes, all of whose nodes have degree three. The Petersen graph is implemented in \tkzname{tkz-berge} as \tkzcname{grPetersen}.
+The Petersen graph has girth 5, diameter 2, edge chromatic number 4, chromatic number 3.}
+
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Petersen_graph}
+
+\emph{In graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named for Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring. Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in 1886.}
+
+This macro can be used with three different forms.
+\end{NewMacroBox}
+
+ \subsection{\tkzname{Petersen graph : form 1}}
+\begin{center}
+\begin{tkzexample}[latex=8cm]
+\begin{tikzpicture}[scale=.8]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grPetersen[form=1,RA=5,RB=3]%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+\vfill\newpage
+\subsection{\tkzname{Petersen graph : form 2}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grPetersen[form=2,RA=7,RB=3]%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Petersen graph : form 3}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grPetersen[form=3,RA=7]%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{The line graph of the Petersen graph}}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+\GraphInit[vstyle=Art]\SetGraphArtColor{white}{blue}
+ \begin{scope}[rotate=-90] \grCirculant[RA=1.5,prefix=a]{5}{2}\end{scope}
+ \begin{scope}[rotate=-18] \grEmptyCycle[RA=4,prefix=b]{5}{2} \end{scope}
+ \begin{scope}[rotate=18] \grCycle[RA=7,prefix=c]{5} \end{scope}
+ \EdgeIdentity{a}{b}{5}
+ \EdgeIdentity{b}{c}{5}
+ \EdgeDoubleMod{b}{5}{0}{1}{a}{5}{2}{1}{5}
+ \EdgeDoubleMod{c}{5}{0}{1}{b}{5}{1}{1}{5}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Petersen Gen –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\begin{NewMacroBox}{grGeneralizedPetersen}{\oarg{RA=\meta{Number},RB=\meta{Number}}\var{integer}\var{integer}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/GeneralizedPetersenGraph.html}
+
+\emph{The generalized Petersen graph , also denoted $GP(n,k)$ , for $n \geq 3$ and $1\leq k \leq \lfloor (n-1)/2\rfloor $ is a graph consisting of an inner star polygon (circulant graph ) and an outer regular polygon (cycle graph ) with corresponding vertices in the inner and outer polygons connected with edges. has nodes and edges. The Petersen graph is implemented in \tkzname{tkz-berge} as \tkzcname{grGeneralizedPetersen}.}
+\href{http://mathworld.wolfram.com/GeneralizedPetersenGraph.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Petersen_graph}
+\emph{In 1950 H. S. M. Coxeter introduced a family of graphs generalizing the Petersen graph. These graphs are now called generalized Petersen graphs, a name given to them in 1969 by Mark Watkins. In Watkins' notation, $G(n,k)$ is a graph with vertex set\hfill\break
+ ${u_0, u_1,\dots, u_{n-1}, v_0, v_1, \dots, v_{n-1}}$\hfill\break
+and edge set\hfill\break
+${u_i u_{i+1}, u_i v_i, v_i u_{i+k}: i = 0,\dots,n-1}$\hfill\break
+where subscripts are to be read modulo $n$ and $k<n/2$. Coxeter's notation for the same graph would be $\{n\}+\{n/k\}.$
+The Petersen Graph itself is $G(5,2)$ or $\{5\}+\{5/2\}$.
+}
+
+This macro can be used with three different forms.
+\end{NewMacroBox}
+
+\subsection{\tkzname{Generalized Petersen graph} GP(5,1)}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90,scale=.6]
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \renewcommand*{\VertexInnerSep}{4pt}
+ \grGeneralizedPetersen[RA=5,RB=2]{5}{1}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{The Petersen graph} GP(5,2)}
+
+\vspace*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \grGeneralizedPetersen[RA=7,RB=4]{5}{2}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Generalized Petersen graph} GP(6,2)}
+
+\vspace*{2cm}\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \grGeneralizedPetersen[RA=7,RB=4]{6}{2}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Generalized Petersen graph} GP(7,3)}
+
+\vspace*{2cm}\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \grGeneralizedPetersen[RA=7,RB=4]{7}{3}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Generalized Petersen graph} GP(11,5)}
+
+\vspace*{2cm}\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90]
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \grGeneralizedPetersen[RA=7,RB=4]{11}{5}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Platonic.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Platonic.tex
new file mode 100644
index 0000000000..a29fcf126b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Platonic.tex
@@ -0,0 +1,338 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-berge/NamedGraphs/doc/NamedGraphs-main.tex
+\newpage\section{ The five Platonics Graphs}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Platonic graphs –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+The Platonic Graphs are the graphs formed by the edges and vertices of the five regular Platonic solids. The five Platonics Graphs are illustrated below.
+
+\begin{enumerate}
+ \item tetrahedral
+ \item octahedral
+ \item cube
+ \item icosahedral
+ \item dodecahedral
+\end{enumerate}
+
+
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grTetrahedral}{\oarg{RA=Number}}
+From MathWord : \url{http://mathworld.wolfram.com/TetrahedralGraph.html}
+
+\emph{\tkzname{Tetrahedral Graph} is the unique polyhedral graph on four nodes which is also the complete graph and therefore also the wheel graph . It is implemented as \tkzcname{grTetrahedral}}
+\href{http://mathworld.wolfram.com/TetrahedralGraph.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}
+}
+It has :
+
+\begin{enumerate}
+ \item 4 nodes,
+ \item 6 edges,
+ \item graph diameter 1.
+\end{enumerate}
+
+The Tetrahedral Graph is 3-Regular
+\end{NewMacroBox}
+
+\subsection{\tkzname{Tetrahedral}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.6]
+ \GraphInit[vstyle=Shade]
+ \renewcommand*{\VertexInnerSep}{4pt}
+ \SetVertexNoLabel\SetGraphShadeColor{red!50}{black}{red}
+ \grTetrahedral[RA=5]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\clearpage\newpage
+\subsection{\tkzname{Tetrahedral LCF embedding}}
+
+\vspace*{2cm}
+\begin{center}
+ \begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=18]
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{2,-2}{2}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\clearpage\newpage
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\begin{NewMacroBox}{grOctahedral}{\oarg{RA=\meta{Number},RB=\meta{Number}}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/OctahedralGraph.html}
+
+\emph{\tkzname{Octahedral Graph} is isomorphic to the circulant graph $CI_{[1,2]}(6)$ . Two embeddings of this graph are illustrated below. It is implemented as \tkzcname{grOctahedral} or as \tkzcname{grSQCycle\{6\}}.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+It has :
+
+\begin{enumerate}
+ \item 6 nodes,
+ \item 12 edges,
+ \item graph diameter 2.
+\end{enumerate}
+
+\medskip
+ The Octahedral Graph is 4-Regular.
+\end{NewMacroBox}
+
+
+\medskip
+\subsection{\tkzname{Octahedral}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grOctahedral[RA=6,RB=2]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage\null
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grSQCycle[RA=5]{6}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage\null
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\medskip
+\begin{NewMacroBox}{grCubicalGraph}{\oarg{RA=\meta{Number},RB=\meta{Number}}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/CubicalGraph.html}
+
+\emph{\tkzname{Cubical Graph} is isomorphic to a generalized Petersen graph $PG_{[4,1]}$, to a bipartite Kneser graph , to a crown graph and it is equivalent to the Cycle Ladder $CL(4)$. Two embeddings of this graph are illustrated below. It is implemented as \tkzcname{grCubicalGraph} or \tkzcname{grPrism\{4\}}.}
+\href{http://mathworld.wolfram.com/CubicalGraph.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+It has :
+
+\begin{enumerate}
+ \item 8 nodes,
+ \item 12 edges,
+ \item graph diameter 3.
+\end{enumerate}
+
+ The Cubical Graph is 3-Regular.
+\end{NewMacroBox}
+
+\subsection{\tkzname{Cubical Graph : form 1}}
+\begin{center}
+ \begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCubicalGraph[RA=5,RB=2]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage\null
+\subsection{\tkzname{Cubical Graph : form 2}}
+\begin{center}
+ \begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCubicalGraph[form=2,RA=7,RB=4]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Cubical LCF embedding}}
+
+\vspace*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=18]
+ \GraphInit[vstyle=Art]\renewcommand*{\VertexInnerSep}{8pt}
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{3,-3}{4}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\clearpage\newpage
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\begin{NewMacroBox}{grIcosahedral}{\oarg{RA=\meta{Number},RB=\meta{Number},RC=\meta{Number}}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/IcosahedralGraph.html}
+
+\emph{The \tkzname{Icosahedral Graph} is the Platonic graph whose nodes have the connectivity of the icosahedron, illustrated above in a number of embeddings. The icosahedral graph has 12 vertices and 30 edges. Since the icosahedral graph is regular and Hamiltonian, it has a generalized LCF notation.}
+\href{http://mathworld.wolfram.com/IcosahedralGraph.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+It has :
+
+\begin{enumerate}
+ \item 12 nodes,
+ \item 30 edges,
+ \item graph diameter 3.
+\end{enumerate}
+
+\medskip
+ The Icosahedral Graph is 5-Regular.
+\end{NewMacroBox}
+
+\medskip
+
+\subsection{\tkzname{Icosahedral forme 1 }}
+
+\tikzstyle{EdgeStyle}= [thick,%
+ double = orange,%
+ double distance = 1pt]
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.8]
+ \GraphInit[vstyle=Art]\renewcommand*{\VertexInnerSep}{4pt}
+ \SetGraphArtColor{red}{orange}
+ \grIcosahedral[RA=5,RB=1]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\clearpage\newpage
+
+\subsection{\tkzname{Icosahedral forme 2 }}
+\vspace*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=-30]
+ \GraphInit[vstyle=Art] \renewcommand*{\VertexInnerSep}{8pt}
+ \SetGraphArtColor{red!50}{orange}
+ \grIcosahedral[form=2,RA=8,RB=2,RC=.8]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+
+\subsection{\tkzname{Icosahedral} \tkzname{RA=1} et \tkzname{RB=7}}
+\begin{center}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art] \renewcommand*{\VertexInnerSep}{8pt}
+ \SetGraphArtColor{red!50}{orange}
+ \grIcosahedral[RA=1,RB=7]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\clearpage\newpage
+\subsection{\tkzname{Icosahedral LCF embedding 1}}
+
+\vspace*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=18]
+ \GraphInit[vstyle=Art] \renewcommand*{\VertexInnerSep}{8pt}
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{-4,-3,4}{6}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\clearpage\newpage
+\subsection{\tkzname{Icosahedral LCF embedding 2}}
+
+\vspace*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=18]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{-2,2,3}{6}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\clearpage\newpage
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\begin{NewMacroBox}{grDodecahedral}{\oarg{RA=\meta{Number},RB=\meta{Number},RC=\meta{Number},RD=\meta{Number}}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/DodecahedralGraph.html}
+
+\emph{The \tkzname{Icosahedral Graph} is the Platonic graph corresponding to the connectivity of the vertices of a dodecahedron, illustrated above in four embeddings. The left embedding shows a stereographic projection of the dodecahedron, the second an orthographic projection, the third is from Read and Wilson, and the fourth is derived from LCF notation.}
+\href{http://mathworld.wolfram.com/DodecahedralGraph.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+It has :
+
+\begin{enumerate}
+ \item 20 nodes,
+ \item 30 edges,
+ \item graph diameter 5.
+\end{enumerate}
+
+\medskip
+ The Dodecahedral Graph is 3-Regular.
+\end{NewMacroBox}
+
+\medskip
+\subsection{\tkzname{Dodecahedral}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=18,scale=.6]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{orange}
+ \grDodecahedral[RA=7,RB=4,RC=2,RD=1]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{\tkzname{Dodecahedral other embedding}}
+
+\vspace*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCycle[RA=7,prefix=a]{10}
+ \grSQCycle[RA=4,prefix=b]{10}
+ \foreach \v in {0,...,9}
+ {\Edge(a\v)(b\v)}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+\subsection{\tkzname{Dodecahedral LCF embedding}}
+
+\vspace*{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=18]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{10,7,4,-4,-7,10,-4,7,-7,4}{2}
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Robertson.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Robertson.tex
new file mode 100644
index 0000000000..ce8807ce0b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Robertson.tex
@@ -0,0 +1,243 @@
+\newpage\section{Robertson}\label{robertson}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Robertson –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grRobertson}{\oarg{options}\var{$k$}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/RobertsonGraph.html}
+
+\medskip
+\emph{The Robertson graph is the unique (4,5)-cage graph, illustrated below. It has 19 vertices and 38 edges. It has girth 5, diameter 3, chromatic number 3, and is a quartic graph.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\end{NewMacroBox}
+
+\subsection{\tkzname{Robertson graph with \tkzcname{grRobertson} }}
+
+The cage
+
+\medskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.6]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{black}{gray}
+ \grRobertson[RA=7]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\clearpage\newpage
+\subsection{\tkzname{Fine embedding of the Robertson graph from RV}}
+
+\begin{center}
+ \begin{tikzpicture}[scale=.8]
+ \tikzstyle{TempEdgeStyle}= [thick,black,%
+ double = gray,%
+ double distance = 1.5pt]%
+ \SetVertexNoLabel
+ \renewcommand*{\VertexBigMinSize}{10pt}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \SetUpEdge[style = {thick,%
+ double = orange,%
+ double distance = 1pt}]
+ \SetGraphShadeColor{gray}{black}{gray}
+ \tikzstyle{EdgeStyle} = [TempEdgeStyle]
+ \begin{scope}[rotate=-30]
+ \grEmptyCycle[RA=5.4]{3}
+ \end{scope}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right=10]
+ \grCycle[prefix=b,RA=4]{12}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle]
+ \grCirculant[prefix=c,RA=2]{4}{2}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend left]
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{4}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right]
+ \EdgeDoubleMod{c}{4}{0}{1}
+ {b}{12}{8}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{11}{4}{3}
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{0}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend left=60]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{8}{4}{3}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right=60]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{2}{4}{3}
+ \tikzstyle{EdgeStyle}=[TempEdgeStyle,in=-50,out=-120,
+ relative,looseness=2.5]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{5}{4}{3}
+ \end{tikzpicture}
+\end{center}
+
+\clearpage\newpage
+Code for the Robertson Graph
+
+\medskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}[scale=.9]
+ \tikzstyle{TempEdgeStyle}= [thick,black,%
+ double = gray,%
+ double distance = 1.5pt]%
+ \SetVertexNoLabel
+ \renewcommand*{\VertexBigMinSize}{14pt}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \SetUpEdge[style = {thick,%
+ double = orange,%
+ double distance = 1pt}]
+
+ \SetGraphShadeColor{gray}{black}{gray}
+ \tikzstyle{EdgeStyle} = [TempEdgeStyle]
+ \begin{scope}[rotate=-30]
+ \grEmptyCycle[RA=5.4]{3}
+ \end{scope}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right=10]
+ \grCycle[prefix=b,RA=4]{12}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle]
+ \grCirculant[prefix=c,RA=2]{4}{2}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend left]
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{4}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right]
+ \EdgeDoubleMod{c}{4}{0}{1}
+ {b}{12}{8}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{11}{4}{3}
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{0}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend left=60]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{8}{4}{3}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right=60]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{2}{4}{3}
+ \tikzstyle{EdgeStyle}=[TempEdgeStyle,in=-50,out=-120,
+ relative,looseness=2.5]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{5}{4}{3}
+ \end{tikzpicture}
+\end{tkzexample}
+
+\clearpage\newpage
+\subsection{\tkzname{Robertson graph with new styles}}
+
+The code with new styles, the result is on the next page.
+
+\bigskip
+\begin{tkzexample}[code only]
+ \begin{tikzpicture}[scale=1]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{gray}{red}
+ \begin{scope}[rotate=-30]
+ \grEmptyCycle[RA=5]{3}
+ \end{scope}
+ {\tikzset{EdgeStyle/.append style = {bend right=10}}
+ \grCycle[prefix=b,RA=3.5]{12}}
+ \grCirculant[prefix=c,RA=2]{4}{2}
+ {\tikzset{EdgeStyle/.append style = {bend left}}
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{4}{3}{4}}
+ {\tikzset{EdgeStyle/.append style = {bend right}}
+ \EdgeDoubleMod{c}{4}{0}{1}
+ {b}{12}{8}{3}{4}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{11}{4}{3}
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{0}{3}{4}
+ {\tikzset{EdgeStyle/.append style = {bend left=60}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{8}{4}{3}}
+ {\tikzset{EdgeStyle/.append style = {bend right=60}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{2}{4}{3}}
+ {\tikzset{EdgeStyle/.append style = {in=-50,out=-120,%
+ relative,looseness=2.5}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{5}{4}{3}}
+ \end{tikzpicture}
+\end{tkzexample}
+
+\begin{center}
+\begin{tikzpicture}[scale=1]
+\GraphInit[vstyle=Art]
+\SetGraphArtColor{gray}{red}
+\begin{scope}[rotate=-30]
+ \grEmptyCycle[RA=5]{3}
+\end{scope}
+{\tikzset{EdgeStyle/.append style = {bend right=10}}
+\grCycle[prefix=b,RA=3.5]{12}}
+\grCirculant[prefix=c,RA=2]{4}{2}
+{\tikzset{EdgeStyle/.append style = {bend left}}
+\EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{4}{3}{4}}
+{\tikzset{EdgeStyle/.append style = {bend right}}
+ \EdgeDoubleMod{c}{4}{0}{1}
+ {b}{12}{8}{3}{4}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{11}{4}{3}
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{0}{3}{4}
+{\tikzset{EdgeStyle/.append style = {bend left=60}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{8}{4}{3}}
+{\tikzset{EdgeStyle/.append style = {bend right=60}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{2}{4}{3}}
+ {\tikzset{EdgeStyle/.append style = {in=-50,out=-120,%
+ relative,looseness=2.5}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{5}{4}{3}}
+\end{tikzpicture}
+\end{center}
+\clearpage\newpage
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Robertson Wegner –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{NewMacroBox}{grRobertsonWegner}{\oarg{options}\var{$k$}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/Robertson-WegnerGraph.html}
+
+\medskip
+\emph{he Robertson-Wegner graph is of the four (5,5)-cage graphs, also called Robertson's cage . Like the other (5,5)-cages, the Robertson-Wegner graph has 30 nodes. It has 75 edges, girth 5, diameter 3, and chromatic number 4.}
+\href{http://mathworld.wolfram.com/Robertson-WegnerGraph.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\end{NewMacroBox}
+
+\subsection{\tkzname{Robertson-Wegner graph}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90,scale=.6]
+ \GraphInit[vstyle=Art]
+ \tikzset{VertexStyle/.append style={minimum size=2pt}}
+ \grRobertsonWegner[RA=6]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+The next code gives the same result
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \grLCF[RA=6]{6,12}{15}
+ \EdgeInGraphMod{a}{30}{9}{1}{6} \EdgeInGraphMod*{a}{30}{15}{2}{6}
+ \EdgeInGraphMod*{a}{30}{9}{3}{6}
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Tutte.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Tutte.tex
new file mode 100644
index 0000000000..b97887549b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Tutte.tex
@@ -0,0 +1,44 @@
+\newpage\section{Tutte-Coxeter}\label{tutte}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––– Tutte –––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+
+\begin{NewMacroBox}{grTutteCoxeter}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/LeviGraph.html}
+
+\emph{The Levi graph is the unique (3,8)-cage graph and Moore graph. It is also distance-regular and is also called the Tutte-Coxeter graph or Tutte's 8-cage.}
+
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\medskip
+From Wikipedia : \url{http://en.wikipedia.org/wiki/Tutte–Coxeter_graph}
+
+\emph{In the mathematical field of graph theory, the Tutte–Coxeter graph or Tutte eight-cage is a 3-regular graph with 30 vertices and 45 edges. As the unique smallest cubic graph of girth 8 it is a cage and a Moore graph. It is bipartite, and can be constructed as the Levi graph of the generalized quadrangle. The graph is named after William Thomas Tutte and H. S. M. Coxeter; it was discovered by Tutte (1947) but its connection to geometric configurations was investigated by both authors in a pair of jointly published papers (Tutte 1958; Coxeter 1958a).}
+\end{NewMacroBox}
+
+\subsection{\tkzname{Tutte-Coxeter graph (3,8)-cage or Levi graph}}
+An other method to get the same result is~:
+
+\medskip
+\begin{tkzexample}[code only]
+ \grLCF[RA=7]{-13,-9,7,-7,9,13}{5}\end{tkzexample}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.7]
+ \GraphInit[vstyle=Art]
+ \tikzset{VertexStyle/.append style={minimum size=2pt}}
+ \SetGraphArtColor{blue}{darkgray}
+ \grTutteCoxeter
+\end{tikzpicture}
+\end{tkzexample}
+
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Wong.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Wong.tex
new file mode 100644
index 0000000000..70441c32f2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-Wong.tex
@@ -0,0 +1,32 @@
+\newpage\section{Wong}\label{wong}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––-––––––––––––>
+%<–––––––––––––––––––– Wong (5,5)-cages –––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––-–––––––>
+\begin{NewMacroBox}{grWong}{\oarg{options}}
+
+\medskip
+From MathWord : \url{http://mathworld.wolfram.com/WongGraph.html}
+
+\emph{The Wong graph is one of the four $(5,5)$-cage graphs. Like the other -cages, the Wong graph has 30 nodes. It has 75 edges, girth 5, diameter 3, chromatic number 4.}
+\href{http://mathworld.wolfram.com/topics/GraphTheory.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{NewMacroBox}
+
+
+\subsection{\tkzname{Wong graph}}
+You can see the cage definition here : \ref{cage}
+
+\bigskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=90,scale=.6]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{blue}
+ \grWong[RA=7]
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-couverture.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-couverture.tex
new file mode 100644
index 0000000000..b39cf6e625
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-couverture.tex
@@ -0,0 +1,28 @@
+\thispagestyle{empty}
+\null\vfill
+\begin{center}
+\textcolor{Brown}{\fontsize{30}{30}\selectfont{\upshape Gallery of named graphs}}
+
+\vspace{0.25cm}
+\hfill\textcolor{Brown}{\fontsize{14}{14}\selectfont{\upshape with tkz-berge.sty by Alain Matthes}}
+\end{center}
+
+\vspace{3cm}
+\begin{tikzpicture}[scale=5]
+ \SetVertexNoLabel
+ \tikzstyle{VertexStyle} = [draw,
+ shape = circle,
+ shading = ball,
+ ball color = red!50,
+ inner sep = 10pt,
+ outer sep = 0pt]
+ \tikzstyle{EdgeStyle} = [thick,line width= 2pt,color=red]
+ \draw[fill = white,color = white] circle (0.55cm);
+ \draw (0,0) node[circle,draw,shade,
+ ball color = orange,
+ minimum size = 3cm] (am){\textbf{AlterMundus}};
+ \grIcosahedral[RA=1.4,RB=0.8]
+\end{tikzpicture}
+\vfill\newpage\null\thispagestyle{empty}
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-main.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-main.tex
new file mode 100644
index 0000000000..a79bc0a440
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/NamedGraphs-main.tex
@@ -0,0 +1,172 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% NamedGraphs encodage : utf8 %
+% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% Créé par Alain Matthes le 14/03/2007 %
+% Copyright (c) 2007 __Collège Sévigné__ All rights reserved. %
+% version : 1.0 %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+% See http://www.latex-project.org/lppl.txt for details.
+% graphs from graph theory
+
+\documentclass[DIV = 12,
+ fontsize = 10,
+ headinclude = false,
+ index = totoc,
+ footinclude = false,
+ twoside,
+ headings = small
+ ]{tkz-doc}
+%\usepackage{svn-multi}
+\usepackage{tkz-berge}
+
+\usepackage[pdftex,
+ unicode,
+ colorlinks = true,
+ pdfpagelabels,
+ urlcolor = blue,
+ filecolor = pdffilecolor,
+ linkcolor = blue,
+ breaklinks = false,
+ hyperfootnotes= false,
+ bookmarks = false,
+ bookmarksopen = false,
+ linktocpage = true,
+ pdfsubject ={Graph Theory},
+ pdfauthor ={Alain Matthes},
+ pdftitle ={NamedGraphs},
+ pdfkeywords ={graph,berge},
+ pdfcreator ={pdfeTeX}
+ ]{hyperref}
+\usepackage{url}
+\def\UrlFont{\small\ttfamily}
+\usepackage[protrusion = true,
+ expansion,
+ final,
+ verbose = false
+ ]{microtype}
+
+\DisableLigatures{encoding = T1, family = tt*}
+
+\usepackage[parfill]{parskip}
+\gdef\nameofpack{NamedGraphs}
+\gdef\versionofpack{v 1.00 c}
+\gdef\dateofpack{2011/05/26}
+\gdef\nameofdoc{NamedGraphs}
+\gdef\dateofdoc{2011/05/26}
+\gdef\authorofpack{Alain Matthes}
+\gdef\adressofauthor{}
+\gdef\namecollection{AlterMundus}
+\gdef\urlauthor{http://altermundus.fr}
+\gdef\urlauthorcom{http://altermundus.com}
+\title{The package : NamedGraphs}
+\author{Alain Matthes}
+
+\usepackage{shortvrb,fancyvrb}
+\usepackage[saved]{tkzexample}
+\def\tkzFileSavedPrefix{tkzNamed}
+\makeatletter
+\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4.2em}}
+\makeatother
+\AtBeginDocument{\MakeShortVerb{\|}}
+
+\pdfcompresslevel=9
+\pdfinfo{
+ /Title (NamedGraphs.pdf)
+ /Creator (TeX)
+ /Producer (pdfeTeX)
+ /Author (Alain Matthes)
+ /CreationDate (26 mai 2011)
+ /Subject (Named Graphs)
+ /Keywords (pdfeTeX, graph, cyclic, berge, tikz, pdflatex) }
+
+\usepackage[english]{babel}
+\usepackage[autolanguage]{numprint}
+%<--------------------------------------------------------------------------->
+\begin{document}
+\parindent=0pt
+\title{\nameofpack}
+\date{\today}
+
+\clearpage
+\thispagestyle{empty}
+\maketitle
+
+\clearpage
+\tkzSetUpColors[background=fondpaille,text=Maroon]
+\colorlet{textcodecolor}{Maroon}
+\pagecolor{fondpaille}
+\color{Maroon}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{codebackground}{Peach!30}
+\colorlet{codeonlybackground}{Peach!30}
+
+
+\nameoffile{\nameofpack}
+
+\defoffile{\textbf{NamedGraphs.pdf} is not a beginner or advanced tutorial, not a study of graphs, it's only a gallery of undirected graphs made with the package \textcolor{red}{tkz-berge.sty v 1.00 c}. Some of graphs have names, sometimes inspired by the graph's topology, and sometimes after their discoverer. \textbf{NamedGraphs.pdf} presents some of them. A lot of references can be found here \url{http://mathworld.wolfram.com}
+}
+
+\presentation
+
+\vspace{1cm}
+
+\tkzHand Firstly, I would like to thank \textbf{Till Tantau} for the beautiful LATEX package, namely TikZ.
+
+\tkzHand I am grateful to \textbf{Michel Bovani} for providing the \tkzname{fourier} font.
+
+\tkzHand I received much valuable advice and guidance on Graph Theory from \textbf{Rafael Villarroel}\\ \url{http://graphtheoryinlatex.blogspot.com/}.
+
+\tkzHand The names of graphs can be found here \href{http://mathworld.wolfram.com/topics/SimpleGraphs.html}%
+ {\textcolor{blue}{MathWorld}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+
+\clearpage
+\tableofcontents
+
+\clearpage\newpage
+
+\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}
+\tkzSetUpColors[background=fondpaille,text=Maroon]
+\input{NamedGraphs-Andrasfai.tex}
+\input{NamedGraphs-Balaban.tex}
+\input{NamedGraphs-Bipartite.tex}
+\input{NamedGraphs-Bull.tex}
+\input{NamedGraphs-Cage.tex}
+\input{NamedGraphs-Cocktail_Party.tex}
+\input{NamedGraphs-Coxeter.tex}
+\input{NamedGraphs-Chvatal.tex}
+\input{NamedGraphs-Crown.tex}
+\input{NamedGraphs-Cubicsymmetric.tex}
+\input{NamedGraphs-Desargues.tex}
+\input{NamedGraphs-Doyle.tex}
+\input{NamedGraphs-Folkman.tex}
+\input{NamedGraphs-Foster.tex}
+\input{NamedGraphs-Franklin.tex}
+\input{NamedGraphs-Gray.tex}
+\input{NamedGraphs-Groetzsch.tex}
+\input{NamedGraphs-Heawood.tex}
+\input{NamedGraphs-Hypercube.tex}
+\input{NamedGraphs-Koenisberg.tex}
+\input{NamedGraphs-Levi.tex}
+\input{NamedGraphs-Mcgee.tex}
+\input{NamedGraphs-Moebius.tex}
+\input{NamedGraphs-Pappus.tex}
+\input{NamedGraphs-Petersen.tex}
+\input{NamedGraphs-Platonic.tex}
+\input{NamedGraphs-Robertson.tex}
+\input{NamedGraphs-Tutte.tex}
+\input{NamedGraphs-Wong.tex}
+
+\clearpage\newpage
+\printindex
+\end{document}
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/namedg.ist b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/namedg.ist
new file mode 100644
index 0000000000..4c87f0fe9c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/doc/latex/namedg.ist
@@ -0,0 +1,6 @@
+heading_prefix "{\\bfseries\\hfil "
+heading_suffix "\\hfil}\\nopagebreak\n"
+headings_flag 1
+delim_0 "\\dotfill"
+delim_1 "\\dotfill"
+delim_2 "\\dotfill" \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-1-0.tex
new file mode 100644
index 0000000000..4ee0964433
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-1-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.7]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grAndrasfai[RA=7]{7}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-2-0.tex
new file mode 100644
index 0000000000..f64d6b92cd
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-2-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grAndrasfai[RA=7]{8}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-3-0.tex
new file mode 100644
index 0000000000..c1903f9590
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-1-3-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grAndrasfai[RA=7]{9}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-10-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-10-1-0.tex
new file mode 100644
index 0000000000..e458cc78e0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-10-1-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \SetVertexNoLabel
+ \grLCF[RA=6]{3,-3}{4}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-10-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-10-2-0.tex
new file mode 100644
index 0000000000..f972829018
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-10-2-0.tex
@@ -0,0 +1,24 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \tikzstyle{VertexStyle} = [shape = circle,%
+ color = white,
+ fill = black,
+ very thin,
+ inner sep = 0pt,%
+ minimum size = 18pt,
+ draw]
+ \tikzstyle{EdgeStyle} = [thick,%
+ double = brown,%
+ double distance = 1pt]
+ \grLCF[Math,RA=6]{3,-3}{4}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-1-0.tex
new file mode 100644
index 0000000000..211b956162
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-1-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.6]
+ \grDesargues[Math,RA=6]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-2-0.tex
new file mode 100644
index 0000000000..4a7a4288df
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-2-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grDesargues[form=2,Math,RA=7]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-3-0.tex
new file mode 100644
index 0000000000..41c425e4c0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-3-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \grLCF[Math,RA=6]{5,-5,9,-9}{5}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-4-0.tex
new file mode 100644
index 0000000000..1ce038440c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-11-4-0.tex
@@ -0,0 +1,24 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \tikzstyle{VertexStyle} = [shape = circle,%
+ color = white,
+ fill = black,
+ very thin,
+ inner sep = 0pt,%
+ minimum size = 18pt,
+ draw]
+ \tikzstyle{EdgeStyle} = [thick,%
+ double = brown,%
+ double distance = 1pt]
+ \grGeneralizedPetersen[Math,RA=6]{10}{3}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-1-0.tex
new file mode 100644
index 0000000000..0df2c6012b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-1-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.6]
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{red}{Maroon}{fondpaille}
+ \SetVertexNoLabel
+ \grDoyle[RA=7,RB=5,RC=3]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-2-0.tex
new file mode 100644
index 0000000000..e41e900d63
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-2-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{red}{Magenta}{white}
+ \SetVertexNoLabel
+ \grDoyle[form=2,RA=7]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-3-0.tex
new file mode 100644
index 0000000000..f05085a6d0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-3-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \SetGraphArtColor{red}{Magenta}{red}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grDoyle[form=3,RA=7,RB=2]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-4-0.tex
new file mode 100644
index 0000000000..e5ff86ac68
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-12-4-0.tex
@@ -0,0 +1,27 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.6]
+ \tikzstyle{VertexStyle} = [shape = circle,
+ ball color = gray!60,
+ minimum size = 16pt,draw]
+ \tikzstyle{EdgeStyle} = [thick,color=black,%
+ double = orange,%
+ double distance = 1pt]
+ \SetVertexNoLabel
+ \grCycle[RA=7.5]{9}
+ \grEmptyCycle[prefix=b,RA=5.5]{9}
+ \grCirculant[prefix=c,RA=3.5]{9}{4}
+ \EdgeIdentity{b}{c}{9}
+ \EdgeMod{a}{c}{9}{1}
+ \EdgeMod{a}{b}{9}{1}
+ \EdgeInGraphMod{b}{9}{2}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-1-0.tex
new file mode 100644
index 0000000000..8127e033d1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-1-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.8]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue}{darkgray}
+ \grFolkman[RA=6]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-2-0.tex
new file mode 100644
index 0000000000..75a129bb3e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-2-0.tex
@@ -0,0 +1,28 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=45]%
+ \tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,
+ ball color = gray!60,
+ inner sep = 3pt,
+ draw]
+ \tikzstyle{EdgeStyle} = [thick,orange]
+ \SetVertexNoLabel
+ \grCycle[prefix=a,RA=3]{4}%
+ \grCycle[prefix=b,RA=4]{4}%
+ \grCycle[prefix=c,RA=5]{4}%
+ \grCycle[prefix=d,RA=6]{4}%
+ \grCycle[prefix=e,RA=7]{4}%
+ \foreach \r/\s/\t in {a/d/e,b/e/a,c/a/b,d/b/c,e/c/d}{%
+ \Edges(\r0,\s1,\r2,\t3,\r0)
+ }
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-3-0.tex
new file mode 100644
index 0000000000..90d5fc1f8c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-3-0.tex
@@ -0,0 +1,30 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+\begin{scope}[shift={(1,1)},rotate=45]\grEmptyPath[prefix=a,RA=1]{5}
+ \end{scope}
+\begin{scope}[shift={(-1,1)},rotate=135]\grEmptyPath[prefix=b,RA=1]{5}
+ \end{scope}
+\begin{scope}[shift={(-1,-1)},rotate=225]\grEmptyPath[prefix=c,RA=1]{5}
+ \end{scope}
+\begin{scope}[shift={(1,-1)},rotate=315]\grEmptyPath[prefix=d,RA=1]{5}
+ \end{scope}
+ \EdgeIdentity*{a}{b}{0,...,4} \EdgeIdentity*{b}{c}{0,...,4}
+ \EdgeIdentity*{c}{d}{0,...,4} \EdgeIdentity*{d}{a}{0,...,4}
+ \EdgeDoubleMod{a}{5}{0}{1}{b}{5}{3}{1}{1}
+ \EdgeDoubleMod{a}{5}{2}{1}{b}{5}{0}{1}{2}
+ \EdgeDoubleMod{a}{5}{1}{1}{d}{5}{0}{1}{3}
+ \EdgeDoubleMod{c}{5}{2}{1}{b}{5}{0}{1}{2}
+ \EdgeDoubleMod{c}{5}{0}{1}{b}{5}{3}{1}{1}
+ \EdgeDoubleMod{c}{5}{1}{1}{d}{5}{0}{1}{3}
+ \Edges(a0,d4,c0)
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-4-0.tex
new file mode 100644
index 0000000000..3f0fe8e7c1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-13-4-0.tex
@@ -0,0 +1,28 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.8]
+ \SetVertexNoLabel
+ \tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,
+ ball color = gray!60,
+ inner sep = 3pt,
+ draw]
+ \tikzstyle{EdgeStyle} = [thick,orange]
+ \grEmptyCycle[prefix=a,RA=1.85]{5} \grEmptyCycle[prefix=b,RA=3.7]{5}
+ \grCycle[prefix=c,RA=6]{10}
+ \EdgeDoubleMod{a}{5}{0}{1}{b}{5}{1}{1}{4}
+ \EdgeDoubleMod{a}{5}{0}{1}{b}{5}{4}{1}{4}
+ \EdgeDoubleMod{b}{5}{0}{1}{c}{10}{9}{2}{4}
+ \EdgeDoubleMod{b}{5}{0}{1}{c}{10}{1}{2}{4}
+ \EdgeDoubleMod{a}{5}{0}{1}{c}{10}{8}{2}{4}
+ \EdgeDoubleMod{a}{5}{0}{1}{c}{10}{2}{2}{4}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-14-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-14-1-0.tex
new file mode 100644
index 0000000000..ee1de6c8f7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-14-1-0.tex
@@ -0,0 +1,19 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.6]
+ \renewcommand*{\VertexInnerSep}{2pt}
+ \renewcommand*{\EdgeLineWidth}{0.5pt}
+ \GraphInit[vstyle=Art]
+ \tikzset{VertexStyle/.append style={minimum size=2pt}}
+ \SetGraphColor{red}{blue}
+ \grLCF[Math,RA=6]{17, -9, 37, -37, 9, -17}{15}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-1-0.tex
new file mode 100644
index 0000000000..978563079b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-1-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.7]
+ \grFranklin[Math,RA=7]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-2-0.tex
new file mode 100644
index 0000000000..b7f4049f63
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-2-0.tex
@@ -0,0 +1,21 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grCycle[Math,RA=4,prefix=a]{6}
+ \grCycle[Math,RA=6,prefix=b]{6}
+ \foreach \x in {0,...,5}{%
+ \ifthenelse{\isodd{\x}}{%
+ \pgfmathsetcounter{tempi}{\x-1}}{%
+ \pgfmathsetcounter{tempi}{\x+1}}
+ \Edge(a\x)(b\thetempi)
+}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-3-0.tex
new file mode 100644
index 0000000000..38cb703bba
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-15-3-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grLCF[Math,RA=7]{-5,-3,3,5}{3}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-16-0-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-16-0-0.tex
new file mode 100644
index 0000000000..b389e78760
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-16-0-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{gray}{red}
+ \grLCF[Math,RA=6]{-25,7,-7,13,-13,25}{9}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-1-0.tex
new file mode 100644
index 0000000000..a3768e21f6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-1-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \grGrotzsch[RA=3,RB=6]{6}%
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-2-0.tex
new file mode 100644
index 0000000000..43c5f63f8d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-2-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grGrotzsch[form=2,RA=6,RB=3]{6}%
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-3-0.tex
new file mode 100644
index 0000000000..eb0f1f2934
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-17-3-0.tex
@@ -0,0 +1,24 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}[rotate=-18]
+ \draw[scale=.5,samples at={-6.4,-6.3,...,6.4},
+ smooth,thick,
+ variable=\t,
+ double= red,
+ double distance = 1pt]
+ plot ({3*(1.5*cos(\t r) +3*cos(1.5*\t r))},%
+ {3*(1.5*sin(\t r) -3*sin(1.5*\t r))});
+ \begin{scope}[rotate=36]
+ \grStar[prefix=a,RA=2.2]{6}%
+ \grEmptyCycle[prefix=b,RA=4.4]{5}%
+ \end{scope}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-18-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-18-1-0.tex
new file mode 100644
index 0000000000..80ed3cd2f1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-18-1-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Shade]
+ \grHeawood[RA=7]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-18-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-18-2-0.tex
new file mode 100644
index 0000000000..a023a86a70
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-18-2-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \grLCF[RA=7]{5,9}{7}%
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-19-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-19-1-0.tex
new file mode 100644
index 0000000000..7158b71caf
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-19-1-0.tex
@@ -0,0 +1,26 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grCycle[RA=8]{8}
+ \pgfmathparse{8*(1-4*sin(22.5)*sin(22.5))}
+ \let\tkzbradius\pgfmathresult
+ \grCirculant[prefix=b,RA=\tkzbradius]{8}{3}
+ \makeatletter
+ \foreach \vx in {0,...,7}{%
+ \pgfmathsetcounter{tkz@gr@n}{mod(\vx+1,8)}
+ \pgfmathsetcounter{tkz@gr@a}{mod(\vx+7,8)}
+ \pgfmathsetcounter{tkz@gr@b}{mod(\thetkz@gr@n+1,8)}
+ \Edge(a\thetkz@gr@n)(b\thetkz@gr@b)
+ \Edge(b\thetkz@gr@a)(a\vx)
+ }
+ \makeatother
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-1-0.tex
new file mode 100644
index 0000000000..6d5cc6344c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-1-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}[scale=.6]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grBalaban[form=1,RA=7,RB=3,RC=3]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-2-0.tex
new file mode 100644
index 0000000000..1f6e358fad
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-2-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{gray}{blue!50}
+ \grBalaban[form=2,RA=7,RB=7,RC=4,RD=2.5]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-3-0.tex
new file mode 100644
index 0000000000..afab96274a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-3-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{brown}{orange}
+ \grBalaban[form=3,RA=7,RB=6.5,RC=5.6,RD=5.6,RE=4.6]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-4-0.tex
new file mode 100644
index 0000000000..e5cf6d76e7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-2-4-0.tex
@@ -0,0 +1,25 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}[scale=.7]
+ \renewcommand*{\VertexInnerSep}{3pt}
+ \renewcommand*{\VertexLineWidth}{0.4pt}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{blue!50!black}
+ \grLCF[Math,RA=7]{%
+ 44,26,-47,-15,35,-39,11,-27,38,-37,43,14,28,51,-29,-16,41,-11,%
+ -26,15,22,-51,-35,36,52,-14,-33,-26,-46,52,26,16,43,33,-15,%
+ 17,-53,23,-42,-35,-28,30,-22, 45,-44,16,-38,-16,50,-55,20,28,%
+ -17,-43,47, 34,-26,-41,11,-36,-23,-16,41,17,-51,26,-33,47,17,%
+ -11,-20 ,-30,21,29,36,-43,-52,10,39,-28,-17,-52,51,26,37,-17,%
+ 10,-10,-45,-34,17,-26,27,-21,46,53,-10,29,-50,35,15,-47,-29,-41,%
+ 26,33,55,-17,42,-26,-36,16}{1}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-20-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-20-1-0.tex
new file mode 100644
index 0000000000..ed9f57c5af
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-20-1-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}[node distance=4cm]
+ \grKonisberg
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-20-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-20-2-0.tex
new file mode 100644
index 0000000000..61e4c8270b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-20-2-0.tex
@@ -0,0 +1,33 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \renewcommand*{\VertexBallColor}{orange!50!red}
+ \renewcommand*{\EdgeDoubleDistance}{2pt}
+ \SetGraphUnit{4}
+ \GraphInit[vstyle=Shade]
+ \tikzset{LabelStyle/.style = {draw,
+ fill = yellow,
+ text = red}}
+ \Vertex{A}
+ \EA(A){B}
+ \EA(B){C}
+ {\SetGraphUnit{8}
+ \NO(B){D}}
+ \Edge[label=1](B)(D)
+ \tikzset{EdgeStyle/.append style = {bend left}}
+ \Edge[label=4](A)(B)
+ \Edge[label=5](B)(A)
+ \Edge[label=6](B)(C)
+ \Edge[label=7](C)(B)
+ \Edge[label=2](A)(D)
+ \Edge[label=3](D)(C)
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-0-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-0-0.tex
new file mode 100644
index 0000000000..d694b6c8fc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-0-0.tex
@@ -0,0 +1,11 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-1-0.tex
new file mode 100644
index 0000000000..60007b6f27
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-1-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grLCF[prefix=a,RA=6]{-13,-9,7,-7,9,13}{5}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-2-0.tex
new file mode 100644
index 0000000000..3e7d5bbb76
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-21-2-0.tex
@@ -0,0 +1,19 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCycle[prefix=a,RA=7]{10}
+ \EdgeInGraphMod{a}{10}{5}
+ \grEmptyCycle[prefix=b,RA=5]{10}
+ \grEmptyCycle[prefix=c,RA=3]{10}
+ \EdgeInGraphMod{c}{10}{4}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-1-0.tex
new file mode 100644
index 0000000000..494c2a0ba0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-1-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \grMcGee[Math,RA=6]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-2-0.tex
new file mode 100644
index 0000000000..c8d5c829ce
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-2-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \grLCF[Math,RA=6]{-12,-6,6,-12,7,-7,-12,6,-6,-12,7,-7}{2}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-3-0.tex
new file mode 100644
index 0000000000..28c1d987c1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-22-3-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \grLCF[Math,RA=6]{-12,6,-7,-12,7,-8,11,-6,6,-11,8,%
+ -7,-12,7,-6,-12,7,-11,-8,7,-7,8,11,-7}{1}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-1-0.tex
new file mode 100644
index 0000000000..41bea31791
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-1-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetGraphArtColor{red}{olive}
+ \SetVertexNoLabel
+ \grMobiusKantor[RA=7]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-2-0.tex
new file mode 100644
index 0000000000..bcbaf04d5a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-2-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=22.5]
+ \GraphInit[vstyle=Shade]
+ \SetGraphArtColor{red!50}{brown!50}
+ \SetVertexNoLabel
+ \grMobiusKantor[form=2,RA=7,RB=3]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-3-0.tex
new file mode 100644
index 0000000000..e64f642ab8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-3-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grMobiusKantor[form=3,RA=7,RB=2]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-4-0.tex
new file mode 100644
index 0000000000..8ad3c6867c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-4-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grLCF[RA=7]{5,-5}{8}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-5-0.tex
new file mode 100644
index 0000000000..7c96d7b87b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-5-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grGeneralizedPetersen[RA=7,RB=4]{8}{3}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-6-0.tex
new file mode 100644
index 0000000000..73e2cee43b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-6-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grMobiusLadder[RA=7,RB=2]{8}%
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-7-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-7-0.tex
new file mode 100644
index 0000000000..a2cce4927a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-23-7-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grCirculant[RA=7]{16}{1,8}%
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-1-0.tex
new file mode 100644
index 0000000000..7cec5efe7f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-1-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.7]
+ \GraphInit[vstyle=Art]
+ \grPappus[RA=7]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-2-0.tex
new file mode 100644
index 0000000000..90ada5f2a9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-2-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grPappus[form=2,RA=7,RB=5,RC=3]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-3-0.tex
new file mode 100644
index 0000000000..1df7710acc
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-24-3-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{gray}{blue}
+ \grPappus[form=3,RA=7,RB=5,RC=2.5]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-1-0.tex
new file mode 100644
index 0000000000..78696406f7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-1-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.8]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grPetersen[form=1,RA=5,RB=3]%
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-2-0.tex
new file mode 100644
index 0000000000..43b320fc8e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-2-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grPetersen[form=2,RA=7,RB=3]%
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-3-0.tex
new file mode 100644
index 0000000000..c638f4bc03
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-3-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}%
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{olive}
+ \grPetersen[form=3,RA=7]%
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-4-0.tex
new file mode 100644
index 0000000000..335973b175
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-4-0.tex
@@ -0,0 +1,21 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+\GraphInit[vstyle=Art]\SetGraphArtColor{white}{blue}
+ \begin{scope}[rotate=-90] \grCirculant[RA=1.5,prefix=a]{5}{2}\end{scope}
+ \begin{scope}[rotate=-18] \grEmptyCycle[RA=4,prefix=b]{5}{2} \end{scope}
+ \begin{scope}[rotate=18] \grCycle[RA=7,prefix=c]{5} \end{scope}
+ \EdgeIdentity{a}{b}{5}
+ \EdgeIdentity{b}{c}{5}
+ \EdgeDoubleMod{b}{5}{0}{1}{a}{5}{2}{1}{5}
+ \EdgeDoubleMod{c}{5}{0}{1}{b}{5}{1}{1}{5}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-5-0.tex
new file mode 100644
index 0000000000..89acf09c30
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-5-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90,scale=.6]
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \renewcommand*{\VertexInnerSep}{4pt}
+ \grGeneralizedPetersen[RA=5,RB=2]{5}{1}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-6-0.tex
new file mode 100644
index 0000000000..6d12e99b57
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-6-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \grGeneralizedPetersen[RA=7,RB=4]{5}{2}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-7-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-7-0.tex
new file mode 100644
index 0000000000..78e918da20
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-7-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \grGeneralizedPetersen[RA=7,RB=4]{6}{2}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-8-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-8-0.tex
new file mode 100644
index 0000000000..638d46ab05
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-8-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \grGeneralizedPetersen[RA=7,RB=4]{7}{3}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-9-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-9-0.tex
new file mode 100644
index 0000000000..a00109cd92
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-25-9-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \GraphInit[vstyle=Art]\SetGraphArtColor{red}{olive}
+ \grGeneralizedPetersen[RA=7,RB=4]{11}{5}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-1-0.tex
new file mode 100644
index 0000000000..e194c82e94
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-1-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.6]
+ \GraphInit[vstyle=Shade]
+ \renewcommand*{\VertexInnerSep}{4pt}
+ \SetVertexNoLabel\SetGraphShadeColor{red!50}{black}{red}
+ \grTetrahedral[RA=5]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-10-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-10-0.tex
new file mode 100644
index 0000000000..d1650afd6e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-10-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=18]
+ \GraphInit[vstyle=Art] \renewcommand*{\VertexInnerSep}{8pt}
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{-4,-3,4}{6}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-11-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-11-0.tex
new file mode 100644
index 0000000000..3c44bc233f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-11-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=18]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{-2,2,3}{6}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-12-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-12-0.tex
new file mode 100644
index 0000000000..1cfde0ae22
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-12-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=18,scale=.6]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{orange}
+ \grDodecahedral[RA=7,RB=4,RC=2,RD=1]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-13-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-13-0.tex
new file mode 100644
index 0000000000..191a03969d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-13-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grCycle[RA=7,prefix=a]{10}
+ \grSQCycle[RA=4,prefix=b]{10}
+ \foreach \v in {0,...,9}
+ {\Edge(a\v)(b\v)}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-14-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-14-0.tex
new file mode 100644
index 0000000000..5b0de8d31d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-14-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=18]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{10,7,4,-4,-7,10,-4,7,-7,4}{2}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-2-0.tex
new file mode 100644
index 0000000000..ba8e47274e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-2-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=18]
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{2,-2}{2}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-3-0.tex
new file mode 100644
index 0000000000..3c6cc7238d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-3-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grSQCycle[RA=5]{6}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-4-0.tex
new file mode 100644
index 0000000000..5c1c3cf67f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-4-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grCubicalGraph[RA=5,RB=2]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-5-0.tex
new file mode 100644
index 0000000000..b8825d0dbd
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-5-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grCubicalGraph[form=2,RA=7,RB=4]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-6-0.tex
new file mode 100644
index 0000000000..689a8b84c5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-6-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=18]
+ \GraphInit[vstyle=Art]\renewcommand*{\VertexInnerSep}{8pt}
+ \SetGraphArtColor{red!50}{orange}
+ \grLCF[RA=7]{3,-3}{4}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-7-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-7-0.tex
new file mode 100644
index 0000000000..4bb0230a82
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-7-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.8]
+ \GraphInit[vstyle=Art]\renewcommand*{\VertexInnerSep}{4pt}
+ \SetGraphArtColor{red}{orange}
+ \grIcosahedral[RA=5,RB=1]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-8-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-8-0.tex
new file mode 100644
index 0000000000..c3894e0682
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-8-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=-30]
+ \GraphInit[vstyle=Art] \renewcommand*{\VertexInnerSep}{8pt}
+ \SetGraphArtColor{red!50}{orange}
+ \grIcosahedral[form=2,RA=8,RB=2,RC=.8]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-9-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-9-0.tex
new file mode 100644
index 0000000000..d8757f13ff
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-26-9-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art] \renewcommand*{\VertexInnerSep}{8pt}
+ \SetGraphArtColor{red!50}{orange}
+ \grIcosahedral[RA=1,RB=7]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-1-0.tex
new file mode 100644
index 0000000000..713e6edf60
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-1-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.6]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{black}{gray}
+ \grRobertson[RA=7]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-2-0.tex
new file mode 100644
index 0000000000..dfd0791af8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-2-0.tex
@@ -0,0 +1,54 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.9]
+ \tikzstyle{TempEdgeStyle}= [thick,black,%
+ double = gray,%
+ double distance = 1.5pt]%
+ \SetVertexNoLabel
+ \renewcommand*{\VertexBigMinSize}{14pt}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \SetUpEdge[style = {thick,%
+ double = orange,%
+ double distance = 1pt}]
+
+ \SetGraphShadeColor{gray}{black}{gray}
+ \tikzstyle{EdgeStyle} = [TempEdgeStyle]
+ \begin{scope}[rotate=-30]
+ \grEmptyCycle[RA=5.4]{3}
+ \end{scope}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right=10]
+ \grCycle[prefix=b,RA=4]{12}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle]
+ \grCirculant[prefix=c,RA=2]{4}{2}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend left]
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{4}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right]
+ \EdgeDoubleMod{c}{4}{0}{1}
+ {b}{12}{8}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{11}{4}{3}
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{0}{3}{4}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend left=60]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{8}{4}{3}
+ \tikzstyle{EdgeStyle}= [TempEdgeStyle,bend right=60]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{2}{4}{3}
+ \tikzstyle{EdgeStyle}=[TempEdgeStyle,in=-50,out=-120,
+ relative,looseness=2.5]
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{5}{4}{3}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-3-0.tex
new file mode 100644
index 0000000000..18b81fa6b1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-3-0.tex
@@ -0,0 +1,41 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}[scale=1]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{gray}{red}
+ \begin{scope}[rotate=-30]
+ \grEmptyCycle[RA=5]{3}
+ \end{scope}
+ {\tikzset{EdgeStyle/.append style = {bend right=10}}
+ \grCycle[prefix=b,RA=3.5]{12}}
+ \grCirculant[prefix=c,RA=2]{4}{2}
+ {\tikzset{EdgeStyle/.append style = {bend left}}
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{4}{3}{4}}
+ {\tikzset{EdgeStyle/.append style = {bend right}}
+ \EdgeDoubleMod{c}{4}{0}{1}
+ {b}{12}{8}{3}{4}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{11}{4}{3}
+ \EdgeDoubleMod{c}{4}{0}{1}%
+ {b}{12}{0}{3}{4}
+ {\tikzset{EdgeStyle/.append style = {bend left=60}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{8}{4}{3}}
+ {\tikzset{EdgeStyle/.append style = {bend right=60}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{2}{4}{3}}
+ {\tikzset{EdgeStyle/.append style = {in=-50,out=-120,%
+ relative,looseness=2.5}}
+ \EdgeDoubleMod{a}{3}{0}{1}%
+ {b}{12}{5}{4}{3}}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-4-0.tex
new file mode 100644
index 0000000000..11174d129d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-27-4-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Art]
+ \grLCF[RA=6]{6,12}{15}
+ \EdgeInGraphMod{a}{30}{9}{1}{6} \EdgeInGraphMod*{a}{30}{15}{2}{6}
+ \EdgeInGraphMod*{a}{30}{9}{3}{6}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-28-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-28-1-0.tex
new file mode 100644
index 0000000000..3fafcde3fb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-28-1-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=.7]
+ \GraphInit[vstyle=Art]
+ \tikzset{VertexStyle/.append style={minimum size=2pt}}
+ \SetGraphArtColor{blue}{darkgray}
+ \grTutteCoxeter
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-29-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-29-1-0.tex
new file mode 100644
index 0000000000..89086ae650
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-29-1-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90,scale=.6]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{red}{blue}
+ \grWong[RA=7]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-1-0.tex
new file mode 100644
index 0000000000..e68a2b43ae
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-1-0.tex
@@ -0,0 +1,19 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCompleteBipartite[RA=2,RB=2,RS=3]{3}{2}
+\end{tikzpicture}\hspace*{2cm}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCompleteBipartite[RA=2,RB=2,RS=3]{3}{3}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-2-0.tex
new file mode 100644
index 0000000000..0716fcaf21
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-2-0.tex
@@ -0,0 +1,15 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=1.5]
+ \GraphInit[vstyle=Art]
+ \grCompleteBipartite[RA=3,RB=2,RS=5]{3}{5}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-3-0.tex
new file mode 100644
index 0000000000..abd3a5b475
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-3-3-0.tex
@@ -0,0 +1,39 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{6}{1,3}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{8}{1,3}
+\end{tikzpicture}
+
+\vspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{10}{1,3,5}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3]{12}{1,3,5}
+\end{tikzpicture}
+
+\vspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+\grCirculant[RA=3]{14}{1,3,5,7}
+\end{tikzpicture}\hspace*{12pt}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+\grCirculant[RA=3]{16}{1,3,5,7}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-4-0-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-4-0-0.tex
new file mode 100644
index 0000000000..95da4ccf02
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-4-0-0.tex
@@ -0,0 +1,22 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[node distance=4cm]
+ \GraphInit[vstyle=Shade]
+ \Vertex{a0}
+ \NOEA(a0){a2}
+ \NOEA(a2){a4}
+ \NOWE(a0){a1}
+ \NOWE(a1){a3}
+ \Edges(a0,a1,a3)
+ \Edges(a0,a2,a4)
+ \Edge(a1)(a2)
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-6-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-6-1-0.tex
new file mode 100644
index 0000000000..80404d7859
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-6-1-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \grCocktailParty[RA=3,RS=5]{4}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-6-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-6-2-0.tex
new file mode 100644
index 0000000000..d70e476fb3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-6-2-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \grCocktailParty[form=2,RA=4,RS=6]{4}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-1-0.tex
new file mode 100644
index 0000000000..ac18fc5f03
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-1-0.tex
@@ -0,0 +1,22 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[rotate=90,scale=1]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{magenta}{gray}
+ \grCycle[RA=5,prefix=a]{7}
+ \begin{scope}[rotate=-20]\grEmptyCycle[RA=4,prefix=b]{7}\end{scope}
+ \grCirculant[RA=3,prefix=c]{7}{2}
+ \grCirculant[RA=1.4,prefix=d]{7}{3}
+ \EdgeIdentity{a}{b}{7}
+ \EdgeIdentity{b}{c}{7}
+ \EdgeIdentity{b}{d}{7}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-2-0.tex
new file mode 100644
index 0000000000..2249d74e9e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-2-0.tex
@@ -0,0 +1,23 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{magenta}{gray}
+ \grCycle[RA=7,prefix=b]{24}
+ \grEmptyStar[RA=3,prefix=a]{4}
+ \EdgeDoubleMod{a}{3}{0}{1}{b}{24}{0}{8}{2}
+ \EdgeDoubleMod{a}{3}{0}{1}{b}{24}{7}{8}{2}
+ \EdgeDoubleMod{a}{3}{0}{1}{b}{24}{18}{8}{2}
+ \EdgeDoubleMod{a}{4}{3}{0}{b}{24}{22}{8}{2}
+ \EdgeInGraphMod*{b}{24}{6}{5}{8}
+ \EdgeInGraphMod*{b}{24}{11}{1}{8}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-3-0.tex
new file mode 100644
index 0000000000..078d74c5fe
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-3-0.tex
@@ -0,0 +1,23 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{magenta}{gray}
+ \grCycle[RA=7,prefix=c]{7}
+ \grEmptyCycle[RA=6,prefix=b]{7}
+ \begin{scope}[rotate=12.85]\grEmptyCycle[RA=5,prefix=a]{14}\end{scope}
+ \EdgeIdentity{b}{c}{7}
+ \EdgeDoubleMod{b}{7}{0}{1}{a}{14}{0}{2}{6}
+ \EdgeDoubleMod{b}{7}{0}{1}{a}{14}{13}{2}{6}
+ \EdgeInGraphModLoop{a}{14}{4}{0}{0}
+ \EdgeInGraphModLoop{a}{14}{6}{1}{1}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-4-0.tex
new file mode 100644
index 0000000000..2803dcd4a5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-4-0.tex
@@ -0,0 +1,20 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}[scale=3]
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue}{cyan}
+ \begin{scope}[rotate=5]\grCycle[RA=2.5,prefix=a]{10}\end{scope}
+ \begin{scope}[rotate=-10]\grCirculant[RA=1.8,prefix=b]{10}{5}\end{scope}
+ \begin{scope}[rotate=36]\grCirculant[RA=1.1,prefix=c]{10}{3}\end{scope}
+ \EdgeIdentity{a}{b}{10}
+ \EdgeIdentity{b}{c}{10}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-5-0.tex
new file mode 100644
index 0000000000..57d0fce89f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-7-5-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue}{darkgray}
+ \grLCF[RA=7]{-13,-9,7,-7,9,13}{5}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-1-0.tex
new file mode 100644
index 0000000000..5ba87cce98
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-1-0.tex
@@ -0,0 +1,17 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}[scale=.7]
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \SetGraphShadeColor{blue!50!black}{blue}{gray}
+ \grChvatal[RA=6,RB=2]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-2-0.tex
new file mode 100644
index 0000000000..48629ee0e9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-2-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue!50!black}{gray}
+ \grChvatal[form=2,RA=7,RB=4,RC=1.4]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-3-0.tex
new file mode 100644
index 0000000000..4c5b99920d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-8-3-0.tex
@@ -0,0 +1,16 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \SetGraphArtColor{blue!50!black}{gray}
+ \grChvatal[form=3,RA=7]
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-9-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-9-1-0.tex
new file mode 100644
index 0000000000..efaee035e3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-9-1-0.tex
@@ -0,0 +1,23 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+\tikzstyle{VertexStyle} = [shape = circle,
+ shading = ball,
+ ball color = green,
+ minimum size = 24pt,
+ draw]
+\tikzstyle{EdgeStyle} = [thick,
+ double = orange,
+ double distance = 1pt]
+\SetVertexLabel\SetVertexMath
+\grCrown[RA=3,RS=6]{4}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-9-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-9-2-0.tex
new file mode 100644
index 0000000000..af61cf2d9e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/latex/tkzNamed-9-2-0.tex
@@ -0,0 +1,14 @@
+%
+% tkz-namedgraphs (27/05/2011)
+%
+% Coding (utf8) Creator (TeX) Producer (pdfeTeX)
+% Author Alain Matthes
+\input{tkzpreamblenamed.ltx}
+
+\begin{document}
+
+\begin{tikzpicture}
+ \grCrown[form=2,RA=4,RS=6]{4}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/tkzpreamblenamed.ltx b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/tkzpreamblenamed.ltx
new file mode 100644
index 0000000000..7b14669589
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/examples/tkzpreamblenamed.ltx
@@ -0,0 +1,6 @@
+\documentclass{scrartcl}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage{tkz-berge}
+\thispagestyle{empty} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/readme-namedgraph.txt b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/readme-namedgraph.txt
new file mode 100644
index 0000000000..2f491181b6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/NamedGraphs/readme-namedgraph.txt
@@ -0,0 +1,33 @@
+% encodage utf8
+-------------------- english readme ----------------------------------------
+readme-namedgraphs.txt V 1.00 c 26/05/2011
+
+The file namedgraphs.pdf is not a beginner or advanced tutorial, not a study
+ of graphs, it's only a gallery of undirected graphs made with the package
+ tkz-berge.sty v 1.00 c. Some of graphs have names, sometimes inspired by
+ the graph's topology, and sometimes after their discoverer. NamedGraphs.pdf
+ presents some of them. A lot of references can be found here:
+http://mathworld.wolfram.com.
+
+Licence
+-------
+
+This document can be redistributed and/or modified under the terms
+of the LaTeX Project Public License Distributed from CTAN
+archives in directory macros/latex/base/lppl.txt.
+
+Compilation of the sources
+--------------------------
+
+-- Encoding = utf8
+-- Engine = pdflatex
+-- You need the tkz-doc.cls class and tkzexample.sty package.
+
+
+ Alain Matthes
+ 5 rue de Valence
+ Paris 75005
+
+ al (dot) ma (at) mac (dot) com
+
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-classic.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-classic.tex
new file mode 100644
index 0000000000..f0ba383631
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-classic.tex
@@ -0,0 +1,643 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-berge/doc-us/TKZdoc-berge-main.tex
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\section{Classic Graphs}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––– graphes classiques –––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsubsection{Cycle graph}
+\begin{NewMacroBox}{grCycle}{\oarg{local options}\var{order}}
+
+\medskip
+\emph{A cycle graph $C_n$ is a graph on $n$ nodes containing a single cycle through all nodes. Cycle graphs can be generated using \tkzcname{grCycle} in the \tkzname{tkz-berge.sty} package. Special cases include the triangle graph and the square graph.}
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+
+\item \href{http://mathworld.wolfram.com/CycleGraph.html}%
+ {\textcolor{blue}{MathWorld - CycleGraph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+\item \href{http://en.wikipedia.org/wiki/Cycle_graph}%
+ {\textcolor{blue}{Wikipedia}}
+
+\end{itemize}
+\end{NewMacroBox}
+
+\subsubsection{Special cases : the triangle graph and the square graph}
+
+
+\begin{center}
+\begin{tkzexample}[small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grCycle[prefix=a,RA=3]{5}
+ \grCycle[x=4,y=3,prefix=b,RA=2]{3}
+ \grCycle[prefix=d,y=6,rotation=30,RA=2]{4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsubsection{Complete graph}
+\begin{NewMacroBox}{grComplete}{\oarg{local options}\var{order}}
+
+\medskip
+\emph{The more simple definition is "an undirected graph with an edge between every pair of vertices" or a complete graph is a simple graph in which each pair of graph vertices is connected by an edge. The complete graph with $n$ graph vertices is denoted $K_n$. This graph has $\frac{n(n-1)}{2}$ undirected edges.\\
+Geometrically, $K_3$ relates to a triangle,$ K_4$ a tetrahedron is the tetrahedral graph as well as the wheel graph , $K_5$ a pentachoron, etc \dots}
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+
+\item \href{http://en.wikipedia.org/wiki/Complete_graph}%
+ {\textcolor{blue}{Wikipedia}}
+
+\item \href{http://mathworld.wolfram.com/grComplete.html}%
+ {\textcolor{blue}{MathWorld - Complete graph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{itemize}
+\end{NewMacroBox}
+
+
+\subsubsection{Complete Graph order 4}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \renewcommand*{\VertexBallColor}{green!50!black}
+ \GraphInit[vstyle=Shade]
+ \grComplete[RA=5]{7}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage\null
+
+\subsubsection{Complete Graph order 4}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \renewcommand*{\VertexBallColor}{green!50!black}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grComplete[RA=7]{16}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage
+\subsubsection{Circulant graph}
+\begin{NewMacroBox}{grCirculant}{\oarg{local options}\var{order}}
+
+\medskip
+\emph{The circulant graph is defined for any order $n$ at least 3, and every subset $L$ of integers which are less than or equal to $n/2$. A circulant graph is a graph in which the $i$th graph vertex is adjacent to the ($i+j$)th and ($i-j$)th graph vertices for each $j$ in a list $L$ . The circulant graphs with $L=\{1;\dots;[n/2]\}$ gives the complete graphs and the circulant graph with $L=\{1\}$ gives the cyclic graphs. The Möbius ladders are examples of circulant graphs.\\
+ In graph theory, a graph whose adjacency matrix is circulant is called a circulant graph.\\
+The circulant graph on vertices on a list of nodes is implemented as \tkzcname{grCirculant} in the \tkzname{tkz-berge.sty} package.}
+
+\medskip
+External links :
+
+\href{http://mathworld.wolfram.com/CirculantGraph.html}%
+ {\textcolor{blue}{MathWorld - CirculantGraph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+\end{NewMacroBox}
+
+\tikzset{VertexStyle/.style = {shape = circle,
+ shading = ball,
+ ball color = green!40!black,%
+ minimum size = 16pt,%
+ draw}}
+\SetUpEdge[style = {thick,%
+ double = orange,%
+ double distance = 1pt}]
+
+\SetVertexNoLabel
+\tikzset{EdgeStyle/.style = {thick,
+ double= orange,
+ double distance = 1pt}}
+
+\subsubsection{ \opt{Graph order 5 with L=\{1\}}}
+
+This is a cycle graph.
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCirculant[RA=3]{5}{1}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{\opt{Graph order 5 with L=\{2\}}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCirculant[RA=3]{5}{2}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{\opt{Graph order 5 with L=\{1,2\}}}
+
+This graph is complete with an order $5$.
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCirculant[RA=3]{5}{1,2}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{\opt{Graph order 10 with L=\{1,2,3,4,5\}}}
+
+This graph is also complete
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCirculant[RA=4]{10}{1,2,3,4,5}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+It's interesting to remark that the numbers 3 and 10 are primer, so if $L=\{3\} $ the graph is containing an Eulerian circuit.
+
+
+\subsubsection{\opt{Graph order 10 with L=\{3\}}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCirculant[RA=4]{10}{3}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage\null
+\tikzset{VertexStyle/.style = {shape = circle,
+ shading = ball,
+ ball color = gray!30,%
+ minimum size = 24pt,%
+ draw}}
+\tikzset{EdgeStyle/.style = {thick,%
+ double = orange,%
+ double distance = 1pt}}
+\SetVertexMath
+
+\subsubsection{\opt{Graph order 21 with L=\{1,3,10\}}}
+
+\SetVertexNoLabel
+\begin{tikzpicture}
+ \grCirculant[Math,RA=7]{21}{1,3,10}
+\end{tikzpicture}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––– STAR –––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newpage
+\subsubsection{Star graph}
+
+\begin{NewMacroBox}{grStar}{\oarg{local options}\var{order}}
+
+\medskip
+\emph{A star graph $S_n$ is a n-graph with one node having vertex degree $n-1$ and the other $n-1$ having vertex degree $1$. Star graphs can be generated using \tkzcname{grStar} in the \tkzname{tkz-berge.sty} package.}
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+\item \href{http://mathworld.wolfram.com/StarGraph.html}%
+ {\textcolor{blue}{MathWorld - StarGraph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{Weisstein}}
+\end{itemize}
+\end{NewMacroBox}
+
+\tikzset{VertexStyle/.style = {shape = circle,
+ shading = ball,
+ ball color = orange!40!,%
+ minimum size = 26pt,%
+ draw}}
+\SetUpEdge[style={thick,%
+ double = orange,%
+ double distance = 1pt}]
+\SetVertexNoLabel
+\tikzset{EdgeStyle/.style = {thick,
+ double= orange,
+ double distance = 1pt }}
+
+\subsubsection{Star graph}
+\begin{center}
+ \begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=30,scale=.8]
+ \grStar[RA=7]{8}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage
+\subsubsection{Square graph}
+
+ \begin{NewMacroBox}{grSQCycle}{\oarg{local options}\var{Number}}
+
+\medskip
+\emph{A star graph $S_n$ is a n-graph with one node having vertex degree $n-1$ and the other $n-1$ having vertex degree $1$. Star graphs can be generated using \tkzcname{grStar} in the \tkzname{tkz-berge.sty} package.}
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+\item \href{http://mathworld.wolfram.com/SquareGraph.html}%
+ {\textcolor{blue}{MathWorld - SquareGraph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{Weisstein}}
+\end{itemize}
+\end{NewMacroBox}
+
+\subsubsection{Square Cycle graph}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.8]
+ \grSQCycle[RA=7]{10}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––– WHEEL –––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage
+\subsubsection{Wheel graph}
+
+\begin{NewMacroBox}{grWheel}{\oarg{local options}\var{Number}}
+
+\medskip
+\emph{A wheel graph of order $n$ is a graph that contains a cycle of order $n-1$, and for which every vertex in the cycle is connected to one other vertex. The wheel can be defined as the graph , where is the singleton graph and is the cycle graph.}
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+\item \href{http://mathworld.wolfram.com/WheelGraph.html}%
+ {\textcolor{blue}{MathWorld - WheelGraph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{Weisstein}}
+\end{itemize}
+\end{NewMacroBox}
+
+\tikzset{VertexStyle/.style = {shape = circle,
+ shading = ball,
+ ball color = orange!40,%
+ minimum size = 24pt,%
+ draw}}
+\SetUpEdge[style={thick,%
+ double = orange,%
+ double distance = 1pt}]
+
+\SetVertexNoLabel
+\tikzset{EdgeStyle/.style = {thick,double= orange,double distance = 1pt}}
+
+\vfill
+\subsubsection{\tkzname{Wheel graph}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.8]
+ \grWheel[RA=7]{13}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––– LADDER ––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage
+\subsubsection{Ladder graph}
+
+\begin{NewMacroBox}{grLadder}{\oarg{local options}\var{Number}}
+
+\medskip
+\begin{tabular}{llc}
+ \toprule
+options & default & definition \\
+\midrule
+\TOline{RA } { |4| } {radius circle n°1 }
+\TOline{RS } { |0| } {distance between two lines }
+\TOline{prefix } { |a| } {prefix for vertices }
+\TOline{prefixx} { |b| } {prefix for vertices }
+\TOline{Math } { |false|} {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{The ladder graph $L_n$ or cyclic ladder graph is equivalent to the grid graph having two rails and $n$ rungs between them.}
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+\item \href{http://mathworld.wolfram.com/LadderGraph.html}%
+ {\textcolor{blue}{MathWorld - LadderGraph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{Weisstein}}
+\end{itemize}
+\end{NewMacroBox}
+
+\vfill
+\subsubsection{\tkzname{Ladder graph}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grLadder[RA=2,RS=4]{6}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––– Prism CYCLE LADDER –––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage
+\subsubsection{Prism graph}
+
+\begin{NewMacroBox}{grPrism}{\oarg{local options}\var{Number}}
+
+\medskip
+\begin{tabular}{llc}
+ \toprule
+options & default & definition \\
+\midrule
+\TOline{RA } { |4| } {radius circle n°1 }
+\TOline{RB } { |3| } {radius circle n°2 }
+\TOline{prefix } { |a| } {prefix for vertices }
+\TOline{prefixx } { |b| } {prefix for vertices }
+\TOline{Math } { |false|} {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{An $n$-prism graph has $2n$ nodes and $3n$ edges, and is equivalent to the generalized Petersen graph with arguments $n$ and $1$. For odd $n$, the $n$-prism is isomorphic to the circulant graph with an order $2n$ and with arguments $2$ and $n$.\\
+The 3-prism graph is the line graph of the complete bipartite graph with arguments $2$ and $3$ . The 4-prism graph is isomorphic with the cubical graph.}
+
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+\item \href{http://mathworld.wolfram.com/PrismGraph.html}%
+ {\textcolor{blue}{MathWorld - Prism Graph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{Weisstein}}
+\end{itemize}
+\end{NewMacroBox}
+
+\subsubsection{\tkzname{Cycle Ladder graph}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[rotate=15,scale=.7]
+ \grPrism[RA=6,RB=3]{6}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{\tkzname{Cycle Ladder graph number 3}}
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=.7]
+ \grPrism[RA=6,RB=3]{3}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{\tkzname{Cycle Ladder graph number 4}}
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=.7]
+ \grPrism[RA=6,RB=3]{4}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––– bipartite ––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage
+\subsubsection{Complete Bipartite graph}
+
+\begin{NewMacroBox}{grCompleteBipartite}{\oarg{local options}\var{Number 1}\var{Number 2}}
+
+\medskip
+\begin{tabular}{llc}
+ \toprule
+options & default & definition \\
+\midrule
+\TOline{RA }{|4| } {radius circle n°1}
+\TOline{RB }{|3| } {radius circle n°2 }
+\TOline{RS }{|1| } {distance between two lines }
+\TOline{form }{|1| } {integer to obtain a new embedding of a graph}
+\TOline{prefix }{|a| } {prefix for vertices }
+\TOline{prefixx}{|b| } {prefix for vertices }
+\TOline{Math }{|false| } {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{A complete bipartite graph is a bipartite graph (i.e., a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent) such that every pair of graph vertices in the two sets are adjacent.}
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+\item \href{http://mathworld.wolfram.com/CompleteBipartiteGraph.html}%
+ {\textcolor{blue}{MathWorld - CompleteBipartite Graph}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{Weisstein}}
+\end{itemize}
+\end{NewMacroBox}
+
+
+
+\subsubsection{\tkzname{Bipartite graph 1,5}}\label{cl17}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCompleteBipartite[RA=4,RB=2.5,RS=4]{1}{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{\tkzname{Bipartite graph 3,5}}\label{bi1}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grCompleteBipartite[RA=4,RB=3,RS=6]{3}{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage
+\subsubsection{Triangular Grid graph}
+
+
+\begin{NewMacroBox}{grTriangularGrid}{\oarg{local options}\var{Number}}
+
+\medskip
+\begin{tabular}{llc}
+ \toprule
+options & default & definition \\
+\bottomrule
+\TOline{RA }{|4| }{distance between two vertices }
+\TOline{form }{|1| }{integer to obtain a new embedding of a graph}
+\TOline{prefix}{|a| }{prefix for vertices }
+\TOline{Math }{|false|}{math mode }
+\bottomrule
+\end{tabular}
+
+\emph{\tkzname{Number=$n$} is the number of vertices of the first row then the graph order is $\dfrac{n(n-1)}{2} $.
+There are three embeddings. You can use the option \tkzname{form} with an integer between $1$ and $3$.}
+\end{NewMacroBox}
+
+\medskip
+
+
+\subsubsection{\opt{n=8 order=$28$} form 1}\label{cl18a}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexLabel
+ \grTriangularGrid[prefix=G,Math,RA=1.5]{8}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{\opt{n=6 order=$15$} form 2}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grTriangularGrid[RA=2,form=2]{6}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{\opt{n=6 order=$15$} form 3}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \grTriangularGrid[RA=2,form=3]{6}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+%<––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newpage
+\subsubsection{\tkzname{LCF Lederberg-Coxeter-Fruchte}}
+
+\begin{NewMacroBox}{grLCF}{\oarg{RA=\meta{Number}} \var{List of numbers} \var{Number}}
+\emph{LCF = Lederberg-Coxeter-Fruchte (see the link below for some examples).}
+
+\medskip
+External links :
+
+\medskip
+\begin{itemize}
+\item \href{http://mathworld.wolfram.com/LCFNotation.html}%
+ {\textcolor{blue}{MathWorld-LCF Notation}} by %
+ \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{Weisstein}}
+\end{itemize}
+\end{NewMacroBox}
+
+
+\subsubsection{\tkzname{$\big[2,-2\big]^2$}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \grLCF[RA=5]{2,-2}{2}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+
+\subsubsection{\tkzname{$\big[3,-3\big]^4$}}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}%
+ \grLCF[RA=5]{3,-3}{4}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{Ljubljana graph}
+From Wikipedia \url{http://en.wikipedia.org/wiki/Ljubljana_graph}
+
+\emph{The Ljubljana graph was first published in 1993 by Brouwer, Dejter and Thomassen.
+In 1972, Bouwer was already talking of a 112-vertices edge- but not vertex-transitive cubic graph found by R. M. Foster, but unpublished. Conder, Malnič, Marušič, Pisanski and Potočnik rediscovered this 112-vertices graph in 2002 and named it the Ljubljana graph after the capital of Slovenia. They proved that it was the unique 112-vertices edge- but not vertex-transitive cubic graph and therefore that was the graph found by Foster.}
+
+It can be represented in LCF notation as :
+
+\[
+\begin{array}{l}
+\Big[ 47, -23, -31, 39, 25, -21, -31, -41, 25, 15, 29, -41, -19, 15, -49, 33, 39, -35, -21, 17,\\ -33, 49, 41, 31, -15, -29, 41, 31, -15, -25, 21, 31, -51, -25, 23, 9, -17, 51, 35, -29, 21,\\ -51, -39, 33, -9, -51, 51, -47, -33, 19, 51, -21,29, 21, -31, -39\Big]^2
+\end{array}
+\]
+
+
+ \begin{center}
+\begin{tikzpicture}
+\GraphInit[vstyle=Art]
+\SetGraphArtColor{black!50}{darkgray}
+\tikzset{VertexStyle/.append style = {
+ minimum size = 3pt}}
+ \grLCF[RA=7]{47, -23, -31, 39, 25, -21, -31, -41, 25, 15, 29, -41, -19, 15, -49, 33, 39, -35, -21, 17, -33, 49, 41, 31, -15, -29, 41, 31, -15, -25, 21, 31, -51, -25, 23, 9, -17, 51, 35, -29, 21, -51, -39, 33, -9, -51, 51, -47, -33, 19, 51, -21, 29, 21, -31, -39}{2}%
+\end{tikzpicture}
+\end{center}
+
+\begin{tkzexample}[code only]
+\GraphInit[vstyle=Art]
+\SetGraphArtColor{black!50}{darkgray}
+\tikzset{VertexStyle/.append style = {
+ minimum size = 3pt}}
+\begin{tikzpicture}%
+ \grLCF[RA=7]{47, -23, -31, 39, 25, -21, -31, -41, 25, 15, 29, -41, -19, 15,%
+ -49, 33, 39, -35, -21, 17, -33, 49, 41, 31, -15, -29, 41, 31, -15, -25, 21,%
+ 31, -51, -25, 23, 9, -17, 51, 35, -29, 21, -51, -39, 33, -9, -51, 51, -47,%
+ -33, 19, 51, -21, 29, 21, -31, -39}{2}%
+\end{tikzpicture}
+\end{tkzexample}
+\vfill
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-installation.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-installation.tex
new file mode 100644
index 0000000000..4958c1702a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-installation.tex
@@ -0,0 +1,150 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-berge/doc-us/TKZdoc-berge-main.tex
+
+\section{Installation}
+\subsection{How to install the package \texttt{\textcolor{red}{berge.sty}}}
+
+
+It is possible that when you read this document, \tkzname{tkz-berge} is present on the \tkzname{CTAN}\footnote{\tkzname{tkz-berge} is not still a part of \tkzname{TeXLive} but it will be soon possible to install it with \tkzname{tlmgr}} servers. If \tkzname{tkz-berge} is not still a part of your distribution, this chapter shows you how to install it.
+
+\subsection{With TeXLive under OS X and Linux}\NameDist{TeXLive}
+
+You could simply create a folder (directory) \tikz[remember picture,baseline=(n1.base)]\node [fill=green!20,draw] (n1) {tkz}; which path is : \colorbox{blue!20}{ texmf/tex/latex/tkz}.
+
+\colorbox{blue!20}{texmf} is generally the personnal folder. For example the paths of this folder on my two computers are
+
+\medskip
+\begin{itemize}\setlength{\itemsep}{10pt}
+\item with OS X\NameSys{OS X} \colorbox{blue!20}{\textbf{/Users/ego/Library/texmf}};
+\item with Ubuntu\NameSys{Linux Ubuntu} \colorbox{blue!20}{\textbf{/home/ego/texmf}}.
+\end{itemize}
+
+If you choose a custom location for your files, I suppose that you know why!
+The installation that I propose, is valid only for one user.
+
+
+\medskip
+\begin{enumerate}
+\item Store the files \tikz[remember picture,baseline=(n2.base)]\node [fill=green!20,draw] (n2) {tkz-arith.sty, tkz-graph.sty et tkz-berge.sty}; in the folder \colorbox{green!50}{prof}. Be careful to have the file \tkzname{tkz-tool-arith.tex}. This file is provided by \tkzname{tkz-base}.
+\item Open a terminal, then type \colorbox{red!20}{|sudo texhash|}
+\item Check that \tkzname{xkeyval}\index{xkeyval} version 2.5 or more, and \tkzname{Ti\emph{k}Z 2.1}\index{TikZ@Ti\emph{k}Z} are installed because they are obligatory.\\
+
+\end{enumerate}
+
+\medskip
+My folder texmf is structured as in the diagram below because I use the \tkzname{CVS}\footnote{You can find the cvs version here : \url{http://www.texample.net/tikz/builds/} without CVS\\ or here with CVS \url{http://sourceforge.net/projects/pgf/}} version of \TIKZ. You don't need all the \tkzname{pgf} folders.
+
+\medskip
+
+\vfill
+\begin{tikzpicture} [remember picture,rotate=90]
+% nodes
+\node (texmf) at (4,2) [draw,fill=blue!20 ] {texmf};
+
+\node (tex) at (6,0) [draw ] {tex};
+\node (doc) at (2,0) [draw ] {doc};
+
+\node (texgen) at (7,-2) [draw ] {generic};
+\node (docgen) at (0,-2) [draw ] {generic};
+
+\node (latex) at (4,-2) [draw ] {latex};
+
+\node (genpgf) at (7,-4) [draw] {pgf};
+\node (latpgf) at (5,-4) [draw] {pgf};
+\node (tkz) at (4,-4) [draw,fill=green!20 ] {tkz};
+
+\node (docpgf) at (0,-4) [draw] {pgf};
+
+\node (tkb) at (6,-6) [draw,fill=orange!20] {tkzbase};
+\node (tke) at (2,-6) [draw,fill=orange!20] {tkzeuclide};
+
+\node (tari) at (7,-11) [draw,fill=orange!20] {tkz-tools-arith.tex};
+\node (tary) at (5,-11) [draw,fill=green!20] {tkz-arith.sty};
+\node (tgra) at (4,-11) [draw,fill=green!20] {tkz-berge.sty};
+\node (tber) at (3,-11) [draw,fill=green!20] {tkz-graph.sty};
+
+% edges
+\draw[-open triangle 90](texmf.north east) -- (tex.south west) ;
+\draw[-open triangle 90](texmf.south east) -- (doc.north west) ;
+
+\draw[-open triangle 90](tex.north east) -- (texgen.south west) ;
+\draw[-open triangle 90](tex.south east) -- (latex.north west) ;
+\draw[-open triangle 90](texgen.east) -- (genpgf.west) ;
+
+\draw[-open triangle 90](doc.south east) -- (docgen.north west) ;
+\draw[-open triangle 90](docgen.east) -- (docpgf.west) ;
+
+\draw[-open triangle 90](latex.north east) -- (latpgf.south west) ;
+\draw[-open triangle 90](latex.east) -- (tkz.west) ;
+
+\draw[-open triangle 90,orange!80](tkz.east) to [out=-90,in=90](tkb.west) ;
+\draw[-open triangle 90,orange!80](tkz.east) to [out=-90,in=90](tke.west) ;
+\draw[-open triangle 90,orange!80](tkb.east) to [out=-90,in=90](tari.west) ;
+\draw[-open triangle 90,green!80](tkz.east) to [out=-90,in=90](tary.west) ;
+\draw[-open triangle 90,green!80](tkz.east) to [out=-90,in=90](tgra.west) ;
+\draw[-open triangle 90,green!80](tkz.east) to [out=-90,in=90](tber.west) ;
+
+\end{tikzpicture}
+
+\begin{tikzpicture}[remember picture,overlay]
+ \path[->,thin,green!80,>=latex] (n1) edge [bend left] (tkz);
+ \path[->,thin,green!80,>=latex] (n2) edge [bend left] (tgra);
+\end{tikzpicture}
+
+\vfill
+\newpage
+
+\subsection{How to work with the tkz-\LaTeX-package under Windows?}
+\NameDist{MikTeX}\NameSys{Windows XP}
+Download and install the following files (if not yet done):
+\begin{enumerate}
+
+ \item the \LaTeX-system MiKTeX from
+
+ \url{http://www.miktex.org/}.
+
+ What file you need (e.g.
+ \texttt{basic-miktex-2.7.2904.exe}) and how to install
+ this program is explained there in the "Download"
+ section of the respective version (current version is
+ 2.7). In general and as usual in windows, you run the
+ setup process by starting the setup file :\newline (e.g.\texttt{basic-miktex-2.7.2904.exe}).
+
+ \item Till Tantau's \LaTeX-package \texttt{pgf-tikZ} from
+
+ \url{http://sourceforge.net/projects/pgf/}
+
+ "For MiKTeX, use the update wizard [of MiKTeX] to
+ install the (latest versions of the) packages called
+ \texttt{pgf}, \texttt{xcolor}, and \texttt{xkeyval}."
+ (cited from the pgf manual, contained in the files
+ downloaded).
+ \item the sty-files and the doc-files of Alain's tkz-package
+ from the CTAN servers or
+
+ \url{http://www.altermundus.fr/pages/download.html}.
+
+ or
+
+ \url{http://altermundus.com/pages/downloads/index.html}.
+
+ To add the files to MiKTeX:
+
+ \begin{itemize}
+ \item add a directory \texttt{prof} in the
+ directory \colorbox{blue!30}{\texttt{[MiKTeX-dir]/tex/latex}},
+ e.g. in windows explorer,
+ \item copy the sty-files in this directory
+ \texttt{tkz},
+ \item update the MiKTeX system, ether by running
+ in a DOS shell the command\newline "\colorbox{red!30}{|mktexlsr -u|}" \newline or by clicking\newline
+ "\colorbox{red!30}{|Start/Programs/Miktex/Settings/General|}", then
+ push the button \colorbox{red!30}{|Refresh FNDB|}.
+ \end{itemize}
+ \end{enumerate}
+
+\subsection{The next version}
+
+Actually, the package uses \tkzname{xkeyval}, in the next version I will use \tkzname{pgfkeys}. It's possible that the syntax should be modified. My first idea is to keep \tkzname{tkz-graph} and to create a new name for the next version like \tkzname{tkz-graph-x}.
+
+Some of the main macros used in the file \tkzname{tkz-tool-arith.tex} are now in the CVS version of PGF. With the next version of PGF, it would be possible to remove the file \tkzname{tkz-tool-arith.tex}.
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-macros-e.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-macros-e.tex
new file mode 100644
index 0000000000..1b58c45fa1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-macros-e.tex
@@ -0,0 +1,459 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-berge/doc-us/TKZdoc-berge-main.tex
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\section{Macros and Edges in a graph}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Edge in a graph from one vertex \tkzcname{EdgeInGraphFromOneToComp}}
+
+\begin{NewMacroBox}{EdgeInGraphFromOneToComp}{\oarg{local options}\var{prefix}\var{order}\var{from}}
+
+\begin{tabular}{llc}
+\hline
+Arguments & & Definition \\
+\midrule
+\TAline{order} {}{order of the graph}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{llc}
+\midrule
+options & default & definition \\
+\midrule
+\TOline{RA} {4} { radius circle}
+\TOline{prefix} {a} {prefix for vertices }
+\TOline{Math} {false} {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{This macro works on an unique graph. |from| is integer. |EdgeInGraph| designs a macro that works only in a graph defined by a prefix. The result is some edges between the vertex |from| and the others vertices. }
+\end{NewMacroBox}
+
+
+
+
+
+\subsubsection{Empty Cycle}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=4,prefix=a]{8}%
+ \EdgeInGraphFromOneToComp{a}{8}{3}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill
+\newpage
+\subsection{Edges in a graph - a loop \tkzcname{EdgeInGraphLoop}}%
+\begin{NewMacroBox}{EdgeInGraphLoop}{\var{prefix}\var{order}}
+\emph{This macro is useful with vertices on a circle . |order| in an integer.}
+\end{NewMacroBox}
+
+
+\subsubsection{Empty Cycle}
+\begin{center}
+ \begin{tkzexample}[very small]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=2,prefix=a]{8}%
+ \EdgeInGraphLoop{a}{8}
+ \end{tikzpicture}\end{tkzexample}
+\end{center}
+
+\subsubsection{Empty Cycle}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}[node distance=4cm]
+ \GraphInit[vstyle=Shade]
+ \Vertices{square}{a0,a1,a2,a3}
+ \EdgeInGraphLoop{a}{4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges in a graph - a loop \tkzcname{EdgeInGraphLoop*}}
+\begin{NewMacroBox}{EdgeInGraphLoop*}{\var{prefix}\var{order}}
+
+\medskip
+\emph{Not exactly a loop, there is no edge between the first and the last vertex.}
+\end{NewMacroBox}
+
+\subsubsection{Empty Cycle}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grEmptyCycle[RA=4,prefix=a]{8}%
+ \EdgeInGraphLoop*{a}{8}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{Empty Path}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \grEmptyPath[prefix=h,RA=2,RS=2]{6}
+ \EdgeInGraphLoop*{h}{6}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill
+\newpage
+\subsection{Sequence of edges in a graph \tkzcname{EdgeInGraphSeq}}
+\begin{NewMacroBox}{EdgeInGraphSeq}{\var{prefix}\var{start}\var{end}}
+
+\medskip
+\emph{This macro gives a sequence of edges between |start| and |end|.\\
+|start| and |end| are two integers. }
+\end{NewMacroBox}
+
+\subsubsection{EdgeInGraphSeq}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=2,prefix=a]{8}%
+ \EdgeInGraphSeq{a}{2}{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges in a graph \tkzcname{EdgeInGraphMod}}
+\begin{NewMacroBox}{EdgeInGraphMod}{\var{prefix}\var{order}\var{add}}
+
+\medskip
+\emph{This macro works on an unique graph. Edges between $v_i$ and $v_j$ with $i$ in $0,...,(\text{\#2}-1)$ and $j=\text{Mod(i+\#3,\#2)}$.\\
+\#2 = |order| and \#3 = |add|.\\
+|Mod| is like |mod| but the result is a positive integer. }
+\end{NewMacroBox}
+
+\subsubsection{EdgeInGraphMod}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=2,prefix=a]{8}%
+ \EdgeInGraphMod{a}{8}{2}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{EdgeInGraphMod 2}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=3,prefix=a]{13}%
+ \EdgeInGraphMod{a}{13}{3}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges in a graph \tkzcname{EdgeInGraphMod*}}
+\begin{NewMacroBox}{EdgeInGraphMod*}{\var{prefix}\var{order}\var{add}\var{start}\var{step}}
+
+\medskip
+\emph{Edges between $v_i$ and $v_j$ with $i$ in $\#4,\#4+\#5,...,(\text{\#2}-1)$ and $j=\text{Mod(i+\#3,\#2)}$}\\
+\#2 = |order|, \#3 = |add|, \#4 = |start|, \#5 = |step|.\\
+\end{NewMacroBox}
+
+\subsubsection{EdgeInGraphMod*}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[prefix=a]{17}%
+ \EdgeInGraphMod*{a}{17}{5}{1}{2}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges in a graph \tkzcname{EdgeInGraphModLoop}}
+\begin{NewMacroBox}{EdgeInGraphModLoop}{\var{prefix}\var{order}\var{add}\var{start}}
+
+\medskip
+\emph{ |order|, |add| and |start| are integers.\\
+Edges between $v_i$ and $v_j$ with $i$ from $\#4$, $j=\text{Mod(i+\#3,\#2)}$ and then $i=j$ until $j=\#4$\\
+\#2 = |order|, \#3 = |add| and \#4 = |start|.}
+\end{NewMacroBox}
+
+\subsubsection{EdgeInGraphModLoop}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=4]{7}
+ \EdgeInGraphModLoop{a}{7}{2}{1}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{EdgeInGraphModLoop}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=4]{8}
+ \EdgeInGraphModLoop{a}{8}{2}{1}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsection{Edges between two graphs with the same order \tkzcname{EdgeIdentity}}
+
+\begin{NewMacroBox}{EdgeIdentity}{\var{prefix1}\var{prefix2}\var{order}}
+
+\medskip
+\emph{|order| is an integer. This macro gives edges between two graphs.\\
+Edges between $v_i$ and $v_j$ with $i=j$ in $0,...,(\text{\#3}-1)$.\\
+\#3 = |order|.\\}
+\end{NewMacroBox}
+
+\subsubsection{EdgeIdentity}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[prefix=v,RA=3]{5}
+ \grEmptyCycle[prefix=w,RA=1]{5}
+ \EdgeIdentity{v}{w}{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill
+\newpage
+\subsection{Edges between two graphs with the same order \tkzcname{EdgeIdentity*}}
+
+\begin{NewMacroBox}{EdgeIdentity*}{\var{prefix1}\var{prefix2}\var{list}}
+
+\medskip
+\emph{|list| is a list of integers. This macro gives edges between two graphs.\\
+Edges between $v_i$ and $v_j$ with $i=j$ in |list|.\\}
+
+\end{NewMacroBox}
+
+\subsubsection{EdgeIdentity*}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \begin{scope}[rotate=30]
+ \grEmptyCycle[RA=3,prefix=a]{5}%
+ \end{scope}
+ \grEmptyCycle[RA=5,prefix=b]{5}%
+ \EdgeIdentity*{a}{b}{0,...,4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{EdgeIdentity*}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \begin{scope}[rotate=30]
+ \grEmptyCycle[RA=3,prefix=a]{5}%
+ \end{scope}
+ \grEmptyCycle[RA=5,prefix=b]{5}%
+ \EdgeIdentity*{a}{b}{0,2,4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges between two graphs \tkzcname{EdgeFromOneToAll}}
+\begin{NewMacroBox}{EdgeFromOneToAll}{\var{prefix1}\var{prefix2}\var{from}\var{order}}
+
+\medskip
+\emph{The graphs must to have the same order. |from| and |order| are integers.}
+\end{NewMacroBox}
+
+\subsubsection{EdgeFromOneToAll}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grPath[form=1,RA=2,RS=0]{5}
+ \grPath[form=1,prefix=b,RA=2,RS=4]{5}
+ \EdgeFromOneToAll{a}{b}{1}{5}
+\end{tikzpicture}\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges between two graphs \tkzcname{EdgeFromOneToSeq}}
+\begin{NewMacroBox}{EdgeFromOneToSeq}{\var{prefix1}\var{prefix2}\var{from}\var{start}\var{end}}
+
+\medskip
+\emph{|from|, |start| and |end| are integers. This macro builds edges between the vertex with an indice |from| through the vertices with an indice in the sequence |start|,...,|end|.}
+\end{NewMacroBox}
+
+\subsubsection{EdgeFromOneToSeq}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grPath[form=1,RA=2,RS=0]{5}
+ \grPath[form=1,prefix=b,RA=2,RS=4]{5}
+ \EdgeFromOneToSeq{a}{b}{1}{2}{4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges between two graphs \tkzcname{EdgeFromOneToSel}}
+\begin{NewMacroBox}{EdgeFromOneToSel}{\var{prefix1}\var{prefix2}\var{from}\var{list}}
+
+\medskip
+\emph{This macro builds edges between the vertex with an indice |from| through the vertices with an indice in the list |list|.}
+\end{NewMacroBox}
+
+
+\subsubsection{EdgeFromOneToSel}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grPath[form=1,RA=2]{5}
+ \grPath[form=1,prefix=b,RA=2,RS=4]{5}
+ \EdgeFromOneToSel{a}{b}{1}{0,2,4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges between two graphs \tkzcname{EdgeFromOneToComp}}
+\begin{NewMacroBox}{EdgeFromOneToComp}{\var{prefix1}\var{prefix2}\var{from}\var{order2}}
+
+\medskip
+\emph{This macro builds edges between the vertex with an indice |from| through all the vertices of the second graph, except the vertex with an indice |from|.}
+\end{NewMacroBox}
+
+\subsubsection{EdgeFromOneToComp}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grPath[form=1,RA=2,RS=0]{5}
+ \grPath[form=1,prefix=b,RA=2,RS=4]{5}
+ \EdgeFromOneToComp{a}{b}{2}{3}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges between two graphs \tkzcname{EdgeMod}}%
+\begin{NewMacroBox}{EdgeMod}{\var{prefix1}\var{prefix2}\var{order}\var{step}}
+
+\medskip
+\emph{This macro works on two graphs with the same order. We get edges between $v_i$ and $v_j$ with $i$ in $0,...,(\text{\#2}-1)$ and $j=\text{Mod(i+\#4,\#3)}$.\\
+\#3 = |order| and \#4 = |step|.}
+\end{NewMacroBox}
+
+\subsubsection{EdgeMod}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[prefix=a,RA=6]{9}
+ \grEmptyCycle[prefix=b,RA=3]{9}
+ \EdgeMod{a}{b}{9}{1}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges between two graphs \tkzcname{EdgeMod*}}%
+\begin{NewMacroBox}{EdgeMod*}{\var{prefix1}\var{prefix2}\var{order}\var{step1}\var{step2}}
+
+\medskip
+\emph{This macro works on two graphs with the same order. We get edges between $v_i$ and $v_j$ with $i$ in $0,...,(\text{\#3}-1)$ with a step $\text{\#5}$ and $j=\text{Mod(i+\#4,\#3)}$.\\
+\#3 = |order| , \#4 = |step1| and \#5 = |step2|.}
+\end{NewMacroBox}
+
+
+\subsubsection{\tkzcname{EdgeMod*} }%with |step1|=1 and |step2|=2
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[prefix=a,RA=6]{8}
+ \grEmptyCycle[prefix=b,RA=4]{8}
+ \EdgeMod*{a}{b}{8}{1}{2}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{EdgeMod* }%with |step1|=2 and |step2|=1
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[prefix=a,RA=6]{8}
+ \grEmptyCycle[prefix=b,RA=2]{8}
+ \EdgeMod*{a}{b}{8}{1}{1}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Edges between two graphs \tkzcname{EdgeDoubleMod}}%
+\begin{NewMacroBox}{EdgeDoubleMod}{\var{prefix1}\var{nb}\var{nb}\var{nb}\var{prefix2}\var{nb}\var{nb}\var{nb}\var{end}}
+
+For the first node, the numbers are :
+\var{order1}\var{start1}\var{add1}
+
+\medskip
+For the second node, the numbers are :
+\var{order2}\var{start2}\var{add2}\var{end}
+
+\medskip
+\emph{Edges between $v_i$ and $v_j$ with $i=\text{Mod(\#3+(\#4*k),\#2)}$ and j=$\text{Mod(\#7+(\#8*k),\#6)}$ $k$ is an integer from $0$ to |end|.\\
+\#2 = |order1|, \#3 = |start1| and \#4 = |add1|.\\
+\#6 = |order2|, \#7 = |start2| and \#8 = |add2|.}
+\end{NewMacroBox}
+
+
+\subsubsection{EdgeDoubleMod}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \begin{scope}[rotate=-90]
+ \grEmptyCycle[RA=2,prefix=a]{5}{2}
+ \end{scope}
+ \begin{scope}[rotate=-18]
+ \grEmptyCycle[RA=4,prefix=b]{5}{2}
+ \end{scope}
+ \EdgeDoubleMod{b}{5}{0}{1}%
+ {a}{5}{2}{1}{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{EdgeDoubleMod with two graphs and different orders}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[prefix=a,RA=5]{10}
+ \grEmptyCycle[prefix=b,RA=7]{20}
+ \EdgeDoubleMod{a}{10}{0}{1}%
+ {b}{20}{0}{2}{10}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-macros.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-macros.tex
new file mode 100644
index 0000000000..c292111e42
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-macros.tex
@@ -0,0 +1,327 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-berge/doc-us/TKZdoc-berge-main.tex
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\section{Macros and Vertices}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{\tkzcname{grEmptyCycle}}
+
+\begin{NewMacroBox}{grEmptyCycle}{\oarg{local options}\var{order}}
+\begin{tabular}{llc}
+Arguments & & Definition \\
+\midrule
+\TAline{order} {}{order of the graph}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{llc}
+
+Options & default & definition \\
+\midrule
+\TOline{RA} {4} { radius circle}
+\TOline{prefix} {a} {prefix for vertices }
+\TOline{Math} {false} {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{The number of nodes in a graph is called its order. The argument "order" is an integer superior to $1$. |RA| defines the radius of the circle.}
+\end{NewMacroBox}
+
+
+\bigskip
+\subsubsection{Empty Cycle}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=1.5]{3}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{Empty Cycle and \tkzcname{SetVertexNoLabel}}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \SetVertexNoLabel
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[RA=1.5]{2}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{Empty Cycle and \tkzname{Math}}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[Math,RA=1.5]{4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{Empty Cycle, \tkzcname{SetVertexMath} and \tkzname{prefix}}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \SetVertexMath
+ \GraphInit[vstyle=Shade]
+ \grEmptyCycle[prefix=N,RA=1.5]{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{Empty Cycle and Classic style}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \SetVertexMath
+ \GraphInit[vstyle=Classic]
+ \grEmptyCycle[RA=1.5]{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{Empty Cycle and Simple style}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Simple]
+ \grEmptyCycle[RA=1.5]{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{\tkzcname{grEmptyPath}}
+\begin{NewMacroBox}{grEmptyPath}{\oarg{local options}\var{order}}
+\begin{tabular}{llc}
+\hline
+Arguments & & Definition \\
+\midrule
+\TAline{order} {}{order of the graph}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{>{\color{green!50!black}}lllc}
+ \toprule
+options & default & definition \\
+\midrule
+\TOline{RA} {4 cm}{ distance between two vertices}
+\TOline{RS} {? cm}{ distance between the first line and the new one} \\
+\TOline{prefix} {a} {prefix for vertices }
+\TOline{Math} {false} {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{|Order| is the number of nodes. |RA| defines the radius of the circle. |RS| defines the distance between the graph and the baseline.}
+
+\end{NewMacroBox}
+
+\bigskip
+\tikzset{VertexStyle/.style = {shape = circle,%
+ shading = ball,%
+ ball color = green!30,
+ minimum size = 24pt,
+ draw}}
+\tikzset{EdgeStyle= {color=red!30,
+ double= green!50!black,
+ double distance = 2pt}}
+\SetVertexLabel
+\SetVertexMath
+\subsubsection{Empty Path, \tkzname{RA} and \tkzname{Math}}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \grEmptyPath[Math,RA=2]{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{Empty Path, \tkzname{RA} and \tkzname{prefix}}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \grEmptyPath[prefix=h,RA=2]{6}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsubsection{Empty Path, vertical path with \tkzname{form=2}}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \grEmptyPath[form=2,prefix=v,RA=2]{3}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsubsection{Two Empty Paths}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \grEmptyPath[Math,prefix=p,RA=2,RS=0]{5}
+ \grEmptyPath[Math,prefix=q,RA=2,RS=3]{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \grEmptyPath[Math,prefix=p,RA=2,RS=0,form=2]{5}
+ \grEmptyPath[Math,prefix=q,RA=2,RS=4,form=2]{5}
+\end{tikzpicture}
+\end{tkzexample}
+ \end{center}
+
+\subsubsection{How to move a graph ?}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{blue!60!black!30}{blue}{white}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \grPath[Math,prefix=u,RA=2,RS=0]{4}
+ \grPath[Math,prefix=v,RA=2,RS=3]{4}
+ \begin{scope}[xshift=1 cm]
+ \grPath[Math,prefix=t,RA=2,RS=5]{4}
+ \end{scope}
+ \begin{scope}[shift={(4 cm,8cm)}]
+ \grPath[Math,prefix=x,RA=2,RS=0]{4}
+ \end{scope}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Empty Star}
+\begin{NewMacroBox}{grEmptyStar}{\oarg{local options}\var{order}}
+\begin{tabular}{llc}
+ \toprule
+Arguments & & Definition \\
+\midrule
+\TAline{order} {}{order of the graph}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{>{\color{green!50!black}}lllc}
+ \toprule
+options & default & definition \\
+\midrule
+\TOline{RA} {4 cm}{ radius circle}
+\TOline{prefix} {a} {prefix for vertices }
+\TOline{Math} {false} {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{|RA| defines the radius of the circle. |order| is an integer and it's the order of the graph.}
+\end{NewMacroBox}
+
+\bigskip
+\subsubsection{Empty Star}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \SetVertexMath
+ \grEmptyStar[prefix=s,RA=3]{6}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Empty Grid}
+\begin{NewMacroBox}{grEmptyGrid}{\oarg{local options}\var{c}\var{r}}
+\begin{tabular}{llc}
+ \toprule
+Arguments & & Definition \\
+\midrule
+\TAline{r} {}{number of rows}
+\TAline{c} {} {number of columns}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{llc}
+ \toprule
+options & default & definition \\
+\midrule
+\TOline{RA} {4 cm}{ distance between two columns }
+\TOline{RB} {3 cm} {distance between two rows }
+\TOline{prefix} {3 cm} {distance between two rows }
+\TOline{Math} {false} {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{|c| and |r| are integers.}
+
+\end{NewMacroBox}
+
+ \bigskip
+\subsubsection{Prefix}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \tikzset{VertexStyle/.style ={shape = circle,
+ shading = ball,
+ ball color = Blue!60,%
+ minimum size = 24pt,%
+ draw}}
+ \SetVertexMath
+ \grEmptyGrid[prefix=G,RA=2,RB=4]{5}{3}
+\end{tikzpicture}\end{tkzexample}
+\end{center}
+
+\newpage
+\subsection{Empty Ladder}
+\begin{NewMacroBox}{grEmptyLadder}{\oarg{local options}\var{c}}
+\begin{tabular}{llc}
+ \toprule
+Arguments & & Definition \\
+\midrule
+\TAline{c} {}{number of columns.}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{llc}
+options & default & definition \\
+ \midrule
+\TOline{RA} {4 cm}{ distance between two columns }
+\TOline{RB} {3 cm}{ distance between two rows }
+\TOline{prefix} {a} {prefix for vertices }
+\TOline{prefix} {b} {prefix for vertices }
+\TOline{Math} {false} {math mode }
+\bottomrule
+\end{tabular}
+
+\medskip
+ \emph{ |c| is an integer. There are only two rows with different prefix.}
+\end{NewMacroBox}
+
+\bigskip
+\subsubsection{Empty Ladder}
+\begin{center}
+\begin{tkzexample}[very small]
+\begin{tikzpicture}
+ \tikzset{VertexStyle/.style ={shape = diamond,
+ shading = ball,
+ ball color = yellow!60,%
+ minimum size = 24pt,%
+ draw}}
+ \SetVertexMath
+ \grEmptyLadder[RA=2,RB=4]{5}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-main.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-main.tex
new file mode 100644
index 0000000000..6b14d2f2a9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-main.tex
@@ -0,0 +1,246 @@
+% $Id$
+% encoding : utf8
+% tkz-berge.tex
+% Created by Alain Matthes on 2008-01-19.
+% Copyright (C) 2009 Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/generic/pgf/licenses/LICENSE for more details.%
+% See http://www.latex-project.org/lppl.txt for details.
+%
+%
+% ``tkzdoc-berge-us'' is the english doc of tkz-berge
+%
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% tkz-berge.sty encodage : utf8 %
+% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% Créé par Alain Matthes le 19/02/2007 %
+% Copyright (c) 2006 __Collège Sévigné__ All rights reserved. %
+% version : 2.7 c %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Fichier .tex de présentation du package tkz-graph.sty
+% d'après le code de DTK.
+
+\documentclass[DIV=15,fontsize=10,headinclude=false,index=totoc,
+footinclude=false,headings=small]{tkz-doc}
+
+\gdef\nameofpack{tkz-berge.sty}
+\gdef\versionofpack{v 1.00 c}
+\gdef\dateofpack{2011/05/25}
+\gdef\nameofdoc{doctkz-berge}
+\gdef\dateofdoc{2011/05/25}
+\gdef\authorofpack{Alain Matthes}
+\gdef\adressofauthor{}
+\gdef\namecollection{AlterMundus}
+\gdef\urlauthor{http://altermundus.fr}
+\gdef\urlauthorcom{http://altermundus.com}
+
+\usepackage[pdftex,
+ unicode,
+ colorlinks = true,
+ pdfpagelabels,
+ urlcolor = blue,
+ filecolor = pdffilecolor,
+ linkcolor = blue,
+ breaklinks = false,
+ hyperfootnotes= false,
+ bookmarks = false,
+ bookmarksopen = false,
+ linktocpage = true,
+ pdfsubject ={Graph theory},
+ pdfauthor ={Alain Matthes},
+ pdftitle ={tkz-euclide},
+ pdfkeywords ={graph,Berge,Petersen,cyclic,complete,circulant},
+ pdfcreator ={pdfeTeX}
+ ]{hyperref}
+
+\usepackage{url}
+\def\UrlFont{\small\ttfamily}
+
+\usepackage[protrusion = true,
+ expansion,
+ final,
+ verbose = false]{microtype}
+
+\DisableLigatures{encoding = T1, family = tt*}
+
+\usepackage{fancybox}
+\usepackage{amsmath,amssymb,stmaryrd,calc,multicol}
+\usepackage{tkz-berge}
+\usepackage[english]{babel}
+\usepackage[autolanguage]{numprint}
+
+
+\usepackage{verbdef}
+
+%\usepackage[weather]{ifsym}
+
+
+
+\pdfcompresslevel=9
+\pdfinfo{
+ /Title (tkzdoc-berge.pdf)
+ /Creator (TeX)
+ /Producer (pdfeTeX)
+ /Author (Alain Matthes)
+ /CreationDate (28 février 2011)
+ /Subject (Documentation du package tkz-berge.sty v 1.00 c)
+ /Keywords (pdfeTeX, graph, pdflatex) }
+
+\title{The package : tkz-berge.sty}
+\author{Alain Matthes}
+
+\usepackage{shortvrb}
+\AtBeginDocument{\MakeShortVerb{\|}}
+
+\usepackage{tkzexample}
+\usepackage[format=hang,margin=10pt]{caption}
+
+\begin{document}
+\parindent=0pt
+
+\title{\nameofpack}
+\date{\today}
+\clearpage
+\thispagestyle{empty}
+\maketitle
+
+\clearpage
+\tkzSetUpColors[background=fondpaille,text=Maroon]
+\colorlet{textcodecolor}{Maroon}
+\pagecolor{fondpaille}
+\color{Maroon}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{codebackground}{Peach!30}
+\colorlet{codeonlybackground}{Peach!30}
+
+\nameoffile{\nameofpack}
+\defoffile{The package \textcolor{red}{tkz-berge.sty} is a collection of some useful macros if you want to draw some classic graphs of the graph theory or to make others graphs. The kind of graphs that I will present, are sometimes called combinatorial graphs to distinguish them from the graphs of functions. Often, the word graph is short for graph of a function. A combinatorial graph is a very simple structure, a bunch of dots, some of which are connected by lines. Some of graphs have names, sometimes inspired by the graph's topology, and sometimes after their discoverer.\hfil\break
+Why tkz-berge.sty ?\hfil\break
+Claude Berge (1926 – 2002) was a French mathematician, recognized as one of the modern founders of combinatorics and graph theory. He played a major role in the renaissance of combinatorics and he is remembered for his famous conjecture on perfect graphs, solved some months after his death.}
+
+\presentation
+
+\vfill
+\lefthand\ Firstly, I would like to thank \textbf{Till Tantau} for the beautiful LATEX package, namely TikZ.
+
+\lefthand I am grateful to \textbf{Michel Bovani} for providing the \tkzname{fourier} font.
+
+\lefthand\ I received much valuable advice and guidance on Graph Theory from \textbf{Rafael Villarroel}\\ \url{http://graphtheoryinlatex.blogspot.com/}.
+
+\lefthand\ The names of graphs can be found here \href{http://mathworld.wolfram.com/topics/SimpleGraphs.html}%
+ {\textcolor{blue}{MathWorld - SimpleGraphs}} by \href{http://en.wikipedia.org/wiki/Eric_W._Weisstein}%
+ {\textcolor{blue}{E.Weisstein}}
+
+
+\vspace{1cm}
+Please report typos or any other comments to this documentation to \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}
+This file can be redistributed and/or modified under the terms of the LATEX
+Project Public License Distributed from CTAN archives in directory \url{CTAN://
+macros/latex/base/lppl.txt}.
+
+
+ \clearpage
+ \tableofcontents
+ \clearpage
+
+
+\newpage
+List of the main macros :
+
+\medskip
+
+\begin{multicols}{2}
+ \begin{itemize}
+ \item \tkzcname{grEmptyCycle}
+ \item \tkzcname{grEmptyPath}
+ \item \tkzcname{grEmptyStar}
+ \item \tkzcname{grEmptyGrid}
+ \item \tkzcname{grEmptyLadder}
+ \item \tkzcname{EdgeInGraphFromOneToComp}
+ \item \tkzcname{EdgeInGraphLoop}
+ \item \tkzcname{EdgeInGraphSeq}
+ \item \tkzcname{EdgeInGraphMod}
+ \item \tkzcname{EdgeInGraphMod*}
+ \item \tkzcname{grCompleteBipartite}
+ \item \tkzcname{EdgeInGraphModLoop}
+ \item \tkzcname{EdgeIdentity}
+ \item \tkzcname{EdgeIdentity*}
+ \item \tkzcname{EdgeFromOneToAll}
+ \item \tkzcname{EdgeFromOneToSeq}
+ \item \tkzcname{EdgeFromOneToSel}
+ \item \tkzcname{EdgeFromOneToComp}
+ \item \tkzcname{EdgeMod}
+ \item \tkzcname{EdgeMod*}
+ \item \tkzcname{EdgeDoubleMod}
+ \item \tkzcname{grPath}
+ \item \tkzcname{grCycle}
+ \item \tkzcname{grComplete}
+ \item \tkzcname{grCirculant}
+ \item \tkzcname{grStar}
+ \item \tkzcname{grSQCycle}
+ \item \tkzcname{grWheel}
+ \item \tkzcname{grLadder}
+ \item \tkzcname{grPrism}
+ \item \tkzcname{grCompleteBipartite}
+ \item \tkzcname{grTriangularGrid}
+ \item \tkzcname{grLCF}
+ \item \tkzcname{grWriteExplicitLabels}
+ \item \tkzcname{grWriteExplicitLabel}
+ \item \tkzcname{AssignVertexLabel}
+ \end{itemize}
+\end{multicols}
+
+
+See the document "NamedGraph" for all the classic named graphs that you can draw with the package \textcolor{red}{tkz-berge.sty}.
+\tkzSetUpColors[background=fondpaille,text=Maroon]
+\include{TKZdoc-berge-installation}
+\include{TKZdoc-berge-macros}
+\include{TKZdoc-berge-macros-e}
+\include{TKZdoc-berge-classic}
+\include{TKZdoc-berge-style}
+
+\printindex
+
+\end{document}
+
+\item \tkzcname{grHeawood}
+\item \tkzcname{grGeneralizedPetersen}
+\item \tkzcname{grPetersen}
+\item \tkzcname{grTetrahedral}
+\item \tkzcname{grOctahedral}
+\item \tkzcname{grCubicalGraph}
+\item \tkzcname{grIcosahedral}
+\item \tkzcname{grDodecahedral}
+\item \tkzcname{grMobiusKantor}
+\item \tkzcname{grMobiusLadder}
+\item \tkzcname{grCocktailParty}
+\item \tkzcname{grCrown}
+\item \tkzcname{grMcGee}
+\item \tkzcname{grRobertson}
+\item \tkzcname{grRobertsonWegner}
+\item \tkzcname{grDoyle}
+\item \tkzcname{grDesargues}
+\item \tkzcname{grKonisberg}
+\item \tkzcname{grWong}
+\item \tkzcname{grTutteCoxeter}
+\item \tkzcname{grFoster}
+\item \tkzcname{grFolkman}
+\item \tkzcname{grFranklin}
+\item \tkzcname{grAndrasfai}
+\item \tkzcname{grGrotzsch}
+\item \tkzcname{grLevi}
+\item \tkzcname{grPappus}
+\item \tkzcname{grChvatal}
+\item \tkzcname{grBalaban}
+
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-style.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-style.tex
new file mode 100644
index 0000000000..2029178980
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-berge-style.tex
@@ -0,0 +1,59 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-berge/doc-us/TKZdoc-berge-main.tex
+\section{Macros and Styles}
+
+\subsection{How to change the background color and text color}
+
+You can use the following macro :
+
+\begin{NewMacroBox}{tkzSetUpColors}{\oarg{local options}}
+
+\begin{tabular}{llc}
+ Options & default & definition \\
+\midrule
+\TOline{background} {white} {couleur du fond }
+\TOline{text} {black} {couleur du texte }
+\end{tabular}
+\end{NewMacroBox}
+
+
+
+
+\subsection{Modification of labels \tkzcname{AssignVertexLabel}}
+
+\begin{NewMacroBox}{AssignVertexLabel}{\oarg{local options}\var{prefix}\var{List of names}}
+\begin{tabular}{lll}
+ Arguments & & example \\
+\midrule
+\TAline{prefix} {} {\tkzcname{AssignVertexLabel\{a\}\{Alter\}}}
+\TAline{List of names} {} {\tkzcname{AssignVertexLabel\{a\}\{Paris,Lyon\}}}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{llc}
+ Options & default & definition \\
+\midrule
+\TOline{size} {\tkzcname{normalsize}} {taille de la fonte }
+\TOline{color} {black} {couleur du texte }
+\TOline{Math} {false} {math mode }
+\end{tabular}
+\end{NewMacroBox}
+
+\medskip
+\subsubsection{AssignStyle and \tkzcname{AssignVertexLabel}}
+First step : We create an empty graph without labels.
+
+Second step : We place labels with the macro \tkzcname{AssignVertexLabel} \begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetVertexNoLabel
+ \grCycle{6}
+ \tikzset{AssignStyle/.append style = {below=12pt}}
+ \AssignVertexLabel[color = blue,%
+ size = \footnotesize]{a}{%
+ Paris,Lyon,Marseille,Bordeaux,Reims,Saint-Etienne}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-gr-installation.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-gr-installation.tex
new file mode 100644
index 0000000000..93224a0f42
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/TKZdoc-gr-installation.tex
@@ -0,0 +1,91 @@
+\chap{Installation}\label{ins}
+
+You could simply create a folder (directory) \tikz[remember picture,baseline=(n1.base)]\node [fill=green!50,draw] (n1) {prof}; which path is : \colorbox{red!50}{ texmf/tex/latex/prof}. \colorbox{green!50}{texmf} is generally the personnal folder, here ways of this folder on my two computers:
+
+\medskip
+\begin{itemize}\setlength{\itemsep}{10pt}
+\item with OS X \colorbox{blue!30}{\textbf{/Users/ego/Library/texmf}};
+\item with Ubuntu \colorbox{blue!30}{\textbf{/home/ego/texmf}}.
+\end{itemize}
+
+If you choose a custom location for your files, I suppose that you know why!
+The installation that I propose, is valid only for one user.
+
+\medskip
+\begin{enumerate}
+\item Store the files \tikz[remember picture,baseline=(n2.base)]\node [fill=green!50,draw] (n2) {tkz-arith.sty, tkz-graph.sty and tkz-berge.sty}; in the folder \colorbox{green!50}{prof}.
+\item Open a terminal, then type \colorbox{red!50}{|sudo texhash|}
+
+\medskip
+\begin{figure}[htbp]
+ \begin{center}
+ \includegraphics[scale=.5]{term.pdf}
+ \end{center}
+\end{figure}
+
+\item Check that \textcolor{red}{xkeyval, ifthen and tikz 2.0} are installed because they are obligatory.
+\end{enumerate}
+
+My folder texmf is structured as in the diagram below:
+
+\medskip
+\begin{tikzpicture} [remember picture,rotate=90]
+
+\node (texmf) at (4,2) [draw,fill=blue!30 ] {texmf};
+\node (tex) at (6,0) [draw ] {tex};
+\node (doc) at (0,0) [draw ] {doc};
+\node (generic) at (7,-4) [draw ] {generic};
+\node (docgen) at (0,-4) [draw ] {generic};
+\node (latex) at (4,-4) [draw ] {latex};
+\node (pgf) at (7,-7) [draw,fill=orange] {pgf};
+\node (pre) at (6,-7) [draw,fill=orange] {pgf};
+\node (xkey) at (5,-7) [draw ] {xkeyval};
+\node (four) at (4,-7) [draw ] {fourier};
+\node (prof) at (3,-7) [draw,fill=green ] {{prof}};
+\node (etc) at (2,-7) [draw ] {etc...};
+\node (dpgf) at (0,-7) [draw,fill=orange] {pgf};
+\node (cls) at (8,-11) [draw,fill=green ] {prof.cls};
+\node (qcm) at (7,-11) [draw,fill=green ] {alterqcm.sty};
+\node (fonc) at (6,-11) [draw,fill=orange] {tkz-base.sty};
+\node (esp) at (5,-11) [draw,fill=orange] {tkz-fct.sty};
+\node (tuk) at (4,-11) [draw,fill=orange] {tkz-arith.sty};
+\node (tab) at (3,-11) [draw,fill=orange] {tkz-2d.sty};
+\node (base) at (2,-11) [draw,fill=orange] {tkz-tab.sty};
+\node (gra) at (1,-11) [draw,fill=orange] {tkz-berge.sty};
+\node (pcfg) at (0,-11) [draw,fill=green ] {prof.cfg};
+\node (ppcfg) at (-1,-11) [draw,fill=green ] {profparam.cfg};
+\node (bbp) at (-2,-11) [draw,fill=orange] {bbpage.cfg};
+\draw (doc.west) |- (4, 1);
+\draw (tex.west) |- (4, 1);
+\draw (latex.west) |- (6,-2);
+\draw (generic.west) |- (6,-2);
+\draw (xkey.west) |- (5,-6);
+\draw (prof.west) |- (3,-6);
+\draw (four.west) |- (4,-6);
+\draw (pre.west) |- (4,-6);
+\draw (etc.west) |- (4,-6);
+\draw (cls.west) |- (4,-9);
+\draw (qcm.west) |- (7,-9);
+\draw (fonc.west) |- (6,-9);
+\draw (esp.west) |- (5,-9);
+\draw (tuk.west) |- (4,-9);
+\draw (tab.west) |- (3,-9);
+\draw (base.west) |- (2,-9);
+\draw (gra.west) |- (1,-9);
+\draw (pcfg.west) |- (0,-9);
+\draw (ppcfg.west) |- (-1,-9);
+\draw (bbp.west) |- (4,-9);
+\draw[-open triangle 90] (pgf.west) -- (generic.east);
+\draw[-open triangle 90] (4,1) -- (texmf.east);
+\draw[-open triangle 90] (6,-2) -- (tex.east);
+\draw[-open triangle 90] (4,-6) -- (latex.east);
+\draw[-open triangle 90] (3,-9) -- (prof.east);
+\draw[-open triangle 90] (dpgf.west) -- (docgen.east);
+\draw[-open triangle 90] (docgen.west) -- (doc.east);
+\end{tikzpicture}
+
+\begin{tikzpicture}[remember picture,overlay]
+ \path[->,thin,red,>=latex] (n1) edge [bend left] (prof);
+ \path[->,thin,red,>=latex] (n2) edge [bend left] (prof);
+\end{tikzpicture}
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/berge.ist b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/berge.ist
new file mode 100644
index 0000000000..4c87f0fe9c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/latex/berge.ist
@@ -0,0 +1,6 @@
+heading_prefix "{\\bfseries\\hfil "
+heading_suffix "\\hfil}\\nopagebreak\n"
+headings_flag 1
+delim_0 "\\dotfill"
+delim_1 "\\dotfill"
+delim_2 "\\dotfill" \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/tkz-berge-screen.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/tkz-berge-screen.pdf
new file mode 100644
index 0000000000..634ed8e56c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/doc/tkz-berge-screen.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/Grid.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/Grid.pdf
new file mode 100644
index 0000000000..9ef039b55d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/Grid.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-Circulant.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-Circulant.pdf
new file mode 100644
index 0000000000..f9742d24c2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-Circulant.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-Complet-16.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-Complet-16.pdf
new file mode 100644
index 0000000000..e42c968c12
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-Complet-16.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-edgeingraphmodloop.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-edgeingraphmodloop.pdf
new file mode 100644
index 0000000000..2488590cc8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/gr-edgeingraphmodloop.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grCLadder.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grCLadder.pdf
new file mode 100644
index 0000000000..2255aad19d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grCLadder.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grDoubleMod.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grDoubleMod.pdf
new file mode 100644
index 0000000000..2a73aab461
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grDoubleMod.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grExtraChords.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grExtraChords.pdf
new file mode 100644
index 0000000000..b1f3b10377
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grExtraChords.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grLadder.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grLadder.pdf
new file mode 100644
index 0000000000..d67602a061
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grLadder.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grSQCycle.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grSQCycle.pdf
new file mode 100644
index 0000000000..da31c80792
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grSQCycle.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grStar.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grStar.pdf
new file mode 100644
index 0000000000..46c00b08b9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grStar.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grWheel.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grWheel.pdf
new file mode 100644
index 0000000000..d3b1efb32d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/grWheel.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercube.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercube.pdf
new file mode 100644
index 0000000000..091638a868
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercube.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercube_simple.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercube_simple.pdf
new file mode 100644
index 0000000000..5c183b79e6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercube_simple.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercubed.pdf b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercubed.pdf
new file mode 100644
index 0000000000..a1c753c7c3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/hypercubed.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/Grid.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/Grid.tex
new file mode 100644
index 0000000000..839e4a6aa0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/Grid.tex
@@ -0,0 +1,21 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+%\usetikzlibrary{calc}
+\begin{document}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{blue!60!black!30}{blue}{white}
+\begin{center}
+ \begin{tikzpicture}
+ \grGrid[Math,RA=2,RB=2]{3}{5}
+ \end{tikzpicture}
+\end{center}
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-Circulant.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-Circulant.tex
new file mode 100644
index 0000000000..678de92cea
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-Circulant.tex
@@ -0,0 +1,51 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+
+\begin{document}
+
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3.5]{4}{1}
+\end{tikzpicture}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3.5]{6}{1,3}
+\end{tikzpicture}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3.5]{8}{1,3}
+\end{tikzpicture}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3.5]{10}{1,3,5}
+\end{tikzpicture}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \grCirculant[RA=3.5]{12}{1,3,5}
+\end{tikzpicture}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+\grCirculant[RA=3.5]{14}{1,3,5,7}
+\end{tikzpicture}
+
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+\grCirculant[RA=3.5]{16}{1,3,5,7}
+\end{tikzpicture}
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+\grCirculant[RA=3.5]{21}{1}
+\end{tikzpicture}
+%
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-Complet-16.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-Complet-16.tex
new file mode 100644
index 0000000000..e7563b31a5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-Complet-16.tex
@@ -0,0 +1,28 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+
+\begin{document}
+
+\begin{center}
+\begin{tikzpicture}
+ \SetVertexNoLabel
+ \tikzstyle{VertexStyle}=[shape = circle,
+ shading = ball,
+ ball color = green!40!black,%
+ minimum size = 20pt,%
+ draw]
+ \tikzstyle{EdgeStyle} =[thick,%
+ double= orange,%
+ double distance = 1pt]
+ \grCirculant[RA=6]{16}{2,3,4,5,6,7,8}
+\end{tikzpicture}
+\end{center}
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-edgeingraphmodloop.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-edgeingraphmodloop.tex
new file mode 100644
index 0000000000..86df830342
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/gr-edgeingraphmodloop.tex
@@ -0,0 +1,26 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+\begin{document}
+ \begin{tikzpicture}
+ \grEmptyCycle[RA=4]{7}
+ \EdgeInGraphModLoop{a}{7}{2}{1}
+ \end{tikzpicture}
+
+ \begin{tikzpicture}
+ \grEmptyCycle[RA=4]{8}
+ \EdgeInGraphModLoop{a}{8}{2}{1}
+ \end{tikzpicture}
+
+ \begin{tikzpicture}
+ \grEmptyCycle[RA=4]{8}
+ \EdgeInGraphModLoop{a}{8}{3}{1}
+ \end{tikzpicture}
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grCLadder.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grCLadder.tex
new file mode 100644
index 0000000000..626f3e7cec
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grCLadder.tex
@@ -0,0 +1,39 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+
+\begin{document}
+
+\tikzstyle{EdgeStyle}= [thick,%
+ double = orange,%
+ double distance = 1pt]
+\begin{center}
+
+ \tikzstyle{VertexStyle}=[shape = circle,
+ shading = ball,
+ ball color = green!30,
+ minimum size = 24pt,
+ draw]
+ \SetVertexLabel
+ \tikzstyle{EdgeStyle}= [color=red!30,
+ double= green!50!black,
+ double distance = 2pt]
+\begin{tikzpicture}
+\grPrism[RA=5,RB=3]{6}%
+\end{tikzpicture}
+
+\begin{tikzpicture}
+\grPrism[RA=5,RB=3]{4}%
+\end{tikzpicture}
+
+
+\end{center}
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grDoubleMod.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grDoubleMod.tex
new file mode 100644
index 0000000000..42c2fccbd4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grDoubleMod.tex
@@ -0,0 +1,23 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+%\usetikzlibrary{calc}
+\begin{document}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{blue!60!black!30}{blue}{white}
+\begin{center}
+ \begin{tikzpicture}
+ \grCycle[RA=7]{27}
+ \EdgeDoubleMod{a}{27}{0}{3}
+ {a}{27}{13}{3}{9}
+ \end{tikzpicture}
+\end{center}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grExtraChords.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grExtraChords.tex
new file mode 100644
index 0000000000..c3ce1095fe
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grExtraChords.tex
@@ -0,0 +1,64 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+
+\begin{document}
+
+\tikzstyle{VertexStyle}=[shape = circle,%
+ fill = red!50,
+ very thin,
+ inner sep = 0pt,%
+ minimum size = 16pt,
+ draw]
+\tikzstyle{EdgeStyle}= [thick,%
+ double= lightgray,%
+ double distance = 1pt]
+
+ \SetVertexLabel
+\begin{tikzpicture}
+ \grEmptyCycle[RA=4]{30}
+ \EdgeInGraphMod*{a}{30}{9}{1}{6}
+\end{tikzpicture}
+
+\begin{tikzpicture}
+ \grEmptyCycle[RA=4]{30}
+ \EdgeInGraphMod{a}{30}{9}
+\end{tikzpicture}
+
+\begin{tikzpicture}
+ \grEmptyCycle[RA=5]{30}
+ \EdgeInGraphMod*{a}{30}{9}{1}{6}
+\end{tikzpicture}
+
+\begin{center}
+ \begin{tikzpicture}[rotate=90]
+ \grLCF[RA=6]{6,12}{15}
+ \end{tikzpicture}
+\end{center}
+
+
+\begin{center}
+ \begin{tikzpicture}[rotate=90]
+ \grLCF[RA=6]{6,12}{15}
+ \SetUpEdge[color=red]
+ \EdgeInGraphMod*{a}{30}{9}{1}{6}
+ \end{tikzpicture}
+\end{center}
+
+\begin{center}
+ \begin{tikzpicture}[rotate=90]
+ \grLCF[RA=6]{6,12}{15}
+ \EdgeInGraphMod*{a}{30}{9}{1}{6}
+ \EdgeInGraphMod*{a}{30}{15}{2}{6}
+ \EdgeInGraphMod*{a}{30}{9}{3}{6}
+ \end{tikzpicture}
+\end{center}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grLadder.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grLadder.tex
new file mode 100644
index 0000000000..d2ab402846
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grLadder.tex
@@ -0,0 +1,27 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+%\usetikzlibrary{calc}
+\begin{document}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{green!30}{green!50!black}{red!30}
+\begin{center}
+\begin{tikzpicture}
+\grLadder[RA=2,RS=3]{6}%
+\end{tikzpicture}
+\end{center}
+
+\begin{center}
+\begin{tikzpicture}
+\grLadder[RA=3,RS=4]{4}%
+\end{tikzpicture}
+\end{center}
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grSQCycle.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grSQCycle.tex
new file mode 100644
index 0000000000..fade3b4f64
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grSQCycle.tex
@@ -0,0 +1,34 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+%\usetikzlibrary{calc}
+\thispagestyle{empty}
+\begin{document}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{black!50}{darkgray}{white}
+ \SetVertexMath
+\begin{center}
+ \begin{tikzpicture}
+ \grSQCycle[RA=5]{8}%
+ \end{tikzpicture}
+\end{center}
+
+\begin{center}
+ \begin{tikzpicture}
+ \grSQCycle[RA=5]{6}%
+ \end{tikzpicture}
+\end{center}
+
+\begin{center}
+ \begin{tikzpicture}
+ \grSQCycle[RA=5]{9}%
+ \end{tikzpicture}
+\end{center}
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grStar.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grStar.tex
new file mode 100644
index 0000000000..4a0d75d919
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grStar.tex
@@ -0,0 +1,37 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+
+\begin{document}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{orange!60}{red}{white}
+ \SetVertexMath
+\begin{center}
+ \begin{tikzpicture}
+ \grEmptyStar[RA=3]{6}
+ \end{tikzpicture}
+\end{center}
+
+
+\begin{center}
+ \begin{tikzpicture}
+ \grStar[RA=3]{7}
+ \end{tikzpicture}
+\end{center}
+
+
+\begin{center}
+ \begin{tikzpicture}
+ \grStar[RA=4]{10}
+ \end{tikzpicture}
+\end{center}
+
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grWheel.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grWheel.tex
new file mode 100644
index 0000000000..28f563de4c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/grWheel.tex
@@ -0,0 +1,28 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+\begin{document}
+ \GraphInit[vstyle=Shade]
+ \SetGraphShadeColor{orange!60!black!30}{Brown}{white}
+\begin{center}
+ \begin{tikzpicture}
+ \grWheel[RA=3]{5}
+ \end{tikzpicture}
+\end{center}
+
+
+\begin{center}
+ \begin{tikzpicture}
+ \grWheel[RA=4]{10}
+ \end{tikzpicture}
+\end{center}
+
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/hypercube_simple.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/hypercube_simple.tex
new file mode 100644
index 0000000000..8ae56a4875
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/hypercube_simple.tex
@@ -0,0 +1,32 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+\begin{document}
+\SetVertexSimple
+\SetVertexNoLabel
+\begin{center}
+ \begin{tikzpicture}
+ \grCycle[RA=8]{8}
+ \pgfmathparse{8*(1-4*sin(22.5)*sin(22.5))}
+ \let\tkzbradius\pgfmathresult
+ \grCirculant[prefix=b,RA=\tkzbradius]{8}{3}
+\makeatletter
+ \foreach \vx in {0,...,7}{%
+ \pgfmathsetcounter{tkz@gr@n}{mod(\vx+1,8)}
+ \pgfmathsetcounter{tkz@gr@a}{mod(\vx+7,8)}
+ \pgfmathsetcounter{tkz@gr@b}{mod(\thetkz@gr@n+1,8)}
+ \Edge(a\thetkz@gr@n)(b\thetkz@gr@b)
+ \Edge(b\thetkz@gr@a)(a\vx)
+ }
+\makeatother
+\end{tikzpicture}
+\end{center}
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/hypercubed.tex b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/hypercubed.tex
new file mode 100644
index 0000000000..f5c33f4693
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/examples/latex/hypercubed.tex
@@ -0,0 +1,38 @@
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{fullpage}
+\usepackage[upright]{fourier}
+\usepackage{tkz-berge}
+\thispagestyle{empty}
+\begin{document}
+\tikzstyle{SimpleVertexStyle} = [shape = circle,%
+ fill = red,%
+ inner sep = 3pt,%
+ outer sep = 0pt,%
+ draw]
+\SetVertexSimple
+\SetVertexNoLabel
+
+\begin{center}
+ \begin{tikzpicture}
+ \grCycle[RA=8]{8}
+ \pgfmathparse{8*(1-4*sin(22.5)*sin(22.5))}
+ \let\tkzbradius\pgfmathresult
+ \grCirculant[prefix=b,RA=\tkzbradius]{8}{3}
+ \makeatletter
+ \foreach \vx in {0,...,7}{%
+ \pgfmathsetcounter{tkz@gr@n}{mod(\vx+1,8)}
+ \pgfmathsetcounter{tkz@gr@a}{mod(\vx+7,8)}
+ \pgfmathsetcounter{tkz@gr@b}{mod(\thetkz@gr@n+1,8)}
+ \Edge(a\thetkz@gr@n)(b\thetkz@gr@b)
+ \Edge(b\thetkz@gr@a)(a\vx)
+ }\makeatother
+ \end{tikzpicture}
+
+\end{center}
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/latex/tkz-arith.sty b/obsolete/macros/latex/contrib/tkz/tkz-berge/latex/tkz-arith.sty
new file mode 100644
index 0000000000..de927a7c03
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/latex/tkz-arith.sty
@@ -0,0 +1,32 @@
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % tkz-arith.sty encodage : utf8 %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % Créé par Alain Matthes le 10-10-2007. %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%<--------------------------------------------------------------------------–>
+%% Objet : tools for arithmetic
+% todo : remove latex stuff
+% todo : change some names of macros
+%<--------------------------------------------------------------------------–>
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{tkz-arith}[2011/02/28 v 1.00 c integers numbers]
+%<--------------------------------------------------------------------------–>
+\makeatletter
+\def\tkzutil@empty{}
+\def\tkzutil@firstofone#1{#1}
+\def\tkzutil@firstoftwo#1#2{#1}
+\def\tkzutil@secondoftwo#1#2{#2}
+%<--------------------------------------------------------------------------–>
+\long\def\tkzutil@ifundefined#1{%
+ \expandafter\ifx\csname#1\endcsname\relax
+ \expandafter\tkzutil@firstoftwo
+ \else
+ \expandafter\tkzutil@secondoftwo
+ \fi}
+\input{tkz-tools-arith.tex}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/latex/tkz-berge.sty b/obsolete/macros/latex/contrib/tkz/tkz-berge/latex/tkz-berge.sty
new file mode 100644
index 0000000000..60ef29b415
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/latex/tkz-berge.sty
@@ -0,0 +1,1810 @@
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % tkz-berge.sty encodage : utf8 %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % Créé par Alain Matthes le 08-05-2007. %
+ % contribution : Rafael Villarroel 2007 (RV) %
+ % contribution : Rafael Villarroel 2009 (RV) %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+ % modif Doyle form 1
+ % add \setkeys[GR]{edge}{#1}% in edge's macros
+ % remove somme bugs with pgf 2.00 cvs
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%% Objet : Création de graphes classiques
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{tkz-berge}[2011/06/01 1.00 c tkz-berge for named graphs]
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\RequirePackage{tkz-graph,tkz-arith}
+\edef\tkzAtCode{\the\catcode`\@}
+\catcode`\@=11\relax
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcounter{tkz@bg@cnt}
+% NAMED GRAPHS
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Graphes cls
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\define@cmdkey [GR] {cl} {L}{}
+\define@boolkey [GR] {cl} {Math}[true]{}
+\define@boolkey [GR] {cl} {inv}[true]{}
+\define@cmdkey [GR] {cl} {RA}{}
+\define@cmdkey [GR] {cl} {RB}{}
+\define@cmdkey [GR] {cl} {RC}{}
+\define@cmdkey [GR] {cl} {RD}{}
+\define@cmdkey [GR] {cl} {RE}{}
+\define@cmdkey [GR] {cl} {RS}{}
+\define@cmdkey [GR] {cl} {prefix}{}
+\define@cmdkey [GR] {cl} {prefixx}{}
+\define@cmdkey [GR] {cl} {prefixxx}{}
+\define@cmdkey [GR] {cl} {prefixxxx}{}
+\define@cmdkey [GR] {cl} {prefixxxxx}{}
+\define@cmdkey [GR] {cl} {form}{}
+\define@cmdkey [GR] {cl} {num}{}
+\define@cmdkey [GR] {cl} {rotation}{}
+\define@cmdkey [GR] {cl} {x}{}
+\define@cmdkey [GR] {cl} {y}{}
+\define@cmdkey [GR] {cl} {r}{}
+\define@cmdkey [GR] {cl} {d}{}
+\presetkeys [GR] {cl} {RA = 4,
+ RB = 3,
+ RC = 2,
+ RD = 1,
+ RE = 0.5,
+ RS = 0,
+ form = 1,
+ prefix = a,
+ prefixx = b,
+ prefixxx = c,
+ prefixxxx = d,
+ prefixxxxx = e,
+ num = {},
+ Math = false,
+ x = 0,
+ y = 0,
+ r = 0,
+ d = 0,
+ rotation = 0}{}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Tools Graphes particuliers
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Some tools
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grMathSep}{_}
+\newcommand*{\grLabelSep}{;}
+
+\newcommand*{\write@math}[3]{%
+ \Vertex[x = #1,y = #2,%
+ L = \cmdGR@cl@prefix\grMathSep{#3}]{\cmdGR@cl@prefix#3}}
+\newcommand*{\write@nomath}[3]{%
+ \Vertex[x = #1,y = #2]{\cmdGR@cl@prefix#3}}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Empty graphs
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grEmptyCycle}{\@ifstar%
+ \grEmptyCycleStar%
+ \grEmptyCycleNoStar}
+\newcommand*{\grEmptyCycleNoStar}[2][]{%
+ \begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \pgfmathsetcounter{tkz@gr@p}{#2-1}
+ \edef\tkz@auxctp{\thetkz@gr@p}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \pgfmathparse{360/#2*\V@x+\cmdGR@cl@rotation}
+ \let\tkz@angle\pgfmathresult%
+\pgfmathsetmacro{\x@result}{%
+ \cmdGR@cl@RA*cos(\tkz@angle)+\cmdGR@cl@r*cos(\cmdGR@cl@d)}
+ \pgfmathsetmacro{\y@result}{%
+ \cmdGR@cl@RA*sin(\tkz@angle)+\cmdGR@cl@r*sin(\cmdGR@cl@d)}
+ \ifGR@cl@Math%
+ \presetkeys [GR] {vertex} {Math = true}{}%
+ \Vertex[x = \x@result+\cmdGR@cl@x,%
+ y = \y@result+\cmdGR@cl@y,%
+ L = \cmdGR@cl@prefix\grMathSep{\V@x}]{\cmdGR@cl@prefix\V@x}%
+ \else%
+ \Vertex[x = \x@result+\cmdGR@cl@x,%
+ y = \y@result+\cmdGR@cl@y]{\cmdGR@cl@prefix\V@x}%
+ \fi%
+ }%
+ \endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\grEmptyCycleStar}[2][]{%
+ \begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \setcounter{tkz@gr@a}{0}
+ \setcounter{tkz@gr@b}{0}
+ \foreach \V@x in {#2}{\stepcounter{tkz@gr@b}{1}}
+ \foreach \V@x in {#2}{%
+ \pgfmathsetmacro{\x@result}{%
+ \cmdGR@cl@RA*cos((360/\thetkz@gr@b)*\thetkz@gr@a+\cmdGR@cl@rotation)%
+ +\cmdGR@cl@r*cos(\cmdGR@cl@d)%
+ }
+ \pgfmathsetmacro{\y@result}{%
+ \cmdGR@cl@RA*sin((360/\thetkz@gr@b)*\thetkz@gr@a+\cmdGR@cl@rotation)%
+ +\cmdGR@cl@r*sin(\cmdGR@cl@d)%
+ }
+ \ifGR@cl@Math%
+ \Vertex[%
+ x=\x@result+\cmdGR@cl@x,
+ y=\y@result+\cmdGR@cl@y,
+ L=$\V@x$]{\cmdGR@cl@prefix\thetkz@gr@a}%
+ \else%
+ \Vertex[%
+ x=\x@result+\cmdGR@cl@x,
+ y=\y@result+\cmdGR@cl@y,
+ L=\V@x]{\cmdGR@cl@prefix\thetkz@gr@a}%
+ \fi%
+ \stepcounter{tkz@gr@a}%
+ }
+ \endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grEmptyPath from (RV)
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grEmptyPath}{\@ifstar%
+ \grEmptyPathStar%
+ \grEmptyPathNoStar}
+\newcommand*{\grEmptyPathNoStar}[2][]{%
+\begingroup%
+\setkeys[GR]{cl}{#1}%
+\pgfmathsetcounter{tkz@gr@a}{#2-1}
+\edef\tkz@auxctp{\thetkz@gr@a}
+ \ifcase\cmdGR@cl@form
+\or
+\def\tkzb@result{0}
+\foreach \V@x in {0,...,\tkz@auxctp}{%
+ \pgfmathsetmacro{\x@result}{\cmdGR@cl@RA*(\V@x)*cos(\cmdGR@cl@rotation)}
+ \pgfmathsetmacro{\y@result}{\cmdGR@cl@RA*(\V@x)*sin(\cmdGR@cl@rotation)}
+ \pgfmathsetmacro{\x@coord}{\x@result+\cmdGR@cl@x+\cmdGR@cl@r*cos(\cmdGR@cl@d)}
+ \pgfmathsetmacro{\y@coord}{\y@result+\cmdGR@cl@y+
+ \cmdGR@cl@r*sin(\cmdGR@cl@d)+\cmdGR@cl@RS}
+ \ifGR@cl@Math%
+ \presetkeys [GR] {vertex} {Math = true}{}%
+ \ifthenelse{\equal{\cmdGR@cl@num}{}}{%
+ \write@math{\x@coord}{\y@coord}{\V@x}}{%
+ \write@math{\x@coord}{\y@coord}{\V@x\grLabelSep\cmdGR@cl@num}}%
+ \else
+ \ifthenelse{\equal{\cmdGR@cl@num}{}}{%
+ \write@nomath{\x@coord}{\y@coord}{\V@x}}{%
+ \write@nomath{\x@coord+\cmdGR@cl@x}{\y@coord}{%
+ \V@x\grLabelSep\cmdGR@cl@num}}%
+ \fi}%
+ \or
+\foreach \V@x in {0,...,\tkz@auxctp}{%
+ \pgfmathsetmacro{\x@result}{%
+ \cmdGR@cl@RA*(2*\V@x-\thetkz@gr@a)*0.5*cos(\cmdGR@cl@rotation)}
+ \pgfmathsetmacro{\y@result}{%
+ \cmdGR@cl@RA*(2*\V@x-\thetkz@gr@a)*0.5*sin(\cmdGR@cl@rotation)}
+ \pgfmathsetmacro{\x@coord}{%
+ \x@result+\cmdGR@cl@x+\cmdGR@cl@r*cos(\cmdGR@cl@d)}
+ \pgfmathsetmacro{\y@coord}{%
+ \y@result+\cmdGR@cl@y+\cmdGR@cl@r*sin(\cmdGR@cl@d)+\cmdGR@cl@RS}
+ \ifGR@cl@Math%
+ \presetkeys [GR] {vertex} {Math = true}{}%
+ \ifthenelse{\equal{\cmdGR@cl@num}{}}{%
+ \write@math{\x@coord}{\y@coord}{\V@x}}{%
+ \write@math{\x@coord}{\y@coord}{\cmdGR@cl@num\grLabelSep\V@x}}%
+ \else
+ \ifthenelse{\equal{\cmdGR@cl@num}{}}{%
+ \write@nomath{\x@coord}{\y@coord}{\V@x}}{%
+ \write@nomath{\x@coord}{\y@coord}{\cmdGR@cl@num\grLabelSep\V@x}}%
+ \fi
+}%
+\fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\grEmptyPathStar}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \setcounter{tkz@gr@a}{0}
+ \ifcase\cmdGR@cl@form
+ \or
+ % form 1
+ \foreach \V@x in {#2}{%
+ \pgfmathsetmacro{\x@result}{\cmdGR@cl@RA*\value{tkz@gr@a}*cos(\cmdGR@cl@rotation)%
+ +\cmdGR@cl@r*cos(\cmdGR@cl@d)}%
+ \pgfmathsetmacro{\y@result}{\cmdGR@cl@RA*\value{tkz@gr@a}*sin(\cmdGR@cl@rotation)%
+ +\cmdGR@cl@r*sin(\cmdGR@cl@d)}%
+ \ifGR@cl@Math%
+ \Vertex[%
+ x=\x@result+\cmdGR@cl@x,
+ y=\y@result+\cmdGR@cl@y,
+ L=$\V@x$]{\cmdGR@cl@prefix\thetkz@gr@a}%
+ \else%
+ \Vertex[%
+ x=\x@result+\cmdGR@cl@x,
+ y=\y@result+\cmdGR@cl@y,
+ L=\V@x]{\cmdGR@cl@prefix\thetkz@gr@a}%
+ \fi%
+ \stepcounter{tkz@gr@a}%
+ }%
+ \or
+ % form 2
+ \setcounter{tkz@gr@a}{0}
+ \setcounter{tkz@gr@b}{0}
+ \foreach \V@x in {#2}{\stepcounter{tkz@gr@b}{1}}
+ \foreach \V@x in {#2}{%
+ \pgfmathsetmacro{\x@result}{\cmdGR@cl@RA*(2*\value{tkz@gr@a}-\value{tkz@gr@b}+1)*0.5%
+ *cos(\cmdGR@cl@rotation)%
+ +\cmdGR@cl@r*cos(\cmdGR@cl@d)%
+ }
+ \pgfmathsetmacro{\y@result}{\cmdGR@cl@RA*(2*\value{tkz@gr@a}-\value{tkz@gr@b}+1)*0.5%
+ *sin(\cmdGR@cl@rotation)%
+ +\cmdGR@cl@r*sin(\cmdGR@cl@d)%
+ }
+ \ifGR@cl@Math%
+ \Vertex[%
+ x=\x@result+\cmdGR@cl@x,
+ y=\y@result+\cmdGR@cl@y,
+ L=$\V@x$]{\cmdGR@cl@prefix\thetkz@gr@a}%
+ \else%
+ \Vertex[%
+ x=\x@result+\cmdGR@cl@x,
+ y=\y@result+\cmdGR@cl@y,
+ L=\V@x]{\cmdGR@cl@prefix\thetkz@gr@a}%
+ \fi%
+ \stepcounter{tkz@gr@a}
+ }
+ \fi
+ \endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grEmptyStar
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grEmptyStar}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \pgfmathsetcounter{tkz@gr@a}{#2-1}
+ \ifGR@cl@Math\presetkeys [GR] {vertex} {Math = true}{}%
+ \write@math{0}{0}{\thetkz@gr@a}%
+ \else
+ \write@nomath{0}{0}{\thetkz@gr@a}%
+ \fi
+ \grEmptyCycle[#1]{\thetkz@gr@a}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grEmptyGrid
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\grEmptyGrid}[3][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \pgfmathsetcounter{tkz@gr@a}{#2-1}
+ \edef\tkz@auxctpa{\thetkz@gr@a}
+ \pgfmathsetcounter{tkz@gr@b}{#3-1}
+ \edef\tkz@auxctpb{\thetkz@gr@b}
+ \foreach \V@x in {0,...,\tkz@auxctpa}{%
+ \foreach \V@y in {0,...,\tkz@auxctpb}{%
+ \ifGR@cl@Math\presetkeys [GR] {vertex} {Math = true}{}%
+ \write@math{\cmdGR@cl@RA*\V@x}{\cmdGR@cl@RB*\V@y}{\V@x\grLabelSep\V@y}%
+ \else
+ \write@nomath{\cmdGR@cl@RA*\V@x}{\cmdGR@cl@RB*\V@y}{\V@x\grLabelSep\V@y}%
+ \fi}%
+ }
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grEmptyLadder
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grEmptyLadder}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grEmptyPath[#1,RS=0]{#2}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grEmptyPath[#1,prefix=\tkzb@ptemp,RS=\tkzb@rtemp]{#2}
+\endgroup%
+}
+
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Edges
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeInGraphFromOneToComp}[4][]{% #4
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@ta}{#3-1}
+ \edef\tkz@auxctp{\thetkz@gr@ta}
+ \foreach \cx in {0,...,\tkz@auxctp}{%
+ \ifthenelse{\equal{\cx}{#4}}{}{\Edge[#1](#2#4)(#2\cx)}%
+ }%
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% new tool EdgeInGraphLoop loop 0--1--2.........n--0
+% star 0--1--2.........n-
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeInGraphLoop}{\@ifstar%
+ \EdgeInGraphLoopStar%
+ \EdgeInGraphLoopNoStar}
+\newcommand*{\EdgeInGraphLoopNoStar}[3][]{% #4
+\begingroup%
+\setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@ta}{#3-1}
+ \setcounter{tkz@gr@n}{0}
+ \Edge[#1](#2\thetkz@gr@ta)(#2\thetkz@gr@n)
+ \pgfmathaddtocounter{tkz@gr@ta}{-1}
+ \edef\tkz@auxctp{\thetkz@gr@ta}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \stepcounter{tkz@gr@n}
+ \Edge[#1](#2\V@x)(#2\thetkz@gr@n)%
+ }%
+\endgroup%
+}
+\newcommand*{\EdgeInGraphLoopStar}[3][]{% #4
+\begingroup%
+\setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@ta}{#3-2}
+ \setcounter{tkz@gr@n}{0}
+ \edef\tkz@auxctp{\thetkz@gr@ta}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \stepcounter{tkz@gr@n}
+ \Edge[#1](#2\V@x)(#2\thetkz@gr@n)%
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% new tool EdgeInGraphMod replace nextmod
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeInGraphMod}{\@ifstar%
+ \EdgeInGraphModStar%
+ \EdgeInGraphModNoStar}
+\newcommand*{\EdgeInGraphModNoStar}[4][]{% #2 order
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@ta}{#3-1}
+ \edef\tkz@auxctp{\thetkz@gr@ta}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \pgfmathsetcounter{tkz@gr@tb}{Mod(\V@x+#4,#3)}
+ \Edge[#1](#2\thetkz@gr@tb)(#2\V@x)%
+ }%
+\endgroup%
+}
+%#1 prefix #2 order #3 add #4 start #5 décalage
+\newcommand*{\EdgeInGraphModStar}[6][]{%
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@ta}{#5}
+ \whiledo{\value{tkz@gr@ta}<#3}{%
+ \pgfmathsetcounter{tkz@gr@n}{Mod(\thetkz@gr@ta+#4,#3)}
+ \Edge[#1](#2\thetkz@gr@ta)(#2\thetkz@gr@n)
+ \pgfmathaddtocounter{tkz@gr@ta}{#6}%
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% EdgeInGraphModLoop dep #4 add #3 mod #2 until #4
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand*{\EdgeInGraphModLoop}[5][]{% #2 order
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \setcounter{tkz@gr@ta}{#5}
+ \setcounter{tkz@gr@n}{#3}
+ \whiledo{\not\equal{\value{tkz@gr@n}}{#5}}{%
+ \pgfmathsetcounter{tkz@gr@n}{Mod(\thetkz@gr@ta+#4,#3)}
+ \Edge[#1](#2\thetkz@gr@ta)(#2\thetkz@gr@n)%
+ \setcounter{tkz@gr@ta}{\thetkz@gr@n}
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% EdgeIdentity
+% la version étoilée permet d'utliser une sélection
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeIdentity}{\@ifstar%
+ \EdgeIdentityStar%
+ \EdgeIdentityNoStar}
+\newcommand*{\EdgeIdentityNoStar}[4][]{%
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@e}{#4-1}
+ \edef\tkz@auxctp{\thetkz@gr@e}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \Edge[#1](#2\V@x)(#3\V@x)%
+ }%
+\endgroup%
+}
+\newcommand*{\EdgeIdentityStar}[4][]{%
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \foreach \V@x in {#4}{%
+ \Edge[#1](#2\V@x)(#3\V@x)%
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% EdgeFromOneToAll vertex #1#3 through #2 0...#2 n-1 #5 order of the graph
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeFromOneToAll}[5][]{% #4 = order of the graph
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@e}{#5-1}
+ \edef\tkz@auxctp{\thetkz@gr@e}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \Edge[#1](#2#4)(#3\V@x)%
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% EdgeFromOneToSeq vertex #1#3 through #2#4...#2#5
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeFromOneToSeq}[6][]{% #4
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \foreach \V@x in {#5,...,#6}{%
+ \Edge[#1](#2#4)(#3\V@x)%
+ }%
+\endgroup%
+} %<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% EdgeFromOneToSel vertex #1#3 through #2#4...#2#5
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeFromOneToSel}[5][]{% #4
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \foreach \V@x in {#5}{%
+ \Edge[#1](#2#4)(#3\V@x)%
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% EdgeFromOneToComplement vertex #1#3 through #2#4...#2#5
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeFromOneToComp}[5][]{%
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@e}{#5-1}
+ \edef\tkz@auxctp{\thetkz@gr@e}
+ \foreach \cx in {0,...,\tkz@auxctp}{%
+ \ifthenelse{\equal{\cx}{#4}}{}{\Edge[#1](#2#4)(#3\cx)}%
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% new tool EdgeMod replace nextmod
+% identity with step like nextmod ???
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeMod}{\@ifstar%
+ \EdgeModStar%
+ \EdgeModNoStar}
+\newcommand*{\EdgeModNoStar}[5][]{%#3 order #4 step
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \pgfmathsetcounter{tkz@gr@e}{#4-1}
+ \edef\tkz@auxctp{\thetkz@gr@e}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \pgfmathsetcounter{tkz@gr@tb}{Mod(\V@x+#5,#4)}
+ \Edge[#1](#2\V@x)(#3\thetkz@gr@tb)%
+ }%
+\endgroup%
+}
+%#1 prefix #2 prefix #3 order #4 order inf #5 step
+\newcommand*{\EdgeModStar}[6][]{%
+\begingroup%
+ \setkeys[GR]{edge}{#1}%
+ \setcounter{tkz@gr@ta}{0}
+ \whiledo{\value{tkz@gr@ta}<#4}{%
+ \pgfmathsetcounter{tkz@gr@tb}{Mod(\thetkz@gr@ta+#5,#4)}
+ \Edge[#1](#2\thetkz@gr@ta)(#3\thetkz@gr@tb)%
+ \pgfmathaddtocounter{tkz@gr@ta}{#6}}%
+\endgroup%
+}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% new tool EdgeInGraphSeq sequence i--i+1--.....--j
+% or i--i+k--...--j
+% #1 options #2 graph #3 from #4 to
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeInGraphSeq}[4][]{% #4
+\begingroup%
+\setkeys[GR]{edge}{#1}%
+ \foreach \V@x in {#3,...,#4}{%
+ \pgfmathsetcounter{tkz@gr@n}{\V@x+1}
+ \Edge[#1](#2\V@x)(#2\thetkz@gr@n)}%
+\endgroup%
+}%
+
+%%%%%%%%%%% NEW COMMANDS
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% new tool EdgeSeq sequence
+% #1 options #2 first graph #3 second graph #4 from #5 to
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\EdgeSequence}[5][]{%
+\begingroup%
+\setkeys[GR]{edge}{#1}%
+ \foreach \V@x in {#4,...,#5}{%
+ \pgfmathsetcounter{tkz@gr@n}{\V@x+1}
+ \Edge[#1](#2\V@x)(#3\thetkz@gr@n)}%
+\endgroup%
+}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% EdgeDoubleMod by RV
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\EdgeDoubleMod}[9]{%
+\begingroup%
+ \foreach \V@x in {0,...,#9}{%
+ \pgfmathsetcounter{tkz@gr@c}{Mod(#3+(#4*\V@x),#2)}
+ \pgfmathsetcounter{tkz@gr@n}{Mod(#7+(#8*\V@x),#6)}
+ \Edge(#1\thetkz@gr@c)(#5\thetkz@gr@n)
+ }%
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grPath
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grPath}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grEmptyPath[#1]{#2}
+ \ifthenelse{\equal{\cmdGR@cl@num}{}}{%
+ \ifthenelse{\equal{#2}{1}}{}{%
+ \EdgeInGraphLoop*{\cmdGR@cl@prefix}{#2}%
+ }}{%
+ \ifthenelse{\equal{#2}{1}}{}{%
+ \ifcase\cmdGR@cl@form
+ \or
+ \pgfmathsetcounter{tkz@gr@ta}{#2-2}
+ \setcounter{tkz@gr@n}{0}
+ \edef\tkz@auxctp{\thetkz@gr@ta}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \stepcounter{tkz@gr@n}
+ \Edge(\cmdGR@cl@prefix\V@x\grLabelSep\cmdGR@cl@num)%
+ (\cmdGR@cl@prefix\thetkz@gr@n\grLabelSep\cmdGR@cl@num)%
+ }%
+ \or
+ \EdgeInGraphLoop*{\cmdGR@cl@prefix\cmdGR@cl@num\grLabelSep}{#2}
+ \fi%
+ }}
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grGrid
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grGrid}[3][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grEmptyGrid[#1]{#2}{#3}
+ \pgfmathsetcounter{tkz@gr@a}{#2-2}
+ \edef\tkz@auxctpa{\thetkz@gr@a}
+ \pgfmathsetcounter{tkz@gr@b}{#3-2}
+ \edef\tkz@auxctpb{\thetkz@gr@b}
+ \foreach \V@x in {0,...,\tkz@auxctpa}{%
+ \foreach \V@y in {0,...,\tkz@auxctpb}{%
+ \pgfmathsetcounter{tkz@gr@c}{\V@x+1}
+ \pgfmathsetcounter{tkz@gr@d}{\V@y+1}
+ \Edge(\cmdGR@cl@prefix\V@x\grLabelSep\V@y)%
+ (\cmdGR@cl@prefix\V@x\grLabelSep\thetkz@gr@d)
+ \Edge(\cmdGR@cl@prefix\V@x\grLabelSep\V@y)%
+ (\cmdGR@cl@prefix\thetkz@gr@c\grLabelSep\V@y)%
+ }%
+ }%
+ \pgfmathsetcounter{tkz@gr@a}{#2-2}
+ \pgfmathsetcounter{tkz@gr@b}{#3-1}
+ \edef\tkz@auxctpa{\thetkz@gr@a}
+ \foreach \V@x in {0,...,\tkz@auxctpa}{%
+ \pgfmathsetcounter{tkz@gr@c}{\V@x+1}
+ \Edge(\cmdGR@cl@prefix\V@x\grLabelSep\thetkz@gr@b)%
+ (\cmdGR@cl@prefix\thetkz@gr@c\grLabelSep\thetkz@gr@b)%
+ }%
+ \pgfmathsetcounter{tkz@gr@a}{#2-1}
+ \pgfmathsetcounter{tkz@gr@b}{#3-2}
+ \edef\tkz@auxctpb{\thetkz@gr@b}
+ \foreach \V@y in {0,...,\tkz@auxctpb}{%
+ \pgfmathsetcounter{tkz@gr@d}{\V@y+1}
+ \Edge(\cmdGR@cl@prefix\thetkz@gr@a\grLabelSep\V@y)%
+ (\cmdGR@cl@prefix\thetkz@gr@a\grLabelSep\thetkz@gr@d)%
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grComplete
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grComplete}[2][]{% #1 options #2 ordre du graphe
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grEmptyCycle[#1]{#2}%
+ \pgfmathsetcounter{tkz@gr@a}{#2-1}
+ \edef\tkz@auxctp{\thetkz@gr@a}
+ \foreach \ia in {0,...,\tkz@auxctp}%
+ {\foreach \ib in {\ia,...,\tkz@auxctp}
+ {\Edge(\cmdGR@cl@prefix\ia)(\cmdGR@cl@prefix\ib)}%
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grCycle
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grCycle}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}
+ \grEmptyCycle[#1]{#2}
+ \EdgeInGraphLoop{\cmdGR@cl@prefix}{#2}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grLCF
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand{\grLCF}[3][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \setcounter{tkz@gr@a}{#3}
+ \setcounter{tkz@gr@b}{0}
+ \foreach \V@x in {#2}{\stepcounter{tkz@gr@b}}
+ \pgfmathsetcounter{tkz@gr@c}{\thetkz@gr@a * \thetkz@gr@b}
+ \setcounter{tkz@gr@b}{\thetkz@gr@c}
+ \grCycle[#1]{\thetkz@gr@c}
+%<––––––––––––––––––––––––– End Vertex ––––––––––––––––––––––––––––––––––––>
+ \pgfmathsetcounter{tkz@gr@a}{#3-1}
+ \edef\tkz@auxctp{\thetkz@gr@a}
+ \setcounter{tkz@gr@e}{0}
+ \foreach \V@k in {0,...,\tkz@auxctp}{%
+ \foreach \n in {#2}{%
+ \ifthenelse{\n < 0}{%
+ \pgfmathsetcounter{tkz@gr@b}{\n+\thetkz@gr@c}}{%
+ \pgfmathsetcounter{tkz@gr@b}{\n}}
+ \pgfmathsetcounter{tkz@gr@n}%
+ {Mod(\thetkz@gr@e+\thetkz@gr@b,\thetkz@gr@c)}
+ \Edge(\cmdGR@cl@prefix\thetkz@gr@e)(\cmdGR@cl@prefix\thetkz@gr@n)
+ \stepcounter{tkz@gr@e}%
+ }%
+ }%
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grStar
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grStar}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grEmptyStar[#1]{#2}
+ \pgfmathsetcounter{tkz@gr@p}{#2-1}
+ \EdgeInGraphFromOneToComp{\cmdGR@cl@prefix}{#2}{\thetkz@gr@p}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grWheel
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grWheel}[2][]{
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grStar[#1]{#2}
+ \pgfmathsetcounter{tkz@gr@e}{#2-1}
+ \EdgeInGraphLoop{\cmdGR@cl@prefix}{\thetkz@gr@e}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grSQCircle
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grSQCycle}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grCycle[#1]{#2}%
+ \EdgeInGraphMod{\cmdGR@cl@prefix}{#2}{2}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grLadder
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grLadder}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grPath[#1,RS=0]{#2}{0}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RS}
+ \grPath[#1,prefix=\tkzb@ptemp,RS=\tkzb@rtemp]{#2}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{#2}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grPrism
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grPrism}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grCycle[#1]{#2}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grCycle[#1,RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{#2}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{#2}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grCompleteBipartite
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grCompleteBipartite}[3][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \pgfmathsetcounter{tkz@gr@a}{#2-1}
+ \pgfmathparse{(\cmdGR@cl@RA * \thetkz@gr@a) /2}
+ \let\tkzRAxpos\pgfmathresult%
+ \pgfmathsetcounter{tkz@gr@a}{#3-1}
+ \pgfmathparse{(\cmdGR@cl@RB * \thetkz@gr@a) /2}
+ \let\tkzRBxpos\pgfmathresult%
+ \ifdim\tkzRBxpos pt > \tkzRAxpos pt\relax%
+ \pgfmathadd{\tkzRBxpos}{-\tkzRAxpos}
+ \let\tkzaxpos\pgfmathresult%
+ \def\tkzbxpos{0}
+ \else%
+ \pgfmathadd{\tkzRAxpos}{-\tkzRBxpos}
+ \let\tkzbxpos\pgfmathresult%
+ \def\tkzaxpos{0}
+ \fi%
+ \begin{scope}[xshift=\tkzaxpos cm]
+ \grEmptyPath[#1,RS=0]{#2}
+ \end{scope}
+ \begin{scope}[xshift=\tkzbxpos cm]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RS}
+ \edef\tkzb@stemp{\cmdGR@cl@RB}
+ \grEmptyPath[#1,RA=\tkzb@stemp,prefix=\tkzb@ptemp,RS=\tkzb@rtemp]{#3}
+ \end{scope}
+ \pgfmathsetcounter{tkz@gr@p}{#2-1}
+ \pgfmathsetcounter{tkz@gr@e}{#3-1}
+ \edef\tkz@auxctp{\thetkz@gr@e}
+ \foreach \cpx in {0,...,\tkz@auxctp}{%
+ \EdgeFromOneToAll{\cmdGR@cl@prefixx}{\cmdGR@cl@prefix}{\cpx}{#2}
+ }%
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grTriangularGrid
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grTriangularGrid}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}
+ \ifcase\cmdGR@cl@form
+ \or
+%<––––––––––––––––––––– form 1 equilateral triangle ––––––––––––––––––––––––>
+ \pgfmathsetcounter{tkz@gr@a}{#2-1}
+ %\pgfmathsetcounter{tkz@gr@b}{#2}
+ \edef\tkz@auxctp{\thetkz@gr@a}
+ \foreach \lg in {0,...,\tkz@auxctp}{%
+ \pgfmathsetcounter{tkz@gr@b}{#2-\lg}
+ \setcounter{tkz@gr@b}{\thetkz@gr@b}
+ \edef\tkzb@rtemp{\cmdGR@cl@RA}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefix}
+ \pgfmathmultiply{\cmdGR@cl@RA}{\lg}
+ \let\myresult\pgfmathresult
+ \pgfmathparse{\cmdGR@cl@RA*\lg/2}
+ \let\tkzaxpos\pgfmathresult
+ \begin{scope}[xshift=\tkzaxpos cm]
+ \grPath[#1,%
+ RA = \tkzb@rtemp,%
+ RS = \myresult,%
+ prefix = \tkzb@ptemp,%
+ num = \lg]{\thetkz@gr@b}%
+ \end{scope}%
+ }
+ \or
+%<––––––––––––––––––––––––––– form 2 right triangle ––––––––––––––––––––––––>
+ \pgfmathsetcounter{tkz@gr@a}{#2-1}
+ % \pgfmathsetcounter{tkz@gr@b}{#2}
+ \edef\tkz@auxctp{\thetkz@gr@a}
+ \foreach \lg in {0,...,\tkz@auxctp}{%
+ \pgfmathsetcounter{tkz@gr@b}{#2-\lg}
+ \setcounter{tkz@gr@b}{\thetkz@gr@b}
+ \edef\tkzb@rtemp{\cmdGR@cl@RA}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefix}
+ \pgfmathmultiply{\cmdGR@cl@RA}{\lg}
+ \let\myresult\pgfmathresult
+ \grPath[#1,%
+ RA = \tkzb@rtemp,%
+ RS = \myresult,%
+ prefix = \tkzb@ptemp,%
+ num = \lg,form=1]{\thetkz@gr@b}%
+ }
+ \or
+ \pgfmathsetcounter{tkz@gr@a}{#2-1}
+ \pgfmathsetcounter{tkz@gr@b}{#2}
+ \edef\tkz@auxctp{\thetkz@gr@a}
+ \foreach \lg in {0,...,\tkz@auxctp}{%
+ \pgfmathsetcounter{tkz@gr@b}{#2-\lg}
+ \setcounter{tkz@gr@b}{\thetkz@gr@b}
+ \edef\tkzb@rtemp{\cmdGR@cl@RA}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefix}
+ \pgfmathmultiply{\cmdGR@cl@RA}{\lg}
+ \let\myresult\pgfmathresult
+ \begin{scope}[xshift=\myresult cm]
+ \grPath[#1,%
+ RA = \tkzb@rtemp,%
+ RS = \myresult,%
+ prefix = \tkzb@ptemp,%
+ num = \lg,form=1]{\thetkz@gr@b}%
+ \end{scope}%
+ }
+ \fi%
+ \pgfmathsetcounter{tkz@gr@a}{#2-2}
+ \edef\tkz@auxctp{\thetkz@gr@a}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \pgfmathsetcounter{tkz@gr@e}{\thetkz@gr@a-\V@x}
+ \edef\tkz@auxctpb{\thetkz@gr@e}
+ \foreach \V@y in {0,...,\tkz@auxctpb}{%
+ \pgfmathsetcounter{tkz@gr@b}{\V@y+1}
+ \Edge(\cmdGR@cl@prefix\V@x\grLabelSep\V@y)%
+ (\cmdGR@cl@prefix\V@x\grLabelSep\thetkz@gr@b)
+ \pgfmathsetcounter{tkz@gr@p}{\V@x+1}
+ \Edge(\cmdGR@cl@prefix\V@x\grLabelSep\thetkz@gr@b)%
+ (\cmdGR@cl@prefix\thetkz@gr@p\grLabelSep\V@y)
+ }%
+ }
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grHeawood
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grHeawood}[1][]{% #1 options #2 ordre du graphe
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grCycle[#1]{14}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{14}{5}{0}{2}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grCirculant #1 option #2 vertex #3 add k
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grCirculant}[3][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}
+ \grEmptyCycle[#1]{#2}%
+ \pgfmathisprime{#2}%
+ \ifnum\pgfmathresult=1\relax
+ \foreach \kci in {#3}{%
+ \EdgeInGraphMod{\cmdGR@cl@prefix}{#2}{\kci}}%
+ \else
+ \foreach \kci in {#3}{%
+ \pgfmathisfactor{#2}{\kci}%
+ \ifnum\pgfmathresult=1\relax
+ \pgfmathsetcounter{tkz@gr@a}{\kci-1}
+ \edef\tkz@auxctp{\thetkz@gr@a}
+ \foreach \start in {0,...,\tkz@auxctp}{%
+ \setcounter{tkz@gr@i}{\start}%
+ \setcounter{tkz@gr@n}{#2}%
+ \whiledo{\not\equal{\value{tkz@gr@n}}{\start}}{%
+ \pgfmathsetcounter{tkz@gr@n}{Mod(\thetkz@gr@i+\kci,#2)}
+ \Edge(\cmdGR@cl@prefix\thetkz@gr@i)%
+ (\cmdGR@cl@prefix\thetkz@gr@n)%
+ \pgfmathsetcounter{tkz@gr@i}{\thetkz@gr@n}%
+ }%
+ }%
+ \else
+ \EdgeInGraphMod{\cmdGR@cl@prefix}{#2}{\kci}
+ \fi
+ }%
+ \fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grPetersenG
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grGeneralizedPetersen}[3][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grCycle[#1]{#2}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@pptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefix}
+ \grCirculant[#1,RA=\tkzb@rtemp,prefix=\tkzb@pptemp]{#2}{#3}
+ \EdgeIdentity{\tkzb@ptemp}{\cmdGR@cl@prefixx}{#2}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grPetersen
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grStartwo}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \pgfmathsetcounter{tkz@gr@e}{3*#2-2}
+ \pgfmathsetcounter{tkz@gr@a}{3*#2-1}
+ \grEmptyCycle[#1]{\thetkz@gr@a}
+ \EdgeInGraphMod{\cmdGR@cl@prefix}{\thetkz@gr@a}{#2}%
+\endgroup%
+}
+
+\newcommand*{\grPetersen}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \ifcase\cmdGR@cl@form
+ \or
+ \grCycle[#1]{5}%
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grStartwo[#1,RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{2}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{5}
+ \or
+ \grCycle[#1]{6}
+ \begin{scope}[rotate=30]
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grStar[#1,RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{4}
+ \end{scope}
+ \setcounter{tkz@gr@a}{2}
+ \foreach \V@x in {0,...,5}{%
+ \ifthenelse{\equal{\thetkz@gr@a}{-1}}{%
+ \setcounter{tkz@gr@a}{2}}{%
+ }%
+ \Edge(\cmdGR@cl@prefix\V@x)(\cmdGR@cl@prefixx\thetkz@gr@a)
+ \addtocounter{tkz@gr@a}{-1}%
+ }%
+ \or
+ \grEmptyStar[#1]{10}
+ \EdgeInGraphLoop{\cmdGR@cl@prefix}{9}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{9}{4}{0}{3}
+ \foreach \V@x in {2,5,8}{%
+ \Edge(\cmdGR@cl@prefix\V@x)(\cmdGR@cl@prefix 9)}%
+ \fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grPlatonic
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grTetrahedral}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \begin{scope}[rotate=90]
+ \grWheel[#1]{4}%
+ \end{scope}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grOctahedral
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grOctahedral}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grComplete[#1]{3}%
+ \begin{scope}[rotate=-60]
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grComplete[#1,RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{3}%
+ \end{scope}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{3}
+ \EdgeMod{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{3}{1}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grCubicalGraph
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grCubicalGraph}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grCycle[#1]{4}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grCycle[#1,RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{4}
+ \ifcase\cmdGR@cl@form
+ \or
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{4}
+ \or
+ \EdgeMod*{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{4}{1}{2}
+ \EdgeMod*{\cmdGR@cl@prefixx}{\cmdGR@cl@prefix}{4}{1}{2}
+ \fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grIcosahedral
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grIcosahedral}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \ifcase\cmdGR@cl@form
+ \or
+ \grCycle[#1]{6}%
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grCirculant[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{6}{2}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{6}
+ \EdgeMod{\cmdGR@cl@prefixx}{\cmdGR@cl@prefix}{6}{1}
+ \EdgeMod{\cmdGR@cl@prefixx}{\cmdGR@cl@prefix}{6}{-1}
+ \or
+ \grCycle[#1]{3}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{6}%
+ \begin{scope}[rotate=60]
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \grCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{3}%
+ \end{scope}
+ \setcounter{tkz@gr@a}{2}
+ \foreach \st in {5,0,1}{%
+ \foreach \v in {0,1,2}{%
+ \pgfmathsetcounter{tkz@gr@n}{Mod((\thetkz@gr@a*\v)+\st,6)}%
+ \Edge(\cmdGR@cl@prefix\v)(\cmdGR@cl@prefixx\thetkz@gr@n)
+ }%
+ }%
+ \setcounter{tkz@gr@a}{2}
+ \foreach \v in {0,1,2}{%
+ \foreach \st in {0,1,2}{%
+ \pgfmathsetcounter{tkz@gr@n}{Mod(\thetkz@gr@a*\v+\st,6)}%
+ \Edge(\cmdGR@cl@prefixxx\v)(\cmdGR@cl@prefixx\thetkz@gr@n)
+ }%
+ }%
+ \fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grDodecahedral
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grDodecahedral}[1][]{%
+\begingroup%
+\setkeys[GR]{cl}{#1}%
+ \ifcase\cmdGR@cl@form
+ \or
+ \grCycle[#1]{10}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grCirculant[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{10}{2}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{10}
+ \or
+ \grCycle[#1]{5}
+ \begin{scope}[rotate=36]
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \grEmptyCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{5}
+ \end{scope}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grEmptyCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{5}
+ \begin{scope}[rotate=36]
+ \edef\tkzb@rtemp{\cmdGR@cl@RD}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxxx}
+ \grCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{5}%
+ \end{scope}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{5}
+ \EdgeIdentity{\cmdGR@cl@prefixxx}{\cmdGR@cl@prefixxxx}{5}
+ \EdgeIdentity{\cmdGR@cl@prefixx}{\cmdGR@cl@prefixxx}{5}
+ \EdgeMod{\cmdGR@cl@prefixx}{\cmdGR@cl@prefixxx}{5}{-1}
+ \or
+ \grCycle[#1]{5}
+ \begin{scope}[rotate=36]
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \grEmptyCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{5}
+ \end{scope}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{10}
+ \EdgeInGraphLoop{\cmdGR@cl@prefixxx}{5}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{5}{0}{1}%
+ {\cmdGR@cl@prefixx}{10}{0}{2}{5}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxx}{5}{0}{1}%
+ {\cmdGR@cl@prefixx}{10}{1}{2}{5}
+ \or
+ \grLCF[#1]{10,7,4,-4,-7,10,-4,7,-7,4}{2}
+ \or
+ \grCycle[#1]{10}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grEmptyCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{6}
+ \begin{scope}[rotate=45]
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \grEmptyCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{4}%
+ \end{scope}
+ \setcounter{tkz@gr@a}{0}
+ \foreach \v in {1,4,6,9}{%
+ \Edge(\cmdGR@cl@prefix\v)(\cmdGR@cl@prefixxx\thetkz@gr@a)
+ \stepcounter{tkz@gr@a}
+ }%
+ \setcounter{tkz@gr@a}{0}
+ \foreach \v in {2,1,5,4}{%
+ \Edge(\cmdGR@cl@prefixx\v)(\cmdGR@cl@prefixxx\thetkz@gr@a)
+ \stepcounter{tkz@gr@a}
+ }%
+ \setcounter{tkz@gr@a}{0}
+ \foreach \v in {0,2,3,5,7,8}{%
+ \Edge(\cmdGR@cl@prefix\v)(\cmdGR@cl@prefixx\thetkz@gr@a)
+ \stepcounter{tkz@gr@a}
+ }%
+ \Edge(\cmdGR@cl@prefixxx0)(\cmdGR@cl@prefixxx3)
+ \Edge(\cmdGR@cl@prefixxx1)(\cmdGR@cl@prefixxx2)
+ \Edge(\cmdGR@cl@prefixx0)(\cmdGR@cl@prefixx1)
+ \Edge(\cmdGR@cl@prefixx0)(\cmdGR@cl@prefixx5)
+ \Edge(\cmdGR@cl@prefixx3)(\cmdGR@cl@prefixx2)
+ \Edge(\cmdGR@cl@prefixx3)(\cmdGR@cl@prefixx4)
+\fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grMobiusKantor
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grMobiusKantor}[1][]{% #1 options #2 ordre du graphe
+\begingroup%
+ \setkeys[GR]{cl}{#1}
+ \ifcase\cmdGR@cl@form
+ \or
+ \grCycle[#1]{16}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{16}{5}{0}{2}
+ \or
+ \grCycle[#1]{8}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grCirculant[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{8}{3}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{8}
+ \or
+ \grCirculant[#1]{8}{3}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grCycle[#1,RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{8}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{8}
+ \fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grMoebiusLadder
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grMobiusLadder}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}
+ \grEmptyCycle[#1]{#2}
+ \pgfmathsetcounter{tkz@gr@p}{#2-1}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \grEmptyCycle[RA=\tkzb@rtemp,prefix=\tkzb@ptemp]{#2}%
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{#2}
+ \EdgeInGraphLoop*{\cmdGR@cl@prefix}{#2}
+ \EdgeInGraphLoop*{\cmdGR@cl@prefixx}{#2}
+ \Edge(\cmdGR@cl@prefix0)(\cmdGR@cl@prefixx\thetkz@gr@p)
+ \Edge(\cmdGR@cl@prefixx0)(\cmdGR@cl@prefix\thetkz@gr@p)
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grCocktailParty
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grCocktailParty}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \pgfmathsetcounter{tkz@gr@p}{#2-1}
+ \grPath[#1,RS=0]{#2}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RS}
+ \grPath[#1,prefix=\tkzb@ptemp,RS=\tkzb@rtemp]{#2}
+ \edef\tkz@auxctp{\thetkz@gr@p}
+ \foreach \cpx in {0,...,\tkz@auxctp}{%
+ \EdgeFromOneToComp{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{\cpx}{#2}
+ }
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grCrown
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grCrown}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \pgfmathsetcounter{tkz@gr@p}{#2-1}
+ \grEmptyPath[#1,RS=0]{#2}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RS}
+ \grEmptyPath[#1,prefix=\tkzb@ptemp,RS=\tkzb@rtemp]{#2}
+ \edef\tkz@auxctp{\thetkz@gr@p}
+ \foreach \cpx in {0,...,\thetkz@gr@p}{%
+ \EdgeFromOneToComp{\cmdGR@cl@prefix}{\cmdGR@cl@prefixx}{\cpx}{#2}
+ }
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grMcGee
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grMcGee}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{-12,7,-7}{8}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grRobertson
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grRobertson}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{8,4,7,4,8,5,7,4,7,8,4,5,7,8,4,8,4,8,4}{1}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grRobertsonWegner
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grRobertsonWegner}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{6,12}{15}
+ \EdgeInGraphMod{\cmdGR@cl@prefix}{30}{9}{1}{6}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{30}{15}{2}{6}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{30}{9}{3}{6}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grDoyle
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grDoyle}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \ifcase\cmdGR@cl@form
+ \or
+ \grCycle[#1]{9}
+ \begin{scope}[rotate=18]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grCirculant[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{9}{2}
+ \end{scope}
+ \EdgeMod{\cmdGR@cl@prefixx}{\cmdGR@cl@prefix}{9}{1}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \grCirculant[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{9}{4}
+ \EdgeIdentity{\cmdGR@cl@prefix}{\cmdGR@cl@prefixxx}{9}
+ \EdgeMod{\cmdGR@cl@prefixx}{\cmdGR@cl@prefixxx}{9}{1}
+ \or
+ \grCycle[#1]{27}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{0}{3}
+ {\cmdGR@cl@prefix}{27}{13}{3}{9}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{1}{3}
+ {\cmdGR@cl@prefix}{27}{5}{3}{9}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{0}{3}
+ {\cmdGR@cl@prefix}{27}{20}{3}{9}
+ \or
+ \grCycle[#1]{27}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{17}{1}
+ {\cmdGR@cl@prefix}{27}{10}{-2}{4}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{26}{1}
+ {\cmdGR@cl@prefix}{27}{19}{-2}{4}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{8}{1}
+ {\cmdGR@cl@prefix}{27}{1}{-2}{4}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{4}{1}
+ {\cmdGR@cl@prefix}{27}{27}{-2}{3}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{8}{1}
+ {\cmdGR@cl@prefix}{27}{1}{-2}{4}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{14}{1}
+ {\cmdGR@cl@prefix}{27}{7}{-2}{2}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{27}{23}{1}
+ {\cmdGR@cl@prefix}{27}{16}{-2}{2}
+ \Edge(\cmdGR@cl@prefix9)(\cmdGR@cl@prefix13)%
+ \Edge(\cmdGR@cl@prefix18)(\cmdGR@cl@prefix22)%
+ \fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grDesargues
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grDesargues}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \ifcase\cmdGR@cl@form
+ \or
+ \grLCF[#1]{5,-5,9,-9}{5}
+ \or
+ \grGeneralizedPetersen[#1]{10}{3}
+ \fi
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grKonisberg
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% #1 prefix #2 indice #2 prefix #3 indice choisie entre #4 et #5 ...
+\newcommand{\grKonisberg}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grCycle[#1]{4}
+ \Edge[style={bend left}](\cmdGR@cl@prefix1)(\cmdGR@cl@prefix2)
+ \Edge[style={bend left}](\cmdGR@cl@prefix2)(\cmdGR@cl@prefix3)
+ \Edge(\cmdGR@cl@prefix0)(\cmdGR@cl@prefix2)
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grWong
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand{\grWong}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{8,4,12,4,8,4}{5}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{30}{15}{0}{3}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{30}{16}{1}{6}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{30}{18}{4}{6}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grTutte
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand{\grTutteCoxeter}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{-13,-9,7,-7,9,13}{5}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grFoster
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand{\grFoster}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{17,-9,37,-37,9,-17}{15}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grFolkman
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand{\grFolkman}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{5,-7,-7,5}{5}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grFranklin
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand{\grFranklin}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{5,-5}{6}
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grNauru
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand{\grNauru}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{5, −9, 7, −7, 9, −5}{4}
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grDick
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand{\grDick}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{5,-5,13,-13}{8}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grHarries
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\newcommand{\grHarries}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \grLCF[#1]{-29,-19,-13,13,21,-27,27,33,-13,13,19,-21,-33,29}{5}
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grAndrasfai
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcounter{tkza@tmp}
+ \newcommand*{\grAndrasfai}[2][]{%
+ \begingroup
+ \setkeys[GR]{cl}{#1}%
+ \pgfmathsetcounter{tkz@bg@cnt}{3*#2-1}
+ \grEmptyCycle[#1]{\thetkz@bg@cnt}
+ \pgfmathsetcounter{tkza@tmp}{\thetkz@bg@cnt/2}
+ \pgfmathsetcounter{tkza@tmp}{\thetkz@bg@cnt+1}
+ \pgfmathsetcounter{tkz@gr@p}{1}
+ \whiledo{\value{tkz@gr@p} < \value{tkza@tmp}}{%
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{\thetkz@bg@cnt}{\thetkz@gr@p}{0}{1}
+ \pgfmathsetcounter{tkz@gr@p}{\thetkz@gr@p+3}
+ }
+\endgroup
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grGrotzsch
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grGrotzsch}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \ifcase\cmdGR@cl@form
+ \or
+ \begin{scope}[rotate=18]%
+ \grStar[#1]{6}%
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{5}%
+ \Edges(\cmdGR@cl@prefix0,\cmdGR@cl@prefixx1,%
+ \cmdGR@cl@prefix2,\cmdGR@cl@prefixx3,%
+ \cmdGR@cl@prefix4,\cmdGR@cl@prefixx0,%
+ \cmdGR@cl@prefix1,\cmdGR@cl@prefixx2,%
+ \cmdGR@cl@prefix3,\cmdGR@cl@prefixx4,\cmdGR@cl@prefix0)
+ \end{scope}
+ \or
+ \begin{scope}[rotate=18]%
+ \grStar[#1]{6}%
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \begin{scope}[rotate=-36]%
+ \grCirculant[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{5}{2}%
+ \end{scope}
+ \EdgeDoubleMod{a}{5}{0}{1}%
+ {b}{5}{1}{1}{4}
+ \EdgeIdentity{a}{b}{5}
+ \end{scope}
+\fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grLevi
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grLevi}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \ifcase\cmdGR@cl@form
+ \or
+ \grLCF[#1]{-13,-9,7,-7,9,13}{5}
+ \or
+ \grCycle[#1]{10}
+ \EdgeInGraphMod{\cmdGR@cl@prefix}{10}{5}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{10}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{10}
+ \EdgeInGraphMod{\cmdGR@cl@prefixxx}{10}{4}
+\fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grPappus
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grPappus}[1][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \ifcase\cmdGR@cl@form
+\or
+ \grLCF[#1]{5,7,-7,7,-7,-5}{3}
+\or
+ \begin{scope}[rotate=30]%
+ \grCycle[#1]{6}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{6}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \grCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{6}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxx}{6}{0}{2}%
+ {\cmdGR@cl@prefixx}{6}{5}{2}{2}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxx}{6}{5}{2}%
+ {\cmdGR@cl@prefix}{6}{1}{2}{2}
+ \EdgeDoubleMod{\cmdGR@cl@prefixx}{6}{0}{2}%
+ {\cmdGR@cl@prefix}{6}{0}{2}{2}
+\end{scope}
+\or
+ \begin{scope}[rotate=30]
+ \grCycle[#1]{6}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grCirculant[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{6}{2}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{6}
+ \EdgeIdentity{\cmdGR@cl@prefixx}{\cmdGR@cl@prefix}{6}
+ \EdgeInGraphMod{\cmdGR@cl@prefixxx}{6}{3}
+\end{scope}
+\fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grChvatal
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grChvatal}[1][]{%
+\begingroup%
+\setkeys[GR]{cl}{#1}%
+\ifcase\cmdGR@cl@form
+\or
+ \begin{scope}[rotate=45]
+ \grCycle[#1]{4}
+ \end{scope}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \begin{scope}[rotate=22.25]
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{8}
+ \end{scope}
+ \EdgeInGraphMod{\cmdGR@cl@prefixx}{8}{4}
+ \EdgeInGraphMod*{\cmdGR@cl@prefixx}{8}{1}{1}{2}
+ \EdgeInGraphMod*{\cmdGR@cl@prefixx}{8}{3}{1}{2}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{4}{0}{1}%
+ {\cmdGR@cl@prefixx}{8}{1}{2}{3}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{4}{0}{1}%
+ {\cmdGR@cl@prefixx}{8}{0}{2}{3}
+\or
+ \begin{scope}[rotate=18]
+ \grCycle[#1]{5}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{5}
+ \end{scope}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{2}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{5}{0}{1}%
+ {\cmdGR@cl@prefixx}{5}{1}{1}{4}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{5}{0}{1}%
+ {\cmdGR@cl@prefixx}{5}{4}{1}{4}
+ \EdgeFromOneToSel{\cmdGR@cl@prefixxx}{\cmdGR@cl@prefixx}{0}{4,0,1}
+ \EdgeFromOneToSel{\cmdGR@cl@prefixxx}{\cmdGR@cl@prefixx}{1}{1,2,3}
+ \Edge(\cmdGR@cl@prefixx3)(\cmdGR@cl@prefixx4)
+ \Edge(\cmdGR@cl@prefixx0)(\cmdGR@cl@prefixxx1)
+ \Edge(\cmdGR@cl@prefixx2)(\cmdGR@cl@prefixxx0)
+\or
+ \grCycle[#1]{12}
+ \Edges(\cmdGR@cl@prefix0,\cmdGR@cl@prefix6,\cmdGR@cl@prefix3,%
+ \cmdGR@cl@prefix8,\cmdGR@cl@prefix11,\cmdGR@cl@prefix5,%
+ \cmdGR@cl@prefix2,\cmdGR@cl@prefix9,\cmdGR@cl@prefix0)
+ \Edges(\cmdGR@cl@prefix1,\cmdGR@cl@prefix7,\cmdGR@cl@prefix10,%
+ \cmdGR@cl@prefix4,\cmdGR@cl@prefix1)
+\fi
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grBalaban
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\newcommand*{\grBalaban}[1][]{%
+\begingroup%
+\setkeys[GR]{cl}{#1}%
+\ifcase\cmdGR@cl@form
+\or
+ \grCycle[#1]{50}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{50}{9}{3}{5}
+ \EdgeInGraphMod*{\cmdGR@cl@prefix}{50}{25}{0}{5}
+ \begin{scope}[rotate=12]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grCirculant[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{10}{3}
+ \end{scope}
+ \begin{scope}[rotate=24]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \grCirculant[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{10}{3}
+ \end{scope}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{50}{1}{5}%
+ {\cmdGR@cl@prefixx}{10}{0}{1}{10}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{50}{4}{5}%
+ {\cmdGR@cl@prefixxx}{10}{0}{1}{10}
+\or
+ \begin{scope}[rotate=9]
+ \grCycle[#1]{10}
+ \end{scope}
+ \begin{scope}[rotate=-9]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{10}
+ \end{scope}
+ \begin{scope}[rotate=6]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{30}
+ \EdgeInGraphMod*{\cmdGR@cl@prefixxx}{30}{1}{0}{3}
+ \EdgeInGraphMod*{\cmdGR@cl@prefixxx}{30}{1}{1}{3}
+ \EdgeInGraphMod*{\cmdGR@cl@prefixxx}{30}{15}{1}{3}
+ \end{scope}
+ \begin{scope}[rotate=9]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RD}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{20}
+ \EdgeInGraphMod*{\cmdGR@cl@prefixxxx}{20}{7}{0}{2}
+ \EdgeInGraphMod*{\cmdGR@cl@prefixxxx}{20}{5}{1}{2}
+ \end{scope}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{10}{0}{1}
+ {\cmdGR@cl@prefixxx}{30}{0}{3}{9}
+ \EdgeDoubleMod{\cmdGR@cl@prefixx}{10}{0}{1}%
+ {\cmdGR@cl@prefixxx}{30}{29}{3}{9}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxx}{30}{0}{3}%
+ {\cmdGR@cl@prefixxxx}{20}{0}{2}{9}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxx}{30}{2}{3}%
+ {\cmdGR@cl@prefixxxx}{20}{1}{2}{9}
+\or
+\grEmptyCycle[#1]{10}
+\begin{scope}[rotate=9]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RB}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{20}
+\end{scope}
+\begin{scope}[rotate=13]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RC}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{10}
+\end{scope}
+\begin{scope}[rotate=-13]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RD}
+ \grEmptyCycle[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{10}
+\end{scope}
+\begin{scope}[rotate=9]
+ \edef\tkzb@ptemp{\cmdGR@cl@prefixxxxx}
+ \edef\tkzb@rtemp{\cmdGR@cl@RE}
+ \grCirculant[#1,prefix=\tkzb@ptemp,RA=\tkzb@rtemp]{20}{6}
+\end{scope}
+ \EdgeIdentity{\cmdGR@cl@prefixx}{\cmdGR@cl@prefixxxxx}{20}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{10}{0}{1}%
+ {\cmdGR@cl@prefixx}{20}{0}{2}{10}
+ \EdgeDoubleMod{\cmdGR@cl@prefix}{10}{0}{1}%
+ {\cmdGR@cl@prefixx}{20}{19}{2}{10}
+ \EdgeInGraphMod{\cmdGR@cl@prefix}{10}{5}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxx}{10}{0}{1}%
+ {\cmdGR@cl@prefixx}{20}{0}{2}{10}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxxx}{10}{0}{1}%
+ {\cmdGR@cl@prefixx}{20}{19}{2}{10}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxxx}{10}{0}{1}%
+ {\cmdGR@cl@prefixxx}{10}{1}{1}{10}
+ \EdgeDoubleMod{\cmdGR@cl@prefixxxx}{10}{1}{1}%
+ {\cmdGR@cl@prefixxx}{10}{0}{1}{10}
+\fi
+\endgroup%
+}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Labels
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+% #2 label/prefix/num
+\define@cmdkey [GR] {WL} {color}[black]{}
+\define@cmdkey [GR] {WL} {labelstyle}{}
+\define@cmdkey [GR] {WL} {size}{}
+\define@cmdkey [GR] {WL} {style}{}
+\presetkeys [GR] {WL} {color = black,%
+ labelstyle = {},%
+ size = {},%
+ style = {}}{}
+\newcommand{\grWriteExplicitLabels}[2][]{%
+\begingroup%
+ \setkeys[GR]{WL}{#1}%
+ \foreach \text/\where in {#2}{%
+ \node at (\where) {\text};
+ }%
+\endgroup%
+}
+\newcommand{\grWriteExplicitLabel}[2][]{%
+\begingroup%
+ \setkeys[GR]{cl}{#1}%
+ \node at (\where) {\text};
+\endgroup%
+}%
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% AssignVertexLabel
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\tikzset{AssignStyle/.style={}}
+\define@cmdkey [GR] {AVL} {color}{}
+\define@cmdkey [GR] {AVL} {size}{}
+\define@cmdkey [GR] {AVL} {mathsize}{}
+\define@boolkey[GR] {AVL} {Math}[true]{}
+\presetkeys [GR] {AVL} {size = \normalsize,%
+ mathsize = \displaystyle,%
+ color = black,%
+ Math = false}{} \newcommand*{\AssignVertexLabel}[3][]{%
+\begingroup%
+ \setkeys[GR]{AVL}{#1}
+ \foreach \name [count=\xi from 0] in {#3}{%
+ \ifGR@AVL@Math%
+ \node at (#2\xi)
+ {$\textcolor{\cmdGR@AVL@color}{\cmdGR@AVL@mathsize\name}$};
+ \else
+ \node[AssignStyle] at (#2\xi)
+ {\textcolor{\cmdGR@AVL@color}{\cmdGR@AVL@size\name}};
+ \fi}
+
+\endgroup%
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% grEdgeForTree
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% #1 prefix #2 indice #2 prefix #3 indice choisie entre #4 et #5 ...
+\newcommand{\grEdgeForTree}[5]{%
+\begingroup%
+ \foreach \V@x in {#4,...,#5}{%
+ \Edge(#1#2)(#3\V@x)%
+ }%
+\endgroup%
+}
+
+\newcommand{\grSubtreeOfCage}[3][]{%
+ \begingroup
+ \setkeys[GR]{cl}{#1}%
+ \edef\tkzb@rtemp{\cmdGR@cl@RA}
+ \edef\tkzb@rtempx{\cmdGR@cl@RB}
+ \edef\tkzb@ptemp{\cmdGR@cl@prefix}
+ \ifthenelse{\isodd{#3}}%
+ % odd girth
+ {%
+ \pgfmathsetcounter{tkz@gr@a}{(#3-3)/2}
+ \Vertex{\cmdGR@cl@prefix 0\grLabelSep 0}
+ \edef\tkz@auxctp{\thetkz@gr@a}
+ \foreach \V@x in {0,...,\tkz@auxctp}{%
+ \pgfmathsetcounter{tkz@gr@b}{#2*((#2-1)^\V@x)}%
+ \pgfmathsetmacro{\sep@path}{\tkzb@rtemp/((#2-1)^\V@x)}%
+ \pgfmathsetmacro{\y@h}{\tkzb@rtempx*(\V@x+1)}%
+ \pgfmathsetcounter{tkz@gr@c}{\V@x+1}%
+ \grEmptyPath[%
+ prefix=\tkzb@ptemp\thetkz@gr@c\grLabelSep,
+ form=2,
+ RA=\sep@path,
+ x=0,
+ y=\y@h]{\thetkz@gr@b}%
+ }%
+ % edges from the root of the tree
+ \EdgeFromOneToAll{\tkzb@ptemp0\grLabelSep}%
+ {\tkzb@ptemp1\grLabelSep}{0}{#2}
+ % ca = levels from where extra edges emerge
+ % cb = edges per vertex
+ \pgfmathsetcounter{tkz@gr@a}{\thetkz@gr@a-1}
+\edef\tkz@auxctpa{\thetkz@gr@a}
+ \foreach \V@y in {0,...,\tkz@auxctpa}{%
+ \pgfmathsetcounter{tkz@gr@b}{#2*(#2-1)^\V@y-1}
+\edef\tkz@auxctpb{\thetkz@gr@b}
+ \foreach \a in {0,...,\tkz@auxctpb}{%
+ \pgfmathsetcounter{tkz@gr@c}{\a*(#2-1)}%
+ \pgfmathsetcounter{tkz@gr@d}{\a*(#2-1)+(#2-2)}%
+ \pgfmathsetcounter{tkz@gr@ta}{\V@y+1}
+ \pgfmathsetcounter{tkz@gr@tb}{\V@y+2}
+ \EdgeFromOneToSeq{\tkzb@ptemp\thetkz@gr@ta\grLabelSep}%
+ {\tkzb@ptemp\thetkz@gr@tb\grLabelSep}{\a}%
+ {\thetkz@gr@c}{\thetkz@gr@d}
+ }%
+ }%
+ }%
+ % even girth
+ {%
+ \pgfmathsetcounter{tkz@gr@a}{(#3-2)/2}
+ \foreach \V@x in {0,...,\thetkz@gr@a}{%
+ \pgfmathsetcounter{tkz@gr@b}{2*((#2-1)^\V@x)}%
+ \pgfmathsetmacro{\sep@path}{\tkzb@rtemp/((#2-1)^\V@x)}%
+ \pgfmathsetmacro{\y@h}{\tkzb@rtempx*\V@x}%
+ \pgfmathsetcounter{tkz@gr@c}{\V@x}%
+ \grEmptyPath[%
+ prefix=\tkzb@ptemp\thetkz@gr@c\grLabelSep,
+ form=2,
+ RA=\sep@path,
+ x=0,
+ y=\y@h]{\thetkz@gr@b}%
+ }%
+ %%%%%
+ \Edge%
+ (\tkzb@ptemp0\grLabelSep0)%
+ (\tkzb@ptemp0\grLabelSep1)
+ %%%%
+ \pgfmathsetcounter{tkz@gr@a}{\thetkz@gr@a-1}
+ \foreach \V@y in {0,...,\thetkz@gr@a}{%
+ \pgfmathsetcounter{tkz@gr@b}{2*(#2-1)^\V@y-1}
+ \foreach \a in {0,...,\thetkz@gr@b}{%
+ \pgfmathsetcounter{tkz@gr@c}{\a*(#2-1)}%
+ \pgfmathsetcounter{tkz@gr@d}{\a*(#2-1)+(#2-2)}%
+ \pgfmathsetcounter{tkz@gr@ta}{\V@y}
+ \pgfmathsetcounter{tkz@gr@tb}{\V@y+1}
+ \EdgeFromOneToSeq{\tkzb@ptemp\thetkz@gr@ta\grLabelSep}%
+ {\tkzb@ptemp\thetkz@gr@tb\grLabelSep}{\a}%
+ {\thetkz@gr@c}{\thetkz@gr@d}
+ }%
+ }%
+ }%
+ \endgroup
+}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% The End
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\catcode`\@=\tkzAtCode\relax
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-berge/readme-tkz-berge.txt b/obsolete/macros/latex/contrib/tkz/tkz-berge/readme-tkz-berge.txt
new file mode 100644
index 0000000000..646389f207
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-berge/readme-tkz-berge.txt
@@ -0,0 +1,87 @@
+% encodage utf8
+-------------------- english readme ----------------------------------------
+readme-tkz-berge.txt V 1.00 c 02/06/2011
+
+Important : tkz-berge.sty needs tkz-graph.sty, tkz-arith.sty and tkz-tools-arith.tex. This last file is a pat of tkz-base.
+
+The package tkz-berge.sty is a collection of some useful macros if you want to
+ draw some classic graphs of the graph theory or to make others graphs.
+The macros are designed to give math teachers (and students) easy access
+at the programmation of drawing graphswith TikZ. I therefore hope that my
+ packages provide ideal tools for teachers wanting to offer their students fine documents of maths.
+Some of graphs have names, sometimes inspired by the graph's topology,
+and sometimes after their discoverer.
+
+Licence
+-------
+
+This program can be redistributed and/or modified under the terms
+of the LaTeX Project Public License Distributed from CTAN
+archives in directory macros/latex/base/lppl.txt.
+
+
+Features
+--------
+
+ -- needs etex;
+ -- requires and automatically loads PGF/TikZ 2.1;
+ -- compiles with utf8, pdflatex;
+ -- compiles using the chain dvi->dvips->ps2pdf;
+ -- not yet ready for use with TeX and ConText (I need more time and ideas).
+
+Installation
+------------
+
+You can experiment with the tkz-graph package by placing all of the
+distribution files in the directory containing your current tex file.
+
+You can also placing all of the distribution files in the directory :
+/texmf/tex/latex/tkz.
+
+ -- tkz-berge.sty
+ -- tkz-graph.sty
+ -- tkz-arith.sty this file loads tkz-tools-arith.tex
+
+ Some of the main macros used in the file \tkzname{tkz-tool-arith.tex} are now in the CVS version of PGF. With the next version of PGF, it would be possible to remove the file \tkzname{tkz-tool-arith.tex}.
+
+
+How to use it
+-------------
+
+To use the package tkz-berge, place the following lines in the preamble of
+ your LaTeX document.
+
+\usepackage{tkz-berge}
+
+tkz-berge loads tkz-graph, tkz-tools-arith.tex and TikZ.
+
+If you use the xcolor package, load that package before tkz-berge to avoid
+ package conflicts.
+
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{amsmath,tkz-berge}
+
+
+Documentation
+-------------
+
+The documentation is in english.
+Documentation for tkz-berge is available on my sites:
+
+ http://altermundus.fr (en français) or http://altermundus.com (in english)
+ Documentation for printing will be ready soon.
+
+Examples
+--------
+
+ All examples given in documentation will be stored on my sites as standalone
+ files, ready for compilation.
+
+
+ Alain Matthes
+ 5 rue de Valence
+ Paris 75005
+
+ al (dot) ma (at) mac (dot) com
+
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/README b/obsolete/macros/latex/contrib/tkz/tkz-fct/README
new file mode 100644
index 0000000000..2b964f04d0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/README
@@ -0,0 +1,80 @@
+%%%%%%%%%%%%%%%%%%%%%% english readme %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+readme-tkz-fct.txt 2020/02/06 version 1.2 c
+
+tkz-fct.sty uses tkz-base version > 3 to draw graph of functions with a Cartesian
+ (rectangular) coordinate system.
+
+Licence
+--------------------------
+
+This program can be redistributed and/or modified under the terms
+of the LaTeX Project Public License Distributed from CTAN
+archives in directory macros/latex/base/lppl.txt.
+
+Features
+--------------------------
+ -- needs tkz-base, fp.sty and gnuplot;
+ -- automatically loads the package TikZ;
+ -- compiles with utf8, pdflatex, lualatex.
+
+
+Installation
+-------------------------
+
+You can experiment with the tkz-fct package by placing all of the distribution
+ files in the directory containing your current tex file.
+
+You can also place all of the distribution files in the directory :
+/texmf/tex/latex/tkz.
+
+How to use it
+--------------------------
+
+To use the package tkz-fct, place the following line in the preamble of your
+ LaTeX document.
+
+\usepackage{tkz-fct}
+\usepackage[your-language]{babel}
+\usepackage[autolanguage]{numprint}
+
+If you use the xcolor package, load that package before tkz-fct to avoid
+ package conflicts.
+
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tkz-fct}
+
+In order to format the numbers correctly, you place the following two lines
+
+\usepackage[your-language]{babel}
+\usepackage[autolanguage]{numprint}
+
+Documentation
+--------------------------
+
+Documentation for tkz-fct and tkz-base is available on my site :
+
+ http://altermundus.fr (en français)
+
+
+Examples
+---------------------
+
+All examples given in documentation will be stored on my site as standalone files, ready for compilation.
+
+History
+--------------------------
+
+-- 1.2 Add compatibility with tkz-base > 3.01
+ add couverture.tex and tkz-doc.cfg
+
+-- 1.16 c correction of bugs
+ now default domain is xmin:xmax and not -5:5.
+-- 1.13 first version
+
+---------------------------------------
+
+ Alain Matthes
+ 5 rue de Valence
+ Paris 75005
+
+ al (dot) ma (at) mac (dot) com \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/TKZdoc-fct.pdf b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/TKZdoc-fct.pdf
new file mode 100644
index 0000000000..6ea875eb16
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/TKZdoc-fct.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-VDW.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-VDW.tex
new file mode 100644
index 0000000000..0f5a4a45ff
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-VDW.tex
@@ -0,0 +1,149 @@
+
+\subsection{Courbes de \tkzname{Van der Waals}}
+
+\bigskip
+Soient $v$ le volume d'une masse fluide et $p$ sa pression.
+$b$ et $k$ sont deux nombres réels strictement positifs. On souhaite étudier une formule exprimant la dépendance de ces variables proposée par Van~der~Waals.
+\[
+ p(v)= \frac{-3}{v^2} + \dfrac{3k}{v-b}
+\]
+
+définie sur l'intervalle $I=\big]b~;~+\infty\big]$
+
+\subsubsection{Tableau de variations}
+\begin{center}
+
+ \begin{tkzexample}[]
+ \begin{tikzpicture}
+ \tkzTab%
+ { $v$ /1,%
+ $g'(v)$ /1,%
+ $g(v)$ /3%
+ }%
+ { $b$ ,%
+ $3b$ ,%
+ $+\infty$%
+ }%
+ {0,$+$,$0$,$-$,t}
+ {-/ $0$ /,%
+ +/$\dfrac{8}{27b}$ /,%
+ -/ $0$ /}%
+ \end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+
+\newpage
+
+\subsubsection{ Première courbe avec $ b=1$}
+ Quelques courbes pour $r\leq\ v \leq\ 6$
+
+\medskip
+\begin{center}
+ \begin{tkzexample}[]
+ \begin{tikzpicture}[xscale=2,yscale=2.5]
+ \tkzInit[xmin=0,xmax=6,ymax=0.5,ystep=0.1]
+ \tkzDrawX[label=$v$]
+ \tkzDrawY[label=$g(v)$]
+ \tkzGrid(0,0)(6,0.5)
+ \tkzFct[color = red,domain =1:6]{(2*(x-1)*(x-1))/(x*x*x)}
+ \tkzDrawTangentLine[color=blue,draw](3)
+ \tkzDefPointByFct(1)
+ \tkzText[draw, fill = brown!30](4,0.1){$g(v)=2\dfrac{(v-1)^2}{v^3}$}
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsubsection{ Deuxième courbe $b=1/3$ }
+
+
+\medskip
+\begin{center}
+ \begin{tkzexample}[]
+ \begin{tikzpicture}[scale=1.2]
+ \tkzInit[xmin=0,xmax=2,xstep=0.2,ymax=1,ystep=0.1]
+ \tkzAxeXY
+ \tkzGrid(0,0)(2,1)
+ \tkzFct[color = red,domain =1/3:2]{(2*(\x-1./3)*(\x-1./3))/(\x*\x*\x)}
+ \tkzDrawTangentLine[draw,color=blue,kr=.5,kl=.5](1)
+ \tkzDefPointByFct(1)
+ \tkzText[draw,fill = brown!30](1.2,0.3)%
+ {$g(v)=2\dfrac{\left(v-\dfrac{1}{3}\right)^2}{v^3}$}
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsubsection{ Troisième courbe $ b=32/27$ }
+
+
+\medskip
+\begin{center}
+ \begin{tkzexample}[]
+ \begin{tikzpicture}[scale=1.2]
+ \tkzInit[xmin=0,xmax=10,ymax=.35,ystep=0.05];
+ \tkzAxeXY
+ \tkzGrid(0,0)(10,.35)
+ \tkzFct[color = red,
+ domain =1.185:10]{(2*(\x-32./27)*(\x-32./27))/(\x*\x*\x)}
+ \tkzDrawTangentLine[draw,color=blue,kr=2,kl=2](3.555)
+ \tkzText[draw,fill = brown!30](5,0.3)%
+ {$g(v)=2\dfrac{\left(v-\dfrac{32}{27}\right)^2}{v^3}$}
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+ \newpage
+\subsection{Valeurs critiques}
+\subsubsection{Courbes de \tkzname{Van der Walls} }
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmax=3,ymax=2];
+ \tkzAxeXY
+ \tkzGrid(0,0)(3,2)
+ \tkzFct[color = red,domain =1/3:3]{0.125*(3*\x-1)+0.375*(3*\x-1)/(\x*\x)}
+ \tkzDefPointByFct[draw](2)
+ \tkzDefPointByFct[draw](3)
+ \tkzDrawTangentLine[draw,color=blue](1)
+ \tkzFct[color = green,domain =1/3:3]{0.125*(3*x-1)}
+ \tkzSetUpPoint[size=8,fill=orange]
+ \tkzDefPointByFct[draw](3)
+ \tkzDefPointByFct[draw](1/3)
+ \tkzDefPoint(1,1){f}
+ \tkzDrawPoint(f)
+ \tkzText[draw,fill = white,text=red](1,1.5)%
+{$f(x)=\dfrac{1}{8}(3x-1)+\dfrac{3}{8}\left(\dfrac{3x-1}{x^2}\right)$}
+\tkzText[draw,fill = white,text=green](2,0.4){$g(x) = \dfrac{3x-1}{8}$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+\subsubsection{Courbes de \tkzname{Van der Walls} (suite)}
+
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[xscale=4,yscale=1.5]
+ \tkzInit[xmin=0,xmax=3,ymax=3,ymin=-4]
+ \tkzGrid(0,-4)(3,3)
+ \tkzAxeXY
+ \tkzClip
+ \tkzVLine[color=red,style=dashed]{1/3}
+ \tkzFct[color=red,domain = 0.35:3]{-3/(x*x) +4/(3*x-1)}
+ \tkzFct[color=blue,domain = 0.35:3]{-3/(x*x) +27/(4*(3*x-1))}
+ \tkzFct[color=orange,domain = 0.35:3]{-3/(x*x) +8/(3*x-1)}
+ \tkzFct[color=green,domain = 0.35:3]{-3/(x*x) +7/(3*x-1)}
+ \tkzText[draw,fill = white,text=brown](2,-2)%
+ {$f(x)=-\dfrac{3}{x^2}+\dfrac{8\alpha}{3x-1}$ \hspace{.5cm}%
+ avec $\alpha \in%
+ \left\{\dfrac{1}{2}~;~\dfrac{27}{32}~;~\dfrac{7}{8}~;~1\right\}$}
+\end{tikzpicture}
+\end{tkzexample}
+
+ \endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-area.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-area.tex
new file mode 100644
index 0000000000..d5dd91cb0d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-area.tex
@@ -0,0 +1,218 @@
+
+\section{Macros pour définir des surfaces }
+
+Il s'agit par exemple de représenter la partie du plan comprise entre la courbe représentative d'une fonction, l'axe des abscisses et les droites
+ d'équation $x=a$ et $x=b$.
+
+\subsection{Représentation d'une surface \tkzcname{tkzDrawArea} ou \tkzcname{tkzArea}} \hypertarget{tda}{}
+
+\begin{NewMacroBox}{tkzDrawArea}{\oarg{local options}}
+Les options sont celles de \TIKZ.
+
+\begin{tabular}{lll}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{domain}{-5:5}{domaine de la fonction}
+\TOline{with}{a}{référence de la fonction}
+\TOline{color}{200}{nombre de points utilisés}
+\TOline{opacity} {no defaut}{trnsparence}
+\TOline{style}{black}{couleur de la ligne}
+\end{tabular}
+\end{NewMacroBox}
+
+\subsection{Naissance de la fonction logarithme népérien}
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=2]
+ \tkzInit[xmin=0,xmax=3,xstep=1,
+ ymin=-2,ymax=2,ystep=1]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain= 0.4:3]{1./x}
+ \tkzDefPointByFct(1)
+ \tkzGetPoint{A}
+ \tkzDefPointByFct(2)
+ \tkzGetPoint{B}
+ \tkzLabelPoints[above right](A,B)
+ \tkzDrawArea[color=blue!30,
+ domain = 1:2]
+ \tkzFct[domain = 0.5:3]{log(x)}
+ \tkzDrawArea[color=red!30,
+ domain = 1:2]
+ \tkzPointShowCoord(A)
+ \tkzPointShowCoord(B)
+ \tkzDrawPoints(A,B)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Surface simple}
+\begin{tkzexample}[]
+ \begin{tikzpicture}[scale=1.75]
+ \tkzInit[xmin=0,xmax=800,xstep=100,
+ ymin=0,ymax=2000,ystep=400]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = 0:800]{(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+ \tkzDefPoint(450,400){a}
+ \tkzDrawPoint(a)
+ \tkzDrawArea[color=orange!50, domain =0:450]
+ \tkzDrawArea[color=orange!80, domain =450:800]
+ \end{tikzpicture}
+\end{tkzexample}
+
+%<--------------------------------------------------------------------------->
+
+\newpage
+\subsection{Surface et hachures}
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=2]
+ \tkzInit[xmin=-3,xmax=4,ymin=-2,ymax=4]
+ \tkzGrid(-3,-2)(4,4)
+ \tkzDrawXY
+ \tkzFct[domain = -2.15:3.2]{(2+\x)*exp(-\x)}
+ \tkzDrawArea[pattern=north west lines,domain =-2:2]
+ \tkzDrawTangentLine[draw,color=blue](0)
+ \tkzDrawTangentLine[draw,color=blue](-1)
+ \tkzDefPointByFct(2) \tkzGetPoint{C}
+ \tkzDefPoint(2,0){B}
+ \tkzDrawPoints(B,C) \tkzLabelPoints[above right](B,C)
+ \tkzRep
+\end{tikzpicture}
+\end{tkzexample}
+ %<--------------------------------------------------------------------------->
+
+\newpage
+\subsection{Surface comprise entre deux courbes \tkzcname{tkzDrawAreafg}}
+
+\hypertarget{tdafg}{}
+\begin{NewMacroBox}{tkzDrawAreafg}{\oarg{local options}}
+Cette macro permet de mettre en évidence une surface délimitée par les courbes représentatives de deux fonctions. La courbe (a) doit être au-dessus de la courbe (b).
+
+\medskip
+\begin{tabular}{lll}
+ \toprule
+ options & défaut & explication \\
+\midrule
+\TOline{between} {no default}{référence des deux courbes, obligatoire !}
+\TOline{domain= min:max}{domain=-5:5}{Les options sont celles de \TIKZ.}
+\TOline{opacity} {0.5}{transparence}
+\bottomrule
+\end{tabular}
+
+{L'option \tkzname{pattern} de \TIKZ\ peut être utile ! }
+\end{NewMacroBox}
+%<--------------------------------------------------------------------------->
+
+\subsection{Surface comprise entre deux courbes en couleur}
+Par défaut, la surface définie est comprise entre les deux premières courbes.
+
+
+ \begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmax=5,ymax=5]
+ \tkzGrid \tkzAxeXY
+ \tkzFct[domain = 0:5]{x}
+ \tkzFct[domain = 1:5]{log(x)}
+ \tkzDrawAreafg[between=a and b,color = orange!50,domain = 1:5]
+ \end{tikzpicture}
+
+
+%<--------------------------------------------------------------------------->
+\newpage
+\subsection{Surface comprise entre deux courbes avec des hachures}
+
+\begin{tkzltxexample}[]
+\tkzDrawAreafg[between= a and b,pattern=north west lines,domain = 1:5]
+\end{tkzltxexample}
+
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}[scale=.8]
+ \tkzInit[xmax=5,ymax=5]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = 0:5]{x}
+ \tkzFct[domain = 1:5]{log(x)}
+ \tkzDrawAreafg[between= a and b,pattern=north west lines,domain = 1:5]
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+%<--------------------------------------------------------------------------->
+\subsection{Surface comprise entre deux courbes avec l'option \tkzname{between}}
+Attention à l'ordre des références dans l'option \tkzname{between}. Seule la partie de la surface (b) est au-dessus de (a) est représentée.
+
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[ymin=-1,xmax=5,ymax=3]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = 0.5:5]{1/x}% courbe a
+ \tkzFct[domain = 1:5]{log(x)}% courbe b
+ \tkzDrawAreafg[between=b and a,
+ color=magenta!50,
+ domain = 1:4]
+\end{tikzpicture}
+\end{tkzexample}
+
+%<--------------------------------------------------------------------------->
+\newpage
+\subsection{Surface comprise entre deux courbes : courbes de Lorentz}
+Ici aussi, attention à l'ordre des références dans l'option \tkzname{between}.
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmax=1,ymax=1,xstep=0.1,ystep=0.1]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color = red,domain = 0:1]{(exp(\x)-1)/(exp(1)-1)}
+ \tkzFct[color = blue,domain = 0:1]{\x*\x*\x}
+ \tkzFct[color = green,domain = 0:1]{\x}
+ \tkzDrawAreafg[between = c and b,color=purple!40,domain = 0:1]
+ \tkzDrawAreafg[between = c and a,color=gray!60,domain = 0:1]
+\end{tikzpicture}
+\end{tkzexample}
+
+%<--------------------------------------------------------------------------->
+\subsection{Mélange de style}
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=2.5]
+ \tkzInit[xmin=-1,xmax=4,ymin=0,ymax=5]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = -.5:4]{ 4*x-x**2+4/(x**2+1)**2}
+ \tkzFct[domain = -.5:4]{x-1+4/(x**2+1)**2}
+ \tkzDrawAreafg[between=a and b,color=green,domain = 1:4]
+ \tkzDrawAreafg[between=a and b,pattern=north west lines,domain = -.5:1]
+ \tkzRep
+ \tkzText(2.5,4.5){$C_f$}
+ \tkzText(2.5,1){$C_g$}
+\end{tikzpicture}%
+\end{tkzexample}
+
+\newpage %<--------------------------------------------------------------------------->
+\subsection{Courbes de niveaux}
+Le code est intéressant pour la définition des fonctions constantes aux lignes 10 et 11.
+
+\begin{tkzexample}[num]
+\begin{tikzpicture}[scale=.75]
+ \tkzInit[xmax=20,ymax=12]
+ \tkzGrid[color=orange,sub](0,0)(20,12)
+ \tkzAxeXY
+ \tkzFct[samples=400,domain =0:8]{(32-4*x)**(0.5)} % a
+ \tkzFct[samples=400,domain =0:18]{(72-4*x)**(0.5)} % b
+ \tkzFct[samples=400,domain =0:20]{(112-4*x)**(0.5)} % c
+ \tkzFct[samples=400,domain =2:20]{(152-4*x)**(0.5)} % d
+ \tkzFct[samples=400,domain =12:20]{(192-4*x)**(0.5)}% e
+ \def\tkzFctgnuf{0} % f
+ \def\tkzFctgnug{12}% g
+ \tkzDrawAreafg[between= b and a,color=gray!80,domain = 0:8]
+ \tkzDrawAreafg[between= b and f,color=gray!80,domain = 8:18]
+ \tkzDrawAreafg[between= d and c,color=gray!50,domain = 2:20]
+ \tkzDrawAreafg[between= g and c,color=gray!50,domain = 0:2]
+ \tkzDrawAreafg[between= g and e,color=gray!20,domain =12:20]
+\end{tikzpicture}%
+\end{tkzexample}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-asymptote.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-asymptote.tex
new file mode 100644
index 0000000000..1f3666c6e5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-asymptote.tex
@@ -0,0 +1,159 @@
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\section{Droites particulières}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{ Tracer une ligne verticale }
+\begin{NewMacroBox}{tkzVLine}{\oarg{local options}\marg{decimal number}}
+Attention, la syntaxe est celle de \tkzname{fp} car on n'utilise pas \tkzname{gnuplot} pour tracer une droite.
+
+\begin{tabular}{lll}
+ \toprule
+arguments & exemple & définition \\
+\midrule
+\TAline{decimal number}{\tkzcname{tkzVLine\{1\}}}{Trace la droite $x=1$}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{lll}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{color }{|black| }{ couleur du trait}
+\TOline{line width}{|0.6pt| }{ épaisseur du point}
+\TOline{style }{|solid|}{ style du trait }
+\bottomrule
+\end{tabular}
+
+{voir les options les lignes dans \TIKZ}
+\end{NewMacroBox}
+
+
+\subsection{Ligne verticale }
+problème avec cette macro, en principe 1./3 devrait être acceptée.
+\begin{tkzexample}[latex=8cm]
+\begin{tikzpicture}[scale=2]
+ \tkzInit[xmax=3,ymax=2]
+ \tkzAxeXY
+ \tkzVLine[color = blue,
+ style = dashed,
+ line width = 1pt]{2}
+ \tkzVLine[color = red,
+ style = dashed,
+ line width = 1pt]{1./3}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\newpage
+\begin{NewMacroBox}{tkzVLines}{\oarg{local options}\marg{list of values}}
+Attention, la syntaxe est celle de \tkzname{fp} car on n'utilise pas \tkzname{gnuplot} pour tracer une droite.
+
+\begin{tabular}{lll}
+ \toprule
+arguments & exemple & définition \\
+\midrule
+\TAline{list of values}{\tkzcname{tkzVLines\{1,4\}}}{Trace les droites $x=1$ et $x=4$}
+\bottomrule
+\end{tabular}
+
+\end{NewMacroBox}
+
+\subsection{Lignes verticales}
+
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \tkzInit[xmax=5,ymax=5]
+ \tkzAxeXY
+ \tkzVLines[color = green]{1,2,...,4}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Ligne verticale et valeur calculée par \tkzname{fp} }
+\begin{tkzexample}[]
+\begin{tikzpicture}
+ \tkzInit[xmin=-7,xmax=7,ymin=-1,ymax=1]
+ \tkzAxeY[font=\small]
+ \tkzAxeX[trig=2]
+ \foreach\v in {-2,-1,1,2}
+ {\tkzVLine[color=red]{\v*\FPpi}}
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+\subsection{Une ligne horizontale}
+\begin{NewMacroBox}{tkzHLine}{\oarg{local options}\marg{decimal number}}
+\begin{tabular}{lll}
+arguments & exemple & définition \\
+\midrule
+\TAline{decimal number}{\tkzcname{tkzVLine\{1\}}}{Trace la droite $y=1$}
+\end{tabular}
+\end{NewMacroBox}
+
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \tkzInit[xmax=80,xstep=20,ymax=2]
+ \tkzAxeXY
+ \tkzHLine[color=red]{exp(1)-1}
+\end{tikzpicture}
+\end{tkzexample}
+\subsection{Asymptote horizontale}
+Attention, une autre méthode consiste à écrire \tkzcname{tkzFct{$\text{k}$}} mais si \tkzname{ystep= $n$} avec $n$ entier naturel alors il est nécessaire d'écrire $k$ comme un nombre réel, par exemple si \tkzname{ystep= $3$} alors il faut écrire $k=5.0$.
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=2.5]
+ \tkzInit[xmax=5,ymin=0.5,ymax=1.5,ystep=0.5]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = 0:10]{x*exp(-x)+1}
+ \tkzHLine[color=red,style=solid,line width=1.2pt]{1}
+ \tkzDrawTangentLine[draw,color=blue](1)
+ \tkzText[draw,fill = brown!20](2,0.75){$f(x)=x \text{e}^{-x}+1$}
+ \end{tikzpicture}
+ \end{tkzexample}
+
+
+
+\newpage
+
+\subsection{Lignes horizontales}
+
+\begin{NewMacroBox}{tkzHLines}{\oarg{local options}\marg{list of values}}
+\begin{tabular}{lll}
+arguments & exemple & définition \\
+\midrule
+\TAline{list of values}{\tkzcname{tkzHLines\{1,4\}}}{Trace les droites $y=1$ et $y=4$}
+\bottomrule
+\end{tabular}
+\end{NewMacroBox}
+
+\begin{tkzexample}[]
+\begin{tikzpicture}
+ \tkzInit
+ \tkzAxeXY
+ \tkzHLines[color = green]{1,2,...,10}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\newpage
+\subsection{Asymptote horizontale et verticale}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color=red,domain=1.001:1.9]{1+1/(log(x-1)**2)}
+ \tkzFct[color=red,domain = 2.1:10]{1+1/(log(x-1)**2)}
+ \tkzHLine[line width=1pt,color=red]{1}
+ \tkzVLine[line width=1pt,color=blue]{2}
+ \tkzDefPoint(1,1){A}
+ \tkzDrawPoint[fill=white,color=brown,size=6](A)
+ \tkzDefPointByFct[draw,with=b]({1+exp(1)})
+ \tkzLabelPoint[above right](tkzPointResult){$(1+\text{e}~;~2)$}
+ \tkzText[draw,color = black,fill = brown!20](6,6)%
+ {$f(x)=\dfrac{1}{\ln^2 (x-1)}+1$}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-bac.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-bac.tex
new file mode 100644
index 0000000000..8f9a2de207
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-bac.tex
@@ -0,0 +1,200 @@
+\section{Exemples avec les packages \tkzname{alterqcm} et \tkzname{tkz-tab}}
+
+%\shorthandoff{:}
+\begin{alterqcm}[lq=110mm]
+
+\AQmessage{ La figure 1. donne la représentation graphique d'une fonction $f$ définie sur $\mathbf{R}^+$ et la figure 2 celle d'une primitive de $f$ sur $\mathbf{R}^+$.
+
+\begin{center}
+ \begin{tikzpicture}[xscale=2.25,yscale=1]
+ \tkzInit[xmin=-2,xmax=3,ymin=-1,ymax=6]
+ \tkzDrawX
+ \tkzDrawY
+ \tkzFct[samples=100,domain = -1:2.2]{x+exp(x-1)}
+ \tkzDefPoint(1,2){pt1}
+ \tkzDrawPoint(pt1)
+ \tkzPointShowCoord[xlabel=$1$,ylabel=$2$](pt1)
+ \tkzDefPoint(2,4.71828){pt2}
+ \tkzDrawPoint(pt2)
+ \tkzPointShowCoord[xlabel=$2$,ylabel=$\text{e}+2$](pt2)
+ \tkzRep
+ \end{tikzpicture}
+\end{center}
+
+\begin{center}
+ \begin{tikzpicture}[xscale=2.25,yscale=1]
+ \tkzInit[xmin=-2,xmax=3,ymin=-1,ymax=6]
+ \tkzDrawX
+ \tkzDrawY
+ \tkzFct[samples=100,domain = -1:2.2]{x*x/2+exp(x-1)}
+ \tkzDefPoint(1,1.5){pt1}
+ \tkzDrawPoint(pt1)
+ \tkzPointShowCoord[xlabel=$1$,ylabel=$3/2$](pt1)
+ \tkzDefPoint(2,4.71828){pt2}
+ \tkzDrawPoint(pt2)
+ \tkzPointShowCoord[xlabel=$2$,ylabel=$\text{e}+2$](pt2)
+ \tkzRep
+\end{tikzpicture}
+\end{center}}
+
+\AQquestion{Quelle est l'aire, en unités d'aire, de la partie du plan limitée par la représentation graphique de la fonction $f$, l'axe des abscisses et les
+droites d'équation $x = 1$ et $x = 2$ ? }
+{{$\text{e} + \cfrac{3}{4}$},
+{$\text{e} + \cfrac{1}{2}$},
+{$1$}
+}
+\end{alterqcm}
+
+\begin{alterqcm}[lq=90mm,pre=false,numbreak=1]
+\AQmessage{La fonction $k$ définie et strictement positive sur $\mathbf{R}^+$ est connue par son tableau de variations.
+
+\begin{center}
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$k(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{-/ /,%
+ +/ /,%
+ -/ /,%
+ +/ $+\infty$ /}%
+ \end{tikzpicture}
+\end{center}%
+}
+
+\AQquestion{Pami les tableaux suivants, quel est le tableau de variations de la fonction $g$ définie sur
+$\mathbf{R}^+$ par \[g(x) = \cfrac{1}{k(x)}\ ? \]}
+{{Tableau A},
+{Tableau B},
+{Tableau C}
+}
+
+\AQmessage{
+\begin{center}
+ Tableau A
+
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$g(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{-/ /,%
+ +/ /,%
+ -/ /,%
+ +/ $+\infty$ /}%
+ \end{tikzpicture}
+
+\end{center}
+
+
+ \begin{center}
+Tableau B
+
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$g(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{+/ /,%
+ -/ /,%
+ +/ /,%
+ -/ $-\infty$ /}%
+ \end{tikzpicture}
+
+ \end{center}
+
+\begin{center}
+Tableau C
+
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$g(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{-/ /,%
+ +/ /,%
+ -/ /,%
+ +/ $0$ /}%
+ \end{tikzpicture}
+
+\end{center}
+}
+
+\AQquestion{Soit $h$ la fonction définie sur $\mathbf{R}$ par $h(x) = \text{e}^x - x + 1$.
+On note $\mathcal{C}$ la courbe représentative de $h$ dans un repère
+orthonormal $O;\vec{\imath};\vec{\jmath}$.}
+{{%
+\begin{minipage}{5cm}
+ La droite d'équation $y = 1$ est
+ asymptote à $\mathcal{C}$%
+\end{minipage}
+},
+{\begin{minipage}{5cm}
+ La droite d'équation $x = 0$ est
+asymptote à $\mathcal{C}$
+\end{minipage}},
+{\begin{minipage}{5cm}
+ La droite d'équation $y = -x + 1$ est
+asymptote à $\mathcal{C}$
+\end{minipage}}
+}
+\AQquestion{En économie, le coût marginal est le coût occasionné par la
+production d'une unité supplémentaire, et on considère que le coût
+marginal est assimilé à la dérivée du coût total.\\
+Dans une entreprise, une étude a montré que le coût marginal
+$C_{m}(q)$ exprimé en millliers d'euro en fonction du nombre $q$
+d'articles fabriqués est donné par la relation :
+\[C_{m}(q) = 3q^2 - 10q + \cfrac{2}{q} + 20.\]
+}
+{{ $C_{r}(q) = q^3 - 5q^2 + 2\ln q + 20q + 9984$},
+{$C_{r}(q) = q^3 - 5q^2 + 2\ln q + 20q - 6$},
+{$C_{r}(q) = 6q - 10 - \cfrac{2}{q^2}$}
+}
+
+\end{alterqcm}
+
+Voici le code des deux représentations de $f$ et de sa primitive~:
+
+\subsubsection{Première représentation}
+ \begin{tkzexample}[code only]
+ \begin{tikzpicture}[xscale=2.25,yscale=1]
+ \tkzInit[xmin=-2,xmax=3,ymin=-1,ymax=6]
+ \tkzDrawX
+ \tkzDrawY
+ \tkzFct[samples=100,domain = -1:2.2]{x+exp(x-1)}
+ \tkzDefPoint(1,2){pt1}
+ \tkzDrawPoint(pt1)
+ \tkzPointShowCoord[xlabel=$1$,ylabel=$2$](pt1)
+ \tkzDefPoint(2,4.71828){pt2}
+ \tkzDrawPoint(pt2)
+ \tkzPointShowCoord[xlabel=$2$,ylabel=$\text{e}+2$](pt2)
+ \tkzRep
+ \end{tikzpicture}
+ \end{tkzexample}
+
+\subsubsection{Seconde représentation}
+ \begin{tkzexample}[]
+ \begin{tikzpicture}[xscale=2.25,yscale=1]
+ \tkzInit[xmin=-2,xmax=3,ymin=-1,ymax=6]
+ \tkzDrawX
+ \tkzDrawY
+ \tkzFct[samples=100,domain =-1:2.2]{x*x/2+exp(x-1)}
+ \tkzDefPoint(1,1.5){pt1}
+ \tkzDrawPoint(pt1)
+ \tkzPointShowCoord[xlabel=$1$,ylabel=$3/2$](pt1)
+ \tkzDefPoint(2,4.71828){pt2}
+ \tkzDrawPoint(pt2)
+ \tkzPointShowCoord[xlabel=$2$,ylabel=$\text{e}+2$](pt2)
+ \tkzRep
+\end{tikzpicture}
+ \end{tkzexample}
+
+Code d'un tableau de variations
+
+\begin{tkzltxexample}[]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$k(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{-/ /,%
+ +/ /,%
+ -/ /,%
+ +/ $+\infty$ /}%
+\end{tikzpicture}
+\end{tkzltxexample}
+
+
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-compilation.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-compilation.tex
new file mode 100644
index 0000000000..1bfa45df41
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-compilation.tex
@@ -0,0 +1,243 @@
+\section{Utilisation de Gnuplot}
+%–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Mécanisme d'interaction entre \TIKZ\ et \tkzname{Gnuplot}}
+
+\TEX\ est un système logiciel de composition de documents ( text processing programm ). Il permet bien sûr de calculer, mais avec des moyens limités. \TIKZ\ est ainsi limité par \TEX\ pour effectuer des calculs. Pour rappel ±16383.99999 pt est l'intervalle dans lequel \TEX\ stocke ses valeurs. Sachant que 1 cm est égal à 28.45274 pt, on s'aperçoit que \TEX\ ne peut traiter que des dimensions inférieures à 5,75 mètres environ.
+Bien sûr, cela paraît suffisant, mais malheureusement, pendant un enchaînement de calculs, il est assez facile de dépasser ces limites.
+
+\bigskip
+ \newcommand{\drawpage}[4]{%
+ \begin{scope}[xshift=#1, yshift=#2,font=\footnotesize]
+ \filldraw[fill=white!75!#4,draw=#4, very thin]%
+ (0,0) -- (4.2,0) -- (4.2,4.85) --(3.21,5.84)-- (0,5.84) -- cycle;
+ \fill[fill=#4,shade,top color=#4,bottom color=#4!40]%
+ (3.21,5.84) -- ++(0,-0.99) -- ++(0.99,0) -- cycle;
+ \path (2.1,2.97) node{#3};
+ \end{scope}
+}
+
+\begin{center}
+\begin{tikzpicture}[>=triangle 45,scale=.75]
+\drawpage{0cm}{0cm}{\texttt\tkzblue\begin{minipage}{2cm}
+sample.tex
+
+with
+
+\tkzcname{draw plot[id=fct] function{---.};}
+\end{minipage}}{blue}
+\drawpage{12cm}{0cm}{\texttt \tkzred sample.fct.gnuplot}{red}
+\drawpage{12cm}{-14cm}{\texttt\tkzred sample.fct.table}{red}
+\drawpage{0cm}{-14cm}{\texttt\tkzblue\begin{minipage}{2cm}
+sample.pdf
+
+\bigskip
+ \begin{tikzpicture}[domain=-1.5:.8]
+ \draw plot[id=f1,samples=200] function{x*x};
+ \end{tikzpicture}
+\end{minipage}}{blue}
+
+\path (8.05,2.9) node(A)
+ [diamond,%
+ draw,color = black,
+ fill = red!60,%
+ text = black,%
+ minimum size = 3 cm,%
+ font = \normalsize]
+ {{\texttt \tikzname-\TEX}};
+ \path (14.1,-4.08) node(B)
+ [diamond,%
+ draw,color=black,fill=green!60,%
+ text = black,%
+ minimum size = 3 cm,%
+ font = \normalsize]
+ {{\texttt gnuplot}};
+ \path (8.05,-11.1) node(C)
+ [diamond,%
+ draw,color = black,
+ fill = red!60,%
+ text = black,%
+ minimum size = 3 cm,%
+ font = \normalsize]
+ {{\texttt \tikzname-\TEX}};
+ \draw[->] (4.2,2.9) -- (A.west);
+ \draw[->] (A.east) -- (12,2.9);
+ \draw[->] (14.1,0) -- (B.north);
+ \draw[->] (B.south) -- (14.1,-8.18);
+ \draw[->] (12 ,-11.1)--(C.east);
+ \draw[->] (C.west)--(4.2,-11.1);
+ \draw[->,magenta] (4.2,2.9) to [ out =-80,in=260] node[below,pos=.5]{étape 1} (12,2.9);
+ \draw[->,magenta] (14.1,0) to [ out =200,in=160] node[left,pos=.5]{étape 2} (14.1,-8.18);
+ \draw[->,magenta] (12 ,-11.1) to [ out =110,in=70] node[above,pos=.5]{étape 3} (4.2,-11.1);
+ \end{tikzpicture}
+\end{center}
+
+Pour tracer des courbes en 2D en contournant ces problèmes, un moyen simple offert par \TIKZ, est d'utiliser \tkzname{gnuplot}.
+
+ \tkzname{tkz-fct.sty} s'appuie sur le programme \tkzname{gnuplot} et le package \tkzname{fp.sty}. Le premier est utilisé pour obtenir une liste de points, et le second pour évaluer ponctuellement des valeurs.
+
+ Vous devez donc installer \tkzname{Gnuplot}, son installation dépend de votre système, puis il faudra que votre distribution trouve \tkzname{Gnuplot}, et que \TeX\ autorise \tkzname{Gnuplot} à écrire un fichier.
+
+\begin{itemize}
+\item \textcolor{red}{\textbf{Étape 1}}
+
+On part du fichier \tkzname{sample.tex} suivant :
+
+\medskip
+\begin{tkzltxexample}[]
+\documentclass{article}
+\usepackage{tikz}
+\begin{document}
+\begin{tikzpicture}
+\draw plot[id=f1,samples=200,domain=-2:2] function{x*x};
+\end{tikzpicture}
+\end{document}
+\end{tkzltxexample}
+
+La compilation de ce fichier créé avec \TIKZ, produit un fichier nommé \tkzname{sample.f1.gnuplot}. Le nom du fichier est obtenu à partir de \tkzcname{jobname} et de l'option \tkzname{id}. Ainsi un même fichier peut créer plusieurs fichiers distincts. C'est un fichier texte ordinaire, affecté de l'extension \tkzname{gnuplot}. Il contient un préambule indiquant à \tkzname{gnuplot} qu'il doit créer une table contenant les coordonnées d'un certain nombre de points obtenu par la fonction définie par $x\longrightarrow x^2$. Ce nombre de points est défini par l'option \tkzname{samples}. Cette étape ne présente aucune difficulté particulière. Le fichier obtenu peut être traité manuellement avec \tkzname{gnuplot}. Le résultat est le fichier suivant :
+
+\begin{tkzltxexample}[]
+set table; set output "sample.f1.table"; set format "%.5f"
+set samples 200; plot [x=-2:2] x*x
+\end{tkzltxexample}
+
+Une table sera créée et enregistrée dans un fichier texte nommé "sample.f1.table". Les nombres seront formatés pour ne contenir que 5 décimales.
+La table contiendra 201 couples de coordonnées.
+
+\item \textcolor{red}{\textbf{Étape 2}}
+
+Elle est la plus délicate car le fichier \tkzname{sample.f1.gnuplot} doit être ouvert par \tkzname{gnuplot}. Cela implique d'une part, que \TEX\ autorise l'ouverture\footnote{c'est ici que l'on parle des options \tkzname{--shell-escape} et \tkzname{--enable-write18}}
+ du fichier \tkzname{sample.f1.gnuplot} par \tkzname{gnuplot} et d'autre part, que \TEX\ puisse trouver \tkzname{gnuplot}\footnote{c'est ici que l'on parle de \tkzname{PATH}}.
+
+Si \tkzname{gnuplot} trouve \tkzname{sample.f1.gnuplot} alors il produit un fichier texte \tkzname{sample.f1.table}, évidemment s'il ne trouve d'erreur de syntaxe dans l'expression de la fonction.
+
+\tkzHandBomb Malheureusement, une incompréhension peut surgir entre \TIKZ\ et \tkzname{gnuplot}. \TIKZ\ jusqu'à sa version 2.00 officielle, est conçu pour fonctionner avec \tkzname{gnuplot} version 4.0 et malheureusement, \tkzname{gnuplot} a changé de syntaxe. la documentation de gnuplot indique :
+
+\medskip\hspace{1cm}
+\begin{tkzltxexample}[]
+ Features, changes and fixes in gnuplot version 4.2 (and >)
+'set table "outfile"; ---.; unset table' replaces 'set term table'
+\end{tkzltxexample}
+
+
+La version 2.1 de \TIKZ\ a adopté \tkzname{set table} et il n'y a plus d'incompatibilité entre \TIKZ\ et les versions récentes de \tkzname{gnuplot} (v>4.2). J'espère qu'il en va de même pour les versions de \TIKZ\ > 3.
+
+ \item \textcolor{red}{\textbf{Étape 3}}
+
+ Le fichier \tkzname{sample.f1.table} obtenu à l'étape précédente est utilisé par \TIKZ\ pour tracer la courbe.
+
+\medskip\hspace{1cm}
+\begin{tkzltxexample}[]
+# Curve 0 of 1, 201 points
+# Curve title: "x*x"
+# x y type
+-2.00000 4.00000 i
+-1.98000 3.92040 i
+-1.96000 3.84160 i
+---.
+1.98000 3.92040 i
+2.00000 4.00000 i
+\end{tkzltxexample}
+\end{itemize}
+
+\begin{enumerate}
+
+\item Il faut remarquer qu'au cours d'une seconde compilation, si le fichier \tkzname{sample.f1.gnuplot} ne change pas, alors \tkzname{gnuplot} n'est pas lancé et le fichier présent \tkzname{sample.f1.table} est utilisé.
+
+\item On peut aussi remarquer que si vous êtes paranoïaque et que vous n'autorisez pas le lancement de gnuplot, alors un première compilation permettra de créer le fichier \tkzname{sample.f1.table}, ensuite manuellement, vous pourrez lancer gnuplot et obtenir le fichier \tkzname{sample.f1.table}.
+
+\item Il est aussi possible de créer manuellement ou encore avec un quelconque programme, un fichier data.table que \TIKZ\ pourra lire avec
+
+\begin{tkzltxexample}[]
+ \draw plot[smooth] file {data.table};
+\end{tkzltxexample}
+\end{enumerate}
+
+
+
+\subsection{Installation de \tkzname{Gnuplot}}
+
+Gnuplot est proposé avec la plupart des distributions Linux, et existe pour OS X ainsi que pour Windows.
+
+\begin{enumerate}
+ \item \NameSys{Linux Ubuntu} ou un autre système Linux: on l'installe en suivant la procédure classique d'installation d'un nouveau paquetage.
+ \item \NameSys{Windows XP} Les utilisateurs de Windows doivent se méfier, après avoir téléchargé la bonne version et installé \tkzname{gnuplot} alors il faudra renommé wgnuplot en gnuplot. Ensuite il faudra modifier le \tkzname{path}. Si le chemin du programme est \tkzname{C:\textbackslash gnuplot} alors il faudra ajouter \tkzname{{C:}\textbackslash gnuplot\textbackslash bin\textbackslash} aux variables environnement (Aller à "Poste de Travail" puis faire "propriétés", dans l'onglet "Avancé", cliquer sur "Variables d'environnement". ).
+Ensuite pour compiler sous latex, il faudra ajouter au script de compilation l'option \tkzname{--enable-write18 }.
+ \item \NameSys{OS X} L'installation n'est jamais simple sauf
+ si vous n'utilisez \tkzname{gnuplot} qu'en collaboration avec \TIKZ\ alors il vous suffit de compiler les sources ainsi :
+
+ \begin{enumerate}
+
+\item Télécharger les sources de \tkzname{gnuplot}, déposer les sources sur le bureau.
+\item Ouvrir un terminal puis taper cd et glisser le dossier des sources après cd (en laissant un espace)
+Cela doit donner
+
+\begin{tkzltxexample}[]
+$ cd /Users/you/Desktop/gnuplot-4.4.2
+\end{tkzltxexample}
+
+\item ensuite taper la ligne suivante et valider
+ \begin{tkzltxexample}[]
+$ ./configure --with-readline=builtin
+\end{tkzltxexample}
+ \item puis
+\begin{tkzltxexample}[]
+$ make\end{tkzltxexample}
+ \item et enfin
+ \begin{tkzltxexample}[]
+$ sudo make install
+\end{tkzltxexample}
+ \end{enumerate}
+\end{enumerate}
+
+
+\subsection{ Test de l'installation de tkz-base}
+Enregister le code suivant dans un fichier avec le nom test.tex, puis compiler avec pdflatex ou bien la chaîne dvi-->ps-->pdf. Vous devez obtenir cela :
+
+
+\begin{tkzltxexample}[]
+\documentclass{standalone}
+ \usepackage{tkz-fct}
+ \begin{document}
+ \begin{tikzpicture}
+ \tkzInit[xmin=-5,xmax=5,ymax=2]
+ \tkzGrid
+ \tkzAxeXY
+ \end{tikzpicture}
+ \end{document}
+\end{tkzltxexample}
+
+\begin{tkzexample}[latex=9cm]
+ \begin{tikzpicture}
+ \tkzInit[xmin=-3,xmax=3,ymax=2]
+ \tkzGrid
+ \tkzAxeXY
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{ Test de l'installation de tkz-fct}
+Il suffit d'ajouter une ligne pour tracer la représentation graphique d'une fonction.
+
+\begin{tkzltxexample}[]
+\documentclass{standalone}
+ \usepackage{tkz-fct}
+ \begin{document}
+ \begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-5,xmax=5,ymax=2]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color=red]{2*x**2/(x**2+1)}
+ \end{tikzpicture}
+ \end{document}
+\end{tkzltxexample}
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-5,xmax=5,ymax=2]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color=red]{2*x**2/(x**2+1)}
+ \end{tikzpicture}
+\end{tkzexample}
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-example.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-example.tex
new file mode 100644
index 0000000000..ccdf5bcc5c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-example.tex
@@ -0,0 +1,122 @@
+
+\section{Quelques exemples}
+
+\subsection{Variante intermédiaire : \TIKZ\ + \tkzname{tkz-fct}}
+Les codes de \TIKZ\ et de \tkzname{tkz-fct} peuvent se compléter. Ainsi les axes et les textes sont gérés par \tkzname{tkz-fct} mais la courbe est laissée à \TIKZ\ et \tkzname{gnuplot}.
+
+\bigskip
+
+\begin{center}
+ \begin{tkzexample}[]
+ \begin{tikzpicture}[scale=3]
+ \tkzInit[xmin=0,xmax=4,ymin=-1.5,ymax=1.5]
+ \tkzAxeY[label=$f(x)$]
+ \tkzDefPoint(1,0){x} \tkzDrawPoint[color=blue,size=0.6pt](x)
+ \shade[top color=gray!80,bottom color=gray!20] (1,0)%
+ plot[id=ln,domain=1:2.718] function{log(x)} |-(1,0);
+ \draw[color=blue] plot[id=ln,domain=0.2:4,samples=200]function{log(x)};
+ \tkzAxeX
+ \tkzText[draw,color= black,fill=brown!50](2,-1)%
+ {$\mathcal{A} = \int_1^{\text{e}}\ln(x)\text{d}x =%
+ \big[x\ln(x)\big]_{1}^{\text{e}} = \text{e}$}
+ \tkzText[draw,color= black,fill=brown!50](2,0.3){$\mathcal{A}$}
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+ \newpage
+ \subsection{Courbes de \tkzname{Lorentz}}
+
+ $f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$ et $g(x)=x^3$
+
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1]
+ \tkzInit[xmax=1,ymax=1,xstep=0.1,ystep=0.1]
+ \tkzGrid(0,0)(1,1)
+ \tkzAxeXY
+ \tkzFct[color = red,domain = 0:1]{(exp(\x)-1)/(exp(1)-1)}
+ \tkzDrawTangentLine[kl=0,kr=0.4,color=red](0)
+ \tkzDrawTangentLine[kl=0.2,kr=0,color=red](1)
+ \tkzText[draw,color = red,fill = brown!30](0.4,0.6)%
+ {$f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$}
+ \tkzFct[color = blue,domain = 0:1]{\x*\x*\x}
+ \tkzDrawTangentLine[kl=0,kr=0.4,color=blue](0)
+ \tkzDrawTangentLine[kl=0.2,kr=0,color=blue](1)
+ \tkzText[draw,color = blue,fill = brown!30](0.8,0.1){$g(x)=x^3$}
+ \tkzFct[color = orange,style = dashed,domain = 0:1]{\x}
+ \tkzDrawAreafg[between=c and b,color=blue!40,domain = 0:1]
+ \tkzDrawAreafg[between=c and a,color=red!60,domain = 0:1]
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+ \newpage
+ \subsection{Courbe exponentielle}
+ $f(x) = (-x^2+x+2)\exp(x)$
+
+\begin{center}
+\begin{tkzexample}[small]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-6,xmax=4,ymin=-5,ymax=6]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color=red,thick,domain=-6:2.1785]{(-x*x+x+2)*exp(x)}
+ \tkzSetUpPoint[size=6]
+ \tkzDrawTangentLine[draw,kl=2](0)
+ \tkzDefPoint(2,0){b} \tkzDrawPoint(b)
+ \tkzDefPoint(-1,0){c} \tkzDrawPoint(c)
+ \tkzText(2,4){($\mathcal{C}$)}
+ \tkzText(-2,-3){($\mathcal{T}$)}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+ \subsection{Axe logarithmique}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=0.8]
+ \tkzInit[xmax=14,ymax=12]
+ \draw[thin,->] (0,0) -- (14,0) node[below left] {};
+ \draw[thin,->] (0,0) -- (0,12) node[below left] {};
+ \foreach \x/\xtext in {0/0,2/10,4/20,6/30,8/40,10/50,12/60,14/70}%
+ {\draw[shift={(\x,0)}] node[below] {$\xtext$ };}
+ \foreach \y/\z in {0/0,3/1,6/2,9/3,12/4}%
+ {\draw[shift={(0,\y)}] node[left] {$10^{\z}$};}
+ \foreach \x in {1,2,...,14}{\tkzVLine[gray,thin]{\x}}
+ \foreach \y in {3,6,...,12}{\tkzHLine[gray,thin]{\y}}
+ \foreach \y in {0,3,...,9}{
+ \foreach \z in {0.903,1.431,1.806,2.097,2.334,2.535,2.709,2.863}%
+ {\tkzHLine[thin,gray,shift={(0,\y)}] {\z}}}
+ \tkzDefPoint(0,6.90){a}
+ \tkzDefPoint(10,9.30){b}
+ \tkzDrawPoints(a,b)
+ \tkzLabelPoint(a){$M_{1}$}
+ \tkzLabelPoint(b){$M_{11}$}
+\end{tikzpicture}
+\end{tkzexample}
+
+ \subsection{Un peu de tout}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=.8]
+ \tkzInit[xmin=5,xmax=40,ymin=0,ymax=350,xstep=2.5,ystep=25]
+ \tkzDrawX[label=$q$]
+ \tkzLabelX
+ \tkzDrawY[label=$C(q)$]
+ \tkzLabelY
+ \tkzGrid
+ \tkzFct[domain=5:40]{0.1*\x**2+2*\x+60}
+ \foreach \vv in {5,10,...,40}{%
+ \tkzDefPointByFct(\vv)
+ \tkzDrawPoint(tkzPointResult)}
+ \tkzFct[domain=5:40]{(108*log(\x)-158)}
+ \tkzText(37.5,280){$C$}
+ \tkzText(37.5,220){$R$}
+ \tkzDefSetOfPoints{%
+ 5/15,10/90,15/135,20/170,25/190,30/200,35/230,40/240}
+\tkzDrawSetOfPoints[mark = x,mark size=3pt]
+\end{tikzpicture}
+\end{tkzexample}
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-faq.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-faq.tex
new file mode 100644
index 0000000000..031891c855
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-faq.tex
@@ -0,0 +1,265 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-fct/doc-fr/TKZdoc-fct-main.tex
+\section{Quelques remarques}
+
+\begin{enumerate}
+\item Modification avec les anciennes versions~:
+ \begin{itemize}
+ \item \tkzcname{tkzTan} est devenu \tkzcname{tkzDrawTangentLine}
+ \item Désormais le domaine est donné comme avec \TIKZ\ et ce n'est plus
+ \parg{$x_a..x_b$}
+ \item \tkzcname{tkzFctPt} est devenu \tkzcname{tkzDefPointByFct}
+ \end{itemize}
+
+\item Quand \tkzname{xstep} est différent de 1, la variable doit être \tkzcname{x}.
+\item Quand une fonction est passée en argument à la macro \tkzcname{tkzFct}, elle est stockée avec la syntaxe de \tkzname{gnuplot} dans la macro \tkzcname{tkzFctgnua}. \tkzname{tkzFctgnu} est un préfixe, « a » est la référence associée à la fonction, la fonction suivante dans le même environnement \tkzname{tikzpicture} sera référencée « b » et ainsi de suite...
+
+Elle est aussi stockée avec la syntaxe de \tkzname{fp.sty} dans la macro \tkzcname{tkzFcta} avec le préfixe \tkzname{tkzFcta}.
+
+La dernière macro utilisée est également sauvegardée sous les deux syntaxes avec \tkzcname{tkzFctgnuLast} et \tkzcname{tkzFctLast}.
+\item Attention dans \tkzname{gnuplot} un quotient doit être entré sous la forme 1./3, car 1/3 donne le quotient d'une division euclidienne (ici 0).
+\item Problème avec gnuplot~:
+ \begin{itemize}
+ \item Si le fichier xxx.table n'est pas créé, la cause probable est~:
+ \begin{itemize}
+ \item soit que \TEX\ ne trouve pas \tkzname{gnuplot}, c'est en général un problème de « PATH »,
+ \item soit \TEX\ n'autorise pas le lancement de \tkzname{gnuplot} alors c'est que l'option \tkzname{shell-escape} n'est pas autorisé.
+ \end{itemize}
+
+Une autre possibilité est que le fichier xxx.gnuplot soit incorrect. Il suffit de l'ouvrir avec un éditeur pour lire les commandes passées à \tkzname{gnuplot}. Il est à remarquer un changement de syntaxe de \tkzname{gnuplot} autour de la version 4.2. La syntaxe pour créer une table avec des versions ultérieures (4.4 et bientôt 4.5), est désormais \tkzname{set table}.
+
+
+ \item $\pi$ est, avec \tkzname{gnuplot}, défini par \tkzname{pi}
+ \item $\pi$ est, avec \tkzname{fp.sty} défini par \tkzcname{FPpi}.
+ \item (set) samples =2 est suffisant pour tracer une droite.
+ \end{itemize}
+
+ \item La puissance $a^b$ est notée $a \wedge b$ avec fp et pgfmath mais $a**b$ avec gnuplot.
+
+ \item \tkzname{tkz-fct} modife FP@pow (code modifié de Christian Tellechea 2009) afin d'autoriser les puissances entières de nombres négatifs.
+
+
+\item ({1/exp(1)}) est correct mais (1/exp(1)) donne une erreur
+\end{enumerate}
+
+\subsection{Fonctions de \tkzname{gnuplot}}
+
+
+\begin{tabular}{lll}
+\toprule
+Gnuplot&fp&Description \\
++ & + & addition\\
+- & - & soustraction\\
+* & * & multiplication\\
+/ & / & division\\
+** & \upp & exponentiation\\
+\% & absente & modulo \\
+pi & pi & constante 3.1415 \\
+abs(x) & abs & Valeur absolue \\
+cos(x) & cos & Arc -cosinus \\
+sin(x) & sin & Arc -cosinus \\
+tan(x) & tan & Arc -cosinus \\
+acos(x) & arccos & Arc -cosinus \\
+asin(x) & arcsin & Arc-sinus \\
+atan(x) & arctan & Arc-tangente \\
+atan2(y,x) & absente & Arc-tangente \\
+\midrule
+cosh(x) & absente & Cosinus hyperbolique \\
+sinh(x) & absente & Sinus hyperbolique \\
+acosh(x) & absente & Arc-cosinus hyperbolique \\
+asinh(x) & absente & Arc-sinus hyperbolique \\
+atanh(x) & absente & Arc-tangente hyperbolique \\
+\midrule
+besj0(x) & absente & Bessel j0 \\
+besj1(x) & absente & Bessel j1 \\
+besy0(x) & absente & Bessel y0 \\
+besy1(x) & absente & Bessel y1 \\
+\midrule
+ceil(x) & absente & Le plus petit entier plus grand que \\
+floor(x) & absente & Plus grand entier plus petit que \\
+absente & trunc(x,n) & troncature $n$ nombre de décimales \\
+absente & round(x,n) & arrondi $n$ nombre de décimales \\
+exp(x) & exp & Exponentielle \\
+log(x) & ln & Logarithme népérien (base e) \\
+log10(x) & absente & Logarithme base 10 \\
+norm(x) & absente & Distribution normale \\
+rand(x) & random & Générateur de nombre pseudo-aléatoire \\
+sgn(x) & absente & Signe \\
+sqrt(x) & absente & Racine carrée \\
+tanh(x) & absente & Tangente hyperbolique \\
+\bottomrule
+\end{tabular}
+ \endinput
+fp
+
+ fp.sty ,neg,min,max,
+ round,trunc,clip,e,pow,root
+
+
+
+Toutes les fonctions qui prennent un angle en paramètre considèrent par défaut la valeur donnée comme étant en radians. Pour changer l'unité, il faut utiliser la commande set angles .
+Les fonctions ceil et floor renvoient un réel.
+ Les fonctions erf, erfc, gamma, ibeta, inverf, igamma, invnorm, lgamma et norm agissent sur la partie réelle de leur paramètre. Enfin, la fonction sgn ignore la partie imaginaire
+
+
+
+
+
+ rand random (renvoi un nombre entre 0 et 1)
+ real partie real
+ sgn renvoi 1 si l'argument est positif, 0 s'il
+ est nulle, et -1 s'il est négatif
+
+
+ help expressions functions pour avoir la liste totale
+
+
+ fp
+
+
+
+ The following macros are public ones to be used in the document:
+ %controlling messages
+ \FPmessagestrue % print standard FP-messages (default)
+ \FPmessagesfalse % suppress standard FP-messages
+ \FPdebugtrue % print debug messages (mainly for upn)
+ \FPdebugfalse % suppress debug messages (default)
+ %introduction of new values
+ \FPset#1#2 % #1 := #2 (#1 may be macro or string)
+ %print values
+ \FPprint#1 % prints #1 (#1 may be macro or string)
+ %binary operations
+ \FPadd#1#2#3 % #1 := #2+#3
+ \FPdiv#1#2#3 % #1 := #2/#3
+ \FPmul#1#2#3 % #1 := #2*#3
+ \FPsub#1#2#3 % #1 := #2-#3
+ %unary operations
+ \FPabs#1#2 % #1 := abs(#2)
+ \FPneg#1#2 % #1 := -#2
+ %binary relations
+ \FPiflt#1#2...\else...\fi % #1 < #2 ?
+ \FPifeq#1#2...\else...\fi % #1 = #2 ?
+ \FPifgt#1#2...\else...\fi % #1 > #2 ?
+ %unary relations
+ \FPifneg#1 ...\else...\fi % #1 < 0 ?
+ \FPifpos#1 ...\else...\fi % #1 >= 0 ?
+ \FPifzero#1...\else...\fi % #1 = 0 ?
+ \FPifint#1 ...\else...\fi % #1 is integer ?
+ %repeat last test
+ \ifFPtest ...\else...\fi % repeat last test
+ - fp-addons.sty
+ The following macros are public ones to be used in the document:
+ %binary operations
+ \FPmin#1#2#3 % #1 = min(#2,#3)
+ \FPmax#1#2#3 % #1 = max(#2,#3)
+ - fp-eqn.sty (No warranty on correctness and especially on numerical problems!)
+ The following macros are public ones to be used in the document:
+ \FPlsolve#1#2#3
+ % #1 := x with #2*x+#3=0
+ \FPqsolve#1#2#3#4#5
+ % #1,#2 := x with #3*x^2+#4*x+#5 = 0
+ \FPcsolve#1#2#3#4#5#6#7
+ % #1,#2,#3 := x with #4*x^3+#5*x^2+#6*x+#7 = 0
+ \FPqqsolve#1#2#3#4#5#6#7#8#9
+ % #1,#2,#3,#4 := x with #5*x^4+#6*x^3+#7*x^2+#8*x+#9 = 0
+ The resulting solutions are all real values. If there do not
+ exist as much solutions you get a warning message and some
+ other solutions occur several times in the solution vector.
+ - fp-exp.sty
+ The following macros are public ones to be used in the document:
+ \FPe % 2.718281828459045235
+ \FPexp#1#2 % #1 := e^(#2)
+ \FPln#1#2 % #1 := ln(#2)
+ \FPpow#1#2#3 % #1 := (#2)^(#3)
+ \FProot#1#2#3 % #1 := (#2)^(1/#3)
+ - fp-random.sty
+ The following macros are public ones to be used in the document:
+ \FPseed=#1 % set seed counter for random number generation
+ \FPrandom#1 % #1 := a random number between 0 and 1
+ - fp-pas.sty
+ The following macros are public ones to be used in the document:
+ \FPpascal#1#2 % #1 := #2-th line of the pascal triangle
+ - fp-snap.sty:
+ The following macros are public ones to be used in the document:
+ \FPround#1#2#3 % #1 := #2 rounded to #3 digits after '.'
+ \FPtrunc#1#2#3 % #1 := #2 truncated to #3 digits after '.'
+ \FPclip#1#2 % #1 := #2 with all unnecessary 0's removed
+ - fp-trigo.sty:
+ The following macros are public ones to be used in the document:
+ \FPpi % 3.141592653589793238
+ \FPsin#1#2 % #1 := sin(#2)
+ \FPcos#1#2 % #1 := cos(#2)
+ \FPsincos#1#2#3 % #1 := sin(#3), #2 := cos(#3)
+ \FPtan#1#2 % #1 := tan(#2)
+ \FPcot#1#2 % #1 := cot(#2)
+ \FPtancot#1#2#3 % #1 := tan(#3), #2 := cot(#3)
+ \FParcsin#1#2 % #1 := arcsin(#2)
+ \FParccos#1#2 % #1 := arccos(#2)
+ \FParcsincos#1#2#3 % #1 := arcsin(#3), #2 := arccos(#3)
+ \FParctan#1#2 % #1 := arctan(#2)
+ \FParccot#1#2 % #1 := arccot(#2)
+ \FParctancot#1#2#3 % #1 := arctan(#3), #2 := arccot(#3)
+ - fp-upn.sty:
+ The following macros are public ones to be used in the document:
+ \FPupn#1#2 % #1 := eval(#2) where eval evaluates the
+ upn-expression #2
+ Known operations are:
+ +,add,-,sub,*,mul,/,div,abs,neg,min,max,
+ round,trunc,clip,e,exp,ln,pow,root,pi,sin,cos,
+ sincos,tan,cot,tancot,arcsin,arccos,arcsincos,
+ arctan,arccot,arctancot,pop,swap,copy
+ where
+ pop removes the top element
+ swap exchanges the first two elements
+ copy copies the top element
+ Example 1:
+ The macro call
+ \FPupn\result{17 2.5 + 17.5 - 2 1 + * 2 swap /}
+ is equivalent to
+ \result := ((17.5 - (17 + 2.5)) * (2 + 1)) / 2
+ and evaluates to
+ \def\result{-3.000000000000000000}
+ Afterwards the macro call
+ \FPupn\result{\result{} -1 * 0.2 + sin 2 round}
+ ^^ the "{}" is necessary!
+ is equivalent to
+ \result := round_2(sin((\result * -1) + 0.2))
+ and evaluates to
+ \def\result{-0.06}
+ Example 2:
+ As "result" is an abbreviation of "\result{}" you may
+ write
+ \FPupn{result}{17 2.5 + 17.5 - 2 1 + * 2 swap /}
+ and
+ \FPupn{result}{result -1 * 0.2 + sin 2 round}
+ instead leading to the same results.
+ This is even true for other macro names using e.g. "x" for "\x{}"
+ and so on. But be careful with it. We may introduce new constants
+ in further versions overwriting these abbreviations.
+ - fp-eval.sty:
+ The following macros are public ones to be used in the document:
+ \FPeval#1#2 % #1 := eval(#2) where eval evaluates the
+ expression #2
+ ATTENTION: Do not use macro names with \. for its own
+ Use only the name or the macro surrounded by (, and ) instead,
+ i.e. do not write "\value{}" but "value" or "(\value)".
+ This is needed to avoid problems with a prefix "-" of numbers.
+ (I do not intend to write a more complex parsing routine in future.
+ But if you do so, just send it to me.
+ )
+ Known infix operations are
+ +, -, *, /, ^ for add, sub, mul, div, pow
+ Each other operation is a prefix one that needs
+ a (comma or colon seperated) list of subexpressions.
+ Exception: The unary prefix operation - is not known!
+ (Use the function neg instead.)
+ Example 1:
+ With
+ \edef\result{11}
+ and
+ \FPeval\result{round(root(2,sin(result + 2.5)):2)}
+ or
+ \FPeval{result}{round(root(2,sin(result + 2.5)):2)}
+ \result becomes the value 0.90
+ Example 2:
+ \FPeval\result{clip(2*3+5*6)} results to 36
+ \FPeval\result{clip(2*(3+5)*6)} results to 96 \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-fonctions.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-fonctions.tex
new file mode 100644
index 0000000000..0f48a56e8c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-fonctions.tex
@@ -0,0 +1,172 @@
+
+\section{Les différentes macros}
+
+\tkzname{Gnuplot} détermine les points nécessaires pour tracer la courbe. Le nombre de points est fixé par l'option \tkzname{samples}; dans les premiers exemples la valeur du nombre de points est celle donnée par défaut. Ensuite Tikz va utiliser cette table pour tracer la courbe. C'est donc \tkzname{Tikz} qui trace la courbe.
+
+\subsection{Tracé d'une fonction avec gnuplot \tkzcname{tkzFct}}
+Cette première macro est la plus importante car elle permet de tracer la représentation graphique d'une fonction continue .\hypertarget{tfct}{}
+
+\begin{NewMacroBox}{tkzFct}{\oarg{local options}\var{gnuplot expression}}
+{La fonction est donnée en utilisant la syntaxe de gnuplot. x est la variable sauf si \tkzname{xstep} est différent de 1, dans ce cas la variable est \tkzcname{x}.}
+
+\medskip
+\begin{tabular}{lll}
+\toprule
+ options & exemple & explication \\
+\midrule
+\TAline{gnuplot expression}{x**3}{** représente la puissance $\wedge$}
+\bottomrule
+\end{tabular}
+
+{L'expression est de la forme 2*x+1 ; 3*log(x) ; x*exp(x) ; x*x*x+x*x+x. }
+
+Les options sont celles de \TIKZ.
+
+\begin{tabular}{lll}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{domain}{xmin:xmax}{domaine de la fonction}
+\TOline{samples}{200}{nombre de points utilisés}
+\TOline{id} {tkzfct}{permet d'identifier les noms des fichiers auxiliaires}
+\TOline{color}{black}{couleur de la ligne}
+\TOline{line width} {1pt}{épaisseur de la ligne}
+\TOline{style} {solid}{style de la ligne}
+\end{tabular}
+\end{NewMacroBox}
+
+\tkzBomb Lorsque \tkzname{xstep} est différent de $1$, il est nécessaire de remplacer $x$ par |\x|.
+\tkzHand Il faut bien évidemment avoir initialisé l'environnement à l'aide \tkzcname{tkzInit} avant d'appeler \tkzcname{tkzFct}.
+\tkzBomb Attention à ne pas mettre d'espace entre les arguments.
+%<--------------------------------------------------------------------------->
+\subsection{option : \tkzname{samples}}
+
+Il faut remarquer que pour tracer une droite seulement deux points sont nécessaires, ainsi le code~:
+
+\begin{tkzltxexample}[]
+\tkzFct[{-(},color=red,samples=2,domain =-1:2]{(8-1.5*\x)/2}
+\end{tkzltxexample}
+
+
+donne un fichier xxx.table qui contient ~:
+
+\begin{tkzltxexample}[]
+# Curve 0 of 1, 2 points
+# Curve title: "(8-1.5*x)/2"
+# x y type
+-1.00000 4.75000 i
+2.00000 2.50000 i
+\end{tkzltxexample}
+
+Ce qui est simplement suffisant. Plus simple est dans ce cas, de tracer un segment.
+
+On demande 400 valeurs pour la table qui va permettre le tracé. Par défaut, la valeur choisie est 200.
+
+\medskip
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}[scale=1]
+ \tkzInit[xmax=5,ymax=2]
+ \tkzGrid[sub]
+ \tkzAxeXY
+ \tkzFct[samples=400,domain=.5:5]{1/x}
+\end{tikzpicture}
+\end{tkzexample}
+
+%<--------------------------------------------------------------------------->
+\subsection{options : \tkzname{xstep, ystep}}
+
+
+\begin{tkzexample}[]
+\begin{tikzpicture}
+\tkzInit[xmax= 110,xstep=10,
+ ymax=6,ystep=1]
+\tkzDrawX[label={\textit{Age}},below= -18pt]
+\tkzLabelX
+\tkzDrawY[label={\textit{litres}}]
+\tkzFct[domain = 0.1:100 ]{50/\x}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Modification de \tkzname{xstep} et \tkzname{ystep}}
+
+Cette fois le domaine s'étend de 0 à 800, les valeurs prises par la fonction de $0$ à $\numprint{2000}$. \tkzname{xstep=100} donc il faut utiliser |\x| à la place de $x$. Une petite astuce au niveau de gnuplot, 1. et 113. permettent d'obtenir une division dans les décimaux sinon la division se fait dans les entiers.
+
+Ensuite, j'utilise les macros pour placer des points
+%<--------------------------------------------------------------------------->
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmax=700,xstep=100,ymax=1200,ystep=400]
+ \tkzGrid(0,0)(700,1200) \tkzAxeXY
+ \tkzFct[color=red,samples=100,line width=0.8pt,domain =0:700]%
+ {(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{\tkzname{ystep} et les fonctions constantes}
+
+Attention, ici \tkzname{ystep=6} or \tkzname{gnuplot} donne $80\div=13$. il faut donc écrire $80.$
+
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}[scale=0.4]
+ \tkzInit[xmax=30,ymax=90,ystep=6]
+ \tkzFct[line width=1pt,color=red,dashed,domain=0:30]{80.0}
+ \tkzFct[line width=1pt,color=blue,domain=0:30]{80/(1.0+4.0*exp(-0.21*x))}
+ \tkzText[above,color=red](20,80){$P=80$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Les fonctions affines ou linéaires}
+Pour obtenir des droites, on peut utiliser \tkzname{gnuplot} même si l'outil est un peu lourd dans ce cas. Pour alléger les calculs, il est possible de ne demander que deux points !
+
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}[]
+ \tkzInit[ymax=20,ystep=5]
+ \tkzAxeXY
+ \tkzFct[color=red,domain=0:10,samples=2]{2*x+5}
+ \tkzFct[color=blue,domain=0:10,samples=2]{-x+15}
+ \tkzFct[color=green,domain=0:10,samples=2]{7} % 7/5=1
+ \tkzFct[color=purple,domain=0:10,samples=2]{7.}%7.0/5 =1.2
+\end{tikzpicture}
+\end{tkzexample}
+ %<--------------------------------------------------------------------------->
+\subsection{Sous-grille}
+
+ $y=(x-4)\text{e}^{-0.25x+5}$
+
+Il est possible de dessiner une autre grille.
+
+\begin{tkzexample}[latex=8cm]
+\begin{tikzpicture}
+ \tkzInit[xmin=4,xmax=18,xstep=2,
+ ymin=20,ymax=90,ystep=10]
+ \tkzFct[domain = 5:18]%
+ {(\x-4)*exp(-0.25*\x+5)}
+ \tkzGrid(4,20)(18,90)
+ \tkzAxeXY
+ \tkzGrid[sub,
+ subxstep=0.5,
+ subystep=2,
+ color=brown](6,60)(12,90)
+\end{tikzpicture}
+\end{tkzexample}
+%<--------------------------------------------------------------------------->
+\subsection{Utilisation des macros de \tkzname{tkz-base}}
+Toutes les macros de \tkzname{tkz-base} sont bien sûr utilisables, en voici quelques exemples.
+
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}[scale=2]
+ \tkzInit[xmin=-3,xmax=3, ymin=-1,ymax=3]
+ \tkzGrid[sub,subxstep=.5,subystep=.5]
+ \tkzAxeXY
+ \tkzFct[domain = -3:2]{(2-x)*exp(x)}
+ \tkzText(-2,1.25){$\mathcal{C}_{f}$}
+ \tkzDefPoint(2,0){A} \tkzDrawPoint(A) \tkzLabelPoints(A)
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+
+%<--------------------------------------------------------------------------->
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-fppgf.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-fppgf.tex
new file mode 100644
index 0000000000..531287c400
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-fppgf.tex
@@ -0,0 +1,58 @@
+\section{Utilisation \tkzname{pgfmath} et de \tkzname{fp.sty} }
+%--------------------------------------------------------------------------->
+\subsection{\tkzname{pgfmath}}
+
+On peut faire maintenant beaucoup de tracés sans Gnuplot, voici à titre d'exemple et d'après une idée d'Herbert Voss (le membre le plus actif de la communauté Pstricks) un exemple de courbes obtenues avec seulement Tikz.
+
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}
+ \def\Asmall{0.7 } \def\Abig{3 } \def\B{20}%Herbert Voss
+ \path[fill=blue!40!black,domain=-pi:pi,samples=500,smooth,variable=\t]%
+ plot({\Abig*cos(\t r)+\Asmall*cos(\B*\t r)},%
+ {0.5*\Abig*sin(\t r)+0.5*\Asmall*sin(\B*\t r)});
+ \def\Asmall{0.7 } \def\Abig{3 } \def\B{10}
+ \path[shift={(1,1)},fill=blue!40!black,%
+ domain=-pi:pi,samples=500,smooth,variable=\t]%
+ plot({\Abig*cos(\t r)+\Asmall*cos(\B*\t r)},%
+ {0.5*\Abig*sin(\t r)+0.5*\Asmall*sin(\B*\t r)});
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{\tkzname{fp.sty}}
+
+Le principal problème de \tkzname{fp.sty} se produit lors de l'évaluation par exemple de $(-4)^2$ ce qui peut se traduire avec fp par~:
+
+\begin{tkzltxexample}[]
+\begin{tikzpicture}
+ \FPeval\result{(-4)^2}
+\end{tikzpicture}
+\end{tkzltxexample}
+
+ce qui donne une erreur car fp utilise les logarithmes pour faire cette évaluation. \tkzname{tkz-fct.sty} modifie la macro \tkzcname{FP@pow} pour éviter cette erreur
+
+ Pour calculer les pentes des tangentes et pour placer des points sur les courbes, mon module traduit l'expression donnée pour Gnuplot et la stocke dans une commande \tkzcname{tkzFcta}, pour être utilisée ensuite avec les macros \tkzcname{tkzDefPointByFct}\ et \tkzcname{tkzDrawTangentLine}.
+%
+
+mais si vous voulez placer un point de ce graphe ayant pour abscisse $x=2$, il est alors préférable de choisir la première méthode.
+
+Sinon pour une fonction polynômiale, il sera nécessaire pour utiliser les macros relatives aux images et aux tangentes de mettre le polynôme sous la forme d'Horner.
+Ainsi avec \tkzcname{tkzFct}, l'argument $x^4-2x^3+4x-5$ peut être écrit : |-5+x*(0.5+4*x*(x*(-2+x*1)))|.
+
+Voici ce qu'il faut donc faire :
+
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}
+ \tkzInit[xmin=-0.2,xmax=0.2,xstep=.1,
+ ymin=-12,ymax=6,ystep=2]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = -.1:.2]%
+ {-5+x*(0.5+4*x*(x*(-2+x*1)))}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-installation.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-installation.tex
new file mode 100644
index 0000000000..a33f5b995d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-installation.tex
@@ -0,0 +1,8 @@
+\section{Installation de \tkzNamePack{tkz-fct}}
+ \tkzname{tkz-fct} est présent sur le serveur du \tkzname{CTAN} et fait partie de \NameDist{TeXLive} donc il est bientôt possible de l'installer avec \tkzname{tlmgr}. Ce package fait aussi partie de \NameDist{MikTeX} sous \NameSys{Windows}.
+
+ Vérifier que \tkzname{TikZ 3..}\index{TikZ@TikZ} est installé car c'est la version minimum pour le bon fonctionnement de \tkzname{tkz-fct}. \tkzNamePack{tkz-base} doit aussi être installé, de même le binaire « gnuplot» doit être installé sur votre ordinateur. \tkzNamePack{fp.sty} est intensément utilisé mais il est présent dans toutes les distributions.
+
+
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-interpolation.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-interpolation.tex
new file mode 100644
index 0000000000..822844b18d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-interpolation.tex
@@ -0,0 +1,97 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-fct/doc-fr/TKZdoc-fct-main.tex
+\subsection{Interpolation}
+
+Il s'agit ici de trouver un polynôme d'interpolation sur l'intervalle $[-1~;~1]$ de la fonction $f$ définie par :
+\[
+ f(x)=\frac{1}{1+8x^2}
+\]
+
+Le polynôme d'interpolation est celui obtenu par la méthode de \tkzimp{Lagrange} :
+\begin{equation*}
+\begin{split}
+ P(x) = &1.000000000-0.0000000072x-7.991424876x^2+0.000001079x^3+62.60245358x^4\\
+ & -0.00004253x^5-444.2347594x^6+0.0007118x^7+ 2516.046396x^8 -0.005795x^9\\ &-10240.01777x^{10} +0.025404x^{11}+28118.29594x^{12} -0.05934x^{13} -49850.83249x^{14} \\
+& +0.08097x^{15}+54061.87086x^{16} -0.055620x^{17} -32356.67279x^{18} +0.015440x^{19}\\
+&+8140.046421x^{20}\\
+\end{split}
+\end{equation*}
+
+Ayant utilisé vingt et un points, le polynôme est de degré $20$. Celui-ci est écrit en utilisant la méthode de \tkzimp{Horner}. Dans un premier temps, on demande à gnuplot de tracer la courbe de f en rouge, enfin on trace le polynôme d'interpolation en bleu. Les points utilisés sont en jaune.
+
+\subsubsection{Le code}
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+\tkzInit[xmin=-1,xmax=1,ymin=-1.8,ymax=1.2,xstep=0.1,ystep=0.2]
+\tkzGrid
+\tkzAxeXY
+\tkzFct[samples = 400, line width=4pt, color = red,opacity=.5](-1---1){1/(1+8*\x*\x)}
+ \tkzFct[smooth,samples = 400, line width=1pt, color = blue,domain =-1:1]%
+{1.0+((((((((((((((((((((
+ 8140.04642)*\x
+ +0.01544)*\x
+ -32356.67279)*\x
+ -0.05562)*\x
+ +54061.87086)*\x
+ +0.08097)*\x
+ -49850.83249)*\x
+ -0.05934)*\x
+ +28118.29594)*\x
+ +0.02540)*\x
+ -10240.01777)*\x
+ -0.00580)*\x
+ +2516.04640)*\x
+ +0.00071)*\x
+ -444.23476)*\x
+ -0.00004)*\x
+ +62.60245)*\x
+ +0.00000)*\x
+ -7.99142)*\x
+ -0.00000)*\x}
+ \tkzSetUpPoint[size=16,color=black,fill=yellow]
+ \foreach \v in {-1,-0.8,---.,1}{\tkzDefPointByFct[draw](\v)}
+\end{tikzpicture}
+\end{tkzexample}
+
+Le résultat est sur la page suivante où on peut constater le phénomène de \tkzimp{Runge}.
+\subsubsection{la figure}
+
+\begin{sidewaysfigure}[htbp]
+\centering
+\begin{tikzpicture}[scale=.75]
+\tkzInit[xmin=-1,xmax=1,ymin=-1.8,ymax=1.2,xstep=0.1,ystep=0.2]
+\tkzGrid
+\tkzAxeXY
+\tkzFct[samples = 400, line width=4pt, color = red,opacity=.5,domain =-1:1]%
+{1/(1+8*\x*\x)}
+ \tkzFct[samples = 400, line width=1pt, color = blue,domain =-1:1]%
+{1.0+
+((((((((((((((((((((
+ 8140.04642)*\x
+ +0.01544)*\x
+ -32356.67279)*\x
+ -0.05562)*\x
+ +54061.87086)*\x
+ +0.08097)*\x
+ -49850.83249)*\x
+ -0.05934)*\x
+ +28118.29594)*\x
+ +0.02540)*\x
+ -10240.01777)*\x
+ -0.00580)*\x
+ +2516.04640)*\x
+ +0.00071)*\x
+ -444.23476)*\x
+ -0.00004)*\x
+ +62.60245)*\x
+ +0.00000)*\x
+ -7.99142)*\x
+ -0.00000)*\x}
+ \tkzSetUpPoint[size=8,color=black,fill=yellow]
+ \foreach \v in {-1,-0.8,---.,1}%
+ {\tkzDefPointByFct[draw](\v)}
+\end{tikzpicture}
+\caption{Interpolation : $\dfrac{1}{1+8x^2}$}
+\end{sidewaysfigure}
+
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-label.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-label.tex
new file mode 100644
index 0000000000..52a46a3555
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-label.tex
@@ -0,0 +1,36 @@
+\section{Labels}
+
+Ce qui est souhaitable, c'est de pouvoir nommer les courbes. Prenons comme exemple, la fonction $f$ définie par :
+
+\[
+ x>0\ \text{et}\ f(x)=\dfrac{x^2+1}{x^3}
+\]
+
+Il est assez aisé de mettre un titre en utilisant la macro \tkzcname{tkzText} du package \tkzname{tkz-base}. Les coordonnées utilisées font référence aux unités des axes du repère. Pour placer un texte le long de la courbe, le plus simple est choisir un point de la courbe, puis d'utiliser celui-ci pour afficher le texte.
+
+\begin{tkzltxexample}[num]
+ \tkzDefPointByFct(3)
+ \tkzText[above right](tkzPointResult){${\mathcal{C}}_f$}
+\end{tkzltxexample}
+
+La première ligne détermine un point de la courbe. Ce point est rangé dans \tkzname{tkzPointResult}. Il suffit d'utiliser \tkzcname{tkzText} avec ce point comme argument comme le montre la seconde ligne. Les options de \TIKZ\ permettent d'affiner le résultat.
+
+\subsection{Ajouter un label}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \tkzInit[xmin=0,xmax=10,
+ ymin=0,ymax=1.2,ystep=0.2]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzClip
+ \tkzFct[thick,color=red,domain=0.55:10]{(\x*\x+\x-1)/(\x**3)}
+ \tkzText(3,-0.3){\textbf{Courbe de} $\mathbf{f}$}
+ \tkzDefPointByFct(3)
+ \tkzText[above right,text=red](tkzPointResult){${\mathcal{C}}_f$}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-liste.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-liste.tex
new file mode 100644
index 0000000000..b84191a233
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-liste.tex
@@ -0,0 +1,41 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-fct/doc-fr/TKZdoc-fct-main.tex
+\section{Liste de toutes les macros}
+
+\subsection{Liste de toutes les macros fournies par ce package}
+
+\begin{itemize}
+\item \tkzhname{\hyperlink{tfct}{tkzFct}}[samples=200,domain=-5:5,color=black,id=tkzfct]\var{gnuplot's expression}
+\item \tkzhname{\hyperlink{tptfct}{tkzDefPointByFct}}[draw=false]\parg{point's name} --> tkzPointResult
+\item \tkzhname{\hyperlink{tdtl}{tkzDrawTangentLine}}[draw=false,color=black,kr=1,kl=1,style=solid,with=a]\parg{point's name}
+\item \tkzhname{\hyperlink{tda}{tkzDrawArea}}[domain=-5:5,color=lightgray,opacity=.5]
+\item \tkzhname{\hyperlink{tda}{tkzArea}}[domain=-5:5,color = lightgray,opacity=.5]
+\item \tkzhname{\hyperlink{tdafg}{tkzDrawAreafg}}[domain=-5:5,between= a and b]
+\item \tkzhname{\hyperlink{tdafg}{tkzAreafg}}[domain=-5:5,between= a and b]
+\item \tkzhname{\hyperlink{tfpa}{tkzFctPar}}[samples=200,domain=-5:5,
+ line width=1pt,id=tkzfctpar]{$x(t)$}{$y(t)$}
+\item \tkzhname{\hyperlink{tfpo}{tkzFctPolar}}[samples=200,domain=0:2*pi,
+ line width=1pt,id=tkzfctpolar]{$\rho(t)$}
+\item \tkzhname{\hyperlink{tdrs}{tkzDrawRiemannSum}}[interval=1:2,number=10,fill=gray]
+\item \tkzhname{\hyperlink{tdrsi}{tkzDrawRiemannSumInf}} [interval=1:2,opacity=.5,fill=gray]
+\item \tkzhname{\hyperlink{tdrss}{tkzDrawRiemannSumSup}} [interval=1:2,number=10,fill=gray]
+\item \tkzhname{\hyperlink{tdrsm}{tkzDrawRiemannSumMid}}[interval=1:2,opacity=1,fill=gray]
+\end{itemize}
+
+\subsection{Liste de toutes des macros essentielles de \tkzcname{tkz-base}}
+
+\begin{itemize}
+\item \tkzcname{tkzInit}[xmin=0,xmax=10,xstep=1,ymin=0,ymax=10,ystep=1]
+\item \tkzcname{tkzAxeX}
+\item \tkzcname{tkzDrawX}
+\item \tkzcname{tkzLabelX}
+\item \tkzcname{tkzAxeY}
+\item \tkzcname{tkzDrawY}
+\item \tkzcname{tkzLabelY}
+\item \tkzcname{tkzGrid}
+\item \tkzcname{tkzClip}
+\item \tkzcname{tkzDefPoint}
+\item \tkzcname{tkzDrawPoint}
+\item \tkzcname{tkzPointShowCoord}
+\item \tkzcname{tkzLabelPoint}
+\end{itemize}
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-main.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-main.tex
new file mode 100644
index 0000000000..1293a8885d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-main.tex
@@ -0,0 +1,163 @@
+% !TEX TS-program = lualatex
+% encoding : utf8
+% doc de tkz-euclide.sty
+% Created by Alain Matthes on 2020-01-02.
+% Copyright (C) 2020 Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/generic/pgf/licenses/LICENSE for more details.%
+% See http://www.latex-project.org/lppl.txt for details.
+
+% TKZdoc-euclide-main is the french doc of tkz-euclide
+\documentclass[DIV = 14,
+ fontsize = 10,
+ headinclude = false,
+ index = totoc,
+ footinclude = false,
+ twoside,
+ headings = small
+ ]{tkz-doc}
+\usepackage{etoc}
+\gdef\tkznameofpack{tkz-fct}
+\gdef\tkzversionofpack{1.2c}
+\gdef\tkzdateofpack{2020/02/03}
+\gdef\tkznameofdoc{doc-tkz-fc}
+\gdef\tkzversionofdoc{1.2c}
+\gdef\tkzdateofdoc{2020/02/03}
+\gdef\tkzauthorofpack{Alain Matthes}
+\gdef\tkzadressofauthor{}
+\gdef\tkznamecollection{AlterMundus}
+\gdef\tkzurlauthor{}
+\gdef\tkzengine{lualatex}
+\gdef\tkzurlauthorcom{http://altermundus.fr}
+% -- Packages ---------------------------------------------------
+\usepackage[dvipsnames,svgnames]{xcolor}
+\usepackage{calc}
+\usepackage{tkz-euclide,tkz-fct,alterqcm,tkz-tab}
+\usetikzlibrary{babel}
+\usetikzlibrary[shapes.geometric]
+\usepackage[colorlinks]{hyperref}
+\hypersetup{
+ linkcolor=BrickRed,
+ citecolor=Green,
+ filecolor=Mulberry,
+ urlcolor=NavyBlue,
+ menucolor=BrickRed,
+ runcolor=Mulberry,
+ linkbordercolor=BrickRed,
+ citebordercolor=Green,
+ filebordercolor=Mulberry,
+ urlbordercolor=NavyBlue,
+ menubordercolor=BrickRed,
+ runbordercolor=Mulberry,
+ pdfsubject={2d function},
+ pdfauthor={\tkzauthorofpack},
+ pdftitle={\tkznameofpack},
+ pdfcreator={\tkzengine}
+}
+\usepackage{tkzexample}
+\usepackage{mathtools}
+\usepackage{unicode-math}
+\usepackage{fourier-otf}
+\setmainfont[Ligatures=TeX]{TeX Gyre Pagella}
+\setmathfont{TeX Gyre Pagella Math}
+\usepackage{datetime,multicol}
+\usepackage[french]{babel}
+\usepackage[autolanguage]{numprint}
+\usepackage{microtype}
+\usepackage{rotating,ipa}
+\usepackage{array,multirow,multido,booktabs}
+\usepackage{shortvrb,fancyvrb}
+\renewcommand{\labelitemi}{\lefthand}
+\AtBeginDocument{\MakeShortVerb{\|}} % link to shortvrb
+\pdfcompresslevel=9
+\setlength\parindent{0pt}
+\RequirePackage{makeidx}
+%\def\tkzFileSavedPrefix{tkzFct}
+\makeindex
+% \def\tkzref{\arabic{section}-\arabic{subsection}-\arabic{subsubsection}}
+% \renewenvironment{tkzexample}[1][]{%
+% \tkz@killienc \VerbatimOut{tkzfct-\tkzref.tex}%
+% }{%
+% \endVerbatimOut
+% }
+% \usepackage[saved]{tkzexample}
+%<--------------------------------------------------------------------------->
+\begin{document}
+
+\parindent=0pt
+\author{\tkzauthorofpack}
+\title{\tkznameofpack}
+\date{\today}
+\clearpage
+\thispagestyle{empty}
+\maketitle
+
+\clearpage
+\tkzSetUpColors[background=white,text=darkgray]
+
+\let\rmfamily\ttfamily
+\nameoffile{\tkznameofpack}
+
+ \defoffile{\tkzname{\tkznameofpack} est un package pour créer à l'aide de \TIKZ\ , des représentations graphiques de fonctions en 2D le plus simplement possible. Il est dépendant de \TIKZ\ et fera partie d'une série de modules ayant comme point commun, la création de dessins utiles dans l'enseignement des mathématiques. Ce package nécessite la version 3.x de \TIKZ et une version 3 de tkz-base.}
+
+\presentation
+
+\vspace*{24pt}
+\noindent\lefthand\ Je souhaite remercier \tkzimp{Till Tantau} pour avoir créé le merveilleux outil \TIKZ\ .
+
+
+\vspace*{12pt}
+\noindent\lefthand\ Je souhaite remercier aussi \tkzimp{David Arnold} qui a corrigé un grand nombre d'erreurs et qui a testé de nombreux exemples, \tkzimp{Wolfgang Büchel} qui a corrigé également des erreurs et a construit de superbes scripts pour obtenir les fichiers d'exemples, \tkzimp{John Kitzmiller} et ses exemples, et enfin \tkzimp{Gaétan Marris} pour ses remarques .
+
+\vspace*{12pt}
+\noindent\lefthand\ Vous trouverez de nombreux exemples sur mon site~:
+\href{http://altermundus.fr/}{altermundus.fr}
+
+\vfill
+Vous pouvez envoyer vos remarques, et les rapports sur des erreurs que vous aurez constatées à l'adresse suivante~: \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}.
+
+This file can be redistributed and/or modified under the terms of the LATEX
+Project Public License Distributed from CTAN archives.
+
+
+\clearpage
+\tableofcontents
+
+\clearpage
+\newpage
+
+ \setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}
+% %<---------------------------- the files ------------------------------------>
+%
+\include{TKZdoc-fct-why}
+\include{TKZdoc-fct-installation}
+\include{TKZdoc-fct-compilation}
+\include{TKZdoc-fct-fonctions}
+\include{TKZdoc-fct-point}
+\include{TKZdoc-fct-label}
+\include{TKZdoc-fct-tangent}
+\include{TKZdoc-fct-area}
+\include{TKZdoc-fct-riemann}
+\include{TKZdoc-fct-asymptote}
+\include{TKZdoc-fct-param}
+\include{TKZdoc-fct-polar}
+\include{TKZdoc-fct-symbol}
+\include{TKZdoc-fct-example}
+\include{TKZdoc-fct-interpolation}
+\include{TKZdoc-fct-VDW}
+\include{TKZdoc-fct-bac}
+\include{TKZdoc-fct-fppgf}
+\include{TKZdoc-fct-faq}
+\include{TKZdoc-fct-liste}
+% %<--------------------------------------------------------------------------->
+\clearpage\newpage
+\begin{multicols}{2}
+\small\printindex
+\end{multicols}
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-param.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-param.tex
new file mode 100644
index 0000000000..102ff07534
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-param.tex
@@ -0,0 +1,179 @@
+\section{Courbes avec équations paramétrées}
+ \hypertarget{tfpa}{}
+\begin{NewMacroBox}{tkzFctPar}{\oarg{local options}\marg{$x(t)$}\marg{$y(t)$}}
+ {$x(t)$ et $y(t)$ sont des expressions utilisant la syntaxe de \tkzname{gnuplot}. La variable est $t$.}
+
+\medskip
+\begin{tabular}{lll}
+ \toprule
+ options & exemple & explication \\
+ \midrule
+\TAline{$x(t)$,$y(t)$}{\tkzcname{tkzFctPar[0:1]}\{\tkzcname{t**3}\}\{\tkzcname{t**2}\}}{$x(t)=t^3$,$y(t)=t^2$ }
+ \bottomrule
+\end{tabular}
+
+Les options sont celles de \TIKZ.
+
+\begin{tabular}{lll}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{domain}{-5:5}{domaine de la fonction}
+\TOline{samples}{200}{nombre de points utilisés}
+\TOline{id} {tkzfonct}{permet d'identifier les noms des fichiers auxiliaires}
+\TOline{color}{black}{couleur de la ligne}
+\TOline{line width} {0.4pt}{épaisseur de la ligne}
+\TOline{style} {solid}{style de la ligne}
+\bottomrule
+\end{tabular}
+ \end{NewMacroBox}
+
+\subsection{Courbe paramétrée exemple 1}
+
+\begin{align*}
+x(t) &=t- \sin(t)\\
+y(t) &=1-\cos(t)\\
+\end{align*}
+
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}
+ \tkzInit[ymax=2.25,ystep=.5] \tkzGrid
+ \tkzAxeXY
+ \tkzFctPar[samples=400,domain=0:2*pi]{(t-sin(t))}{(1-cos(t))}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsection{Courbe paramétrée exemple 2}
+
+\begin{align*}
+x(t) &=t\times \sin(t)\\
+y(t) &=t\times \cos(t)\\
+\end{align*}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-50,xmax=50,xstep=10,
+ ymin=-50,ymax=50,ystep=10]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFctPar[smooth,samples=200,domain=0:50]{t*sin(t)}{t*cos(t)}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsection{Courbe paramétrée exemple 3}
+\begin{align*}
+x(t) &=\exp(t)\times \sin(t)\\
+y(t) &=\exp(t)\times \cos(t)\\
+\end{align*}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmin=-2,xmax=10,xstep=2,ymin=-10,ymax=4,ystep=2]
+ \tkzGrid[sub]
+ \tkzAxeX[step=2]
+ \tkzAxeY[step=2]
+ \tkzFctPar[samples=400,domain=-pi:pi]{exp(t)*sin(t)}{exp(t)*cos(t)}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\newpage
+
+\subsection{Courbe paramétrée exemple 4}
+\begin{align*}
+x(t) &=\cos^3(t)\\
+y(t) &=\sin^3(t)\\
+\end{align*}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-1,xmax=1,xstep=.2,
+ ymin=-1,ymax=1,ystep=.2]
+ \tkzFctPar[color=red,
+ line width=2pt,
+ fill=orange,
+ opacity=.4,
+ samples=400,
+ domain=0:2*pi]{(cos(t))**3}{(sin(t))**3}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsection{Courbe paramétrée exemple 5}
+Saint Valentin version 1
+\begin{align*}
+x(t) &=\sin^3(t)\\
+y(t) &=\cos(t)-\cos^4(t)\\
+\end{align*}
+
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmin=-1,xmax=1,ymin=-2,ymax=1]
+ \tkzClip
+ \tkzFctPar[samples=500,smooth,domain=-pi:pi,
+ ball color=red,shading=ball]%
+ {(sin(t))**3}{cos(t)-(cos(t))**4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsection{Courbe paramétrée exemple 6}
+Saint Valentin version 2 from \url{http://mathworld.wolfram.com/HeartCurve.html}
+
+\begin{align*}
+x(t) &=\sin(t)\cos(t)\log(|t|)\\
+y(t) &=\sqrt{(|t|)\cos(t)}\\
+\end{align*}
+
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmin=-.4,xmax=.4,xstep=.1,ymin=0,ymax=.7,ystep=.1]
+ \tkzClip
+ \tkzFctPar[samples=2000,smooth,domain=-1:1,
+ ball color=red,shading=ball]%
+ {sin(t)*cos(t)*log(abs(t))}{sqrt(abs(t))*cos(t)}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+ \newpage
+\subsection{Courbe paramétrée exemple 7}
+Saint Valentin version 3 from \url{http://en.wikipedia.org/wiki/Heart_(symbol)}
+
+\begin{align*}
+x(t) &=16\sin^3(t)\\
+y(t) &=13\cos(t)-5\cos(2t)-2cos(3t)-cos(4t)\\
+\end{align*}
+
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.75]
+ \tkzInit[xmin=-20,xmax=20,xstep=5,ymin=-25,ymax=15,ystep=5]
+ \tkzClip
+ \tkzFctPar[samples=400,smooth,domain=0:6.28,
+ ball color=red,shading=ball]%
+ {16*(sin(t))**3}{13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t)}
+\end{tikzpicture}
+\end{tkzexample}
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-point.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-point.tex
new file mode 100644
index 0000000000..9368e72ebd
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-point.tex
@@ -0,0 +1,165 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-fct/doc-fr/TKZdoc-fct-main.tex
+
+\section{Placer un point sur une courbe} \hypertarget{tptfct}{}
+
+\begin{NewMacroBox}{tkzDefPointByFct}{\parg{$decimal number$}}
+{Cette macro permet de calculer l'image par la fonction définie précédemment, d'un nombre décimal.}
+
+\medskip
+\begin{tabular}{lll}
+ \toprule
+ argument & exemple & explication \\
+ \midrule
+ \TAline{decimal number}{\tkzcname{tkzDefPointByFct(0)}}{définit un point d'abscisse $0$}
+ \bottomrule
+\end{tabular}
+
+\begin{tabular}{lll}
+ option & defaut & explication \\
+ \midrule
+ \TOline{draw}{false}{permet de tracer le point avec le style courant}
+ \TOline{with}{a}{permet de choisir la fonction}
+ \TOline{ref}{empty}{permet de donner une référence au point}
+ \bottomrule
+\end{tabular}
+
+{C'est donc la dernière fonction définie qui est utilisée. Si une autre fonction, est utilisée alors il faut utiliser l'ancienne macro \tkzcname{tkzFctPt}. Le point est défini sous un nom générique \tkzname{tkzPointResult} mais non tracé. Afin de le tracer il faut utiliser la macro \tkzcname{tkzDrawPoint}.}
+\end{NewMacroBox}
+
+\subsection{Exemple avec \tkzcname{tkzGetPoint}}
+Cela permet de référencer le point créé par \tkzcname{tkzDefPointByFct}.
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-2,xmax=2,xstep=1,
+ ymin=-8,ymax=24,ystep=8]
+ \tkzGrid \tkzAxeXY
+ \tkzFct[domain =-1.5:1]{3.0-1.3125*x**5-2.5*x**3}
+ \tkzDefPointByFct(.5) \tkzGetPoint{A}\tkzDrawPoint(A)
+ \tkzLabelPoint[above right](A){$A_0$}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsection{Exemple avec \tkzcname{tkzGetPoint} et \tkzname{tkzPointResult}}
+Il est possible de ne pas référencer le point et d'utiliser la référence générique.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-2,xmax=2,xstep=1,
+ ymin=-8,ymax=24,ystep=8]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain =-1.5:1]{3.0-1.3125*x**5-2.5*x**3}
+ \tkzDefPointByFct(.5)
+ \tkzDrawPoint(tkzPointResult)
+ % ou bien \tkzDefPointByFct[draw](.5)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Options \tkzname{draw} et \tkzname{ref}}
+Cela permet de tracer un point directement avec les options usuelles donc sans possibilités de personnaliser et d'attribuer une référence à ce point.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-2,xmax=2,xstep=1,
+ ymin=-8,ymax=24,ystep=8]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain =-1.5:1]{3.0-1.3125*x**5-2.5*x**3}
+ \tkzDefPointByFct[draw,ref=A](.5)
+ \tkzLabelPoint[above right](A){$a$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+\subsection{Placer des points sans courbe}
+Attention, ceci est délicat. Il suffit de définir la macro \tkzcname{tkzFctLast} qui est la dernière expression traduite avec la syntaxe de \tkzname{fp.sty}. Les points sont donc déterminer avec \tkzname{fp.sty}.
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[xscale=3,yscale=2]
+ \tkzInit[xmin=-2,xmax=2,xstep=1,
+ ymin=-8,ymax=24,ystep=8]
+ \tkzGrid
+ \tkzAxeXY
+ \global\edef\tkzFctLast{3.0-1.3125*x^5-2.5*x^3}
+ \foreach \va in {-1.5,-1.4,...,1}{%
+ \tkzDefPointByFct[draw](\va)}
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage\null
+\subsection{Placer des points sans se soucier des coordonnées}
+
+Cette fois le domaine s'étend de 0 à 800, les valeurs prises par la fonction de $0$ à $\numprint{2000}$. \tkzname{xstep=100} donc il faut utliser |\x| à la place de $x$. Une petite astuce au niveau de gnuplot, 1. et 113. permettent d'obtenir une division dans les décimaux sinon la division se fait dans les entiers.
+
+Ensuite, j'utilise les macros pour placer des points
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=1.6]
+ \tkzInit[xmin = 0, xmax = 800,
+ ymin = 0, ymax = 2000,
+ xstep = 100,ystep = 400]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color = blue,
+ domain = 0:800]%
+ {(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+ \foreach \va in {0,450,800}{%
+ \tkzDefPointByFct[draw](\va)}
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+\subsection{Placer des points avec deux fonctions}
+
+\medskip
+Revoir \tkzcname{tkzSetUpPoint} et \tkzcname{tkzText} du module \tkzname{tkz-base.sty}
+
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmax=3,ymax=2]
+ \tkzAxeX
+ \tkzAxeY
+ \tkzGrid(0,0)(3,2)
+ \tkzFct[color = red,domain = 1./3:3]{0.125*(3*x-1)+0.375*(3*x-1)/(x*x)}
+ \tkzFct[color = green,domain = 1./3:3]{0.125*(3*x-1)}
+ \tkzSetUpPoint[shape=circle, size = 10, color=black, fill=lightgray]
+ \tkzDefPointByFct[draw,with = a](1)
+ \tkzDefPointByFct[draw,with = a](2)
+ \tkzDefPointByFct[draw,with = a](3)
+ \tkzDefPointByFct[draw,with = b](3)
+ \tkzDefPointByFct[draw,with = b](1/3)
+ \tkzText[draw,color= red,fill=red!20](1,1.5) %
+ {$f(x)=\frac{1}{8}(3x-1)+\frac{3}{8}%
+ \left(\frac{3x-1}{x^2}\right)$}
+ \tkzText[draw,color= green!50!black,fill=green!20]%
+ (2,0.3){$g(x)=\frac{1}{8}(3x-1)$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmax=3,ymax=2]
+ \tkzAxeX
+ \tkzAxeY
+ \tkzGrid(0,0)(3,2)
+ \tkzFct[color = red,domain = 1./3:3]{0.125*(3*x-1)+0.375*(3*x-1)/(x*x)}
+ \tkzFct[color = green,domain = 1./3:3]{0.125*(3*x-1)}
+ \tkzSetUpPoint[shape=circle, size = 10, color=black, fill=lightgray]
+ \tkzDefPointByFct[draw,with = a](1)
+ \tkzDefPointByFct[draw,with = a](2)
+ \tkzDefPointByFct[draw,with = a](3)
+ \tkzDefPointByFct[draw,with = b](3)
+ \tkzDefPointByFct[draw,with = b](1/3)
+ \tkzText[draw,color= red,fill=red!20](1,1.5) %
+ {$f(x)=\frac{1}{8}(3x-1)+\frac{3}{8}%
+ \left(\frac{3x-1}{x^2}\right)$}
+ \tkzText[draw,color= green!50!black,fill=green!20]%
+ (2,0.3){$g(x)=\frac{1}{8}(3x-1)$}
+\end{tikzpicture}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-polar.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-polar.tex
new file mode 100644
index 0000000000..907df34ad0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-polar.tex
@@ -0,0 +1,135 @@
+\section{Courbes en coordonnées polaires}
+
+ \hypertarget{tfpo}{}
+\begin{NewMacroBox}{tkzFctPolar}{\oarg{local options}\marg{$f(t)$}}
+ {$f(t)$ est une expression utilisant la syntaxe de \tkzname{gnuplot}. }
+
+\medskip
+\begin{tabular}{lll}
+ \toprule
+ options & exemple & explication \\
+ \midrule
+\TAline{$x(t)$,$y(t)$}{\tkzcname{tkzFctPar[0:1]}\{\tkzcname{t**3}\}\{\tkzcname{t**2}\}}{$x(t)=t^3$,$y(t)=t^2$ }
+ \bottomrule
+\end{tabular}
+
+Les options sont celles de \TIKZ.
+
+\begin{tabular}{lll}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{domain}{0:2*pi}{domaine de la fonction}
+\TOline{samples}{200}{nombre de points utilisés}
+\TOline{id} {tkzfonct}{permet d'identifier les noms des fichiers auxiliaires}
+\TOline{color}{black}{couleur de la ligne}
+\TOline{line width} {0.4pt}{épaisseur de la ligne}
+\TOline{style} {solid}{style de la ligne}
+\bottomrule
+\end{tabular}
+
+\medskip
+{ \tkzname{gnuplot} définit $\pi$ avec \tkzname{pi} et \tkzname{fp.sty} avec \tkzcname{FPpi}. Les valeurs qui déterminent le domaine sont évaluées par \tkzname{fp.sty}. Il est possible d'utiliser soit \tkzname{pi}, soit \tkzcname{FPpi}.}
+ \end{NewMacroBox}
+
+\subsection{Équation polaire exemple 1}
+
+$ \rho(t)= \cos(t)*\sin(t) $
+
+\begin{tkzexample}[latex=8cm]
+\begin{tikzpicture}[scale=0.75]
+ \tkzInit [xmin=-0.5,xmax=0.5,
+ ymin=-0.5,ymax=0.5,
+ xstep=0.1,ystep=.1]
+ \tkzDrawX \tkzDrawY
+ \tkzFctPolar[domain=-2*pi:2*pi]{cos(t)*sin(t)}
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+\subsection{Équation polaire exemple 2}
+$ \rho(t)= \cos(2*t) $
+
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit [xmin=-1,xmax=1,
+ ymin=-1,ymax=1,
+ xstep=.2,ystep=.2]
+ \tkzDrawX \tkzDrawY
+ \tkzFctPolar[domain=0:2*pi]{cos(2*t)}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+ \newpage
+ \subsection{Équation polaire Heart}
+From Mathworld : \url{http://mathworld.wolfram.com/HeartCurve.html}
+
+ $\rho(t)= 2-2*\sin(t)+\sin(t)*\sqrt(|\cos(t)|)/(\sin(t)+1.4 $
+
+\vspace{2cm}
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=3]
+ \tkzInit[xmin=-5,xmax=5,ymin=-5,ymax=5]
+ \tkzFctPolar[domain = -pi:pi,
+ samples = 800,
+ ball color = red,
+ shading = ball]%
+ {2-2*sin(t)+sin(t)*sqrt(abs(cos(t)))/(sin(t)+1.4)}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+ \subsection{Équation polaire exemple 4}
+ $\rho(t)= 1-sin(t)$
+
+\vspace{2cm}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=4]
+ \tkzInit [xmin=-5,xmax=5,ymin=-5,ymax=5,xstep=1,ystep=1]
+ \tkzFctPolar[domain=0:2*pi,samples=400]{ 1-sin(t) }
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+ \newpage
+\subsection{Équation polaire Cannabis ou Marijuana Curve}
+ Cannabis curve from mathworld : \url{http://mathworld.wolfram.com/CannabisCurve.html}
+
+$ \rho(t)=(1+.9*\cos(8*t))*(1+.1*\cos(24*t))*(1+.1*\cos(200*t))*(1+\sin(t)) $
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=2.5]
+ \tkzInit [xmin=-5,xmax=5,ymin=-5,ymax=5,xstep=1,ystep=1]
+ \tkzFctPolar[domain=0:2*pi,samples=1000]%
+ { (1+.9*cos(8*t))*(1+.1*cos(24*t))*(1+.1*cos(200*t))*(1+sin(t)) }
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\newpage
+\subsection{Scarabaeus Curve}
+From mathworld : \url{http://mathworld.wolfram.com/Scarabaeus.html}
+
+$\rho(t)=1.6*\cos(2*t)-3*\cos(t) $
+
+\vspace{2cm}
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=2.5]
+ \tkzInit [xmin=-5,xmax=5,ymin=-5,ymax=5,xstep=1,ystep=1]
+ \tkzFctPolar[domain=0:2*pi,samples=400]{1.6*cos(2*t)-3*cos(t) }
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-riemann.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-riemann.tex
new file mode 100644
index 0000000000..d60148ba7e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-riemann.tex
@@ -0,0 +1,86 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-fct/doc-fr/TKZdoc-fct-main.tex
+\section{Sommes de Riemann}
+ \hypertarget{tdrs}{}
+
+\begin{NewMacroBox}{tkzDrawRiemannSum}{\oarg{local options}\marg{$f(t)$}}
+ Cette macro permet de représenter les rectangles intervenant dans une somme de Riemann. Les options sont celles de \TIKZ, plus
+
+\begin{tabular}{lll}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{iterval}{1:2}{l'intervalle sur lequel est appliqué la méthode}
+\TOline{number}{10}{nombre de sous-intervalles utilisés}
+\bottomrule
+\end{tabular}
+
+Possible est de réunir les quatres macros et de choisir la méthode avec une option.
+\end{NewMacroBox}
+
+\subsection{Somme de Riemann}
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=3.5]
+\tkzInit[xmax=3,ymax=1.75]
+\tkzAxeXY
+\tkzGrid(0,0)(3,2)
+\tkzFct[color = red, domain =1/3:3]{0.125*(3*x-1)+0.375*(3*x-1)/(x*x)}
+\tkzDrawRiemannSum[fill=green!40,opacity=.2,color=green,
+ line width=1pt,interval=1./2:exp(1),number=10]
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+ \hypertarget{tdrsi}{}
+
+\begin{NewMacroBox}{tkzDrawRiemannSumInf}{\oarg{local options}}
+C'est une variante de la macro précédente mais les rectangles sont toujours sous la courbe.
+ \end{NewMacroBox}
+
+\subsection{Somme de Riemann Inf}
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.75]
+\tkzInit[xmin=-3,xmax=6,ymin=-2,ymax=14,ystep=2]
+\tkzDrawX \tkzDrawY
+\tkzFct[line width=2pt,color = red, domain =-3:6]{(-\x-2)*(\x-5)}
+\tkzDrawRiemannSumInf[fill=green!40,opacity=.5,interval=-1:5,number=10]
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+ \hypertarget{tdrss}{}
+ \begin{NewMacroBox}{tkzDrawRiemannSumSup}{\oarg{local options}}
+C'est une variante de la macro précédente mais les rectangles sont toujours au-dessus de la courbe.
+ \end{NewMacroBox}
+
+\subsection{Somme de Riemann Inf et Sup}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.75]
+ \tkzInit[xmin=-3,xmax=6,ymin=-2,ymax=14,ystep=2]
+ \tkzDrawX \tkzDrawY
+ \tkzFct[line width=2pt,color = red, domain =-3:6]{(-\x-2)*(\x-5)}
+ \tkzDrawRiemannSumSup[fill=blue!40,opacity=.5,interval=-1:5,number=10]
+ \tkzDrawRiemannSumInf[fill=green!40,opacity=.5,interval=-1:5,number=10]
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\newpage
+ \hypertarget{tdrsm}{}
+ \begin{NewMacroBox}{tkzDrawRiemannSumMid}{\oarg{local options}}
+C'est une variante de la macro précédente mais les rectangles sont à cheval sur la courbe.
+ \end{NewMacroBox}
+
+\subsection{Somme de Riemann Mid}
+
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}[scale=1.75]
+\tkzInit[xmin=-3,xmax=6,ymin=-2,ymax=14,ystep=2]
+\tkzDrawX \tkzDrawY
+\tkzFct[line width=2pt,color = red, domain =-3:6]{(-\x-2)*(\x-5)}
+\tkzDrawRiemannSumMid[fill=blue!40,opacity=.5,interval=-1:5,number=10]
+\end{tikzpicture}
+\end{tkzexample}
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-symbol.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-symbol.tex
new file mode 100644
index 0000000000..8f8bdca471
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-symbol.tex
@@ -0,0 +1,42 @@
+\section{Symboles}
+Certains ajoutent aux courbes des symboles afin de donner des indications supplémentaires au lecteur. Voici quelques exemples possibles~:
+
+\begin{tikzpicture}
+\draw[thick,(-)](0,0)--(2,2);
+\draw[thick,o-o](2,0)--(4,2);
+\draw[thick,)-(](4,0)--(6,2);
+\draw[thick,*-*](6,0)--(8,2);
+ \end{tikzpicture}
+
+\newcommand{\cred}[1]{{\color{red}#1}}
+\newcommand{\cgreen}[1]{{\color{green!50!black}#1}}
+\newcommand{\cblue}[1]{{\color{blue}#1}}
+
+L'exemple suivant est de \tkzname{Simon Schläpfer}~:
+
+On veut tracer
+\[
+y=\left\{\begin{array}{ll}
+ \cred{8-1.5x}&,\text{if }x<2\\
+ \cblue{4}&,\text{if }2 \leq x \leq 3\\
+ \cgreen{2x-4}&,\text{if } x>3
+ \end{array}
+\right.
+\]
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \tkzInit[xmin=-1,xmax=6,ymin=0,ymax=10,xstep=1,ystep=1]
+ \tkzGrid[color=gray]
+ \tkzAxeXY
+ \tkzFct[{-[},color=red,domain =-1:2,samples=2]{8-1.5*\x}
+ \tkzFct[{[-]},color=blue,domain =2:3,samples=2]{4}
+ \tkzFct[{]-},color=green!50!black,domain =3:6,samples=2]{2*\x-4}
+\end{tikzpicture}
+\end{tkzexample}
+
+\end{center}
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-tangent.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-tangent.tex
new file mode 100644
index 0000000000..c1e57ecd2a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-tangent.tex
@@ -0,0 +1,236 @@
+\section{Macros pour tracer des tangentes }
+
+Si une seule fonction est utilisée, elle est stockée avec comme nom
+\tkzcname{tkzFcta}, si une deuxième fonction est utilisée, elle sera stockée avec comme nom \tkzcname{tkzFctb}, et ainsi de suite\ldots Si plusieurs fonctions sont présentent dans un même environnement alors l'option \tkzname{with} permet de choisir celle qui sera mise à contribution.
+
+\tkzHandBomb Il faut bien évidemment, avoir initialisé l'environnement à l'aide \tkzcname{tkzInit}, avant d'appeler \tkzcname{tkzFct} et \tkzcname{tkzDrawTangentLine}. Pour la longueur des vecteurs représentants les demi-tangentes, il faut attribuer une valeur aux coefficients \tkzname{kl} et \tkzname{kr}. $kl=0$ ou $kr=0$ annule le dessin de la demi-tangente correspondante (l=left) et (r=right). Si \tkzname{xstep=1} et \tkzname{ystep=1} alors si la pente est égale à 1, la demi-tangente a pour mesure $\sqrt{2}$.
+Dans les autres cas si AT est la longueur de la demi-tangente et si $p$ est la pente alors $\vec{AT}$ a pour coordonnées (\tkzname{kl},\tkzname{kl*p}.)
+
+
+\subsection{Représentation d'une tangente \tkzcname{tkzDrawTangentLine}}
+\hypertarget{tdtl}{}
+\begin{NewMacroBox}{tkzDrawTangentLine}{\oarg{local options}\parg{a}}
+{On l'emploie soit juste après l'utilisation de \tkzcname{tkzFct}, sinon il faut donner la référence de la fonction à l'aide de l'option \tkzname{with}.}
+
+\medskip
+\begin{tabular}{lll}
+ \toprule
+ options & exemple & explication \\
+ \midrule
+ \TAline{a}{\tkzcname{tkzDrawTangentLine(0)}}{tangente au point d'abscisse $0$}
+ \bottomrule
+\end{tabular}
+
+Les options sont celles de \TIKZ comme \tkzname{color} ou \tkzname{style} plus les options suivantes
+
+\begin{tabular}{lll}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{draw}{false}{booléen si true alors le point de contact est tracé}
+\TOline{with}{a}{permet de choisir une fonction}
+\TOline{kr}{1}{coefficient pour la longueur de la demi-tangente à droite}
+\TOline{kl} {1}{coefficient pour la longueur de la demi-tangente à gauche}
+\end{tabular}
+\end{NewMacroBox}
+%<--------------------------------------------------------------------------->
+\subsection{Tangente avec \tkzname{xstep} et \tkzname{ystep} différents de 1}
+
+\begin{tikzpicture}[xscale=1.5]
+ \tikzset{tan style/.style={-}}
+ \tkzInit[xmin=0,xmax=800,xstep=100,ymin=0,ymax=1800,ystep=400]
+ \tkzGrid[color=brown,sub,subxstep=50,subystep=200](0,0)(800,1800)
+ \tkzAxeXY
+ \tkzFct[color=red,samples=100,domain = 0:800]%
+ {(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+ \tkzDrawTangentLine[draw,color=blue,kr=300,kl=450](450)
+ \tkzText[draw,color = black,fill = brown!50,opacity = 0.8](300,1200)%
+ {$f(x)=\dfrac{1}{90000}x^3 -\dfrac{1}{{100}}x^2 +\dfrac{113}{36}x$}
+ \end{tikzpicture}
+
+Il faut remarquer qu'il n'est point nécessaire de faire des calculs. Il suffit d'utiliser les valeurs qui correspondent aux graduations.
+
+On peut changer le style des tangentes avec, par exemple,
+
+\tkzcname{tikzset\{tan style/.style=\{-\}\}} par défaut on a :
+
+\tkzcname{tikzset\{tan style/.style=\{->,>=latex\}\}}
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}[xscale=1.5]
+ \tikzset{tan style/.style={-}}
+ \tkzInit[xmin=0,xmax=800,xstep=100,
+ ymin=0,ymax=1800,ystep=400]
+ \tkzGrid[color=brown,sub,subxstep=50,subystep=200](0,0)(800,1800)
+ \tkzAxeXY
+ \tkzFct[color=red,samples=100,domain = 0:800]%
+ {(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+ \tkzDrawTangentLine[color=blue,kr=300,kl=450,coord](450)
+ \tkzText[draw, color = black,%
+ fill = brown!50, opacity = 0.8](300,1200)%
+ {$f(x)=\dfrac{1}{90000}x^3 -\dfrac{1}{{100}}x^2 +\dfrac{113}{36}x$}
+ \end{tikzpicture}
+ \end{tkzexample}
+%<--------------------------------------------------------------------------->
+\subsection{Les options \tkzname{kl}, \tkzname{kr} et l'option \tkzname{draw}}
+Si l'un des deux nombres \tkzname{kl} ou \tkzname{kr} est nul alors seulement une demi-tangente est tracée sinon ces nombres représentent un pourcentage de la longueur initiale de la tangente. L'option \tkzname{draw} permet de tracer le point de contact.
+
+\begin{tkzexample}[]
+ \begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmin=-3,xmax=4,ymin=-4,ymax=2]
+ \tkzGrid \tkzDrawXY \tkzClip
+ \tkzFct[domain = -2.15:3.2]{(-x*x)+2*x}
+ \tkzDefPointByFct[draw](2)
+ \tkzDrawTangentLine[kl=0,draw](-1)
+ \tkzDrawTangentLine[draw](1)
+ \tkzDrawTangentLine[kr=0,draw](3)
+ \tkzRep
+ \end{tikzpicture}
+\end{tkzexample}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Tangente et l'option \tkzname{with}}
+Soit on place la macro \tkzcname{tkzDrawTangentLine} après la ligne
+ qui définit la première fonction $(a)$, soit on trace une autre fonction avant, et dans ce cas, il est nécessaire de préciser quelle fonction sera utilisée. pour se faire, on utilise l'option \tkzname{with}.
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmax=3,ymax=2]
+ \tkzAxeXY
+ \tkzGrid(0,0)(3,2)
+ \tkzFct[color = red, domain = 1/3:3]{0.125*(3*x-1)+0.375*(3*x-1)/(x*x)}
+ \tkzFct[color = blue, domain = 1/3:3]{0.125*(3*x-1)}
+ \tkzDrawTangentLine[with=a,
+ color=blue](1)
+ \tkzText[draw,
+ color= red,
+ fill=brown!50](1,1.5)%
+ {$f(x)=\frac{1}{8}(3x-1)+\frac{3}{8}\left(\frac{3x-1}{x^2}\right)$}
+ \tkzText[draw,
+ color= green!50!black,
+ fill=brown!50](2,0.3)%
+ {$g(x)=\frac{1}{8}(3x-1)$}
+\end{tikzpicture}
+\end{tkzexample}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Quelques tangentes }
+
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=2]
+ \tkzInit[xmin=-5,xmax=2,ymin=-1, ymax=3]
+ \tkzDrawX
+ \tkzDrawY
+ \tkzText[draw,color = red,fill = orange!20]( 1.5,1.5){$y = xe^x$}
+ \tkzFct[color = red, domain = -5:1]{x*exp(x)}%
+ \tkzDrawTangentLine[color=blue,kr=2,kl=2](-2)
+ \tkzDrawTangentLine[color=green,kr=2,kl=2](-1)
+ \tkzDrawTangentLine[color=blue](0)
+ \tkzDrawTangentLine[color=blue,kr=0](1)
+\end{tikzpicture}
+\end{tkzexample}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Demi-tangentes }
+Il faut remarquer que les tangentes sont en réalité deux demi-tangentes ce qui permet d'obtenir simplement le résultat ci-dessous.
+
+Poosible sont les écritures \tkzname{(((x+1)*x)*x)**0.5}, \tkzname{(x**3+x**2)**0.5} et \tkzname{(x*x*x+x*x)**(0.5)}.
+
+Dans cet exemple, les deux demi-tangentes sont obtenues automatiquement :
+
+\begin{tkzexample}[]
+ \begin{tikzpicture}[scale=2.75]
+ \tkzInit[xmin=-2,xmax=3,ymax=3]
+ \tkzGrid[color=orange](-2,0)(3,3)
+ \tkzAxeX
+ \tkzAxeY
+ \tkzFct[color = red ,domain = -1:2]{(((x+1)*x)*x)**0.5}
+ \tkzDrawTangentLine(0)
+ \tkzText[draw,color = red,fill = orange!20](2,1){$f(x)=\sqrt{x^3+x^2}$}
+ \end{tikzpicture}
+\end{tkzexample}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Demi-tangentes Courbe de Lorentz }
+
+Ici, on ne veut que les demi-tangentes comprises entre 0 et 1, pour cela il suffit dans un cas de donner la valeur 0 à \tkzname{kr} et dans l'autre à \tkzname{kl}.
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmax=1,ymax=1,xstep=0.1,ystep=0.1]
+ \tkzGrid(0,0)(1,1)
+ \tkzAxeXY
+ \tkzFct[color = red,thick, domain =0:1]{(exp(\x)-1)/(exp(1)-1)}
+ \tkzSetUpPoint[size=6]
+ \tkzDrawTangentLine[draw, kl = 0, kr = 0.4](0)
+ \tkzDrawTangentLine[draw, kl = 0.4,kr = 0 ](1)
+ \tkzText[draw,color = red,fill = orange!20](0.5,0.6)%
+ {$f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+%<--------------------------------------------------------------------------->
+\subsection{Série de tangentes}
+
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=2]
+ \tikzstyle{tan style}=[-]
+ \tkzInit[xmin=-5,xmax=2,ymin=-1,ymax=3]
+ \tkzDrawXY
+ \tkzText[draw,color = red, fill = orange!20](1.5,1.5){$y = xe^x$}
+ \tkzFct[line width = 0.01 pt,color = red, domain = -5:1]{x*exp(x)}
+ \foreach \x in {-4,-3.8,...,0}{%
+ \tkzDrawTangentLine[color=blue,line width=.4pt,kr=1,kl=0.5](\x)}
+ \foreach \x in {0.6,0.8,1}{%
+ \tkzDrawTangentLine[color=blue,line width=.4pt, kr=0,kl=0.5](\x)}
+\end{tikzpicture}
+\end{tkzexample}
+%<--------------------------------------------------------------------------->
+\subsection{Série de tangentes sans courbe}
+
+Pour cela, il faut définir la dernière expression avec la syntaxe de \tkzname{fp.sty}.
+
+Définition de \tkzcname{tkzFctLast}
+\begin{tkzltxexample}[]
+ \global\edef\tkzFctLast{x*exp(x)}
+\end{tkzltxexample}
+
+\subsubsection{Utilisation de \tkzcname{tkzFctLast}}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}[scale=2]
+ \tikzstyle{tan style}=[-]
+ \tkzInit[xmin=-5,xmax=2,ymin=-1,ymax=3]
+ \tkzDrawXY
+ \tkzText[draw,color = red, fill = orange!20](1.5,1.5){$y = xe^x$}
+ \global\edef\tkzFctLast{x*exp(x)}% c'est la ligne importante
+ \foreach \v in {-4,-3.8,...,0}{%
+ \tkzDrawTangentLine[color=blue,line width=.4pt,kl=1](\v)}
+ \foreach \v in {0.6,0.8,1}{%
+ \tkzDrawTangentLine[color=blue,line width=.4pt,kr=0,kl=.75](\v)}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\newpage
+\subsection{Calcul de l'antécédent}
+
+Un problème surgit si on emploie une expression contenant des parenthèses dans l'argument, ainsi \tkzname{(\{1/exp(1)\})} est correct mais \tkzname{(1/exp(1))} donne une erreur. Il est aussi possible d'évaluer l'antécédent postérieurement comme cela~:
+\subsubsection{Valeur numérique de l'antécédent}
+\begin{tkzltxexample}[] \FPeval\vx{1/exp(1)}
+\end{tkzltxexample}
+
+\subsubsection{utilisation de la valeur numérique}
+\begin{center}
+\begin{tkzexample}[]
+\begin{tikzpicture}[scale=1]
+ \tkzInit[xmax=1,xstep=0.1,ymin=0.0,ymax=1,ystep=0.1]
+ \tkzGrid \tkzAxeXY
+ \tkzFct[domain = 0.00001:1]{(\x**\x)}
+ \tkzDrawTangentLine[draw,color = red, kr = 0.2,kl = 0.2]({1/exp(1)})
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-why.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-why.tex
new file mode 100644
index 0000000000..6e30744de2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/doc/latex/TKZdoc-fct-why.tex
@@ -0,0 +1,41 @@
+\section{Fonctionnement}
+
+\TIKZ\ apporte différentes possibilités pour obtenir les représentations graphiques des fonctions. J'ai privilégié l'utilisation de \tkzname{gnuplot}, car je trouve \tkzname{pgfmath} trop lent et les résultats trop imprécis.
+
+Avec \TIKZ\ et \tkzname{gnuplot}, on obtient la représentation d'une fonction à l'aide de
+\begin{tkzltxexample}[]
+ \draw[options] plot function {gnuplot expression};
+\end{tkzltxexample}
+
+ Dans cette nouvelle version de \tkzname{tkz-fct}, la macro \tkzcname{tkzFct} reprend le code précédent avec les mêmes options que celles de \TIKZ. Parmi les options, les plus importantes sont \tkzname{domain} et \tkzname{samples}.
+
+La macro \tkzcname{tkzFct} remplace \tkzcname{draw plot function} mais exécute deux tâches supplémentaires, en plus du tracé. Tout d'abord, l'expression de la fonction est sauvegardée avec la syntaxe de \tkzname{gnuplot} et également sauvegardée avec la syntaxe de \tkzname{fp} pour une utilisation ultérieure. Cela permet, sans avoir à redonner l'expression, de placer par exemple, des points sur la courbe (les images sont calculées à l'aide de \tkzname{fp}), ou bien encore, de tracer des tangentes.
+
+Ensuite, et c'est le plus important, \tkzcname{tkzFct} tient compte des unités utilisées pour l'axe des abscisses et celui des ordonnées. Ces unités sont définies en utilisant la macro \tkzcname{tkzInit} du package \tkzname{tkz-base} avec les options \tkzname{xstep} et \tkzname{ystep}.
+
+La macro \tkzcname{tkzFct} intercepte les valeurs données à l'option \tkzname{domain} et évidemment l'expression mathématique de la fonction;
+si \tkzname{xstep} et \tkzname{ystep} diffèrent de 1 alors il est tenu compte de ces valeurs pour le domaine, ainsi que pour les calculs d'images. Lorsque \tkzname{xstep} diffère de 1 alors l'expression donnée, doit utiliser uniquement \tkzcname{x} comme variable, c'est ainsi qu'il est possible d'ajuster les valeurs. Cela permet d'éviter des débordements dans les calculs.
+
+Par exemple, soit à tracer le graphe de la fonction $f$ définie par :
+
+\[
+ 0\leq x\leq 100 \ \text{et}\ f(x)=x^3
+\]
+
+Les valeurs de $f(x)$ sont comprises entre 0 et $\numprint{1000000}$. En choisissant \tkzname{xstep=10} et \tkzname{ystep=100000}, les axes auront environ $10$ cm de longueur (sans mise à l'échelle).
+
+Les valeurs du domaine seront comprises entre $0$ et $10$, mais l'expression donnée à \tkzname{gnuplot}, comportera des \tkzcname{x} équivalents à $x \times 10$, enfin, la valeur finale sera divisée par \tkzname{ystep=100000}. Les valeurs de $f(x)$ resteront ainsi comprises entre $0$ et $10$.
+
+ \begin{tkzexample}[latex=10cm,small]
+\begin{tikzpicture}
+ \tkzInit[xmax=80,xstep=10,
+ ymax=800000,
+ ystep=100000]
+ \tkzAxeXY
+ \tkzGrid
+ \tkzFct[color=red,
+ domain=0:80]{\x**3}
+\end{tikzpicture}
+\end{tkzexample}
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/preamble-standalone.ltx b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/preamble-standalone.ltx
new file mode 100644
index 0000000000..a281c5fee7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/preamble-standalone.ltx
@@ -0,0 +1,6 @@
+\documentclass{standalone}
+\usepackage{tkz-euclide,tkz-fct,tkz-tab,alterqcm}
+
+
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-01-0-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-01-0-0.tex
new file mode 100644
index 0000000000..8885200411
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-01-0-0.tex
@@ -0,0 +1,16 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 1 (Section 1 : Fonctionnement)
+
+\begin{tikzpicture}
+ \tkzInit[xmax=80,xstep=10,
+ ymax=800000,
+ ystep=100000]
+ \tkzAxeXY
+ \tkzGrid
+ \tkzFct[color=red,
+ domain=0:80]{\x**3}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-03-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-03-3-0.tex
new file mode 100644
index 0000000000..77080faf3b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-03-3-0.tex
@@ -0,0 +1,12 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 2 (Section 3.3 : Test de l'installation de tkz-base)
+
+ \begin{tikzpicture}
+ \tkzInit[xmin=-3,xmax=3,ymax=2]
+ \tkzGrid
+ \tkzAxeXY
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-03-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-03-4-0.tex
new file mode 100644
index 0000000000..29df04f010
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-03-4-0.tex
@@ -0,0 +1,13 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 3 (Section 3.4 : Test de l'installation de tkz-fct)
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-5,xmax=5,ymax=2]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color=red]{2*x**2/(x**2+1)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-2-0.tex
new file mode 100644
index 0000000000..f7743863d3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-2-0.tex
@@ -0,0 +1,13 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 4 (Section 4.2 : option : \tkzname{samples})
+
+\begin{tikzpicture}[scale=1]
+ \tkzInit[xmax=5,ymax=2]
+ \tkzGrid[sub]
+ \tkzAxeXY
+ \tkzFct[samples=400,domain=.5:5]{1/x}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-3-0.tex
new file mode 100644
index 0000000000..d922a48ce1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-3-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 5 (Section 4.3 : options : \tkzname{xstep, ystep})
+
+\begin{tikzpicture}
+\tkzInit[xmax= 110,xstep=10,
+ ymax=6,ystep=1]
+\tkzDrawX[label={\textit{Age}},below= -18pt]
+\tkzLabelX
+\tkzDrawY[label={\textit{litres}}]
+\tkzFct[domain = 0.1:100 ]{50/\x}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-4-0.tex
new file mode 100644
index 0000000000..1b5e701e64
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-4-0.tex
@@ -0,0 +1,13 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 6 (Section 4.4 : Modification de \tkzname{xstep} et \tkzname{ystep})
+
+\begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmax=700,xstep=100,ymax=1200,ystep=400]
+ \tkzGrid(0,0)(700,1200) \tkzAxeXY
+ \tkzFct[color=red,samples=100,line width=0.8pt,domain =0:700]%
+ {(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-5-0.tex
new file mode 100644
index 0000000000..415d051f1a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-5-0.tex
@@ -0,0 +1,13 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 7 (Section 4.5 : \tkzname{ystep} et les fonctions constantes)
+
+ \begin{tikzpicture}[scale=0.4]
+ \tkzInit[xmax=30,ymax=90,ystep=6]
+ \tkzFct[line width=1pt,color=red,dashed,domain=0:30]{80.0}
+ \tkzFct[line width=1pt,color=blue,domain=0:30]{80/(1.0+4.0*exp(-0.21*x))}
+ \tkzText[above,color=red](20,80){$P=80$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-6-0.tex
new file mode 100644
index 0000000000..09d5950464
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-6-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 8 (Section 4.6 : Les fonctions affines ou linéaires)
+
+ \begin{tikzpicture}[]
+ \tkzInit[ymax=20,ystep=5]
+ \tkzAxeXY
+ \tkzFct[color=red,domain=0:10,samples=2]{2*x+5}
+ \tkzFct[color=blue,domain=0:10,samples=2]{-x+15}
+ \tkzFct[color=green,domain=0:10,samples=2]{7} % 7/5=1
+ \tkzFct[color=purple,domain=0:10,samples=2]{7.}%7.0/5 =1.2
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-7-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-7-0.tex
new file mode 100644
index 0000000000..7189000a8a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-7-0.tex
@@ -0,0 +1,19 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 9 (Section 4.7 : Sous-grille)
+
+\begin{tikzpicture}
+ \tkzInit[xmin=4,xmax=18,xstep=2,
+ ymin=20,ymax=90,ystep=10]
+ \tkzFct[domain = 5:18]%
+ {(\x-4)*exp(-0.25*\x+5)}
+ \tkzGrid(4,20)(18,90)
+ \tkzAxeXY
+ \tkzGrid[sub,
+ subxstep=0.5,
+ subystep=2,
+ color=brown](6,60)(12,90)
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-8-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-8-0.tex
new file mode 100644
index 0000000000..19fff86960
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-04-8-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 10 (Section 4.8 : Utilisation des macros de \tkzname{tkz-base})
+
+ \begin{tikzpicture}[scale=2]
+ \tkzInit[xmin=-3,xmax=3, ymin=-1,ymax=3]
+ \tkzGrid[sub,subxstep=.5,subystep=.5]
+ \tkzAxeXY
+ \tkzFct[domain = -3:2]{(2-x)*exp(x)}
+ \tkzText(-2,1.25){$\mathcal{C}_{f}$}
+ \tkzDefPoint(2,0){A} \tkzDrawPoint(A) \tkzLabelPoints(A)
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-1-0.tex
new file mode 100644
index 0000000000..4eba5d8089
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-1-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 11 (Section 5.1 : Exemple avec \tkzcname{tkzGetPoint})
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-2,xmax=2,xstep=1,
+ ymin=-8,ymax=24,ystep=8]
+ \tkzGrid \tkzAxeXY
+ \tkzFct[domain =-1.5:1]{3.0-1.3125*x**5-2.5*x**3}
+ \tkzDefPointByFct(.5) \tkzGetPoint{A}\tkzDrawPoint(A)
+ \tkzLabelPoint[above right](A){$A_0$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-2-0.tex
new file mode 100644
index 0000000000..09402c8363
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-2-0.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 12 (Section 5.2 : Exemple avec \tkzcname{tkzGetPoint} et \tkzname{tkzPointResult})
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-2,xmax=2,xstep=1,
+ ymin=-8,ymax=24,ystep=8]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain =-1.5:1]{3.0-1.3125*x**5-2.5*x**3}
+ \tkzDefPointByFct(.5)
+ \tkzDrawPoint(tkzPointResult)
+ % ou bien \tkzDefPointByFct[draw](.5)
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-3-0.tex
new file mode 100644
index 0000000000..3164cac52f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-3-0.tex
@@ -0,0 +1,16 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 13 (Section 5.3 : Options \tkzname{draw} et \tkzname{ref})
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-2,xmax=2,xstep=1,
+ ymin=-8,ymax=24,ystep=8]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain =-1.5:1]{3.0-1.3125*x**5-2.5*x**3}
+ \tkzDefPointByFct[draw,ref=A](.5)
+ \tkzLabelPoint[above right](A){$a$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-4-0.tex
new file mode 100644
index 0000000000..45c7c08d12
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-4-0.tex
@@ -0,0 +1,16 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 14 (Section 5.4 : Placer des points sans courbe)
+
+\begin{tikzpicture}[xscale=3,yscale=2]
+ \tkzInit[xmin=-2,xmax=2,xstep=1,
+ ymin=-8,ymax=24,ystep=8]
+ \tkzGrid
+ \tkzAxeXY
+ \global\edef\tkzFctLast{3.0-1.3125*x^5-2.5*x^3}
+ \foreach \va in {-1.5,-1.4,...,1}{%
+ \tkzDefPointByFct[draw](\va)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-5-0.tex
new file mode 100644
index 0000000000..949853f109
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-5-0.tex
@@ -0,0 +1,19 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 15 (Section 5.5 : Placer des points sans se soucier des coordonnées)
+
+\begin{tikzpicture}[scale=1.6]
+ \tkzInit[xmin = 0, xmax = 800,
+ ymin = 0, ymax = 2000,
+ xstep = 100,ystep = 400]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color = blue,
+ domain = 0:800]%
+ {(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+ \foreach \va in {0,450,800}{%
+ \tkzDefPointByFct[draw](\va)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-6-0.tex
new file mode 100644
index 0000000000..1ea3cb6626
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-05-6-0.tex
@@ -0,0 +1,26 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 16 (Section 5.6 : Placer des points avec deux fonctions)
+
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmax=3,ymax=2]
+ \tkzAxeX
+ \tkzAxeY
+ \tkzGrid(0,0)(3,2)
+ \tkzFct[color = red,domain = 1./3:3]{0.125*(3*x-1)+0.375*(3*x-1)/(x*x)}
+ \tkzFct[color = green,domain = 1./3:3]{0.125*(3*x-1)}
+ \tkzSetUpPoint[shape=circle, size = 10, color=black, fill=lightgray]
+ \tkzDefPointByFct[draw,with = a](1)
+ \tkzDefPointByFct[draw,with = a](2)
+ \tkzDefPointByFct[draw,with = a](3)
+ \tkzDefPointByFct[draw,with = b](3)
+ \tkzDefPointByFct[draw,with = b](1/3)
+ \tkzText[draw,color= red,fill=red!20](1,1.5) %
+ {$f(x)=\frac{1}{8}(3x-1)+\frac{3}{8}%
+ \left(\frac{3x-1}{x^2}\right)$}
+ \tkzText[draw,color= green!50!black,fill=green!20]%
+ (2,0.3){$g(x)=\frac{1}{8}(3x-1)$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-06-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-06-1-0.tex
new file mode 100644
index 0000000000..808c64d81f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-06-1-0.tex
@@ -0,0 +1,18 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 17 (Section 6.1 : Ajouter un label)
+
+\begin{tikzpicture}
+ \tkzInit[xmin=0,xmax=10,
+ ymin=0,ymax=1.2,ystep=0.2]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzClip
+ \tkzFct[thick,color=red,domain=0.55:10]{(\x*\x+\x-1)/(\x**3)}
+ \tkzText(3,-0.3){\textbf{Courbe de} $\mathbf{f}$}
+ \tkzDefPointByFct(3)
+ \tkzText[above right,text=red](tkzPointResult){${\mathcal{C}}_f$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-10-2.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-10-2.tex
new file mode 100644
index 0000000000..e1f56e1a0c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-10-2.tex
@@ -0,0 +1,13 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 26 (Section 7.10.2 : utilisation de la valeur numérique)
+
+\begin{tikzpicture}[scale=1]
+ \tkzInit[xmax=1,xstep=0.1,ymin=0.0,ymax=1,ystep=0.1]
+ \tkzGrid \tkzAxeXY
+ \tkzFct[domain = 0.00001:1]{(\x**\x)}
+ \tkzDrawTangentLine[draw,color = red, kr = 0.2,kl = 0.2]({1/exp(1)})
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-2-0.tex
new file mode 100644
index 0000000000..ab227375b7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-2-0.tex
@@ -0,0 +1,20 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 18 (Section 7.2 : Tangente avec \tkzname{xstep} et \tkzname{ystep} différents de 1)
+
+\begin{tikzpicture}[xscale=1.5]
+ \tikzset{tan style/.style={-}}
+ \tkzInit[xmin=0,xmax=800,xstep=100,
+ ymin=0,ymax=1800,ystep=400]
+ \tkzGrid[color=brown,sub,subxstep=50,subystep=200](0,0)(800,1800)
+ \tkzAxeXY
+ \tkzFct[color=red,samples=100,domain = 0:800]%
+ {(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+ \tkzDrawTangentLine[color=blue,kr=300,kl=450,coord](450)
+ \tkzText[draw, color = black,%
+ fill = brown!50, opacity = 0.8](300,1200)%
+ {$f(x)=\dfrac{1}{90000}x^3 -\dfrac{1}{{100}}x^2 +\dfrac{113}{36}x$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-3-0.tex
new file mode 100644
index 0000000000..9a57b5ce99
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-3-0.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 19 (Section 7.3 : Les options \tkzname{kl}, \tkzname{kr} et l'option \tkzname{draw})
+
+ \begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmin=-3,xmax=4,ymin=-4,ymax=2]
+ \tkzGrid \tkzDrawXY \tkzClip
+ \tkzFct[domain = -2.15:3.2]{(-x*x)+2*x}
+ \tkzDefPointByFct[draw](2)
+ \tkzDrawTangentLine[kl=0,draw](-1)
+ \tkzDrawTangentLine[draw](1)
+ \tkzDrawTangentLine[kr=0,draw](3)
+ \tkzRep
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-4-0.tex
new file mode 100644
index 0000000000..ae9576110a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-4-0.tex
@@ -0,0 +1,24 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 20 (Section 7.4 : Tangente et l'option \tkzname{with})
+
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmax=3,ymax=2]
+ \tkzAxeXY
+ \tkzGrid(0,0)(3,2)
+ \tkzFct[color = red, domain = 1/3:3]{0.125*(3*x-1)+0.375*(3*x-1)/(x*x)}
+ \tkzFct[color = blue, domain = 1/3:3]{0.125*(3*x-1)}
+ \tkzDrawTangentLine[with=a,
+ color=blue](1)
+ \tkzText[draw,
+ color= red,
+ fill=brown!50](1,1.5)%
+ {$f(x)=\frac{1}{8}(3x-1)+\frac{3}{8}\left(\frac{3x-1}{x^2}\right)$}
+ \tkzText[draw,
+ color= green!50!black,
+ fill=brown!50](2,0.3)%
+ {$g(x)=\frac{1}{8}(3x-1)$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-5-0.tex
new file mode 100644
index 0000000000..0d04fcbee6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-5-0.tex
@@ -0,0 +1,18 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 21 (Section 7.5 : Quelques tangentes )
+
+\begin{tikzpicture}[scale=2]
+ \tkzInit[xmin=-5,xmax=2,ymin=-1, ymax=3]
+ \tkzDrawX
+ \tkzDrawY
+ \tkzText[draw,color = red,fill = orange!20]( 1.5,1.5){$y = xe^x$}
+ \tkzFct[color = red, domain = -5:1]{x*exp(x)}%
+ \tkzDrawTangentLine[color=blue,kr=2,kl=2](-2)
+ \tkzDrawTangentLine[color=green,kr=2,kl=2](-1)
+ \tkzDrawTangentLine[color=blue](0)
+ \tkzDrawTangentLine[color=blue,kr=0](1)
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-6-0.tex
new file mode 100644
index 0000000000..de41164650
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-6-0.tex
@@ -0,0 +1,16 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 22 (Section 7.6 : Demi-tangentes )
+
+ \begin{tikzpicture}[scale=2.75]
+ \tkzInit[xmin=-2,xmax=3,ymax=3]
+ \tkzGrid[color=orange](-2,0)(3,3)
+ \tkzAxeX
+ \tkzAxeY
+ \tkzFct[color = red ,domain = -1:2]{(((x+1)*x)*x)**0.5}
+ \tkzDrawTangentLine(0)
+ \tkzText[draw,color = red,fill = orange!20](2,1){$f(x)=\sqrt{x^3+x^2}$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-7-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-7-0.tex
new file mode 100644
index 0000000000..0da5e6441f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-7-0.tex
@@ -0,0 +1,18 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 23 (Section 7.7 : Demi-tangentes Courbe de Lorentz )
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmax=1,ymax=1,xstep=0.1,ystep=0.1]
+ \tkzGrid(0,0)(1,1)
+ \tkzAxeXY
+ \tkzFct[color = red,thick, domain =0:1]{(exp(\x)-1)/(exp(1)-1)}
+ \tkzSetUpPoint[size=6]
+ \tkzDrawTangentLine[draw, kl = 0, kr = 0.4](0)
+ \tkzDrawTangentLine[draw, kl = 0.4,kr = 0 ](1)
+ \tkzText[draw,color = red,fill = orange!20](0.5,0.6)%
+ {$f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-8-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-8-0.tex
new file mode 100644
index 0000000000..f68cf844d9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-8-0.tex
@@ -0,0 +1,18 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 24 (Section 7.8 : Série de tangentes)
+
+\begin{tikzpicture}[scale=2]
+ \tikzstyle{tan style}=[-]
+ \tkzInit[xmin=-5,xmax=2,ymin=-1,ymax=3]
+ \tkzDrawXY
+ \tkzText[draw,color = red, fill = orange!20](1.5,1.5){$y = xe^x$}
+ \tkzFct[line width = 0.01 pt,color = red, domain = -5:1]{x*exp(x)}
+ \foreach \x in {-4,-3.8,...,0}{%
+ \tkzDrawTangentLine[color=blue,line width=.4pt,kr=1,kl=0.5](\x)}
+ \foreach \x in {0.6,0.8,1}{%
+ \tkzDrawTangentLine[color=blue,line width=.4pt, kr=0,kl=0.5](\x)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-9-1.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-9-1.tex
new file mode 100644
index 0000000000..0604828df7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-07-9-1.tex
@@ -0,0 +1,18 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 25 (Section 7.9.1 : Utilisation de \tkzcname{tkzFctLast})
+
+\begin{tikzpicture}[scale=2]
+ \tikzstyle{tan style}=[-]
+ \tkzInit[xmin=-5,xmax=2,ymin=-1,ymax=3]
+ \tkzDrawXY
+ \tkzText[draw,color = red, fill = orange!20](1.5,1.5){$y = xe^x$}
+ \global\edef\tkzFctLast{x*exp(x)}% c'est la ligne importante
+ \foreach \v in {-4,-3.8,...,0}{%
+ \tkzDrawTangentLine[color=blue,line width=.4pt,kl=1](\v)}
+ \foreach \v in {0.6,0.8,1}{%
+ \tkzDrawTangentLine[color=blue,line width=.4pt,kr=0,kl=.75](\v)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-10-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-10-0.tex
new file mode 100644
index 0000000000..6d40969c60
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-10-0.tex
@@ -0,0 +1,19 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 33 (Section 8.10 : Mélange de style)
+
+\begin{tikzpicture}[scale=2.5]
+ \tkzInit[xmin=-1,xmax=4,ymin=0,ymax=5]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = -.5:4]{ 4*x-x**2+4/(x**2+1)**2}
+ \tkzFct[domain = -.5:4]{x-1+4/(x**2+1)**2}
+ \tkzDrawAreafg[between=a and b,color=green,domain = 1:4]
+ \tkzDrawAreafg[between=a and b,pattern=north west lines,domain = -.5:1]
+ \tkzRep
+ \tkzText(2.5,4.5){$C_f$}
+ \tkzText(2.5,1){$C_g$}
+\end{tikzpicture}%
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-11-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-11-0.tex
new file mode 100644
index 0000000000..634c70b460
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-11-0.tex
@@ -0,0 +1,24 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 34 (Section 8.11 : Courbes de niveaux)
+
+\begin{tikzpicture}[scale=.75]
+ \tkzInit[xmax=20,ymax=12]
+ \tkzGrid[color=orange,sub](0,0)(20,12)
+ \tkzAxeXY
+ \tkzFct[samples=400,domain =0:8]{(32-4*x)**(0.5)} % a
+ \tkzFct[samples=400,domain =0:18]{(72-4*x)**(0.5)} % b
+ \tkzFct[samples=400,domain =0:20]{(112-4*x)**(0.5)} % c
+ \tkzFct[samples=400,domain =2:20]{(152-4*x)**(0.5)} % d
+ \tkzFct[samples=400,domain =12:20]{(192-4*x)**(0.5)}% e
+ \def\tkzFctgnuf{0} % f
+ \def\tkzFctgnug{12}% g
+ \tkzDrawAreafg[between= b and a,color=gray!80,domain = 0:8]
+ \tkzDrawAreafg[between= b and f,color=gray!80,domain = 8:18]
+ \tkzDrawAreafg[between= d and c,color=gray!50,domain = 2:20]
+ \tkzDrawAreafg[between= g and c,color=gray!50,domain = 0:2]
+ \tkzDrawAreafg[between= g and e,color=gray!20,domain =12:20]
+\end{tikzpicture}%
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-2-0.tex
new file mode 100644
index 0000000000..a71373a61c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-2-0.tex
@@ -0,0 +1,27 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 27 (Section 8.2 : Naissance de la fonction logarithme népérien)
+
+\begin{tikzpicture}[scale=2]
+ \tkzInit[xmin=0,xmax=3,xstep=1,
+ ymin=-2,ymax=2,ystep=1]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain= 0.4:3]{1./x}
+ \tkzDefPointByFct(1)
+ \tkzGetPoint{A}
+ \tkzDefPointByFct(2)
+ \tkzGetPoint{B}
+ \tkzLabelPoints[above right](A,B)
+ \tkzDrawArea[color=blue!30,
+ domain = 1:2]
+ \tkzFct[domain = 0.5:3]{log(x)}
+ \tkzDrawArea[color=red!30,
+ domain = 1:2]
+ \tkzPointShowCoord(A)
+ \tkzPointShowCoord(B)
+ \tkzDrawPoints(A,B)
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-3-0.tex
new file mode 100644
index 0000000000..75e39e9064
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-3-0.tex
@@ -0,0 +1,18 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 28 (Section 8.3 : Surface simple)
+
+ \begin{tikzpicture}[scale=1.75]
+ \tkzInit[xmin=0,xmax=800,xstep=100,
+ ymin=0,ymax=2000,ystep=400]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = 0:800]{(1./90000)*\x*\x*\x-(1./100)*\x*\x+(113./36)*\x}
+ \tkzDefPoint(450,400){a}
+ \tkzDrawPoint(a)
+ \tkzDrawArea[color=orange!50, domain =0:450]
+ \tkzDrawArea[color=orange!80, domain =450:800]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-4-0.tex
new file mode 100644
index 0000000000..07050e22a2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-4-0.tex
@@ -0,0 +1,20 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 29 (Section 8.4 : Surface et hachures)
+
+\begin{tikzpicture}[scale=2]
+ \tkzInit[xmin=-3,xmax=4,ymin=-2,ymax=4]
+ \tkzGrid(-3,-2)(4,4)
+ \tkzDrawXY
+ \tkzFct[domain = -2.15:3.2]{(2+\x)*exp(-\x)}
+ \tkzDrawArea[pattern=north west lines,domain =-2:2]
+ \tkzDrawTangentLine[draw,color=blue](0)
+ \tkzDrawTangentLine[draw,color=blue](-1)
+ \tkzDefPointByFct(2) \tkzGetPoint{C}
+ \tkzDefPoint(2,0){B}
+ \tkzDrawPoints(B,C) \tkzLabelPoints[above right](B,C)
+ \tkzRep
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-7-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-7-0.tex
new file mode 100644
index 0000000000..1fa37f71c5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-7-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 30 (Section 8.7 : Surface comprise entre deux courbes avec des hachures)
+
+ \begin{tikzpicture}[scale=.8]
+ \tkzInit[xmax=5,ymax=5]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = 0:5]{x}
+ \tkzFct[domain = 1:5]{log(x)}
+ \tkzDrawAreafg[between= a and b,pattern=north west lines,domain = 1:5]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-8-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-8-0.tex
new file mode 100644
index 0000000000..9073b668a2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-8-0.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 31 (Section 8.8 : Surface comprise entre deux courbes avec l'option \tkzname{between})
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[ymin=-1,xmax=5,ymax=3]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = 0.5:5]{1/x}% courbe a
+ \tkzFct[domain = 1:5]{log(x)}% courbe b
+ \tkzDrawAreafg[between=b and a,
+ color=magenta!50,
+ domain = 1:4]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-9-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-9-0.tex
new file mode 100644
index 0000000000..29e26a498c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-08-9-0.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 32 (Section 8.9 : Surface comprise entre deux courbes : courbes de Lorentz)
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmax=1,ymax=1,xstep=0.1,ystep=0.1]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color = red,domain = 0:1]{(exp(\x)-1)/(exp(1)-1)}
+ \tkzFct[color = blue,domain = 0:1]{\x*\x*\x}
+ \tkzFct[color = green,domain = 0:1]{\x}
+ \tkzDrawAreafg[between = c and b,color=purple!40,domain = 0:1]
+ \tkzDrawAreafg[between = c and a,color=gray!60,domain = 0:1]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-1-0.tex
new file mode 100644
index 0000000000..25867a79c9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-1-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 35 (Section 9.1 : Somme de Riemann)
+
+\begin{tikzpicture}[scale=3.5]
+\tkzInit[xmax=3,ymax=1.75]
+\tkzAxeXY
+\tkzGrid(0,0)(3,2)
+\tkzFct[color = red, domain =1/3:3]{0.125*(3*x-1)+0.375*(3*x-1)/(x*x)}
+\tkzDrawRiemannSum[fill=green!40,opacity=.2,color=green,
+ line width=1pt,interval=1./2:exp(1),number=10]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-2-0.tex
new file mode 100644
index 0000000000..64faec82ce
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-2-0.tex
@@ -0,0 +1,13 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 36 (Section 9.2 : Somme de Riemann Inf)
+
+\begin{tikzpicture}[scale=1.75]
+\tkzInit[xmin=-3,xmax=6,ymin=-2,ymax=14,ystep=2]
+\tkzDrawX \tkzDrawY
+\tkzFct[line width=2pt,color = red, domain =-3:6]{(-\x-2)*(\x-5)}
+\tkzDrawRiemannSumInf[fill=green!40,opacity=.5,interval=-1:5,number=10]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-3-0.tex
new file mode 100644
index 0000000000..2f08a96821
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-3-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 37 (Section 9.3 : Somme de Riemann Inf et Sup)
+
+\begin{tikzpicture}[scale=1.75]
+ \tkzInit[xmin=-3,xmax=6,ymin=-2,ymax=14,ystep=2]
+ \tkzDrawX \tkzDrawY
+ \tkzFct[line width=2pt,color = red, domain =-3:6]{(-\x-2)*(\x-5)}
+ \tkzDrawRiemannSumSup[fill=blue!40,opacity=.5,interval=-1:5,number=10]
+ \tkzDrawRiemannSumInf[fill=green!40,opacity=.5,interval=-1:5,number=10]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-4-0.tex
new file mode 100644
index 0000000000..9e80435a8d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-09-4-0.tex
@@ -0,0 +1,13 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 38 (Section 9.4 : Somme de Riemann Mid)
+
+ \begin{tikzpicture}[scale=1.75]
+\tkzInit[xmin=-3,xmax=6,ymin=-2,ymax=14,ystep=2]
+\tkzDrawX \tkzDrawY
+\tkzFct[line width=2pt,color = red, domain =-3:6]{(-\x-2)*(\x-5)}
+\tkzDrawRiemannSumMid[fill=blue!40,opacity=.5,interval=-1:5,number=10]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-2-0.tex
new file mode 100644
index 0000000000..4bc5eb21b2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-2-0.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 39 (Section 10.2 : Ligne verticale )
+
+\begin{tikzpicture}[scale=2]
+ \tkzInit[xmax=3,ymax=2]
+ \tkzAxeXY
+ \tkzVLine[color = blue,
+ style = dashed,
+ line width = 1pt]{2}
+ \tkzVLine[color = red,
+ style = dashed,
+ line width = 1pt]{1./3}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-3-0.tex
new file mode 100644
index 0000000000..14df7d6296
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-3-0.tex
@@ -0,0 +1,12 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 40 (Section 10.3 : Lignes verticales)
+
+\begin{tikzpicture}
+ \tkzInit[xmax=5,ymax=5]
+ \tkzAxeXY
+ \tkzVLines[color = green]{1,2,...,4}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-4-0.tex
new file mode 100644
index 0000000000..749b6e4837
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-4-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 41 (Section 10.4 : Ligne verticale et valeur calculée par \tkzname{fp} )
+
+\begin{tikzpicture}
+ \tkzInit[xmin=-7,xmax=7,ymin=-1,ymax=1]
+ \tkzAxeY[font=\small]
+ \tkzAxeX[trig=2]
+ \foreach\v in {-2,-1,1,2}
+ {\tkzVLine[color=red]{\v*\FPpi}}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-5-0.tex
new file mode 100644
index 0000000000..16b5e32eb8
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-5-0.tex
@@ -0,0 +1,12 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 42 (Section 10.5 : Une ligne horizontale)
+
+\begin{tikzpicture}
+ \tkzInit[xmax=80,xstep=20,ymax=2]
+ \tkzAxeXY
+ \tkzHLine[color=red]{exp(1)-1}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-6-0.tex
new file mode 100644
index 0000000000..9430b809cb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-6-0.tex
@@ -0,0 +1,16 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 43 (Section 10.6 : Asymptote horizontale)
+
+\begin{tikzpicture}[scale=2.5]
+ \tkzInit[xmax=5,ymin=0.5,ymax=1.5,ystep=0.5]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = 0:10]{x*exp(-x)+1}
+ \tkzHLine[color=red,style=solid,line width=1.2pt]{1}
+ \tkzDrawTangentLine[draw,color=blue](1)
+ \tkzText[draw,fill = brown!20](2,0.75){$f(x)=x \text{e}^{-x}+1$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-7-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-7-0.tex
new file mode 100644
index 0000000000..0d2cd771c0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-7-0.tex
@@ -0,0 +1,12 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 44 (Section 10.7 : Lignes horizontales)
+
+\begin{tikzpicture}
+ \tkzInit
+ \tkzAxeXY
+ \tkzHLines[color = green]{1,2,...,10}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-8-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-8-0.tex
new file mode 100644
index 0000000000..9b8894f47a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-10-8-0.tex
@@ -0,0 +1,22 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 45 (Section 10.8 : Asymptote horizontale et verticale)
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color=red,domain=1.001:1.9]{1+1/(log(x-1)**2)}
+ \tkzFct[color=red,domain = 2.1:10]{1+1/(log(x-1)**2)}
+ \tkzHLine[line width=1pt,color=red]{1}
+ \tkzVLine[line width=1pt,color=blue]{2}
+ \tkzDefPoint(1,1){A}
+ \tkzDrawPoint[fill=white,color=brown,size=6](A)
+ \tkzDefPointByFct[draw,with=b]({1+exp(1)})
+ \tkzLabelPoint[above right](tkzPointResult){$(1+\text{e}~;~2)$}
+ \tkzText[draw,color = black,fill = brown!20](6,6)%
+ {$f(x)=\dfrac{1}{\ln^2 (x-1)}+1$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-1-0.tex
new file mode 100644
index 0000000000..9b7d6f35f4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-1-0.tex
@@ -0,0 +1,12 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 46 (Section 11.1 : Courbe paramétrée exemple 1)
+
+\begin{tikzpicture}
+ \tkzInit[ymax=2.25,ystep=.5] \tkzGrid
+ \tkzAxeXY
+ \tkzFctPar[samples=400,domain=0:2*pi]{(t-sin(t))}{(1-cos(t))}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-2-0.tex
new file mode 100644
index 0000000000..65bb2c0219
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-2-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 47 (Section 11.2 : Courbe paramétrée exemple 2)
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-50,xmax=50,xstep=10,
+ ymin=-50,ymax=50,ystep=10]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFctPar[smooth,samples=200,domain=0:50]{t*sin(t)}{t*cos(t)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-3-0.tex
new file mode 100644
index 0000000000..7484370f2b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-3-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 48 (Section 11.3 : Courbe paramétrée exemple 3)
+
+\begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmin=-2,xmax=10,xstep=2,ymin=-10,ymax=4,ystep=2]
+ \tkzGrid[sub]
+ \tkzAxeX[step=2]
+ \tkzAxeY[step=2]
+ \tkzFctPar[samples=400,domain=-pi:pi]{exp(t)*sin(t)}{exp(t)*cos(t)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-4-0.tex
new file mode 100644
index 0000000000..6c89c5b7f0
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-4-0.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 49 (Section 11.4 : Courbe paramétrée exemple 4)
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-1,xmax=1,xstep=.2,
+ ymin=-1,ymax=1,ystep=.2]
+ \tkzFctPar[color=red,
+ line width=2pt,
+ fill=orange,
+ opacity=.4,
+ samples=400,
+ domain=0:2*pi]{(cos(t))**3}{(sin(t))**3}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-5-0.tex
new file mode 100644
index 0000000000..b45d54ba54
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-5-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 50 (Section 11.5 : Courbe paramétrée exemple 5)
+
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmin=-1,xmax=1,ymin=-2,ymax=1]
+ \tkzClip
+ \tkzFctPar[samples=500,smooth,domain=-pi:pi,
+ ball color=red,shading=ball]%
+ {(sin(t))**3}{cos(t)-(cos(t))**4}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-6-0.tex
new file mode 100644
index 0000000000..4fa7ec308c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-6-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 51 (Section 11.6 : Courbe paramétrée exemple 6)
+
+\begin{tikzpicture}[scale=1.5]
+ \tkzInit[xmin=-.4,xmax=.4,xstep=.1,ymin=0,ymax=.7,ystep=.1]
+ \tkzClip
+ \tkzFctPar[samples=2000,smooth,domain=-1:1,
+ ball color=red,shading=ball]%
+ {sin(t)*cos(t)*log(abs(t))}{sqrt(abs(t))*cos(t)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-7-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-7-0.tex
new file mode 100644
index 0000000000..45ba1e77f5
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-11-7-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 52 (Section 11.7 : Courbe paramétrée exemple 7)
+
+\begin{tikzpicture}[scale=1.75]
+ \tkzInit[xmin=-20,xmax=20,xstep=5,ymin=-25,ymax=15,ystep=5]
+ \tkzClip
+ \tkzFctPar[samples=400,smooth,domain=0:6.28,
+ ball color=red,shading=ball]%
+ {16*(sin(t))**3}{13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-1-0.tex
new file mode 100644
index 0000000000..844ef3ad7a
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-1-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 53 (Section 12.1 : Équation polaire exemple 1)
+
+\begin{tikzpicture}[scale=0.75]
+ \tkzInit [xmin=-0.5,xmax=0.5,
+ ymin=-0.5,ymax=0.5,
+ xstep=0.1,ystep=.1]
+ \tkzDrawX \tkzDrawY
+ \tkzFctPolar[domain=-2*pi:2*pi]{cos(t)*sin(t)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-2-0.tex
new file mode 100644
index 0000000000..a61de63123
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-2-0.tex
@@ -0,0 +1,14 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 54 (Section 12.2 : Équation polaire exemple 2)
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit [xmin=-1,xmax=1,
+ ymin=-1,ymax=1,
+ xstep=.2,ystep=.2]
+ \tkzDrawX \tkzDrawY
+ \tkzFctPolar[domain=0:2*pi]{cos(2*t)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-3-0.tex
new file mode 100644
index 0000000000..10b89682fa
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-3-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 55 (Section 12.3 : Équation polaire Heart)
+
+\begin{tikzpicture}[scale=3]
+ \tkzInit[xmin=-5,xmax=5,ymin=-5,ymax=5]
+ \tkzFctPolar[domain = -pi:pi,
+ samples = 800,
+ ball color = red,
+ shading = ball]%
+ {2-2*sin(t)+sin(t)*sqrt(abs(cos(t)))/(sin(t)+1.4)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-4-0.tex
new file mode 100644
index 0000000000..901097453b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-4-0.tex
@@ -0,0 +1,11 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 56 (Section 12.4 : Équation polaire exemple 4)
+
+\begin{tikzpicture}[scale=4]
+ \tkzInit [xmin=-5,xmax=5,ymin=-5,ymax=5,xstep=1,ystep=1]
+ \tkzFctPolar[domain=0:2*pi,samples=400]{ 1-sin(t) }
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-5-0.tex
new file mode 100644
index 0000000000..f410535b9b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-5-0.tex
@@ -0,0 +1,12 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 57 (Section 12.5 : Équation polaire Cannabis ou Marijuana Curve)
+
+\begin{tikzpicture}[scale=2.5]
+ \tkzInit [xmin=-5,xmax=5,ymin=-5,ymax=5,xstep=1,ystep=1]
+ \tkzFctPolar[domain=0:2*pi,samples=1000]%
+ { (1+.9*cos(8*t))*(1+.1*cos(24*t))*(1+.1*cos(200*t))*(1+sin(t)) }
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-6-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-6-0.tex
new file mode 100644
index 0000000000..a311f6ae26
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-12-6-0.tex
@@ -0,0 +1,11 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 58 (Section 12.6 : Scarabaeus Curve)
+
+\begin{tikzpicture}[scale=2.5]
+ \tkzInit [xmin=-5,xmax=5,ymin=-5,ymax=5,xstep=1,ystep=1]
+ \tkzFctPolar[domain=0:2*pi,samples=400]{1.6*cos(2*t)-3*cos(t) }
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-13-0-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-13-0-0.tex
new file mode 100644
index 0000000000..071a69d456
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-13-0-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 59 (Section 13 : Symboles)
+
+\begin{tikzpicture}
+ \tkzInit[xmin=-1,xmax=6,ymin=0,ymax=10,xstep=1,ystep=1]
+ \tkzGrid[color=gray]
+ \tkzAxeXY
+ \tkzFct[{-[},color=red,domain =-1:2,samples=2]{8-1.5*\x}
+ \tkzFct[{[-]},color=blue,domain =2:3,samples=2]{4}
+ \tkzFct[{]-},color=green!50!black,domain =3:6,samples=2]{2*\x-4}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-1-0.tex
new file mode 100644
index 0000000000..29c14fb7e2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-1-0.tex
@@ -0,0 +1,20 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 60 (Section 14.1 : Variante intermédiaire : \TIKZ\ + \tkzname{tkz-fct})
+
+ \begin{tikzpicture}[scale=3]
+ \tkzInit[xmin=0,xmax=4,ymin=-1.5,ymax=1.5]
+ \tkzAxeY[label=$f(x)$]
+ \tkzDefPoint(1,0){x} \tkzDrawPoint[color=blue,size=0.6pt](x)
+ \shade[top color=gray!80,bottom color=gray!20] (1,0)%
+ plot[id=ln,domain=1:2.718] function{log(x)} |-(1,0);
+ \draw[color=blue] plot[id=ln,domain=0.2:4,samples=200]function{log(x)};
+ \tkzAxeX
+ \tkzText[draw,color= black,fill=brown!50](2,-1)%
+ {$\mathcal{A} = \int_1^{\text{e}}\ln(x)\text{d}x =%
+ \big[x\ln(x)\big]_{1}^{\text{e}} = \text{e}$}
+ \tkzText[draw,color= black,fill=brown!50](2,0.3){$\mathcal{A}$}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-2-0.tex
new file mode 100644
index 0000000000..af23e82210
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-2-0.tex
@@ -0,0 +1,24 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 61 (Section 14.2 : Courbes de \tkzname{Lorentz})
+
+\begin{tikzpicture}[scale=1]
+ \tkzInit[xmax=1,ymax=1,xstep=0.1,ystep=0.1]
+ \tkzGrid(0,0)(1,1)
+ \tkzAxeXY
+ \tkzFct[color = red,domain = 0:1]{(exp(\x)-1)/(exp(1)-1)}
+ \tkzDrawTangentLine[kl=0,kr=0.4,color=red](0)
+ \tkzDrawTangentLine[kl=0.2,kr=0,color=red](1)
+ \tkzText[draw,color = red,fill = brown!30](0.4,0.6)%
+ {$f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$}
+ \tkzFct[color = blue,domain = 0:1]{\x*\x*\x}
+ \tkzDrawTangentLine[kl=0,kr=0.4,color=blue](0)
+ \tkzDrawTangentLine[kl=0.2,kr=0,color=blue](1)
+ \tkzText[draw,color = blue,fill = brown!30](0.8,0.1){$g(x)=x^3$}
+ \tkzFct[color = orange,style = dashed,domain = 0:1]{\x}
+ \tkzDrawAreafg[between=c and b,color=blue!40,domain = 0:1]
+ \tkzDrawAreafg[between=c and a,color=red!60,domain = 0:1]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-3-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-3-0.tex
new file mode 100644
index 0000000000..c077890e2f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-3-0.tex
@@ -0,0 +1,19 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 62 (Section 14.3 : Courbe exponentielle)
+
+\begin{tikzpicture}[scale=1.25]
+ \tkzInit[xmin=-6,xmax=4,ymin=-5,ymax=6]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[color=red,thick,domain=-6:2.1785]{(-x*x+x+2)*exp(x)}
+ \tkzSetUpPoint[size=6]
+ \tkzDrawTangentLine[draw,kl=2](0)
+ \tkzDefPoint(2,0){b} \tkzDrawPoint(b)
+ \tkzDefPoint(-1,0){c} \tkzDrawPoint(c)
+ \tkzText(2,4){($\mathcal{C}$)}
+ \tkzText(-2,-3){($\mathcal{T}$)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-4-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-4-0.tex
new file mode 100644
index 0000000000..46da6372b2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-4-0.tex
@@ -0,0 +1,26 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 63 (Section 14.4 : Axe logarithmique)
+
+\begin{tikzpicture}[scale=0.8]
+ \tkzInit[xmax=14,ymax=12]
+ \draw[thin,->] (0,0) -- (14,0) node[below left] {};
+ \draw[thin,->] (0,0) -- (0,12) node[below left] {};
+ \foreach \x/\xtext in {0/0,2/10,4/20,6/30,8/40,10/50,12/60,14/70}%
+ {\draw[shift={(\x,0)}] node[below] {$\xtext$ };}
+ \foreach \y/\z in {0/0,3/1,6/2,9/3,12/4}%
+ {\draw[shift={(0,\y)}] node[left] {$10^{\z}$};}
+ \foreach \x in {1,2,...,14}{\tkzVLine[gray,thin]{\x}}
+ \foreach \y in {3,6,...,12}{\tkzHLine[gray,thin]{\y}}
+ \foreach \y in {0,3,...,9}{
+ \foreach \z in {0.903,1.431,1.806,2.097,2.334,2.535,2.709,2.863}%
+ {\tkzHLine[thin,gray,shift={(0,\y)}] {\z}}}
+ \tkzDefPoint(0,6.90){a}
+ \tkzDefPoint(10,9.30){b}
+ \tkzDrawPoints(a,b)
+ \tkzLabelPoint(a){$M_{1}$}
+ \tkzLabelPoint(b){$M_{11}$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-5-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-5-0.tex
new file mode 100644
index 0000000000..e943de9a7d
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-5-0.tex
@@ -0,0 +1,25 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 64 (Section 14.5 : Un peu de tout)
+
+\begin{tikzpicture}[scale=.8]
+ \tkzInit[xmin=5,xmax=40,ymin=0,ymax=350,xstep=2.5,ystep=25]
+ \tkzDrawX[label=$q$]
+ \tkzLabelX
+ \tkzDrawY[label=$C(q)$]
+ \tkzLabelY
+ \tkzGrid
+ \tkzFct[domain=5:40]{0.1*\x**2+2*\x+60}
+ \foreach \vv in {5,10,...,40}{%
+ \tkzDefPointByFct(\vv)
+ \tkzDrawPoint(tkzPointResult)}
+ \tkzFct[domain=5:40]{(108*log(\x)-158)}
+ \tkzText(37.5,280){$C$}
+ \tkzText(37.5,220){$R$}
+ \tkzDefSetOfPoints{%
+ 5/15,10/90,15/135,20/170,25/190,30/200,35/230,40/240}
+\tkzDrawSetOfPoints[mark = x,mark size=3pt]
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-6-1.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-6-1.tex
new file mode 100644
index 0000000000..73f217354f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-6-1.tex
@@ -0,0 +1,37 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 65 (Section 14.6.1 : Le code)
+
+\begin{tikzpicture}
+\tkzInit[xmin=-1,xmax=1,ymin=-1.8,ymax=1.2,xstep=0.1,ystep=0.2]
+\tkzGrid
+\tkzAxeXY
+\tkzFct[samples = 400, line width=4pt, color = red,opacity=.5](-1---1){1/(1+8*\x*\x)}
+ \tkzFct[smooth,samples = 400, line width=1pt, color = blue,domain =-1:1]%
+{1.0+((((((((((((((((((((
+ 8140.04642)*\x
+ +0.01544)*\x
+ -32356.67279)*\x
+ -0.05562)*\x
+ +54061.87086)*\x
+ +0.08097)*\x
+ -49850.83249)*\x
+ -0.05934)*\x
+ +28118.29594)*\x
+ +0.02540)*\x
+ -10240.01777)*\x
+ -0.00580)*\x
+ +2516.04640)*\x
+ +0.00071)*\x
+ -444.23476)*\x
+ -0.00004)*\x
+ +62.60245)*\x
+ +0.00000)*\x
+ -7.99142)*\x
+ -0.00000)*\x}
+ \tkzSetUpPoint[size=16,color=black,fill=yellow]
+ \foreach \v in {-1,-0.8,---.,1}{\tkzDefPointByFct[draw](\v)}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-1.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-1.tex
new file mode 100644
index 0000000000..48f7a80220
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-1.tex
@@ -0,0 +1,22 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 66 (Section 14.7.1 : Tableau de variations)
+
+ \begin{tikzpicture}
+ \tkzTab%
+ { $v$ /1,%
+ $g'(v)$ /1,%
+ $g(v)$ /3%
+ }%
+ { $b$ ,%
+ $3b$ ,%
+ $+\infty$%
+ }%
+ {0,$+$,$0$,$-$,t}
+ {-/ $0$ /,%
+ +/$\dfrac{8}{27b}$ /,%
+ -/ $0$ /}%
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-2.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-2.tex
new file mode 100644
index 0000000000..d543f04cc6
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-2.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 67 (Section 14.7.2 : Première courbe avec $ b=1$)
+
+ \begin{tikzpicture}[xscale=2,yscale=2.5]
+ \tkzInit[xmin=0,xmax=6,ymax=0.5,ystep=0.1]
+ \tkzDrawX[label=$v$]
+ \tkzDrawY[label=$g(v)$]
+ \tkzGrid(0,0)(6,0.5)
+ \tkzFct[color = red,domain =1:6]{(2*(x-1)*(x-1))/(x*x*x)}
+ \tkzDrawTangentLine[color=blue,draw](3)
+ \tkzDefPointByFct(1)
+ \tkzText[draw, fill = brown!30](4,0.1){$g(v)=2\dfrac{(v-1)^2}{v^3}$}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-3.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-3.tex
new file mode 100644
index 0000000000..c46720bfce
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-3.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 68 (Section 14.7.3 : Deuxième courbe $b=1/3$ )
+
+ \begin{tikzpicture}[scale=1.2]
+ \tkzInit[xmin=0,xmax=2,xstep=0.2,ymax=1,ystep=0.1]
+ \tkzAxeXY
+ \tkzGrid(0,0)(2,1)
+ \tkzFct[color = red,domain =1/3:2]{(2*(\x-1./3)*(\x-1./3))/(\x*\x*\x)}
+ \tkzDrawTangentLine[draw,color=blue,kr=.5,kl=.5](1)
+ \tkzDefPointByFct(1)
+ \tkzText[draw,fill = brown!30](1.2,0.3)%
+ {$g(v)=2\dfrac{\left(v-\dfrac{1}{3}\right)^2}{v^3}$}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-4.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-4.tex
new file mode 100644
index 0000000000..da73665eeb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-7-4.tex
@@ -0,0 +1,17 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 69 (Section 14.7.4 : Troisième courbe $ b=32/27$ )
+
+ \begin{tikzpicture}[scale=1.2]
+ \tkzInit[xmin=0,xmax=10,ymax=.35,ystep=0.05];
+ \tkzAxeXY
+ \tkzGrid(0,0)(10,.35)
+ \tkzFct[color = red,
+ domain =1.185:10]{(2*(\x-32./27)*(\x-32./27))/(\x*\x*\x)}
+ \tkzDrawTangentLine[draw,color=blue,kr=2,kl=2](3.555)
+ \tkzText[draw,fill = brown!30](5,0.3)%
+ {$g(v)=2\dfrac{\left(v-\dfrac{32}{27}\right)^2}{v^3}$}
+ \end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-8-1.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-8-1.tex
new file mode 100644
index 0000000000..a5c1afc3e3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-8-1.tex
@@ -0,0 +1,25 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 70 (Section 14.8.1 : Courbes de \tkzname{Van der Walls} )
+
+\begin{tikzpicture}[scale=4]
+ \tkzInit[xmax=3,ymax=2];
+ \tkzAxeXY
+ \tkzGrid(0,0)(3,2)
+ \tkzFct[color = red,domain =1/3:3]{0.125*(3*\x-1)+0.375*(3*\x-1)/(\x*\x)}
+ \tkzDefPointByFct[draw](2)
+ \tkzDefPointByFct[draw](3)
+ \tkzDrawTangentLine[draw,color=blue](1)
+ \tkzFct[color = green,domain =1/3:3]{0.125*(3*x-1)}
+ \tkzSetUpPoint[size=8,fill=orange]
+ \tkzDefPointByFct[draw](3)
+ \tkzDefPointByFct[draw](1/3)
+ \tkzDefPoint(1,1){f}
+ \tkzDrawPoint(f)
+ \tkzText[draw,fill = white,text=red](1,1.5)%
+{$f(x)=\dfrac{1}{8}(3x-1)+\dfrac{3}{8}\left(\dfrac{3x-1}{x^2}\right)$}
+\tkzText[draw,fill = white,text=green](2,0.4){$g(x) = \dfrac{3x-1}{8}$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-8-2.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-8-2.tex
new file mode 100644
index 0000000000..4012a55b00
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-14-8-2.tex
@@ -0,0 +1,22 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 71 (Section 14.8.2 : Courbes de \tkzname{Van der Walls} (suite))
+
+\begin{tikzpicture}[xscale=4,yscale=1.5]
+ \tkzInit[xmin=0,xmax=3,ymax=3,ymin=-4]
+ \tkzGrid(0,-4)(3,3)
+ \tkzAxeXY
+ \tkzClip
+ \tkzVLine[color=red,style=dashed]{1/3}
+ \tkzFct[color=red,domain = 0.35:3]{-3/(x*x) +4/(3*x-1)}
+ \tkzFct[color=blue,domain = 0.35:3]{-3/(x*x) +27/(4*(3*x-1))}
+ \tkzFct[color=orange,domain = 0.35:3]{-3/(x*x) +8/(3*x-1)}
+ \tkzFct[color=green,domain = 0.35:3]{-3/(x*x) +7/(3*x-1)}
+ \tkzText[draw,fill = white,text=brown](2,-2)%
+ {$f(x)=-\dfrac{3}{x^2}+\dfrac{8\alpha}{3x-1}$ \hspace{.5cm}%
+ avec $\alpha \in%
+ \left\{\dfrac{1}{2}~;~\dfrac{27}{32}~;~\dfrac{7}{8}~;~1\right\}$}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-15-0-1.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-15-0-1.tex
new file mode 100644
index 0000000000..10ba742294
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-15-0-1.tex
@@ -0,0 +1,20 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 72 (Section 15.0.1 : Première représentation)
+
+ \begin{tikzpicture}[xscale=2.25,yscale=1]
+ \tkzInit[xmin=-2,xmax=3,ymin=-1,ymax=6]
+ \tkzDrawX
+ \tkzDrawY
+ \tkzFct[samples=100,domain = -1:2.2]{x+exp(x-1)}
+ \tkzDefPoint(1,2){pt1}
+ \tkzDrawPoint(pt1)
+ \tkzPointShowCoord[xlabel=$1$,ylabel=$2$](pt1)
+ \tkzDefPoint(2,4.71828){pt2}
+ \tkzDrawPoint(pt2)
+ \tkzPointShowCoord[xlabel=$2$,ylabel=$\text{e}+2$](pt2)
+ \tkzRep
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-15-0-2.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-15-0-2.tex
new file mode 100644
index 0000000000..5fc013f510
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-15-0-2.tex
@@ -0,0 +1,20 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 73 (Section 15.0.2 : Seconde représentation)
+
+ \begin{tikzpicture}[xscale=2.25,yscale=1]
+ \tkzInit[xmin=-2,xmax=3,ymin=-1,ymax=6]
+ \tkzDrawX
+ \tkzDrawY
+ \tkzFct[samples=100,domain =-1:2.2]{x*x/2+exp(x-1)}
+ \tkzDefPoint(1,1.5){pt1}
+ \tkzDrawPoint(pt1)
+ \tkzPointShowCoord[xlabel=$1$,ylabel=$3/2$](pt1)
+ \tkzDefPoint(2,4.71828){pt2}
+ \tkzDrawPoint(pt2)
+ \tkzPointShowCoord[xlabel=$2$,ylabel=$\text{e}+2$](pt2)
+ \tkzRep
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-16-1-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-16-1-0.tex
new file mode 100644
index 0000000000..d56bdd5f44
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-16-1-0.tex
@@ -0,0 +1,18 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 74 (Section 16.1 : \tkzname{pgfmath})
+
+\begin{tikzpicture}
+ \def\Asmall{0.7 } \def\Abig{3 } \def\B{20}%Herbert Voss
+ \path[fill=blue!40!black,domain=-pi:pi,samples=500,smooth,variable=\t]%
+ plot({\Abig*cos(\t r)+\Asmall*cos(\B*\t r)},%
+ {0.5*\Abig*sin(\t r)+0.5*\Asmall*sin(\B*\t r)});
+ \def\Asmall{0.7 } \def\Abig{3 } \def\B{10}
+ \path[shift={(1,1)},fill=blue!40!black,%
+ domain=-pi:pi,samples=500,smooth,variable=\t]%
+ plot({\Abig*cos(\t r)+\Asmall*cos(\B*\t r)},%
+ {0.5*\Abig*sin(\t r)+0.5*\Asmall*sin(\B*\t r)});
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-16-2-0.tex b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-16-2-0.tex
new file mode 100644
index 0000000000..d3f8c51548
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/examples/latex/tkzFct-16-2-0.tex
@@ -0,0 +1,15 @@
+\input{preamble-standalone.ltx}
+\begin{document}
+
+% Ex. No. 75 (Section 16.2 : \tkzname{fp.sty})
+
+\begin{tikzpicture}
+ \tkzInit[xmin=-0.2,xmax=0.2,xstep=.1,
+ ymin=-12,ymax=6,ystep=2]
+ \tkzGrid
+ \tkzAxeXY
+ \tkzFct[domain = -.1:.2]%
+ {-5+x*(0.5+4*x*(x*(-2+x*1)))}
+\end{tikzpicture}
+
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-fct/latex/tkz-fct.sty b/obsolete/macros/latex/contrib/tkz/tkz-fct/latex/tkz-fct.sty
new file mode 100644
index 0000000000..881066229b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-fct/latex/tkz-fct.sty
@@ -0,0 +1,697 @@
+% Copyright 2020 by Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Public License.
+% Objet : fonctions numériques en 2D with gnuplot
+% constants from tkz-base
+% \tkz@init@xstep
+% \tkz@init@ystep
+\typeout{2020/02/06 1.2 beta function tkz-fct}
+%<--------------------------------------------------------------------------->
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{tkz-fct}[2020/02/06 1.2 beta function ]
+\newcount\tkz@tkzf@fct
+\edef\tkzTWOPTCode{\the\catcode`\:}
+\tkz@tkzf@fct=0 %
+\def\tkzfctloaded{}
+%<--------------------------------------------------------------------------->
+% Initialisation
+%<--------------------------------------------------------------------------->
+\RequirePackage{tkz-base,fp}
+% % Code from Christian Tellechea 2009 % modified by AM
+% modified \FP@pow from fp.sty
+\def\FP@pow#1#2#3{%
+ \FP@beginmessage{POW}%
+ {\def\FP@beginmessage##1{}%
+ \def\FP@endmessage##1{}%
+ \FPifzero{#2}%
+ \expandafter\@firstoftwo
+ \else
+ \expandafter\@secondoftwo
+ \fi
+ {\FP@pow@zero{#3}}%
+ {\FPifint{#3}%
+ \expandafter\@firstoftwo
+ \else
+ \expandafter\@secondoftwo
+ \fi
+{\FPifneg{#2}%
+ \FPneg\FP@tmpd{#2}%
+ \FPln\FP@tmpd\FP@tmpd
+ \FPmul\FP@tmpd\FP@tmpd{#3}%
+ \FPexp\FP@tmpd\FP@tmpd
+ \FPtrunc\FP@tmp{#3}0%
+ \ifodd\FP@tmp
+ \FPneg\FP@tmp\FP@tmpd
+ \else
+ \let\FP@tmp\FP@tmpd
+ \fi
+\else
+ \FPln\FP@tmpd{#2}%
+ \FPmul\FP@tmpd\FP@tmpd{#3}%
+ \FPexp\FP@tmp\FP@tmpd
+\fi
+}%
+{\FPln\FP@tmpd{#2}%
+ \FPmul\FP@tmpd\FP@tmpd{#3}%
+ \FPexp\FP@tmp\FP@tmpd}%
+}%
+\global\let\FP@tmp\FP@tmp}%
+\FP@endmessage{}%
+\let#1\FP@tmp}
+%<--------------------------------------------------------------------------->
+% Styles
+%<--------------------------------------------------------------------------->
+\def\tkzfctset#1{\pgfkeys{/tkztan/.cd,#1}}
+
+\tkzfctset{tan style/.style={->,>=latex}} %<--------------------------------------------------------------------------->
+% tkzFct
+%<--------------------------------------------------------------------------->
+\newif\iftkz@draw
+\newif\iftkz@fp
+\def\tkz@dmin{-5}\def\tkz@dmax{5}
+\global\let\tkz@tmp@xa\tkz@init@xmin% modif 2016
+\global\let\tkz@tmp@xb\tkz@init@xmax% modif 2016
+\global\let\tkz@tmp@ya\tkz@init@ymin% modif 2016
+\global\let\tkz@tmp@yb\tkz@init@ymax% modif 2016
+\catcode`\:=12
+\pgfkeys{/@tkzfct/.cd,
+ domain/.code args = {#1:#2} {\FPeval\tkz@min{(#1)}
+ \FPeval\tkz@max{(#2)}},
+ domain = \tkz@tmp@xa:\tkz@tmp@xb,
+ samples/.store in = \tkz@fct@samples,
+ id/.store in = \tkz@fct@id,
+ fp/.is if = tkz@fp,
+ fp/.default = false,
+ samples = 200,
+ fp = true,
+ id = tkzfct,
+ /@tkzfct/.search also = {/tikz},
+}%
+
+\def\tkzFct{\pgfutil@ifnextchar[{\tkzActivOff\tkz@fct}{\tkz@fct[]}}
+\def\tkz@fct[#1]#2{%
+\pgfqkeys{/@tkzfct}{#1}%
+\iftkz@init@NO%
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@ystep}%
+\else
+ \FPset{\tkz@x@delta}{0}%
+ \FPset{\tkz@y@delta}{0}%
+\fi%
+% stockage
+\advance\tkz@tkzf@fct by 1 %
+\FPdiv\tkz@ba{\tkz@min}{\tkz@init@xstep}%
+\FPdiv\tkz@bb{\tkz@max}{\tkz@init@xstep}%
+\def\x{(x*\tkz@init@xstep)}%
+\expandafter\edef\csname tkzFctgnu\@alph\tkz@tkzf@fct \endcsname{#2}%
+\expandafter\edef\csname tkzFctgnuLast\endcsname{#2}
+% %%%%%%%
+\begin{scope}
+ \clip (\tkz@xa,\tkz@ya) rectangle (\tkz@xb,\tkz@yb);
+ \draw[#1, xshift = -\tkz@x@delta cm,yshift = -\tkz@y@delta cm]%
+ plot[ samples = \tkz@fct@samples,id=\tkz@fct@id,
+ domain= \tkz@ba:\tkz@bb] function{(#2)/\tkz@init@ystep};%
+\end{scope}
+% %%%%%%%
+ \let\tkz@tmp@xstep\tkz@init@xstep
+ \def\tkz@init@xstep{1}
+\iftkz@fp%
+ \ReplaceSubStrings{\tkz@tempa}{#2}{log}{ln}
+ \ReplaceSubStrings{\tkz@tempb}{\tkz@tempa}{**}{^}
+ \ReplaceSubStrings{\tkz@tempa}{\tkz@tempb}{\x}{x}
+ \ReplaceSubStrings{\tkz@tempb}{\tkz@tempa}{asin}{arcsin}
+ \ReplaceSubStrings{\tkz@tempa}{\tkz@tempb}{acos}{arccos}
+ \ReplaceSubStrings{\tkz@tempb}{\tkz@tempa}{atan}{arctan}
+ \expandafter\edef\csname tkzFct\@alph\tkz@tkzf@fct\endcsname{\tkz@tempb}%
+ \expandafter\edef\csname tkzFctLast\endcsname{\tkz@tempb}%
+ \fi
+ \let\tkz@init@xstep\tkz@tmp@xstep
+ \catcode`\:=\tkzTWOPTCode\relax
+}%
+%<--------------------------------------------------------------------------->
+% point d'une courbe (new method)
+%<--------------------------------------------------------------------------->
+\pgfkeys{/tkzfctpt/.cd,
+ draw/.is if = tkz@draw,
+ draw/.default = true,
+ with/.store in = \tkz@fct@used,
+ ref/.store in = \tkz@fct@ref,
+ draw = false,
+ with = {},
+ ref = {}
+ }
+
+\def\tkzDefPointByFct{\pgfutil@ifnextchar[{\tkz@fctpoint}{\tkz@fctpoint[]}}
+\def\tkz@fctpoint[#1](#2){%
+\pgfqkeys{/tkzfctpt}{#1}
+ \FPeval\x{(#2)}%
+ \ifx\tkzutil@empty\tkz@fct@used
+ \FPeval\tkz@fx{\tkzFctLast}
+ \else
+ \edef\tkz@fct{\csname tkzFct\tkz@fct@used\endcsname}
+ \FPeval\tkz@fx{\tkz@fct}
+ \fi
+ \tkzDefPoint(\x,\tkz@fx){tkzPointResult}%
+ \iftkz@draw
+ \tkzDrawPoint(tkzPointResult)
+ \fi
+\ifx\tkzutil@empty\tkz@fct@ref
+\else
+ \tkzGetPoint{\tkz@fct@ref}
+\fi
+}%
+%<--------------------------------------------------------------------------->
+% tangente \tkzDrawTangentLine
+%<--------------------------------------------------------------------------->
+\pgfkeys{/@tkztan/.cd,
+ with/.store in = \tkz@fct@used,
+ kr/.store in = \tkz@tan@kr,
+ kl/.store in = \tkz@tan@kl,
+ draw/.is if = tkz@draw,
+ draw/.default = true,
+ draw = false,
+ with = {},
+ kr = 1,
+ kl = 1,
+ /@tkztan/.search also = {/tikz},
+}%
+%<--------------------------------------------------------------------------->
+\def\tkzDrawTangentLine{\pgfutil@ifnextchar[{\tkz@DrawTangentLine}{%
+ \tkz@DrawTangentLine[]}}
+\def\tkz@DrawTangentLine[#1](#2){%
+\begingroup
+\pgfqkeys{/@tkztan}{#1}
+\FPeval\x{(#2)}%
+\ifx\tkzutil@empty\tkz@fct@used
+ \FPeval\tkz@img{\tkzFctLast}
+ \let\tkz@fct\tkzFctLast
+\else
+ \edef\tkz@fct{\csname tkzFct\tkz@fct@used\endcsname}
+ \FPeval\tkz@img{\tkz@fct}
+ \fi
+\let\tkz@old@img\tkz@img
+\let\tkz@old@x\x
+\tkzDefPoint(\tkz@old@x,\tkz@old@img){tkzPointResult}
+\FPdiv{\tkz@krx}{\tkz@tan@kr}{\tkz@init@xstep}
+\FPdiv{\tkz@kry}{\tkz@tan@kr}{\tkz@init@ystep}
+\FPdiv{\tkz@klx}{\tkz@tan@kl}{\tkz@init@xstep}
+\FPdiv{\tkz@kly}{\tkz@tan@kl}{\tkz@init@ystep}
+ % demi tgt--> droite
+\FPifzero{\tkz@tan@kr}%
+\else
+\FPadd{\x}{\tkz@old@x}{0.000001}%
+\FPeval\tkz@img{\tkz@fct}%
+\FPadd{\tkz@deltay}{\tkz@old@img}{-\tkz@img}%
+\FPmul{\tkz@slope}{\tkz@deltay}{1000000}%
+\protected@edef\tkz@temp{%
+\noexpand\draw[/tkztan/tan style,/@tkztan/.cd,#1]}\tkz@temp%
+ (tkzPointResult)--++(\tkz@krx,-\tkz@kry*\tkz@slope);
+\fi
+% demi tgt --> gauche
+\FPifzero{\tkz@tan@kl}%
+ \else
+\FPadd{\x}{\tkz@old@x}{-0.000001}
+\FPeval\tkz@img{\tkz@fct}%
+\FPadd{\tkz@deltay}{\tkz@old@img}{-\tkz@img}
+\FPmul{\tkz@slope}{\tkz@deltay}{-1000000}
+\protected@edef\tkz@temp{%
+\noexpand\draw[/tkztan/tan style,/@tkztan/.cd,#1]}\tkz@temp%
+ (tkzPointResult)--++(-\tkz@klx,\tkz@kly*\tkz@slope);
+ \fi
+ \iftkz@draw
+ \tkzDrawPoint(tkzPointResult)
+ \fi
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+% tkzArea
+%<--------------------------------------------------------------------------->
+\pgfkeys{%
+/tkzarea/.cd,
+ domain/.code args={#1:#2} {\FPeval\tkz@min{(#1)}
+ \FPeval\tkz@max{(#2)}},
+ opacity/.store in = \tkz@fct@opacity,
+ id/.store in = \tkz@fct@id,
+ color/.store in = \tkz@fct@color,
+ samples/.store in = \tkz@fct@samples,
+ domain = -5:5,
+ color = \tkz@otherlinecolor,
+ samples = 200,
+ id = tkzfonct,
+ opacity = .5,
+ /tkzarea/.search also = {/tikz}
+ }
+\def\tkzArea{\pgfutil@ifnextchar[{\catcode`\:=12 \tkz@aire}{\tkz@aire[]}}
+\def\tkz@aire[#1]{%
+\begingroup
+\pgfqkeys{/tkzarea}{#1}
+\iftkz@init@NO
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@ystep}%
+\else
+ \FPset{\tkz@x@delta}{0}
+ \FPset{\tkz@y@delta}{0}%
+\fi%
+\def\x{(x*\tkz@init@xstep)}
+\FPdiv\tkz@ba{\tkz@min}{\tkz@init@xstep}%
+\FPdiv\tkz@bb{\tkz@max}{\tkz@init@xstep}%
+\begin{scope}[]
+ \path[ fill,
+ xshift = -\tkz@x@delta cm,
+ yshift = -\tkz@y@delta cm,
+ color = \tkz@fct@color,%
+ fill opacity = \tkz@fct@opacity,#1,
+ domain = \tkz@ba:\tkz@bb,
+ samples = \tkz@fct@samples]%
+ (\tkz@ba,0)--plot [id = \tkz@fct@id]%
+ function{(\tkzFctgnuLast)/\tkz@init@ystep}--(\tkz@bb,0);
+ \end{scope}
+\endgroup
+}
+\let\tkzDrawArea\tkzArea
+
+%<--------------------------------------------------------------------------->
+% tkzAreafg
+%<--------------------------------------------------------------------------->
+\pgfkeys{/@tkzareafg/.cd,
+ domain/.code args ={#1:#2} {\FPeval\tkz@min{(#1)}
+ \FPeval\tkz@max{(#2)}},
+ between/.code args ={#1 and #2}{\def\tkz@below{#1}
+ \def\tkz@above{#2}},
+ opacity/.store in = \tkz@fct@opacity,
+ id/.store in = \tkz@fct@id,
+ color/.store in = \tkz@fct@color,
+ samples/.store in = \tkz@fct@samples,
+ domain = -5:5,
+ between = a and b,
+ color = lightgray,
+ samples = 200,
+ id = tkzfonct,
+ opacity = .5,
+ /@tkzareafg/.search also = {/tikz}
+ }
+\def\tkzAreafg{\pgfutil@ifnextchar[{\tkz@airefg}{\tkz@airefg[]}}
+\def\tkz@airefg[#1]{%
+\begingroup
+\pgfqkeys{/@tkzareafg}{#1}
+\def\tkz@fctsup{\csname tkzFctgnu\tkz@below\endcsname}
+\def\tkz@fctinf{\csname tkzFctgnu\tkz@above\endcsname}
+\iftkz@init@NO%
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@xstep}%
+\else
+ \FPset{\tkz@x@delta}{0}
+ \FPset{\tkz@y@delta}{0}%
+\fi%
+% essai du test sur xstep
+\def\x{(x*\tkz@init@xstep)}
+\FPdiv\tkz@ba{\tkz@min}{\tkz@init@xstep}
+\FPdiv\tkz@bb{\tkz@max}{\tkz@init@xstep}
+\begin{scope}[domain = \tkz@ba:\tkz@bb,
+ samples = \tkz@fct@samples,
+ id = \tkz@fct@id]
+ \clip (\tkz@ba,\tkz@ya)--plot function{(\tkz@fctsup)/\tkz@init@ystep}%
+ --(\tkz@bb,\tkz@ya);%
+ \clip (\tkz@ba,\tkz@yb)--plot function{(\tkz@fctinf)/\tkz@init@ystep}%
+ --(\tkz@bb,\tkz@yb);
+ \fill [color = \tkz@fct@color,
+ fill opacity = \tkz@fct@opacity,
+ /@tkzareafg/.cd,
+ #1]%
+ (\tkz@ba,\tkz@ya) rectangle (\tkz@bb,\tkz@yb);
+\end{scope}
+\endgroup
+}
+\let\tkzDrawAreafg\tkzAreafg
+\def\tkz@pamin{-5}\def\tkz@pamax{5}
+%<--------------------------------------------------------------------------->
+% tkzFctPar
+%<--------------------------------------------------------------------------->
+\def\tkzFctPar{\pgfutil@ifnextchar[{\catcode`\:=12 \tkz@fctp}{\tkz@fctp[]}}
+\def\tkz@fctp[#1]#2#3{%
+\begingroup
+\pgfkeys{/@tkzfct/.cd,
+ domain = \tkz@pamin:\tkz@pamax,
+ samples = 200,
+ fp = true,
+ id = tkzfct}
+\pgfqkeys{/@tkzfct}{#1}
+ \iftkz@init@NO%
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@ystep}%
+ \else
+ \FPset{\tkz@x@delta}{0}
+ \FPset{\tkz@y@delta}{0}%
+ \fi%
+ \begin{scope}[samples = \tkz@fct@samples]
+ \tkzActivOff
+ \clip (\tkz@xa,\tkz@ya) rectangle (\tkz@xb,\tkz@yb);
+ \draw [xshift = -\tkz@x@delta cm,%
+ yshift = -\tkz@y@delta cm,
+ /@tkzfct/.cd, #1]%
+ plot [parametric,domain = \tkz@min:\tkz@max,%
+ id = tkzparfct]%
+ function {(#2)/\tkz@init@xstep,(#3)/\tkz@init@ystep};
+ \tkzActivOn
+ \end{scope}
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+% tkzFctPolar
+%<--------------------------------------------------------------------------->
+\def\tkz@pomin{0}\def\tkz@pomax{2*pi}
+\def\tkzFctPolar{\pgfutil@ifnextchar[{%
+ \catcode`\:=12 \tkz@FctPolar}{\tkz@FctPolar[]}}
+\def\tkz@FctPolar[#1]#2{%
+\begingroup
+\pgfkeys{/@tkzfct/.cd,
+ domain = \tkz@pomin:\tkz@pomax,
+ fp = true,
+ samples = 200,
+ id = tkzfctpolar
+ }
+\pgfqkeys{/@tkzfct}{#1}
+ \iftkz@init@NO%
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@ystep}%
+ \else
+ \FPset{\tkz@x@delta}{0}
+ \FPset{\tkz@y@delta}{0}%
+ \fi%
+
+ \begin{scope}
+ \tkzActivOff
+ \draw [xshift = -\tkz@x@delta cm,%
+ yshift = -\tkz@y@delta cm,
+ /@tkzfct/.cd, #1]%
+ plot [raw gnuplot,id = tkzpolarfct]%
+ function { set polar;set samples \tkz@fct@samples ; set trange [\tkz@min:\tkz@max]; plot (#2)/\tkz@init@xstep};
+ \tkzActivOn
+ \end{scope}
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+% tkzDrawRiemannSum
+%<--------------------------------------------------------------------------->
+\pgfkeys{/@tkzriemann/.cd,
+ interval/.code args={#1:#2} {\FPeval\tkz@min{(#1)}
+ \FPeval\tkz@max{(#2)}},
+ number/.store in = \tkz@fct@nb,
+ opacity/.store in = \tkz@fct@opacity,
+ color/.store in = \tkz@fct@color,
+ /@tkzriemann/.search also = {/tikz},
+}
+\def\tkzDrawRiemannSum{\pgfutil@ifnextchar[{%
+ \catcode`\:=12 \tkz@DrawRiemannSum}{\tkz@DrawRiemannSum[]}}
+\def\tkz@DrawRiemannSum[#1]{%
+\begingroup
+\pgfkeys{/@tkzriemann/.cd,
+ interval = 1:2,
+ number = 10,
+ opacity = 0.5,
+ line width = 1pt
+}
+\pgfqkeys{/@tkzriemann}{#1}
+ \iftkz@init@NO%
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@ystep}%
+ \else
+ \FPset{\tkz@x@delta}{0}
+ \FPset{\tkz@y@delta}{0}%
+ \fi%
+\FPadd\tkz@intwd{\tkz@max}{-\tkz@min}
+\FPdiv\tkz@delta{\tkz@intwd}{\tkz@fct@nb}
+\FPadd\tkz@fct@nb{\tkz@fct@nb}{-1}
+ \begin{scope}
+\foreach \i in {0,1,...,\tkz@fct@nb}{%
+ \FPeval\x{(\tkz@min+i*\tkz@delta)}
+ \FPeval\tkz@fx{\tkzFcta}
+ \FPadd\tkz@next{\x}{\tkz@delta}
+ \draw[ color=\tkz@fct@color,
+ opacity=\tkz@fct@opacity,
+ /@tkzriemann/.cd,#1] (\x ,0 ) rectangle (\tkz@next,
+ \tkz@fx/\tkz@init@ystep );
+}
+ \end{scope}
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+% tkzDrawRiemannSumInf
+%<--------------------------------------------------------------------------->
+\pgfkeys{/@tkzriemann/.cd,
+ interval/.code args={#1:#2} {\FPeval\tkz@min{(#1)}
+ \FPeval\tkz@max{(#2)}},
+ number/.store in = \tkz@fct@nb,
+ opacity/.store in = \tkz@fct@opacity,
+ color/.store in = \tkz@fct@color,
+ /@tkzriemann/.search also = {/tikz},
+ }
+\def\tkzDrawRiemannSumInf{\pgfutil@ifnextchar[{%
+ \catcode`\:=12 \tkz@DrawRiemannSumInf}{\tkz@DrawRiemannSumInf[]}}
+\def\tkz@DrawRiemannSumInf[#1]{%
+\begingroup
+\pgfkeys{/@tkzriemann/.cd,
+ interval = 1:2,
+ number = 10,
+ opacity = 0.5,
+ line width = 1pt
+ }
+\pgfqkeys{/@tkzriemann}{#1}
+ \iftkz@init@NO%
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@ystep}%
+ \else
+ \FPset{\tkz@x@delta}{0}
+ \FPset{\tkz@y@delta}{0}%
+ \fi%
+\FPadd\tkz@intwd{\tkz@max}{-\tkz@min}
+\FPdiv\tkz@delta{\tkz@intwd}{\tkz@fct@nb}
+\FPadd\tkz@fct@nb{\tkz@fct@nb}{-1}
+
+\begin{scope}
+\foreach \i in {0,1,...,\tkz@fct@nb}{%
+ \FPeval\x{(\tkz@min+i*\tkz@delta)}
+ \FPeval\tkz@fx{\tkzFcta}
+ \let\tkz@firstimg\tkz@fx
+ \let\tkz@firstx\x
+ \FPadd\tkz@next{\x}{\tkz@delta}
+ \let\tkzFctTmp\tkzFcta
+ \FPset\x{\tkz@next}
+ \FPeval\tkz@fxnext{\tkzFcta}
+ \ifdim \tkz@fx pt < \tkz@fxnext pt\relax
+ \draw[opacity=\tkz@fct@opacity,/@tkzriemann/.cd,#1] (\tkz@firstx ,0 ) rectangle (\tkz@next , \tkz@firstimg/\tkz@init@ystep );
+\else
+\draw[opacity=\tkz@fct@opacity,/@tkzriemann/.cd,#1] (\tkz@firstx ,0 ) rectangle (\tkz@next , \tkz@fxnext/\tkz@init@ystep );
+ \fi
+ }
+ \end{scope}
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+% tkzDrawRiemannSumSup
+%<--------------------------------------------------------------------------->
+
+\def\tkzDrawRiemannSumSup{\pgfutil@ifnextchar[{%
+ \catcode`\:=12 \tkz@DrawRiemannSumSup}{\tkz@DrawRiemannSumSup[]}}
+\def\tkz@DrawRiemannSumSup[#1]{%
+\begingroup
+\pgfkeys{/@tkzriemann/.cd,
+ interval = 1:2,
+ number = 10,
+ opacity = 0.5,
+ line width = 1pt
+ }
+\pgfqkeys{/@tkzriemann}{#1}
+ \iftkz@init@NO%
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@ystep}%
+ \else
+ \FPset{\tkz@x@delta}{0}
+ \FPset{\tkz@y@delta}{0}%
+ \fi%
+\FPadd\tkz@intwd{\tkz@max}{-\tkz@min}
+\FPdiv\tkz@delta{\tkz@intwd}{\tkz@fct@nb}
+\FPadd\tkz@fct@nb{\tkz@fct@nb}{-1}
+
+\begin{scope}
+\foreach \i in {0,1,...,\tkz@fct@nb}{%
+ \FPeval\x{(\tkz@min+i*\tkz@delta)}
+ \FPeval\tkz@fx{\tkzFcta}
+ \let\tkz@firstimg\tkz@fx
+ \let\tkz@firstx\x
+ \FPadd\tkz@next{\x}{\tkz@delta}
+ \let\tkzFctTmp\tkzFcta
+ \FPset\x{\tkz@next}
+ \FPeval\tkz@fxnext{\tkzFcta}
+\ifdim \tkz@fx pt > \tkz@fxnext pt\relax
+ \draw[opacity=\tkz@fct@opacity,/@tkzriemann/.cd,#1] (\tkz@firstx ,0 ) rectangle (\tkz@next , \tkz@firstimg/\tkz@init@ystep );
+\else
+\draw[opacity=\tkz@fct@opacity,/@tkzriemann/.cd,#1] (\tkz@firstx ,0 ) rectangle (\tkz@next , \tkz@fxnext/\tkz@init@ystep );
+ \fi
+ }
+ \end{scope}
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+% tkzDrawRiemannSumMid
+%<--------------------------------------------------------------------------->
+
+\def\tkzDrawRiemannSumMid{\pgfutil@ifnextchar[{%
+ \catcode`\:=12 \tkz@DrawRiemannSumMid}{\tkz@DrawRiemannSumMid[]}}
+\def\tkz@DrawRiemannSumMid[#1]{%
+\begingroup
+\pgfkeys{/@tkzriemann/.cd,
+ interval = 1:2,
+ number = 10,
+ opacity = 0.5,
+ line width = 1pt
+ }
+\pgfqkeys{/@tkzriemann}{#1}
+ \iftkz@init@NO%
+ \FPdiv{\tkz@x@delta}{\tkz@init@xorigine}{\tkz@init@xstep}%
+ \FPdiv{\tkz@y@delta}{\tkz@init@yorigine}{\tkz@init@ystep}%
+ \else
+ \FPset{\tkz@x@delta}{0}
+ \FPset{\tkz@y@delta}{0}%
+ \fi%
+\FPadd\tkz@intwd{\tkz@max}{-\tkz@min}
+\FPdiv\tkz@delta{\tkz@intwd}{\tkz@fct@nb}
+\FPadd\tkz@fct@nb{\tkz@fct@nb}{-1}
+
+\begin{scope}
+\foreach \i in {0,1,...,\tkz@fct@nb}{%
+ \FPeval\x{(\tkz@min+i*\tkz@delta)}
+ \FPeval\tkz@fx{\tkzFcta}
+ \let\tkz@firstimg\tkz@fx
+ \let\tkz@firstx\x
+ \FPadd\tkz@next{\x}{\tkz@delta}
+ \FPset\x{\tkz@next}
+ \FPeval\tkz@fxnext{\tkzFcta}
+ \FPeval\tkz@midimg{(\tkz@firstimg+\tkz@fxnext)/2}
+
+ \draw[opacity=\tkz@fct@opacity,/@tkzriemann/.cd,#1] (\tkz@firstx ,0 ) rectangle (\tkz@next , \tkz@midimg/\tkz@init@ystep );
+ }
+ \end{scope}
+\endgroup
+}
+
+%<--------------------------------------------------------------------------–>
+% tkzXH F rien T et [ ou ]
+%<--------------------------------------------------------------------------–>
+\def\tkz@ComT{v} % need
+
+\pgfkeys{/@tkzxh/.cd,
+ posgrad/.store in = \tkz@tkzXh@posgrad,
+ left/.store in = \tkz@tkzXh@left,
+ right/.store in = \tkz@tkzXh@right,
+ color/.store in = \tkz@tkzXh@color,
+ posgrad = {below=6 pt},
+ color = \tkz@mainlinecolor,
+ left = {},
+ right = {},
+ }
+\def\tkzXH{\pgfutil@ifnextchar[{\tkz@xh}{\tkz@xh[]}}
+\def\tkz@xh[#1]#2{%
+ \pgfqkeys{/@tkzxh}{#1}
+\begingroup
+\foreach \xA/\RA/\sA/\xB/\RB/\sB in {#2}{%
+ \tkzDefPoint(\xA,0){deb}\tkzDefPoint(\xB,0){fin}
+ \begin{scope}[decoration={border,angle=-45,
+ amplitude=0.3cm,segment length=2mm,raise=0.1cm}]
+ \draw[decorate,\tkz@tkzXh@color,thick] (deb) -- (fin);
+ \node at (deb) {\Large\textbf{\sA}};
+ \node at (fin) {\Large\textbf{\sB}};
+\ifx\RA\tkz@ComT
+ \protected@edef\tkz@temp{%
+ \noexpand\node[\tkz@tkzXh@posgrad]}\tkz@temp at (deb){%
+ \tkz@showgrad{\xA}$\numprint{\tkz@result}$};\fi
+
+\ifx\RB\tkz@ComT
+ \protected@edef\tkz@temp{\noexpand\node[\tkz@tkzXh@posgrad]}\tkz@temp%
+ at (fin){%
+ \tkz@showgrad{\xB}$\numprint{\tkz@result}$};\fi
+
+\protected@edef\tkz@temp{%
+ \noexpand\node[\tkz@tkzXh@posgrad]}\tkz@temp at (\tkz@xa,0) {\tkz@tkzXh@left};%
+\protected@edef\tkz@temp{\noexpand\node[\tkz@tkzXh@posgrad]}\tkz@temp%
+ at (\tkz@xb,0) {\tkz@tkzXh@right};
+\end{scope}
+}%
+\endgroup
+}%
+% %<--------------------------------------------------------------------------->
+% % tangente obsolete
+% %<--------------------------------------------------------------------------->
+% \def\tkzTan{\pgfutil@ifnextchar[{\tkz@Tan}{\tkz@Tan[]}}
+%
+% \def\tkz@Tan[#1]#2(#3)#{
+% \pgfkeys{/@tkztan/.cd,
+% draw = false,
+% with = {},
+% kr = 1,
+% kl = 1
+% }
+% \pgfqkeys{/@tkztan}{#1}
+% \global\edef\tkz@opttan{#1}
+% \FPeval\x{(#3)}%
+% \FPeval\tkz@img{#2}
+% \let\tkz@yy #2%
+% \let\tkz@xx\x%
+% \let\tkz@old@img\tkz@img
+% \tkz@@Tan
+% }
+% \def\tkz@@Tan#1{%
+% \FPdiv{\tkz@old@x}{\x}{1}
+% \let\tkz@nexpty\tkz@img
+% \tkz@ptStar[](\tkz@old@x,\tkz@nexpty){#1}
+% \FPdiv{\tkz@krx}{\tkz@tan@kr}{\tkz@tmp@xstep}
+% \FPdiv{\tkz@kry}{\tkz@tan@kr}{\tkz@init@ystep}
+% \FPdiv{\tkz@klx}{\tkz@tan@kl}{\tkz@tmp@xstep}
+% \FPdiv{\tkz@kly}{\tkz@tan@kl}{\tkz@init@ystep}
+% % demi tgt--> droite
+% \FPifzero{\tkz@tan@kr}%
+% \else
+% \FPadd{\x}{\tkz@xx}{0.000001}%
+% \FPeval\tkz@img{\tkz@yy}%
+% \FPadd{\tkz@deltay}{\tkz@old@img}{-\tkz@img}%
+% \FPmul{\tkz@slope}{\tkz@deltay}{1000000}%
+% \protected@edef\tkz@temp{
+% \noexpand\draw[tan style,/@tkztan/.cd,\tkz@opttan,-]}\tkz@temp%
+% (#1)--++(\tkz@krx,-\tkz@kry*\tkz@slope);
+% \fi
+% % demi tgt --> gauche
+% \FPifzero{\tkz@tan@kl}%
+% \else
+% \FPadd{\x}{\tkz@xx}{-0.000001}
+% \FPeval\tkz@img{\tkz@yy}%
+% \FPadd{\tkz@deltay}{\tkz@old@img}{-\tkz@img}
+% \FPmul{\tkz@slope}{\tkz@deltay}{-1000000}
+% \protected@edef\tkz@temp{
+% \noexpand
+% \draw[tan style,/@tkztan/.cd,\tkz@opttan,-]}\tkz@temp%
+% (#1)--++(-\tkz@klx,\tkz@kly*\tkz@slope);
+% \fi
+% }
+%<--------------------------------------------------------------------------->
+% point d'une courbe obsolete
+%<--------------------------------------------------------------------------->
+\def\tkzFctPt{\pgfutil@ifnextchar[{\tkz@fctpt}{\tkz@fctpt[]}}
+\def\tkz@fctpt[#1]#2(#3)#{%
+ \global\edef\tkz@optptfct{#1}
+ \FPeval\x{(#3)}%
+ \FPeval\tkz@y{#2}
+ \tkz@defpoint
+}
+\def\tkz@defpoint#1{
+ \tkzDefPoint(\x,\tkz@y){#1}
+\protected@edef\tkz@temp{
+ \noexpand \tkzDrawPoint[\tkz@optptfct](#1)}\tkz@temp
+ \let\tkz@init@xstep\tkz@tmp@xstep
+}
+%<-------------------------- the end --------------------------------------->
+\endinput
+
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/README b/obsolete/macros/latex/contrib/tkz/tkz-graph/README
new file mode 120000
index 0000000000..b6f4fe78cd
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/README
@@ -0,0 +1 @@
+readme-tkz-graph.txt \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-Dijkstra.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-Dijkstra.tex
new file mode 100644
index 0000000000..d261c6f84b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-Dijkstra.tex
@@ -0,0 +1,153 @@
+\section{Dijkstra}
+
+{\large Algorithme de Dijkstra :} Plus courte chaîne du sommet $E$ au sommet $S$.
+
+\medskip
+
+\subsection{Dijkstra exemple 1}
+
+\medskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Dijkstra]
+ \SetGraphUnit{4}
+ \Vertices{square}{B,C,D,A}
+ \SetGraphUnit{2.82}
+ \NOWE(B){E}
+ \NOEA(C){S}
+ \Edge[label=$3$](E)(A)
+ \Edge[label=$1$](E)(B)
+ \Edge[label=$1$](A)(B)
+ \Edge[label=$3$](B)(C)
+ \Edge[label=$3$,style={pos=.25}](A)(C)
+ \Edge[label=$5$,style={pos=.75}](B)(D)
+ \Edge[label=$4$](A)(D)
+ \Edge[label=$1$](S)(D)
+ \Edge[label=$3$](C)(S)
+ \Edge[label=$1$](C)(D)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+
+\def\ry{$\vrule width 5pt$}
+\def\iy{$\infty$}
+
+%<–––––––––––––––––——————————————————————————————————————————————————————————>
+\vbox{\tabskip=0pt \offinterlineskip
+\def\tablerule{\noalign{\hskip\tabskip\hrule}}
+\halign to \hsize{\strut#&\vrule # \tabskip=0.6em plus8em&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#\tabskip=0pt\cr\tablerule
+&& $E$ && $A$ && $B$ && $C$ && $D$ && $S$ && Choix &\cr\tablerule
+&& $0$ && \iy && \iy && \iy && \iy && \iy && $E$ &\cr\tablerule
+&& \ry && $3(E)$ && $1(E)$ && \iy && \iy && \iy && $B$ &\cr\tablerule
+&& \ry && $2(B)$ && \ry && $4(B)$ && $6(B)$ && \iy && $A$ &\cr\tablerule
+&& \ry && \ry && \ry && $4(B)$ && $6(B)$ && \iy && $C$ &\cr\tablerule
+&& \ry && \ry && \ry && \ry && $5(C)$ && $7(C)$ && $D$ &\cr\tablerule
+&& \ry && \ry && \ry && \ry && \ry && $6(D)$ && $S$ &\cr\tablerule}}
+%<–––––––––––––––––——————————————————————————————————————————————————————————>
+
+\medskip
+
+Le plus court chemin est donc $EBCDS$
+
+\vfill\newpage
+\subsection{Dijkstra exemple 2}
+
+\medskip
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Dijkstra]
+ \SetGraphUnit{4}
+ \Vertices{square}{G,D,A,F}
+ \WE(F){H}
+ \EA(A){B}
+ \EA(D){C}
+ \NO(A){E}
+ \Edge[label=$1$](H)(F)
+ \Edge[label=$4$](G)(F)
+ \Edge[label=$2$](H)(G)
+ \Edge[label=$2$](G)(D)
+ \Edge[label=$3$](D)(C)
+ \Edge[label=$4$](F)(E)
+ \Edge[label=$3$](A)(D)
+ \Edge[label=$2$](A)(E)
+ \Edge[label=$1$](A)(B)
+ \Edge[label=$2$](A)(C)
+ \Edge[label=$2$](C)(B)
+ \Edge[label=$3$](E)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+%<–––––––––––––––––——————————————————————————————————————————————————————————>
+\vbox{\tabskip=0pt \offinterlineskip
+\def\tablerule{\noalign{\hskip\tabskip\hrule}}
+\halign to \hsize{\strut#&\vrule # \tabskip=0.6em plus8em&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#\tabskip=0pt\cr\tablerule
+&& $H$ && $F$ && $G$ && $E$ && $D$ && $A$ && $C$ && $B$ && Choix &\cr\tablerule
+&& $0$ && \iy && \iy && \iy && \iy && \iy && \iy && \iy && $H$ &\cr\tablerule
+&& \ry && $1(H)$ && $2(H)$ && \iy && \iy && \iy && \iy && \iy && $F$ &\cr\tablerule
+&& \ry && \ry && $2(H)$ && $5(F)$ && \iy && \iy && \iy && \iy && $G$ &\cr\tablerule
+&& \ry && \ry && \ry && $5(F)$ && $4(G)$ && \iy && \iy && \iy && $D$ &\cr\tablerule
+&& \ry && \ry && \ry && $5(F)$ && \ry && $7(D)$ && $7(D)$ && \iy && $E$ &\cr\tablerule
+&& \ry && \ry && \ry && \ry && \ry && $7(D)$ && $7(D)$ && $8(E)$ && $A$ &\cr\tablerule
+&& \ry && \ry && \ry && \ry && \ry && \ry && $7(D)$ && $8(E)$ && $C$ &\cr\tablerule
+&& \ry && \ry && \ry && \ry && \ry && \ry && \ry && $8(E)$ && $B$ &\cr\tablerule}}
+%<–––––––––––––––––——————————————————————————————————————————————————————————>
+
+Le plus court chemin est donc $HFEB$
+
+\begin{tkzexample}[code only]
+\def\ry{$\vrule width 5pt$}
+\def\iy{$\infty$}
+\vbox{\tabskip=0pt \offinterlineskip
+\def\tablerule{\noalign{\hskip\tabskip\hrule}}
+\halign to \hsize{\strut#&\vrule # \tabskip=0.6em plus8em&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#&
+\hfil#\hfil& \vrule#\tabskip=0pt\cr\tablerule
+&& $H$ && $F$ && $G$ && $E$ && $D$ && $A$ && $C$ && $B$%
+&& Choix &\cr\tablerule
+&& $0$ && \iy && \iy && \iy && \iy && \iy && \iy && \iy%
+&& $H$ &\cr\tablerule
+&& \ry && $1(H)$ && $2(H)$ && \iy && \iy && \iy && \iy && \iy%
+&& $F$ &\cr\tablerule
+&& \ry && \ry && $2(H)$ && $5(F)$ && \iy && \iy && \iy && \iy%
+&& $G$ &\cr\tablerule
+&& \ry && \ry && \ry && $5(F)$ && $4(G)$ && \iy && \iy && \iy%
+&& $D$ &\cr\tablerule
+&& \ry && \ry && \ry && $5(F)$ && \ry && $7(D)$ && $7(D)$ && \iy%
+&& $E$ &\cr\tablerule
+&& \ry && \ry && \ry && \ry && \ry && $7(D)$ && $7(D)$ && $8(E)$%
+&& $A$ &\cr\tablerule
+&& \ry && \ry && \ry && \ry && \ry && \ry && $7(D)$ && $8(E)$%
+&& $C$ &\cr\tablerule
+&& \ry && \ry && \ry && \ry && \ry && \ry && \ry && $8(E)$%
+&& $B$ &\cr\tablerule}}
+\end{tkzexample}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-Welsh.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-Welsh.tex
new file mode 100644
index 0000000000..63b0c26c19
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-Welsh.tex
@@ -0,0 +1,249 @@
+% $Id$
+%!TEX root = /Users/ego/Boulot/TKZ/Graph/doc-fr/TKZdoc-gr-main.tex
+\section{Colorisation Welsh}
+%<–––––––––––––––––––––––––– graphs with colors ––––––––––––––––––––––––––—––>
+Ce chapitre montre comment colorer des sommets. Le plus simple est d'utiliser le style \tkzname{Welsh} et la macro \tkzcname{AddVertexColor} afin de colorer les sommets.
+
+\subsection{La macro \tkzcname{AddVertexColor} }
+
+\begin{NewMacroBox}{AddVertexColor}{\var{color}\var{List of vertices}}
+
+\medskip
+\emph{Cette macro permet de colorer des sommets. Le premier argument est la couleur, le second une liste de sommets.}
+\end{NewMacroBox}
+
+
+\subsection{Exemple d'utilisation }
+
+\medskip
+Une compagnie aérienne propose des vols directs entre certaines villes, notées A, B, C, D, E, F et G. Cela conduit au graphe $\mathcal{G}$ suivant, dont les sommets sont les villes et les arêtes représentent les liaisons aériennes :
+
+ \begin{center}
+\begin{tikzpicture}
+\renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{center}
+
+\begin{enumerate}
+
+\item Sur les cartes d'embarquement, la compagnie attribue à chaque aéroport une couleur, de sorte que deux aéroports liés par un vol direct aient des couleurs différentes.
+
+ Proposer un coloriage adapté‚ cette condition.
+\item Que peut-on en déduire sur le nombre chromatique de $\mathcal{G}$ ?
+\end{enumerate}
+
+
+
+\begin{center}
+\begin{tkzltxexample}[]
+\begin{tikzpicture}
+\renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{tkzltxexample}
+\end{center}
+
+\bigskip
+\begin{minipage}{7cm}
+ \begin{tikzpicture}
+\renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+ \end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+ \begin{tabular}{cc}
+ \hline
+ \itshape Sommet & \itshape Degré \\
+ \hline
+ B & $5$ \\
+ E & $5$ \\
+ C & $4$ \\
+ D & $4$ \\
+ A & $3$ \\
+ G & $3$ \\
+ F & $2$ \\
+ \hline
+ \end{tabular}
+\end{minipage}
+
+\begin{tkzltxexample}[]
+ \begin{tikzpicture}
+\renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{tkzltxexample}
+
+\bigskip
+\begin{minipage}{7cm}
+ \begin{tikzpicture}
+ \renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \SetVertexNoLabel
+ \AddVertexColor{red}{B,F}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tabular}{ccc}
+\hline
+\itshape Sommet & \itshape Degré & \itshape Couleur\\
+\hline
+B & $5$ & rouge\\
+E & $5$ & \\
+C & $4$ & \\
+D & $4$ & \\
+A & $3$ & \\
+G & $3$ & \\
+F & $2$ & rouge\\
+\hline
+\end{tabular}
+\end{minipage}
+
+\begin{tkzltxexample}[]
+\begin{tikzpicture}
+ \renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \SetVertexNoLabel
+ \AddVertexColor{red}{B,F}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{tkzltxexample}
+
+\bigskip
+\begin{minipage}{7cm}
+ \begin{tikzpicture}
+ \renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \SetVertexNoLabel
+ \AddVertexColor{red}{B,F} \AddVertexColor{blue}{E,A}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tabular}{ccc}
+\hline
+\itshape Sommet & \itshape Degré & \itshape Couleur\\
+\hline
+B & $5$ & rouge\\
+E & $5$ & bleu\\
+C & $4$ & \\
+D & $4$ & \\
+A & $3$ & bleu\\
+G & $3$ & \\
+F & $2$ & rouge\\
+\hline
+\end{tabular}
+\end{minipage}
+
+\begin{tkzltxexample}[]
+\begin{tikzpicture}
+ \renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \SetVertexNoLabel
+ \AddVertexColor{red}{B,F}
+ \AddVertexColor{blue}{E,A}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A)
+ \Edges(B,E)
+\end{tikzpicture}
+\end{tkzltxexample}
+
+\bigskip
+\begin{minipage}{7cm}
+\begin{tikzpicture}
+ \renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \SetVertexNoLabel
+ \AddVertexColor{red}{B,F} \AddVertexColor{blue}{E,A}
+ \AddVertexColor{green}{C,G}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tabular}{ccc}
+\hline
+\itshape Sommet & \itshape Degré & \itshape Couleur\\
+\hline
+B & $5$ & rouge\\
+E & $5$ & bleu\\
+C & $4$ & vert\\
+D & $4$ & \\
+A & $3$ & bleu\\
+G & $3$ & vert\\
+F & $2$ & rouge\\
+\hline
+\end{tabular}
+\end{minipage}
+
+\begin{tkzltxexample}[]
+\begin{tikzpicture}
+ \renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \SetVertexNoLabel
+ \AddVertexColor{red}{B,F} \AddVertexColor{blue}{E,A}
+ \AddVertexColor{green}{C,G}
+ \Vertex[Node]{D}}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{tkzltxexample}
+
+\bigskip
+\begin{minipage}{7cm}
+\begin{tikzpicture}
+ \renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \SetVertexNoLabel
+ \AddVertexColor{red}{B,F} \AddVertexColor{blue}{E,A}
+ \AddVertexColor{green}{C,G} \AddVertexColor{yellow}{D}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A) \Edges(B,E)
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tabular}{ccc}
+\hline
+\itshape Sommet & \itshape Degré & \itshape Couleur\\
+\hline
+B & $5$ & rouge\\
+E & $5$ & bleu\\
+C & $4$ & vert\\
+D & $4$ & jaune\\
+A & $3$ & bleu\\
+G & $3$ & vert\\
+F & $2$ & rouge\\
+\hline
+\end{tabular}
+\end{minipage}
+
+\begin{tkzltxexample}[]
+ \begin{tikzpicture}
+ \renewcommand*{\VertexLineWidth}{2pt}
+ \GraphInit[vstyle=Welsh]
+ \Vertices[unit=3]{circle}{A,B,C,D,E,F,G}
+ \SetVertexNoLabel
+ \AddVertexColor{red}{B,F} \AddVertexColor{blue}{E,A}
+ \AddVertexColor{green}{C,G}\AddVertexColor{yellow}{D}
+ \Vertex[Node]{D}}
+ \Edges(G,E,F,G,B,D,E,C,D,A,C,B,A)\Edges(B,E)
+\end{tikzpicture}
+\end{tkzltxexample}
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-annales.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-annales.tex
new file mode 100644
index 0000000000..edc4f75148
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-annales.tex
@@ -0,0 +1,1164 @@
+\section{Annales.} %<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Amérique du nord juin 2003
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Amérique du nord juin 2003}
+
+Soit le graphe G joint en annexe constitué des sommets A, B, C, D, E, F et G.
+
+\begin{enumerate}
+\item Quel est son ordre et le degré de chacun de ses sommets ?
+\item Reproduire sur la copie et compléter le tableau des distances entre deux sommets de G :
+
+\medskip
+\begin{center}
+\begin{tabular}{|l|c|c|c|c|c|c|c|}\hline
+Distance & A & B & C & D & E & F & G \\ \hline
+A & X & & & & & & \\ \hline
+B & X & X & & & & & \\ \hline
+C & X & X & X & & & & \\ \hline
+D & X & X & X & X & & & \\ \hline
+E & X & X & X & X & X & & \\ \hline
+F & X & X & X & X & X & X & \\ \hline
+G & X & X & X & X & X & X & X \\ \hline
+\end{tabular}
+\end{center}
+
+\medskip
+En déduire le diamètre de ce graphe.
+\item
+ \begin{enumerate}
+ \item Donner un sous-graphe complet d'ordre 3 de G.
+
+Qu'en déduire pour le nombre chromatique de G ?
+ \item Proposer une coloration du graphe G et en déduire son nombre chromatique.
+ \end{enumerate}
+\item Donner la matrice M associée à G (vous numéroterez les lignes et les colonnes dans l'ordre alphabétique).
+\item En utilisant la matrice $ M_2$ donnée en annexe 1, déduire le nombre de chaînes de longueur 2 partant de A sans y revenir.
+\end{enumerate}
+
+\medskip
+\begin{minipage}[]{10cm}
+\begin{tikzpicture}
+ \Vertex[x=1.3,y=3.8]{A}
+ \Vertex[x=4.2,y=5.5]{B}
+ \Vertex[x=7.3,y=4]{C}
+ \Vertex[x=8.5,y=1.5]{D}
+ \Vertex[x=5,y=0]{E}
+ \Vertex[x=3.6,y=4]{F}
+ \Vertex[x=0.7,y=1]{G}
+ \Edges(A,B,C,D,E,G,A,F,E,C)
+ \Edge(B)(F)
+\end{tikzpicture}
+\end{minipage}
+\begin{minipage}[]{5cm}
+M$^2 =
+\begin{pmatrix}
+ 3 & 1 & 1 & 0 & 2 & 1 & 0\\
+ 1 & 3 & 0 & 1 & 2 & 1 & 1\\
+ 1 & 0 & 3 & 1 & 1 & 2 & 1\\
+ 0 & 1 & 1 & 2 & 1 & 1 & 1\\
+ 2 & 2 & 1 & 1 & 4 & 0 & 0\\
+ 1 & 1 & 2 & 1 & 0 & 3 & 2\\
+ 0 & 1 & 1 & 1 & 0 & 2 & 2\\
+\end{pmatrix}$
+\end{minipage}
+
+\medskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \Vertex[x=1.3,y=3.8]{A} \Vertex[x=4.2,y=5.5]{B}
+ \Vertex[x=7.3,y=4]{C} \Vertex[x=8.5,y=1.5]{D}
+ \Vertex[x=5,y=0]{E} \Vertex[x=3.6,y=4]{F}
+ \Vertex[x=0.7,y=1]{G}
+ \Edges(A,B,C,D,E,G,A,F,E,C) \Edge(B)(F)
+\end{tikzpicture}
+\end{tkzexample}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Antilles-Guyane juin 2003
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Antilles-Guyane juin 2003 }\label{ag03}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\begin{enumerate}
+\item Un musée est constitué de 9 salles notées A, B, C, D, E, F, G, H et S.
+
+Le plan du musée est représenté ci-dessous :
+
+\medskip
+\begin{center}
+\begin{tikzpicture}
+\draw (0,0) rectangle (8,6);
+\draw(2,0)--(2,0.7);
+\draw(2,1.3)--(2,2.7);
+\draw(2,3.3)--(2,4.7);
+\draw(2,5.3)--(2,6);
+\draw(4,0)--(4,0.7);
+\draw(4,1.3)--(4,2.7);
+\draw(4,3.3)--(4,4.7);
+\draw(4,5.3)--(4,6);
+\draw(6,0)--(6,0.7);
+\draw(6,1.3)--(6,2.7);
+\draw(6,3.3)--(6,4.7);
+\draw(6,5.3)--(6,6);
+\draw(2,5.3)--(2,6);
+\draw(4,5.3)--(4,6);
+\draw(6,5.3)--(6,6);
+\draw(2,2)--(2.7,2);
+\draw(3.3,2)--(4.7,2);
+\draw(5.3,2)--(6,2);
+\draw(2,4)--(2.7,4);
+\draw(3.3,4)--(4.7,4);
+\draw(5.3,4)--(8,4);
+\node at (1,3){S};
+\node at (3,3){G};
+\node at (3,1){D};
+\node at (3,5){A};
+\node at (5,1){H};
+\node at (5,3){E};
+\node at (5,5){B};
+\node at (7,2){F};
+\node at (7,5){C};
+\end{tikzpicture}
+\end{center}
+
+\medskip
+Ainsi, un visiteur qui se trouve dans la salle S peut atteindre directement les salles A, B ou G. S'il se trouve dans la salle C, il peut se rendre directement dans la salle B, mais pas dans la salle F.
+
+On s'intéresse au parcours d'un visiteur dans ce musée. On ne se préoccupe pas de la manière dont le visiteur accède au musée ni comment il en sort. Cette situation peut être modélisée par un graphe, les sommets étant les noms des salles, les arêtes représentant les portes de communication.
+
+ \begin{enumerate}
+ \item Dessiner un graphe modélisant la situation décrite.
+ \item Est-il possible de visiter le musée, en empruntant chaque porte une fois et une seule ?
+
+Justifier en utilisant un théorème du cours sur les graphes.
+\item Pour rompre une éventuelle monotonie, le conservateur du musée souhaite différencier chaque salle de sa ou des salles voisines (c'est-à-dire accessibles par une porte) par la moquette posée au sol. Quel est le nombre minimum de types de moquettes nécessaires pour répondre à ce souhait ? Justifier.
+ \end{enumerate}
+\item On note $M$ la matrice à 9 lignes et 9 colonnes associée au graphe précédent, en convenant de l'ordre suivant des salles S, A, B, C, D, E, F, G, H. Le graphe n'étant pas orienté, comment cela se traduit-il sur la matrice ?
+\item On donne la matrice :
+
+\[M^4 =
+\begin{pmatrix}
+18 & 12 & 11 & 02 & 20 & 12 & 06 & 12 & 12\\
+12 & 20 & 03 & 06 & 11 & 20 & 05 & 18 & 05\\
+11 & 03 & 16 & 00 & 19 & 03 & 08 & 04 & 12\\
+02 & 06 & 00 & 03 & 01 & 07 & 01 & 04 & 01\\
+20 & 11 & 19 & 01 & 31 & 09 & 11 & 12 & 19\\
+12 & 20 & 03 & 07 & 09 & 28 & 09 & 20 & 09\\
+06 & 05 & 08 & 01 & 11 & 09 & 09 & 08 & 09\\
+12 & 18 & 04 & 04 & 12 & 20 & 08 & 20 & 06\\
+12 & 05 & 12 & 01 & 19 & 09 & 09 & 06 & 17\\
+\end{pmatrix}\]
+
+ \begin{enumerate}
+ \item Combien y-a-t-il de chemins qui en 4 étapes, partent de D et reviennent à D ?
+ \item Combien y-a-t-il de chemins qui en 4 étapes, partent de S et reviennent à C ? Les citer.
+ \item Est-il toujours possible de joindre en 4 étapes deux salles quelconques ? Justifier.
+ \end{enumerate}
+\end{enumerate}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+Code du graphe précédent, uniquement fait avec tikz sans tkz-berge
+
+\bigskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \draw (0,0) rectangle (8,6);
+ \draw(2,0)--(2,0.7);
+ \draw(2,1.3)--(2,2.7);
+ \draw(2,3.3)--(2,4.7);
+ \draw(2,5.3)--(2,6);
+ \draw(4,0)--(4,0.7);
+ \draw(4,1.3)--(4,2.7);
+ \draw(4,3.3)--(4,4.7);
+ \draw(4,5.3)--(4,6);
+ \draw(6,0)--(6,0.7);
+ \draw(6,1.3)--(6,2.7);
+ \draw(6,3.3)--(6,4.7);
+ \draw(6,5.3)--(6,6);
+ \draw(2,5.3)--(2,6);
+ \draw(4,5.3)--(4,6);
+ \draw(6,5.3)--(6,6);
+ \draw(2,2)--(2.7,2);
+ \draw(3.3,2)--(4.7,2);
+ \draw(5.3,2)--(6,2);
+ \draw(2,4)--(2.7,4);
+ \draw(3.3,4)--(4.7,4);
+ \draw(5.3,4)--(8,4);
+ \node at (1,3){S};
+ \node at (3,3){G};
+ \node at (3,1){D};
+ \node at (3,5){H};
+ \node at (5,1){H};
+ \node at (5,3){E};
+ \node at (5,5){B};
+ \node at (7,2){F};
+ \node at (7,5){C};
+\end{tikzpicture}
+\end{tkzexample}
+
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Asie juin 2003
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Asie juin 2003 }\label{asj03}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+
+\bigskip
+\begin{minipage}[l]{0,58\textwidth}
+Dans la ville de GRAPHE, on s'intéresse aux principales rues permettant de relier différents lieux ouverts au public, à savoir la mairie (M), le centre commercial (C), la bibliothèque (B), la piscine (P) et le lycée (L). Chacun de ces lieux est désigné par son initiale. Le tableau ci-contre donne les rues existant entre ces lieux.
+\end{minipage}\hfill
+\begin{minipage}[]{0,38\textwidth}
+\begin{center}
+ \begin{tabular}{|*{5}{c|} c|} \cline{2-6}
+ \multicolumn{1}{c|}{}
+ & B & C & L & M & P \\ \hline
+ B & & X & & X & X \\ \hline
+ C & X & & X & X & \\ \hline
+ L & & X & & X & \\ \hline
+ M & X & X & X & & X \\ \hline
+ P & X & & & X & \\ \hline
+ \end{tabular}
+\end{center}
+\end{minipage}
+
+\medskip
+\begin{enumerate}
+\item Dessiner un graphe représentant cette situation.
+\item Montrer qu'il est possible de trouver un trajet empruntant une fois et une seule toutes les rues de ce plan. Justifier. Proposer un tel trajet.
+
+Est-il possible d'avoir un trajet partant et arrivant du même lieu et passant une fois et une seule par toutes les rues ?
+
+
+\begin{minipage}[b]{0,3\textwidth}
+\item
+ Dimitri habite dans cette ville ; le graphe ci-contre donne le \textbf{nouveau} plan du quartier avec les sens de circulation dans les différentes rues et le temps de parcours entre les différents lieux.
+\end{minipage}
+\hspace{1cm}
+ \begin{minipage}[c]{0,68\textwidth}
+ \begin{tikzpicture}[>=latex]
+ \SetGraphUnit{4}
+ \tikzset{VertexStyle/.style = {shape = circle,
+ draw = black,
+ inner sep = 2pt,%
+ minimum size = 6mm,
+ outer sep = 0pt,
+ fill = gray!60}}
+ \Vertex {P}
+ \NOEA(P){B}
+ \SOEA(P){M}
+ \NOEA(B){D}
+ \SOEA(B){C}
+ \SOEA(C){L}
+ \tikzset{LabelStyle/.style = {fill=white}}
+ \tikzset{EdgeStyle/.style = {<->}}
+ \Edge[label=$4$](P)(M)
+ \Edge[label=$9$](C)(M)
+ \Edge[label=$4$](C)(L)
+ \Edge[label=$5$](C)(D)
+ \Edge[label=$10$](B)(M)
+ \tikzset{EdgeStyle/.style = {<->,bend right}}
+ \Edge[label=$11$](L)(D)
+ \tikzset{EdgeStyle/.style = {->}}
+ \Edge[label=$3$](C)(B)
+ \Edge[label=$10$](D)(B)
+ \Edge[label=$10$](L)(M)
+ \Edge[label=$10$](B)(P)
+ \end{tikzpicture}
+ \end{minipage}
+\end{enumerate}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+Code du graphe précédent
+
+\bigskip
+\begin{tkzexample}[code only]
+\begin{minipage}[c]{0,68\textwidth}
+\begin{tikzpicture}[>=latex]
+ \SetGraphUnit{4}
+ \tikzset{VertexStyle/.style = {shape = circle,
+ draw = black,
+ inner sep = 2pt,%
+ minimum size = 6mm,
+ outer sep = 0pt,
+ fill = gray!60}}
+ \Vertex {P}
+ \NOEA(P){B}
+ \SOEA(P){M}
+ \NOEA(B){D}
+ \SOEA(B){C}
+ \SOEA(C){L}
+ \tikzset{LabelStyle/.style = {fill=white}}
+ \tikzset{EdgeStyle/.style = {<->}}
+ \Edge[label=$4$](P)(M)
+ \Edge[label=$9$](C)(M)
+ \Edge[label=$4$](C)(L)
+ \Edge[label=$5$](C)(D)
+ \Edge[label=$10$](B)(M)
+ \tikzset{EdgeStyle/.style = {<->,bend right}}
+ \Edge[label=$11$](L)(D)
+ \tikzset{EdgeStyle/.style = {->}}
+ \Edge[label=$3$](C)(B)
+ \Edge[label=$10$](D)(B)
+ \Edge[label=$10$](L)(M)
+ \Edge[label=$10$](B)(P)
+\end{tikzpicture}
+\end{minipage}
+\end{tkzexample}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% France juin 2003
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{France juin 2003 }\label{frj03}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+Un concert de solidarité est organisé dans une grande salle de spectacle. À ce concert sont conviés sept artistes de renommée internationale Luther Allunison (A), John Biaise (B), Phil Colline (C), Bob Ditlâne (D), Jimi Endisque (E), Robert Fripe (F) et Rory Garaguerre (G).
+
+Les différents musiciens invités refusant de jouer avec certains autres, l'organisateur du concert doit prévoir plusieurs parties de spectacle. Les arêtes du graphe $\Gamma$ ci-dessous indiquent quels sont les musiciens qui refusent de jouer entre eux.
+
+\medskip
+\begin{center}
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \GraphInit[vstyle=Normal]
+ \tikzset{EdgeStyle/.style = {line width = 2pt}}
+ \tikzset{VertexStyle/.append style = {line width = 2pt}}
+ \Vertex{D}
+ \SOEA(D){E}
+ \EA(E){F}
+ \NOEA(F){G}
+ \NOWE(G){A}
+ \NOWE(A){B}
+ \SOWE(B){C}
+ \Edges(F,G,A,D,F,B,E,G,C,F,A,E,C,B)
+\end{tikzpicture}
+\end{center}
+
+\medskip
+\begin{enumerate}
+\item Déterminer la matrice associée au graphe $\Gamma$ (les sommets de $\Gamma$ étant classés dans l'ordre alphabétique).
+\item Quelle est la nature du sous-graphe de $\Gamma '$ constitué des sommets A, E, F et G ?
+
+Que peut-on en déduire pour le nombre chromatique $\chi(\Gamma)$ du graphe $\Gamma$ ?
+\item Quel est le sommet de plus haut degré de $\Gamma$ ?
+
+En déduire un encadrement de $\chi(\Gamma)$.
+\item Après avoir classé l'ensemble des sommets de $\Gamma$ par ordre de degré décroissant, colorier le graphe $\Gamma$ figurant en annexe.
+\item Combien de parties l'organisateur du concert doit-il prévoir ?
+
+Proposer une répartition des musiciens pour chacune de ces parties.
+\end{enumerate}
+
+\medskip
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \GraphInit[vstyle=Normal]
+ \tikzset{EdgeStyle/.style = {line width = 2pt}}
+ \tikzset{VertexStyle/.append style = {line width = 2pt}}
+ \Vertex{D}
+ \SOEA(D){E}\EA(E){F}
+ \NOEA(F){G}\NOWE(G){A}
+ \NOWE(A){B}\SOWE(B){C}
+ \Edges(F,G,A,D,F,B,E,G,C,F,A,E,C,B)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% CE juin 2003
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Centres Étrangers juin 2003 }\label{cej03}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\bigskip
+Un livreur d'une société de vente à domicile doit, dans son après-midi, charger son camion à l'entrepôt noté A, livrer cinq clients que nous noterons B, C, D, E et F, puis retourner à l'entrepôt. Le réseau routier, tenant compte des sens de circulation, et les temps de parcours (en minutes) sont indiqués sur le graphe G suivant :
+
+\medskip
+\begin{center}
+ \begin{tikzpicture}[>=latex]
+ \SetGraphUnit{4}
+ \Vertex {F}
+ \NOWE(F){A}
+ \NOEA(F){B}
+ \SOEA(F){C}
+ \SOWE(F){D}
+ \SOWE(A){E}
+ \tikzstyle{EdgeStyle}=[->]
+ \tikzstyle{LabelStyle}=[fill=white]
+ \Edge[label=$4$](A)(E)
+ \Edge[label=$4$](E)(D)
+ \Edge[label=$9$](D)(A)
+ \Edge[label=$2$](B)(A)
+ \Edge[label=$11$](C)(B)
+ \Edge[label=$3$](D)(F)
+ \Edge[label=$6$](F)(A)
+ \tikzstyle{EdgeStyle}=[->,bend left=15]
+ \Edge[label=$2$](D)(C)
+ \Edge[label=$2$](C)(D)
+ \Edge[label=$3$](F)(B)
+ \Edge[label=$3$](B)(F)
+ \Edge[label=$6$](F)(C)
+ \Edge[label=$6$](C)(F)
+ \end{tikzpicture}
+\end{center}
+
+\begin{enumerate}
+\item Donner la matrice M associée au graphe G.
+
+On utilisera le modèle suivant :
+
+\begin{center}
+ \begin{tabular}{|*{7}{c|}}\cline{2-7}
+ \multicolumn{1}{c|}{}%
+ & A & B & C & D & E & F \\ \hline
+ A & & & & & & \\ \hline
+ B & & & & & & \\ \hline
+ C & & & & & & \\ \hline
+ D & & & & & & \\ \hline
+ E & & & & & & \\ \hline
+ F & & & & & & \\ \hline
+ \end{tabular}
+\end{center}
+
+\item On donne la matrice M$^6$ :
+
+\[\text{M}^6 =
+\begin{pmatrix}
+ 8 & 6 & 6 & 3 & 4 & 6 \\
+ 19 & 11 & 12 & 9 & 6 & 16\\
+ 36 & 28 & 23 & 22 & 18 & 34\\
+ 37 & 24 & 25 & 17 & 15 & 31\\
+ 15 & 12 & 9 & 10 & 8 & 15\\
+ 28 & 22 & 19 & 15 & 15 & 26\\
+\end{pmatrix}\]
+
+On s'intéresse aux chemins partant de l'entrepôt A et se terminant en A.
+
+ \begin{enumerate}
+ \item Combien existe-t-il de chemins de longueur 6 reliant A à A ?
+ \item Citer ces chemins.
+ \item Parmi ceux qui passent par tous les sommets du graphe, lequel minimise le temps de parcours ?
+ \item Quelle conséquence peut tirer le livreur du dernier résultat ?
+ \end{enumerate}
+\item Au départ de sa tournée, le livreur a choisi de suivre l'itinéraire le plus rapide. Malheureusement, le client C n'est pas présent au passage du livreur et celui-ci décide de terminer sa livraison par ce client. Indiquer quel est le chemin le plus rapide pour revenir à l'entrepôt A à partir de C. La réponse devra être justifiée.
+\end{enumerate}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+Code du graphe précédent
+
+\bigskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}[>=latex]
+ \SetGraphUnit{3}
+ \Vertex {F}
+ \NOWE(F){A}
+ \NOEA(F){B}
+ \SOEA(F){C}
+ \SOWE(F){D}
+ \SOWE(A){E}
+ \tikzstyle{EdgeStyle}=[->]
+ \tikzstyle{LabelStyle}=[fill=white]
+ \Edge[label=$4$](A)(E)
+ \Edge[label=$4$](E)(D)
+ \Edge[label=$9$](D)(A)
+ \Edge[label=$2$](B)(A)
+ \Edge[label=$11$](C)(B)
+ \Edge[label=$3$](D)(F)
+ \Edge[label=$6$](F)(A)
+ \tikzstyle{EdgeStyle}=[->,bend left=15]
+ \Edge[label=$2$](D)(C)
+ \Edge[label=$2$](C)(D)
+ \Edge[label=$3$](F)(B)
+ \Edge[label=$3$](B)(F)
+ \Edge[label=$6$](F)(C)
+ \Edge[label=$6$](C)(F)
+\end{tikzpicture}
+\end{tkzexample}
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Amérique du Nord mai 2004
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Amérique du Nord juin 2004 }\label{anm04}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+
+\textbf{Les parties A et B sont indépendantes.}
+
+\textbf{Partie A}
+
+On considère le graphe G$_{1}$ ci-dessous :
+
+\bigskip
+
+\begin{center}
+\begin{tikzpicture}[>=latex]
+ \SetGraphUnit{6}
+ \Vertex{F}%
+ \NOEA(F){B}
+ \SOEA(F){E}
+ \EA(B){C}
+ \EA(E){D}
+ \NO(D){A}
+ \Edges(B,F,E,D,A,E,B,A,F,B,C,F,D)
+\end{tikzpicture}
+\end{center}
+
+\medskip
+
+\begin{enumerate}
+\item Justifier les affirmations suivantes :
+
+A$_{1}$ : \og le graphe G$_1$ admet au moins une chaîne eulérienne \fg.
+
+A$_{2}$ ; \og La chaîne DABCFBEFAE n'est pas une chaîne eulérienne de G$_1$ \fg.
+
+\item Déterminer un sous-graphe complet de G$_1$, ayant le plus grand ordre possible. En déduire un minorant du nombre chromatique $\gamma$ de ce graphe.
+
+\item Déterminer un majorant de ce nombre chromatique. (On justifiera la réponse).
+
+\item En proposant une coloration du graphe G$_1$, déterminer son nombre chromatique.
+
+\end{enumerate}
+
+\medskip
+
+\textbf{Partie B}
+
+Soit la matrice M d'un graphe orienté G$_2$ dont les sommets A, B, C, D et E sont pris dans l'ordre alphabétique.
+
+On donne \[
+ M =
+\begin{pmatrix}
+ 0 & 1 & 1 & 1 & 0\\
+ 1 & 0 & 1 & 0 & 1\\
+ 1 & 1 & 0 & 0 & 1\\
+ 0 & 1 & 0 & 0 & 1\\
+ 1 & 1 & 0 & 1 & 0\\
+\end{pmatrix}
+\]
+~et~
+\[
+ \text{M}^3 =
+\begin{pmatrix}
+ 6 & 6 & 4 & 5 & 3\\
+ 5 & 6 & 5 & 3 & 6\\
+ 5 & 7 & 4 & 3 & 6\\
+ 3 & 5 & 3 & 3 & 3\\
+ 6 & 6 & 3 & 3 & 5\\
+\end{pmatrix}.
+\]
+\begin{enumerate}
+\item Construire le graphe G$_2$.
+\item Déterminer le nombre de chaînes de longueur 3 reliant B à D. Les citer toutes.
+\end{enumerate}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+Code du graphe précédent
+
+\bigskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}[>=latex]
+ \SetGraphUnit{6}
+ \Vertex{F}
+ \NOEA(F){B}
+ \SOEA(F){E}
+ \EA(B){C}
+ \EA(E){D}
+ \NO(D){A}
+ \Edges(B,F,E,D,A,E,B,A,F,B,C,F,D)
+\end{tikzpicture}
+\end{tkzexample}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% CE mai 2004
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Centres étrangers mai 2004 }\label{cem04}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\bigskip
+Un jardinier possède un terrain bien ensoleillé avec une partie plus ombragée.
+
+Il décide d'y organiser des parcelles où il plantera 8 variétés de légumes :
+
+\medskip
+\begin{center}\begin{minipage}[t]{0.48\textwidth}
+ \begin{itemize}
+ \item de l'ail (A),
+ \item des courges (Co),
+ \item des choux (Ch),
+ \item des poireaux (Px),
+ \item des pois (Po),
+ \item des pommes de terre (Pt),
+ \item des radis (R),
+ \item et des tomates (T).
+ \end{itemize}
+\end{minipage}\end{center}
+
+\medskip
+Il consulte un almanach où figurent des incompatibilités de plantes, données par les deux tableaux :
+
+\medskip
+
+\begin{minipage}[t]{0.46\textwidth}
+\begin{tabular}{|l|l|}\hline
+ \multicolumn{2}{|p{7cm}|}{Expositions incompatibles de plantes}\\
+\hline
+ \multicolumn{1}{|p{3.5cm}|}{Plantes d'ombre partielle}
+ &\multicolumn{1}{|p{3.5cm}|}{Plantes de plein soleil}\\
+\hline
+ & \\
+ & choux \\
+ pois & tomates \\
+ radis & courges \\
+ & \\
+ & \\
+\hline
+ \multicolumn{2}{|p{7cm}|}{Par exemple : les pois sont incompatibles avec les
+ choux, les tomates et les courges}\\ \hline
+\end{tabular}
+\end{minipage}
+\hfill
+\raisebox{6pt}{\begin{minipage}[t]{0.46\textwidth}
+\begin{tabular}{|l|l|}\hline
+\multicolumn{2}{|p{7cm}|}{Associations incompatibles de} \\
+\multicolumn{2}{|p{7cm}|}{plantes dans une même parcelle}\\ \hline
+ pois & ail, poireaux\\ \hline
+pommes de & courges, radis et\\
+terre & tomates\\ \hline
+& tomates, ail\\
+choux & poireaux et courges\\ \hline
+courges & tomates\\ \hline
+\multicolumn{2}{|p{7cm}|}{Par exemple : les pois sont incompatibles avec
+l'ail et les poireaux}\\ \hline
+\end{tabular}
+\end{minipage}}
+
+\medskip
+
+Pour tenir compte de ces incompatibilités le jardinier décide de modéliser la situation sous la forme d'un graphe de huit sommets, chaque sommet représentant un légume.
+\medskip
+\begin{enumerate}
+\item Sur la feuille annexe : compléter le graphe mettant en évidence les incompatibilités d'exposition ou les associations incompatibles indiquées dans les deux tableaux ci-dessus.
+
+\item Calculer la somme des degrés des sommets du graphe, en déduire le nombre de ses arêtes.
+
+\item Rechercher un sous-graphe complet d'ordre 4, qu'en déduit-on pour le nombre chromatique du graphe ?
+
+\item Donner le nombre chromatique du graphe et l'interpréter en nombre minimum de parcelles que le jardinier devra créer.
+
+\item Donner une répartition des plantes pur parcelle de façon à ce que chaque parcelle contienne exactement deux types de plantes et que le nombre de parcelles soit minimum.
+
+\item Donner une répartition des plantes de façon à ce qu'une parcelle contienne trois plantes et que le nombre de parcelles soit minimum.
+\end{enumerate}
+
+\medskip
+\begin{center}
+ \begin{tikzpicture}
+ \tikzstyle{VertexStyle}= [shape = circle,
+ fill = white,%
+ minimum size = 26pt,%
+ draw]
+ \Vertex[x=1,y=0.8]{R}
+ \Vertex[x=0.2,y=3.3]{Po}
+ \Vertex[x=0,y=2]{Pt}
+ \Vertex[x=0.9,y=5]{Px}
+ \Vertex[x=3.5,y=5]{A}
+ \Vertex[x=5.6,y=3.4]{T}
+ \Vertex[x=5.3,y=2]{Co}
+ \Vertex[x=3.3,y=0.2]{Ch}
+ \Edges(Po,Px,Po,A,Po,T,Po,Co,Po,Ch)
+ \end{tikzpicture}
+\end{center}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+Code du graphe précédent
+
+\bigskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \tikzstyle{VertexStyle}= [shape = circle,
+ fill = white,%
+ minimum size = 26pt,%
+ draw]
+ \Vertex[x=1,y=0.8]{R}
+ \Vertex[x=0.2,y=3.3]{Po}
+ \Vertex[x=0,y=2]{Pt}
+ \Vertex[x=0.9,y=5]{Px}
+ \Vertex[x=3.5,y=5]{A}
+ \Vertex[x=5.6,y=3.4]{T}
+ \Vertex[x=5.3,y=2]{Co}
+ \Vertex[x=3.3,y=0.2]{Ch}
+ \Edges(Po,Px,Po,A,Po,T,Po,Co,Po,Ch)
+\end{tikzpicture}
+\end{tkzexample}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% France mai 2004
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{France juin 2004}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+Le graphe ci-dessous indique, sans respecter d'échelle, les parcours possibles entre les sept bâtiments d'une entreprise importante.
+
+\medskip
+\begin{tikzpicture}
+ \SetGraphUnit{5}
+ \Vertex{A}
+ \NOEA(F){B}
+ \SOEA(F){E}
+ \EA(B){C}
+ \EA(E){D}
+ \NO(D){A}
+ \Edges(F,E,F,D,F,C,F,A,F,B,A,E,E,D,D,A,B,A,C,B,E,B)
+\end{tikzpicture}
+
+Un agent de sécurité effectue régulièrement des rondes de surveillance. Ses temps de parcours en minutes entre deux bâtiments sont les
+suivants :
+
+\medskip
+\begin{center}
+\begin{minipage}{0.5\textwidth}
+ \begin{itemize}
+ \item AB : 16 minutes ;
+ \item AG : 12 minutes ;
+ \item BC : 8 minutes ;
+ \item BE : 12 minutes ;
+ \item BG : 8 minutes ;
+ \item CD : 7 minutes ;
+ \item CE : 4 minutes ;
+ \item CG : 10 minutes ;
+ \item DE : 2 minutes ;
+ \item EF : 8 minutes ;
+ \item EG : 15 minutes ;
+ \item FG : 8 minutes.
+ \end{itemize}
+\end{minipage}
+\end{center}
+
+\medskip
+Sur chaque arête, les temps de parcours sont indépendants du sens de parcours.
+
+\begin{enumerate}
+\item En justifiant la réponse, montrer qu'il est possible que l'agent de sécurité passe une fois et une seule par tous les chemins de cette usine. Donner un exemple de trajet.
+
+\item L'agent de sécurité peut-il revenir à son point de départ après avoir parcouru une fois et une seule tous les chemins ? Justifier la réponse.
+
+\item Tous les matins, l'agent de sécurité part du bâtiment A et se rend au bâtiment D.
+
+En utilisant un algorithme que l'on explicitera, déterminer le chemin qu'il doit suivre pour que son temps de parcours soit le plus court possible, et donner ce temps de parcours.
+\end{enumerate}
+
+\medskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \SetGraphUnit{5}
+ \Vertex{A} \NOEA(F){B} \SOEA(F){E}
+ \EA(B){C} \EA(E){D} \NO(D){A}
+ \Edges(F,E,F,D,F,C,F,A,F,B,A,E,E,D,D,A,B,A,C,B,E,B)
+\end{tikzpicture}
+\end{tkzexample}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% La Reunion mai 2004
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{La Réunion juin 2004 }\label{larj04}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+
+\textbf{Partie A}
+
+On note $G$ le graphe représenté ci-dessous et $M$ sa matrice obtenue en prenant les sommets dans l'ordre alphabétique. La matrice $M^3$ est également donnée.
+
+\medskip
+\begin{center}
+\begin{tikzpicture}[>=latex]
+ \SetGraphUnit{4.5}
+ \Vertex {e}
+ \NOEA(e){f}
+ \SOEA(e){d}
+ \SOEA(f){h}
+ \Vertex[position={above of=e,yshift=2cm}]{g}
+ \Vertex[position={left of=g,xshift=-1cm}]{c}
+ \Vertex[position={left of=d,xshift=-2cm}]{a}
+ \SOWE(c){b}
+ \Edges(a,c,g) \Edges(d,h,f,e,d,a,e,g,a,b,c,e)
+ \Edge[style={bend left}](g)(h)
+\end{tikzpicture}
+\end{center}
+
+\bigskip
+\begin{center}
+ $M^3 = \begin{pmatrix}
+ 10 & 8 & 11 & 10 & 12 & 5 & 13 & 4\\
+ 8 & 2 & 7 & 3 & 5 & 2 & 4 & 3\\
+ 11 & 7 & 8 & 6 & 12 & 3 & 10 & 5\\
+ 10 & 3 & 6 & 2 & 11 & 1 & 4 & 8\\
+ 12 & 5 & 12 & 11 & 8 & 8 & 13 & 3\\
+ 5 & 2 & 3 & 1 & 8 & 0 & 2 & 6\\
+ 13 & 4 & 10 & 4 & 13 & 2 & 6 & 9\\
+ 4 & 3 & 5 & 8 & 3 & 6 & 9 & 0\\
+\end{pmatrix}$
+\end{center}
+
+
+\bigskip
+Dire, en justifiant votre réponse, si les affirmations suivantes sont vraies ou
+ fausses :
+
+\begin{enumerate}
+\item L'ordre du graphe est égal au plus grand des degrés des sommets.
+\item Le graphe $G$ contient un sous-graphe complet d'ordre $3$.
+\item Les sommets de $G$ peuvent être coloriés avec trois couleurs sans que deux sommets adjacents soient de même couleur.
+\item Il est possible de parcourir ce graphe en passant une fois et une seule par chaque arête.
+\item Il existe au moins un chemin de longueur $3$ qui relie chaque sommet à chacun des sept autres sommets du graphe.
+\item il y a $72$ chemins de longueur $3$ qui relient le sommet $e$ à chacun des huit sommets du graphe.
+\end{enumerate}
+
+\newpage
+
+\textbf{ Partie B}
+
+Le graphe suivant représente un réseau de lignes d'autobus. Les sommets du graphe désignent les arrêts. Les poids des arêtes sont les durées de parcours, en minutes, entre deux arrêts (correspondances comprises).
+
+\medskip
+\begin{center}
+\begin{tikzpicture}[>=latex]
+ \SetGraphUnit{4.5}
+ \Vertex {e}
+ \NOEA(e){f}
+ \SOEA(e){d}
+ \SOEA(f){h}
+ \Vertex[position={above of=e,yshift=2cm}]{g}
+ \Vertex[position={left of=g,xshift=-1cm}]{c}
+ \Vertex[position={left of=d,xshift=-2cm}]{a}
+ \SOWE(c){b}
+ \tikzstyle{LabelStyle}=[fill=white]
+ \Edge[label=$3$](a)(b)
+ \Edge[label=$11$](a)(c)
+ \Edge[label=$6$](a)(e)
+ \Edge[label=$17$](a)(d)
+ \Edge[style={pos=.25},label=$20$](a)(g)
+ \Edge[label=$5$](c)(b)
+ \Edge[label=$6$](c)(e)
+ \Edge[label=$7$](c)(g)
+ \Edge[label=$7$](f)(e)
+ \Edge[label=$3$](d)(e)
+ \Edge[label=$9$](d)(h)
+ \Edge[label=$6$](g)(e)
+ \Edge[style={bend left},label=$11$](g)(h)
+ \Edge[label=$4$](f)(h)
+\end{tikzpicture}
+\end{center}
+
+\medskip
+Déterminer, à l'aide d'un algorithme, la durée minimum pour aller de l'arrêt $a$ à l'arrêt $h$ et donner ce trajet.
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+Code du graphe précédent
+
+\medskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}[>=latex]
+ \SetGraphUnit{4.5}
+ \Vertex {e}
+ \NOEA(e){f}
+ \SOEA(e){d}
+ \SOEA(f){h}
+ \Vertex[position={above of=e,yshift=2cm}]{g}
+ \Vertex[position={left of=g,xshift=-1cm}]{c}
+ \Vertex[position={left of=d,xshift=-2cm}]{a}
+ \SOWE(c){b}
+ \Edges(a,c,g) \Edges(d,h,f,e,d,a,e,g,a,b,c,e)
+ \Edge[style={bend left}](g)(h)
+\end{tikzpicture}
+\end{tkzexample}
+
+et
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}[>=latex]
+ \SetGraphUnit{4.5}
+ \Vertex {e}
+ \NOEA(e){f}
+ \SOEA(e){d}
+ \SOEA(f){h}
+ \Vertex[position={above of=e,yshift=2cm}]{g}
+ \Vertex[position={left of=g,xshift=-1cm}]{c}
+ \Vertex[position={left of=d,xshift=-2cm}]{a}
+ \SOWE(c){b}
+ \tikzstyle{LabelStyle}=[fill=white]
+ \Edge[label=$3$](a)(b)
+ \Edge[label=$11$](a)(c)
+ \Edge[label=$6$](a)(e)
+ \Edge[label=$17$](a)(d)
+ \Edge[style={pos=.25},label=$20$](a)(g)
+ \Edge[label=$5$](c)(b)
+ \Edge[label=$6$](c)(e)
+ \Edge[label=$7$](c)(g)
+ \Edge[label=$7$](f)(e)
+ \Edge[label=$3$](d)(e)
+ \Edge[label=$9$](d)(h)
+ \Edge[label=$6$](g)(e)
+ \Edge[style={bend left},label=$11$](g)(h)
+ \Edge[label=$4$](f)(h)
+\end{tikzpicture}
+\end{tkzexample}
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Amérique du Sud Nov 2006}\label{amsn06}
+\begin{enumerate}
+\item À l'occasion de la coupe du monde de football 2006 en Allemagne, une agence touristique organise des voyages en car à travers les différentes villes où se joueront les matchs d'une équipe nationale.
+
+Les routes empruntées par les cars sont représentées par le graphe ci-dessous. Le long de chaque arête figure la distance en kilomètres séparant les villes.
+Les lettres B, D, F, H, K, M, N et S représentent les villes Berlin, Dortmnd, Francfort, Hambourg, Kaiserslautern, Munich, Nuremberg et Stuttgart.
+
+\bigskip
+
+\begin{center}
+\begin{tikzpicture}
+ \Vertex[x=0 ,y=0]{K}
+ \Vertex[x=0 ,y=2]{F}
+ \Vertex[x=-1,y=4]{D}
+ \Vertex[x=3 ,y=7]{H}
+ \Vertex[x=8 ,y=5]{B}
+ \Vertex[x=9 ,y=2]{N}
+ \Vertex[x=5 ,y=0]{M}
+ \Vertex[x=3 ,y=1]{S}
+ \tikzstyle{LabelStyle}=[fill=white,sloped]
+ \tikzstyle{EdgeStyle}=[bend left]
+ \Edge[label=$120$](K)(F)
+ \Edge[label=$650$](H)(S)
+ \Edge[label=$780$](H)(M)
+ \Edge[label=$490$](D)(B)
+ \Edge[label=$600$](D)(M)
+ \Edge[label=$580$](B)(M)
+ \Edge[label=$600$](H)(N)
+ \Edge[label=$490$](F)(H)
+ \tikzstyle{EdgeStyle}=[bend right]
+ \Edge[label=$630$](S)(B)
+ \Edge[label=$210$](S)(N)
+ \Edge[label=$230$](S)(M)
+\end{tikzpicture}
+\end{center}
+
+\bigskip
+En précisant la méthode utilisée, déterminer le plus court chemin possible pour aller de Kaiserslautern à Berlin en utilisant les cars de cette agence.
+\item Pour des raisons de sécurité, les supporters de certaines équipes nationales participant à la coupe du monde de football en 2006 ne peuvent être logés dans le même hôtel.
+
+On donne ci-dessous le graphe d'incompatibilité entre les supporters de différentes équipes : par exemple, un supporter de l'équipe A ne peut être logé avec un supporter de l'équipe P.
+
+\bigskip
+\begin{center}
+\begin{tikzpicture}
+ \tikzstyle{EdgeStyle}=[bend left]
+ \Vertex[x=0,y=0]{G}
+ \Vertex[x=0,y=3]{A}
+ \Vertex[x=3,y=5]{P}
+ \Vertex[x=4,y=2]{C}
+ \Vertex[x=8,y=3]{Q}
+ \Vertex[x=7,y=0]{E}
+ \Vertex[x=3,y=-1]{R}
+ \Edges(G,A,P,Q,E) \Edges(C,A,Q) \Edges(C,R,G) \Edges(P,E,A)
+\end{tikzpicture}
+\end{center}
+
+\bigskip
+\begin{enumerate}
+\item Déterminer le nombre chromatique de ce graphe en justifiant la valeur trouvée.
+\item Proposer une répartition des supporters par hôtel en utilisant un nombre minimum d'hôtels.
+\end{enumerate}
+\end{enumerate}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\vfill\newpage\null
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Liban juin 2006
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\subsection{Liban juin 2006 }\label{lib06}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+\begin{enumerate}
+\item Dans un parc, il y a cinq bancs reliés entre eux par des allées.
+
+On modélise les bancs par les sommets A, B, C, D, E et les allées par les arêtes du
+graphe G ci-dessous :
+
+
+\medskip
+\begin{center}
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \tikzstyle{VertexStyle}=[shape = circle,
+ fill = black,
+ minimum size = 20pt,
+ text = white,
+ draw]
+ \Vertex[L= {\textbf{E}}]{E}
+ \NOEA[L = {\textbf{A}}](E){A}
+ \SOEA[L = {\textbf{D}}](E){D}
+ \EA[L = {\textbf{C}}](D){C}
+ \NOEA[L = {\textbf{B}}](C){B}
+ \tikzstyle{EdgeStyle}=[double = orange,%
+ double distance = 1pt,%
+ thick,%
+ bend right = 20]
+ \Edges(B,A,E,D,C,B,D)
+\end{tikzpicture}
+\end{center}
+
+\medskip
+
+\begin{enumerate}
+\item On désire peindre les bancs de façon que deux bancs reliés par une allée soient
+toujours de couleurs différentes.
+
+Donner un encadrement du nombre minimal de couleurs nécessaires et justifier.
+
+Déterminer ce nombre.
+\item Est-il possible de parcourir toutes les allées de ce parc sans passer deux fois par
+la même allée?
+\end{enumerate}
+\item Une exposition est organisée dans le parc. La fréquentation devenant trop importante, on décide d'instaurer un plan de circulation : certaines allées deviennent à sens unique, d'autres restent à double sens. Par exemple la circulation dans l'allée
+située entre les bancs B et C pourra se faire de B vers C et de C vers B, alors que la circulation dans l'allée située entre les bancs A et B ne pourra se faire que de A vers B. Le graphe G$'$ ci-dessous modélise cette nouvelle situation :
+
+\medskip
+\begin{center}
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \tikzstyle{VertexStyle}=[shape = circle,
+ fill = black,
+ minimum size = 20pt,
+ text = white,
+ draw]
+ \tikzstyle{TempStyle}=[double = orange,%
+ double distance = 1pt]
+ \Vertex[L= {\textbf{E}}]{E}
+ \NOEA[L = {\textbf{A}}](E){A}
+ \SOEA[L = {\textbf{D}}](E){D}
+ \EA[L = {\textbf{C}}](D){C}
+ \NOEA[L = {\textbf{B}}](C){B}
+ \tikzstyle{EdgeStyle}=[TempStyle,%
+ post,%
+ bend right = 20]
+ \Edges(A,E,D,C,B,D)
+ \tikzstyle{EdgeStyle}=[TempStyle,%
+ pre,%
+ bend right = 20]
+ \Edges(B,A)
+ \tikzstyle{EdgeStyle}=[TempStyle,%
+ pre,%
+ bend left = 20]
+ \Edges(A,E,D,C,B)
+\end{tikzpicture}
+\end{center}
+
+\begin{enumerate}
+\item Donner la matrice M associée au graphe G$'$. (On ordonnera les sommets
+par ordre alphabétique).
+\item On donne M$^5
+= \begin{pmatrix}
+1& 6& 9& 6& 10\\
+4& 5& 7& 11& 5\\
+4& 6& 6& 11& 5\\
+1& 5& 10& 6& 10\\
+6& 5& 5& 14& 2\\
+\end{pmatrix}$
+
+Combien y a-t-il de chemins de longueur 5 permettant de se rendre du
+sommet D au sommet B ?
+
+Les donner tous.
+\item Montrer qu'il existe un seul cycle de longueur 5 passant par le sommet A.
+
+Quel est ce cycle ?
+
+En est-il de même pour le sommet B ?
+ \end{enumerate}
+\end{enumerate}
+
+\vfill\newpage\null
+Code des graphes précédents
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \tikzstyle{VertexStyle}=[shape = circle,
+ fill = black,
+ minimum size = 20pt,
+ text = white,
+ draw]
+ \Vertex[L= {\textbf{E}}]{E}
+ \NOEA[L = {\textbf{A}}](E){A}
+ \SOEA[L = {\textbf{D}}](E){D}
+ \EA[L = {\textbf{C}}](D){C}
+ \NOEA[L = {\textbf{B}}](C){B}
+ \tikzstyle{EdgeStyle}=[double = orange,
+ double distance = 1pt,
+ thick,
+ bend right = 20]
+ \Edges(B,A,E,D,C,B,D)
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \tikzstyle{VertexStyle}=[shape = circle,
+ fill = black,
+ minimum size = 20pt,
+ text = white,
+ draw]
+ \tikzstyle{TempStyle}=[double = orange,
+ double distance = 1pt]
+ \Vertex[L= {\textbf{E}}]{E}
+ \NOEA[L = {\textbf{A}}](E){A}
+ \SOEA[L = {\textbf{D}}](E){D}
+ \EA[L = {\textbf{C}}](D){C}
+ \NOEA[L = {\textbf{B}}](C){B}
+ \tikzstyle{EdgeStyle}=[TempStyle,
+ post,
+ bend right = 20]
+ \Edges(A,E,D,C,B,D)
+ \tikzstyle{EdgeStyle}=[TempStyle,%
+ pre,%
+ bend right = 20]
+ \Edges(B,A)
+ \tikzstyle{EdgeStyle}=[TempStyle,%
+ pre,%
+ bend left = 20]
+ \Edges(A,E,D,C,B)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-couverture.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-couverture.tex
new file mode 100644
index 0000000000..d595024dac
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-couverture.tex
@@ -0,0 +1,33 @@
+% $Id$
+\thispagestyle{empty}
+\null\vfill
+\begin{center}
+\textcolor{Brown}{\fontsize{30}{30}\selectfont{\upshape tkz-graph.sty}}
+
+\vspace{0.25cm}
+\hfill\textcolor{Brown}{\fontsize{14}{14}\selectfont{\upshape Alain Matthes}}
+\end{center}
+
+\vspace{3cm}
+\begin{center}
+\begin{tikzpicture}[scale=5]
+ \SetVertexNoLabel
+ \tikzstyle{VertexStyle}=[draw,
+ shape = circle,
+ shading = ball,
+ ball color = blue!50,
+ inner sep = 10pt,
+ outer sep = 0pt]
+ \tikzstyle{EdgeStyle}= [thick,
+ double = blue,%
+ double distance = 1pt]
+ \draw[fill = white,color = white] circle (0.55cm);
+ \draw (0,0) node[circle,draw,shade,
+ ball color = orange,
+ minimum size = 3cm] (am){\textbf{AlterMundus}};
+ \grIcosahedral[RA=1.4,RB=0.8]
+\end{tikzpicture}
+\end{center}
+\vfill\newpage\null\thispagestyle{empty}
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-edge.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-edge.tex
new file mode 100644
index 0000000000..bc538f15cb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-edge.tex
@@ -0,0 +1,120 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-graph/doc-fr/TKZdoc-gr-main.tex
+
+% $Id$
+\section{Edge avec tkz-graph}
+
+\begin{NewMacroBox}{Edge}{\oarg{local options}\varp{Vertex A}\varp{Vertex B}}
+
+\begin{tabular}{lllc}
+options & défaut & définition \\ \midrule
+\TOline{local} {false} {booléen désactive EdgeStyle }
+\TOline{color} {\textbackslash EdgeColor} {couleur de l'arête}
+\TOline{lw} {\textbackslash EdgeLineWidth} {épaisseur de l'arête.}
+\TOline{label} {\{\}} {le label}
+\TOline{labeltext} {black} {couleur du texte}
+\TOline{labelcolor} {white} {couleur du fond du label }
+\TOline{labelstyle} {\{\}} {modication du style du label}
+\TOline{style} {pos=.5} {modification du style général} \bottomrule
+\end{tabular}
+
+\medskip
+\emph{Cette macro permet de tracer une arête entre deux sommets. Dans les exemples et dans le chapitre sur les styles, l'usage des styles est expliqué. }
+\end{NewMacroBox}
+
+
+
+\medskip
+\subsection{Utilisation de \addbs{Edge}}
+ On peut remarquer qu'il y a deux sortes d'arêtes au niveau de la forme : les segments et les arcs. De plus, ces arêtes peuvent avoir un label. La notion de style est importante car on peut définir pour toutes les arêtes un même style dès le début.
+
+par défaut :
+
+\begin{tkzexample}[latex=8cm, small]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \Vertex{a}
+ \EA(a){b}
+ \SO[unit=2](a){c}
+ \EA(c){d}
+ {\SetGraphUnit{2}
+ \SO(c){e}}
+ \EA(e){f}
+ \Edge(a)(b)
+ \tikzset{EdgeStyle/.style = {-,bend left}}
+ \Edge(c)(d)
+ \tikzset{EdgeStyle/.style = {->,bend right=60}}
+ \Edge(e)(f)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+
+\vfill
+\newpage
+
+\subsection{Arête particulière la boucle : \tkzname{Loop}}
+
+\begin{NewMacroBox}{Loop}{\oarg{local options}\varp{Vertex}}
+\begin{tabular}{lllc}
+options & défaut & définition \\
+\midrule
+\TOline{color} {black } {}
+\TOline{lw} {0.8pt } {}
+\TOline{label} {\{\} } {}
+\TOline{labelstyle} {\{\} } {}
+\TOline{style} {\{\} } {}
+\end{tabular}
+\end{NewMacroBox}
+
+\subsubsection{Exemple avec \tkzcname{Loop}}
+\begin{center}
+\begin{tkzexample}[vbox, small]
+\begin{tikzpicture}
+ \useasboundingbox (-1,-2) rectangle (8,2);
+ \SetVertexSimple
+ \SetGraphUnit{5}
+ \Vertex{A}
+ \EA(A){B}
+ \Edge[style={->}](A)(B)
+ \Loop[dist=3cm,dir=EA,style={thick,->}](B)
+ \Loop[dist=5cm,dir=WE,style={thick,->}](A)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill
+\newpage
+\subsection{Multiple arêtes \tkzcname{Edges}}
+
+\begin{NewMacroBox}{Edges}{\oarg{local options}\varp{Vertex A,Vertex B,\dots}}
+
+\begin{tabular}{llc}
+options & défaut & définition \\
+\midrule
+\TOline{color} {black} {}
+\TOline{lw} {thick} {}
+\TOline{label} {\{\} } {}
+\TOline{labelstyle}{\{\}} {}
+\TOline{style} {\{\} } {}
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{ Cette macro permet de définir une série d'arêtes en une seule fois.}
+\end{NewMacroBox}
+
+\subsubsection{Exemple avec \tkzcname{Edges}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \GraphInit[vstyle=Art]
+ \Vertices{circle}{a0,a1,a2,a3,a4,a5,a6,a7}
+ \Edges(a0,a3,a6,a1,a4,a7,a2,a5,a0)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-installation.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-installation.tex
new file mode 100644
index 0000000000..e54d7653d4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-installation.tex
@@ -0,0 +1,108 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-graph/doc-fr/TKZdoc-gr-main.tex
+% $Id$
+
+\section{Installation}
+
+Il est possible que lorsque vous lirez ce document, \tkzname{tkz-graph} soit présent sur les serveurs du \tkzname{CTAN}\footnote{\tkzname{tkz-graph} ne fait pas encore partie de \tkzname{TeXLive} mais il sera bientôt possible de l'installer avec \emph{tlmgr}}. Si \tkzname{tkz-graph} ne fait pas encore partie de votre distribution, cette section vous montre comment l'installer.
+
+\subsection{Avec TeXLive sous OS X, Linux et Windows}\NameDist{TeXLive}
+Créer un dossier \tikz[remember picture,baseline=(n1.base)]\node [fill=green!20,draw] (n1) {tkz}; avec comme chemin : \colorbox{blue!20}{ texmf/tex/latex/tkz}.
+
+ \colorbox{blue!20}{texmf} est un dossier personnel, voici les chemins de ce dossier sur mes deux ordinateurs:
+
+\medskip
+\begin{itemize}\setlength{\itemsep}{10pt}
+
+\item sous OS X\NameSys{OS X} \colorbox{blue!20}{\textbf{/Users/ego/Library/texmf}};
+
+\item sous Ubuntu\NameSys{Linux Ubuntu} \colorbox{blue!20}{\textbf{/home/ego/texmf}}.
+
+\end{itemize}
+
+ Sous Windows je ne connais pas cette distribution sous ce système, mais je suppose que l'installation doit ressembler à ce qui se passe sous Linux et OS X.
+
+\medskip
+\begin{enumerate}
+\item Placez \tikz[remember picture,baseline=(n2.base)]\node [fill=green!20,draw] (n2) {tkz-graph.sty}; dans le dossier \colorbox{green!20}{tkz}.
+\item Ouvrir un terminal, puis faire \colorbox{red!30}{|sudo texhash|}
+\item Vérifier que \tkzname{xkeyval}\index{xkeyval} version 2.5 minimum et \tkzname{Ti\emph{k}Z 2.1}\index{TikZ@Ti\emph{k}Z} sont installés car ils sont obligatoires, pour le bon fonctionnement de \tkzname{tkz-graph}.
+\end{enumerate}
+Mon dossier texmf est structuré ainsi :
+
+\emph{Attention, la présence dans mon dossier texmf, des fichiers de \PGF, s'explique par l'utilisation de la version CVS de \PGF}.
+
+\vfill
+\begin{tikzpicture} [remember picture,rotate=90]
+% nodes
+\node (texmf) at (4,2) [draw,fill=blue!20 ] {texmf};
+
+\node (tex) at (6,0) [draw ] {tex};
+\node (doc) at (2,0) [draw ] {doc};
+
+\node (texgen) at (7,-2) [draw ] {generic};
+\node (docgen) at (0,-2) [draw ] {generic};
+
+\node (latex) at (4,-2) [draw ] {latex};
+
+\node (genpgf) at (7,-4) [draw] {pgf};
+\node (latpgf) at (5,-4) [draw] {pgf};
+\node (tkz) at (4,-4) [draw,fill=green!20 ] {tkz};
+
+\node (docpgf) at (0,-4) [draw] {pgf};
+
+\node (tkb) at (6,-6) [draw,fill=orange!20] {tkzbase};
+\node (tke) at (2,-6) [draw,fill=orange!20] {tkzeuclide};
+
+\node (tari) at (7,-11) [draw,fill=orange!20] {tkz-tools-arith.tex};
+\node (tary) at (5,-11) [draw,fill=green!20] {tkz-arith.sty};
+\node (tgra) at (4,-11) [draw,fill=green!20] {tkz-graph.sty};
+\node (tber) at (3,-11) [draw,fill=green!20] {tkz-berge.sty};
+
+% edges
+\draw[-open triangle 90](texmf.north east) -- (tex.south west) ;
+\draw[-open triangle 90](texmf.south east) -- (doc.north west) ;
+
+\draw[-open triangle 90](tex.north east) -- (texgen.south west) ;
+\draw[-open triangle 90](tex.south east) -- (latex.north west) ;
+\draw[-open triangle 90](texgen.east) -- (genpgf.west) ;
+
+\draw[-open triangle 90](doc.south east) -- (docgen.north west) ;
+\draw[-open triangle 90](docgen.east) -- (docpgf.west) ;
+
+\draw[-open triangle 90](latex.north east) -- (latpgf.south west) ;
+\draw[-open triangle 90](latex.east) -- (tkz.west) ;
+
+\draw[-open triangle 90,orange!80](tkz.east) to [out=-90,in=90](tkb.west) ;
+\draw[-open triangle 90,orange!80](tkz.east) to [out=-90,in=90](tke.west) ;
+\draw[-open triangle 90,orange!80](tkb.east) to [out=-90,in=90](tari.west) ;
+\draw[-open triangle 90,green!80](tkz.east) to [out=-90,in=90](tary.west) ;
+\draw[-open triangle 90,green!80](tkz.east) to [out=-90,in=90](tgra.west) ;
+\draw[-open triangle 90,green!80](tkz.east) to [out=-90,in=90](tber.west) ;
+
+\end{tikzpicture}
+
+\begin{tikzpicture}[remember picture,overlay]
+ \path[->,thin,green!80,>=latex] (n1) edge [bend left] (tkz);
+ \path[->,thin,green!80,>=latex] (n2) edge [bend left] (tgra);
+\end{tikzpicture}
+
+\vfill
+\newpage
+\subsection{Avec MikTeX sous Windows XP}\NameDist{MikTeX}\NameSys{Windows XP}
+
+Il est fort possible que lorsque vous lirez ces lignes, il soit possible d'installer \tkzname{tkz-graph} automatiquement à l'aide du manager de MikTeX.
+
+Un utilisateur de mes packages \tkzimp{Wolfgang Buechel} a eu la gentillesse de me faire parvenir ce qui suit, et cela permet d'installer manuellement mon package~:
+
+Pour ajouter \tkzname{tkz-graph.sty} à MiKTeX\footnote{Essai réalisé avec la version \tkzname{2.7}}:
+
+\begin{itemize}\setlength{\itemsep}{10pt}
+ \item ajouter un dossier \tkzname{tkz} dans le dossier
+ \colorbox{blue!30}{\texttt{[MiKTeX-dir]/tex/latex}};
+ \item copier \tkzname{tkz-graph.sty} dans ce dossier;
+ \item mettre à jour MiKTeX, pour cela dans shell DOS lancer la commande \colorbox{red!30}{|mktexlsr -u|} ou bien encore, choisir \colorbox{red!30}{|Start/Programs/Miktex/Settings/General|}
+puis appuyer sur le bouton \colorbox{red!30}{|Refresh FNDB|}.
+\end{itemize}
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-label.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-label.tex
new file mode 100644
index 0000000000..1ffb6c38cd
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-label.tex
@@ -0,0 +1,155 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-graph/doc-fr/TKZdoc-gr-main.tex
+
+% $Id$
+\section{Les labels}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+% Options sur les labels
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+Rappel : Si aucun label n'est donné alors l'affichage du label est celui de la référence du \tkzname{vertex}. Il est possible de modifier localement le comportemnt des labels
+
+\subsection{Options concernant les labels}
+
+L'option suivante permet de définir un label, celui-ci peut être en mode texte ou bien en mode math.
+
+\subsubsection{Option \tkzname{L}}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \Vertex[L=$\alpha$] {a}
+ \EA[unit=4](a){b}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{Math}}
+Le label est en mode math. Il est inutile de placer L en mode math si l'option est utilisée.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \Vertex[Math] {A_1}
+ \Vertex[Math,L=\alpha,x=4,y=0] {a}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Suppression d'un label, Option \tkzname{NoLabel}}
+Cette option supprime l'affichage du label. Il est préférable d'utiliser \tkzname{SetVertexNoLabel} si on veut généraliser à tous les sommets.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \Vertex[NoLabel]{A}
+ \EA[NoLabel](A){B}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{LabelOut}, \tkzname{Lpos} et \tkzname{Ldist}}
+
+La première option permet de placer le label hors du node, la deuxième positionne le label autour du sommet et la dernière spécifie la distance entre le label et le sommet.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \Vertex[LabelOut]{A}
+ \Vertex[LabelOut,Lpos=60,
+ Ldist=.5cm,x=2,y=0]{B}
+ \Vertex[LabelOut,Lpos=60,x=4,y=0]{C}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\vfill\newpage
+On peut souhaiter appliquer une option pour tous les sommets.
+
+\subsection{\tkzcname{SetVertexNoLabel}}
+On peut souhaiter ne pas avoir de label pour tous les sommets avec un style prédéfini.
+
+\begin{NewMacroBox}{SetVertexNoLabel}{}
+\emph{ Cette macro permet de supprimer les labels sur tous les sommets. Elle agit globalement sur tous les sommets. Elle correspond à l'option \tkzname{NoLabel}.}
+\end{NewMacroBox}
+
+\subsubsection{Suppression des labels}
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \SetVertexNoLabel
+ \Vertex{A}\EA(A){B}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{\tkzcname{SetVertexMath} }
+\begin{NewMacroBox}{SetVertexMath}{}
+\emph{Cette macro permet d'appliquer l'option \tkzname{Math} à plusieurs sommets. Elle agit globalement sur tous les sommets. Elle correspond à l'option \tkzname{Math}}
+\end{NewMacroBox}
+
+\begin{tkzexample}[latex=7cm,small]
+ \begin{tikzpicture}
+ \SetVertexMath
+ \Vertex {A_1} \EA[unit=3](A_1){A_2}\texttt{}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{\tkzcname{SetVertexLabel}}
+\begin{NewMacroBox}{SetVertexLabel}{}
+\emph{ Cette macro autorise les labels. Elle agit globalement sur tous les sommets.}
+\end{NewMacroBox}
+
+\subsubsection{Labels supprimés puis autorisés.}
+ Dans l'exemple qui suit, les labels sont supprimés puis autorisés.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \SetVertexNoLabel
+ \SetGraphUnit{2}
+ \Vertex {A} \EA(A){B}
+ \SetVertexLabel \EA(B){C}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Label en dehors du sommet \tkzcname{SetVertexLabelOut}}
+
+\begin{NewMacroBox}{SetVertexLabelOut}{}
+\emph{\tkzcname{SetVertexLabelOut} Dans les exemples précédents, les sommets sont des petits disques colorés, généralement en noir et dans ce cas par défaut le label est à l'extérieur. On peut contrôler la position à l'aide des labels avec \tkzname{Ldist} et\tkzname{Lpos}.}
+\end{NewMacroBox}
+
+\begin{NewMacroBox}{SetVertexLabelIn}{}
+\emph{\tkzcname{SetVertexLabelIn} permet d'écrire le label dans le sommet.}
+\end{NewMacroBox}
+
+Cette macro permet d'appliquer l'option à plusieurs sommets. \tkzcname{SetVertexLabelIn} annule l'effet.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \SetVertexLabelOut
+ \Vertex {A} \EA(A){B}
+ \SetVertexLabelIn \SO[unit=3](B){C}
+\end{tikzpicture}
+\end{tkzexample}
+
+\endinput
+
+
+
+
+% \subsection{\tkzname{NoLabel} }
+%
+% \tkzname{NoLabel} Cela permet de supprimer le nom d'un sommet
+%
+% \begin{tkzexample}[vbox]
+% \begin{tikzpicture}
+% \SetGraphUnit{4}
+% \tikzset{VertexStyle/.style = {shape = circle,
+% inner sep = 0pt,
+% outer sep = 0pt,
+% fill = yellow,%
+% minimum size = 16pt,%
+% draw}}
+% \Vertex[NoLabel]{A}\EA[NoLabel](A){B}
+% \end{tikzpicture}
+% \end{tkzexample}
+%
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-main.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-main.tex
new file mode 100644
index 0000000000..3fe4aac1c7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-main.tex
@@ -0,0 +1,215 @@
+% encoding : utf8
+% tkz-graph.tex
+% Created by Alain Matthes on 2008-01-19.
+% Copyright (C) 2009 Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/generic/pgf/licenses/LICENSE for more details.%
+% See http://www.latex-project.org/lppl.txt for details.
+%
+%
+% ``tkzdoc-graph-fr'' is the french doc of tkz-graph
+%
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% tkz-graph.sty encodage : utf8 %
+% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% Créé par Alain Matthes le 19/02/2007 %
+% Copyright (c) 2006 __Collège Sévigné__ All rights reserved. %
+% version : 0.95 c %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+\documentclass[DIV = 15,
+ fontsize = 10,
+ headinclude = false,
+ index = totoc,
+ footinclude = false,
+ headings = small]{tkz-doc}
+
+\gdef\nameofpack{tkz-graph}
+\gdef\versionofpack{ctan v1.00 c}
+\gdef\dateofpack{2011/06/01}
+\gdef\nameofdoc{doctkz-graph}
+\gdef\dateofdoc{2011/06/01}
+\gdef\authorofpack{Alain Matthes}
+\gdef\adressofauthor{}
+\gdef\namecollection{AlterMundus}
+\gdef\urlauthor{http://altermundus.fr}
+\gdef\urlauthorcom{http://altermundus.com}
+
+
+\tkzSetUpColors[background=fondpaille,text=Maroon]
+\usepackage[pdftex,
+ unicode,
+ colorlinks = true,
+ pdfpagelabels,
+ urlcolor = blue,
+ filecolor = pdffilecolor,
+ linkcolor = blue,
+ breaklinks = false,
+ hyperfootnotes= false,
+ bookmarks = false,
+ bookmarksopen = false,
+ linktocpage = true,
+ pdfsubject ={Graph theory},
+ pdfauthor ={Alain Matthes},
+ pdftitle ={tkz-graph},
+ pdfkeywords ={graph,Berge,Petersen,cyclic,complete,circulant},
+ pdfcreator ={pdfeTeX}
+ ]{hyperref}
+
+\usepackage{url}
+\def\UrlFont{\small\ttfamily}
+
+\usepackage[protrusion = true,
+ expansion,
+ final,
+ verbose = false,
+ babel = true
+ ]{microtype}
+
+\DisableLigatures{encoding = T1, family = tt*}
+
+\usepackage{fancybox}
+\usepackage{amsmath,amssymb,stmaryrd,calc}
+\usepackage{xkeyval,array,tkz-graph}
+
+\usepackage[weather]{ifsym}
+
+\pdfcompresslevel=9
+\pdfinfo{
+ /Title (doctkz-graph.pdf)
+ /Creator (TeX)
+ /Producer (pdfeTeX)
+ /Author (Alain Matthes)
+ /CreationDate (28 février 2011)
+ /Subject (Documentation du package tkz-graph.sty v 1.00 c)
+ /Keywords (node, graph, edge, pdflatex) }
+
+\title{The package : tkz-graph.sty}
+\author{Alain Matthes}
+
+\renewcommand*{\Ienv}[1]{%
+ \index{Environnement_1@\texttt{Environnement}!\texttt{#1}}}
+\renewcommand*{\NameSys}[1]{%
+ \index{Système d'exploitation !#1@\texttt{#1}}}
+
+
+\usepackage{shortvrb,fancyvrb}
+\makeatletter
+\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4em}}
+\makeatother
+\AtBeginDocument{\MakeShortVerb{\|}}
+
+\usepackage[frenchb]{babel}
+\usepackage[autolanguage]{numprint}
+\usepackage{tkzexample}
+
+\begin{document}
+
+\parindent=0pt
+
+
+\title{\nameofpack}
+\date{\today}
+\clearpage
+\thispagestyle{empty}
+\maketitle
+
+\clearpage
+\tkzSetUpColors[background=fondpaille,text=Maroon]
+\colorlet{textcodecolor}{Maroon}
+\pagecolor{fondpaille}
+\color{Maroon}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{codebackground}{Peach!30}
+\colorlet{codeonlybackground}{Peach!30}
+
+\nameoffile{\nameofpack}
+\defoffile{Le package \tkzname{tkz-graph.sty} est un package pour créer à l'aide de \TIKZ\ des graphes le plus simplement possible. Il fera partie d'une série de modules ayant comme point commun, la création de dessins utiles dans l'enseignement des mathématiques. La lecture de cette documentation va , je l'espère, vous permettre d'apprécier la simplicité d'utilisation de \TIKZ\ et vous permettre de commencer à le pratiquer. Il est accompagné du package \tkzname{tkz-berge.sty} qui permet de tracer des graphes particuliers de la théorie des graphes.}
+
+\presentation
+
+\vspace*{1cm}
+\lefthand\ Je souhaite remercier \textbf{Till Tantau} pour avoir créé le merveilleux outil \href{http://sourceforge.net/projects/pgf/}{Ti\emph{k}Z}, ainsi que \tkzimp{Michel Bovani} pour \tkzname{fourier}, dont l'association avec \tkzname{utopia} est excellente.
+
+
+\vspace*{12pt}
+\lefthand\ Vous trouverez de nombreux exemples sur mes sites~:
+\href{http://altermundus.com/pages/download.html}{altermundus.com} ou
+\href{http://altermundus.fr/pages/download.html}{altermundus.fr}
+
+\vfill
+Vous pouvez envoyer vos remarques, et les rapports sur des erreurs que vous aurez constatées à l'adresse suivante~: \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}.
+
+This file can be redistributed and/or modified under the terms of the LATEX
+Project Public License Distributed from CTAN archives in directory \url{CTAN://
+macros/latex/base/lppl.txt}.
+
+
+
+ \clearpage
+ \tableofcontents
+ \clearpage
+
+
+Liste des macros dans l'ordre d'apparition :
+
+\medskip
+\begin{itemize}
+\item \tkzcname{SetVertexLabelOut}
+\item \tkzcname{SetVertexLabelIn}
+\item \tkzcname{SetVertexMath}
+\item \tkzcname{SetVertexNoMath}
+\item \tkzcname{SetUpVertex}
+\item \tkzcname{Vertex}
+\item \tkzcname{EA}
+\item \tkzcname{WE}
+\item \tkzcname{NO}
+\item \tkzcname{SO}
+\item \tkzcname{NOEA}
+\item \tkzcname{NOWE}
+\item \tkzcname{SOEA}
+\item \tkzcname{SOWE}
+\item \tkzcname{Vertices}
+\item \tkzcname{SetUpEdge}
+\item \tkzcname{Edge}
+\item \tkzcname{Edges}
+\item \tkzcname{Loop}
+\item \tkzcname{grProb}
+\item \tkzcname{SetGraphShadeColor}
+\item \tkzcname{SetGraphArtColor}
+\item \tkzcname{SetGraphColor}
+\item \tkzcname{AddVertexColor}
+\end{itemize}
+
+\vfill
+%<-------------------------------------------------------------------------->
+\renewcommand*{\VertexLightFillColor}{fondpaille}
+\tkzSetUpColors[background=fondpaille,text=Maroon]
+\include{TKZdoc-gr-installation}
+\include{TKZdoc-gr-presentation}
+\include{TKZdoc-gr-vertex}
+\include{TKZdoc-gr-vertices}
+\include{TKZdoc-gr-label}
+\include{TKZdoc-gr-edge}
+\include{TKZdoc-gr-style}
+\include{TKZdoc-gr-prob}
+\include{TKZdoc-gr-Welsh}
+%\include{TKZdoc-gr-annales}
+%\include{TKZdoc-gr-Dijkstra}
+%<-------------------------------------------------------------------------->
+
+\printindex
+
+\end{document}
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-presentation.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-presentation.tex
new file mode 100644
index 0000000000..d7c4887ee4
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-presentation.tex
@@ -0,0 +1,221 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-graph/doc-fr/TKZdoc-gr-main.tex
+
+% $Id$
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+\section{Premiers graphes avec tkz-graph.sty}
+%<–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––>
+
+
+ \tkzname{TikZ} est un outil que je trouve très agréable à utiliser pour la création de graphes. J'ai trouvé si simple son utilisation que je me suis demandé si cela avait un sens de créer un package pour la création de graphes. Pas de théorie des graphes dans ce package, seulement des outils pour leur construction. Trois arguments peuvent intervenir pour soutenir mon effort :
+
+\begin{enumerate}
+
+\item Certains utilisateurs n'ont pas envie d'apprendre quoi que ce soit sur \TIKZ\; cela est respectable et une simplification du code par l'intermédiaire d'un package peut avoir une certaine utilité. La syntaxe n'est plus tout à fait celle de \TIKZ\ mais celle de \LATEX.
+\item Il est possible finalement de jouer avec les styles et d'optimiser certains situations, ainsi la création d'un graphe sans la moindre coordonnée est possible. On peut obtenir des variantes du graphe, simplement en jouant avec les styles.
+\item La création de ce que l'on peut appeler les graphes classiques de la théorie des graphes.
+\item Et pour terminer, cela peut être une approche en douceur de l'utilisation de \TIKZ\, par l'intermédiaire des options.
+
+\end{enumerate}
+
+Que peut apporter \tkzname{tkz-graph.sty} ? Il facilite la gestion des styles des sommets et des arêtes, et également le positionnement de ceux-ci.
+
+\subsection{Exemple simple avec \tkzname{tkz-graph}}
+Avant d'expliquer le fonctionnement des différentes macros, il est possible de tester si le package est bien installé avec l'exemple simple suivant. Le code complet est donné. Le préambule peut évidemment être modifié.
+
+
+\medskip
+\begin{minipage}{.45\textwidth}
+\begin{tkzltxexample}[]
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{scrartcl}
+\usepackage[utf8]{inputenc}
+\usepackage[upright]{fourier}
+% you can change the line above
+\usepackage{tkz-graph}
+\thispagestyle{empty}
+\begin{document}
+
+\begin{tikzpicture}[scale=1.75]
+ \GraphInit[vstyle=Art]
+ \Vertex{A}
+ \Vertex[x=4,y=0]{B}
+ \Vertex[x=1,y=2]{C}
+ \Edge[style={bend left}](B)(A)
+ \Edges(A,B,C,A)
+\end{tikzpicture}
+\end{document}
+\end{tkzltxexample}
+\end{minipage}
+\hfil\begin{minipage}{.40\textwidth}
+ \begin{tikzpicture}[scale=1.75]
+ \GraphInit[vstyle=Art]
+ \Vertex{A}
+ \Vertex[x=4,y=0]{B}
+ \Vertex[x=1,y=2]{C}
+ \Edge[style={bend left}](B)(A)
+ \Edges(A,B,C,A)
+\end{tikzpicture}
+ \end{minipage}
+
+\newpage
+\subsection{Exemple classique avec \tkzname{tkz-graph}}
+
+Voyons un exemple classique. Nous allons utiliser un style scolaire \tkzname{vstyle=Normal} ainsi que les macros \tkzcname{Vertices}, \tkzcname{NOEA} et \tkzcname{Edges} qui permet de créer une "chaîne" d'arêtes (edges). L'environnement \tkzname{scope} fait partie de \TIKZ, il est utilisé ici afin d'appliquer une rotation.
+
+\begin{center}
+\begin{tkzexample}[latex=7cm, small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Normal]
+ \SetGraphUnit{2}
+ \begin{scope}[rotate=-135]
+ \Vertices{circle}{A,B,C,E}
+ \end{scope}
+ \NOEA[unit=1.414](E){D}
+ \Edges(A,B,E,D,C,E,A,C,B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{Modification du style}
+Un style plus esthétique peut être choisi avec \tkzcname{GraphInit}. J'ai choisi \tkzname{Art} parmi une liste que vous découvrirez plus tard.
+
+ \begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \begin{scope}[rotate=-135]
+ \Vertices[unit=2]{circle}{A,B,C,E}
+ \end{scope}
+ \NOEA[unit=1.414](E){D}
+ \Edges(A,B,E,D,C,E,A,C,B)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{La ville de Königsberg avec \tkzname{tkz-graph}}
+
+
+\begin{tkzexample}[latex=8cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Shade]
+ \tikzset{LabelStyle/.style= {draw,
+ fill = yellow,
+ text = red}}
+ \Vertex{A}
+ \EA(A){B}
+ \EA(B){C}
+ \SetGraphUnit{6}
+ % modifie la distance entre les nodes
+ \NO(B){D}
+ \Edge[label=1](B)(D)
+ \tikzset{EdgeStyle/.append style = {bend left}}
+ \Edge[label=4](A)(B)
+ \Edge[label=5](B)(A)
+ \Edge[label=6](B)(C)
+ \Edge[label=7](C)(B)
+ \Edge[label=2](A)(D)
+ \Edge[label=3](D)(C)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+
+\medskip
+Ce dernier exemple était important sur un plan historique, mais il était un peu compliqué car on doit modifier des styles.
+
+\subsection{La ville de Königsberg avec \TIKZ\ mais sans \tkzname{tkz-graph}}
+
+Voyons l'exemple précédent, sans l'utilisation du package \tkzname{tkz-graph}.
+L'exemple peut être vu sur cet excellent site \url{http://www.texample.net/tikz/examples/bridges-of-konigsberg/}, voici le code complet. The result is on the next page.
+D'abord le préambule
+
+\begin{tkzltxexample}[left margin=3cm,right margin=3cm]
+% The seven bridges of Königsberg
+% Author : Alain Matthes
+% Encoding : UTF8
+% Engine : PDFLaTeX
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage{fullpage}
+\usepackage{fourier}
+\usepackage{tikz}
+\usetikzlibrary{arrows,shapes,positioning}
+\begin{document}
+\end{tkzltxexample}
+
+Ensuite les styles principaux
+
+\begin{tkzltxexample}[left margin=3cm,right margin=3cm]
+\begin{center}
+\begin{tikzpicture}
+ \useasboundingbox (-1,-1) rectangle (11,11);
+ \tikzset{VertexStyle/.style = {shape = circle,
+ ball color = orange,
+ text = black,
+ inner sep = 2pt,
+ outer sep = 0pt,
+ minimum size = 24 pt}}
+ \tikzset{EdgeStyle/.style = {thick,
+ double = orange,
+ double distance = 1pt}}
+ \tikzset{LabelStyle/.style = {draw,
+ fill = yellow,
+ text = red}}
+ \end{tkzltxexample}
+
+ enfin, le tracé
+\begin{tkzltxexample}[left margin=3cm,right margin=3cm]
+ \node[VertexStyle](A){A};
+ \node[VertexStyle,right=of A](B){B};
+ \node[VertexStyle,right=of B](C){C};
+ \node[VertexStyle,above= 7 cm of B](D){D};
+ \draw[EdgeStyle](B) to node[LabelStyle]{1} (D) ;
+ \tikzset{EdgeStyle/.append style = {bend left}}
+ \draw[EdgeStyle](A) to node[LabelStyle]{2} (B);
+ \draw[EdgeStyle](B) to node[LabelStyle]{3} (A);
+ \draw[EdgeStyle](B) to node[LabelStyle]{4} (C);
+ \draw[EdgeStyle](C) to node[LabelStyle]{5} (B);
+ \draw[EdgeStyle](A) to node[LabelStyle]{6} (D);
+ \draw[EdgeStyle](D) to node[LabelStyle]{7} (C);
+ \end{tikzpicture}
+\end{center}
+\end{document}
+\end{tkzltxexample}
+
+\begin{center}
+\begin{tikzpicture}[scale=.75]
+ \useasboundingbox (-1,-1) rectangle (11,11);
+ \tikzset{VertexStyle/.style = {shape = circle,
+ ball color = orange,
+ text = black,
+ inner sep = 2pt,
+ outer sep = 0pt,
+ minimum size = 24 pt}}
+ \tikzset{EdgeStyle/.style = {thick,
+ double = orange,
+ double distance = 1pt}}
+ \tikzset{LabelStyle/.style = {draw,
+ fill = yellow,
+ text = red}}
+
+ \node[VertexStyle](A){A};
+ \node[VertexStyle,right= 4cm of A](B){B};
+ \node[VertexStyle,right= 4cm of B](C){C};
+ \node[VertexStyle,above= 7 cm of B](D){D};
+ \draw[EdgeStyle](B) to node[LabelStyle]{1} (D) ;
+ \tikzset{EdgeStyle/.append style = {bend left}}
+ \draw[EdgeStyle](A) to node[LabelStyle]{2} (B);
+ \draw[EdgeStyle](B) to node[LabelStyle]{3} (A);
+ \draw[EdgeStyle](B) to node[LabelStyle]{4} (C);
+ \draw[EdgeStyle](C) to node[LabelStyle]{5} (B);
+ \draw[EdgeStyle](A) to node[LabelStyle]{6} (D);
+ \draw[EdgeStyle](D) to node[LabelStyle]{7} (C);
+\end{tikzpicture}
+\end{center}
+
+
+\endinput
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-prob.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-prob.tex
new file mode 100644
index 0000000000..e2b95aab3e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-prob.tex
@@ -0,0 +1,151 @@
+%!TEX root = /Users/ego/Boulot/TKZ/Graph/doc-fr/TKZdoc-gr-main.tex
+% $Id$
+\section{Graphes probabilistes }
+%<–––––––––––––––––––––––––– graphes probabilistes ––––––––––––––––––––––––––>
+%<–––––––––––––––––——————————————————————————————————————————————————————————>
+%<–––––––––––––––––——————————————————————————————————————————————————————————>
+\subsection{La macro \tkzcname{grProb} }
+\begin{NewMacroBox}{grProb}{\oarg{local options} \var{left} \var{right} \var{N}\var{S}\var{W}\var{E}}
+
+\begin{tabular}{lll}
+Arguments & & Définition \\
+ \midrule
+ \TAline{Vertex-left} {}{Nom du sommet à gauche}
+ \TAline{Vertex-right} {}{Nom du sommet à droite}
+ \TAline{label N} {}{Étiquette située en haut}
+ \TAline{label S} {}{Étiquette située en bas}
+ \TAline{label W} {}{Étiquette située à gauche}
+ \TAline{label E} {}{Étiquette située à droite}
+ \bottomrule
+ \end{tabular}
+
+\medskip
+\begin{tabular}{lll}
+options & défaut & définition \\
+\midrule
+\TOline{unit} {4cm} {distance entre les sommets }
+\TOline{LposA} {180} {angle si label extérieur en A }
+\TOline{LposB} {0 } {angle si label extérieur en B }
+\TOline{Ldist} {0cm} {écart entre le node et le label }
+\TOline{LoopDist} {4cm} {longueur des boucles }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{Cette macro permet de créer un graphe probabiliste d'ordre 2. }
+\end{NewMacroBox}
+
+\subsection{Utilisation de \tkzcname{grProb} }
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \useasboundingbox (-2.5,-2) rectangle (7.5,2);
+ \grProb{A}{B}{NO}{SO}{WE}{EA}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\begin{tkzexample}[latex=5cm]
+\begin{tikzpicture}[scale=.5]
+ \useasboundingbox (-2.5,-2) rectangle (5,2);
+ \grProb[unit=4]{\Rain}{\Sun}{0,4}{0,3}{0,6}{0,7}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+
+
+\subsection{\tkzcname{grProb} et le style par défaut }
+\begin{center}
+\begin{tkzexample}[latex=5cm]
+\begin{tikzpicture}[scale=.5]
+ \useasboundingbox (-2.5,-2) rectangle (5,2);
+ \grProb{A}{B}{0,8}{0,6}{0,2}{0,4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{\tkzcname{grProb} et le style « Simple »}
+\begin{center}
+\begin{tkzexample}[latex=5cm]
+\begin{tikzpicture}[scale=.5]
+\useasboundingbox (-2.5,-2) rectangle (5,2);
+\SetVertexSimple
+\grProb[Ldist=0.2cm]{Paris}{Lyon}%
+ {\scriptstyle\dfrac{2}{3}}{\scriptstyle\dfrac{3}{4}}%
+ {\scriptstyle\dfrac{1}{3}}{\scriptstyle\dfrac{1}{4}}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{Utilisation d'un style personnalisé}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \useasboundingbox (-2.5,-2.5) rectangle (7.5,2.5);
+ \tikzset{VertexStyle/.style = {shape = circle,
+ shading = ball,
+ ball color = Orange,
+ minimum size = 20pt,
+ draw,color=white}}
+ \tikzset{LabelStyle/.style = {draw,color=orange,fill=white}}
+ \tikzset{EdgeStyle/.style = {->, thick,
+ double = orange,
+ double distance = 1pt}}
+
+\grProb[Ldist=0.1cm,LposA=0,LposB=180]%
+ {Paris}{Lyon}%
+ {\scriptstyle\dfrac{2}{3}}{\scriptstyle\dfrac{3}{4}}%
+ {\scriptstyle\dfrac{1}{3}}{\scriptstyle\dfrac{1}{4}}%
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill
+\newpage
+\subsection{La macro \tkzcname{grProbThree}}
+
+\begin{NewMacroBox}{grProbThree}{\oarg{local options} \var{right} \var{up}\var{down} \var{rr/ru/rd}\var{uu/ud/ur}\var{dd/dr/du}}
+
+\begin{tabular}{llc}
+Arguments & & Définition \\
+\midrule
+\TAline{Vertex-right} {}{Nom du sommet à droite}
+\TAline{Vertex-up} {}{Nom du sommet en haut}
+\TAline{Vertex-down} {}{Nom du sommet en bas}
+\TAline{rr/ru/rd} {}{arête partant de r vers r etc\dots}
+\TAline{uu/ud/ur} {}{arête partant de u vers u etc\dots}
+\TAline{dd/dr/du} {}{arête partant de d vers d etc\dots}
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{llc}
+Options & Défaut & Définition \\
+\midrule
+\TOline{unit} {4cm} {distance entre les sommets }
+\TOline{LposA} {180} {angle si label extérieur en A }
+\TOline{LposB} {0 } {angle si label extérieur en B }
+\TOline{Ldist} {0cm} {écart entre le node et le label }
+\TOline{LoopDist} {4cm} {longueur des boucles }
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{Cette macro permet de créer un graphe probabiliste d'ordre 3. }
+\end{NewMacroBox}
+
+\subsubsection{Graphe probabiliste d'ordre 3}
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}[scale=.75]
+ \tikzset{LabelStyle/.style = {draw,fill=white}}
+ \grProbThree[unit=4]{\Rain}{\Sun}{\Cloud}
+ {0.1/0.3/0.6}{0.2/0.3/0.5}{0.25/0.35/0.4}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-style.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-style.tex
new file mode 100644
index 0000000000..80f4d12084
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-style.tex
@@ -0,0 +1,852 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-graph/doc-fr/TKZdoc-gr-main.tex
+
+% $Id$
+\section{Modification des styles des sommets}
+
+
+Différentes méthodes sont possibles mais il faut distinguer une utilisation globale ou locale.
+
+Les trois principaux styles sont \tkzname{VertexStyle}, \tkzname{EdgeStyle} et \tkzname{LabelStyle}. Le dernier est attaché aux étiquettes que peuvent avoir les arêtes.
+
+\begin{enumerate}
+\item \tkzcname{GraphInit} permet de choisir un style prédfini et il est possible de retoucher ces styles en modifiant les valeurs choisies par défaut.
+\item Les styles des sommets, des arêtes et étiquettes peuvent être personnalisés avec \tkzname{VertexStyle}, \tkzname{EdgeStyle} et \tkzname{LabelStyle}. On peut redéfinir ces styles avec \tkzcname{tikzset\{VertexStyle/.append style = \{ ... \}\}} ou bien \tkzcname{tikzset\{VertexStyle/.style = \{ ... \}\}}. La première méthode modifie un style existant alors que la seconde définit un style .
+\item On peut utiliser les anciennes macros : \tkzcname{SetVertexSimple}, \tkzcname{SetVertexNormal}, \tkzcname{SetUpVertex} et \tkzcname{SetUpEdge} .
+
+\end{enumerate}
+
+\medskip
+Il est possible de mélanger tout cela en sachant que la dernière définition d'un style l'emporte.
+
+\medskip
+\begin{NewMacroBox}{GraphInit}{\oarg{local options}}
+\begin{tabular}{llc}
+Options & Défaut & Définition \\ \midrule
+\TOline{vstyle} {Normal} {} \bottomrule
+\end{tabular}
+
+\medskip
+Les possibilités pour \tkzname{vstyle} sont :
+
+\begin{enumerate}
+ \item Empty,
+ \item Hasse,
+ \item Simple,
+ \item Classic,
+ \item Normal,
+ \item Shade,
+ \item Dijkstra
+ \item Welsh,
+ \item Art,
+ \item Shade Art.
+\end{enumerate}
+
+\emph{Il y a pour le moment 10 styles pré-définis. Il est possible de modifier les valeurs par défaut.}
+\end{NewMacroBox}
+
+
+Utilisation des styles pré-définis
+
+\begin{enumerate}
+\item GraphInit par défaut
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Normal]
+ \Vertex{A}\EA(A){B}
+ \Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Empty|}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+ \begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Empty]
+ \Vertex{A}\EA(A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Hasse|}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Hasse]
+ \Vertex{A}\EA(A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Simple|}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+ \begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Simple]
+ \Vertex{A}\EA(A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Classic|}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Classic]
+ \Vertex[Lpos=-90]{A}
+ \EA[Lpos=-90](A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+ \item GraphInit et \tkzname{|vstyle=Normal|}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Normal]
+ \Vertex{A}\EA(A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Classic]
+ \Vertex[Lpos=-90]{Paris}
+ \EA[Lpos=-90](Paris){Berlin}
+ \Edge (Paris)(Berlin)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Shade|}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Shade]
+ \Vertex{A}\EA(A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Dijkstra|}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Dijkstra]
+ \Vertex{A}\EA(A){B}\Edge[label=$7$](A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Welsh|}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Welsh]
+ \Vertex[Lpos=-90]{A}
+ \EA[Lpos=-90](A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Art|}
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Art]
+ \Vertex{A}\EA(A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\item GraphInit et \tkzname{|vstyle=Shade Art|}
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Shade Art]
+ \Vertex{A}\EA(A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+\end{enumerate}
+
+\newpage
+\tkzname{|vstyle|} est basé sur les macros suivantes qui peuvent être redéfinies.
+
+\medskip
+\begin{tabular}{lc}\toprule
+Commandes pour les styles & utilisation \\ \midrule
+|\newcommand*{\VertexInnerSep}{0pt} | &\\
+|\newcommand*{\VertexOuterSep}{0pt} | &\\
+|\newcommand*{\VertexDistance}{3cm} | &\\
+|\newcommand*{\VertexShape}{circle}| &\\
+|\newcommand*{\VertexLineWidth}{0.8pt}| &\\
+|\newcommand*{\VertexLineColor}{black}| &\\
+|\newcommand*{\VertexLightFillColor}{white}| &\\
+|\newcommand*{\VertexDarkFillColor}{black}| &\\
+|\newcommand*{\VertexTextColor}{black}| &\\
+|\newcommand*{\VertexFillColor}{black}| &\\
+|\newcommand*{\VertexBallColor}{orange}| &\\
+|\newcommand*{\VertexBigMinSize}{24pt}| &\\
+|\newcommand*{\VertexInterMinSize}{18pt}| &\\
+|\newcommand*{\VertexSmallMinSize}{12pt}| &\\
+|\newcommand*{\EdgeFillColor}{orange}| &\\
+|\newcommand*{\EdgeArtColor}{orange}| &\\
+|\newcommand*{\EdgeColor}{black}| &\\
+|\newcommand*{\EdgeDoubleDistance}{1pt}| &\\
+|\newcommand*{\EdgeLineWidth}{0.8pt}| &\\ \bottomrule
+\end{tabular}
+
+
+
+\subsection{Modification de \tkzname{vstyle=Art}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Art]
+ \renewcommand*{\VertexInnerSep}{8pt}
+ \renewcommand*{\EdgeLineWidth}{3pt}
+ \renewcommand*{\VertexBallColor}{blue!50}
+ \Vertices{circle}{A,B,C,D,E}
+ \Edges(A,B,C,D,E,A,C,E,B,D)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill
+\newpage
+
+\subsection{Modification du style \tkzname{VertexStyle} par défaut}
+
+Il est possible de redéfinir le style \tkzcname{SetVertexSimple}.
+
+Par défaut :
+
+\begin{tkzltxexample}[]
+\tikzset{VertexStyle/.style = {
+ shape = circle,
+ fill = black,
+ inner sep = 0pt,
+ outer sep = 0pt,
+ minimum size = 8pt,
+ draw]
+\end{tkzltxexample}
+
+maintenant si on utilise ceci :
+
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetVertexSimple
+ \tikzset{VertexStyle/.style = {
+ shape = rectangle,
+ fill = red,%
+ inner sep = 0pt,
+ outer sep = 0pt,
+ minimum size = 10pt,
+ draw}}
+ \SetGraphUnit{3}
+ \Vertex{A}\EA(A){B}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Modification d'un style \tkzname{VertexStyle}}
+
+C'est le style par défaut pour les sommets mais on peut le modifier. Voici quelques exemples utilisés plus tard dans ce document
+
+par défaut :
+
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+\SetGraphUnit{3}
+\tikzset{VertexStyle/.style = {%
+ shape = circle,
+ shading = ball,
+ ball color = Orange,
+ minimum size = 20pt,draw}}
+ \SetVertexNoLabel
+ \Vertex{A}\EA[unit=3](A){B}
+\end{tikzpicture}
+\end{tkzexample}
+
+ ou bien encore:
+
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+\SetGraphUnit{4}
+\tikzset{VertexStyle/.style = {%
+ shape = circle,
+ shading = ball,
+ ball color = green!40!black,%
+ minimum size = 30pt,draw}}
+\SetVertexNoLabel
+\Vertex{A}\EA[unit=3](A){B}
+\end{tikzpicture}
+\end{tkzexample}
+ \vfill
+\newpage
+
+\begin{NewMacroBox}{SetVertexSimple}{\oarg{local options}}
+
+\medskip
+\emph{Il est possible de modifier les styles prédéfinis. La macro \tkzcname{SetVertexSimple} permet d'affiner le style \og Simple \fg des sommets.}
+\begin{tabular}{llc}
+ \toprule
+options & default & definition \\ \midrule
+\TOline{Shape} {\textbackslash VertexShape }{}
+\TOline{MinSize} {\textbackslash VertexSmallMinSize}{}
+\TOline{LineWidth} {\textbackslash VertexLineWidth }{}
+\TOline{LineColor} {\textbackslash VertexLineColor }{}
+\TOline{FillColor} {\textbackslash VertexFillColor }{} \bottomrule
+\end{tabular}
+\end{NewMacroBox}
+
+\medskip
+\subsection{Autre style \tkzcname{SetVertexSimple}}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetVertexSimple[Shape=diamond,
+ FillColor=blue!50]
+ \Vertices[unit=3]{circle}{A,B,C,D,E}
+ \Edges(A,B,C,D,E,A,C,E,B,D)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{\tkzcname{SetVertexSimple}, \tkzname{inner sep} et \tkzname{outer sep}}
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+\SetGraphUnit{3}
+\SetVertexSimple[MinSize = 12pt,
+ LineWidth = 4pt,
+ LineColor = red,%
+ FillColor = blue!60]
+\tikzset{VertexStyle/.append style =
+ {inner sep = 0pt,%
+ outer sep = 2pt}}
+\Vertices{circle}{A,B,C,D,E}
+\Edges(A,B,C,D,E,A,C,E,B,D)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill
+\newpage
+\begin{NewMacroBox}{SetVertexNormal}{\oarg{local options}}
+\begin{tabular}{llc}
+Options & Défaut & Définition \\ \midrule
+\TOline{color} {\textbackslash EdgeColor } {}
+\TOline{label} {no default } {}
+\TOline{labelstyle} {no default } {}
+\TOline{labeltext} {\textbackslash LabelTextColor } {}
+\TOline{labelcolor} {\textbackslash LabelFillColor } {}
+\TOline{style} {no default } {}
+\TOline{lw} {\textbackslash EdgeLineWidth } {}
+ \bottomrule
+\end{tabular}
+
+\medskip
+\emph{Macro semblable à la précédente.}
+\end{NewMacroBox}
+
+\subsection{Autre style \tkzcname{SetVertexNormal}}
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \SetVertexNormal[Shape = rectangle,%
+ LineWidth = 2pt,%
+ FillColor = green!50]
+ \Vertices{circle}{A,B,C,D,E}
+ \Edges(A,B,C,D,E,A,C,E,B,D)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+\begin{NewMacroBox}{SetUpVertex}{\oarg{local options}}
+\begin{tabular}{llc}
+Options & Défaut & Définition \\ \midrule
+\TOline{Lpos} {-90 } {position label externe }
+\TOline{Ldist} {0cm } {distance du label }
+\TOline{style} {{} } {permet d'affiner le style }
+\TOline{NoLabel} {false} {supprime le label }
+\TOline{LabelOut}{false} {Label externe } \bottomrule
+\end{tabular}
+
+\medskip
+\emph{Cette macro permet de modifier les options précédentes. }
+\end{NewMacroBox}
+
+\subsection{\tkzcname{SetUpVertex}}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \SetUpVertex[Lpos=-60,LabelOut]
+ \Vertex{A}\EA(A){B}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{\tkzcname{SetUpVertex} et \tkzcname{tikzset}}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+\SetGraphUnit{4}
+\SetVertexLabel
+\SetUpVertex[Lpos=-60,LabelOut]
+\tikzset{VertexStyle/.append style =
+ {outer sep = .5\pgflinewidth}}
+\renewcommand*{\VertexLineWidth}{6pt}
+\Vertex{A}\EA(A){B}\Edge(A)(B)
+\end{tikzpicture}
+\end{tkzexample}
+
+\vfill\newpage
+\section{Modification des styles des arêtes}
+
+\subsection{Utilisation de l'option \tkzname{style} de la macro \tkzcname{Edge}}
+
+\subsubsection{Exemple 1}
+\begin{tkzexample}[latex=8cm, small]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \Vertex{e}
+ \EA(e){f}
+ \Edge(f)(e)
+ \Edge[style={bend left}](f)(e)
+ \Edge[style={bend right}](f)(e)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Exemple 2}
+\begin{tkzexample}[latex=8cm, small]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \Vertex{e}
+ \EA(e){f}
+ \Edge[style={->,bend left}](f)(e)
+ \Edge[style={<-,bend right}](f)(e)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Exemple 3}
+\begin{tkzexample}[latex=8cm, small]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \Vertex{a}
+ \EA(a){b}
+ \NO(b){c}
+ \SetUpEdge[style={->,bend right,ultra thick},
+ color=red]
+ \Edge(a)(b)
+ \Edge(b)(c)
+ \Edge(c)(a)
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+\subsection{Modification des styles par défaut \tkzcname{SetUpEdge}}
+
+Cette macro a une action globale et permet de rédéfinir un style.
+
+\begin{NewMacroBox}{SetUpEdge}{\oarg{local options}}
+\begin{tabular}{llc}
+Options & Défaut & Définition \\
+\midrule
+\TOline{lw} {-90 } {position label externe }
+\TOline{color}{\textbackslash EdgeLineWidth} {position label externe }
+\TOline{label} {0cm } {distance du label }
+\TOline{labelstyle} {{} } {permet d'affiner le style }
+\TOline{labeltext} {false} {supprime le label }
+\TOline{style}{false} {Label externe } \bottomrule
+\end{tabular}
+
+\medskip
+\emph{Cette macro permet de modifier les options précédentes. }
+\end{NewMacroBox}
+
+
+\subsubsection{Utilisation de \tkzcname{SetUpEdge} Exemple 1}
+\begin{center}
+{ \tikzset{VertexStyle/.style = {shape = circle,
+ draw = black,
+ fill = orange,
+ inner sep = 2pt,
+ outer sep = 0.5pt,
+ minimum size = 6mm,
+ line width = 1pt}}
+ \tikzset{every to/.style = {line width = 2pt,
+ color = orange}}
+\begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \SetGraphUnit{4} \SetUpEdge[lw=3pt]
+ \Vertex{A}
+ \EA (A){B} \NO (B){C}
+ \SO (B){D} \EA (B){E}
+ \Edges(A,B,C,A,D,E,C)
+ \end{tikzpicture}
+\end{tkzexample}
+}
+\end{center}
+
+
+\subsubsection{Utilisation de \tkzcname{SetUpEdge} Exemple 2}
+{ \tikzset{VertexStyle/.style = {
+ shape = circle,
+ draw = black,
+ fill = orange,
+ inner sep = 2pt,
+ outer sep = 1pt,
+ minimum size = 6mm,
+ line width = 2pt}}
+\begin{tkzexample}[latex=7cm]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \SetUpEdge[lw=1.5pt]
+ \Vertex{A}
+ \EA(A){B} \WE(A){C} \NO(A){D}
+ \SO(A){E} \NOEA(A){F} \NOWE(A){G}
+ \SOEA(A){H} \SOWE(A){I}
+ \foreach \v in {B,C,D,E,F,G,H,I}{%
+ \Edge(A)(\v)};
+ \end{tikzpicture}
+\end{tkzexample} }
+
+\subsection{Arête avec label \tkzname{LabelStyle}}
+
+
+\begin{tkzexample}[latex=7cm, small]
+\begin{tikzpicture}
+ \SetGraphUnit{4}
+ \tikzset{VertexStyle/.style =
+ {draw,
+ shape = circle,
+ shading = ball,
+ ball color = green!40!black,
+ minimum size = 24pt,
+ color = white}}
+ \tikzset{EdgeStyle/.style =
+ {->,bend right,
+ thick,
+ double = orange,
+ double distance = 1pt}}
+ \Vertex{a}
+ \EA(a){b}
+ \NO(b){c}
+ \tikzset{LabelStyle/.style =
+ {fill=white}}
+ \Edge[label=$1$](a)(b)
+ \Edge[label=$2$](b)(c)
+ \Edge[label=$3$](c)(a)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Utiliser un style intermédiaire}
+
+\begin{tkzltxexample}[]
+ \SetGraphUnit{4}
+ \tikzset{VertexStyle/.style = {shape = circle,
+ shading = ball,
+ ball color = Maroon!50,
+ minimum size = 24pt,
+ draw}}
+ \tikzset{TempEdgeStyle/.style = {ultra thick,
+ double = Maroon!50,
+ double distance = 2pt}}
+ \tikzset{LabelStyle/.style = {color = brown,
+ text=black}}
+\end{tkzltxexample}
+
+
+\begin{center}
+ \SetGraphUnit{4}
+ \tikzset{VertexStyle/.style = {shape = circle,
+ shading = ball,
+ ball color = Maroon!50,
+ minimum size = 24pt,
+ draw}}
+ \tikzset{TempEdgeStyle/.style = {ultra thick,
+ double = Maroon!50,
+ double distance = 2pt}}
+ \tikzset{LabelStyle/.style = {color = brown,
+ text=black}}
+\begin{tkzexample}[latex=7cm, small]
+\begin{tikzpicture}[scale=.8]
+ \Vertex{A}
+ \EA(A){B} \EA(B){C}
+ \SetGraphUnit{8}
+ \NO(B){D}
+ \tikzset{EdgeStyle/.style = {TempEdgeStyle}}
+ \Edge[label=1](B)(D)
+ \tikzset{EdgeStyle/.style = {TempEdgeStyle,bend left}}
+ \Edge[label=4](A)(B) \Edge[label=5](B)(A)
+ \Edge[label=6](B)(C) \Edge[label=7](C)(B)
+ \Edge[label=2](A)(D) \Edge[label=3](D)(C)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\vfill\newpage
+
+\section{Changement de couleurs dans les styles prédéfinis}
+Trois macros sont proposées
+
+\subsection{\tkzcname{SetGraphShadeColor}}
+\begin{NewMacroBox}{SetGraphShadeColor}{\var{ball color}\var{color}\var{double}}
+\emph{\tkzcname{SetGraphShadeColor} permet de modifier les couleurs pour le style \tkzname{Shade}.}
+\end{NewMacroBox}
+
+\subsubsection{Exemple}
+Cet exemmple utilise une macrio de \tkzname{tkz-berge}\NamePack{tkz-berge}
+\begin{center}
+\begin{tkzexample}[latex=7cm]
+ \begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetGraphUnit{4}
+ \SetVertexNoLabel
+ \SetGraphShadeColor{red!50}{black}{red}
+ \Vertices{circle}{A,B,C,D,E}
+ \Edges(A,B,C,D,E,A,C,E,B,D)
+ \end{tikzpicture}
+\end{tkzexample}
+
+\end{center}
+
+\newpage
+\subsection{\tkzcname{SetGraphArtColor}}
+\begin{NewMacroBox}{SetGraphArtColor}{\var{ball color}\var{color}}
+\emph{\tkzcname{SetGraphArtColor} permet de modifier les couleurs pour le style \tkzname{Art}.}
+\end{NewMacroBox}
+
+\subsubsection{Exemple}
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \SetVertexArt
+ \SetGraphArtColor{green!40!black}{magenta}
+ \SetGraphUnit{4}
+ \SetVertexNoLabel
+ \Vertices{circle}{A,B,C,D,E}
+ \Edges(A,B,C,D,E,A,C,E,B,D)
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+
+\vfill\newpage
+\subsection{\tkzcname{SetGraphColor}}
+\begin{NewMacroBox}{SetGraphColor}{\var{fill color}\var{color}}
+\emph{\tkzcname{SetGraphColor} permet de modifier les couleurs pour le style \tkzname{Normal}.}
+\end{NewMacroBox}
+
+
+\subsubsection{Exemple avec \tkzcname{SetGraphColor}}
+\begin{center}
+ \begin{tkzexample}[vbox]
+ \begin{tikzpicture}
+ \SetGraphColor{yellow}{blue}{maagenta}
+ \SetGraphUnit{4}
+ \SetVertexNoLabel
+ \Vertices{circle}{A,B,C,D,E}
+ \Edges(A,B,C,D,E,A,C,E,B,D)
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+
+
+\newpage
+
+\subsection{Variation I autour des styles}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetVertexNormal[Shape = circle,
+ FillColor = orange,
+ LineWidth = 2pt]
+ \SetUpEdge[lw = 1.5pt,
+ color = black,
+ labelcolor = white,
+ labeltext = red,
+ labelstyle = {sloped,draw,text=blue}]
+ \Vertex[x=0 ,y=0]{K}
+ \Vertex[x=0 ,y=2]{F}
+ \Vertex[x=-1,y=4]{D}
+ \Vertex[x=3 ,y=7]{H}
+ \Vertex[x=8 ,y=5]{B}
+ \Vertex[x=9 ,y=2]{N}
+ \Vertex[x=5 ,y=0]{M}
+ \Vertex[x=3 ,y=1]{S}
+ \tikzset{EdgeStyle/.append style = {bend left}}
+ \Edge[label = $120$](K)(F)
+ \Edge[label = $650$](H)(S)
+ \Edge[label = $780$](H)(M)
+ \Edge[label = $490$](D)(B)
+ \Edge[label = $600$](D)(M)
+ \Edge[label = $580$](B)(M)
+ \Edge[label = $600$](H)(N)
+ \Edge[label = $490$](F)(H)
+ \tikzset{EdgeStyle/.append style = {bend right}}
+ \Edge[label = $630$](S)(B)
+ \Edge[label = $210$](S)(N)
+ \Edge[label = $230$](S)(M)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsection{Variation II autour des styles}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetVertexNormal[Shape = circle,
+ FillColor = orange,
+ LineWidth = 2pt]
+ \SetUpEdge[lw = 1.5pt,
+ color = black,
+ labelcolor = white,
+ labeltext = red,
+ labelstyle = {sloped,draw,text=blue}]
+ \tikzstyle{EdgeStyle}=[bend left]
+ \Vertex[x=0, y=0]{G}
+ \Vertex[x=0, y=3]{A}
+ \Vertex[x=3, y=5]{P}
+ \Vertex[x=4, y=2]{C}
+ \Vertex[x=8, y=3]{Q}
+ \Vertex[x=7, y=0]{E}
+ \Vertex[x=3, y=-1]{R}
+ \Edges(G,A,P,Q,E) \Edges(C,A,Q) \Edges(C,R,G) \Edges(P,E,A)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{Variation III autour des styles}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Shade]
+ \SetGraphUnit{3}
+ \Vertex{e}
+ \NOEA(e){f}\SOEA(e){d}
+ \SOEA(f){h}\NOWE(f){g}
+ \WE(g){c} \SOWE(e){a} \SOWE(c){b}
+ \tikzstyle{LabelStyle}=[fill=white]
+ \tikzstyle{EdgeStyle}=[color=red]
+ \Edge[label=$3$](a)(b)
+ \Edge[label=$11$](a)(c)
+ \Edge[label=$6$](a)(e)
+ \Edge[label=$17$](a)(d)
+ \Edge[style={pos=.25},label=$20$](a)(g)
+ \Edge[label=$5$](c)(b)
+ \Edge[label=$6$](c)(e)
+ \Edge[label=$7$](c)(g)
+ \Edge[label=$7$](f)(e)
+ \Edge[label=$3$](d)(e)
+ \Edge[label=$9$](d)(h)
+ \Edge[label=$6$](g)(e)
+ \Edge[style={bend left,out=45,in=135},label=$11$](g)(h)
+ \Edge[label=$4$](f)(h)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{Variation IV autour des styles}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \SetUpEdge[lw = 1.5pt,
+ color = orange,
+ labelcolor = gray!30,
+ labelstyle = {draw}]
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Normal]
+ \Vertex{P}
+ \NOEA(P){B}
+ \SOEA(P){M}
+ \NOEA(B){D}
+ \SOEA(B){C}
+ \SOEA(C){L}
+ \tikzset{EdgeStyle/.style={->}}
+ \Edge[label=$3$](C)(B)
+ \Edge[label=$10$](D)(B)
+ \Edge[label=$10$](L)(M)
+ \Edge[label=$10$](B)(P)
+ \tikzset{EdgeStyle/.style={<->}}
+ \Edge[label=$4$](P)(M)
+ \Edge[label=$9$](C)(M)
+ \Edge[label=$4$](C)(L)
+ \Edge[label=$5$](C)(D)
+ \Edge[label=$10$](B)(M)
+ \tikzset{EdgeStyle/.style={<->,relative=false,in=0,out=60}}
+ \Edge[label=$11$](L)(D)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{Variation V autour des styles}
+
+\begin{center}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+
+ \SetUpEdge[lw = 1.5pt,
+ color = orange,
+ labelcolor = white]
+ \GraphInit[vstyle=Normal] \SetGraphUnit{3}
+ \tikzset{VertexStyle/.append style={fill = red!50}}
+ \Vertex{P}
+ \NOEA(P){B} \SOEA(P){M} \NOEA(B){D}
+ \SOEA(B){C} \SOEA(C){L}
+ \tikzset{EdgeStyle/.style={->}}
+ \Edge[label=$3$](C)(B)
+ \Edge[label=$10$](D)(B)
+ \Edge[label=$10$](L)(M)
+ \Edge[label=$10$](B)(P)
+ \tikzset{EdgeStyle/.style={<->}}
+ \Edge[label=$4$](P)(M)
+ \Edge[label=$9$](C)(M)
+ \Edge[label=$4$](C)(L)
+ \Edge[label=$5$](C)(D)
+ \Edge[label=$10$](B)(M)
+ \tikzset{EdgeStyle/.style={<->,relative=false,in=0,out=60}}
+ \Edge[label=$11$](L)(D)
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-vertex.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-vertex.tex
new file mode 100644
index 0000000000..96b316b160
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-vertex.tex
@@ -0,0 +1,251 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-graph/doc-fr/TKZdoc-gr-main.tex
+
+% $Id$
+\section{Vertex}
+% The ( < name >) is a name for later reference and it is optional. You may also add the option name=< name >
+% to the < option > list; it has the same effect.
+%<------------------------------------------------------------------------–>
+C'est bien évidemment la macro essentielle qui permet de placer des sommets. Les sommets peuvent être placés avec un système de coordonnées rectangulaires ou bien polaires ou encore relativement les uns par rapport aux autres. Quelques dispositions particulières sont également possibles.
+
+\subsection{\tkzcname{Vertex}}
+\begin{NewMacroBox}{Vertex}{\oarg{local options}\var{Name}}
+Un sommet se caractérise par~:
+\begin{itemize}
+\item sa référence,
+\item sa position,
+\item son label,
+\item et le style.
+\end{itemize}
+
+\medskip
+Un argument non vide \IargName{Vertex}{Name} est obligatoire. Cet argument définit le nom de référence du node. C'est celui que l'on doit utiliser dans toute création de sommet (\tkzcname{Vertex}) Il ne faut pas le confondre avec le \tkzname{label} (étiquette) qui sera utilisé pour l'affichage.
+On peut vouloir afficher $M_1$ alors que le nom lui sera $M1$.
+
+\medskip
+Des options sont utilisées pour définir les quatre premières caractéristiques. Les styles texte et graphique sont traités séparément.
+
+\medskip
+\begin{tabular}{llc}
+\midrule
+Options & Défaut & Définition \\
+\midrule
+\TOline{x} {\{\}}{abscisse}
+\TOline{y} {\{\}}{ordonnée}
+\TOline{a} {\{\}}{angle}
+\TOline{d} {\{\}}{distance}
+\TOline{Node} {false}{utilisation d'une référence déjà définie}
+\TOline{position} {\{\}}{style qui permet un positionnement relatif }
+\TOline{dir} {\textbackslash EA}{direction pour un positionnement relatif }
+\midrule
+\TOline{empty} {false}{booléen permettant de ne pas afficher le sommet}
+\midrule
+\TOline{NoLabel} {false}{booléen supprime le label}
+\TOline{LabelOut}{false}{booléen Label extérieur au node}
+\TOline{L} {\{\}}{Le label}
+\TOline{Math} {false}{booléen qui affiche le label en mode math}
+\TOline{Ldist} {0cm }{distance du label au node}
+\TOline{Lpos} {0 }{position du label par rapport au node}
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{Cette macro permet de définir un sommet qui a un nom \tkzname{name} et un label.\\
+Si \tkzname{L}$=${} alors \tkzname{label} = \tkzname{Name} sinon \tkzname{label} = \tkzname{L}.}
+\end{NewMacroBox}
+
+\subsubsection{Utilisation de coordonnées cartésiennes}
+\tkzcname{Vertex[x=\meta{number},y=\meta{number}]\var{name}}. Coordonnées cartésiennes $x$ et $y$.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Normal]
+ \draw[help lines] (0,0) grid (2,2);
+ \Vertex{A} % par défaut x = 0 et y = 0
+ \Vertex[x=2 , y=0]{B} \Vertex[x=2 , y=2]{C}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Utilisation de coordonnées polaires}
+
+ \tkzcname{Vertex[a=\meta{number},d=\meta{number}]\var{vertex}} Les coordonnées polaires peuvent être aussi utilisées. J'ai utilisé une grille d'aide afin de constater le placement du sommet.
+
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Normal]
+ \draw[help lines] (-2,0) grid (2,2);
+ \draw[red] (2,0) arc (0:180: 2 cm);
+ \Vertex{A}
+ \Vertex[a=45 , d=2 cm]{B}
+ \Vertex[a=135 , d=2 cm]{C}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+
+
+\subsubsection{Option \tkzname{Node} : utilisation d'une position référencée}
+Cette option permet de placer un sommet sur un Node déjà défini ou bien
+ un objet du type \og~coordinate~\fg.
+ % pb taile du node pour M ??
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Normal]
+ \draw[help lines] (0,0) grid (2,2);
+ \Vertex{A} \Vertex[x=2 , y=2]{B}
+ %\tkzActivOff nécessaire avec frenchb et babel
+ \tkzActivOff
+ \coordinate (M) at ($ (A)!.5!(B) $){};
+ \tkzActivOn
+ \Vertex[Node]{M}
+\end{tikzpicture}
+\end{tkzexample}
+
+\vfill
+%<------------------------------------------------------------------------–>
+% ShortCuts
+%<------------------------------------------------------------------------–>
+
+\newpage
+\subsection{Raccourcis pour placement relatif}
+
+Pour effectuer des placements relatifs, il est nécessaire de définir une distance unité entre deux sommets. La macro suivante permet de définir cette distance.
+
+\begin{NewMacroBox}{SetGraphUnit}{\var{nombre}}
+\emph{Cette macro permet de définir la distance entre deux sommets. La distance se réfère aux centres de ces sommets et le nombre est exprimé en \tkzname{cm}. Par défaut, l'unité est $1$ cm.}
+
+utilisation :\tkzcname{SetGraphUnit\{2\}}
+\end{NewMacroBox}
+
+\begin{NewMacroBox}{ShortCut}{\oarg{local options}\varp{vertex A}\var{vertex B}}
+Ces raccourcis permettent de créer un \tkzname{vertex B} relativement à un
+\tkzname{vertex A}. La distance entre les deux sommets est déterminé par la valeur de \tkzname{unit} et par les unités de \TIKZ. Horizontalement et verticalement la distance est définie par \tkzname{unit}$\times$\tkzname{x} et
+\tkzname{unit}$\times$\tkzname{y}. La valeur de \tkzname{unit} peut être redéfinie par la macro \tkzcname{SetGraphUnit} ou bien avec l'option \tkzname{unit}. Avec l'option la définition est locale; avec la macro, la définition est globale mais elle peut être locale si elle est intervient dans un goupe \TEX ou un environnement \tkzname{scope}.
+Les raccourcis sont :
+
+\medskip
+\begin{tabular}{lll}
+\hline
+Raccourcis & & Définition \\
+\midrule
+\TMline{EA} {} {à l'est }
+\TMline{WE} {} {à l'ouest}
+\TMline{NO} {} {au nord}
+\TMline{SO} {} {au sud}
+\TMline{NOEA} {} {au nord-est soit "nord" puis "est"}
+\TMline{NOWE} {} {au nord-ouest soit "nord" puis "ouest" }
+\TMline{SOEA} {} {au sud-est soit "sud" puis "est"}
+\TMline{SOWE} {} {au sud-ouest soit "sud" puis "ouest"}
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{\tkzcname{NOEA} est un raccourci pour \tkzcname{NO}\tkzcname{EA}. par défaut, la distance entre les sommets avec ce raccourci est $\sqrt{2}\times$ \tkzname{unit}=$\sqrt{2}$. Les options sont celles de la macro \tkzcname{Vertex}. }
+\end{NewMacroBox}
+
+Nous allons d'abord modifier la distance entre deux noeuds d'une façon générale avec \tkzcname{SetGraphUnit\{2\}} sinon par défaut \tkzname{unit =1}.
+
+\subsubsection{Utilisation des raccourcis avec les valeurs par défaut}
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \draw[help lines] (-1,-1) grid (1,1);
+ \GraphInit[vstyle=Normal]
+ \Vertex{A}
+ \EA(A){B} \WE(A){C} \NO(A){D} \SO(A){E}
+ \NOEA(A){F} \NOWE(A){G} \SOEA(A){H} \SOWE(A){I}
+ \foreach \v in {B,C,D,E,F,G,H,I}{\Edge(A)(\v)};
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Modification de l'unité avec \tkzcname{SetGraphUnit }}
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \draw[help lines] (-2,-2) grid (2,2);
+ \SetGraphUnit{2}
+ \GraphInit[vstyle=Normal]
+ \Vertex{A}
+ \EA(A){B} \WE(A){C} \NO(A){D} \SO(A){E}
+ \NOEA(A){F} \NOWE(A){G} \SOEA(A){H} \SOWE(A){I}
+ \foreach \v in {B,C,D,E,F,G,H,I}{\Edge(A)(\v)};
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Modification des unités de \TIKZ\ : \tkzname{x=2 cm,y=1 cm} }
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[x=2 cm,y=1 cm]
+ \draw[help lines] (-1,-1) grid (1,1);
+ \GraphInit[vstyle=Normal]
+ \Vertex{A}
+ \EA(A){B} \WE(A){C} \NO(A){D} \SO(A){E}
+ \NOEA(A){F} \NOWE(A){G} \SOEA(A){H} \SOWE(A){I}
+ \foreach \v in {B,C,D,E,F,G,H,I}{\Edge(A)(\v)};
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Exemple classique}
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \draw[help lines] (-2,-2) grid (4,2);
+ \SetGraphUnit{2}
+ \coordinate (O) at (0,0);
+ \NOEA(O){A} \NOWE(O){B} \SOEA(O){D}
+ \SOWE(O){C} \NOEA(D){E}
+ \Edges(B,C,D,A,E,D,B,A,C)
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Autre exemple classique}
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \draw[help lines] (0,-2) grid (4,2);
+ \SetGraphUnit{2}
+ \GraphInit[vstyle=Normal]
+ \Vertex{A}
+ \EA(A){B} \NO(B){C} \SO(B){D} \EA(B){E}
+ \Edges(A,B,C,A,D,E,C)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Modication locale de \tkzname{unit} avec l'option}
+Le plus simple :
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \draw[help lines] (0,0) grid (2,3);
+ \SetGraphUnit{2}
+ \Vertex{A} \EA(A){B}
+ \NO[unit=3](B){C}
+ \NO(A){D}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Modication locale de \tkzname{unit} avec l'environnement \tkzname{scope}}
+\begin{tkzexample}[latex=7cm,small]
+ \begin{tikzpicture}
+ \draw[help lines] (0,0) grid (2,3);
+ \SetGraphUnit{2}
+ \Vertex{A} \EA(A){B}
+ \begin{scope}
+ \SetGraphUnit{3} \NO(B){C}
+ \end{scope}
+ \NO(A){D}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Modication locale de \tkzname{unit} avec un groupe \TEX}
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \draw[help lines] (0,0) grid (2,3);
+ \SetGraphUnit{2}
+ \Vertex{A} \EA(A){B}
+ {\SetGraphUnit{3} \NO(B){C}}
+ \NO(A){D}
+\end{tikzpicture}
+\end{tkzexample}
+
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-vertices.tex b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-vertices.tex
new file mode 100644
index 0000000000..ccffe49142
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/TKZdoc-gr-vertices.tex
@@ -0,0 +1,183 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-graph/doc-fr/TKZdoc-gr-main.tex
+% $Id$
+
+%<--------------------------------------------------------------------------->
+% Vertices
+%<--------------------------------------------------------------------------->
+
+\section{Placement de sommets sur une forme géométrique}
+Il s'agit ici de placer un groupe de sommets suivant une direction donnée ou bien encore suivant une forme prédéfinie. Les sommets sont placés avec comme support une figure géométrique simple. La macro principale utilise une direction définie à l'aide de l'option dir, la version étoilée une forme particulière triangulaire, carrée etc...
+
+
+\begin{NewMacroBox}{Vertices}{\oarg{local options}\var{type}\var{List of vertices}}
+\emph{Il y a donc plusieurs types de formes géométriques, droite, triangle, carrés et cercles. La macro \tkzcname{SetGraphUnit} permet de modifier les longueurs. Pour les sommets alignés, ceux-ci sont placés suivant une direction donnée par |EA|, |WE|, |NO|, |SO|, |NOEA|, |NOWE|, |SOEA|, |SOWE|.}
+
+\medskip
+\begin{tabular}{llc}
+ \toprule
+Premier Argument & & Définition \\
+\midrule
+\TAline{line } {} {Sommets alignés, une option détermine la direction}
+\TAline{tr1 } {} {première forme de triangle}
+\TAline{tr2 } {} {deuxième forme de triangle}
+\TAline{tr3 } {} {troisième forme de triangle}
+\TAline{tr4 } {} {quatrième forme de triangle}
+\TAline{square} {} {quatre sommets sur un carré}
+\TAline{circle} {} {sommets sur une cercle}
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{Le second argument est une liste de noms pour les sommets.}
+
+\medskip
+\begin{tabular}{llc}
+\midrule
+Options & Défaut & Définition \\
+\midrule
+\TOline{dir} {EA} {permet de placer plusieurs sommets alignés}
+\bottomrule
+\end{tabular}
+
+\medskip
+\emph{Les options sont celles d'un sommet (Vertex).}
+\end{NewMacroBox}
+
+
+
+\subsection{\tkzcname{Vertices} à partir d'un sommet défini par des coordonnnées}
+
+
+\begin{center}
+\begin{tkzexample}[latex=7cm, ,small]
+\begin{tikzpicture}
+ \SetGraphUnit{2}
+ \draw[help lines] (0,0) grid (5,2);
+ \Vertices[x=1,y=2]{line}{A,B,C}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{\tkzcname{Vertices} à partir d'une position donnée.}
+
+\begin{center}
+\begin{tkzexample}[latex=7cm, ,small]
+\begin{tikzpicture}[rotate=45]
+ \SetGraphUnit{2}
+ \draw[help lines] (0,0) grid (5,2);
+ \coordinate (A) at (1,1);
+ \Vertices[Node]{line}{A,B,C}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+\subsection{Exemples avec une direction }
+ Il s'agit ici de placer une liste de sommets suivant une direction donnée, cette direction est définie à l'aide de l'option \tkzname{dir}.
+
+
+\begin{center}
+\begin{tkzexample}[latex=7cm, ,small]
+\begin{tikzpicture}
+ \GraphInit[vstyle=Art]
+ \Vertices[dir=\NOEA]{line}{A,B,C,D}
+ \Vertices[dir=\NOWE]{line}{A,E,F,G}
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsection{Placement sur un triangle }
+
+Il y a différentes possibilités avec une forme triangulaire, mais les triangles sont isocèles rectangles. Voici dans l'ordre les formes \tkzname{tr1}, \tkzname{tr2} , \tkzname{tr3} et \tkzname{tr4}
+
+
+\begin{tkzexample}[latex=8cm,small]
+\begin{tikzpicture}\SetGraphUnit{2}
+ \Vertices{tr1}{A,B,C}
+\end{tikzpicture}\hspace*{2cm}
+\begin{tikzpicture}\SetGraphUnit{2}
+ \Vertices{tr2}{A,B,C}
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{tkzexample}[latex=8cm,small]
+\begin{tikzpicture}\SetGraphUnit{2}
+ \Vertices{tr3}{A,B,C}
+\end{tikzpicture}\hspace*{2cm}
+\begin{tikzpicture}\SetGraphUnit{2}
+ \Vertices{tr4}{A,B,C}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Utilisation d'un carré}
+
+
+Deux autres possibilités de placer un node. La première utilise un node obtenu à l'aide d'une intersection (voir le pgfmanual). Dans la première, j'ai redéfini la distance unité entre deux sommets à l'aide de \tkzcname{SetGraphUnit}.
+
+\begin{center}
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \SetGraphUnit{3}
+ \GraphInit[vstyle=Shade]
+ \Vertices{square}{A,B,C,D}
+ \coordinate (E) at (intersection of A--C and B--D);
+ \Vertex[Node]{E}% voir option node
+\end{tikzpicture}
+\end{tkzexample}
+\end{center}
+
+
+\subsection{Utilisation d'un cercle }
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \SetGraphUnit{2}
+ \Vertices{circle}{A,B,C,D}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Utilisation d'un cercle et positionnement des labels }
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture} \SetGraphUnit{2}
+ \GraphInit[vstyle=Classic]
+ \Vertices{circle}{A,B,C,D,E,F}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+\subsection{Rotation et labels externes }
+
+|Lpos| = \tkzname{angle de la rotation}. Cela permet de faire une rotation du label autour du centre de chaque sommet et de suivre la rotation du graphe. Il suffit pour comprendre cette option de compiler l'exemple en l'omettant.
+
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[rotate=90]
+ \GraphInit[vstyle=Classic]
+ \Vertices[Lpos=90,unit=2]{circle}{A,B,C,D,E,F}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Placement sur un cercle }
+
+Avec des labels externes, il faut procéder avec précaution.
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}[scale=.5]
+ \SetGraphUnit{4}
+ \GraphInit[vstyle=Classic]
+ \begin{scope}[rotate=45]
+ \Vertices[Lpos=45]{circle}{C,E,A,B}
+ \end{scope}
+ \NOEA[Lpos=90,unit=2.828](E){D}
+ \Edges(A,B,E,D,C,E,A,C,B)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/graph.ist b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/graph.ist
new file mode 100644
index 0000000000..4c87f0fe9c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/latex/graph.ist
@@ -0,0 +1,6 @@
+heading_prefix "{\\bfseries\\hfil "
+heading_suffix "\\hfil}\\nopagebreak\n"
+headings_flag 1
+delim_0 "\\dotfill"
+delim_1 "\\dotfill"
+delim_2 "\\dotfill" \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/tkz-graph-screen.pdf b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/tkz-graph-screen.pdf
new file mode 100644
index 0000000000..0fef4a6150
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/doc/tkz-graph-screen.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/latex/tkz-graph.sty b/obsolete/macros/latex/contrib/tkz/tkz-graph/latex/tkz-graph.sty
new file mode 100644
index 0000000000..645a947aaa
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/latex/tkz-graph.sty
@@ -0,0 +1,1028 @@
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % tk-graphes.sty encodage : utf8 %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % Créé par Alain Matthes le 22-02-2011. %
+ % contribution : Rafael Villarroel (RV) %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%<--------------------------------------------------------------------------->
+% Objet : Création de graphes
+%<--------------------------------------------------------------------------->
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{tkz-graph}[2018/09/19 ctan v 1.00 d base for graphs]
+%<--------------------------------------------------------------------------->
+\ifx\e@alloc\@undefined
+ \RequirePackage{etex}
+\fi
+\RequirePackage{ifthen}
+\RequirePackage{xkeyval}[2005/11/25]
+\RequirePackage{tikz}
+\usetikzlibrary{arrows}
+%<--------------------------------------------------------------------------->
+% todo remove some counters
+\newcounter{tkz@gr@a}
+\newcounter{tkz@gr@b}
+\newcounter{tkz@gr@c}
+\newcounter{tkz@gr@e}
+\newcounter{tkz@gr@d}
+\newcounter{tkz@gr@p}
+\newcounter{tkz@gr@i}
+\newcounter{tkz@gr@n}
+\newcounter{tkz@gr@ta}
+\newcounter{tkz@gr@tb}
+%<--------------------------------------------------------------------------->
+% Init vertex
+%<--------------------------------------------------------------------------->
+\global\def\tkzActivOff{%
+\edef\tkzTwoPtCode{\the\catcode`\:}
+\edef\tkzPtExCode{\the\catcode`\!}
+\edef\tkzPtVirCode{\the\catcode`\;}
+\catcode`\:=12 \catcode`\!=12 \catcode`\;=12}%
+\global\def\tkzActivOn{%
+\catcode`\:=\tkzTwoPtCode\relax
+\catcode`\!=\tkzPtExCode\relax
+\catcode`\;=\tkzPtVirCode\relax
+}%
+%<--------------------------------------------------------------------------->
+\def\tkz@gr@background@color{white}
+\def\tkz@gr@text@color{black}
+\global\edef\tkz@suc@bkc{\tkz@gr@background@color}
+\global\edef\tkz@suc@txt{\tkz@gr@text@color}
+\pgfkeys{
+/tkzsupcol/.cd,
+ background/.code = {\global\edef\tkz@suc@bkc{#1}},
+ text/.code = {\global\edef\tkz@suc@txt{#1}},
+}
+\def\tkzSetUpColors{\pgfutil@ifnextchar[{\tkz@SetUpColors}{\tkz@SetUpColors[]}}
+\def\tkz@SetUpColors[#1]{%
+\begingroup
+\pgfkeys{%
+tkzsupcol/.cd,
+ background = \tkz@gr@background@color,
+ text = \tkz@gr@text@color
+ }
+\pgfqkeys{/tkzsupcol}{#1}
+\pagecolor{\tkz@suc@bkc}
+\color{\tkz@suc@txt}
+\endgroup
+}
+
+\newcommand*{\GraphUnit}{1}
+\newcommand*{\VertexInnerSep}{2pt}
+\newcommand*{\VertexOuterSep}{0pt}
+\newcommand*{\VertexDistance}{3cm}
+\newcommand*{\VertexShape}{circle}
+\newcommand*{\VertexLineWidth}{0.5pt}
+\newcommand*{\VertexLineColor}{\tkz@suc@txt}
+\newcommand*{\VertexLightFillColor}{\tkz@suc@bkc}
+\newcommand*{\VertexDarkFillColor}{\tkz@suc@txt}
+\newcommand*{\VertexTextColor}{\tkz@suc@txt}
+\newcommand*{\VertexFillColor}{\tkz@suc@txt}
+\newcommand*{\VertexBallColor}{orange}
+\newcommand*{\VertexBigMinSize}{24pt}
+\newcommand*{\VertexInterMinSize}{18pt}
+\newcommand*{\VertexSmallMinSize}{12pt}
+\newcommand*{\EdgeFillColor}{orange}
+\newcommand*{\EdgeArtColor}{orange}
+\newcommand*{\EdgeColor}{\tkz@suc@txt}
+\newcommand*{\EdgeDoubleDistance}{1pt}
+\newcommand*{\EdgeLineWidth}{0.8pt}
+\newcommand*{\LabelTextColor}{\tkz@suc@txt}
+\newcommand*{\LabelFillColor}{\tkz@suc@bkc}
+
+\tikzset{pre/.style={<-,shorten <=1pt,>=stealth',semithick}}
+\tikzset{post/.style={->,shorten <=1pt,>=stealth',semithick}}
+%<--------------------------------------------------------------------------->
+% Simple Vertex
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {SVS} {Shape}{}
+\define@cmdkey [GR] {SVS} {MinSize}{}
+\define@cmdkey [GR] {SVS} {LineWidth}{}
+\define@cmdkey [GR] {SVS} {LineColor}{}
+\define@cmdkey [GR] {SVS} {FillColor}{}
+\define@cmdkey [GR] {SVS} {InnerSep}{}
+\define@cmdkey [GR] {SVS} {OuterSep}{}
+\presetkeys [GR] {SVS} {Shape = \VertexShape,
+ MinSize = \VertexSmallMinSize,
+ LineWidth = \VertexLineWidth,
+ LineColor = \VertexLineColor,
+ InnerSep = \VertexInnerSep,
+ OuterSep = \VertexOuterSep,
+ FillColor = \VertexFillColor}{}
+\newcommand*{\SetVertexSimple}[1][]{\GR@SetVertexSimple[#1]}%
+\def\GR@SetVertexSimple[#1]{%
+\setkeys[GR]{SVS}{#1}%
+\presetkeys[GR]{vertex}{NoLabel = true}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \cmdGR@SVS@Shape,
+ color = \cmdGR@SVS@LineColor,
+ fill = \cmdGR@SVS@FillColor,
+ inner sep = \cmdGR@SVS@InnerSep,
+ outer sep = \cmdGR@SVS@OuterSep,
+ minimum size = \cmdGR@SVS@MinSize,
+ line width = \cmdGR@SVS@LineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor}}
+\tikzset{LabelStyle/.style={}}}
+%<--------------------------------------------------------------------------->
+% Shade Vertex
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {shade} {Shape}{}
+\define@cmdkey [GR] {shade} {MinSize}{}
+\define@cmdkey [GR] {shade} {LineWidth}{}
+\define@cmdkey [GR] {shade} {LineColor}{}
+\define@cmdkey [GR] {shade} {BallColor}{}
+\define@cmdkey [GR] {shade} {InnerSep}{}
+\define@cmdkey [GR] {shade} {OuterSep}{}
+\presetkeys [GR] {shade} {Shape = \VertexShape,
+ MinSize = \VertexBigMinSize,
+ LineWidth = \VertexLineWidth,
+ LineColor = \VertexLineColor,
+ InnerSep = \VertexInnerSep,
+ OuterSep = \VertexOuterSep,
+ BallColor = \VertexBallColor}{}
+\newcommand*{\SetVertexShade}[1][]{\GR@SetVertexShade[#1]}%
+\def\GR@SetVertexShade[#1]{%
+\setkeys[GR]{shade}{#1}%
+\presetkeys[GR]{vertex}{NoLabel = false}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \cmdGR@shade@Shape,
+ ball color = \cmdGR@shade@BallColor,
+ inner sep = \cmdGR@shade@InnerSep,
+ outer sep = \cmdGR@shade@OuterSep,
+ minimum size = \cmdGR@shade@MinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor,% color outside
+ double = \EdgeFillColor,% inside
+ double distance = \EdgeDoubleDistance}}%
+\tikzset{LabelStyle/.style={}}}
+%<--------------------------------------------------------------------------->
+% Art Vertex
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {art} {Shape}{}
+\define@cmdkey [GR] {art} {MinSize}{}
+\define@cmdkey [GR] {art} {LineWidth}{}
+\define@cmdkey [GR] {art} {LineColor}{}
+\define@cmdkey [GR] {art} {BallColor}{}
+\define@cmdkey [GR] {art} {InnerSep}{}
+\define@cmdkey [GR] {art} {OuterSep}{}
+\presetkeys [GR] {art} {Shape = \VertexShape,
+ MinSize = \VertexSmallMinSize,
+ LineWidth = \VertexLineWidth,
+ LineColor = \VertexLineColor,
+ InnerSep = \VertexInnerSep,
+ OuterSep = \VertexOuterSep,
+ BallColor = \VertexBallColor}{}
+\newcommand*{\SetVertexArt}[1][]{\GR@SetVertexArt[#1]}%
+\def\GR@SetVertexArt[#1]{%
+\setkeys[GR]{art}{#1}%
+\presetkeys[GR]{vertex}{NoLabel = true}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \cmdGR@art@Shape,
+ ball color = \cmdGR@art@BallColor,
+ inner sep = \cmdGR@art@InnerSep,
+ outer sep = \cmdGR@art@OuterSep,
+ minimum size = \cmdGR@art@MinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeArtColor}}
+\tikzset{LabelStyle/.style = {}}}
+%<--------------------------------------------------------------------------->
+% Normal Vertex
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {SVN} {Shape}{}
+\define@cmdkey [GR] {SVN} {MinSize}{}
+\define@cmdkey [GR] {SVN} {LineWidth}{}
+\define@cmdkey [GR] {SVN} {LineColor}{}
+\define@cmdkey [GR] {SVN} {FillColor}{}
+\define@cmdkey [GR] {SVN} {TextColor}{}
+\define@cmdkey [GR] {SVN} {InnerSep}{}
+\define@cmdkey [GR] {SVN} {OuterSep}{}
+\presetkeys [GR] {SVN} {Shape = \VertexShape,
+ MinSize = \VertexInterMinSize,
+ LineWidth = \VertexLineWidth,
+ LineColor = \VertexLineColor,
+ FillColor = \VertexLightFillColor,
+ InnerSep = \VertexInnerSep,
+ OuterSep = \VertexOuterSep,
+ TextColor = \VertexTextColor}{}
+\newcommand*{\SetVertexNormal}[1][]{\GR@SetVertexNormal[#1]}%
+\def\GR@SetVertexNormal[#1]{%
+\setkeys[GR]{SVN}{#1}%
+\tikzset{VertexStyle/.style = {shape = \cmdGR@SVN@Shape,
+ minimum size = \cmdGR@SVN@MinSize,
+ line width = \cmdGR@SVN@LineWidth,
+ color = \cmdGR@SVN@LineColor,
+ fill = \cmdGR@SVN@FillColor,
+ text = \cmdGR@SVN@TextColor,
+ inner sep = \cmdGR@SVN@InnerSep,
+ outer sep = \cmdGR@SVN@OuterSep,
+ draw}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor}}
+\tikzset{LabelStyle/.style={}}}
+\SetVertexNormal% default
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {init} {unit}{}
+\define@choicekey*[GR]{init}{vstyle}[\val\nr]{Empty,%
+ Hasse,%
+ Simple,%
+ Classic,%
+ Normal,%
+ Shade,%
+ Dijkstra,%
+ Welsh,%
+ Art,%
+ Shade Art}{%
+\edef\GR@init@vstyle{\nr}
+\ifcase\nr\relax
+% Empty
+\presetkeys [GR] {vertex} {LabelOut = false}{}%
+\tikzset{VertexStyle/.style = {shape = \VertexShape,
+ color = \VertexLineColor,
+ fill = \VertexLightFillColor,
+ inner sep = \VertexInnerSep,
+ outer sep = 0.5\pgflinewidth,
+ text = \VertexTextColor,
+ minimum size = \VertexSmallMinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,\EdgeColor}}
+\tikzset{LabelStyle/.style={}}
+\or
+% Hasse
+\presetkeys [GR] {vertex} {NoLabel = true}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \VertexShape,
+ color = \VertexLineColor,
+ fill = \VertexLightFillColor,
+ inner sep = \VertexInnerSep,
+ outer sep = 0.5\pgflinewidth,
+ text = \VertexTextColor,
+ minimum size = \VertexSmallMinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor}}
+\tikzset{LabelStyle/.style={}}
+\or
+% Simple
+\presetkeys [GR] {vertex} {NoLabel = true}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \VertexShape,
+ color = \VertexLineColor,
+ fill = \VertexDarkFillColor,
+ inner sep = \VertexInnerSep,
+ outer sep = 0.5\pgflinewidth,
+ text = \VertexTextColor,
+ minimum size = \VertexSmallMinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor}}
+\tikzset{LabelStyle/.style={}}
+% Classic
+\or
+\presetkeys [GR] {vertex} {LabelOut = true}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \VertexShape,
+ color = \VertexLineColor,
+ fill = \VertexDarkFillColor,
+ inner sep = \VertexInnerSep,
+ outer sep = 0.5\pgflinewidth,
+ text = \VertexTextColor,
+ minimum size = \VertexSmallMinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor}}
+\tikzset{LabelStyle/.style={}}
+% Normal
+\or
+\presetkeys [GR] {vertex} {LabelOut = false}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \VertexShape,
+ minimum size = \VertexInterMinSize,
+ line width = \VertexLineWidth,
+ color = \VertexLineColor,
+ outer sep = 0.5\pgflinewidth,
+ fill = \VertexLightFillColor,
+ text = \VertexTextColor,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor}}
+\tikzset{LabelStyle/.style={}}
+% Shade
+\or
+\presetkeys [GR] {vertex} {LabelOut = false}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \VertexShape,
+ ball color = \VertexBallColor,
+ color = \VertexLineColor,
+ text = \VertexTextColor,
+ inner sep = \VertexInnerSep,
+ outer sep = \VertexOuterSep,
+ minimum size = \VertexBigMinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor,% color outside
+ double = \EdgeFillColor,% inside
+ double distance = \EdgeDoubleDistance}}%
+\tikzset{LabelStyle/.style={}}
+% Dijkstra
+\or
+\presetkeys [GR] {vertex} {LabelOut = false}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \VertexShape,
+ color = \VertexLineColor,
+ fill = \VertexLightFillColor,
+ inner sep = \VertexInnerSep,
+ outer sep = 0.5\pgflinewidth,
+ text = \VertexTextColor,
+ minimum size = \VertexInterMinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor}}
+\tikzset{LabelStyle/.style={}}
+% Welsh
+\or
+\presetkeys [GR] {vertex} {LabelOut = true}{}%
+\tikzset{VertexStyle/.style = {draw,
+ shape = \VertexShape,
+ color = \VertexLineColor,
+ fill = \VertexLightFillColor,
+ inner sep = \VertexInnerSep,
+ outer sep = \VertexOuterSep,
+ text = \VertexTextColor,
+ minimum size = \VertexSmallMinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor}}%
+\tikzset{LabelStyle/.style={}}
+% Art
+\or
+\presetkeys [GR] {vertex} {NoLabel = true}{}%
+\tikzset{VertexStyle/.style = {shape = \VertexShape,
+ ball color = \VertexBallColor,
+ color = \VertexLineColor,
+ inner sep = \VertexInnerSep,
+ outer sep = \VertexOuterSep,
+ minimum size = \VertexSmallMinSize,
+ line width = \VertexLineWidth}}%
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeArtColor}}
+\tikzset{LabelStyle/.style = {}}
+% ShadeArt
+\or
+\presetkeys [GR] {vertex} {NoLabel = true}{}%
+\tikzset{VertexStyle/.style = {shape = \VertexShape,
+ ball color = \VertexBallColor,
+ inner sep = \VertexInnerSep,
+ outer sep = \VertexOuterSep,
+ minimum size = \VertexSmallMinSize,
+ line width = \VertexLineWidth}}
+\tikzset{EdgeStyle/.style = {line width = \EdgeLineWidth,
+ \EdgeColor,
+ double = \EdgeFillColor,
+ double distance = .5\EdgeDoubleDistance}}
+\tikzset{LabelStyle/.style = {}}
+\fi%
+}
+
+\presetkeys [GR] {init} {vstyle = Normal,%
+ unit = \GraphUnit}{}
+
+\newcommand*{\SetGraphUnit}[1]{\renewcommand{\GraphUnit}{#1}}%
+
+\newcommand*{\GraphInit}[1][]{\setkeys[GR]{init}{#1}%
+\edef\GraphUnit{\cmdGR@init@unit}%
+}%
+%<--------------------------------------------------------------------------->
+% Colors
+%<--------------------------------------------------------------------------->
+\newcommand*{\SetGraphShadeColor}[3]{%
+ \tikzset{VertexStyle/.append style = {ball color=#1}}
+ \tikzset{EdgeStyle/.append style = {color=#2,double=#3}}
+}
+\newcommand*{\SetGraphArtColor}[2]{%
+ \tikzset{VertexStyle/.append style = {ball color=#1}}
+ \tikzset{EdgeStyle/.append style = {color=#2}}
+}
+\newcommand*{\SetGraphColor}[2]{%
+ \tikzset{VertexStyle/.append style = {fill=#1}}
+ \tikzset{EdgeStyle/.append style = {color=#2}}
+}
+\newcommand*{\AddVertexColor}[2]{%
+\begingroup
+ \tikzset{VertexStyle/.append style = {fill=#1}}
+ \foreach \v in {#2}
+ {\Vertex[Node,NoLabel]{\v}}
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+\newcommand*{\SetVertexNoLabel}{%
+ \presetkeys [GR] {vertex} {NoLabel = true}{}%
+}
+% add RV
+\newcommand*{\SetVertexLabel}{%
+ \presetkeys [GR] {vertex} {NoLabel = false}{}%
+}
+%<--------------------------------------------------------------------------->
+\newcommand*{\SetVertexLabelOut}{%
+ \presetkeys [GR] {vertex} {LabelOut = true}{}%
+}
+\newcommand*{\SetVertexLabelIn}{%
+ \presetkeys [GR] {vertex} {LabelOut = false}{}%
+}
+\newcommand*{\SetVertexMath}{%
+ \presetkeys [GR] {vertex} {Math = true}{}%
+ \presetkeys [GR] {cl} {Math = true}{}%
+}
+\newcommand*{\SetVertexNoMath}{%
+ \presetkeys [GR] {vertex} {Math = false}{}%
+ \presetkeys [GR] {cl} {Math = false}{}%
+}
+%<--------------------------------------------------------------------------->
+% Init SetUpVertex
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {SUV} {Lpos}{}
+\define@cmdkey [GR] {SUV} {Ldist}{}
+\define@cmdkey [GR] {SUV} {Style}{}
+\define@cmdkey [GR] {SUV} {MinSize}{}
+\define@cmdkey [GR] {SUV} {LineWidth}{}
+\define@cmdkey [GR] {SUV} {TextColor}{}
+\define@cmdkey [GR] {SUV} {LineColor}{}
+\define@cmdkey [GR] {SUV} {FillColor}{}
+\define@cmdkey [GR] {SUV} {InnerSep}{}
+\define@cmdkey [GR] {SUV} {OuterSep}{}
+\define@cmdkey [GR] {SUV} {Unit}{}
+\define@boolkey [GR] {SUV} {NoLabel} [true]{}
+\define@boolkey [GR] {SUV} {LabelOut}[true]{}
+\define@boolkey [GR] {SUV} {Math}[true]{}
+\presetkeys [GR] {SUV} {Ldist = 0cm,
+ Lpos = 0,
+ Style = {},
+ LabelOut = false,
+ NoLabel = false,
+ Math = false,
+ Unit = \GraphUnit,
+ MinSize = \VertexInterMinSize,
+ TextColor = \VertexTextColor,
+ LineColor = \VertexLineColor,
+ FillColor = \VertexLightFillColor,
+ LineWidth = \VertexLineWidth,
+ InnerSep = \VertexInnerSep,
+ OuterSep = \VertexOuterSep}{}
+%<--------------------------------------------------------------------------->
+% SetUpVertex
+%<--------------------------------------------------------------------------->
+\newcommand*{\SetUpVertex}[1][]{\GR@SetUpVertex[#1]}%
+\def\GR@SetUpVertex[#1]{%
+\setkeys[GR]{SUV}{#1}%
+\presetkeys [GR] {vertex} {Lpos = \cmdGR@SUV@Lpos,
+ Ldist = \cmdGR@SUV@Ldist,
+ style = \cmdGR@SUV@Style,
+ unit = \cmdGR@SUV@Unit}{}%
+\tikzset{VertexStyle/.append style = {inner sep = \cmdGR@SUV@InnerSep,
+ outer sep = \cmdGR@SUV@OuterSep,
+ minimum size = \cmdGR@SUV@MinSize,
+ text = \cmdGR@SUV@TextColor,
+ color = \cmdGR@SUV@LineColor,
+ fill = \cmdGR@SUV@FillColor,
+ line width = \cmdGR@SUV@LineWidth}}
+\ifGR@SUV@NoLabel%
+ \presetkeys [GR] {vertex} {NoLabel = true}{}%
+\fi%
+\ifGR@SUV@LabelOut%
+ \presetkeys [GR] {vertex} {LabelOut = true}{}%
+\fi%
+\ifGR@SUV@Math%
+ \presetkeys [GR] {vertex} {Math = true}{}%
+\fi%
+}
+%<--------------------------------------------------------------------------->
+% Init Vertex
+%<--------------------------------------------------------------------------->
+\define@boolkey [GR] {vertex} {empty}[true]{}
+\define@cmdkey [GR] {vertex} {unit}{}
+\define@cmdkey [GR] {vertex} {x}{}
+\define@cmdkey [GR] {vertex} {y}{}
+\define@cmdkey [GR] {vertex} {a}{}
+\define@cmdkey [GR] {vertex} {d}{}
+\define@boolkey [GR] {vertex} {Node}[true]{}
+\define@cmdkey [GR] {vertex} {dir}{}
+\define@cmdkey [GR] {vertex} {style}{}
+\define@cmdkey [GR] {vertex} {position}{}
+\define@cmdkey [GR] {vertex} {L}{}
+\define@cmdkey [GR] {vertex} {Lpos}{}
+\define@cmdkey [GR] {vertex} {Ldist}{}
+\define@boolkey [GR] {vertex} {NoLabel}[true]{}
+\define@boolkey [GR] {vertex} {Math}[true]{}
+\define@boolkey [GR] {vertex} {LabelOut}[true]{}
+\presetkeys [GR] {vertex} {Node = false,
+ NoLabel = false,
+ LabelOut = false,
+ empty = false,
+ Math = false,
+ x = {},
+ y = {},
+ a = {},
+ d = {},
+ unit = \GraphUnit,
+ dir = \EA,
+ position = {},
+ style = {},
+ L = {},
+ Ldist = 0cm,
+ Lpos = 0}{}
+%<--------------------------------------------------------------------------->
+% Vertex
+%<--------------------------------------------------------------------------->
+\newcommand*{\Vertex}[1][]{\@vertex[#1]}%
+\def\@vertex[#1]#2{%
+ \setkeys[GR]{vertex}{#1}%
+ \@@vertex{#2}%
+}
+% coord rect todo coord polar and pos relative
+\def\@@vertex#1{%
+ \def\nstyle{VertexStyle}
+%<--------------------------------------------------------------------------->
+\ifGR@vertex@Node%
+ \pgfextractx{\pgf@x}{\pgfpointanchor{#1}{center}}
+ \pgfextracty{\pgf@y}{\pgfpointanchor{#1}{center}}
+ \edef\cmdGR@vertex@x{\pgf@x}
+ \edef\cmdGR@vertex@y{\pgf@y}
+\fi%
+%<--------------------------------------------------------------------------->
+\ifGR@vertex@empty%
+ \begin{scope}
+ \ifthenelse{\not\equal{\cmdGR@vertex@x}{}}{%
+ \protected@edef\@tempa{%
+ \noexpand\node[inner sep = 0pt](#1)%
+ at (\cmdGR@vertex@x,\cmdGR@vertex@y){}}%
+ \@tempa;}{%
+ \ifthenelse{\not\equal{\cmdGR@vertex@d}{}}{%
+ \protected@edef\@tempa{%
+ \noexpand\node[inner sep = 0pt](#1)%
+ at (\cmdGR@vertex@a:\cmdGR@vertex@d){}}%
+ \@tempa;}{%
+ \protected@edef\@tempa{%
+ \noexpand \node[inner sep = 0pt](#1)%
+ [\cmdGR@vertex@position]{}}%
+ \@tempa;}}%
+ \end{scope}
+\else
+ \begin{scope}[label distance = \cmdGR@vertex@Ldist]
+ \ifGR@vertex@NoLabel
+ \def\vertex@Label{}%
+ \def\cmdGR@vertex@L{}%
+ \def\vertex@Name{}
+ \else%
+ \ifGR@vertex@Math
+ \ifthenelse{\equal{\cmdGR@vertex@L}{}}{%
+ \def\vertex@Name{$#1$}}{\def\vertex@Name{$\cmdGR@vertex@L$}}
+ \else
+ \ifthenelse{\equal{\cmdGR@vertex@L}{}}{%
+ \def\vertex@Name{#1}}{\def\vertex@Name{\cmdGR@vertex@L}}
+ \fi%
+ \ifGR@vertex@LabelOut%
+ \def\nstyle{VertexStyle,%
+ label={[text = \cmdGR@SVN@TextColor,\cmdGR@vertex@style]%
+ \cmdGR@vertex@Lpos:\vertex@Name}}
+ \def\vertex@Label{}
+ \else%
+ \def\vertex@Label{\vertex@Name}
+ \fi
+ \fi
+%<--------------------------------------------------------------------------->
+ \ifthenelse{\not\equal{\cmdGR@vertex@x}{}}{%
+ \protected@edef\@tempa{%
+ \noexpand\node[outer sep=0pt,\cmdGR@vertex@style,\nstyle](#1)
+ at (\cmdGR@vertex@x,\cmdGR@vertex@y){%
+ \noexpand\vertex@Label}}%
+ \@tempa;%
+ }{%
+ \ifthenelse{\not\equal{\cmdGR@vertex@d}{}}{%
+ \protected@edef\@tempa{%
+ \noexpand\node[outer sep=0pt,\cmdGR@vertex@style,\nstyle](#1)
+ at (\cmdGR@vertex@a:\cmdGR@vertex@d){%
+ \noexpand\vertex@Label}}%
+ \@tempa;%
+ }{%
+ \protected@edef\@tempa{%
+ \noexpand\node[outer sep=0pt,\cmdGR@vertex@style,\nstyle](#1)%
+ [\cmdGR@vertex@position]{%
+ \noexpand\vertex@Label}}%
+ \@tempa;}}%
+ \end{scope}
+\fi%
+}
+%<--------------------------------------------------------------------------->
+% End of Vertex
+%<--------------------------------------------------------------------------->
+% EA east of #2
+%<--------------------------------------------------------------------------->
+\newcommand*{\EA}[1][]{\@droite[#1]}%
+\def\@droite[#1](#2)#3{%
+\begingroup%
+ \setkeys[GR]{vertex}{#1}%
+ \path (#2)--++(\cmdGR@vertex@unit,0) coordinate (#3);
+ \Vertex[#1,Node]{#3}
+\endgroup%
+}%
+%<--------------------------------------------------------------------------->
+% WE west of #2
+%<--------------------------------------------------------------------------->
+\newcommand*{\WE}[1][]{\@gauche[#1]}%
+\def\@gauche[#1](#2)#3{%
+\begingroup%
+ \setkeys[GR]{vertex}{#1}%
+ \path (#2)--++(-\cmdGR@vertex@unit,0) coordinate (#3);
+ \Vertex[#1,Node]{#3}
+ \endgroup%
+}
+%<--------------------------------------------------------------------------->
+% NO north of #2
+%<--------------------------------------------------------------------------->
+\newcommand*{\NO}[1][]{\@haut[#1]}%
+\def\@haut[#1](#2)#3{%
+\begingroup%
+ \setkeys[GR]{vertex}{#1}%
+ \path (#2)--++(0,\cmdGR@vertex@unit) coordinate (#3);
+ \Vertex[#1,Node]{#3}
+\endgroup%
+}
+%<--------------------------------------------------------------------------->
+% SO south of #2
+%<--------------------------------------------------------------------------->
+\newcommand*{\SO}[1][]{\@bas[#1]}%
+\def\@bas[#1](#2)#3{%
+\begingroup%
+ \setkeys[GR]{vertex}{#1}%
+ \path (#2)--++(0,-\cmdGR@vertex@unit) coordinate (#3);
+ \Vertex[#1,Node]{#3}
+\endgroup%
+}
+%<--------------------------------------------------------------------------->
+% NOEA north east of #2
+%<--------------------------------------------------------------------------->
+\newcommand*{\NOEA}[1][]{\@hautdroite[#1]}%
+\def\@hautdroite[#1](#2)#3{%
+\begingroup%
+ \setkeys[GR]{vertex}{#1}%
+ \path (#2)--++(\cmdGR@vertex@unit,\cmdGR@vertex@unit) coordinate (#3);
+ \Vertex[#1,Node]{#3}
+\endgroup%
+}
+
+%<--------------------------------------------------------------------------->
+% NOWE north west of #2
+%<--------------------------------------------------------------------------->
+\newcommand*{\NOWE}[1][]{\@hautgauche[#1]}%
+\def\@hautgauche[#1](#2)#3{%
+\begingroup%
+ \setkeys[GR]{vertex}{#1}%
+ \path (#2)--++(-\cmdGR@vertex@unit,\cmdGR@vertex@unit) coordinate (#3);
+ \Vertex[#1,Node]{#3}
+\endgroup%
+}
+%<--------------------------------------------------------------------------->
+% SOEA south east of #2
+%<--------------------------------------------------------------------------->
+\newcommand*{\SOEA}[1][]{\@basdroite[#1]}%
+\def\@basdroite[#1](#2)#3{%
+\begingroup%
+ \setkeys[GR]{vertex}{#1}%
+ \path (#2)--++(\cmdGR@vertex@unit,-\cmdGR@vertex@unit) coordinate (#3);
+ \Vertex[#1,Node]{#3}
+\endgroup%
+}
+%<--------------------------------------------------------------------------->
+% SOWE south west of #2
+%<--------------------------------------------------------------------------->
+\newcommand*{\SOWE}[1][]{\@basgauche[#1]}%
+\def\@basgauche[#1](#2)#3{%
+\begingroup%
+ \setkeys[GR]{vertex}{#1}%
+ \path (#2)--++(-\cmdGR@vertex@unit,-\cmdGR@vertex@unit) coordinate (#3);
+ \Vertex[#1,Node]{#3}
+\endgroup%
+}
+
+%<--------------------------------------------------------------------------->
+% Vertices
+%<--------------------------------------------------------------------------->
+\newcommand*{\Vertices}[1][]{\Vertices@NoStar[#1]}%
+\def\Vertices@NoStar[#1]#2#3{%
+\setkeys[GR]{vertex}{#1}%
+\begingroup%
+ \setcounter{tkz@gr@p}{0}
+ \@for\liste:=#3\do{%
+ \stepcounter{tkz@gr@p}%
+ \global\expandafter\let\csname label@\alph{tkz@gr@p}\endcsname\liste}
+ \ifthenelse{\equal{#2}{line}}{%
+ \setcounter{tkz@gr@p}{0}
+ \foreach \fin in {#3}{%
+ \ifthenelse{\value{tkz@gr@p}=0}{%
+ \global\let\deb\fin
+ \Vertex[#1]{\fin}
+ \stepcounter{tkz@gr@p}
+ }{%
+ \cmdGR@vertex@dir[#1,x={},y={},a={},d={},Node=false](\deb){\fin}
+ \global\let\deb\fin
+ }
+ }%
+ }{
+ \ifthenelse{\equal{#2}{square}}{%
+ \begin{scope}[rotate=45]
+ \Vertex[#1,Lpos=-135]{\label@a}
+ \EA[#1,Lpos=-45,x={},y={},Node=false](\label@a){\label@b}
+ \NO[#1,Lpos=45, x={},y={},Node=false](\label@b){\label@c}
+ \WE[#1,Lpos=135,x={},y={},Node=false](\label@c){\label@d}
+ \end{scope}
+}{%
+ \ifthenelse{\equal{#2}{tr1}}{%
+ \Vertex[#1]{\label@a}
+ \EA[#1,x={},y={},Node=false](\label@a){\label@b}
+ \NO[#1,x={},y={},Node=false](\label@b){\label@c}}{%
+ \ifthenelse{\equal{#2}{tr2}}{%
+ \Vertex[#1]{\label@a}
+ \NO[#1,x={},y={},Node=false](\label@a){\label@b}
+ \EA[#1,x={},y={},Node=false](\label@b){\label@c}}{%
+ \ifthenelse{\equal{#2}{tr3}}{%
+ \Vertex[#1]{\label@a}
+ \NO[#1,x={},y={},Node=false](\label@a){\label@b}
+ \WE[#1,x={},y={},Node=false](\label@b){\label@c}}{%
+ \ifthenelse{\equal{#2}{tr4}}{%
+ \Vertex[#1]{\label@a}
+ \WE[#1,x={},y={},Node=false](\label@a){\label@b}
+ \NO[#1,x={},y={},Node=false](\label@b){\label@c}}{%
+ \ifthenelse{\equal{#2}{circle}}{%
+ \pgfmathdivide{360}{\value{tkz@gr@p}}%
+ \global\let\gr@angle\pgfmathresult%
+ \setcounter{tkz@gr@p}{0}
+ \foreach \lab in {#3}{%
+ \pgfmathmultiply{\gr@angle}{\thetkz@gr@p}%
+ \let\gr@newangle\pgfmathresult%
+ \pgfmathadd{\cmdGR@vertex@Lpos}{\gr@newangle}
+ \let\gr@posangle\pgfmathresult%
+ \Vertex[#1,
+ a = \gr@newangle,
+ d = \cmdGR@vertex@unit,
+ Lpos = \gr@posangle]{\lab}
+ \stepcounter{tkz@gr@p}%
+ }%
+ }{}%
+ }}}}}}%
+\endgroup%
+}
+%<--------------------------------------------------------------------------->
+% Edge style
+%<--------------------------------------------------------------------------->
+\tikzset{LabelStyle/.style={}}% add 03/04/2009
+\tikzset{EdgeStyle/.style={}}
+%<--------------------------------------------------------------------------->
+% Init SetUpEdge
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {SUE} {color}{}
+\define@cmdkey [GR] {SUE} {label}{}
+\define@cmdkey [GR] {SUE} {labelstyle}{}
+\define@cmdkey [GR] {SUE} {labeltext}{}
+\define@cmdkey [GR] {SUE} {labelcolor}{}
+\define@cmdkey [GR] {SUE} {style}{}
+\define@cmdkey [GR] {SUE} {lw}{}
+\presetkeys [GR] {SUE} {color = \EdgeColor,
+ lw = \EdgeLineWidth,
+ label = {},
+ labeltext = \LabelTextColor,
+ labelcolor = \LabelFillColor,
+ labelstyle = {},
+ style = {}}{}
+%<--------------------------------------------------------------------------->
+% SetUpEdge
+%<--------------------------------------------------------------------------->
+\newcommand*{\SetUpEdge}[1][]{\@SetUpEdge[#1]}%
+\def\@SetUpEdge[#1]{%
+\setkeys [GR] {SUE} {#1}%
+\presetkeys [GR] {edge} {color = \cmdGR@SUE@color,
+ lw = \cmdGR@SUE@lw,
+ label = \cmdGR@SUE@label,
+ labeltext = \cmdGR@SUE@labeltext,
+ labelcolor = \cmdGR@SUE@labelcolor,
+ labelstyle = \cmdGR@SUE@labelstyle,
+ style = \cmdGR@SUE@style}{}
+\tikzset{LabelStyle/.style={}}
+\tikzset{EdgeStyle/.style={}}}
+\newcommand*{\DisableEdgeStyle}{\tikzset{EdgeStyle/.style={}}}
+%<--------------------------------------------------------------------------->
+% Init Edge
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {edge} {color}{}
+\define@cmdkey [GR] {edge} {lw}{}
+\define@cmdkey [GR] {edge} {double}{}
+\define@cmdkey [GR] {edge} {incolor}{}
+\define@cmdkey [GR] {edge} {dd}{}
+\define@cmdkey [GR] {edge} {style}{}
+\define@cmdkey [GR] {edge} {label}{}
+\define@cmdkey [GR] {edge} {labeltext}{}
+\define@cmdkey [GR] {edge} {labelcolor}{}
+\define@cmdkey [GR] {edge} {labelstyle}{}
+\define@boolkey[GR] {edge} {local}[true]{}
+\presetkeys [GR] {edge} {style = {pos=.5},
+ lw = \EdgeLineWidth,
+ label = {},
+ labeltext = \LabelTextColor,
+ labelcolor = \LabelFillColor,
+ labelstyle = {},
+ local = false,
+ double = {},
+ dd = \EdgeDoubleDistance,
+ incolor = \EdgeFillColor,
+ color = \EdgeColor}{}
+%<--------------------------------------------------------------------------->
+% Edge
+%<--------------------------------------------------------------------------->
+\newcommand*{\Edge}[1][]{\@edge[#1]}%
+\def\@edge[#1](#2)(#3){%
+\setkeys[GR]{edge}{#1}%
+ \begingroup%
+\ifthenelse{\equal{\cmdGR@edge@double}{}}{%
+\tikzset{LocalEdgeStyle/.style={color = \cmdGR@edge@color,
+ line width = \cmdGR@edge@lw}}}{%
+\tikzset{LocalEdgeStyle/.style={line width = \cmdGR@edge@dd,
+ color = \cmdGR@edge@double,
+ double distance = \cmdGR@edge@lw,
+ double = \cmdGR@edge@color}}}%
+\ifGR@edge@local%
+ \tikzset{EdgeStyle/.style={}}%
+ \fi
+ \ifthenelse{\equal{\cmdGR@edge@label}{}}{%
+ \protected@edef\@tempa{%
+ \noexpand \draw[LocalEdgeStyle,\cmdGR@edge@style,EdgeStyle]}%
+ \@tempa (#2) to (#3)}{%
+ \protected@edef\@tempa{%
+ \noexpand \draw[LocalEdgeStyle,\cmdGR@edge@style,EdgeStyle] (#2) to%
+ node[fill = \cmdGR@edge@labelcolor,
+ text = \cmdGR@edge@labeltext,
+ \cmdGR@edge@labelstyle,LabelStyle]}\@tempa
+ {\cmdGR@edge@label} (#3)}%
+ ;
+\endgroup%
+}%
+%<--------------------------------------------------------------------------->
+% Edges
+%<--------------------------------------------------------------------------->
+\newcommand*{\Edges}[1][]{\@edges[#1]}%
+\def\@edges[#1](#2){%
+\setkeys[GR]{edge}{#1}%
+ \begingroup%
+ \setcounter{tkz@gr@p}{0}
+ \foreach \fin in {#2}{%
+ \ifthenelse{\value{tkz@gr@p}=0}{%
+ \global\let\deb\fin
+ \stepcounter{tkz@gr@p}}{%
+ \Edge[#1](\deb)(\fin)
+ \global\let\deb\fin
+ }%
+ }
+ \endgroup%
+}%
+%<--------------------------------------------------------------------------->
+% Init loop
+%<--------------------------------------------------------------------------->
+\define@choicekey*[GR]{loop}{dir}[\val\nr]{WE,EA,NO,SO,NOWE,NOEA,SOWE,SOEA}{%
+\ifcase\nr\relax
+\tikzset{LoopStyle/.style = {in=225, out=135, distance=\cmdGR@loop@dist}}%
+\or
+\tikzset{LoopStyle/.style = {in= 45, out=-45, distance=\cmdGR@loop@dist}}%
+\or
+\tikzset{LoopStyle/.style = {in=135, out= 45, distance=\cmdGR@loop@dist}}%
+\or
+\tikzset{LoopStyle/.style = {in=-45, out=-135, distance=\cmdGR@loop@dist}}%
+\or
+\tikzset{LoopStyle/.style = {in=180, out=90, distance=\cmdGR@loop@dist}}%
+\or
+\tikzset{LoopStyle/.style = {in=90, out=0, distance=\cmdGR@loop@dist}}%
+\or
+\tikzset{LoopStyle/.style = {in=-90, out=-180, distance=\cmdGR@loop@dist}}%
+\or
+\tikzset{LoopStyle/.style = {in=0, out=-90, distance=\cmdGR@loop@dist}}%
+\fi%
+}
+\define@cmdkey [GR] {loop} {color}{}
+\define@cmdkey [GR] {loop} {label}{}
+\define@cmdkey [GR] {loop} {labelstyle}{}
+\define@cmdkey [GR] {loop} {style}{}
+\define@cmdkey [GR] {loop} {dist}{}
+\presetkeys [GR] {loop} {style = {pre,thick},%`
+ label = {},%
+ labelstyle = {},%
+ color = \tkz@suc@txt,%
+ dist = 4cm,%
+ dir = WE}{}
+%<--------------------------------------------------------------------------->
+% loop
+%<--------------------------------------------------------------------------->
+\newcommand*{\grLoop}[1][]{\tkzGR@loop[#1]}%
+\def\tkzGR@loop[#1](#2){%
+\setkeys[GR]{loop}{#1}%
+\protected@edef\@tempa{%
+\noexpand \draw[\cmdGR@loop@color] (#2)%
+ edge [EdgeStyle,LoopStyle,\cmdGR@loop@style]%
+ node [LabelStyle,\cmdGR@loop@labelstyle]%
+ {\cmdGR@loop@label} (#2)}\@tempa;%
+}%
+%<--------------------------------------------------------------------------->
+% Init Graphes probabilistes
+%<--------------------------------------------------------------------------->
+\define@cmdkey [GR] {grpb} {unit}{}
+\define@cmdkey [GR] {grpb} {LposA}{}
+\define@cmdkey [GR] {grpb} {LposB}{}
+\define@cmdkey [GR] {grpb} {Ldist}{}
+\define@cmdkey [GR] {grpb} {LoopDist}{}
+\presetkeys [GR] {grpb} {LposA = 180,%
+ LposB = 0,%
+ Ldist = 0cm,%
+ LoopDist = 4cm,
+ unit = 4}{}
+%<--------------------------------------------------------------------------->
+% Graphes probabilistes
+%<--------------------------------------------------------------------------->
+\newcommand*{\grProb}[7][]{%
+\setkeys[GR]{grpb}{#1}%
+\tikzset{LabelStyle/.append style ={pos=.5}}
+\Vertex[Lpos=\cmdGR@grpb@LposA,Ldist=\cmdGR@grpb@Ldist,L=#2]{grA}
+\EA[unit=\cmdGR@grpb@unit,Lpos=\cmdGR@grpb@LposB,
+ Ldist=\cmdGR@grpb@Ldist,L=#3](grA){grB}
+\Edge[style={post,bend left=60},label={$#4$},labelstyle={above}](grA)(grB)
+\Edge[style={post,bend left=60},label={$#5$},labelstyle={below}](grB)(grA)
+\grLoop[dist=\cmdGR@grpb@LoopDist,dir=WE,label={$#6$},labelstyle={left}](grA)
+\grLoop[dist=\cmdGR@grpb@LoopDist,dir=EA,label={$#7$},labelstyle={right}](grB)
+}%
+\newcommand*{\grProbThree}[7][]{%
+\setkeys[GR]{grpb}{#1}%
+\begin{scope}[]
+ \tikzset{LabelStyle/.append style ={pos=.5}}
+ \Vertices[empty,unit=\cmdGR@grpb@unit]{circle}{grA,grB,grC}
+ \Vertex[Node,Lpos=\cmdGR@grpb@LposA,Ldist=\cmdGR@grpb@Ldist,L=#2]{grA}
+ \Vertex[Node,Lpos=\cmdGR@grpb@LposA,Ldist=\cmdGR@grpb@Ldist,L=#3]{grB}
+ \Vertex[Node,Lpos=\cmdGR@grpb@LposA,Ldist=\cmdGR@grpb@Ldist,L=#4]{grC}
+ \foreach \x/\y/\z in {#5} {%
+ \grLoop[dist=\cmdGR@grpb@LoopDist,dir=EA,label={$\x$}](grA)
+\Edge[style={post,bend right=20},label={$\y$}](grA)(grB)
+\Edge[style={post,bend right=20},label={$\z$}](grA)(grC)}
+\foreach \x/\y/\z in {#6} {%
+ \grLoop[dist=\cmdGR@grpb@LoopDist,dir=NO,label={$\x$}](grB)
+\Edge[style={post,bend right=20},label={$\y$}](grB)(grA)
+\Edge[style={post,bend right=20},label={$\z$}](grB)(grC)}
+ \foreach \x/\y/\z in {#7} {%
+ \grLoop[dist=\cmdGR@grpb@LoopDist,dir=SO,label={$\x$}](grC)
+ \Edge[style={post,bend right=20},label={$\y$}](grC)(grA)
+ \Edge[style={post,bend right=20},label={$\z$}](grC)(grB)}
+\end{scope}
+}
+%<--------------------------------------------------------------------------->
+% End Graphes probabilistes
+%<--------------------------------------------------------------------------->
+\let\Loop\grLoop
+\newcommand{\SetVertexLabeledSmall}{%
+\SetVertexLabel%
+\tikzset{VertexStyle/.style = {draw,
+ shape = circle,
+ inner sep = 1pt,
+ minimum size = 10pt}}
+\tikzset{EdgeStyle/.style = {double = \tkz@suc@txt,
+ double distance = 1pt,
+ color = \tkz@suc@bkc,
+ line width = 0.7pt}}
+}
+\newcommand{\SetVertexNotLabeledSmall}{%
+ \tikzset{EdgeStyle/.style = {double = \tkz@suc@txt,
+ double distance = 1pt,
+ color = \tkz@suc@bkc,
+ line width = 0.7pt}}
+ \SetVertexNoLabel
+ \SetVertexSimple[MinSize=6pt,FillColor=gray]
+ \renewcommand*{\VertexLineWidth}{0pt}
+}%
+
+\newcommand{\SetVertexForPresentation}[3]{%
+ \GraphInit[vstyle=Shade]
+ \SetVertexNoLabel
+ \renewcommand*{\VertexBigMinSize}{12pt}%
+ \renewcommand*{\EdgeDoubleDistance}{2pt}%
+ \renewcommand*{\EdgeLineWidth}{0.7pt}%
+ \SetGraphShadeColor{#1}{#2}{#3}
+}%
+
+\newcommand{\setxyzvec}[1][20]{%
+ \pgfmathsetmacro{\xone}{cos(180+#1)}%
+ \pgfmathsetmacro{\yone}{sin(180+#1)}%
+ \pgfmathsetmacro{\xtwo}{cos(360-#1)}%
+ \pgfmathsetmacro{\ytwo}{sin(360-#1)}%
+ \pgfsetxvec{\pgfpoint{\xone cm}{\yone cm}}%
+ \pgfsetyvec{\pgfpoint{\xtwo cm}{\ytwo cm}}%
+ \pgfsetzvec{\pgfpoint{0cm}{1cm}}%
+}
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-graph/readme-tkz-graph.txt b/obsolete/macros/latex/contrib/tkz/tkz-graph/readme-tkz-graph.txt
new file mode 100644
index 0000000000..eef0017b6b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-graph/readme-tkz-graph.txt
@@ -0,0 +1,78 @@
+% encodage utf8
+-------------------- english readme ----------------------------------------
+readme-tkz-graph.txt V 1.00 d 19/09/2018
+
+The package tkz-graph.sty is a collection of some useful macros if you want to
+ draw manually a graph of the graph theory. The kind of graphs that I will
+ present, are sometimes called combinatorial graphs to distinguish them from
+ the graphs of functions. The macros are designed to give math
+ teachers (and students) easy access at the programmation of drawing graphs
+ with TikZ. I therefore hope that my packages provide ideal tools for
+ teachers wanting to offer their students fine documents of maths.
+
+Licence
+-------
+
+This program can be redistributed and/or modified under the terms
+of the LaTeX Project Public License Distributed from CTAN
+archives in directory macros/latex/base/lppl.txt.
+
+
+Features
+--------
+
+ -- needs etex;
+ -- requires and automatically loads PGF/TikZ 2.1;
+ -- compiles with utf8, pdflatex;
+ -- compiles using the chain dvi->dvips->ps2pdf;
+ -- not yet ready for use with TeX and ConText (I need more time and ideas).
+
+Installation
+------------
+
+You can experiment with the tkz-graph package by placing tkz-graph.sty in the directory containing your current tex file.
+
+You can also placing tkz-graph.sty in the directory :
+/texmf/tex/latex/tkz.
+
+
+How to use it
+-------------
+
+To use the package tkz-graph, place the following lines in the preamble of
+ your LaTeX document.
+
+\usepackage{tkz-graph}
+
+tkz-graph loads TikZ.
+
+If you use the xcolor package, load that package before tkz-graph to avoid
+ package conflicts.
+
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{amsmath,tkz-graph}
+
+
+Documentation
+-------------
+
+The documentation is in french.
+Documentation for tkz-graph is available on my sites:
+
+ http://altermundus.fr (en français) or http://altermundus.com (in english)
+ Documentation for printing will be ready soon.
+
+Examples
+--------
+
+ All examples given in documentation will be stored on my sites as standalone
+ files, ready for compilation.
+
+
+ Alain Matthes
+ 5 rue de Valence
+ Paris 75005
+
+ al (dot) ma (at) mac (dot) com
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/README b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/README
new file mode 100644
index 0000000000..5d51977c31
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/README
@@ -0,0 +1,5 @@
+
+tkz-kiviat v0.1 b
+The tkz-kiviat package allows the user to draw Kiviat Graphs directly,
+or with data from an external file.
+The drawing is done with the help of pgfplots. \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/TKZdoc-kiviat-main.pdf b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/TKZdoc-kiviat-main.pdf
new file mode 100644
index 0000000000..d6d8c30fa1
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/TKZdoc-kiviat-main.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/TKZdoc-kiviat-main.tex b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/TKZdoc-kiviat-main.tex
new file mode 100644
index 0000000000..93c4a855d7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/TKZdoc-kiviat-main.tex
@@ -0,0 +1,518 @@
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% NamedGraphs encodage : utf8 %
+% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% Créé par Alain Matthes le 14/03/2007 %
+% Copyright (c) 2007 __Collège Sévigné__ All rights reserved. %
+% version : 1.0 %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+% See http://www.latex-project.org/lppl.txt for details.
+% graphs from graph theory
+
+\documentclass[DIV = 12,
+ fontsize = 10,
+ headinclude = false,
+ index = totoc,
+ footinclude = false,
+ twoside,
+ headings = small
+ ]{tkz-doc}
+%\usepackage{svn-multi}
+\usepackage{tkz-berge}
+
+\usepackage[pdftex,
+ unicode,
+ colorlinks = true,
+ pdfpagelabels,
+ urlcolor = blue,
+ filecolor = pdffilecolor,
+ linkcolor = blue,
+ breaklinks = false,
+ hyperfootnotes= false,
+ bookmarks = false,
+ bookmarksopen = false,
+ linktocpage = true,
+ pdfsubject ={Graph Theory},
+ pdfauthor ={Alain Matthes},
+ pdftitle ={NamedGraphs},
+ pdfkeywords ={graph,berge},
+ pdfcreator ={pdfeTeX}
+ ]{hyperref}
+\usepackage{url}
+\def\UrlFont{\small\ttfamily}
+\usepackage[protrusion = true,
+ expansion,
+ final,
+ verbose = false
+ ]{microtype}
+
+\DisableLigatures{encoding = T1, family = tt*}
+
+\usepackage[parfill]{parskip}
+\gdef\nameofpack{tkz-kiviat}
+\gdef\versionofpack{v 0.1 b}
+\gdef\dateofpack{2018/09/19}
+\gdef\nameofdoc{tkz-kiviat}
+\gdef\dateofdoc{2018/09/19}
+\gdef\authorofpack{Alain Matthes}
+\gdef\adressofauthor{}
+\gdef\namecollection{AlterMundus}
+\gdef\urlauthor{http://altermundus.fr}
+\gdef\urlauthorcom{http://altermundus.com}
+\title{The package : tkz-kiviat}
+\author{Alain Matthes}
+
+\usepackage{shortvrb,fancyvrb}
+\usepackage{tkzexample,tkz-kiviat}
+\makeatletter
+\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4.2em}}
+\makeatother
+\AtBeginDocument{\MakeShortVerb{\|}}
+
+\pdfcompresslevel=9
+\pdfinfo{
+ /Title (tkz-kiviat.pdf)
+ /Creator (TeX)
+ /Producer (pdfeTeX)
+ /Author (Alain Matthes)
+ /CreationDate (07 juin 2011)
+ /Subject (Named Graphs)
+ /Keywords (pdfeTeX, kiviat, graph, berge, tikz, pdflatex) }
+
+\usepackage{pgfplotstable}
+\usepackage[english]{babel}
+\usepackage[autolanguage]{numprint}
+
+
+\begin{document}
+\parindent=0pt
+\title{\nameofpack}
+\date{\today}
+
+\clearpage
+\thispagestyle{empty}
+\maketitle
+
+\clearpage
+\tkzSetUpColors[background=fondpaille,text=Maroon]
+\colorlet{textcodecolor}{Maroon}
+\pagecolor{fondpaille}
+\color{Maroon}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{codebackground}{Peach!30}
+\colorlet{codeonlybackground}{Peach!30}
+
+
+\nameoffile{\nameofpack}
+
+\defoffile{\textbf{tkz-kiviat.sty} is a simple package to draw Kiviat's graph with \TIKZ. Il est nécessaire d'utiliser \PGF\ 2.1.
+}
+ % A lot of references can be found here \url{http://mathworld.wolfram.com}
+\presentation
+
+\vspace*{12pt}
+
+\tkzHand Firstly, I would like to thank \textbf{Till Tantau} for the beautiful LATEX package, namely TikZ.
+
+\vspace*{12pt}
+\tkzHand I am grateful to \textbf{Michel Bovani} for providing the \tkzname{fourier} font.
+
+
+
+
+\vspace*{12pt}
+\tkzHand Vous trouverez de nombreux exemples sur mes sites~:
+\href{http://altermundus.com/pages/download.html}{altermundus.com} ou
+\href{http://altermundus.fr/pages/download.html}{altermundus.fr}
+
+\vfill
+Vous pouvez envoyer vos remarques, et les rapports sur des erreurs que vous aurez constatées à l'adresse suivante~: \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}.
+
+This file can be redistributed and/or modified under the terms of the LATEX
+Project Public License Distributed from CTAN archives in directory \url{CTAN://macros/latex/base/lppl.txt}.
+
+
+
+\clearpage
+\tableofcontents
+
+\clearpage\newpage
+
+\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}
+
+
+
+\newpage\section{Kiviat Graph}
+\subsection{Caractéristiques d'un diagrame de Kiviat }
+La macro suivante permet de définir les caractéristiques du diagramme. En arguments est donné une liste de variables. Cette liste va déterminer le nombre d'axes radiaux. En option, vous pouvez régler le nombre de lattes formant le treillis, ainsi que d'autres options.
+
+\bigskip
+\begin{NewMacroBox}{tkzKiviatDiagram}{\oarg{options}\var{Liste de modalités}}
+ L'argument est une liste de variables et cet argument est obligatoire.
+
+\medskip
+\begin{tabular}{lll}
+Arguments & ex & définition \\
+\midrule
+\TAline{Liste de variables} {empty} {\{charbon, gaz,uranium\}}
+\end{tabular}
+
+\medskip
+\begin{tabular}{lll}
+Options & défaut & définition \\
+\midrule
+\TOline{lattice} {10} {nombre de lattes}
+\TOline{gap} {0.5} {l'écart entre deux lattes est de $0.5$ cm}
+\TOline{space} {0.5} {les axes sont agrandis de $0,5$ cm}
+\TOline{label space} {1.5} {Distance en cm entre la fin de l'axe et le label}
+\TOline{step} {1} {}
+\TOline{radial style} {1} {style des axes radiaux}
+\TOline{label style} {1} {style des étiquettes (labels)}
+\bottomrule
+\end{tabular}
+
+\emph{Par défaut l'axe radial est gradué de $0$ à $1$. Entre deux graduations, l'écart est de $0.5$ cm et est déterminé par l'option \tkzname{gap}.}
+
+\end{NewMacroBox}
+
+\bigskip
+\subsubsection{Par défaut avec trois variables}
+
+\begin{tkzexample}[width=8cm]
+\begin{tikzpicture}[scale=.5]
+ \tkzKiviatDiagram{gaz,charbon,uranium}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Par défaut, mais avec cinq variables}
+Dans cet exemple, j'utilise cinq ($5$) variables :
+
+ Poissons,Légumes,Viande,Lait,Pain.
+
+ La toile (treillis) est formé de dix ($10$) lattes.
+
+\bigskip
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+ \tkzKiviatDiagram{Poissons,Légumes,Viande,Lait,Pain}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\begin{center}
+\begin{tikzpicture}
+ \tkzKiviatDiagram{Lait,Pain,Poissons,Légumes,Viande}
+\end{tikzpicture}
+\end{center}
+
+\subsubsection{Option \tkzname{gap} (écart entre deux lattes)}
+Ceci permet de modifier l'écart entre deux lattes. Le premier exemple va prendre moins de place avec avec un écart divisé par deux.
+
+
+\begin{tkzexample}[width=9cm]
+\begin{tikzpicture}
+ \tkzKiviatDiagram[gap=.25,
+ label space=.75]{A,B,C,D,E}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Option \tkzname{gap} (écart entre deux lattes)}
+Ceci permet de modifier l'écart entre deux lattes. Le premier exemple va prendre moins de place avec avec un écart divisé par deux.
+
+\begin{tkzexample}[width=7cm]
+\begin{tikzpicture}
+ \tkzKiviatDiagram[gap=.25]{A,B,C,D,E,F}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{option \tkzname{lattice} (nombre de lattes)}
+Par défaut ce nombre est de 10 ( voir l'exemple précédent) .
+
+\begin{tkzexample}[width=7cm]
+\begin{tikzpicture}
+ \tkzKiviatDiagram[lattice=5]{Poissons,Légumes,Viande,Lait,Pain}
+ \end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{options \tkzname{radial style} et \tkzname{lattice style}}
+ \begin{tkzexample}[]
+\begin{tikzpicture}
+\tkzKiviatDiagram[
+ radial style/.style ={-},
+ lattice style/.style ={blue!30}]%
+{A,B,C,D,E}
+ \end{tikzpicture}
+
+ \end{tkzexample}
+
+\newpage
+\subsection{Tracé d'une ligne}
+\begin{NewMacroBox}{tkzKiviatLine}{\oarg{options}\var{$v_1,v_2,\dots$}}
+
+ L'argument est une liste de valeurs et cet argument est obligatoire. Les valeurs sont des décimaux mais si la valeur est un entier alors c'est entier correspond au rang d'une latte. La partie décimale si elle existe, précise le placement entre deux lattes sur l'axe radial.
+
+\medskip
+\begin{tabular}{lll}
+Arguments & défaut & exemple \\
+\midrule
+\TAline{Liste de valeurs} {empty} {\{4,3,2\}}
+\end{tabular}
+
+\medskip
+\begin{tabular}{lll}
+Options & défaut & définition \\
+\midrule
+\TOline{fill} {10} {permet de colorier l'intérieur du polygone}
+\TOline{opacity} {0.5} {définit l'opacité de la surface limitée par la ligne.}
+\bottomrule
+\end{tabular}
+
+\emph{Par défaut, l'axe radial est gradué de $0$ à $10$. Entre deux graduations, l'écart est de $0.5$ cm et est déterminé par l'option \tkzname{gap}.}
+
+\end{NewMacroBox}
+
+\begin{tkzexample}[]
+\begin{tikzpicture}
+ \tkzKiviatDiagram[lattice=5]{A,B,C}
+ \tkzKiviatLine[thick,
+ color = blue,
+ mark = ball,
+ mark size = 4pt,
+ fill = blue!20,
+ opacity=.5](4,3,2)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Exemple avec deux lignes}
+\begin{tkzexample}[]
+\begin{tikzpicture}
+ \tkzKiviatDiagram{Poissons,Légumes,Viande,Lait,Pain}
+ \tkzKiviatLine[thick,
+ color=red,
+ mark=ball,
+ ball color=red,
+ mark size=4pt,opacity=.2,
+ fill=red!20](5,9,6,8,4)
+ \tkzKiviatLine[thick,
+ color=blue,
+ mark=ball,
+ mark size=4pt,
+ fill=blue!20,
+ opacity=.5](4,6,6,4,3)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Autre exemple}
+\begin{tkzexample}[small]
+\begin{tikzpicture}[label distance=.15cm]
+ \tkzKiviatDiagram[radial style/.style ={-},
+ lattice style/.style ={blue!30}]%
+ {Poissons,Légumes,Viande,Lait,Pain}
+ \tkzKiviatLine[thick,color=red,
+ mark=ball,
+ ball color=red,
+ mark size=4pt,
+ fill=red!20](5,9,6,8,4)
+ \tkzKiviatLine[thick,color=blue,mark=ball,
+ mark size=4pt,
+ fill=blue!20,
+ opacity=.5](9,6,8,4,5)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\newpage
+ \subsection{Graduation d'un axe}
+\begin{NewMacroBox}{tkzKiviatGrad}{\oarg{options}\varp{integer}}
+\begin{tabular}{lll}
+Arguments & exemple & définition \\
+\midrule
+\TAline{integer} {empty} {numéro de l'axe}
+\end{tabular}
+
+\medskip
+\begin{tabular}{lll}
+Options & défaut & définition \\
+\midrule
+\TOline{graduation distance}{0pt}{permet de positionner les graduations}
+\TOline{prefix} {empty} {Ajoute un préfixe devant la valeur}
+\TOline{suffix} {empty} {Ajoute un suffixe devant la valeur}
+\TOline{unity} {1} {unité choisie pour les graduations}
+\bottomrule
+\end{tabular}
+
+\emph{Voir les exemples ci-dessous pour l'utilisation de \tkzname{suffix} et \tkzname{prefix}}
+
+\end{NewMacroBox}
+
+
+ \subsubsection{Exemple avec usage de \tkzname{suffix}}
+\begin{tkzexample}[]
+\begin{tikzpicture}
+\tkzKiviatDiagram[scale = .6,
+ gap = 1,
+ lattice = 5]{%
+ McCabe,LOC,Live Variables,Halstead N,Variablenspanne}
+\tkzKiviatLine[thick,color=blue,mark=none,
+ fill=blue!20,opacity=.5](3,3.5,3,3.5,3)
+\tkzKiviatLine[thick,color=darkgray,
+ fill=green!20,opacity=.5](0.5,1,0.5,0.75,1)
+\tkzKiviatLine[ultra thick,mark=ball,
+ mark size=4pt,color =Maroon](2,3.75,1,1.5,2)
+\tkzKiviatGrad[prefix=,unity=100,suffix=\ \texteuro](1)
+\end{tikzpicture}
+\end{tkzexample}
+
+
+ \subsubsection{Autre exemple avec usage de \tkzname{prefix}}
+\begin{tkzexample}[]
+\begin{tikzpicture}[rotate=30,scale=.75]
+\tkzKiviatDiagram[lattice = 6,
+ gap = 1,
+ step = 2,
+ label space = 2]%
+ {Marketing,
+ Sales,
+ Administration,
+ Information Technology,
+ Customer Support,
+ Development}
+ \tkzKiviatLine[thick,color=red](2.25,2.5,0.6,1.2,1,1)
+ \tkzKiviatLine[thick,color=blue](1,2,1,1.7,1.3,3)
+ \tkzKiviatGrad[prefix=\$,unity=10](5)
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+
+
+\newpage\section{Kiviat Graph à l'aide d'un fichier}
+Ce fichier est lu avec \tkzname{pgfplots}\NamePack{pgfplots}.
+
+\subsection{Caractéristiques du diagramme}
+
+\begin{NewMacroBox}{tkzKiviatDiagramFromFile}{\oarg{options}\var{file}}
+Le fichier doit être un fichier correspondant aux fichiers du package \tkzNamePack{pgfplots}.
+
+\medskip
+\begin{tabular}{lll}
+Arguments & défaut & exemple \\
+\midrule
+\TAline{file} {empty} {file.dat (\tkzname{pgfplots}\NamePack{pgfplots}.)}
+\end{tabular}
+
+\medskip
+\begin{tabular}{lll}
+Options & défaut & définition \\
+\midrule
+\TOline{lattice} {10} {nombre de lattes}
+\TOline{gap} {0.5} {l'écart entre deux lattes est de $0.5$ cm}
+\TOline{space} {0.5} {les axes sont agrandis de $0,5$ cm}
+\TOline{label space} {1.5} {Distance en cm entre la fin de l'axe et le label}
+\TOline{step} {1} {}
+\bottomrule
+\end{tabular}
+
+\emph{Par défaut l'axe radial est gradué de $0$ à $1$. Entre deux graduations, l'écart est de $0.5$ cm et est déterminé par l'option \tkzname{gap}.}
+\end{NewMacroBox}
+
+\begin{tkzltxexample}[]
+%file2.dat
+column1 column2
+Reliability 6
+Usability 4
+Timeliness 2
+Efficiency 3
+\end{tkzltxexample}
+
+\begin{tkzexample}[latex=8cm]
+\begin{tikzpicture}
+\tkzKiviatDiagramFromFile[
+ scale=.2,
+ label distance=1cm,
+ gap = 1,
+ label space=5,
+ lattice = 10]{file2.dat}
+
+\end{tikzpicture}
+\end{tkzexample}
+
+\newpage
+ \subsection{Tracé des lignes}
+\begin{NewMacroBox}{tkzKiviatLineFromFile}{\oarg{options}\var{file}\var{file}}
+
+\medskip
+\begin{tabular}{lll}
+Arguments & défaut & exemple \\
+\midrule
+\TAline{file} {empty} {file.dat (nécessite \tkzname{pgfplots}\NamePack{pgfplots})}
+\end{tabular}
+
+\medskip
+\begin{tabular}{lll}
+Options & défaut & définition \\
+\midrule
+\TOline{fill} {10} {permet de colorier l'intérieur du polygone}
+\TOline{opacity} {0.5} {définit l'opacité}
+\bottomrule
+\end{tabular}
+
+\emph{L'opacité ne pose pas de problème avec \tkzname{pdflatex} mais peut entraîner quelques difficultés avec \tkzname{latex}.}
+
+\end{NewMacroBox}
+
+\subsubsection{Diagramme à l'aide de données stockées dans un fichier}
+Ce fichier est lu à l'aide de \tkzname{pgfplots}\NamePack{pgfplots}. Voici un exemple de fichiers.
+
+\begin{tkzltxexample}[]
+ %file.dat
+ column1 column2 column3
+ Reliability 6 6.5
+ Usability 4 9
+ {Application Architecture} 7 8
+ {Version Control} 6.5 7
+ Timeliness 2 8
+ Efficiency 3 4
+ Effectiveness 5 6.5
+ Interoperability 1.5 7
+\end{tkzltxexample}
+
+\begin{tkzexample}[latex=9cm]
+\begin{tikzpicture}
+\tkzKiviatDiagramFromFile[
+ scale =.25,
+ label distance =.5cm,
+ gap = 1,
+ label space = 4,
+ lattice = 10]{file.dat}
+\tkzKiviatLineFromFile%
+ [thick,
+ color = blue,
+ mark = ball,
+ ball color = blue,
+ mark size = 4pt,
+ fill = blue!20]{file.dat}{2}
+\tkzKiviatLineFromFile%
+ [thick,
+ color = red,
+ mark = ball,
+ ball color = red,
+ mark size = 4pt,
+ fill = red!20]{file.dat}{1}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\clearpage\newpage
+\printindex
+\end{document}
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/file.dat b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/file.dat
new file mode 100644
index 0000000000..7d45b95fc9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/file.dat
@@ -0,0 +1,10 @@
+%file.dat
+column1 column2 column3
+Reliability 6 6.5
+Usability 4 9
+{Application Architecture} 7 8
+{Version Control} 6.5 7
+Timeliness 2 8
+Efficiency 3 4
+Effectiveness 5 6.5
+Interoperability 1.5 7 \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/file2.dat b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/file2.dat
new file mode 100644
index 0000000000..6355878def
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/doc/latex/file2.dat
@@ -0,0 +1,7 @@
+%file2.dat
+column1 column2
+Reliability 6
+Usability 4
+Timeliness 2
+Efficiency 3
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/file.dat b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/file.dat
new file mode 100644
index 0000000000..c58c962d40
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/file.dat
@@ -0,0 +1,10 @@
+%tableae.dat
+column1 column2 column3
+Reliability 6 6.5
+Usability 4 9
+{Application Architecture} 7 8
+{Version Control} 6.5 7
+Timeliness 2 8
+Efficiency 3 4
+Effectiveness 5 6.5
+Interoperability 1.5 7 \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat1.tex b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat1.tex
new file mode 100644
index 0000000000..f123d065a7
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat1.tex
@@ -0,0 +1,41 @@
+\documentclass[]{scrartcl}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[upright]{fourier}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tkz-kiviat,numprint,fullpage}
+\usetikzlibrary{arrows}
+\thispagestyle{empty}
+
+\begin{document}
+
+
+\begin{tikzpicture}
+ \tkzKiviatDiagram[lattice=5]{A,B,C}
+ \tkzKiviatLine[thick,
+ color = blue,
+ mark = ball,
+ mark size = 4pt,
+ fill = blue!20,
+ opacity=.5](4,3,2)
+\end{tikzpicture}
+
+
+
+ \begin{tikzpicture}
+ \tkzKiviatDiagram{Poissons,Légumes,Viande,Lait,Pain,fruit}
+ \tkzKiviatLine[thick,
+ color = red,
+ mark = ball,
+ ball color = red,
+ mark size = 4pt,
+ opacity = .2,
+ fill=red!20](10.5,11,6,8,4)
+ \tkzKiviatLine[thick,
+ color = blue,
+ mark = ball,
+ mark size = 4pt,
+ fill = blue!20,
+ opacity=.5](4,6,6,4,3)
+ \end{tikzpicture}
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat2.tex b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat2.tex
new file mode 100644
index 0000000000..679782e347
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat2.tex
@@ -0,0 +1,23 @@
+\documentclass[]{scrartcl}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[upright]{fourier}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tkz-kiviat,numprint,fullpage}
+\usetikzlibrary{arrows}
+\thispagestyle{empty}
+
+\begin{document}
+
+\begin{tikzpicture}[label distance=.15cm]
+ \tkzKiviatDiagram[
+ radial=5,
+ radial style/.style ={-},
+ lattice style/.style ={blue!30}]%
+ {Poissons,Légumes,Viande,Lait,Pain}
+ \tkzKiviatLine[thick,color=red,mark=ball,
+ ball color=red,mark size=4pt,fill=red!20](5,9,6,8,4)
+ \tkzKiviatLine[thick,color=blue,mark=ball,
+ mark size=4pt,fill=blue!20,opacity=.5](9,6,8,4,5)
+\end{tikzpicture}
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat3.tex b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat3.tex
new file mode 100644
index 0000000000..d6aa486800
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat3.tex
@@ -0,0 +1,25 @@
+\documentclass[]{scrartcl}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[upright]{fourier}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tkz-kiviat,numprint,fullpage}
+\usetikzlibrary{arrows}
+\thispagestyle{empty}
+
+\begin{document}
+\begin{tikzpicture}
+\tkzKiviatDiagram[scale=1.25,label distance=.5cm,
+ radial = 5,
+ gap = 1,
+ lattice = 5]{McCabe,LOC,Live Variables,Halstead N,Variablenspanne}
+\tkzKiviatLine[thick,color=blue,mark=none,
+ fill=blue!20,opacity=.5](3,3.5,3,3.5,3)
+\tkzKiviatLine[thick,color=darkgray,
+ fill=green!20,opacity=.5](0.5,1,0.5,0.75,1)
+\tkzKiviatLine[ultra thick,mark=ball,
+ mark size=4pt,color =Maroon](2,3.75,1,1.5,2)
+\tkzKiviatGrad[prefix=,unity=100,suffix=\ \texteuro](1)
+\end{tikzpicture}
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat4.tex b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat4.tex
new file mode 100644
index 0000000000..1472945342
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat4.tex
@@ -0,0 +1,28 @@
+\documentclass[]{scrartcl}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[upright]{fourier}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tkz-kiviat,numprint,fullpage}
+\usetikzlibrary{arrows}
+\thispagestyle{empty}
+
+\begin{document}
+
+\begin{tikzpicture}[label distance=.15cm,rotate=30,scale=.75]
+\tkzKiviatDiagram[radial=6,lattice=6,gap=1,step=2,label space=2]%
+ {Marketing,
+ Sales,
+ Administration,
+ Information Technology,
+ Customer Support,
+ Development}
+ \tkzKiviatLine[thick,color=red](2.25,2.5,0.6,1.2,1,1)
+ \tkzKiviatLine[thick,color=blue](1,2,1,1.7,1.3,3)
+ \tkzKiviatGrad[prefix=\$,unity=10](0)
+ \end{tikzpicture}
+
+\end{document}
+
+
+ \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat5.tex b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat5.tex
new file mode 100644
index 0000000000..d340027dc2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/examples/latex/kiviat5.tex
@@ -0,0 +1,36 @@
+\documentclass[]{scrartcl}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage[upright]{fourier}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tkz-kiviat,numprint,fullpage}
+\usepackage{pgfplotstable}
+\usetikzlibrary{arrows}
+\thispagestyle{empty}
+
+\begin{document}
+
+\begin{tikzpicture}
+\tkzKiviatDiagramFromFile[
+ scale=.5,
+ label distance=.5cm,
+ gap = 1,
+ label space=3,
+ lattice = 10]{file.dat}
+\tkzKiviatLineFromFile[thick,
+ color = blue,
+ mark = ball,
+ ball color = blue,
+ mark size = 4pt,
+ fill = blue!20]{file.dat}{2}
+\tkzKiviatLineFromFile[thick,
+ color = red,
+ mark = ball,
+ ball color = red,
+ mark size = 4pt,
+ fill = red!20]{file.dat}{1}
+\end{tikzpicture}
+
+\end{document}
+
+Sherlock Holmes \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-kiviat/latex/tkz-kiviat.sty b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/latex/tkz-kiviat.sty
new file mode 100644
index 0000000000..c047c80017
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-kiviat/latex/tkz-kiviat.sty
@@ -0,0 +1,246 @@
+% Copyright 2011 by Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License and/or
+% 2. under the GNU Public License.
+%
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % tkz-kiviat.sty encodage : utf8 %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % Créé par Alain Matthes le 07-02-2011 %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Objet : kiviat chart or diagram
+
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{tkz-kiviat}[2018/09/19 v0.1 b]
+\ifx\e@alloc\@undefined
+ \RequirePackage{etex}
+\fi
+\RequirePackage{tikz}
+\usetikzlibrary{backgrounds}
+%<--------------------------------------------------------------------------->
+\makeatletter
+\def\tkzutil@empty{}
+\newif\iftkz@kiv@table
+\pgfkeys{%
+/kiviat/.cd,
+space/.code = {\def\tkz@kiv@sp{#1}},
+gap/.code = {\def\tkz@kiv@gap{#1}},
+lattice/.code = {\def\tkz@kiv@lattice{#1}},
+step/.code = {\def\tkz@kiv@step{#1}},
+radial style/.style = {->,>=latex'},
+lattice style/.style = {thin,lightgray},
+label style/.style = {text width=2 cm,align=center},
+label space/.code = {\def\tkz@kiv@space{#1}},
+/kiviat/.unknown/.code = {\let\searchname=\pgfkeyscurrentname
+ \pgfkeysalso{\searchname/.try=#1,
+ /tikz/\searchname/.retry=#1}}
+ }
+\def\tkzKiviatDiagram{\pgfutil@ifnextchar[{\tkz@KiviatDiagram}{%
+ \tkz@KiviatDiagram[]}}
+\def\tkz@KiviatDiagram[#1]#2{%
+
+\pgfkeys{/kiviat/.cd,
+gap = .5,
+lattice = 10,
+space = .5,
+step = 1,
+label space = 1.5
+}
+\pgfqkeys{/kiviat}{#1}%
+\begingroup
+\foreach \x [count=\rang from 1] in {#2}{%
+\global\let\tkz@kiv@radial\rang}%
+\foreach \x [count=\rang from 0] in {#2}{%
+ \draw[/kiviat/radial style]
+ (0,0)--(360/\tkz@kiv@radial*\rang:\tkz@kiv@lattice*\tkz@kiv@gap+\tkz@kiv@sp);
+ \path
+(0,0)--(360/\tkz@kiv@radial*\rang:\tkz@kiv@lattice*\tkz@kiv@gap+\tkz@kiv@space) node[/kiviat/label style] {\x};
+
+\foreach \y in {0,1,...,\tkz@kiv@lattice}{
+ \draw[/kiviat/lattice style]%
+ (360/\tkz@kiv@radial*\rang:\y*\tkz@kiv@gap)--%
+ (360/\tkz@kiv@radial*\rang+360/\tkz@kiv@radial:\y*\tkz@kiv@gap);
+ }
+}
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\pgfkeys{/kiviatline/.cd,
+fill/.code = {\global\def\tkz@kivl@fill{#1}},
+opacity/.code = {\global\def\tkz@kivl@opacity{#1}},
+/kiviatline/.unknown/.code ={\let\searchname=\pgfkeyscurrentname
+ \pgfkeysalso{\searchname/.try=#1,
+ /tikz/\searchname/.retry=#1}}
+}
+%<--------------------------------------------------------------------------->
+\def\tkzKiviatLine{\pgfutil@ifnextchar[{\tkz@KiviatLine}{%
+ \tkz@KiviatLine[]}}
+\def\tkz@KiviatLine[#1](#2,#3){%
+\begingroup
+\pgfkeys{/kiviatline/.cd,
+fill= {},
+opacity=.5
+}
+\pgfqkeys{/kiviatline}{#1}% opacity ??????
+\ifx\tkzutil@empty\tkz@kivl@fill \else
+\begin{scope}[on background layer]
+ \path[fill=\tkz@kivl@fill,opacity=\tkz@kivl@opacity] (360/\tkz@kiv@radial*0:#2*\tkz@kiv@gap*\tkz@kiv@step)
+\foreach \v [count=\rang from 1] in {#3}{%
+ -- (360/\tkz@kiv@radial*\rang:\v*\tkz@kiv@gap*\tkz@kiv@step) } -- (360/\tkz@kiv@radial*0:#2*\tkz@kiv@gap*\tkz@kiv@step);
+ \end{scope}
+ \fi
+\draw[#1,opacity=1] (0:#2*\tkz@kiv@gap) plot coordinates {(360/\tkz@kiv@radial*0:#2*\tkz@kiv@gap*\tkz@kiv@step)}
+\foreach \v [count=\rang from 1] in {#3}{%
+ -- (360/\tkz@kiv@radial*\rang:\v*\tkz@kiv@gap*\tkz@kiv@step) plot coordinates {(360/\tkz@kiv@radial*\rang:\v*\tkz@kiv@gap*\tkz@kiv@step)}} -- (360/\tkz@kiv@radial*0:#2*\tkz@kiv@gap*\tkz@kiv@step);
+\endgroup
+}%
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\pgfkeys{/kiviatgrad/.cd,
+graduation distance/.code = \def\tkz@kiv@grad{#1},
+prefix/.code = \def\tkz@kiv@prefix{#1},
+suffix/.code = \def\tkz@kiv@suffix{#1},
+unity/.code = \def\tkz@kiv@unity{#1},
+/kiviatgrad/.unknown/.code ={\let\searchname=\pgfkeyscurrentname
+ \pgfkeysalso{\searchname/.try=#1,
+ /tikz/\searchname/.retry=#1}}
+}
+%<--------------------------------------------------------------------------->
+\def\tkzKiviatGrad{\pgfutil@ifnextchar[{\tkz@KiviatGrad}{\tkz@KiviatGrad[]}}
+\def\tkz@KiviatGrad[#1](#2){%
+\begingroup
+\pgfkeys{/kiviatgrad/.cd,
+graduation distance= 0 pt,
+prefix ={},
+suffix={},
+unity=1
+ }
+ \pgfqkeys{/kiviatgrad}{#1}%
+\let\tikz@label@distance@tmp\tikz@label@distance
+\global\let\tikz@label@distance\tkz@kiv@grad
+ \foreach \nv in {1,...,\tkz@kiv@lattice}{
+ \pgfmathparse{\tkz@kiv@unity*\nv}
+ \pgfmathtruncatemacro{\result}{\pgfmathresult}
+ \protected@edef\tkz@kiv@gd{\tkz@kiv@prefix$\result$\tkz@kiv@suffix}
+ \path[/kiviatgrad/.cd,#1] (0:0)--(360/\tkz@kiv@radial*#2:\nv*\tkz@kiv@gap)
+ node[label=(360/\tkz@kiv@radial*#2)-90:\tkz@kiv@gd] {};
+ }
+ \let\tikz@label@distance\tikz@label@distance@tmp
+\endgroup
+}%
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\pgfkeys{%
+/kiviatfile/.cd,
+space/.code = {\def\tkz@kiv@sp{#1}},
+gap/.code = {\def\tkz@kiv@gap{#1}},
+lattice/.code = {\def\tkz@kiv@lattice{#1}},
+step/.code = {\def\tkz@kiv@step{#1}},
+radial style/.style = {->,>=latex'},
+lattice style/.style = {thin,lightgray},
+label style/.style = {text width=2 cm,align=center},
+label space/.code = {\def\tkz@kiv@space{#1}},
+/kiviatfile/.unknown/.code = {\let\searchname=\pgfkeyscurrentname
+ \pgfkeysalso{\searchname/.try=#1,
+ /tikz/\searchname/.retry=#1}}
+}
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\def\tkzKiviatDiagramFromFile{\pgfutil@ifnextchar[{\tkz@KiviatFile}{%
+ \tkz@KiviatFile[]}}
+\def\tkz@KiviatFile[#1]#2{%
+\pgfkeys{/kiviatfile/.cd,
+gap = .5,
+lattice = 10,
+space = .5,
+step = 1,
+label space = 1.5,
+table = false
+}
+\pgfqkeys{/kiviatfile}{#1}%
+\begingroup
+\pgfplotstablevertcat{\tkz@kivdata}{#2}
+\pgfplotstablegetrowsof{\tkz@kivdata}
+\pgfmathsetmacro{\nbrows}{\pgfplotsretval}
+\pgfmathsetmacro{\rows}{\pgfplotsretval-1}
+\pgfplotstablegetcolsof{\tkz@kivdata}
+\pgfmathsetmacro{\cols}{\pgfplotsretval-1}
+\pgfplotstablevertcat{\tkz@kivdata}{\tkz@kivdata}
+\pgfplotstablegetelem{0}{[index] 0}\of{\tkz@kivdata}
+\edef\tkz@kiv@radial{\nbrows}
+\foreach \x [count=\rang from 0] in {0,...,\rows}{%
+ \pgfplotstablegetelem{\x}{[index] 0}\of{\tkz@kivdata}
+ \draw[/kiviatfile/radial style]
+ (0,0)--(360/\tkz@kiv@radial*\rang:\tkz@kiv@lattice*\tkz@kiv@gap+\tkz@kiv@sp);
+ \path
+(0,0)--(360/\tkz@kiv@radial*\rang:\tkz@kiv@lattice*\tkz@kiv@gap+\tkz@kiv@space) node[/kiviatfile/label style] {\pgfplotsretval};
+
+\foreach \y in {0,1,...,\tkz@kiv@lattice}{
+ \draw[/kiviat/lattice style]%
+ (360/\tkz@kiv@radial*\rang:\y*\tkz@kiv@gap)--%
+ (360/\tkz@kiv@radial*\rang+360/\tkz@kiv@radial:\y*\tkz@kiv@gap);
+ }
+}
+\endgroup
+}
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\pgfkeys{/kiviatlinefile/.cd,
+fill/.code = {\global\def\tkz@kivl@fill{#1}},
+opacity/.code = {\global\def\tkz@kivl@opacity{#1}},
+/kiviatlinefile/.unknown/.code ={\let\searchname=\pgfkeyscurrentname
+ \pgfkeysalso{\searchname/.try=#1,
+ /tikz/\searchname/.retry=#1}}
+}
+%<--------------------------------------------------------------------------->
+\def\tkzKiviatLineFromFile{\pgfutil@ifnextchar[{\tkz@KiviatLineFile}{%
+ \tkz@KiviatLineFile[]}}
+\def\tkz@KiviatLineFile[#1]#2#3{%
+\begingroup
+\pgfkeys{/kiviatlinefile/.cd,
+fill= {},
+opacity=0.5
+}
+\pgfqkeys{/kiviatlinefile}{#1}%
+\pgfplotstablevertcat{\tkz@kivdata}{#2}
+\pgfplotstablegetrowsof{\tkz@kivdata}
+\pgfmathsetmacro{\nbrows}{\pgfplotsretval}
+\pgfmathsetmacro{\rows}{\pgfplotsretval-1}
+\pgfplotstablegetcolsof{\tkz@kivdata}
+\pgfmathsetmacro{\cols}{\pgfplotsretval-1}
+\pgfplotstablevertcat{\tkz@kivdata}{\tkz@kivdata}
+\pgfplotstablegetelem{0}{[index] 0}\of{\tkz@kivdata}
+\edef\tkz@kiv@radial{\nbrows}
+\ifx\tkzutil@empty\tkz@kivl@fill \else
+\begin{scope}[on background layer]
+ \pgfplotstablegetelem{0}{[index] #3}\of{\tkz@kivdata}
+ \let\actualval\pgfplotsretval
+\path[fill=\tkz@kivl@fill,opacity=\tkz@kivl@opacity]
+ (0:\actualval*\tkz@kiv@gap*\tkz@kiv@step)
+ \foreach \v [count=\rang from 1] in {1,...,\nbrows}{%
+ \pgfextra{\pgfplotstablegetelem{\v}{[index] #3}\of{\tkz@kivdata}}
+ -- (360/\tkz@kiv@radial*\v:\pgfplotsretval*\tkz@kiv@gap*\tkz@kiv@step)
+ };
+ \end{scope}
+ \fi
+ \foreach \v [count=\rang from 1] in {0,...,\nbrows}{%
+ \pgfplotstablegetelem{\v}{[index] #3}\of{\tkz@kivdata}
+ \let\actualval\pgfplotsretval
+ \pgfplotstablegetelem{\rang}{[index] #3}\of{\tkz@kivdata}
+ \let\nextval\pgfplotsretval
+ \draw[#1,opacity=1] (360/\tkz@kiv@radial*\v:\actualval*\tkz@kiv@gap)
+ -- (360/\tkz@kiv@radial*\rang:\nextval*\tkz@kiv@gap*\tkz@kiv@step)
+ plot coordinates {(360/\tkz@kiv@radial*\rang:\nextval*\tkz@kiv@gap*\tkz@kiv@step)};
+ }
+\endgroup
+}%
+
+%<--------------------------- the end --------------------------------------->
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/README b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/README
new file mode 100644
index 0000000000..b68ada7a54
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/README
@@ -0,0 +1,61 @@
+Encoding : utf8
+Author : Alain Matthes
+Date : 19/09/2018
+Package : tkz-linknodes.sty
+Version : 1.1d
+
+
+ The linknodes package
+
+-------------------------------------------------------------------------
+A. Purpose
+-------------------------------------------------------------------------
+
+The 'linknodes' package provides macros for adding links between the lines
+ of a mathematic environment like 'aligned' or 'align'.
+
+-------------------------------------------------------------------------
+B. Installation
+-------------------------------------------------------------------------
+
+You need the following packages in your distribution:
+
+xkeyval [2005/11/25]
+tikz 2.00
+etex
+ifthen
+amsmath
+
+On Unix like systems, copy the file 'tkz-linknodes.sty' into 'texmf/tex/latex/' or
+ put all files somewhere where TeX can find them, if necessary then run 'texhash'.
+
+With MiKTeX, copy the file 'linknodes.sty' into 'C:\texmf\tex\latex', then
+run 'MiKTeX Options'. In the 'File name database' section, click on
+'Refresh now'.
+
+-------------------------------------------------------------------------
+C. Content of the folder 'linknodes'
+-------------------------------------------------------------------------
+
+README This file.
+tkz-linknodes.sty The package.
+TKZdoc-linknodes.pdf The documentation in english(?) with a lot of examples.
+linknodes.zip Documentation with sources and examples.
+
+-------------------------------------------------------------------------
+D. Licence
+-------------------------------------------------------------------------
+
+You may freely use and distribute this package under the terms of lppl and/or gpl.
+
+Read file TKZdoc-tab.pdf.pdf in the doc directory, for the complete documentation
+
+-------------------------------------------------------------------------
+E. Bugs, suggestions, contact
+-------------------------------------------------------------------------
+
+The author of the 'linknodes' package is Alain Matthes.
+Email <al.ma at mac dot com> to submit bug reports, request new features, etc.
+I maintain two web sites featuring TikZ stuff called
+Altermundus <http://altermundus.fr> and <http://altermundus.com>.
+February, 28th, 2009 \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/latex/TKZdoc-linknodes-us.tex b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/latex/TKZdoc-linknodes-us.tex
new file mode 100644
index 0000000000..15a46e6822
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/latex/TKZdoc-linknodes-us.tex
@@ -0,0 +1,1611 @@
+% $Id: linknodes-us.tex 2009-02-22 12h22 alain matthes $
+% encoding : utf8
+% linknodesdoc.tex
+% Created by Alain Matthes on 2008-01-19.
+% Copyright (C) 2009 Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/generic/pgf/licenses/LICENSE for more details.%
+% See http://www.latex-project.org/lppl.txt for details.
+%
+%
+% ``linknodes-us'' is the english doc of tkz-linknodes
+%
+%
+\documentclass[DIV=14,
+ fontsize=10,
+ headinclude=false,
+ index=totoc,
+ footinclude=false,
+ headings=small]{tkz-doc}
+\usepackage{tkz-linknodes}
+\usepackage{listings,tkzexample}
+\usepackage[pdftex,unicode,
+ colorlinks=true,
+ pdfpagelabels,
+ urlcolor=blue,
+ filecolor=pdffilecolor,
+ linkcolor=blue,
+ breaklinks =false,
+ hyperfootnotes=false,
+ bookmarks=false,
+ bookmarksopen=false,
+ linktocpage=true,
+ pdfsubject={2d Drawings},
+ pdfauthor={Alain Matthes},
+ pdftitle={tkz-base},
+ pdfkeywords={base},
+ pdfcreator={LaTeX}
+ ]{hyperref}
+\usepackage{url}
+\def\UrlFont{\small\ttfamily}
+\usepackage[protrusion = true,
+ expansion,
+ final,
+ verbose = false,
+ babel = true]{microtype}
+
+\DisableLigatures{encoding = T1, family = tt*}
+\usepackage[parfill]{parskip}
+
+\gdef\nameofpack{tkz-linknodes}
+\gdef\versionofpack{1.1 d}
+\gdef\dateofpack{2018/09/19}
+\gdef\nameofdoc{doc-linknodes v1.1 d}
+\gdef\dateofdoc{2018/09/19}
+\gdef\authorofpack{Alain Matthes}
+\gdef\adressofauthor{}
+\gdef\namecollection{AlterMundus}
+\gdef\urlauthor{http://altermundus.fr}
+\gdef\urlauthorcom{http://altermundus.com}
+
+\title{The package : tkz-linknodes.sty}
+\author{Philippe Ivaldi, Alain Matthes}
+
+\usepackage{shortvrb,fancyvrb}
+\usepackage[english]{babel}
+\usepackage[autolanguage]{numprint}
+
+\parindent=0pt
+\begin{document}
+\title{\nameofpack}
+\date{\today}
+\clearpage
+\thispagestyle{empty}
+\maketitle
+
+\clearpage
+\pagecolor{fondpaille}
+\color{Maroon}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{codebackground}{Peach!30}
+\colorlet{codeonlybackground}{Peach!30}
+
+ \nameoffile{\nameofpack}
+
+
+\defoffile{\tkzname{Tkz-linknodes.sty} arose from a question of \textbf{Philippe Ivaldi}, about \TIKZ. It was a question of knowing if we could easily create links between the lines of an environment as \tkzname{aligned} or still \tkzname{align} by indicating the operation made between the two lines. With the Philippe's acute remarks and his active collaboration, I hope I can bring you a useful tool.}
+
+\presentation
+
+\vspace*{1cm}
+\lefthand\ Firstly, I would like to thank \tkzimp{Till Tantau} for the beautiful LATEX package, namely \TIKZ.
+
+\vspace*{12pt}
+\lefthand\ I am grateful to \tkzimp{Michel Bovani} for providing the \tkzname{fourier} font.
+
+\vspace*{12pt}
+\lefthand\ Finally, I would like to thank \tkzimp{Herbert Vo\ss} for providing
+ a very good document \tkzname{MathMode.pdf}, I used some examples from it. You can find \tkzname{MathMode.pdf} here:\newline
+\url{http://dante.ctan.org/indexes/info/math/voss/mathmode/}
+
+\vspace*{12pt}
+\lefthand\ Vous trouverez de nombreux exemples sur mes sites~:
+\href{http://altermundus.com/pages/download.html}{altermundus.fr} ou
+\href{http://altermundus.fr/pages/download.html}{altermundus.com}
+
+\vspace*{12pt}
+Please report typos or any other comments to this documentation to \href{mailto:al.ma@mac.com}{\textcolor{blue}{Alain Matthes}}
+This file can be redistributed and/or modified under the terms of the LATEX
+Project Public License Distributed from CTAN archives in directory \url{CTAN://
+macros/latex/base/lppl.txt}.
+
+\clearpage
+\tableofcontents
+\newpage
+
+\setlength{\parskip}{1ex plus 0.5ex minus 0.2ex}
+
+\section{Introduction}
+
+Here is an example of what Philippe wanted when he used the environment \tkzname{aligned} \footnote{The \tkzname{aligned} environment is similar to the array environment, there exists no starred version and it has only one equation number and has to be part of another math environment, which should be equation environment.}.
+
+\bigskip
+
+\begin{center}
+ \fbox{%
+ \begin{minipage}{12cm}
+ \begin{NodesList}[margin=3 cm]
+ \begin{align}
+ 3\left(x^2-\frac{2}{3}\right) &= 4 \AddNode\\
+ 3x^2-2 &= 4 \AddNode\\
+ 3x^2 &= 6 \AddNode\\
+ \intertext{\hfil isolate the term with the variable \hfil}
+ x^2 &= 2 \AddNode\\
+ \sqrt{x^2} &= \sqrt{2} \AddNode\\
+ |x| &= \sqrt{2} \AddNode\\
+ x &= \pm\sqrt{2} \AddNode
+ \end{align}
+ \LinkNodes{expand}%
+ \LinkNodes{$+2$}%
+ \LinkNodes{$\div 3$}
+ \LinkNodes{$\sqrt{\ldots}$}
+ \LinkNodes{$\sqrt{x}=|x|$}
+ \LinkNodes{so that}
+ \end{NodesList}
+ \end{minipage}}
+\end{center}
+
+
+\bigskip
+\tkzname{tkz-linknodes.sty} is based on
+ \tikzname{}, constituted by an environment \tkzname{NodesList} and two macros \tkzcname{AddNode} and \tkzcname{LinkNodes}.
+
+Philippe and I wanted a maximum of simplicity in the syntax and wish that it so stays even if developments occur. Without another word, it's the simplicity itself.
+
+\vfill\newpage
+\section{Installation}\label{ins}
+\subsection{How to install the package \texttt{\textcolor{red}{linknodes.sty}}}
+
+\newcommand{\drawpage}[4]{%
+ \begin{scope}[xshift=#1, yshift=#2,font=\footnotesize]
+ \filldraw[fill=white!75!#4,draw=#4, very thin]%
+ (0,0) -- (4.2,0) -- (4.2,4.85) --(3.21,5.84)-- (0,5.84) -- cycle;
+ \fill[fill=#4,shade,top color=#4,bottom color=#4!40]%
+ (3.21,5.84) -- ++(0,-0.99) -- ++(0.99,0) -- cycle;
+ \path (2.1,2.97) node{#3};
+ \end{scope}
+}
+
+
+It is possible that when you will read this document, \tkzname{tkz-tab} is present on the \tkzname{CTAN}\footnote{\tkzname{tkz-tab} is not still a part of \tkzname{TeXLive} but it will be soon possible to install it with \tkzname{tlmgr}} server. If \tkzname{tkz-tab} is not still a part of your distribution, this chapter shows you how to install it.
+\subsection{With TeXLive under OS X and Linux}\NameDist{TeXLive}
+
+You could simply create a folder \tikz[remember picture,baseline=(n1.base)]\node [fill=green!50,draw] (n1) {prof}; which path is : \colorbox{red!50}{ texmf/tex/latex/prof}. \colorbox{green!50}{texmf} is generally the personnal folder. For example the paths of this folder on my two computers are
+
+\medskip
+\begin{itemize}\setlength{\itemsep}{10pt}
+\item with OS X\NameSys{OS X} \colorbox{blue!30}{\textbf{/Users/ego/Library/texmf}};
+\item with Ubuntu\NameSys{Linux Ubuntu} \colorbox{blue!30}{\textbf{/home/ego/texmf}}.
+\end{itemize}
+
+If you choose a custom location for your files, I suppose that you know why!
+The installation that I propose, is valid only for one user.
+
+\medskip
+\begin{enumerate}
+\item Store the file \tikz[remember picture,baseline=(n2.base)]\node [fill=green!50,draw] (n2) {tkz-linknodes.sty}; in the folder \colorbox{green!50}{prof}.
+\item Open a terminal, then type \texttt{\colorbox{red!50}{sudo texhash}}
+\item Check that \textcolor{red}{xkeyval(>=2.5) and tikz 2.0} are installed.
+\end{enumerate}
+
+My folder texmf is structured as in the diagram below because I use the \tkzname{CVS}\footnote{You can find the cvs version here : \url{http://www.texample.net/tikz/builds/} without CVS\\ or here with CVS \url{http://sourceforge.net/projects/pgf/}} version of \TIKZ. You don't need all the \tkzname{pgf} folders.
+
+\medskip
+\begin{tikzpicture} [remember picture,rotate=90]
+
+\node (texmf) at (4,2) [draw,fill=blue!30 ] {texmf};
+\node (tex) at (6,0) [draw ] {tex};
+\node (doc) at (0,0) [draw ] {doc};
+\node (generic) at (7,-4) [draw ] {generic};
+\node (docgen) at (0,-4) [draw ] {generic};
+\node (latex) at (4,-4) [draw ] {latex};
+\node (pgf) at (7,-7) [draw,fill=orange] {pgf};
+\node (pre) at (6,-7) [draw,fill=orange] {pgf};
+\node (xkey) at (5,-7) [draw ] {xkeyval};
+\node (four) at (4,-7) [draw ] {fourier};
+\node (prof) at (3,-7) [draw,fill=green ] {{prof}};
+\node (etc) at (2,-7) [draw ] {etc...};
+\node (dpgf) at (0,-7) [draw,fill=orange] {pgf};
+\node (qcm) at (7,-11) [draw,fill=green ] {alterqcm.sty};
+\node (fonc) at (6,-11) [draw,fill=orange] {tkz-base.sty};
+\node (esp) at (5,-11) [draw,fill=orange] {tkz-fct.sty};
+\node (tuk) at (4,-11) [draw,fill=orange] {tkz-arith.sty};
+\node (tab) at (3,-11) [draw,fill=orange] {tkz-linknodes.sty};
+\node (base) at (2,-11) [draw,fill=orange] {tkz-2d.sty};
+\node (gra) at (1,-11) [draw,fill=orange] {tkz-berge.sty};
+\draw (doc.west) |- (4, 1);
+\draw (tex.west) |- (4, 1);
+\draw (latex.west) |- (6,-2);
+\draw (generic.west) |- (6,-2);
+\draw (xkey.west) |- (5,-6);
+\draw (prof.west) |- (3,-6);
+\draw (four.west) |- (4,-6);
+\draw (pre.west) |- (4,-6);
+\draw (etc.west) |- (4,-6);
+\draw (qcm.west) |- (3,-9);
+\draw (fonc.west) |- (6,-9);
+\draw (esp.west) |- (5,-9);
+\draw (tuk.west) |- (4,-9);
+\draw (tab.west) |- (3,-9);
+\draw (base.west) |- (2,-9);
+\draw (gra.west) |- (3,-9);
+\draw[-open triangle 90] (pgf.west) -- (generic.east);
+\draw[-open triangle 90] (4,1) -- (texmf.east);
+\draw[-open triangle 90] (6,-2) -- (tex.east);
+\draw[-open triangle 90] (4,-6) -- (latex.east);
+\draw[-open triangle 90] (3,-9) -- (prof.east);
+\draw[-open triangle 90] (dpgf.west) -- (docgen.east);
+\draw[-open triangle 90] (docgen.west) -- (doc.east);
+\end{tikzpicture}
+
+\begin{tikzpicture}[remember picture,overlay]
+ \path[->,thin,red,>=latex] (n1) edge [bend left] (prof);
+ \path[->,thin,red,>=latex] (n2) edge [bend left] (prof);
+\end{tikzpicture}
+
+\subsection{How to work with the tkz-\LaTeX-package under Windows?}
+\NameDist{MikTeX}\NameSys{Windows XP}
+Download and install the following files (if not yet done):
+\begin{enumerate}
+
+ \item the \LaTeX-system MiKTeX from
+
+ \url{http://www.miktex.org/}.
+
+ What file you need (e.g.
+ \texttt{basic-miktex-2.7.2904.exe}) and how to install
+ this program is explained there in the "Download"
+ section of the respective version (current version is
+ 2.7). In general and as usual in windows, you run the
+ setup process by starting the setup file :\newline (e.g.\texttt{basic-miktex-2.7.2904.exe}).
+
+ \item Till Tantau's \LaTeX-package \texttt{pgf-tikZ} from
+
+ \url{http://sourceforge.net/projects/pgf/}
+
+ "For MiKTeX, use the update wizard [of MiKTeX] to
+ install the (latest versions of the) packages called
+ \texttt{pgf}, \texttt{xcolor}, and \texttt{xkeyval}."
+ (cited from the pgf manual, contained in the files
+ downloaded).
+ \item the sty-files and the doc-files of Alain's tkz-package
+ from
+
+ \url{http://www.altermundus.fr/pages/download.html}.
+
+ or
+
+ \url{http://altermundus.com/pages/download.html}.
+ To add the files to MiKTeX:
+
+ \begin{itemize}
+ \item add a directory \texttt{prof} in the
+ directory \texttt{[MiKTeX-dir]/tex/latex'},
+ e.g. in windows explorer,
+ \item copy the sty-files in this directory
+ \texttt{prof},
+ \item update the MiKTeX system, ether by running
+ in a DOS shell the command\newline\texttt{"mktexlsr
+ -u"}\newline or by clicking\newline
+ "Start/Programs/Miktex/Settings/General", then
+ push the button "Refresh FNDB".
+ \end{itemize}
+ \end{enumerate}
+
+\vfill\newpage
+\section{How to use the package \texttt{\textcolor{red}{linknodes.sty}}}
+
+\bigskip
+You can compile with pdflatex but you have to compile your document
+twice!
+It's possible to compile with latex but only if the version of pdftex is equal to or greater than 1.40.
+
+\bigskip
+\begin{center}
+\begin{tikzpicture}[>=triangle 45,scale=.75]
+ \drawpage{0cm}{0cm}{\texttt \blue file.tex}{blue}
+ \drawpage{16cm}{0cm}{\texttt \red file.pdf}{red}
+ \path (8.05,2.9) node(A)
+ [diamond,%
+ draw,color=black,fill=red,%,%
+ text = black,%
+ minimum size = 3 cm,%
+ font = \normalsize]
+ {{\texttt pdflatex}};
+ \path (12.1,2.9) node(B)
+ [diamond,%
+ draw,color=black,fill=red,%,%
+ text = black,%
+ minimum size = 3 cm,%
+ font = \normalsize]
+ {{\texttt pdflatex}};
+ \draw[->] (4.2,2.9) -- (A.west);
+ \draw[->] (B.east) -- (16,2.9);
+\end{tikzpicture}
+\end{center}
+
+The package loads,tries to load \tkzname{xkeyval}[2005/11/25], \tkzname{tikz}[2007/06/07] version 2.00, \tkzname{amsmath}, \tkzname{etex} and \tkzname{ifthen}.
+
+\bigskip
+\subsection{Minimal example but complete}
+
+{
+\definecolor{codebackground}{rgb}{0,0,0}
+\blanc
+\begin{tkzexample}[code only,vbox,small,num]
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[upright]{fourier}
+\usepackage{tkz-linknodes}
+\begin{document}
+ \begin{NodesList}
+ \[ % formula no "inline"
+ \begin{aligned}
+ 2x &= 8 \AddNode\\
+ x &= 4 \AddNode
+ \end{aligned}
+ \]
+ \LinkNodes{$\div 2$}
+ \end{NodesList}
+\end{document}\end{tkzexample}}
+
+\bigskip
+\subsection{Result}
+ \begin{NodesList}
+ \[ % formula no "inline"
+ \begin{aligned}
+ 2x &= 8 \AddNode\\
+ x &= 4 \AddNode
+ \end{aligned}
+ \]
+ \LinkNodes{$\div 2$}%
+ \end{NodesList}
+
+\vfill\newpage
+
+ \section{Essential environment \texttt{\textcolor{red}{NodesList}} and macros \textcolor{red}{ \addbs{LinkNodes}} and \textcolor{red}{ \addbs{AddNode}}}
+
+\subsection{The environment \texttt{\textcolor{red}{NodesList}}}
+
+\begin{NewEnvBox}{NodesList}
+
+
+\begin{tabular}{>{\color{green!50!black}}lll}
+\hline
+options & default & definition \\
+\hline
+\IoptNameEnv{NodesList}{margin} & \tkzdft{2cm} & right margin \\
+\IoptNameEnv{NodesList}{dy} & \tkzdft{1.5pt} & $2\times \text{dy}$ is the space between two adjacent arrows on the same node. \\
+\hline
+\end{tabular}
+
+
+\medskip
+\noindent\emph{The use of this environment is obligatory. It admits options which we are going to detail in the following examples. These options are not obligatory and the values by default are given in the table above.}
+\end{NewEnvBox}
+\subsection{The command \textcolor{red}{ \addbs{AddNode}}}
+
+\begin{NewMacroBox}{AddNode}{\oarg{options}}
+
+ \begin{tabular}{>{\color{green!50!black}}lll}
+ \hline
+ options & default & definition \\
+ \hline
+ \IoptName{AddNode}{number} & \tkzdft{1} & It defines to which group belongs this node \\
+ \hline
+ \end{tabular}
+
+\medskip
+\emph{An optional argument is possible, thus placed between hooks if it is present, and it is an integer superior to 1. It defines to which group belongs this node.}
+
+\medskip
+
+\emph{This macro allows to ask that a link can leave or arrive of the node which we have just created. Really, it is not a node, I would say rather an anchor either another a reference point.\\
+A group is a set of links (arrows). The origin of the one is the extremity of the precedent. The first group is noted 1 which is the value by default.}
+ \end{NewMacroBox}
+ \subsection{The command \textcolor{red}{ \addbs{LinkNodes}}}
+
+
+\begin{NewMacroBox}{LinkNodes}{\oarg{options}\var{expression}}
+
+\medskip
+\begin{tabular}{>{\color{green!50!black}}lllc}
+\hline
+options & default & definition \\
+\hline
+\IoptName{LinkNodes}{margin}& \tkzdft{2 cm} & right margin \\
+\IoptName{LinkNodes}{dy} & \tkzdft{1.5 pt} & $2\times \text{dy}$ is the space between two adjacent arrows on the same node. \\
+\hline
+\end{tabular}
+
+\medskip
+\emph{This macro allows the representation of the link between nodes and the label the contents of which are "expression" placed on this link. These links are created by following the order of their creation.
+}
+
+\end{NewMacroBox}
+The style of these links is determined by the default following styles :
+\begin{itemize}
+ \item \tkzcname{tikzset\{ArrowStyle/.style=\{>=latex,->,text=black\}\}}
+ \item \tkzcname{tikzset\{LabelStyle/.style=\{pos=0.25,right\}\}}
+ \item \tkzcname{tikzset\{NodeStyle/.style=\{\}\}}
+\end{itemize}
+
+The first style is for the arrows then we have a style for the labels and the last style is for the node, by default it is empty.
+
+\medskip
+As you notice it, the macro are simple and the syntax is \LATEX syntax. It will be necessary to you to study a little \tkzname {TikZ} only to modify the styles but some examples should be sufficient to realize what you wish.
+
+% Comme vous le constatez, les macros sont simples et la syntaxe est du type \LATEX. Il vous faudra étudier un peu \tkzname{TikZ} seulement pour modifier les styles mais quelques exemples devraient vous suffir pour réaliser ce que vous souhaitez.
+
+
+\section{The code of the example in the introduction}
+
+\subsection{The code of the first example}
+ \Iopt{LinkNodes}{margin}
+Let us see first of all, the example of the introduction but placed in a more general frame, that of a page A4. Four nodes are created at the end of every line, then three links, both first ones have a personalized margin.
+
+The environment \tkzname{aligned} is placed in an environment \tkzname {displaymath} that is "in display mathematical mode". It means that the equations are placed in a box having the width of the page and that the sign equals is situated in the center of a line.
+
+\begin{tkzexample}[vbox,small,num]
+ \begin{NodesList}
+ \begin{align}
+ \boxed{ 3(x^2-3) =4 } \AddNode\\
+ x^2-3 =\frac{4}{3} \AddNode\\
+ \intertext{\hfil isolate the term with the variable \hfil}
+ x^2 =\frac{13}{3} \AddNode\\
+ \sqrt{x^2} =\sqrt{\frac{13}{3}} \AddNode\\
+ |x| =\sqrt{\frac{13}{3}} \AddNode\\
+ x =\pm\sqrt{\frac{13}{3}} \AddNode
+ \end{align}
+ \LinkNodes[margin=1cm]{$\div 3$}%
+ \LinkNodes[margin=1.5cm]{$+3$}%
+ \LinkNodes[margin=2.5cm]{$\sqrt{\ldots}$}
+ \LinkNodes[margin=3cm]{$\sqrt{x^2}=|x|$}
+ \LinkNodes[margin=4.5cm]{we have two answers}
+ \end{NodesList}\end{tkzexample}
+
+\medskip
+
+That the environment \tkzname {NodesList} makes exactly. It tracks down the width of the line of the page which goes the receive here this width is the width of the text because we are in a display mathematical mode. The example of the introduction is placed in an environment \tkzname {minipage} of \LaTeX, thus the width will be the one attributed to minipage.
+% Que fait exactement l'environnement \tkzname{NodesList}. Il repère la largeur de la ligne de la page qui va l'accueillir ici cette largeur est la largeur du texte car nous sommes dans un environnement mathématique hors texte. L'exemple de l'introduction est placé dans un environnement \tkzname{minipage} de \LaTeX{}, la largeur sera donc celle attribuée à celui-ci.
+
+ Then, it prepares a list of counters to attribute automatically names to the nodes that the user will have placed with the macro \tkzcname{AddNode}. The macro \tkzcname{LinkNodes} represents a link between two successive nodes.
+
+\subsection{With the environment \tkzname{minipage}}
+\Iopt{LinkNodes}{margin} \Ienv{minipage}
+Thus we go to see what arrives at our environment in the case of an environment \tkzname {minipage}. In that case the width of the page is given by \tkzname {minipage}. The result can be seen below, we need to modify the last margin :
+
+\medskip
+\begin{center}\fbox{\begin{minipage}{12cm}
+ \begin{NodesList}
+ \[
+ \begin{aligned}
+ 3(x^2-3) &=4 \AddNode\\
+ x^2-3 &=\frac{4}{3} \AddNode\\
+ x^2 &=\frac{13}{3} \AddNode\\
+ \sqrt{x^2} &=\sqrt{\frac{13}{3}} \AddNode\\
+ |x| &=\sqrt{\frac{13}{3}} \AddNode\\
+ x &=\pm\sqrt{\frac{13}{3}} \AddNode
+ \end{aligned}
+ \]
+ \LinkNodes[margin=1cm]{$\div 3$}%
+ \LinkNodes[margin=1.5cm]{$+3$}%
+ \LinkNodes[margin=2.5cm]{$\sqrt{\ldots}$}
+ \LinkNodes[margin=3cm]{$\sqrt{x^2}=|x|$}
+ \LinkNodes[margin=4cm]{we have two answers}
+ \end{NodesList}
+\end{minipage}}\end{center}
+
+\medskip
+\Ienv{minipage} \Ienv{displaymath}
+{
+\definecolor{codebackground}{rgb}{0,0,0}
+\blanc
+\begin{tkzexample}[code only,vbox,small,num]
+\documentclass[]{article}
+\usepackage[utf8]{inputenc} % My favorite encoding but not indispensable.
+\usepackage[upright]{fourier} % My favorite font.
+\usepackage{LinkNodes}
+\begin{document}
+\begin{center}\fbox{\begin{minipage}{12cm}
+ \begin{NodesList}
+ \begin{displaymath}
+ \begin{aligned}
+ 3(x^2-3) &=4 \AddNode\\
+ x^2-3 &=\frac{4}{3} \AddNode\\
+ x^2 &=\frac{13}{3} \AddNode\\
+ \sqrt{x^2} &=\sqrt{\frac{13}{3}} \AddNode\\
+ |x| &=\sqrt{\frac{13}{3}} \AddNode\\
+ x &=\pm\sqrt{\frac{13}{3}} \AddNode
+ \end{aligned}
+ \end{aligned}
+ \end{displaymath}
+ \LinkNodes[margin=4 cm]{$\div 3$}
+ \LinkNodes[margin=3 cm]{$+3$}
+ \LinkNodes{$\sqrt{\ldots}$}
+ \end{NodesList}
+ \end{minipage}}\end{center}
+\end{document}\end{tkzexample}}
+
+
+
+\section{Options with effects on the structure}
+
+\subsection{One link between the first two lines}
+I take the same example and I try to modify it. I want only the first link so I create only two nodes and one link.
+\Ienv{displaymath}
+
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}
+ \begin{displaymath}
+ \begin{aligned}
+ 3(x^2-3) &= 4 \AddNode\\
+ x^2-3 &= \frac{4}{3} \AddNode\\
+ x^2 &= \frac{13}{3} \\
+ \sqrt{x^2} &=\sqrt{\frac{13}{3}} \\
+ |x| &=\sqrt{\frac{13}{3}} \\
+ x &=\pm\sqrt{\frac{13}{3}}
+ \end{aligned}
+ \end{displaymath}
+ \LinkNodes{$\div 3$}%
+\end{NodesList}\end{tkzexample}
+
+
+\subsection{One link between the last two lines}
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}
+ \begin{displaymath}
+ \begin{aligned}
+ 3(x^2-3) &= 4 \\
+ x^2-3 &= \frac{4}{3} \\
+ x^2 &= \frac{13}{3} \AddNode\\
+ \sqrt{x^2} &=\sqrt{\frac{13}{3}} \AddNode\\
+ |x| &=\sqrt{\frac{13}{3}} \\
+ x &=\pm\sqrt{\frac{13}{3}}
+ \end{aligned}
+ \end{displaymath}
+ \LinkNodes{$\sqrt{\ldots}$}
+\end{NodesList}\end{tkzexample}
+
+
+\subsection{How to create a new group}
+\Iopt{AddNode}{new group} \Iopt{AddNode}{groups}\Ienv{displaymath}
+We saw how having a link on the first nodes , as well as on the last ones, now here is an example to have a link on the first and the last nodes.
+
+The principle is simple. The argument 2 indicates that we create another chain of links. It was already present but 1 is optional.
+The arguments must be created in increasing order.
+
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}
+ \begin{displaymath}
+ \begin{aligned}
+ 3(x^2-3) &=4 \AddNode \\
+ x^2-3 &= \frac{4}{3} \AddNode \\
+ x^2 &= \frac{13}{3} \AddNode[2]\\
+ \sqrt{x^2} &=\sqrt{\frac{13}{3}} \AddNode[2]\\
+ |x| &=\sqrt{\frac{13}{3}} \\
+ x &=\pm\sqrt{\frac{13}{3}}
+ \end{aligned}
+ \end{displaymath}
+ \LinkNodes{$\div 3$}%
+ \LinkNodes{$\sqrt{\ldots}$}
+\end{NodesList}\end{tkzexample}
+
+\subsection{Two groups on the same line}
+We can also do that.
+\Iopt{AddNode}{two groups on the same line}
+\begin{tkzexample}[vbox,small,num]
+ \begin{NodesList}[margin=3cm]
+ \begin{displaymath}\displaywidth=.4\linewidth
+ \begin{aligned}
+ x^2-4 & = 0 \AddNode \AddNode[2]\\
+ (x-2)(x+2) & = 0 \\
+ \left.\begin{aligned}
+ x-2 & = 0 \AddNode\\
+ x & = 2 \\
+ & \\
+ x+2 & = 0 \AddNode[2]\\
+ x & = -2 \\
+ \end{aligned}\right\} \\
+ \end{aligned}
+ \end{displaymath}
+ {\tikzset{LabelStyle/.style = {left=5cm,pos=.5,above,text=red}}
+ \LinkNodes[margin=5cm]{ first factor is null}%
+ \LinkNodes{Or second factor is null}%
+ }
+ \end{NodesList}\end{tkzexample}
+
+
+\subsection{Empty line}
+\index{Empty line}\Iopt{LinkNodes}{margin} \Ienv{aligned}
+You can try this example without \tkzcname{hfill} at line 5.
+\begin{tkzexample}[vbox,small,num]
+ \begin{minipage}{10cm}
+ \begin{NodesList}[margin=-2cm]
+ \[\left\{
+ \begin{aligned}
+ d_n & = \displaystyle {400-\frac{v_n}{3}} \AddNode\hfill\\
+ & \\
+ v_n & = 0,8v_{n-1}+0,2d_n+9,6 \AddNode\\
+ \end{aligned}
+ \right.\]
+ \LinkNodes{$v_n$ and $d_n$ are dependent}
+ \end{NodesList}
+ \end{minipage}\end{tkzexample}
+
+\section{Options with effects on the presentation}
+These options are among two, \tkzname{margin} and \tkzname {dy}. They are useful globally at the level of the environment \tkzname{NodesList} either locally at the level of the macro \tkzcname{LinkNodes}.
+
+\subsection{Option \tkzname{margin}}
+\Iopt{LinkNodes}{margin} \Ienv{aligned} \Ienv{minipage}
+First of all, let us remind that the default margin is 2 cm. It is represented by the red arrow on the following figure. The margin is defined from the right edge of the box which begins the environment.
+
+\medskip
+ \begin{center}
+ \setlength{\fboxsep}{0pt}
+ \fbox{\begin{minipage}{12cm}
+ \begin{NodesList}
+ \begin{displaymath}
+ \begin{aligned}
+ 3(x^2-3) &=4 \AddNode\\
+ x^2-3 &=\frac{4}{3} \AddNode\\
+ x^2 &=\frac{13}{3} \AddNode\\
+ \sqrt{x^2} &=\sqrt{\frac{13}{3}} \AddNode\\
+ |x| &=\sqrt{\frac{13}{3}} \AddNode\\
+ x &=\pm\sqrt{\frac{13}{3}} \AddNode
+ \end{aligned}
+ \end{displaymath}
+ \LinkNodes[margin=4cm]{$\div 3$}%
+ \LinkNodes[margin=3cm]{$+3$}%
+ \LinkNodes{$\sqrt{\ldots}$}
+ \tikz[remember picture,overlay]%
+ \draw[>=latex',red,<->](Inter) to node[above]{2 cm}%
+ ([shift={(2cm,0)}]Inter);
+ \end{NodesList}
+\end{minipage}}%
+\end{center}
+
+\medskip
+It is necessary to notice that the box of the introduction is slightly different from this one. Indeed, the macro \tkzcname{fbox} adds a space around its equal contents in \tkzcname{fboxsep}. This one was put in zero for the occasion.
+
+\subsection{Equal margins}
+\IoptEnv{NodesList}{margin} \Ienv{aligned} \Ienv{displaymath}
+I suppose that you understood that the option \tkzname{margin} of the macro \tkzcname{LinkNodes} plays the same role as that of the environment. So having deleted them, I choose a margin of 3 cm as everybody.
+This time with regard to the edge of the text field of the page.
+
+
+\begin{NodesList}[margin=3cm]
+ \begin{displaymath}
+ \begin{aligned}
+ 3(x^2-3) &= 4 \AddNode\\
+ x^2-3 &= \frac{4}{3} \AddNode\\
+ x^2 &= \frac{13}{3} \AddNode\\
+\sqrt{x^2} &=\sqrt{\frac{13}{3}} \AddNode\\
+ |x| &=\sqrt{\frac{13}{3}} \AddNode\\
+ x &=\pm\sqrt{\frac{13}{3}} \AddNode
+ \end{aligned}%
+ \end{displaymath}%
+ \LinkNodes{$\div 3$}%
+ \LinkNodes{$+3$}%
+ \LinkNodes{$\sqrt{\ldots}$}%
+ \tikz[remember picture,overlay]%
+ \draw[>=latex',red,<->](Inter) to node[above]{3 cm}%
+ ([shift={(3cm,0)}]Inter);%
+\end{NodesList}
+
+
+\begin{tkzexample}[code only,small,num]
+\begin{NodesList}[margin=3cm]% By default, margin = 2cm.
+ \begin{displaymath}
+ \begin{aligned}
+ 3(x^2-3) &= 4 \AddNode\\
+ x^2-3 &= \frac{4}{3} \AddNode\\
+ x^2 &= \frac{13}{3} \AddNode\\
+\sqrt{x^2} &=\sqrt{\frac{13}{3}} \AddNode\\
+ |x| &=\sqrt{\frac{13}{3}} \AddNode\\
+ x &=\pm\sqrt{\frac{13}{3}} \AddNode
+ \end{aligned}%
+ \end{displaymath}%
+ \LinkNodes{$\div 3$}%
+ \LinkNodes{$+3$}%
+ \LinkNodes{$\sqrt{\ldots}$}%
+\end{NodesList}\end{tkzexample}
+
+\subsection{Negative margins}
+\IoptEnv{NodesList}{negative margin} \IoptEnv{displaymath}{displaywidth}
+Yes we can! The example is from \tkzname{MathMode.pdf}
+In this example, I use \tkzcname{displaywidth}
+
+\begin{NodesList}[margin=-1cm]
+ \begin{displaymath}\displaywidth=.4\linewidth
+ \begin{aligned}
+ y &= 2x^2 -3x +5 \AddNode\\
+ & \hphantom{= \ 2\left(x^2-\frac{3}{2}\,x\right. }%
+ \textcolor{blue}{%
+ \overbrace{\hphantom{+\left(\frac{3}{4}\right)^2- %
+ \left(\frac{3}{4}\right)^2}}^{=0}} \\
+ &= 2\left(\textcolor{red}{%
+ \underbrace{%
+ x^2-\frac{3}{2}\,x + \left(\frac{3}{4}\right)^2}%
+ }%
+ \underbrace{%
+ - \left(\frac{3}{4}\right)^2 + \frac{5}{2}}%
+ \right) \AddNode\\
+ &= 2\left(\qquad\textcolor{red}{\left(x-\frac{3}{4}\right)^2}
+ \qquad + \ \frac{31}{16}\qquad\right) \AddNode\\
+y
+ &= 2\left(x\textcolor{cyan}{-\frac{3}{4}}\right)^2\textcolor{blue}{+\frac{31}{8}}\AddNode
+\end{aligned}
+ \end{displaymath}
+{ \tikzset{LabelStyle/.append style = {left,text=red}}
+ \LinkNodes{%
+ \begin{minipage}{5cm}
+ $2x^2 -3x$ is the beginning of an algebraic identity %
+ (binomial formula)
+ \end{minipage}}
+ \LinkNodes{$(a-b)^2=a^2-2ab+b^2$}
+ \LinkNodes{after simplication, the result is}}
+\end{NodesList}
+
+\begin{tkzexample}[vbox,small,num,code only]
+\begin{NodesList}[margin=-1cm]
+ \begin{displaymath}\displaywidth=.4\linewidth
+ \begin{aligned}
+ y &= 2x^2 -3x +5 \AddNode\\
+ & \hphantom{= \ 2\left(x^2-\frac{3}{2}\,x\right. }%
+ \textcolor{blue}{%
+ \overbrace{\hphantom{+\left(\frac{3}{4}\right)^2- %
+ \left(\frac{3}{4}\right)^2}}^{=0}} \\
+ &= 2\left(\textcolor{red}{%
+ \underbrace{%
+ x^2-\frac{3}{2}\,x + \left(\frac{3}{4}\right)^2}%
+ }%
+ \underbrace{%
+ - \left(\frac{3}{4}\right)^2 + \frac{5}{2}}%
+ \right) \AddNode\\
+ &= 2\left(\qquad\textcolor{red}{\left(x-\frac{3}{4}\right)^2}
+ \qquad + \ \frac{31}{16}\qquad\right) \AddNode\\
+y
+ &= 2\left(x\textcolor{cyan}{-\frac{3}{4}}\right)^2\textcolor{blue}{+\frac{31}{8}}\AddNode
+\end{aligned}
+ \end{displaymath}
+{ \tikzset{LabelStyle/.append style = {left,text=red}}
+ \LinkNodes{%
+ \begin{minipage}{5cm}
+ $2x^2 -3x$ is the beginning of an algebraic identity %
+ (binomial formula)
+ \end{minipage}}
+ \LinkNodes{$(a-b)^2=a^2-2ab+b^2$}
+ \LinkNodes{after simplication, the result is}}
+\end{NodesList}
+\end{tkzexample}
+
+
+\subsection{The general option \tkzname{dy}}
+\IoptEnv{NodesList}{dy} \IoptEnv{NodesList}{margin}
+Here, it is a question of adjusting the distance between two arrows. The distance is equal in
+$2\times \text{dy}$
+
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}[margin=3cm,dy=3pt]%
+ \begin{displaymath}
+ \begin{aligned}
+ 3(x^2-3) &= 4 \AddNode\\
+ x^2-3 &= \frac{4}{3} \AddNode\\
+ x^2 &= \frac{13}{3} \AddNode\\
+\sqrt{x^2} &=\sqrt{\frac{13}{3}} \AddNode\\
+ |x| &=\sqrt{\frac{13}{3}} \AddNode\\
+ x &=\pm\sqrt{\frac{13}{3}} \AddNode
+ \end{aligned}
+ \end{displaymath}
+ \LinkNodes{$\div 3$}%
+ \LinkNodes{$+3$}%
+ \LinkNodes{$\sqrt{\ldots}$}
+\end{NodesList}\end{tkzexample}
+
+
+\section{Modification of the style}
+ \IstyleEnv{NodesList}{ArrowStyle} \IstyleEnv{NodesList}{LabelStyle} \IstyleEnv{NodesList}{NodeStyle}
+It is enough for it to modify either \tkzname {\{ArrowStyle\}}, or \tkzname {\{LabelStyle\}}. By default, the values are the following ones
+
+\tikzset{ArrowStyle={>=latex',->,black}}
+
+\tikzset{LabelStyle={pos=0.25,right,text=black}}
+
+\tikzset{NodeStyle={}}
+
+\subsection{Adding some style}
+
+
+At first, the shape of the arrow is modified as well as its color. For other forms of arrow, see the documention on the \tkzname{pgfmanual}.
+
+Then the place of the label is modified with \tkzdft{pos=0.75} . \tkzdft{pos=0} corresponds to the superior corner, \tkzdft{pos=0.25 } in the middle of the vertical line. We can then adjust the position of the node, here \tkzname{above} is used. For other adjustments, see \tkzname{pgfmanual} or the following examples.
+
+\begin{tkzexample}[vbox,small,num]
+ \begin{NodesList}
+ \[
+ \begin{aligned}
+ 2x &= 8 \AddNode\\
+ x &= 4 \AddNode
+ \end{aligned}
+ \]
+ {\tikzset{ArrowStyle/.style={>=stealth',->,cyan}}
+ \tikzset{LabelStyle/.style={pos=0.75,above,text=red}}
+ \LinkNodes{$\div 2$}}
+\end{NodesList}\end{tkzexample}
+
+\subsection{Modification of the text color}
+ \IstyleEnv{NodesList}{Label color}
+ Since styles are just special cases of pgfkeys’s general style facility, you can actually do quite a bit more.
+Let us start with adding options to an already existing style. This is done using /.append style instead of /.style:
+
+ \tkzname{.append style} allows to take back the values of the style \tkzname{LabelStyle} by adding the color\footnote{Another possibility is \tkzcname
+{LinkNodes{\BS textcolor\{orange\}\{\$\BS div\ 2\$\}}}} \tkzname{red} in the text which replaces the old color. Note that two colors are set, so the last one will “win.”
+
+
+\begin{tkzexample}[vbox,small,num]
+ \begin{NodesList}
+ \[
+ \begin{aligned}
+ 2x &= 8 \AddNode\\
+ x &= 4 \AddNode
+ \end{aligned}
+ \]
+ {\tikzset{LabelStyle/.append style = {text=red}}
+ \LinkNodes{$\div 2$}}
+\end{NodesList}\end{tkzexample}
+
+\subsection{Modification of the text position}
+ \IstyleEnv{NodesList}{label position} \Ienv{aligned}
+ You need to read the paragraph of \tkzname{pgfmanual} "Basic Placement Options". You can use \tkzname{left}, \tkzname{right}, \tkzname{above} and \tkzname{below} but also something like \tkzname{above right} or \tkzname{left = 2 cm}.
+
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}
+ \[
+ \begin{aligned}
+ 2x &= 8 \AddNode\\
+ x &= 4 \AddNode
+ \end{aligned}
+ \]
+ {\tikzset{LabelStyle/.append style = {text=red,left}}
+ \LinkNodes{$\div 2$}}
+\end{NodesList}\end{tkzexample}
+
+\subsection{Boxed text}
+ \IstyleEnv{NodesList}{Boxed label }
+A little more sophisticated: \tkzname{draw} allows to frame, \tkzname{right=10pt} allows to move away a little the label, \tkzname{green} defines the color of the line, \tkzname {fill=green!30} defines the color of filling and finally the color of the text is red.
+
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}
+ \[
+ \begin{aligned}
+ 2x &= 8 \AddNode\\
+ x &= 4 \AddNode
+ \end{aligned}
+ \]
+{\tikzset{LabelStyle/.style = {draw,right=10pt,red,fill=green!30,text=red}}
+ \LinkNodes{$\div 2$}}
+\end{NodesList}\end{tkzexample}
+
+
+\section{Some more complex examples}
+\subsection{Solution of two simultaneous equations.}
+\Ienv{matrix}\Ienv{minipage}
+Solution of two simultaneous equations. The problem is to find the set of all solutions that satisfies both equations. These are called simultaneous equations.
+
+\begin{tkzexample}[vbox,small,num]
+ \begin{minipage}{12cm}
+ \begin{NodesList}[dy=3pt]
+ \[ \left\{\begin{matrix}
+ 3x &+& 4y &=& 10\\
+ 2x &+& y &=& 5 \AddNode\\
+ \end{matrix}\right. \]
+\vspace{0.5cm}
+ \[ \left\{\begin{matrix}
+ 3x &+& 4y &=& 10\\
+ 8x &+& 4y &=& 20 \AddNode\\
+ \end{matrix}\right. \]
+\vspace{0.5cm}
+ \[ \left\{\begin{matrix}
+ 3x &+& 4y &=& 10 \\
+ 5x && &=& 10 \AddNode\\
+ \end{matrix}\right. \]
+\vspace{0.5cm}
+ \[ \left\{\begin{matrix}
+ 3(2) &+& 4y &=& 10\\
+ x && &=& 2 \AddNode\\
+ \end{matrix}\right. \]
+\vspace{0.5cm}
+ \[ \left\{\begin{matrix}
+ 3(2) &+& 4y &=& 10\AddNode\\
+ x && &=& 2 \\
+ \end{matrix}\right. \]
+\vspace{0.5cm}
+ \[ \left\{\begin{matrix}
+ 4y &=& 10-6\AddNode\\
+ x &=& 2 \\
+ \end{matrix}\right. \]
+\vspace{0.5cm}
+ \[ \left\{\begin{matrix}
+ y &=& 1 \AddNode\\
+ x &=& 2 \\
+ \end{matrix}\right. \]
+ \LinkNodes{\begin{minipage}{3cm}
+ both sides of second equation are multiplied by 4\end{minipage}}
+ \LinkNodes{\begin{minipage}{3cm}
+ The first equation is subtracted from second \end{minipage}}
+ \LinkNodes[margin=4 cm]{$\div 5$}
+ \LinkNodes{\begin{minipage}{3cm}
+ As a result, $x = 2$, this value is then substituted in the first equation
+ \end{minipage}}
+ \LinkNodes{%
+ \begin{minipage}{3cm}
+ $6$ is subtracted from both sides\end{minipage}}
+ \LinkNodes[margin=4 cm]{$\div 4$}
+ \end{NodesList}
+
+ The solution is $\{(x=2~;~y=1)\}$
+ \end{minipage}\end{tkzexample}
+
+
+\subsection{Nested Environments aligned}
+\index{Nested Environments}\IoptEnv{NodesList}{margin}
+ \IstyleEnv{NodesList}{LabelStyle} \Ienv{aligned}
+This example is more complex because the environments are nested.
+
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}[margin=0cm]
+ \begin{displaymath}
+ \begin{aligned}
+ x^2-4 & = 0 \AddNode\\
+ (x-2)(x+2) & = 0 \AddNode\\
+ \left.\begin{aligned}
+ x-2 & = 0 \\
+ x & = 2 \\
+ & \\
+ x+2 & = 0 \\
+ x & = -2 \\
+ \end{aligned}\right\} \AddNode\\
+ \end{aligned}
+ \end{displaymath}
+ {\tikzset{LabelStyle/.style = {left=0.1cm,pos=.25,text=red}}
+ \LinkNodes[]{factorisons}%
+ \LinkNodes{One of the factors is null}%
+ }
+\end{NodesList}\end{tkzexample}
+
+\subsection{One environment and two groups}
+\Iopt{AddNode}{groups}\Ienv{align}
+\begin{tkzexample}[vbox,small,num]
+ \begin{NodesList}[margin=4 cm,dy=3pt]
+ \begin{align}
+ 3\left(x^2-\frac{2}{3}\right) &= 4 \AddNode\\
+ 3x^2-2 &= 4 \AddNode\\
+ 3x^2 &= 6 \AddNode\\
+ x^2 &= 2 \AddNode[2]\\
+ \sqrt{x^2} &= \sqrt{2} \AddNode[2]\\
+ |x| &= \sqrt{2} \AddNode[2]\\
+ x &= \pm\sqrt{2}
+ \end{align}
+ \LinkNodes{expand}%
+ \LinkNodes{$+2$}%
+ \LinkNodes[margin=5 cm]{$\sqrt{\ldots}$}
+ \LinkNodes[margin=5 cm]{$\sqrt{x}=|x|$}
+ \end{NodesList} \end{tkzexample}
+
+
+\vfill\newpage
+\subsection{Two environments and a group}
+\IoptEnv{NodesList}{margin}\Ienv{aligned}
+\begin{tkzexample}[vbox]
+\begin{NodesList}[margin=0.5cm]
+ \begin{displaymath}
+ \begin{aligned}
+ x^2-4 &= 0 \AddNode\\
+ (x-2)(x+2) &= 0 \AddNode\\
+ {\left.
+ \begin{aligned}
+ x-2 &= 0 \\
+ x &= 2 \\
+ & \\
+ x+2 &= 0 \\
+ x &= -2 \\
+ \end{aligned}
+ \right\}%
+ } \AddNode\\
+ \end{aligned}
+ \end{displaymath}
+{\tikzset{LabelStyle/.style = {left=0.5cm,pos=.25,text=red}}
+ \LinkNodes[]{The first member can be factored as}%
+ \LinkNodes{One of the factors is null}%
+}
+\end{NodesList}\end{tkzexample}
+
+\vfill\newpage
+\subsection{Label with \tkzname{minipage}}
+ \Ienv{minipage} \Ienv{aligned}
+You can see in this example how to define a style if you want to place correctly a "minipage".
+\IoptEnv{NodesList}{margin}\IoptEnv{NodesList}{dy}
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}[margin=1cm,dy=3pt]
+ \begin{displaymath}
+ \begin{aligned}
+ x^2-4 &= 0 \AddNode\\
+ (x-2)(x+2) &= 0 \AddNode\\
+ &\left.%
+ \begin{aligned}
+ x-2 &= 0 \\
+ x &= 2 \\
+ & \\
+ x+2 &= 0 \\
+ x &= -2
+ \end{aligned}%
+ \right\}\AddNode%
+ \end{aligned}%
+ \end{displaymath}
+ {\tikzset{LabelStyle/.style = {left=0.1cm,pos=.25,text=red}}
+ \LinkNodes{The first member can be factored as}%
+ \tikzset{LabelStyle/.append style = {pos=.5,sloped}}
+ \LinkNodes{%
+\fbox{\begin{minipage}{4cm}
+ If the product of any two numbers is zero, %
+ then one or both of the numbers is zero
+ \end{minipage}%
+}
+ }%
+ }%
+\end{NodesList}\end{tkzexample}
+
+\vfill\newpage
+\subsection{Three groups and few environments aligned}
+ \IoptEnv{displaymath}{displaywidth}\Iopt{AddNode}{groups}
+It is interesting to notice the use of \tkzcname{displaywidth} which allows in display mathematical mode to modify the placement with regard to the left margin.
+
+\medskip
+Solve in \textbf{R} :
+\colorbox{black}{\textcolor{white}{$\left(\dfrac{2}{3}-3x\right)\left(\dfrac{3}{5}+2x\right)=0 $}}
+
+\medskip
+\begin{NodesList}[dy=3]
+ \begin{displaymath}\displaywidth=.8\linewidth
+ \begin{aligned}
+ &\left(\frac{2}{3}-3x\right)\left(\frac{3}{5}+2x\right)=0 \AddNode\\
+ &{\begin{aligned}
+ &\Longleftrightarrow&&%
+ \left\{{%
+ \begin{aligned}
+ \frac{2}{3}-3x&=0 \AddNode[2]&\\
+ \text{ou}&& \AddNode \\
+ \frac{3}{5}+2x&=0 \AddNode[3]&\\
+ \end{aligned}}%
+ \right. \\
+ &\Longleftrightarrow&&%
+ {%
+ \left\{%
+ \begin{aligned}
+ 2-9x&=0 \AddNode[2]\\
+ \text{ou}& \\
+ 3+10x&=0 \AddNode[3]\\
+ \end{aligned}\right.} \\
+ &\Longleftrightarrow&&%
+ {%
+ \left\{%
+ \begin{aligned}
+ 2&=9x \AddNode[2]\\
+ \text{ou}& \\
+ 10x&=-3 \AddNode[3]\\
+ \end{aligned}\right.} \\
+ &\Longleftrightarrow&&%
+ {%
+ \left\{%
+ \begin{aligned}
+ x&=\frac{2}{9} \AddNode[2]\\
+ \text{ou}& \\
+ x&=-\frac{3}{10} \AddNode[3]\\
+ \end{aligned}\right.} \\
+ \end{aligned}}
+ \end{aligned}
+ \end{displaymath}
+ \LinkNodes[margin=4.5cm]{%
+\begin{minipage}{4cm}
+ \textcolor{red}{\textbf{If the product of any two numbers is zero, %
+ then one or both of the numbers is zero.}}
+\end{minipage}}%
+{\LinkNodes[margin=5cm]{$\times{}3$}%
+ \LinkNodes[margin=5cm]{$+9x$}
+ \LinkNodes[margin=5cm]{$\div 9$}}
+ \LinkNodes{$\times{}5$}%
+ \LinkNodes{$+3$}
+ \LinkNodes{$\div 10$}
+\end{NodesList}
+
+On the next page, the code looks like:
+\vfill\newpage
+\begin{tkzexample}[vbox,code only,small,num]
+ \begin{NodesList}[dy=3]
+ \begin{displaymath}\displaywidth=.8\linewidth
+ \begin{aligned}
+ &\left(\frac{2}{3}-3x\right)\left(\frac{3}{5}+2x\right)=0 \AddNode\\
+ &{\begin{aligned}
+ &\Longleftrightarrow&&%
+ \left\{{%
+ \begin{aligned}
+ \frac{2}{3}-3x&=0
+ \AddNode[2]&\\
+ \textrm{ou}&& \AddNode \\
+ \frac{3}{5}+2x&=0 \AddNode[3]&\\
+ \end{aligned}}%
+ \right. \\
+ &\Longleftrightarrow&&%
+ {%
+ \left\{%
+ \begin{aligned}
+ 2-9x&=0 \AddNode[2]\\
+ \textrm{ou}& \\
+ 3+10x&=0 \AddNode[3]\\
+ \end{aligned}\right.} \\
+ &\Longleftrightarrow&&%
+ {%
+ \left\{%
+ \begin{aligned}
+ 2&=9x \AddNode[2]\\
+ \textrm{ou}& \\
+ 10x&=-3 \AddNode[3]\\
+ \end{aligned}\right.} \\
+ &\Longleftrightarrow&&%
+ {%
+ \left\{%
+ \begin{aligned}
+ x&=\frac{2}{9} \AddNode[2]\\
+ \textrm{ou}& \\
+ x&=-\frac{3}{10} \AddNode[3]\\
+ \end{aligned}\right.} \\
+ \end{aligned}}
+ \end{aligned}
+ \end{displaymath}
+ \LinkNodes[margin=4.5cm]{%
+ \begin{minipage}{4cm}
+ \textcolor{red}{\textbf{If the product of any two numbers is zero, then %
+ one or both of the numbers is zero.}}
+ \end{minipage}}%
+ {\LinkNodes[margin=5cm]{$\times{}3$}%
+ \LinkNodes[margin=5cm]{$+9x$}
+ \LinkNodes[margin=5cm]{$\div(9)$}}
+ \LinkNodes{$\times{}5$}%
+ \LinkNodes{$+3$}
+ \LinkNodes{$\div(10)$}
+ \end{NodesList}\end{tkzexample}
+\Iopt{AddNode}{groups}
+
+\section{How to use \tkzname{tkz-linknodes.sty} with \tkzname{align}}
+\subsection{With align et minipage}
+ \Ienv{align} \Ienv{minipage}
+With this environment, we are directly in the display math mode and the lines are numbered.
+
+This environment is very useful and I recommend you to see the examples in MathMode.tex of Herbert Vo\ss.
+
+\medskip
+\begin{tkzexample}[vbox,small,num]
+ \begin{minipage}{12cm}
+ \begin{NodesList}[margin=4 cm]
+ \begin{align}
+ 3\left(x^2-\frac{2}{3}\right) &= 4 \AddNode\\
+ 3x^2-2 &= 4 \AddNode\\
+ 3x^2 &= 6 \AddNode\\
+ x^2 &= 2 \AddNode\\
+ \sqrt{x^2} &= \sqrt{2} \AddNode\\
+ |x| &= \sqrt{2} \AddNode\\
+ x &= \pm\sqrt{2}
+ \end{align}
+ \LinkNodes{expand}%
+ \LinkNodes{$+2$}%
+ \LinkNodes{$\div 3$}
+ \LinkNodes{$\sqrt{\ldots}$}
+ \LinkNodes{$\sqrt{x}=|x|$}
+ \end{NodesList}
+ \end{minipage}\end{tkzexample}
+
+\vfill\newpage
+\subsection{With \tkzname{align*}}
+ \Ienv{align*}
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}[margin=4 cm]
+\begin{align*}
+ 3\left(x^2-\frac{2}{3}\right) &= 4 \AddNode\\
+ 3x^2-2 &= 4 \AddNode\\
+ 3x^2 &= 6 \AddNode\\
+ x^2 &= 2 \AddNode\\
+ \sqrt{x^2} &= \sqrt{2} \AddNode\\
+ |x| &= \sqrt{2} \AddNode\\
+ x &= \pm\sqrt{2}
+ \end{align*}
+ \LinkNodes{expand}%
+ \LinkNodes{$+2$}%
+ \LinkNodes{$\div 3$}
+ \LinkNodes{$\sqrt{\ldots}$}
+ \LinkNodes{$\sqrt{x}=|x|$}
+\end{NodesList}\end{tkzexample}
+
+\subsection{With \tkzname{align} and \tkzname{nonumber}}
+ \Imacro{nonnumber} \Ienv{align}
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}[margin=4 cm]
+\begin{align}
+ 3\left(x^2-\frac{2}{3}\right) &= 4 \nonumber\AddNode\\
+ 3x^2-2 &= 4 \AddNode\\
+ 3x^2 &= 6 \nonumber\AddNode\\
+ x^2 &= 2 \AddNode\\
+ \sqrt{x^2} &= \sqrt{2} \AddNode\\
+ |x| &= \sqrt{2} \AddNode\\
+ x &= \pm\sqrt{2}
+ \end{align}
+ \LinkNodes{expand}%
+ \LinkNodes{$+2$}%
+ \LinkNodes{$\div 3$}
+ \LinkNodes{$\sqrt{\ldots}$}
+ \LinkNodes{$\sqrt{x}=|x|$}
+\end{NodesList}\end{tkzexample}
+
+\section{How to use \tkzname{tkz-linknodes.sty} with \tkzname{array}}
+ \Ienv{array}
+\subsection{With \tkzname{array} an example from Mathmode.tex}
+\begin{tkzexample}[vbox,small,num]
+\begin{minipage}{11cm}
+{\renewcommand{\arraystretch}{2}%
+\begin{NodesList}
+\[y = \left\{%
+ \begin{array}{ll}
+ x^2+2x &\textrm{if }x<0, \AddNode \\
+ x^3 &\textrm{if }0\le x<1, \AddNode[2]\\
+ x^2+x &\textrm{if }1\le x<2, \AddNode \\
+ x^3-x^2 &\textrm{if }2\le x. \AddNode[2]
+ \end{array}\right.\]
+\tikzset{ArrowStyle/.append style = {<->,red}}
+\tikzset{LabelStyle/.append style = {pos=0.20}}
+\LinkNodes[margin=3cm]{Degree 2 - quadratic}
+{\tikzset{ArrowStyle/.append style = {<->,blue}}
+\LinkNodes[margin=1cm]{Degree 3 - cubic}}
+\end{NodesList}}
+\end{minipage}\end{tkzexample}
+
+\vfill\newpage
+\subsection{An example from Mathmode.tex}
+ \Ienv{array} \Iopt{LinkNodes}{margin}
+In this example, we use an environment \tkzname{minipage} in the label.
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}[margin=0cm]
+ \[
+ \begin{array}{@{}r@{\quad}ccrr@{}}
+ \textrm{a}) & y & = & c & (constant) \AddNode \\
+ \textrm{b}) & y & = & cx+d & (linear) \\
+ \textrm{c}) & y & = & bx^{2}+cx+d & (square) \\
+ \textrm{d}) & y & = & ax^{3}+bx^{2}+cx+d & (cubic) \AddNode
+ \end{array}
+\]
+{\tikzset{ArrowStyle/.append style = {-,red}}
+ \tikzset{LabelStyle/.append style = {left,text=red}}
+ \LinkNodes{%
+ \begin{minipage}{4cm}
+ Here are the various studied cases
+ \end{minipage}}%
+ }
+\end{NodesList}\end{tkzexample}
+
+\vfill\newpage
+\subsection{An example from \tkzname{Mathmode.tex}}
+ \Ienv{array}
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}
+\[
+\begin{array}{rcll}
+ y & = & x^{2}+bx+c \\
+ & = & x^{2}+2\cdot{\displaystyle\frac{b}{2}x+c} \\
+ & = & \underbrace{x^{2}+2\cdot\frac{b}{2}x+%
+ \left(\frac{b}{2}\right)^{2}}-%
+ {\displaystyle\left(\frac{b}{2}\right)^{2}+c} \\
+ & & \qquad\left(x+{\displaystyle \frac{b}{2}}\right)^{2} \\
+ & = & \left(x+{\displaystyle \frac{b}{2}}\right)^{2}-%
+ \left({\displaystyle \frac{b}{2}}\right)^{2}+c \AddNode\\
+ y+\left({\displaystyle \frac{b}{2}}\right)^{2}-c%
+ & = & \left(x+{\displaystyle \frac{b}{2}}\right)^{2} \AddNode\\
+ y-y_{S}%
+ & = & (x-x_{S})^{2} \\
+ S(x_{S};y_{S})%
+ & \,\textrm{soit}\,%
+ & S\left(-{\displaystyle%
+ \frac{b}{2};\,\left({\displaystyle\frac{b}{2}}\right)^{2}-c}\right)
+\end{array}
+ \]
+ \tikzset{LabelStyle/.append style = {right=0.5cm,pos=0.25,text=red}}
+ \LinkNodes[margin=5cm]{%
+ \begin{minipage}{3cm}
+ we add to each members $\left({\displaystyle \frac{b}{2}}\right)^{2}-c$
+ \end{minipage}}%
+ \end{NodesList}\end{tkzexample}
+
+\vfill\newpage
+\section{Use with diverse environments}
+ \Ienv{gather}
+\subsection{With \tkzname{gather}}
+A little modified example from Mathmode.tex
+\begin{tkzexample}[vbox,small,num]
+\begin{center}
+\fbox{%
+ \begin{minipage}{14cm}
+ \begin{NodesList}
+ \begin{gather}
+ \boxed{ 3(x^2-3) =4 } \AddNode\\
+ x^2-3 =\frac{4}{3} \AddNode\\
+ \intertext{\hfil isolate the term with the variable \hfil}
+ x^2 =\frac{13}{3} \AddNode\\
+ \sqrt{x^2} =\sqrt{\frac{13}{3}} \AddNode\\
+ |x| =\sqrt{\frac{13}{3}} \AddNode\\
+ x =\pm\sqrt{\frac{13}{3}} \AddNode
+ \end{gather}
+ \LinkNodes[margin=1cm]{$\div 3$}%
+ \LinkNodes[margin=1.5cm]{$+3$}%
+ \LinkNodes[margin=2.5cm]{$\sqrt{\ldots}$}
+ \LinkNodes[margin=3cm]{$\sqrt{x^2}=|x|$}
+ \LinkNodes[margin=4.5cm]{we have two answers}
+ \end{NodesList}
+\end{minipage}%
+}
+\end{center}\end{tkzexample}
+
+\vfill\newpage
+\subsection{With \tkzname{gather*} and \tkzname{align*}}
+ \Ienv{gather*}\Ienv{align*}
+
+An example from Mathmode.tex
+
+\begin{tkzexample}[vbox,small,num]
+\begin{minipage}{\linewidth-7pt}
+ \begin{NodesList}
+ \begin{gather*}
+ \begin{align*}
+ m_2 &= m_2' + m_2'' \AddNode\\
+ &= \frac{V_2'}{v_2'} + \frac{V_2''}{v_2''}
+ \end{align*} \\
+ \Rightarrow m_2 v_2' = V - V_2'' + V_2''\frac{v_2'}{v_2''} \AddNode\\
+ \end{gather*}
+ \begin{gather*}
+ \begin{align*}
+ m_2 &= m_2' + m_2'' \AddNode\\
+ &= \frac{V_2'}{v_2'} + \frac{V_2''}{v_2''} &
+ \end{align*} \\
+ \Rightarrow m_2 v_2' = V - V_2'' + V_2''\frac{v_2'}{v_2''} \AddNode\\
+ \end{gather*}
+ \LinkNodes{(i)}
+ \LinkNodes{(ii)}
+ \LinkNodes{(iii)}
+ \end{NodesList}
+\end{minipage}
+\end{tkzexample}
+
+\vfill\newpage
+\subsection{With \tkzname{enumerate}}
+\Ienv{enumerate}
+This example shows that we can use the environment \tkzname{NodesList} with a list \tkzname{enumerate}
+\begin{tkzexample}[vbox,small,num]
+ \begin{NodesList}[margin=7cm]
+ \begin{enumerate}
+ \item A \AddNode
+ \item B \AddNode
+ \item C \AddNode
+ \item D \AddNode
+ \end{enumerate}
+ \LinkNodes{Liberté}%
+ \LinkNodes{Égalité}%
+ \LinkNodes{Fraternité}
+\end{NodesList}
+\end{tkzexample}
+
+\subsection{With \tkzname{flalign}}
+\Ienv{flalign}
+Another example from Mathmode.tex
+ \IstyleEnv{NodesList}{ArrowStyle} \IstyleEnv{NodesList}{LabelStyle}
+\begin{tkzexample}[vbox,small,num]
+\begin{NodesList}
+\begin{flalign}
+ x & = 2\quad\textrm{if }y >2\AddNode & \\
+ x & = 3\quad\textrm{if }y \le 2 \AddNode&
+ \end{flalign}
+{\tikzset{ArrowStyle/.append style = {<->,red}}
+ \tikzset{LabelStyle/.append style = {left,text=blue}}
+ \LinkNodes{Two cases are to be studied}}
+\end{NodesList}
+\end{tkzexample}
+
+\vfill\newpage
+\subsection{With \tkzname{listings}}
+\Ienv{listings}
+
+ \lstset{escapechar=\§}
+ \begin{NodesList}
+ \begin{lstlisting}
+ void example(FILE *fp)
+ {
+ int c;
+
+ while((c=fgetc(fp)!=EOF)){
+ if(c=='X')
+ goto done; §\AddNode§
+ fputc(c,stdout);
+ }
+
+ done: §\AddNode§
+ exit(0);
+ }
+ \end{lstlisting}
+ \tikzset{ArrowStyle/.append style = {->,red}}
+
+ \LinkNodes{}
+ \end{NodesList}
+
+
+
+\begin{tkzexample}[code only,small,num]
+ \lstset{escapechar=\§}
+ \begin{NodesList}
+ \begin{lstlisting}
+ void example(FILE *fp)
+ {
+ int c;
+
+ while((c=fgetc(fp)!=EOF)){
+ if(c=='X')
+ goto done; §\AddNode§
+ fputc(c,stdout);
+ }
+
+ done: §\AddNode§
+ exit(0);
+ }
+ \end{lstlisting}
+ \tikzset{ArrowStyle/.append style = {->,red}}
+
+ \LinkNodes{}
+ \end{NodesList}
+\end{tkzexample}
+
+\section{Beamer and tkz-linknodes}
+\index{Class!Beamer}
+The next example is from \tkzimp{Guillaume Connan}. The first thing you can notice about this code is the multiple nodes from the first line.
+
+\begin{tkzexample}[code only,small,num]
+ \documentclass[xcolor={usenames,pdftex,dvipsnames,table},10pt]{beamer}
+ \usepackage[utf8]{inputenc}
+ \usepackage{lmodern}
+ \usepackage[upright]{fourier}
+ \usepackage{tikz}
+
+ \usepackage{amsmath,calc}
+ \usepackage{tkz-linknodes}
+ \usetikzlibrary{arrows,shapes}
+ \newcommand{\vtab}{\rule[-1.2em]{0pt}{3em}}
+ \begin{document}
+
+ \begin{frame}
+ \tiny
+ \begin{NodesList}[margin=1cm]
+ \[
+ \begin{array}{lllllll}
+ \hline
+ \text{ Decimal}&\text{Babylone}&\text{Athenien}&\text{Maya}&%
+ \text{Japonais}&\text{Binaire}&\text{Bibinaire} \\
+ \hline
+ \uncover<2->{\vtab 13&A&B&C&D&1101&DA%
+ \AddNode\AddNode[2]\AddNode[3]\AddNode[4]\AddNode[5]\\}
+ \uncover<4->{\vtab 130&AB&C&D&&10000010&KOHE\AddNode\\}
+ \uncover<6->{\vtab 26&A&B&C&D&11010&HAKE\AddNode[2]\\}
+ \uncover<8->{\vtab 208&A&B&C&D&11010000&DAHO\AddNode[3]\\}
+ \uncover<10->{\vtab 260&A&B&C&D&100000100&HAHOBO \AddNode[4]\\}
+ \uncover<12->{\vtab 780&A&B&C&D&1100001100&HIHODO\AddNode[5]\\
+ \hline}
+ \end{array}
+ \]
+ \tikzstyle{ArrowStyle}+=[<->,blue]
+ \visible<3-4>{\LinkNodes[]{$\times10$}}
+ \visible<5-6>{\LinkNodes[]{$\times2$}}
+ \visible<7-8>{\LinkNodes[]{$\times16$}}
+ \visible<9-10>{\LinkNodes[]{$\times20$}}
+ \visible<11-12>{\LinkNodes[]{$\times60$}}
+ \end{NodesList}
+ \end{frame}
+ \end{document}
+\end{tkzexample}
+
+\vfill\newpage
+\section{\tkzname{tkz-linknodes} and ordinary text}
+The following text is from \url{http://www.sir-lancelot.co.uk/camelot.htm}.
+
+\bigskip
+
+ \begin{minipage}{12 cm}
+ \begin{NodesList}[margin=-1cm]
+ "In some versions of the legend, one of Lancelot's first tasks as a knight was to bring Guinevere to Camelot for her wedding to Arthur. During their journey back to Camelot, Guinevere and Lancelot fell in love\AddNode. In other stories, Guinevere was already Queen when Lancelot arrived, and he became one of the Queen's Knights. Lancelot soon became recognised as the greatest of the knights after successfully completing several quests.
+
+ \dots
+
+ Lancelot helped King Arthur put down the rebellion of Galehaut the Haut Prince, who surrendered to Arthur after being influenced by Lancelot's chivalry in battle. Later Galehaut became Lancelot's close friend and acted as a secret go-between\AddNode Lancelot and Guinevere."
+
+ { \tikzset{ArrowStyle/.append style = {opacity=.5,red,]-[}}
+ \LinkNodes{%
+ \begin{minipage}{5cm}
+ \begin{itemize}
+ \item to feel in love ?
+ \item go-between ?
+ \end{itemize}
+
+ \end{minipage}
+ }}
+ \end{NodesList}
+ \end{minipage}
+
+\begin{tkzexample}[code only,small,num]
+\begin{minipage}{12 cm}
+\begin{NodesList}[margin=-1cm]
+ "In some versions of the legend, one of Lancelot's first tasks as a knight was to%
+ bring Guinevere to Camelot for her wedding to Arthur. During their journey back to%
+ Camelot, Guinevere and Lancelot fell in love.\AddNode In other stories, Guinevere%
+ was already Queen when Lancelot arrived, and he became one of the Queen's%
+ Knights. Lancelot soon became recognised as the greatest of the knights after%
+ successfully completing several quests.
+
+ \dots
+
+Lancelot helped King Arthur put down the rebellion of Galehaut the Haut Prince, who%
+ surrendered to Arthur after being influenced by Lancelot's chivalry in battle. Later%
+ Galehaut became Lancelot's close friend and acted as a secret go-between\AddNode%
+ Lancelot and Guinevere."
+
+ { \tikzset{ArrowStyle/.append style = {opacity=.5,red,]-[}}
+ \LinkNodes{%
+ \begin{minipage}{5cm}
+ \begin{itemize}
+ \item to feel in love ?
+ \item go-between ?
+ \end{itemize}
+
+ \end{minipage}
+ }}
+\end{NodesList}
+\end{minipage}\end{tkzexample}
+\vfill\newpage
+\section{Raise a Node}
+\index{NodesList!raise a node}
+
+A better method of solving this problem is obtained by raising box. I use \TEX\ for that but perhaps there is a \LATEX\ method.
+I remove \tkzcname{AddNode} and insert
+\begin{tkzexample}[code only, width=6cm] \raise -1.2ex\hbox{\AddNode}
+\end{tkzexample}
+
+
+ \begin{minipage}{12 cm}
+ \begin{NodesList}[margin=-1cm]
+ "In some versions of the legend, one of Lancelot's first tasks as a knight was to bring Guinevere to Camelot for her wedding to Arthur. During their journey back to Camelot, Guinevere and Lancelot fell in love.\raise -1.2ex\hbox{\AddNode} In other stories, Guinevere was already Queen when Lancelot arrived, and he became one of the Queen's Knights. Lancelot soon became recognised as the greatest of the knights after successfully completing several quests.
+
+ \dots
+
+ Lancelot helped King Arthur put down the rebellion of Galehaut the Haut Prince, who surrendered to Arthur after being influenced by Lancelot's chivalry in battle. Later Galehaut became Lancelot's close friend and acted as a secret go-between\raise -2ex\hbox{\AddNode} Lancelot and Guinevere."
+
+ { \tikzset{ArrowStyle/.append style = {opacity=.5,green!50!black,]-[}}
+ \LinkNodes{%
+ \begin{minipage}{5cm}
+ \begin{itemize}
+ \item to feel in love ?
+ \item go-between ?
+ \end{itemize}
+
+ \end{minipage}
+ }}
+ \end{NodesList}
+ \end{minipage}
+\printindex
+\end{document}
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/latex/linknodes.ist b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/latex/linknodes.ist
new file mode 100644
index 0000000000..4c87f0fe9c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/latex/linknodes.ist
@@ -0,0 +1,6 @@
+heading_prefix "{\\bfseries\\hfil "
+heading_suffix "\\hfil}\\nopagebreak\n"
+headings_flag 1
+delim_0 "\\dotfill"
+delim_1 "\\dotfill"
+delim_2 "\\dotfill" \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/tkz-linknodes-screen.pdf b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/tkz-linknodes-screen.pdf
new file mode 100644
index 0000000000..f8e79709c2
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/doc/tkz-linknodes-screen.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/equation.pdf b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/equation.pdf
new file mode 100644
index 0000000000..3c100c69ff
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/equation.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/equation.tex b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/equation.tex
new file mode 100644
index 0000000000..c7ac553f36
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/equation.tex
@@ -0,0 +1,40 @@
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[upright]{fourier}
+\usepackage{tkz-linknodes}
+\thispagestyle{empty}
+
+\begin{document}
+
+\parindent=0pt
+
+\begin{center}
+ \fbox{%
+ \begin{minipage}{10cm}
+ \begin{NodesList}[margin=2 cm]
+ \begin{align}
+ 3\left(x^2-\frac{2}{3}\right) &= 4 \AddNode\\
+ 3x^2-2 &= 4 \AddNode\\
+ 3x^2 &= 6 \AddNode\\
+ \intertext{\hfil isolate the term with the variable \hfil}
+ x^2 &= 2 \AddNode\\
+ \sqrt{x^2} &= \sqrt{2} \AddNode\\
+ |x| &= \sqrt{2} \AddNode\\
+ x &= \pm\sqrt{2} \AddNode
+ \end{align}
+ \LinkNodes{expand}%
+ \LinkNodes{$+2$}%
+ \LinkNodes{$\div 3$}
+ \LinkNodes{$\sqrt{\ldots}$}
+ \LinkNodes{$\sqrt{x}=|x|$}
+ \LinkNodes{so that}
+ \end{NodesList}
+ \end{minipage}}
+\end{center}
+
+\end{document}
+% Encoding : utf8
+% Author : Alain Matthes (2008)
+% Engine : pdfLaTeX (LaTeX only with pdftex >= 1.40)
+% Packages : xkeyval, tikz with arrow library, amsmath, etex, ifthen
+% Remark : needs two compilations \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/quadratic.tex b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/quadratic.tex
new file mode 100644
index 0000000000..bb3690d5be
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/quadratic.tex
@@ -0,0 +1,44 @@
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[upright]{fourier}
+\usepackage{amsmath,tkz-linknodes}
+
+\thispagestyle{empty}
+\begin{document}
+This example is from MathMode.pdf of Herbert Vo\ss
+
+\begin{NodesList}[margin=1cm]
+ \begin{displaymath}\displaywidth=.2\linewidth
+ \begin{aligned}
+ y &= 2x^2 -3x +5 \AddNode\\
+ & \hphantom{= \ 2\left(x^2-\frac{3}{2}\,x\right. }%
+ \textcolor{blue}{%
+ \overbrace{\hphantom{+\left(\frac{3}{4}\right)^2- %
+ \left(\frac{3}{4}\right)^2}}^{=0}} \\
+ &= 2\left(\textcolor{red}{%
+ \underbrace{%
+ x^2-\frac{3}{2}\,x + \left(\frac{3}{4}\right)^2}%
+ }%
+ \underbrace{%
+ - \left(\frac{3}{4}\right)^2 + \frac{5}{2}}%
+ \right) \AddNode\\
+ &= 2\left(\qquad\textcolor{red}{\left(x-\frac{3}{4}\right)^2}
+ \qquad + \ \frac{31}{16}\qquad\right) \AddNode\\
+y
+ &= 2\left(x\textcolor{cyan}{-\frac{3}{4}}\right)^2\textcolor{blue}{+\frac{31}{8}}\AddNode
+\end{aligned}
+ \end{displaymath}
+{%
+\tikzset{LabelStyle/.append style = {left,text=red}}
+ \LinkNodes{%
+ \begin{minipage}{5cm}
+ $2x^2 -3x$ is the beginning of an algebraic identity %
+ (binomial formula)
+ \end{minipage}}
+ \LinkNodes{$(a-b)^2=a^2-2ab+b^2$}
+ \LinkNodes{after simplication, the result is}%
+}
+ \end{NodesList}
+
+
+\end{document} \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/system.tex b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/system.tex
new file mode 100644
index 0000000000..d9ba5e6445
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/latex/system.tex
@@ -0,0 +1,91 @@
+\documentclass[]{article}
+\usepackage[utf8]{inputenc}
+\usepackage[upright]{fourier}
+\usepackage{amsmath,tkz-linknodes}
+
+\thispagestyle{empty}
+\begin{document}
+
+% Show how to find the solution of two simultaneous equations.
+
+\begin{minipage}{10cm}
+ Solution of two simultaneous equations. The problem is to find the set of all solutions that satisfies both equations. These are called simultaneous equations.
+ \displaywidth=.4\linewidth
+ \begin{NodesList}[dy=3pt,margin=5cm]
+ \[ \displaywidth=.4\linewidth
+ \left\{\begin{matrix}
+ 3x &+& 4y &=& 10\\
+ 2x &+& y &=& 5 \AddNode\\
+ \end{matrix}\right. \]
+
+ \bigskip
+
+ \[\displaywidth=.4\linewidth \left\{\begin{matrix}
+ 3x &+& 4y &=& 10\\
+ 8x &+& 4y &=& 20 \AddNode\\
+ \end{matrix}\right. \]
+
+ \bigskip
+
+ \[\displaywidth=.4\linewidth \left\{\begin{matrix}
+ 3x &+& 4y &=& 10 \\
+ 5x && &=& 10 \AddNode\\
+ \end{matrix}\right. \]
+
+ \bigskip
+
+ \[\displaywidth=.4\linewidth \left\{\begin{matrix}
+ 3(2) &+& 4y &=& 10\\
+ x && &=& 2 \AddNode\\
+ \end{matrix}\right. \]
+
+ \bigskip
+
+ \[\displaywidth=.4\linewidth \left\{\begin{matrix}
+ 3(2) &+& 4y &=& 10\AddNode\\
+ x && &=& 2 \\
+ \end{matrix}\right. \]
+
+ \bigskip
+
+ \[\displaywidth=.4\linewidth \left\{\begin{matrix}
+ 4y &=& 10-6\AddNode\\
+ x &=& 2 \\
+ \end{matrix}\right. \]
+
+ \bigskip
+
+ \[\displaywidth=.4\linewidth \left\{\begin{matrix}
+ y &=& 1 \AddNode\\
+ x &=& 2 \\
+ \end{matrix}\right. \]
+
+
+ \LinkNodes{%
+ \begin{minipage}{3cm}
+ both sides of second equation are multiplied by 4
+ \end{minipage}}
+ \LinkNodes{%
+ \begin{minipage}{3cm}
+ The first equation is subtracted from second
+ \end{minipage}}
+ \LinkNodes{$\div 5$}
+ \LinkNodes{%
+ \begin{minipage}{3cm}
+ As a result, $x = 2$, this value is then substituted in the first equation
+ \end{minipage}}
+ \LinkNodes{%
+ \begin{minipage}{3cm}
+ $6$ is subtracted from both sides
+ \end{minipage}}
+ \LinkNodes{$\div 4$}
+ \end{NodesList}
+\end{minipage}
+
+The solution is $\{(x=2~;~y=1)\}$
+\end{document}
+% Encoding : utf8
+% Author : Alain Matthes (2008)
+% Engine : pdfLaTeX (LaTeX only with pdftex >= 1.40)
+% Packages : xkeyval, tikz with arrow library, amsmath, etex, ifthen
+% Remark : needs two compilations \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/quadratic.pdf b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/quadratic.pdf
new file mode 100644
index 0000000000..75011f8643
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/quadratic.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/system.pdf b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/system.pdf
new file mode 100644
index 0000000000..e0e38f3f46
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/examples/system.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/latex/tkz-linknodes.sty b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/latex/tkz-linknodes.sty
new file mode 100644
index 0000000000..2c6f082dcf
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/latex/tkz-linknodes.sty
@@ -0,0 +1,267 @@
+% tkz-linknodes.sty 2009-02-28 alain matthes
+% encoding : utf8
+% linknodesdoc.tex
+% Created by Alain Matthes on 2008-02-28.
+% Copyright (C) 2009 Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/generic/pgf/licenses/LICENSE for more details.%
+% See http://www.latex-project.org/lppl.txt for details.
+%
+%
+% ``tkz-linknodes.sty'' is the english doc of tkz-linknodes
+%
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% tkz-linknodes.sty encodage : utf8 %
+% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% %
+% Créé par Alain Matthes le 12-10-2007. %
+% d'après une idée et avec l'aide de Philippe Ivaldi %
+% %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% 22/08/2008
+%% Objet : création de flèches pour montrer des opérateurs
+%% aritmétiques dans des environnements comme "aligned"
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{tkz-linknodes}[2018/09/03 v1.1d tkz-linknodes]
+\ifx\e@alloc\@undefined
+ \RequirePackage{etex}
+\fi
+\RequirePackage{ifthen}
+\RequirePackage{xkeyval}[2005/11/25]
+\RequirePackage{tikz}
+\RequirePackage{amsmath}
+\usetikzlibrary{arrows}
+%<--------------------------------------------------------------------------->
+% Style
+%<--------------------------------------------------------------------------->
+\tikzset{ArrowStyle/.style={>=latex,->,text=black}}
+\tikzset{LabelStyle/.style={pos=0.25,right}}
+\tikzset{ReverseStyle/.style={pos=0.25,left}}
+\tikzset{NodeStyle/.style={}}
+\tikzset{NodeHStyle/.style={}}
+%<--------------------------------------------------------------------------->
+\define@cmdkey [TK] {SUM} {margin}{}
+\define@cmdkey [TK] {SUM} {dy}{}
+\presetkeys [TK] {SUM} {margin = 2 cm,%
+ dy = 1.5pt}{}%
+%<--------------------------------------------------------------------------->
+\newcommand*{\SetUpOpEnv}[1][]{%
+ \setkeys [TK] {SUM} {#1}%
+ \presetkeys [TK] {node} {margin = \cmdTK@SUM@margin,%
+ dy = \cmdTK@SUM@dy}{}%
+}%
+%<--------------------------------------------------------------------------->
+% Init
+%<--------------------------------------------------------------------------->
+\newdimen\p@intx
+\newdimen\p@inty
+\newdimen\p@intCx
+\newdimen\p@intCy
+\newdimen\p@intNx
+\newdimen\p@intNy
+%<--------------------------------------------------------------------------->
+\newcounter{C@NumTab}\setcounter{C@NumTab}{0}
+\newcounter{C@NumGroup}\setcounter{C@NumGroup}{0}
+\newcounter{C@NextNode}\setcounter{C@NextNode}{0}
+\newcounter{NumC@Node}\setcounter{NumC@Node}{0}
+\newcounter{NumC@Stop}\setcounter{NumC@Stop}{0}
+\newcounter{C@CurrentStop}\setcounter{C@CurrentStop}{0}
+\newcounter{C@CurrentNode}\setcounter{C@CurrentNode}{0}
+\newcounter{C@CurrentGroup}\setcounter{C@CurrentGroup}{0}
+%<--------------------------------------------------------------------------->
+\newboolean{B@FirstLink}\setboolean{B@FirstLink}{true}
+\newboolean{B@NewGroup}\setboolean{B@NewGroup}{false}
+\newboolean{B@DeltaBegin}\setboolean{B@DeltaBegin}{false}
+\newboolean{B@DeltaEnd}\setboolean{B@DeltaEnd}{false}
+%<--------------------------------------------------------------------------->
+\newcommand*{\@SetTab}{%
+ \ifnum \value{C@NumTab}>25\relax%
+ \setcounter{C@NumTab}{1}%
+ \else%
+ \stepcounter{C@NumTab}%
+ \fi%
+ \setcounter{C@NumGroup}{0}%
+ \newcommand*{\PrefixCurrentTab}{\alph{C@NumTab}}
+ \setboolean{B@FirstLink}{true}
+ \setboolean{B@NewGroup}{false}
+ \setcounter{C@NumGroup}{0}
+ \setcounter{C@CurrentGroup}{0}
+ \setcounter{NumC@Node}{0}
+ \setcounter{NumC@Stop}{0}
+ \setcounter{C@NextNode}{0}
+ \setcounter{C@CurrentStop}{0}
+ \setcounter{C@CurrentNode}{0}
+}%
+%<--------------------------------------------------------------------------->
+\newcommand*{\@CreateCurrentStop}[1]{%
+ \@ifundefined{c@C@Stop\@alph{#1}}{%
+ \newcounter{C@Stop\@alph{#1}}\stepcounter{NumC@Stop}}{}%
+ \setcounter{C@Stop\@alph{#1}}{0}%
+}
+%<--------------------------------------------------------------------------->
+\newcommand*{\@CreateCurrentNode}[1]{%
+ \@ifundefined{c@C@Node\@alph{#1}}{%
+ \newcounter{C@Node\@alph{#1}}\stepcounter{NumC@Node}}{}%
+ \setcounter{C@Node\@alph{#1}}{0}%
+}%
+%<--------------------------------------------------------------------------->
+\newcommand*{\@CreateNewGroup}{%
+ \stepcounter{C@NumGroup}%
+ \@CreateCurrentStop{\theC@NumGroup}%
+ \@CreateCurrentNode{\theC@NumGroup}%
+}%
+%<--------------------------------------------------------------------------->
+\newcommand*{\AddNode}[1][1]{%
+ \setcounter{C@CurrentGroup}{#1}%
+ \ifnum \value{C@NumGroup}<#1\relax%
+ \@ifundefined{c@C@Node\@alph{#1}}{%
+ \@CreateNewGroup}{%
+ \stepcounter{C@NumGroup}%
+ \setcounter{C@Node\@alph{#1}}{0}%
+ \setcounter{C@Stop\@alph{#1}}{0}%
+ }%
+ \fi%
+ \stepcounter{C@Node\@alph{#1}}%
+ \stepcounter{C@Stop\@alph{#1}}%
+ \begin{tikzpicture}[remember picture]%
+ \node[NodeStyle]%
+ (\PrefixCurrentTab-\theC@CurrentGroup-\@nameuse{theC@Node\@alph{#1}}){};%
+ \end{tikzpicture}%
+\ignorespaces
+}%
+\newcommand*{\AddRevNode}{%
+ \begin{tikzpicture}[remember picture]%
+ \node[NodeStyle]%
+ (reverse@node){};%
+ \end{tikzpicture}%
+\ignorespaces }
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\newcommand*{\@NewNextNode}{%
+ \setcounter{C@NextNode}{\value{C@CurrentNode}}%
+ \stepcounter{C@NextNode}}%
+%<--------------------------------------------------------------------------->
+\newcommand*{\@UseNewGroup}[1]{% dépend du niveau
+ \setcounter{C@CurrentNode}{1}%
+ \setcounter{C@CurrentStop}{\value{C@Stop\@alph{#1}}}}%
+%<--------------------------------------------------------------------------->
+\define@cmdkey [TK] {node} {Bshift}{}%
+\define@cmdkey [TK] {node} {Mshift}{}%
+\define@cmdkey [TK] {node} {Eshift}{}%
+\define@cmdkey [TK] {node} {margin}{}%
+\define@cmdkey [TK] {node} {dy}{}%
+\presetkeys [TK] {node} {dy = 1.5pt,%
+ margin = 2 cm,
+ Bshift = -6cm,
+ Mshift = -7cm,
+ Eshift = -6cm}{}%
+%<--------------------------------------------------------------------------->
+\newcommand{\LinkNodes}[2][]{%
+\setkeys[TK]{node}{#1}%
+\ifthenelse{\boolean{B@FirstLink}}{\setcounter{C@CurrentGroup}{1}%
+\setboolean{B@NewGroup}{false}%
+\@UseNewGroup{\theC@CurrentGroup}\@NewNextNode%
+\setboolean{B@DeltaBegin}{false}}{%
+\ifthenelse{\boolean{B@NewGroup}}{%
+\setboolean{B@DeltaBegin}{false}}{\setboolean{B@DeltaBegin}{true}}}%
+\def\TGCN{\PrefixCurrentTab-\theC@CurrentGroup-\theC@CurrentNode}%
+\def\TGNN{\PrefixCurrentTab-\theC@CurrentGroup-\theC@NextNode}%
+%
+%
+\begin{tikzpicture}[remember picture,overlay]%
+\pgfextractx{\pgf@x}{\pgfpointanchor{\TGCN}{center}}%
+\pgfextracty{\pgf@y}{\pgfpointanchor{\TGCN}{center}}%
+\p@intCx\pgf@x\p@intCy\pgf@y%
+\pgfextractx{\pgf@x}{\pgfpointanchor{\TGNN}{center}}%
+\pgfextracty{\pgf@y}{\pgfpointanchor{\TGNN}{center}}%
+\p@intNx\pgf@x\p@intNy\pgf@y
+\p@inty\p@intCy\p@intx\linewidth
+\advance\p@intx by-\cmdTK@node@margin
+\ifthenelse{\boolean{B@FirstLink}}{%
+\setboolean{B@FirstLink}{false}%
+\xdef\lastp@intx{\p@intCx}%
+\global\let\lastp@intx\lastp@intx}{}%
+\ifthenelse{\boolean{B@NewGroup}}{\xdef\lastp@inty{\p@intCy}%
+\global\let\lastp@inty\lastp@inty}{\xdef\lastp@inty{\p@inty}%
+\global\let\lastp@inty\lastp@inty}%
+\ifthenelse{\value{C@NextNode}=\value{C@CurrentStop}}{%
+\setboolean{B@DeltaEnd}{false}}{\setboolean{B@DeltaEnd}{true}}%
+\ifthenelse{\boolean{B@DeltaBegin}}{\advance\p@inty by -\cmdTK@node@dy}{}%
+%
+\path[coordinate] (\lastp@intx,\lastp@inty) coordinate(Begin)
+ (\p@intx,\lastp@inty) coordinate(Inter);%
+\ifthenelse{\boolean{B@DeltaEnd}}{%
+\path[coordinate] ([yshift=\cmdTK@node@dy]\TGNN.center)coordinate(End);}%
+{\path[coordinate](\TGNN.center) coordinate(End);}%
+%
+\draw[ArrowStyle] (Begin)--(Inter)|-(End) node[LabelStyle]{#2};%
+\ifTK@NL@reverse
+\draw[ArrowStyle] ([xshift=\cmdTK@node@Bshift]Begin)--([xshift=\cmdTK@node@Mshift]Inter)|-([xshift=\cmdTK@node@Eshift]End) node[LabelStyle,ReverseStyle]{#2};%
+\fi
+%
+\xdef\lastp@inty{\p@intCy}\global\let\lastp@inty\lastp@inty%
+\ifthenelse{\value{C@NextNode}=\value{C@CurrentStop}}{%
+\ifthenelse{\value{C@CurrentGroup}<\value{C@NumGroup}}{%
+\global\B@NewGrouptrue\stepcounter{C@CurrentGroup}%
+\@UseNewGroup{\theC@CurrentGroup}\@NewNextNode}{}}{\stepcounter{C@CurrentNode}%
+\@NewNextNode}%
+\end{tikzpicture}%
+\setboolean{B@FirstLink}{false}%
+\ignorespaces
+}%
+%<--------------------------------------------------------------------------->
+\newcommand*{\UpGroup}[1][1]{%
+ \stepcounter{C@CurrentGroup}%
+ \setboolean{B@NewGroup}{true}%
+}%
+%<--------------------------------------------------------------------------->
+\newcommand*{\UpNode}[1][1]{%
+ \addtocounter{C@CurrentNode}{#1}
+}
+%<--------------------------------------------------------------------------->
+\define@cmdkey [TK] {NL} {margin}{}
+\define@cmdkey [TK] {NL} {dy}{}
+\define@boolkey[TK] {NL} {reverse}[true]{}
+\presetkeys [TK] {NL} {margin = 2 cm,reverse=false,
+ dy = 1.5pt}{}
+%<--------------------------------------------------------------------------->
+\newenvironment{NodesList}[1][]{%
+ \setkeys [TK] {NL} {#1}
+ \presetkeys [TK] {node} {margin = \cmdTK@NL@margin,
+ dy = \cmdTK@NL@dy}{}%
+ \@SetTab
+ \@CreateNewGroup
+ \stepcounter{C@CurrentGroup}%
+ }{}%
+%<--------------------------------------------------------------------------->
+\newcommand\AddHNode[2]{}
+\def\AddHNode{\pgfutil@ifnextchar[{\Add@HNode}{\Add@HNode[]}}
+\def\Add@HNode[#1](#2)#3{% #2 = name of the node #3 content of node
+\begin{tikzpicture}[remember picture,baseline=(#2.base)]
+ \node[outer sep = 2pt,
+ inner sep = 0pt,
+ NodeHStyle,
+ #1](#2){#3};
+\end{tikzpicture}
+}
+
+\newcommand\LinkHNode[4]{%
+\begin{tikzpicture}[remember picture,overlay]
+ \draw[<->] (#1) -- ++(0,#4) -| (#2)
+ node[fill=white,near start] {\small #3};
+\end{tikzpicture}%
+} %<--------------------------------------------------------------------------->
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-linknodes/readme-linknodes.txt b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/readme-linknodes.txt
new file mode 100644
index 0000000000..a5cd9ba038
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-linknodes/readme-linknodes.txt
@@ -0,0 +1,67 @@
+Encoding : utf8
+Author : Alain Matthes
+Date : 19/09/2018
+Package : tkz-linknodes.sty
+Version : 1.1d
+
+
+ The linknodes package
+
+-------------------------------------------------------------------------
+A. Purpose
+-------------------------------------------------------------------------
+
+The 'linknodes' package provides macros for adding links between the lines
+ of a mathematic environment like 'aligned' or 'align'.
+
+-------------------------------------------------------------------------
+B. Installation
+-------------------------------------------------------------------------
+
+You need the following packages in your distribution:
+
+xkeyval [2005/11/25]
+tikz 2.00
+etex
+ifthen
+amsmath
+
+On Unix like systems, copy the file 'tkz-linknodes.sty' into
+ 'texmf/tex/latex/' or
+ put all files somewhere where TeX can find them, if necessary then run 'texhash'.
+
+With MiKTeX, copy the file 'linknodes.sty' into 'C:\texmf\tex\latex', then
+run 'MiKTeX Options'. In the 'File name database' section, click on
+'Refresh now'.
+
+-------------------------------------------------------------------------
+C. Content of the folder 'linknodes'
+-------------------------------------------------------------------------
+
+README This file.
+tkz-linknodes.sty The package.
+tkz-linknodes-screen.pdf The documentation in english(?) with a lot of examples.
+linknodes.zip Documentation with sources and examples.
+
+-------------------------------------------------------------------------
+D. Licence
+-------------------------------------------------------------------------
+
+You may freely use and distribute this package under the terms of lppl and/or gpl.
+
+Read file TKZdoc-tab.pdf.pdf in the doc directory, for the complete documentation
+
+-------------------------------------------------------------------------
+E. Bugs, suggestions, contact
+-------------------------------------------------------------------------
+
+The author of the 'linknodes' package is Alain Matthes.
+Email <al.ma at mac dot com> to submit bug reports, request new features, etc.
+I maintain two web sites featuring TikZ stuff called
+Altermundus <http://altermundus.fr> and <http://altermundus.com>.
+
+ Alain Matthes
+ 5 rue de Valence
+ Paris 75005
+
+ al (dot) ma (at) mac (dot) com
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/README b/obsolete/macros/latex/contrib/tkz/tkz-tab/README
new file mode 100644
index 0000000000..606e09d285
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/README
@@ -0,0 +1,63 @@
+A. Purpose
+
+The 'tkz-tab' package is built on top of PGF and its associated front-end, TikZ and is a (La)TeX-friendly drawing package. The aim is to provide some useful macros to build tables showing variations of functions as they are used in France.
+These macros may be used by only LaTeX TeX users. The documentation is in French.
+
+B. Features
+ -- works with utf8 and pdflatex
+ -- provides 'help' option,
+ -- allows to draw tables of variations with a "forbidden zone",
+ -- allows to use TikZ.
+
+C. Licence
+
+You may freely use and distribute this package under the terms of lppl and/or gpl.
+
+Read file TKZdoc-tab.pdf.pdf in the doc directory, for the complete documentation
+
+D. Contents of the folder (encoding utf8)
+
+ -- README (this file)
+ -- inputs: tkz-tab.sty
+ -- doc: TKZdoc-tab.pdf,
+ tkz-doc.cls,
+ tkzexample.sty,
+ doctab.ist,
+ TKZdoc-tab-adapt.tex
+ TKZdoc-tab-examples.tex,
+ TKZdoc-tab-images.tex,
+ TKZdoc-tab-init.tex,
+ TKZdoc-tab-install.tex,
+ TKZdoc-tab-main.tex
+ TKZdoc-tab-sign.tex,
+ TKZdoc-tab-slope.tex,
+ TKZdoc-tab-tangente.tex,
+ TKZdoc-tab-tv.tex,
+ TKZdoc-tab-valeurs.tex,
+ TKZdoc-tab-variation.tex
+ var-latin1.tex ( example with latin1)
+ var-latin1.pdf
+ sign-latin1.tex( example with latin1)
+ sign-latin1.pdf
+
+tkz-doc.cls is a class (beta version) to make the documentation. You need also the
+tkzexample.sty package (beta version) and KOMA-Script 2009/01/24 v3.02b to
+ compile the documentation.
+
+E. Installation
+
+If you need to install it by yourself, a TDS compliant zip archive is
+provided (tkz-tab.zip). Just download that file, and unpack it in
+your TDS directory (~/texmf for Unix-like systems). If you only need to use
+ 'tkz-tab.sty' then you have to copy 'tkz-tab.sty' into '~/texmf/tex/latex'.
+ If you want also to compile the documentation then you need to copy tkz-doc.cls and tkzexample.sty in the same folder and you need to use pdf(e)tex.
+
+With MiKTeX, copy folder 'tkz-tab.sty' into 'C:\texmf\tex\latex', then
+run 'MiKTeX Options'. In the 'File name database' section, click on
+'Refresh now'.
+
+F. The author of the 'tkz-tab.sty' package is Alain Matthes.
+--
+Alain Matthes, <al.ma@mac.com>
+February, 24th, 2009
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZ-doc-tab-faq.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZ-doc-tab-faq.tex
new file mode 100644
index 0000000000..f691281b78
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZ-doc-tab-faq.tex
@@ -0,0 +1 @@
+dans la commande tkzTabVar, emplois de ’/’ qui me semblent superflus avec la nouvelle syntaxe. Il serait bon, je pense, de préciser que, dans le cas d’un tableau comportant plusieurs lignes de variations, le placement de la commande tkzTabVal doit venir juste après la commande tkzTab- Var définissant la ligne de variations sur laquelle on souhaite placer les valeurs intermédiaires. \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-adapt.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-adapt.tex
new file mode 100644
index 0000000000..01b926f9e3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-adapt.tex
@@ -0,0 +1,532 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+% $Id$
+% v1.0c TKZdoc-tab-adapt
+%
+% Created by Alain Matthes on 2010-02-23.
+% Copyright (c) 2010 __Collège Sévigné__. All rights reserved.
+\section{Personnalisation des tableaux}\label{pers}
+
+\subsection{\texttt{\textcolor{red}{help}} : option commune aux principales macros}
+
+\subsubsection{\texttt{\textcolor{red}{help}} : option de \addbs{tkzTabInit}}
+Cette option permet de connaître la structure d'un tableau. \tkzname{deltacl=1} permet d'espacer un peu les points et les labels
+
+\begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit[deltacl=1,espcl=8,help]%
+ {$x$/1,Signe\\ de $\dfrac{1}{x}$/1.5/1.5,Variation\\ de $\ln$/2}%
+ {$0$,$+\infty$}%
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{\texttt{\textcolor{red}{help}} : option de \addbs{tkzTabLine}}
+Afin de mieux voir les labels il est préférable de pas employer l'option \tkzname{help} en même temps sur toutes les macros.
+\begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit[deltacl=1,espcl=8]%
+ {$x$/1,Signe\\ de $\dfrac{1}{x}$/1.5/1.5,Variation\\ de $\ln$/2}%
+ {$0$,$+\infty$}%
+ \tkzTabLine[help]{,,}%
+% \tkzTabVar {D-/ $-\infty$, +/$+\infty$ }
+ \end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{help}} : option de \addbs{tkzTabVar}}
+Cette option montre les nodes qui sont utilisés pour le tracé des flèches de variations. Afin de ne pas multiplier les labels de nodes, seuls les nodes utilisés ont été nommés. Une flèche débute par un node nommé \tkzname{FR} (right = droite du node) et se termine par un node nommé \tkzname{FL} (left gauche du node)
+\begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit[deltacl=1,espcl=8]%
+ {$x$/1,Signe\\ de $\dfrac{1}{x}$/1.5/1.5,Variation\\ de $\ln$/1.5}%
+ {$0$,$+\infty$}%
+ \tkzTabLine{d,+,}%
+ \tkzTabVar [help]{D-/ $-\infty$, +/$+\infty$ }
+ \end{tikzpicture}
+\end{tkzexample}
+
+Voici un exemple plus complexe
+
+\begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit
+ {$x$ /1,
+ $\dfrac{-1}{x^2}\ {\E}^{\left(\dfrac{1}{x}\right)}$ /1.5,
+ ${\E}^{\left(\dfrac{1}{x}\right)}$ /2}%
+ {$-\infty$ ,$0$ , $+\infty$}%
+ \tkzTabLine{t,-,d,-,t}
+ \tkzTabVar[help]{ + / $1$ ,-CD+ / $0$ / $+\infty$ , - / $1$ }%
+ \end{tikzpicture}
+\end{tkzexample}
+
+ce qui donne
+\begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit
+ {$x$ /1,
+ $\dfrac{-1}{x^2}\ {\E}^{\left(\dfrac{1}{x}\right)}$ /1.5,
+ ${\E}^{\left(\dfrac{1}{x}\right)}$ /2}%
+ {$-\infty$ ,$0$ , $+\infty$}%
+ \tkzTabLine{t,-,d,-,t}
+ \tkzTabVar{ + / $1$ ,-CD+ / $0$ / $+\infty$ , - / $1$ }%
+ \end{tikzpicture}
+\end{tkzexample}
+
+La connaissance de tous ces points et nodes permet de personnaliser les tableaux. Quelques explications supplémentaires sont données dans le paragraphe suivant.
+
+\subsection{Les structures}
+\subsubsection{La structure principale}
+
+La macro \tkzname{tkzTabInit} définit les principaux \tkzname{nodes}. Ce sont les arguments de cette macro qui déterminent le nombre de nodes.
+
+Par exemple, si le tableau comporte 3 lignes alors les nodes $T00$, $T01$, $T02$, $T10$, $T11$, $T12$, $T03$, $T13$ et $T23$ sont créés, ainsi que $F0$, $F1$ et $F2$. $Tij$ représente un point de la colonne $i$ et de la ligne $j$. Pourquoi cet ordre ? je n'en sais rien
+
+\begin{tkzexample}[vbox,small]
+ \begin{tikzpicture}
+ \tkzTabInit[color=false,espcl=4,lgt=3]{%
+ \colorbox{red}{\textcolor{white}{$\scriptscriptstyle F0$}} / 1,%
+ \colorbox{red}{\textcolor{white}{$\scriptscriptstyle F1$}} / 1,%
+ \colorbox{red}{\textcolor{white}{$\scriptscriptstyle F2$}} / 1}%
+ { , }%
+ \foreach \ligne in {0,...,3}{%
+ \foreach \colonne in {0,1,2}{%
+ \draw[fill=blue] (T\colonne\ligne) circle(2pt) ;}}
+ \draw (T00) node[above right=4pt] {\scriptsize T00};
+ \draw (T01) node[above right=4pt] {\scriptsize T01};
+ \draw (T02) node[above right=4pt] {\scriptsize T02};
+ \draw (T03) node[above right=4pt] {\scriptsize T03};
+ \draw (T20) node[above right=4pt] {\scriptsize T20};
+ \draw (T21) node[above right=4pt] {\scriptsize T21};
+ \draw (T22) node[above right=4pt] {\scriptsize T22};
+ \draw (T23) node[above right=4pt] {\scriptsize T23};
+ \draw (T10) node[above right=4pt] {\scriptsize T10};
+ \draw (T13) node[above right=4pt] {\scriptsize T13};
+ \draw (T11) node[above right=3pt] {\scriptsize T11};
+ \draw (T12) node[above right=3pt] {\scriptsize T12};
+ \tikzset{bluesty/.style={fill=blue,<-,>=latex,shorten <=2pt}}
+ \draw[bluesty] (T20) -- +(2,0) node[right,blue]{ligne $0$};
+ \draw[bluesty] (T21) -- +(2,0) node[right,blue]{ligne $1$};
+ \draw[bluesty] (T22) -- +(2,0) node[right,blue]{ligne $2$};
+ \draw[bluesty] (T23) -- +(2,0) node[right,blue]{ligne $3$};
+ \draw[bluesty] (T03) -- +(0,-2) node[midway,above,sloped,blue]{colonne $0$};
+ \draw[bluesty] (T13) -- +(0,-2) node[midway,above,sloped,blue]{colonne $1$};
+ \draw[bluesty] (T23) -- +(0,-2) node[midway,above,sloped,blue]{colonne $2$};
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+Ainsi la structure principale de ce tableau possède exactement trois filets verticaux et quatre horizontaux. Soient \tkzname{12} points principaux définis par les intersections et trois nodes $F0$, $F1$ et $F2$.
+
+\subsubsection{La structure interne}
+J'appelle structure interne, l'ensemble des points et nodes qui vont être définis par les antécédents dans la partie droite du tableau. Le second argument de la macro \tkzname{tkzTabInit} définit cette structure. Cet argument donne le nombre de labels (antécédents) qui vont être placés sur la première ligne et qui vont être les repères pour les lignes de signes et de variations.
+
+
+\begin{tkzexample}[vbox,small]
+ \begin{tikzpicture}
+ \tkzTabInit[color=false,espcl=4,lgt=3]{%
+ \colorbox{red} {\textcolor{white}{$\scriptscriptstyle F0$}} / 1,
+ \colorbox{red} {\textcolor{white}{$\scriptscriptstyle F1$}} / 1,
+ \colorbox{red} {\textcolor{white}{$\scriptscriptstyle F2$}} / 1}{%
+ \colorbox{blue}{\textcolor{white}{$\scriptscriptstyle L1$}},
+ \colorbox{blue}{\textcolor{white}{$\scriptscriptstyle L2$}},
+ \colorbox{blue}{\textcolor{white}{$\scriptscriptstyle L3$}}}%
+ \foreach \ligne in {0,...,3}{%
+ \foreach \colonne in {0,1,2}{%
+ \draw[fill=blue] (T\colonne\ligne) circle(2pt) ;}}
+ \foreach \colonne in {1,2,3}{%
+ \draw[fill=red] (N\colonne 0) circle(2pt)%
+ node[above,red] {\scriptsize N{\colonne 0}};}
+ \foreach \ligne in {1,2,3}{%
+ \foreach \colonne in {1,2,3}{%
+ \draw[fill=red] (N\colonne\ligne) circle(2pt)%
+ node[above,red] {\scriptsize N\colonne\ligne};}}
+ \foreach \ligne in {0,1,2,3}{%
+ \foreach \colonne in {1,2}{%
+ \draw[fill=green] (M\colonne\ligne) circle(2pt)
+ node[below right,green] {\scriptsize M\colonne\ligne};}}
+ \tikzset{redsty/.style={fill=red,<-,>=latex,shorten <=2pt}}
+ \draw[redsty] (T20) -- +(2,0) node[right,red]{ligne $0$};
+ \draw[redsty] (T21) -- +(2,0) node[right,red]{ligne $1$};
+ \draw[redsty] (T22) -- +(2,0) node[right,red]{ligne $2$};
+ \draw[redsty] (T23) -- +(2,0) node[right,red]{ligne $3$};
+ \draw[redsty] (N13) -- +(0,-2) node[midway,above,sloped,red]{colonne $1$};
+ \draw[redsty] (N23) -- +(0,-2) node[midway,above,sloped,red]{colonne $2$};
+ \draw[redsty] (N33) -- +(0,-2) node[midway,above,sloped,red]{colonne $3$};
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{La structure secondaire}
+Les points $Zij$, $Sij$ sont définis à partir de la structure interne (voir le tableau précédent) mais seulement avec l'usage de la macro \tkzcname{tkzTabLine}. Les points $FRij$ et $FLij$ eux sont définis avec l'usage de la macro \tkzcname{tkzTabVar}
+
+\begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit
+ {$x$ /1,
+ $\dfrac{-1}{x^2}\ {\E}^{\left(\dfrac{1}{x}\right)}$ /1.5,
+ ${\E}^{\left(\dfrac{1}{x}\right)}$ /2}%
+ {$-\infty$ ,$0$ , $+\infty$}%
+ \tkzTabLine[help]{t , - , d , - , t}
+ \tkzTabVar[help]{ + / $1$ ,-CD+ / $0$ / $+\infty$ , - / $1$ }%
+ \end{tikzpicture}
+\end{tkzexample}
+\subsubsection{Conclusion}
+\begin{tikzpicture}
+
+\tkzTabInit[color=false,espcl=4,lgt=3,deltacl=1]{%
+\colorbox{red}{\textcolor{white} {$\scriptscriptstyle F0$}} / 1,
+\colorbox{red}{\textcolor{white} {$\scriptscriptstyle F1$}} / 2,
+\colorbox{red}{\textcolor{white} {$\scriptscriptstyle F2$}} / 2}{%
+\colorbox{blue}{\textcolor{white}{$\scriptscriptstyle L1$}} ,
+\colorbox{blue}{\textcolor{white}{$\scriptscriptstyle L2$}} ,
+\colorbox{blue}{\textcolor{white}{$\scriptscriptstyle L3$}} }
+\foreach \ligne in {0,...,3}{%
+ \foreach \colonne in {0,1,2}{%
+ \draw[fill=blue] (T\colonne\ligne) circle(2pt) ;}}
+\draw (T00) node[left = 4pt] {\scriptsize T00};
+\draw (T01) node[left = 4pt] {\scriptsize T01};
+\draw (T02) node[left = 4pt] {\scriptsize T02};
+\draw (T03) node[left = 4pt] {\scriptsize T03};
+\draw (T20) node[right = 4pt] {\scriptsize T20};
+\draw (T21) node[right = 4pt] {\scriptsize T21};
+\draw (T22) node[right = 4pt] {\scriptsize T22};
+\draw (T23) node[right = 4pt] {\scriptsize T23};
+\draw (T10) node[above = 4pt] {\scriptsize T10};
+\draw (T13) node[below = 4pt] {\scriptsize T13};
+\draw (T11) node[above left= 3pt] {\scriptsize T11};
+\draw (T12) node[above left= 3pt] {\scriptsize T12};
+ \foreach \colonne in {1,2,3}
+ {\draw[fill=red] (N\colonne 0) circle(2pt)%
+ node[above right] {\scriptsize N{\colonne 0}};}
+\foreach \ligne in {1,2,3}
+{ \foreach \colonne in {1,2,3}
+ {\draw[fill=red] (N\colonne\ligne) circle(2pt)%
+ node[below right] {\scriptsize N\colonne\ligne};}}
+\foreach \ligne in {0,1,2,3}
+{ \foreach \colonne in {1,2}
+ {\draw[fill=green] (M\colonne\ligne) circle(2pt)%
+ node[below right] {\scriptsize M\colonne\ligne};}}
+\foreach \colonne in {1,2}
+ {\path (M\colonne 1) to (M\colonne 2)%
+ node[midway](S\colonne 1) {};
+ \draw[fill=yellow] (S\colonne 1) circle(2pt)%
+ node[below right] {\scriptsize S\colonne 1};}
+\foreach \colonne in {1,2,3}
+ {\path (N\colonne 1) to (N\colonne 2)%
+ node[midway](Z\colonne 1) {};
+ \draw[fill=yellow] (Z\colonne 1) circle(2pt)%
+ node[below right] {\scriptsize Z\colonne 1};}
+\end{tikzpicture}
+
+\bigskip
+\begin{tabular}{ccllc}
+\toprule
+type & notation & repère & conditions & utilisation\\
+\midrule
+\tikz \draw[fill=red] (0,0) rectangle (0.3,0.3) node(X) {}; & Fj & ligne & $0\leq j\leq p$ & expressions,formules \\
+\midrule
+\tikz \draw[fill=blue] (0,0) rectangle (0.3,0.3)node(X) {}; & Li & colonne& $1\leq i\leq n$ & valeurs significatives pour les variations \\
+\midrule
+\tikz \draw[fill=blue] circle (2pt)node(X) {}; &%
+ Tij & colonne& $0\leq i\leq 2$ ;& structure principale du tableau\\
+& & ligne &$0\leq j\leq p$ & il existe une ligne $0$ et une colonne $0$\\
+\midrule
+\tikz \draw[fill=green] circle (2pt)node(X) {}; & Nij &colonne &$1\leq i\leq n$ & structure interne du tableau \\
+& & ligne &$0\leq j\leq p$ & \\
+\midrule
+\tikz \draw[fill=green] circle (2pt)node(X) {}; & Mij &colonne &$1\leq i\leq n$ & structure interne du tableau \\
+& & ligne &$0\leq j\leq p$ & \\
+\midrule
+\tikz \draw[fill=yellow] circle (2pt)node(X) {}; & Sij &colonne &$1\leq i\leq n$ & structure secondaire du tableau \\
+& & ligne &$1\leq j\leq q$ & \\
+\midrule
+\tikz \draw[fill=yellow] circle (2pt)node(X) {};& Zij &colonne &$1\leq i\leq n$ & structure secondaire du tableau \\
+& & ligne &$1\leq j\leq q$ & \\
+\midrule
+\end{tabular}
+
+
+\subsection{Ajustement des dimensions}
+Nous avons vu précédemment que l'on pouvait modifier certaines dimensions à l'aide de l'emploi d'options. Le code du tableau suivant utilise les structures du tableau
+
+\begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit
+ {$x$ / 1}
+ {$a_1$ , $a_2$ , $a_3$}
+ \begin{scope}[arstyle/.style={>=latex,#1,<->}]
+ \draw[arstyle=blue] (N10) to node[above,color=blue]%
+ {\scriptsize $ espcl = 2$ cm} (N20);
+ \draw[arstyle=blue] (N20) to node[above,color=blue]%
+ {\scriptsize $ espcl = 2$ cm} (N30);
+ \draw[arstyle=red] (T10) to node[above=12pt,color=red]%
+ {\scriptsize $ deltacl = 0,5$ cm} (N10);
+ \draw[arstyle=red] (N30) to node[above=12pt,color=red]%
+ {\scriptsize $ deltacl = 0,5$ cm} (T20);
+ \draw[arstyle=blue] (T00) to node[above,color=blue]%
+ {\scriptsize $ lgt = 2$ cm} (T10);
+ \end{scope}
+ \end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{scale}} permet d'ajuster la taille d'un tableau}
+\index{scale}
+
+
+\begin{tkzexample}[width=7cm,small]
+\begin{tikzpicture}[scale=.8]
+ \tkzTabInit[lgt=3]{ $x$ / 1 , $\ln(x)$ /2}
+ { $0$ , $+\infty$ }
+\end{tikzpicture}
+\end{tkzexample}
+
+Il est aussi possible d'utiliser \tkzname{xscale} et \tkzname{yscale}.
+
+\begin{tkzexample}[width=7cm,small]
+\begin{tikzpicture}[xscale=.8,yscale=1.5]
+ \tkzTabInit[lgt=3]{ $x$ / 1 , $\ln(x)$ /2}
+ { $0$ , $+\infty$ }
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Exemples d'utilisation}
+\subsubsection{Une croix sur un tableau}
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTab{$x$ / 1, $f'(x)$ / 1.5, $f(x)$ / 3}%
+ {$-5$ , $-2$ , $1$ , $+\infty$}%
+ {d,+,0,-,0,+,}
+ { D-/ / $-\infty$ ,%
+ +/ $\dfrac{2}{3}$ / ,%
+ -/ $0$ / ,%
+ +/ $+\infty$ / }%
+ \draw[line width=2pt,red] (T00) to (T23);
+ \draw[line width=2pt,red] (T03) to (T20);
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Une croix sur une case}
+
+L'intérêt est de faciliter la personnalisation d'un tableau. Par exemple, si nous souhaitons ajouter un tracé comme une croix dans une case, on peut procéder ainsi :
+
+\begin{tkzexample}[small]
+\begin{tikzpicture}
+\tkzTabInit%
+ {$x$ /1,
+ $x^2-3x+2$ /1,
+ $(x-\E)\ln x$ /1}
+ {$0$ , $\E$ , $+\infty$}
+ \draw[red] (T12) -- (T23);
+ \draw[red] (T13) -- (T22);
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Mise en évidence de signes}
+\medskip
+On peut ainsi placer des signes sur la seconde ligne qui n'a pas été mise en forme par \tkzname{tkzTabLine} mais en connaissant un peu la programmation à l'aide de \TIKZ.
+
+ \begin{tkzexample}[code only]
+ \path (M11)--(M12) node[midway,draw,fill=red!10] {-};
+ \path (M31)--(M32) node[midway,draw,fill=blue!10] {+};
+ \end{tkzexample}
+
+ \begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit{$x$ / 1, $\dfrac{2x}{x^2-1}$ /1}
+ {$-\infty$ , $-1$ , $1$ , $+\infty$}
+ \path (M11)--(M12) node[midway,draw,fill=red!10] {-};
+ \path (M31)--(M32) node[midway,draw,fill=blue!10] {+};
+ \end{tikzpicture}
+ \end{tkzexample}
+
+mais on peut aussi utiliser un node de la structure secondaire pour cela on utilise
+\begin{tkzexample}[]
+ \tkzname{tkzTabLine}[help] \end{tkzexample}
+
+\begin{tikzpicture}
+ \tkzTabInit{$x$ / 1, $\dfrac{2x}{x^2-1}$ /1}
+ {$-\infty$ , $-1$ , $1$ , $+\infty$}
+ \tkzTabLine[help]{,,,,,,}
+\end{tikzpicture}
+
+Ensuite il reste à créer des nodes
+\begin{tkzexample}[code only]
+ \node[draw,fill=red!10] at (S11) {-};
+ \node[draw,fill=red!10] at (S31) {+}; \end{tkzexample}
+
+
+
+\begin{tkzexample}[small]
+\begin{tikzpicture}
+ \tkzTabInit{$x$ / 1, $\dfrac{2x}{x^2-1}$ /1}
+ {$-\infty$ , $-1$ , $1$ , $+\infty$}
+ \tkzTabLine{,,,,,,}
+ \node[draw,fill=red!10] at (S11) {-};
+ \node[draw,fill=red!10] at (S31) {+};
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Structure principale : hachurer une zone}
+
+On veut par exemple hachurer une zone mais vous ne connaissez pas la notation des nodes. Il suffit de passer \tkzname{help} en option. On obtient ainsi l'emplacement et les noms des nodes.
+
+\begin{tkzexample}[code only]
+ \begin{tikzpicture}
+ \tkzTabInit[help,deltacl=1]{$x$ / 1, $\dfrac{2x}{x^2-1}$ /1,$\ln{(x^2-1)}$/1}
+ {$-\infty$ , $-1$ , $1$ , $+\infty$}
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\medskip
+On peut hachurer un rectangle par
+
+ \begin{tkzexample}[code only]
+ \pattern[pattern=north west lines] (N21) rectangle (N33);
+ \end{tkzexample}
+
+
+\begin{tkzexample}[small]
+\begin{tikzpicture}
+ \tkzTabInit{$x$ / 1 , $\ln{(x^2-1)}$/1}
+ {$-\infty$ , $-1$ , $1$ , $+\infty$}
+ \pattern[pattern=north west lines] (N21) rectangle (N32);
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+\subsubsection{Mise en évidence de certaines zones}
+
+Afin de mettre en évidence le signe d'une expression du second degré, il est possible de mettre en couleur les parties extérieures. \tkzcname{draw[fill=Red!80,opacity=0.4](N11) rectangle (N22);}. La syntaxe est celle de \TIKZ. Un rectangle est défini par deux sommets opposés.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[deltacl=1,lgt=3,espcl=2]%
+ {$x$ /1,$x^2-3x+2$ /1}%
+ {$-\infty$ , $1$ , $2$, $+\infty$}%
+ \tkzTabLine {t,+,0,-,0,+,t}
+ \draw[fill=Red!80,opacity=0.4](N11) rectangle (N22);
+ \draw[fill=Red!80,opacity=0.4](N31) rectangle (N42);
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Mise en évidence de valeurs}
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+\tkzTab
+{$x$ /1,
+$\dfrac{-1}{x^2}\ {\E}^{\left(\dfrac{1}{x}\right)}$ /1.5,
+${\E}^{\left(\dfrac{1}{x}\right)}$ /2}%
+{$-\infty$ ,$0$ , $+\infty$}%
+{t,-, ,-,t}
+{ + / $1$ , -CD+ / \colorbox{red}{\textcolor{white}{$0$}} / $+\infty$ , - / $1$ }%
+ \node[draw,inner sep=2pt,circle,fill=yellow] at (Z21) {$0$} ;
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Mise en évidence de limites}
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=8]%
+ {$x$/1 , Variation\\ de $\ln$/2}%
+ {$0$,$+\infty$}%
+ \tkzTabVar {D-/ $-\infty$, +/$+\infty$ }
+ \draw[opacity=.3,fill=red] (FR11) circle (10pt);
+ \draw[opacity=.3,fill=red] (FL21) circle (10pt);
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Décoration}
+Il est nécessaire de charger une librairie de \TIKZ\footnote{pgf/tikz version 2.00} qui permet des actions de décoration. \NameLib{decorations.pathreplacing}
+
+\begin{tkzexample}[code only]
+ \usetikzlibrary{decorations.pathreplacing}
+ \ldots
+ \draw[decoration={brace,amplitude=12pt},
+ decorate,line width=2pt,red] (T10) -- (T20);\end{tkzexample}
+
+
+\begin{tkzexample}[small]
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=3,espcl=1.5]
+ {$x$ /1,
+ $x^2-3x+2$ /1,
+ $(x-\E)\ln x$ /1}%
+ {$0$,$1$,$2$,$\E$,$+\infty$}%
+ \draw[fill=Orange,opacity=.3] (N10) rectangle (N53.west);
+ \draw[decoration={brace,amplitude=12pt},
+ decorate,line width=2pt,red] (T10) -- (T20);
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Avec de la couleur}
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[color,colorC = blue!30,colorL = orange!50,
+ colorT = green!30,colorV = red!50,espcl=8]
+ {$x$/1,Signe\\ de $\dfrac{1}{x}$ /1.5,Variation\\ de $\ln$ /3}
+ {$0$,$+\infty$}%
+ \tkzTabLine{d,+,}%
+ \tkzTabVar[color=red]{D-/$-\infty$ , +/$+\infty$}
+ \tkzTabVal[draw]{1}{2}{0.3}{\textcolor{red}{$\text{1}$}}{\textcolor{blue}{$0$}}
+ \tkzTabVal[draw]{1}{2}{0.6}{\textcolor{red}{$\text{\large e}$}}{\textcolor{blue}{$1$}}%
+ \draw[fill=gray,opacity=0.6] (T11) rectangle (N13);
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Écrire dans un tableau}
+
+Aucune restriction au niveau de l'écriture, l'exemple suivant :
+
+\medskip
+\begin{tikzpicture}
+\tkzTabInit[lgt=5,espcl=3]%
+ { $x$ /1,%
+ Il est parfois possible d'obtenir les variations d'une fonction sans déterminer sa dérivée /2,%
+ $\ln (x) +x$ /1%
+ }%
+ { $0$ , $1$ , $+\infty$ }%
+\end{tikzpicture}
+
+\begin{tkzexample}[code only]
+\begin{tikzpicture}
+\tkzTabInit[lgt=3,espcl=4]%
+ { $x$ /1,%
+ Il est parfois ... /2,%
+ $\ln (x) +x$ /1%
+ }%
+ { $0$ , $1$ , $+\infty$ }%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Tableau de proportionnalité}
+
+On utilise ici un compteur interne \tkzname{tkz@cnt@pred} du package. l' arrobase \tkzname{@} devient une lettre ordinaire à l'aide des macros \tkzname{makeatletter} et \tkzname{makeatother}. Ce compteur va servir à tracer des filets verticaux afin de séparer les antécédents et les images.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=0.5]{ $x$/1,$f(x)$ /1}%
+ {1,,2,,3,,4,,5,,6}%
+ \tkzTabLine{5,,,,10,,,,15,,,,20,,,,25,,,,30}%
+ \makeatletter
+ \foreach \x in {1,...,5}{%
+ \setcounter{tkz@cnt@pred}{\x}\addtocounter{tkz@cnt@pred}{\x}
+ \draw (N\thetkz@cnt@pred 0.center) to (N\thetkz@cnt@pred 2.center);}
+ \makeatother
+ \begin{scope}[->,red,line width=1pt,>=latex']
+ \draw (M20) to [bend left] node[above]{$\times 3$} (7.5,0);
+ \draw (M22) to [bend right] node[below]{$\times 3$} (7.5,-2);
+ \draw (8,-0.25) to [post,bend left=60] node[midway,above,sloped] {$\times 5$} (8,-1.75);
+ \end{scope}
+\end{tikzpicture}
+\end{tkzexample}
+\endinput
+
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-bac.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-bac.tex
new file mode 100644
index 0000000000..27ba75a82b
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-bac.tex
@@ -0,0 +1,206 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+\section{Exemples avec alterqcm.sty et tkz-fct}\label{prof}%
+Dans ce chapitre, les exemples sont encore des sujets de Baccalauréat ES utilisant le module \tkzname{alterqcm.sty} mais aussi les modules dérivés de tikz, \tkzname{tkz-fct.sty} et bien évidemment \tkzname{tkz-tab.sty}.
+Vous trouverez des exemples accompagnant cette documentation avec un \textcolor{red}{|préambule minimum|}.
+\vfill
+\example{Baccalauréat Centres Étrangers ES 2006 }\label{bac1}
+
+\medskip
+\begin{alterqcm}[lq=70mm,pre=true]
+
+\AQmessage{ Soit $f$ une fonction définie et dérivable sur l'intervalle $]-5~;~+\infty[$ dont le tableau de variations est donné ci-dessous :
+\begin{center}
+\begin{tikzpicture}
+\tkzTabInit[espcl=1.75]{$x$/1,$f(x)$/3}
+ {$-5$,$-1$,$0$,$2$,$+\infty$}
+\tkzTabVar{-/$-\infty$ /,%
+ +/$-3$/,%
+ -/$-5$/,%
+ +/4 /,%
+ -/{4,5}/}
+\end{tikzpicture}
+\end{center}
+ On désigne par $\mathcal{C}$ la courbe représentative de $f$.}
+
+
+\AQquestion{Sur l'intervalle $]-5~;~+\infty[$, l'équation $f(x) = -2$ admet }
+{{une seule solution},
+{deux solutions},
+{quatre solutions}
+}
+\AQquestion{Sur l'intervalle $]-5~;~+\infty[$ la courbe $\mathcal{C}$ admet : }
+{%
+{\begin{minipage}{6cm}\small une seule asymptote la droite d'équation $x = -5$%
+\end{minipage}},
+{\begin{minipage}{6cm}\small exactement deux asymptotes, les droites d'équations $x = -4,5$ et $y = -5$%
+\end{minipage}},
+{\begin{minipage}{6cm}\small exactement deux asymptotes, les droites d'équations $y = -4,5$ et $x = -5$%
+\end{minipage}}%
+}
+\AQquestion{On sait que $f'(2) = 0$. L'équation de la tangente à $\mathcal{C}$ au point d'abscisse $2$ est : }
+{{$y = 4$},
+{$y = 4(x -2)$},
+{$y = 4(x -2)$}
+}
+\AQquestion{On sait que l'équation de la tangente à $\mathcal{C}$ au point de coordonnées (1 ; 2) est $y = 3x - 1$. On a :}
+{{$f(2) = 1$},
+{$f'(1) = -1$},
+{$f'(1) = 3$}
+}
+\AQquestion{Sur l'intervalle $]2~;~+\infty[$, la fonction $g$ définie par $g(x) =\text{e}^{-f(x)}$ }
+{{est croissante},
+{est décroissante},
+{n'est pas monotone.}
+}
+\AQquestion{On pose $h(x) = \ln \left[f(x) + 5\right]$. Alors la fonction $h$ : }
+{{$\mathbb{R}$},
+{$]0~;~+\infty[$},
+{$[0~;~+\infty[$}
+}
+\end{alterqcm}
+
+
+\vfill
+\example{Baccalauréat ES Antilles juin 2004 }\label{bac2}
+
+\medskip
+
+\begin{alterqcm}[lq=110mm,pre=true]
+
+\AQmessage{ La figure 1. donne la représentation graphique d'une fonction $f$ définie sur $\mathbf{R}^+$ et la figure 2 celle d'une primitive de $f$ sur $\mathbf{R}^+$.
+\begin{center}
+ \begin{tikzpicture}[xscale=2.25,yscale=1]
+ \tkzInit[xmin=-2,xmax=3,ymin=-1,ymax=6]
+ \tkzX
+ \tkzY
+ \tkzFct[label=false,samples=100](-1..2.2){x+exp(x-1)}
+ \tkzPoint[noname,coord](1,2){pt1}
+ \tkzPoint[noname,coord,label,xlabel={},%
+ ylabel=$\text{e}+2$,posylabel=10pt]%
+ (2,2+e){pt2}
+ \tkzRep
+ \end{tikzpicture}
+\end{center}
+\begin{center}
+ \begin{tikzpicture}[xscale=2.25,yscale=1]
+ \tkzInit[xmin=-2,xmax=3,ymin=-1,ymax=6]
+ \tkzX
+ \tkzY
+ \tkzFct(-2..2.2){x*x/2+exp(x-1)}
+ \tkzPoint[noname,coord,label,xlabel={},ylabel=$3/2$](1,1.5){pt1}
+ \tkzPoint[noname,coord,label,xlabel={},%
+ ylabel=$\text{e}+2$,posylabel=10pt]%
+ (2,2+e){pt2}
+ \tkzRep
+ \end{tikzpicture}
+\end{center}
+}
+
+\AQquestion{Quelle est l'aire, en unités d'aire, de la partie du plan limitée par la représentation graphique de la fonction $f$, l'axe des abscisses et les
+droites d'équation $x = 1$ et $x = 2$ ? }
+{{$\text{e} + \cfrac{3}{4}$},
+{$\text{e} + \cfrac{1}{2}$},
+{$1$}
+}
+
+\end{alterqcm}
+
+\medskip
+\hfill Tournez la page s.v.p.
+
+
+\begin{alterqcm}[lq=70mm,pre=false,numbreak=1]
+\AQmessage{La fonction $k$ définie et strictement positive sur $\mathbf{R}^+$ est connue par son tableau de variations.
+\begin{center}
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$k(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{-/ /,%
+ +/ /,%
+ -/ /,%
+ +/ $+\infty$ /}%
+ \end{tikzpicture}
+\end{center}%
+}
+
+\AQquestion{Pami les tableaux suivants, quel est le tableau de variations de la fonction $g$ définie sur
+$\mathbf{R}^+$ par \[g(x) = \cfrac{1}{k(x)}\ ? \]}
+{{Tableau A},
+{Tableau B},
+{Tableau C}
+}
+
+\AQmessage{%
+\begin{center}
+Tableau A\\
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$g(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{-/ /,%
+ +/ /,%
+ -/ /,%
+ +/ $+\infty$ /}%
+ \end{tikzpicture}
+\end{center}
+\begin{center}
+Tableau B\\
+\begin{tikzpicture}\activoff
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$g(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{+/ /,%
+ -/ /,%
+ +/ /,%
+ -/ $-\infty$ /}%
+ \end{tikzpicture}
+\end{center}
+\begin{center}
+Tableau C\\
+\begin{tikzpicture}\activoff
+ \tkzTabInit[lgt=1,espcl=2]{$x$/0.5,$g(x)$/1.5}
+ {$0$,$1$,$3$,$+\infty$}
+ \tkzTabVar{-/ /,%
+ +/ /,%
+ -/ /,%
+ +/ $0$ /}%
+ \end{tikzpicture}
+\end{center}
+}
+
+\AQquestion{Soit $h$ la fonction définie sur $\mathbf{R}$ par $h(x) = \text{e}^x - x + 1$.
+On note $\mathcal{C}$ la courbe représentative de $h$ dans un repère
+orthonormal $O;\vec{\imath};\vec{\jmath}$.}
+{{%
+\begin{minipage}{5cm}\small
+ La droite d'équation $y = 1$ est
+ asymptote à $\mathcal{C}$%
+\end{minipage}
+},
+{\begin{minipage}{5cm}\small
+ La droite d'équation $x = 0$ est
+asymptote à $\mathcal{C}$
+\end{minipage}},
+{\begin{minipage}{5cm}\small
+ La droite d'équation $y = -x + 1$ est
+asymptote à $\mathcal{C}$
+\end{minipage}}
+}
+\AQquestion[pq=5mm]{%
+En économie, le coût marginal est le coût occasionné par la
+production d'une unité supplémentaire, et on considère que le coût
+marginal est assimilé à la dérivée du coût total.\\
+Dans une entreprise, une étude a montré que le coût marginal
+$C_{m}(q)$ exprimé en millliers d'euro en fonction du nombre $q$
+d'articles fabriqués est donné par la relation :
+\[C_{m}(q) = 3q^2 - 10q + \cfrac{2}{q} + 20.\]
+}
+{%
+{$C_{r}(q) = q^3 - 5q^2 + 2\ln q + 20q + 9984$},
+{$C_{r}(q) = q^3 - 5q^2 + 2\ln q + 20q - 6$},
+{$C_{r}(q) = 6q - 10 - \cfrac{2}{q^2}$}
+}
+
+\end{alterqcm}
+
+\vfill
+
+\endinput
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-examples.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-examples.tex
new file mode 100644
index 0000000000..f7ffabafe3
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-examples.tex
@@ -0,0 +1,451 @@
+% 24 / 02 /2009 v1.00c TKZdoc-tab-examples
+\section{Galerie}
+\subsection{Tableaux de signes}
+L'exemple suivant provient de la documentation de l'excellent \tkzname{tablor.sty}.
+Voici le code complet
+
+\medskip
+\begin{center}
+\begin{tkzexample}[code only]
+\documentclass{article}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{ifthen,fp}
+\usepackage{tikz,tkz-tab}
+\usepackage{amsmath,amssymb}
+\usepackage[frenchb]{babel}
+
+\begin{document}
+\begin{tikzpicture}
+ \tkzTabInit[lgt=3]
+ {$x$ /1,
+ Signe de\\ $-2+3$ /1.5,
+ Signe de\\ $-x+5$ /1.5,
+ Signe de\\ $(-2x+3)(-x+5)$ /1.5 }%
+ {$-\infty$,$\dfrac{3}{2}$,$5$,$+\infty$}%
+ \tkzTabLine { ,+,z,-,t,-, }
+ \tkzTabLine { ,+,t,+,z,-, }
+ \tkzTabLine { ,+,z,-,z,+, }
+\end{tikzpicture}
+\end{document}
+\end{tkzexample}
+\end{center}
+
+\begin{tikzpicture}
+ \tkzTabInit[lgt=3]
+ {$x$ /1,
+ Signe de\\ $-2+3$ /1.5,
+ Signe de\\ $-x+5$ /1.5,
+ Signe de\\ $(-2x+3)(-x+5)$ /1.5 }%
+ {$-\infty$,$\dfrac{3}{2}$,$5$,$+\infty$}%
+ \tkzTabLine { ,+,z,-,t,-, }
+ \tkzTabLine { ,+,t,+,z,-, }
+ \tkzTabLine { ,+,z,-,z,+, }
+\end{tikzpicture}
+
+
+Quelques remarques sur ce code. Le codage utilisé n'a pas d'importance, si vous préférez \tkzname{latin1}, alors remplacez \tkzname{utf8} par \tkzname{latin1}, bien évidemment \tkzname{tkz-tab} est essentielle. Si vous utilisez \tkzname{fourier} alors vous pouvez supprimer \tkzcname{usepackage[T1]\{fontenc\}} et \tkzcname{usepackage\{ammsymb\}}.
+
+\subsection{Variations de fonctions}
+ \subsubsection{Variation d'une fonction rationnelle}
+
+ Cet exemple a été cité dans la documentation du package \tkzname{tabvar}
+
+ Étude de la fonction $f~:~ x \longmapsto \frac{x^3+2}{2x}$ sur $]-\infty~;~+\infty[$
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[]
+ {$x$ /1, $f'(x)$ /1,$f$ /3}
+ {$-\infty$ , $0$ , $1$ , $+\infty$}
+\tkzTabLine{,-,d,-,z,+,}
+\tkzTabVar{+/$+\infty$ ,-D+/$-\infty$ / $+\infty$ ,-/$\frac{3}{2}$, +/$+\infty$}
+\tkzTabVal{1}{2}{0.4}{$ -\sqrt[3]{2}$}{$0$}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Variation d'une fonction irrationnelle}
+
+Autre exemple cité dans la documentation du package \tkzname{tabvar}
+
+Étude de la fonction $f~:~ x \longmapsto \sqrt{\frac{x-1}{x+1}}$ sur $]-\infty~;~-1[\cup ]1~;~+\infty[$
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[]
+ {$x$ /1, $f'(x)$ /1,$f$ /3}
+ {$-\infty$ , $-1$ , $1$ , $+\infty$}
+\tkzTabLine{,+,d,h,d,+, }
+\tkzTabSlope{ 3/ /+\infty}
+\tkzTabVar{-/$1$ ,+DH/$+\infty$ ,-/$0$, +/$1$}
+\end{tikzpicture}
+\end{tkzexample}
+
+Un prolongement par continuité pourrait être : $f(x)=0$ sur $[-1~;~1]$ alors le tableau deviendrait
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[]
+ {$x$ /1, $f'(x)$ /1,$f$ /3}
+ {$-\infty$ , $-1$ , $1$ , $+\infty$}
+\tkzTabLine{,+,d,0,d,+, }
+\tkzTabSlope{ 3/ /+\infty}
+\tkzTabVar{-/$1$ ,+D-/$+\infty$/$0$ ,-/$0$, +/$1$}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Fonctions trigonométriques}
+\NameFonct{Fonctions trigonométriques}
+ \subsubsection{Variation de la fonction tangente}
+ \NameFonct{Fonction tangente}
+ Étude de la fonction $f~:~ x \longmapsto \tan{x}$ sur $[0~;\pi]$
+
+ \begin{tkzexample}[vbox]
+\begin{tikzpicture}
+\tkzTabInit[espcl=6]{$x$ / 1,Signe de\\f'(x)/1, Variations de\\ $f$ / 3}%
+ {$0$ ,$\frac{\pi}{2}$ , $\pi$}%
+\tkzTabLine{ ,+,d,+, }
+\tkzTabVar{-/$0$ , +D-/$+\infty$/$-\infty$ , +/$0$ }
+\tkzTabVal{1}{2}{0.5}{$\frac{\pi}{4}$}{$1$}
+\tkzTabVal{2}{3}{0.5}{$\frac{3\pi}{4}$}{$1$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Variation de la fonction cosinus}
+ \NameFonct{Fonction cosinus}
+ Étude de la fonction $f~:~ x \longmapsto \cos{x}$ sur $[-\pi~;~+\pi]$
+
+ \begin{tkzexample}[vbox]
+\begin{tikzpicture}
+\tkzTabInit[espcl=6]{$x$ / 1,Signe de\\f'(x)/1, Variations de\\ $f$ / 3}%
+ {$0$ , $\pi$}%
+\tkzTabLine{ , + , }
+\tkzTabVar{+/$1$ , -/$-1$ }
+\tkzTabVal{1}{2}{0.5}{$\frac{\pi}{2}$}{$0$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Fonctions paramétrées et trigonométriques}
+\NameFonct{Fonctions paramétrées} \NameFonct{Fonctions trigonométriques}
+
+Étude sur $\left[0~;~\frac{\pi}{2}\right]$
+ \begin{equation*}
+\left\{%
+\begin{array}{l}
+ x(t) = \cos(3t)\\
+ y(t) = \sin(4t)
+\end{array}\right.
+\end{equation*}
+
+\begin{tkzexample}[vbox,small]
+ \begin{tikzpicture}
+ \tkzTabInit[ lgt=3 , espcl=3]%
+ {$t$ /1,
+ Signe de\\ $x'(t)$ /1.5,
+ Variations de\\ $x$ /3,
+ Variations de\\ $y$ /3,
+ Signe de\\ $y'(t)$ /1.5}
+ {$0$ , $\frac{\pi}{8}$ , $\frac{\pi}{3}$ ,
+ $\frac{3\pi}{8}$ , $\frac{\pi}{2}$ }%
+ \tkzTabLine {z , - ,-3\sin\left(\frac{3\pi}{8}\right) , - , z , + ,%
+ 3\sin\left(\frac{\pi}{8}\right),+,3}
+ \tkzTabVar { +/$1$ , R/ , -/$-1$/ , R/ , +/$0$ }
+ \tkzTabIma{1}{3}{2}{$\cos\left(\frac{3\pi}{8}\right)$}
+ \tkzTabIma{3}{5}{4}{$-\cos\left(\frac{\pi}{8}\right)$}
+ \tkzTabVar { -/$0$ , +/$1$ , R/ , -/$-1$ , +/$0$ }
+ \tkzTabIma{2}{4}{3}{$\frac{-\sqrt{3}}{2}$}
+ \tkzTabLine {4 , + , z , - , -2 , - , z ,+,4}
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Baccalauréat Asie ES 1998}
+\index{Baccalauréat}
+Une petite astuce, en principe \tkzname{z} est le symbole à mettre dans la liste pour obtenir un zéro centré sur un trait en pointillés. Si on veut que le zéro soit sans le trait , il suffit de remplacer \tkzname{z} par \tkzname{0}. Celui-ci n'est pas un symbole reconnu, il est donc traiter comme une chaîne normale.
+
+ Soit $f$ la fonction de variable réelle $x$, définie sur $\mathbf{R}$ par :
+ \[
+ f(x)=\E^x(\E^x+a)+b
+ \]
+ où $a$ et $b$ sont deux constantes réelles.
+
+ Les renseignements connus sur $f$ sont donnés dans le tableau de variation ci-dessous.
+
+ \medskip
+ \begin{center}
+ \begin{tikzpicture}
+ \tkzTab[lgt=3,espcl=4]{$x$/1,Signe de $f'(x)$ /1,Variations de $f$ /2}%
+ {$-\infty$,$0$,$+\infty$}%
+ {,, z ,,}%
+ {+/ $-3$ ,
+ -/ ,
+ +/ }
+ \end{tikzpicture}
+ \end{center}
+
+ \medskip
+ \begin{enumerate}
+ \item Calculer $f'(x)$ en fonction de $a$ ($f'$ désigne la fonction dérivée de $f$).
+ \item \begin{enumerate}
+ \item déterminer $a$ et $b$ en vous aidant des informations contenues dans le
+ tableau ci-dessus.
+ \item Calculer $f(0)$ et calculer la limite de $f$ en $+\infty$.
+ \item Compléter, après l'avoir reproduit, le tableau de variations de $f$.
+ \end{enumerate}
+ \item Résoudre dans $\mathbf{R}$ l'équation
+ \[
+ \E^x(\E^x-2)-3=0
+ \]
+ (on pourra pose $X=\E^x$).
+ \item Résoudre dans $\mathbf{R}$ les inéquations :
+ \[
+ \E^x(\E^x-2)-3\geq -4
+ \]
+ \[
+ \E^x(\E^x-2)-3 \leq 0
+ \]
+ (On utilisera le tableau de variations donné ci-dessus et en particulier les
+ informations obtenues en 2.b)
+ \end{enumerate}
+
+\begin{tkzexample}[code only,small]
+ Soit $f$ la fonction de variable réelle $x$, définie sur $\mathbf{R}$ par :
+ \[
+ f(x)=\E^x(\E^x+a)+b
+ \]
+ où $a$ et $b$ sont deux constantes réelles.
+
+ Les renseignements connus sur $f$ sont donnés dans le tableau de variation ci-dessous.
+
+ \medskip
+ \begin{center}
+ \begin{tikzpicture}
+ \tkzTab[lgt=3,espcl=4]{$x$/1,Signe de $f'(x)$ /1,Variations de $f$ /2}%
+ {$-\infty$,$0$,$+\infty$}%
+ {,, z ,,}%
+ {+/ $-3$ ,
+ -/ ,
+ +/ }
+ \end{tikzpicture}
+ \end{center}
+
+ \medskip
+ \begin{enumerate}
+ \item Calculer $f'(x)$ en fonction de $a$ ($f'$ désigne la fonction dérivée de $f$).
+ \item \begin{enumerate}
+ \item déterminer $a$ et $b$ en vous aidant des informations contenues dans le
+ tableau ci-dessus.
+ \item Calculer $f(0)$ et calculer la limite de $f$ en $+\infty$.
+ \item Compléter, après l'avoir reproduit, le tableau de variations de $f$.
+ \end{enumerate}
+ \item Résoudre dans $\mathbf{R}$ l'équation
+ \[
+ \E^x(\E^x-2)-3=0
+ \]
+ (on pourra pose $X=\E^x$).
+ \item Résoudre dans $\mathbf{R}$ les inéquations :
+ \[
+ \E^x(\E^x-2)-3\geq -4
+ \]
+ \[
+ \E^x(\E^x-2)-3 \leq 0
+ \]
+ (On utilisera le tableau de variations donné ci-dessus et en particulier les
+ informations obtenues en 2.b)
+ \end{enumerate}
+\end{tkzexample}
+
+
+\subsection{Baccalauréat}
+\index{Baccalauréat}
+ On considère la fonction $f$ définie sur $]-\infty~;~0[$ :
+
+ \[
+ f(x)=ax+b+\ln(-2x)
+ \]
+ où $a$ et $b$ sont deux réels donnés.
+
+ \begin{enumerate}
+ \item Calculer $f'(x)$ en fonction de $a$ et $b$.
+ \item Le tableau ci-dessous représente les variations d'une fonction particulière $f$.
+
+ \medskip
+ \begin{center}
+ \begin{tikzpicture}
+ \tkzTab[]%
+ {$x$/1.25,Signe de\\ $f'(x)$/1.5, Variations\\ de $f$/1.5}%
+ {$-\infty$,$\dfrac{-1}{2}$,$0$}%
+ {,+,$0$,-,}%
+ {-//,
+ +/$2$/,
+ -//}
+ \end{tikzpicture}
+ \end{center}
+
+ \medskip
+ \begin{enumerate}
+ \item En utilisant les données du tableau déterminer les valeurs $a$ et $b$ qui caractérisent
+ cette fonction.
+ \item Pour cette fonction particulière $f$, déterminer
+ $\displaystyle \lim_{x \xrightarrow[x<0]{} 0} f(x)$.
+ \item Montrer que, dans l'intervalle $\Big[\dfrac{-1}{2}~;~0,01\Big]$, l'équation $f(x)=0$
+ admet une solution unique. En donner une valeur approchée à $10^{-3}$ près.
+ \end{enumerate}
+ \end{enumerate}
+
+\begin{tkzexample}[small,code only]
+ On considère la fonction $f$ définie sur $]-\infty~;~0[$ :
+
+ \[
+ f(x)=ax+b+\ln(-2x)
+ \]
+ où $a$ et $b$ sont deux réels donnés.
+
+ \begin{enumerate}
+ \item Calculer $f'(x)$ en fonction de $a$ et $b$.
+ \item Le tableau ci-dessous représente les variations d'une fonction particulière $f$.
+
+ \medskip
+ \begin{center}
+ \begin{tikzpicture}
+ \tkzTab[]%
+ {$x$/1.25,Signe de\\ $f'(x)$/1.5, Variations\\ de $f$/1.5}%
+ {$-\infty$,$\dfrac{-1}{2}$,$0$}%
+ {,+,$0$,-,}%
+ {-//,
+ +/$2$/,
+ -//}
+ \end{tikzpicture}
+ \end{center}
+
+ \medskip
+ \begin{enumerate}
+ \item En utilisant les données du tableau déterminer les valeurs $a$ et $b$ qui caractérisent
+ cette fonction.
+ \item Pour cette fonction particulière $f$, déterminer
+ $\displaystyle \lim_{x \xrightarrow[x<0]{} 0} f(x)$.
+ \item Montrer que, dans l'intervalle $\Big[\dfrac{-1}{2}~;~0,01\Big]$, l'équation $f(x)=0$
+ admet une solution unique. En donner une valeur approchée à $10^{-3}$ près.
+ \end{enumerate}
+ \end{enumerate}
+\end{tkzexample}
+
+
+
+\subsection{Baccalauréat Guyane ES 1998 }
+\index{Baccalauréat}
+C'est cet exemple qui m'a obligé à penser aux commandes du style $+V+$. Sans doute, voulait-on ne pas influencer les élèves avec la vision d'une double barre (trop souvent associée à la présence d'une asymptote).
+
+\textbf{Le sujet :}
+
+{\parindent=0pt
+On considère une fonction $f$ de la variable $x$, dont on donne le tableau de variations :
+
+\begin{center}
+\begin{tikzpicture}
+\tkzTab[lgt=3]%
+{$x$/1.25,Signe de\\ $f'(x)$/1.5, Variations\\ de $f$/2.5}
+{$-\infty$,$\dfrac{-1}{2}$,$1$,$+\infty$}
+{,-,$0$,+, ,-,}
+{+/ $1$ , -/$\dfrac{-1}{3}$ , +V+/ $+\infty$ /$+\infty$ , -/$1$}
+\end{tikzpicture}
+\end{center}
+
+On appelle (C) la courbe représentative de $f$ dans un repère Le plan est muni d'un repère orthonormé $(O;\vec{\imath};\vec{\jmath})$ (unités graphiques 2 cm sur chaque axe)
+
+\vspace{6pt}
+\textbf{Première partie}
+
+En interprétant le tableau donné ci-dessus :%
+
+ \begin{enumerate}
+ \item Préciser l'ensemble de définition de $f$.
+ \item Placer dans le repère $(O;\vec{\imath};\vec{\jmath})$ :
+ \begin{enumerate}
+ \item l'asymptote horizontale (D);
+ \item l'asymptote verticale (D');
+ \item le point $A$ où la tangente à (C) est horizontale.
+ \end{enumerate}
+ \end{enumerate}
+
+\textbf{Seconde partie}
+
+On donne maintenant l'expression de $f$ :
+\[
+f(x)=1 + \dfrac{4}{(x-1)} + \dfrac{3}{(x-1)^2}
+\]
+\begin{enumerate}
+ \item Résoudre les équations $f(x)=0$ et $f(x)=1$.
+ \item Au moyen de votre calculatrice, remplir le tableau suivant
+ ( recopier ce tableau sur votre copie).
+\end{enumerate}
+\begin{tikzpicture}
+ \tkzTabInit[deltacl=1,espcl=1]{ $x$/1 , $f(x)$ /1}%
+ {-1,,{-0,75},,{0,5},,2,,3,,4}%
+ \tkzTabLine{,,,,,,,,,,,,,,,,,,,,}%
+ \makeatletter
+ \foreach \x in {1,...,5}
+ \setcounter{tkz@cnt@pred}{\x}\addtocounter{tkz@cnt@pred}{\x}
+ \draw (N\thetkz@cnt@pred 0.center) to (N\thetkz@cnt@pred 2.center);
+\end{tikzpicture}
+}
+
+
+\begin{tkzexample}[code only,small]
+On considère une fonction $f$ de la variable $x$, dont on donne le tableau de variations :
+
+\begin{center}
+\begin{tikzpicture}
+\tkzTab[]%
+{$x$/1.25,Signe de\\ $f'(x)$/1.5, Variations\\ de $f$/2.5}
+{$-\infty$,$\dfrac{-1}{2}$,$1$,$+\infty$}
+{,-,$0$,+, ,-,}
+{+/ $1$ , -/$\dfrac{-1}{3}$ , +V+/ $+\infty$ /$+\infty$ , -/$1$}
+\end{tikzpicture}
+\end{center}
+
+ \vspace{6pt}
+On appelle (C) la courbe représentative de $f$ dans un repère. Le plan est muni d'un repère%
+ orthonormal $(O;\vec{\imath};\vec{\jmath})$ (unités graphiques 2 cm sur chaque axe)%
+
+\textbf{Première partie}
+
+En interprétant le tableau donné ci-dessus :%
+
+ \begin{enumerate}
+ \item Préciser l'ensemble de définition de $f$.
+ \item Placer dans le repère $(O;\vec{\imath};\vec{\jmath})$ :
+ \begin{enumerate}
+ \item l'asymptote horizontale (D);
+ \item l'asymptote verticale (D');
+ \item le point $A$ où la tangente à (C) est horizontale.
+ \end{enumerate}
+ \end{enumerate}
+
+\textbf{Seconde partie}
+
+On donne maintenant l'expression de $f$ :
+\[
+f(x)=1 + \dfrac{4}{(x-1)} + \dfrac{3}{(x-1)^2}
+\]
+\begin{enumerate}
+ \item Résoudre les équations $f(x)=0$ et $f(x)=1$.
+ \item Au moyen de votre calculatrice, remplir le tableau suivant
+ ( recopier ce tableau sur votre copie).
+ \begin{tikzpicture}
+ \tkzTabInit[deltacl=1,espcl=1]{ $x$/1,$f(x)$ /1}%
+ {-1,,{-0,75},,{0,5},,2,,3,,4}%
+ \tkzTabLine{,,,,,,,,,,,,,,,,,,,,}%
+ \makeatletter
+ \foreach \x in {1,...,5}
+ \setcounter{tkz@cnt@pred}{\x}\addtocounter{tkz@cnt@pred}{\x}
+ \draw (N\thetkz@cnt@pred 0.center) to (N\thetkz@cnt@pred 2.center);
+ \end{tikzpicture}
+\end{enumerate}
+
+\vfill
+\end{tkzexample}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-image.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-image.tex
new file mode 100644
index 0000000000..15cf2335e9
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-image.tex
@@ -0,0 +1,181 @@
+% 20 / 02 /2009 v1.00c TKZdoc-tab-image
+\section{Ajout d'images \addbs{tkzTabIma} et \addbs{tkzTabImaFrom}}
+Ces macros permettent de placer une valeur sur une flèche de la ligne des variations. On ne peut placer une valeur que dans un intervalle où la fonction est \tkzname{monotone}, de plus l'image est celle d'un antécédent déjà défini dans la première ligne. La première macro est \tkzcname{tkzTabIma}.
+
+\subsection{Définition de \addbs{tkzTabIma}}
+
+\begin{NewMacroBox}{tkzTabIma}{\oarg{local options}\{Début\}\{Fin\}\{Position\}\{Antécédent\}\{Image\}}
+
+\begin{tabular}{lllc}
+\toprule
+\texttt{arguments} & \texttt{défaut} & \texttt{définition} \\
+\toprule
+\IargName{tkzTabIma}{Début} & |no default|& rang de l'origine de la flèche \\
+\IargName{tkzTabIma}{Fin} & |no default|& rang de l'extrémité de la flèche \\
+\IargName{tkzTabIma}{Position} & |no default| & rang de l'antécédent correspondant à l'image \\
+\IargName{tkzTabIma}{Image} & |no default| & valeur de l'image si nécessaire \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Ceci mérite quelques commentaires : Il s'agit de savoir sur quelle flèche, on va positionner l'image. \tkzname{Début} et \tkzname{Fin} sont les rangs des valeurs qui déterminent les extrémités de la flèche. \tkzname{Image} est la valeur que l'on veut placer. \tkzname{Position} est un nombre entier qui est le rang de l'antécédent.}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+\texttt{options} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IoptName{tkzTabIma}{draw} & |true| & dessin d'une flèche entre l'antécédent et son image \\
+\IoptName{tkzTabIma}{remember}& |lastval|& définit un node personnalisé \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Si vous voulez une flèche entre l'antécédent et l'image, il vous suffit de passer en option \tkzname{draw}. Si vous voulez référencer le point où se situe l'image alors il faut utiliser l'option \tkzname{remember}.}
+\end{NewMacroBox}
+
+\subsubsection{Ajout de valeurs intermédiaires à partir d'un antécédent donné}
+Il y a plusieurs possibilités mais la suivante est préférable. L'antécédent est de rang $2$.
+ La fonction est monotone entre les valeurs de rang $1$ et $3$. Voici comment faire apparaître l'image par $f$ de $\sqrt\E$.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+\tkzTabInit[espcl=6]%
+ {$x$/1,$f'(x)$/1, $f(x)$/2}{$0$,$\sqrt\E$,$+\infty$}%
+ \tkzTabLine{d,+,0,+,}%
+ \tkzTabVar{D- /$-\infty$ , R / ,+ / $0$ }%
+ \tkzTabIma{1}{3}{2}{-5}
+\end{tikzpicture}
+\end{tkzexample}
+\Iopt{tkzTabVal}{draw}
+
+Une autre possibilité est d'utiliser la macro \tkzcname{tkzTabImaFrom} ainsi que les nodes créés pour construire le tableau ; voir la section \og personnalisation \fg\ (\ref{pers}) et la fin de ce chapitre.
+
+\subsubsection{Exemple avec plusieurs lignes de variations}
+\begin{tkzexample}[vbox,small]
+ \begin{tikzpicture}
+
+ \tkzTabInit[espcl=4]
+ { $x$ /1,
+ $f''(x)$ /1,
+ $f'$ /2,
+ Signe de\\ $f'(x)$ /2,
+ $f$ /3}%
+ { $0$ , $1$ , $\alpha$,$+\infty$ }%
+ \tkzTabLine {d , + , z , - , , - }%
+ \tkzTabVar
+ {- / $1$ ,
+ + / ,
+ R / ,
+ - / $-\infty$ }
+ \tkzTabIma[draw]{2}{4}{3}{$0$}
+ % ou bien \tkzTabVal[draw]{2}{4}{0.5}{}{0} obsolète
+ \tkzTabLine { , + , , + , z , - }%
+ \tkzTabVar
+ {- / $-\infty$ ,
+ R / ,
+ + / $1$ ,
+ - / $0$ }
+ \tkzTabIma[draw]{1}{3}{2}{$0$}
+ \end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Fonctions paramétrées}
+\NameFonct{Fonctions paramétrées}
+
+\begin{tkzexample}[vbox,small]
+ \begin{tikzpicture}
+ \tkzTabInit[ lgt=4, deltacl=1, espcl=2]%
+ {$t$ /1,
+ Signe de\\ $x'(t)$ /1.5,
+ Variations de\\ $x$ /3,
+ Variations de\\ $y$ /3,
+ Signe de\\ $y'(t)$ /1.5}
+ { $-\infty$ , $-4$ , $-1$ , $0$, $2$ , $+\infty$}%
+
+ \tkzTabLine { , - , z , + , d , + , z , - , d , - , }
+
+ \tkzTabVar {+/$1$ , -/$ \frac{8}{9}$ ,+D-/$+\infty$/$-\infty$ ,
+ +/$0$/ ,-D+ /$-\infty$/ $+\infty$ , -/$1$ / }
+
+ \tkzTabVar {+/$+\infty$ , R/ ,-D+/$-\infty$/$+\infty$ ,
+ -/$0$ ,R / , +/$+\infty$ }
+
+ \tkzTabIma{1}{3}{2}{$\frac{32}{3}$}
+ \tkzTabIma{4}{6}{5}{$\frac{16}{3}$}
+
+ \tkzTabLine{ , - , \frac{-64}{9} , - , d , - , z , + , \frac{44}{9} , + , }
+ \end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Définition de \addbs{tkzTabImaFrom}}
+Cette macro ressemble à la précédente mais elle permet de placer une image relativement à une autre image ou relativement à un point quelconque du tableau auquel on a attribué un nom.
+
+\begin{NewMacroBox}{tkzTabImaFrom}{\oarg{local options}\{Début\}\{Fin\}\{From\}\{Image\}}
+
+\begin{tabular}{lllc}
+\toprule
+\texttt{arguments} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IargName{tkzTabImaFrom}{Début} & |no default| & rang de l'origine de la flèche \\
+\IargName{tkzTabImaFrom}{Fin} & |no default| & rang de l'extrémité de la flèche \\
+\IargName{tkzTabImaFrom}{From} & |no default| & nom d'un point \\
+\IargName{tkzTabImaFrom}{Image} & |no default| & valeur de l'image \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Comme pour \tkzcname{tkzTabVal}, \tkzname{Début} et \tkzname{Fin} sont les rangs des valeurs qui déterminent les extrémités de la flèche. \tkzname{Image} est la valeur que l'on veut placer. \tkzname{From} est le nom du node qui correspond à l'antécédent.}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+\texttt{options} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IoptName{tkzTabImaFrom}{draw} & |true| & dessin d'une flèche entre l'antécédent et son image \\
+\IoptName{tkzTabImaFrom}{remember}& |lastval|& définit un node personnalisé \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Si vous voulez une flèche entre l'antécédent et l'image, il vous suffit de passer en option \tkzname{draw}. Si vous voulez référencer le point où se situe l'image alors il faut utiliser l'option \tkzname{remember}.}
+
+\end{NewMacroBox}
+
+\subsubsection{Utilisation d'un node défini par la macro \addbs{tkzTabInit}}
+Il s'agit ici de \tkzname{N21}. C'est un node, plus exactement un point situé sous la seconde valeur $\sqrt\E$ et sur le premier filet horizontal sous cette valeur. Voir le chapitre \tkzname{personnalisation} et en particulier l'option \tkzname{help} qui permet d'afficher différents points de construction.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+\tkzTabInit[espcl=6]%
+ {$x$/1,$f'(x)$/1, $f(x)$/3}{$0$,$\sqrt\E$,$+\infty$}%
+ \tkzTabLine{d,+,0,+,}%
+ \tkzTabVar{D-/ $-\infty$, R/ , +/$0$ }
+ \tkzTabImaFrom[draw]{1}{3}{N21}{-5}
+ \draw[opacity=0.4,fill=red!30] (N21) circle(3ex);
+ \draw[fill=red] (N21) circle(2pt);
+ \node[above right= 12pt,red](txt) at (N21) {$N21$};
+\end{tikzpicture}
+\end{tkzexample}
+\Iopt{tkzTabImaFrom}{draw}
+
+\subsubsection{Utilisation d'un point défini par l'utilisateur avec \texttt{\textcolor{red}{remember}}}
+
+\begin{tkzexample}[vbox, num,small]
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=3,espcl=6]{ $x$/1, $f'(x)$/1, $f(x)$/3,/3 }%
+ { $a$ , $d$ ,$e$}
+ \tkzTabLine{ z,+ ,z,- ,z }
+ \tkzTabVar {-/\va ,+/\vd , -/ \ve}
+ \tkzTabVal[draw,remember=vb]{1}{2}{0.333}{b}{$0$}
+ \tkzTabVal[draw,remember=vc]{1}{2}{0.666}{c}{$1$}
+ \tkzTabVar{-/\va ,R/ , +/ \ve}
+ \tkzTabVal[draw]{1}{3}{0.5}{}{$0$}
+ \tkzTabImaFrom[draw]{1}{3}{vc}{$-1$}
+ \tkzTabImaFrom[draw]{1}{3}{vb}{$-2$}
+ \end{tikzpicture}
+\end{tkzexample}
+\Iopt{tkzTabImaFrom}{remember}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-init.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-init.tex
new file mode 100644
index 0000000000..634a4fe82e
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-init.tex
@@ -0,0 +1,202 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+% 21 / 02 /2009 v1.00c TKZdoc-tab-init 18 h
+\section{Initialisation d'un tableau : \addbs{tkzTabInit} }
+\subsection{Définition}
+
+\begin{NewMacroBox}{tkzTabinit}%
+{\oarg{local options}\var{e(1)/h(1),...,e(p)/h(p)}\var{a(1),...,a(n)}}
+
+\begin{tabular}{lllc}
+\toprule
+arguments & défaut & définition \\
+\midrule
+\TAline{liste1} {no default } {\var{e(1)/h(1),...,e(p)/h(p)} }
+\TAline{liste2} {no default } {\var{a(1),...,a(n)}}
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Les arguments obligatoires de cette macro sont deux listes dont les éléments sont séparés par des virgules. La première contient $p$ éléments qui définissent $p$ lignes dans le tableau. La seconde liste contient $n$ éléments qui définissent $n$ antécédents. À un antécédent correspond une colonne.}
+
+ \begin{itemize}
+
+\item Liste 1 : \emph{les éléments de la première liste sont des paires \tkzname{e(i)/h(i)} où \tkzname{/} est un séparateur entre d'une part, une expression \tkzname{e(1)} et d'autre part, un nombre exprimé en \tkzname{centimètres}. \tkzname{h(i)} est pour tout $i$ un nombre décimal qui fait référence à la hauteur en \tkzname{cm} de la ligne qui contient l'expression \tkzname{e(i)}. Les nombres décimaux utilisent le point comme séparateur.}
+
+\item Liste 2 : \emph{On ne peut pas utiliser les symboles \og \tkzname{/} \fg\ et \og \tkzname{,} \fg\ dans \tkzname{e(i)} sauf si on les protège dans un groupe\protect\footnotemark. La protection de la virgule par une paire d'accolades |\{4,5\}| peut avantageusement être remplacée par une commande comme \tkzcname{numprint\{4,5\}} ou encore \tkzcname{np\{4,5\}}\protect\footnotemark.}
+ \end{itemize}
+\NamePack{numprint}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{espcl} {2 cm}{espacement entre deux valeurs }
+\TOline{lgt} { 2 cm}{largeur de la première colonne }
+\TOline{deltacl}{0.5 cm}{marge avant le premier et le dernier antécédent}
+\TOline{lw} {0.4 pt}{épaisseur des lignes du tableau }
+\TOline{nocadre}{false}{par défaut, on encadre le tableau }
+\TOline{color} {false}{booléen autorise la couleur\protect\footnotemark}
+\TOline{colorC} {white}{couleur de la première colonne }
+\TOline{colorL} {white}{couleur de la première ligne }
+\TOline{colorT} {white}{couleur de la partie centrale }
+\TOline{colorV} {white}{couleur de la case de la variable }
+\TOline{help} {false}{affiche les noms des points de construction} \bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Le tableau ci-dessus décrit les options actuelles de la macro. Les trois premières sont essentielles pour l'esthétisme de votre tableau, ainsi que pour ses dimensions finales. Il reste cependant une possibilité car on peut encore jouer avec les options de l'environnement \tkzname{tikzpicture} qui sont \tkzname{scale}, \tkzname{xscale} et \tkzname{yscale}.}
+\end{NewMacroBox}
+
+\footnotetext[3]{expression entre accolades.}
+\footnotetext[4]{Voir la documentation du package \tkzname{numprint}.}
+\footnotetext[5]{Il est préférable de charger le package \tkzname{xcolor} avec des options comme \tkzname{usenames}, \tkzname{dvipsnames} ou encore \tkzname{pdftex}.}
+\NamePack{xcolor}
+\subsection{Utilisation des arguments}
+\subsubsection{Tableau simple}
+\medskip
+Exemple : \begin{tkzexample}[code only]\tikz \tkzTabInit{$x$ /.8 , $f(x)$ /.8}{$0$ , $+\infty$}; \end{tkzexample}crée un tableau de \tkzname{deux} lignes. La première ligne fait $\np{0.8}$ cm de hauteur, ainsi que la seconde. La colonne de droite a pour bornes $0$ et $+\infty$.
+
+\medskip
+\begin{center}
+ \tikz \tkzTabInit{$x$ /.8 , $f(x)$ /.8}{$0$ , $+\infty$};
+\end{center}
+\subsubsection{Ajout de lignes et de colonnes}
+
+La première liste permet d'obtenir trois lignes qui ont pour hauteur $1$ cm. La seconde liste comporte trois antécédents qui déterminent deux intervalles (zones). Il sera possible de placer des filets verticaux sous ces antécédents.
+
+\begin{tkzexample}[width=10cm,small]
+\begin{tikzpicture}
+\tkzTabInit
+ {$x$ /1,
+ $f(x)$ /1,
+ $g(x)$ /1}
+ {$0$,$\E$,$+\infty$}
+\end{tikzpicture}
+\end{tkzexample}
+Il est à noter l'utilisation de la macro \tkzcname{E} \footnote{\tkzcname{E} est définie ainsi \BS newcommand*\{\BS E\}\{\BS ensuremath\{\BS mathrm\{e\}\}\}.}
+\subsubsection{Tableau minimum}
+\index{Tableau minimum}
+Le premier argument est \tkzname{ /1}, c'est l'argument minimum. L'argument est une liste avec comme séparateur le symbole \tkzname{/}. Celui-ci est précédé d'un blanc ou d'un vide. La première case de la ligne sera vide. Le \tkzname{$1$} signifie \tkzname{$1$ cm} car une dimension en cm est obligatoire pour donner la hauteur de la ligne. Le deuxième argument est constitué de deux éléments vides ou bien de deux blancs séparés par une virgule. Cet argument doit contenir au minimum deux éléments. Ces deux éléments sont les bornes d'un intervalle.
+
+\begin{tkzexample}[width=8cm,small]
+\begin{tikzpicture}
+ \tkzTabInit{ / 1}
+ { , }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Utilisation des options}
+
+Tout d'abord on peut modifier certaines dimensions concernant les colonnes. Voyons les valeurs par défaut.
+
+\begin{center}
+ \begin{tikzpicture}
+ \tkzTabInit
+ {$x$ / 1}
+ {$a_1$ , $a_2$ , $a_3$}
+ \begin{scope}[arstyle/.style={>=latex,#1,<->}]
+ \draw[arstyle=blue] (N10) to node[above,color=blue]%
+ {\scriptsize $ espcl = 2$ cm} (N20);
+ \draw[arstyle=blue] (N20) to node[above,color=blue]%
+ {\scriptsize $ espcl = 2$ cm} (N30);
+ \draw[arstyle=red] (T10) to node[above=12pt,color=red]%
+ {\scriptsize $ deltacl = 0,5$ cm} (N10);
+ \draw[arstyle=red] (N30) to node[above=12pt,color=red]%
+ {\scriptsize $ deltacl = 0,5$ cm} (T20);
+ \draw[arstyle=blue] (T00) to node[above,color=blue]%
+ {\scriptsize $ lgt = 2$ cm} (T10);
+ \end{scope}
+ \end{tikzpicture}
+\end{center}
+
+
+\subsubsection{\texttt{\textcolor{red}{lgt}} : modification de la largeur de la première colonne}\Iopt{tkzTabInit}{lgt}
+
+Par défaut la largeur de cette première colonne est de $2$ cm. L'unité est toujours le \tkzname{cm}.
+
+\begin{tkzexample}[width=8cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=3]{ $x$ / 1}
+ { $1$ , $3$ }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{espcl}} : modification de l'espacement entre deux valeurs}\Iopt{tkzTabInit}{espcl}
+
+\begin{tkzexample}[width=9cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=3,espcl=4]%
+ { $x$ / 1}
+ { $1$ , $4$ }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{deltacl}} : modification des espacements aux extrémités}\Iopt{tkzTabInit}{deltacl}
+
+\begin{tkzexample}[width=9cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=3,deltacl=1]%
+ { $x$ / 1}
+ { $1$ , $4$ }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{lw}} : épaisseur des lignes du tableau}
+\Iopt{tkzTabInit}{lw}
+Ce n'est pas recommandé. Il est préférable que tous les traits d'un document aient la même épaisseur qui par défaut est de $\np{0,4}$ pt.
+
+\begin{tkzexample}[width=8cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[lw=2pt]{ / 1}
+ { , }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{nocadre}} : suppression du cadre externe}
+\Iopt{tkzTabInit}{nocadre}
+
+\begin{tkzexample}[width=8cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[nocadre]{ / 1, /1, /1}
+ { , }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{color}} : utilisation de la couleur dans un tableau}
+\Iopt{tkzTabInit}{color}\NamePack{amsmath}
+\tkzname{color} est un booléen et indique que l'on veut utiliser la couleur. Pour cela, il faut donner les couleurs attribuées à la première ligne \tkzname{colorL}, la première colonne \tkzname{colorC}, à la case de la variable \tkzname{colorV} et aux lignes \tkzname{colorT}. Il est possible d'attribuer une couleur pour une ligne particulière.
+
+\tkzname{tkzTabInit\{[color]\}} signifie que le booléen color est à vrai.
+
+\begin{tkzexample}[width=8cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[color,
+ colorT = yellow!20,
+ colorC = orange!20,
+ colorL = green!20,
+ colorV = lightgray!20]
+ { /1 , /1}{ , }
+\end{tikzpicture}
+\end{tkzexample}
+
+\begin{tkzexample}[width=8cm]
+\begin{tikzpicture}
+ \tkzTabInit[color,
+ colorT = yellow!20,
+ colorC = red!20,
+ colorL = green!20,
+ colorV = lightgray!20,
+ lgt = 1,
+ espcl = 2.5]%
+ {$t$/1,$a$/1,$b$/1,$c$/1,$d$/1}%
+ {$\alpha$,$\beta$,$\gamma$}%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{help}} : Affiche la structure du tableau}
+\Iopt{tkzTabInit}{help}
+Voir la section \og personnalisation \fg\ (\ref{pers}).
+\endinput
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-install.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-install.tex
new file mode 100644
index 0000000000..d45add9bbb
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-install.tex
@@ -0,0 +1,107 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+% 20 / 02 /2009 v1.00c TKZdoc-tab-install
+\section{Installation}
+Il est possible que lorsque vous lirez ce document, \tkzname{tkz-tab} soit présent sur le serveur du \tkzname{CTAN}\footnote{\tkzname{tkz-tab} ne fait pas encore partie de \tkzname{TeXLive} mais il sera bientôt possible de l'installer avec \emph{tlmgr}}. Si \tkzname{tkz-tab} ne fait pas encore partie de votre distribution, ce chapitre vous montre comment l'installer.
+
+\subsection{Avec TeXLive sous OS X, Linux et Windows}\NameDist{TeXLive}
+Créer un dossier \tikz[remember picture,baseline=(n1.base)]\node [fill=green!50,draw] (n1) {prof}; avec comme chemin : \colorbox{blue!50}{ texmf/tex/latex/prof}.
+
+ \colorbox{blue!50}{texmf} est un dossier personnel, voici les chemins de ce dossier sur mes deux ordinateurs:
+
+\medskip
+\begin{itemize}\setlength{\itemsep}{10pt}
+
+\item sous OS X\NameSys{OS X} \colorbox{blue!30}{\textbf{/Users/ego/Library/texmf}};
+
+\item sous Ubuntu\NameSys{Linux Ubuntu} \colorbox{blue!30}{\textbf{/home/ego/texmf}};
+
+\item sous Windows je ne connais pas cette distribution sous ce système mais je suppose que l'installation doit ressembler à ce qui se passe sous Linux et OS X.
+\end{itemize}
+
+\medskip
+\begin{enumerate}
+\item Placez \tikz[remember picture,baseline=(n2.base)]\node [fill=orange,draw] (n2) {tkz-tab.sty}; dans le dossier \colorbox{green!50}{prof}.
+\item Ouvrir un terminal, puis faire \colorbox{red!50}{|sudo texhash|}
+\item Vérifier que \tkzname{xkeyval}\index{xkeyval} version 2.5 minimum et \tkzname{Ti\emph{k}Z 2.00}\index{TikZ@Ti\emph{k}Z} sont installés car ils sont obligatoires, pour le bon fonctionnement de tkz-tab.
+\end{enumerate}
+Mon dossier texmf est structuré ainsi : \emph{Attention, la présence dans mon dossier texmf, des fichiers de \PGF, s'explique par l'utilisation de la version CVS de \PGF}.
+
+\medskip
+\begin{tikzpicture} [remember picture,rotate=90]
+
+\node (texmf) at (4,2) [draw,fill=blue!30 ] {texmf};
+
+\node (tex) at (6,0) [draw ] {tex};
+\node (doc) at (0,0) [draw ] {doc};
+
+\node (generic) at (7,-4) [draw ] {generic};
+\node (docgen) at (0,-4) [draw ] {generic};
+
+\node (latex) at (4,-4) [draw ] {latex};
+
+\node (pgf1) at (7,-7) [draw,fill=orange] {pgf};
+
+\node (pgf2) at (5,-7) [draw,fill=orange] {pgf};
+\node (prof) at (4,-7) [draw,fill=green ] {{prof}};
+\node (etc) at (3,-7) [draw ] {etc...};
+\node (dpgf) at (0,-7) [draw,fill=orange] {pgf};
+
+\node (qcm) at (7,-11) [draw,fill=green ] {alterqcm.sty};
+\node (fonc) at (6,-11) [draw,fill=orange] {tkz-graph.sty};
+\node (esp) at (5,-11) [draw,fill=orange] {tkz-berge.sty};
+\node (tab) at (4,-11) [draw,fill=orange] {tkz-tab.sty};
+\node (tuk) at (3,-11) [draw,fill=orange] {tkz-tukey.sty};
+\node (base) at (2,-11) [draw,fill=orange] {tkz-base.sty};
+\node (gra) at (1,-11) [draw,fill=orange] {tkz-fct.sty};
+
+\draw (doc.west) |- (4, 1);
+\draw (tex.west) |- (4, 1);
+
+\draw (latex.west) |- (6,-2);
+\draw (generic.west) |- (6,-2);
+
+\draw (pgf2.west) |- (4,-6);
+\draw (prof.west) |- (4,-6);
+\draw (etc.west) |- (4,-6);
+
+\draw (qcm.west) |- (4,-9);
+\draw (fonc.west) |- (6,-9);
+\draw (esp.west) |- (5,-9);
+\draw (tuk.west) |- (4,-9);
+\draw (tab.west) |- (3,-9);
+\draw (base.west) |- (2,-9);
+\draw (gra.west) |- (4,-9);
+
+
+\draw[-open triangle 90] (pgf1.west) -- (generic.east);
+\draw[-open triangle 90] (4,1) -- (texmf.east);
+\draw[-open triangle 90] (6,-2) -- (tex.east);
+\draw[-open triangle 90] (4,-6) -- (latex.east);
+\draw[-open triangle 90] (4,-9) -- (prof.east);
+\draw[-open triangle 90] (dpgf.west) -- (docgen.east);
+\draw[-open triangle 90] (docgen.west) -- (doc.east);
+\end{tikzpicture}
+
+\begin{tikzpicture}[remember picture,overlay]
+ \path[->,thin,red,>=latex] (n1) edge [bend left] (latex);
+ \path[->,thin,red,>=latex] (n2) edge [bend left] (prof);
+\end{tikzpicture}
+
+\subsection{Avec MikTeX sous Windows XP}\NameDist{MikTeX}\NameSys{Windows XP}
+
+Je ne connais pas grand-chose à ce système mais un utilisateur de mes packages \textbf{Wolfgang Buechel} a eu la gentillesse de me faire parvenir ce qui suit~:
+
+Pour ajouter \tkzname{tkz-tab.sty} à MiKTeX\footnote{Essai réalisé avec la version \tkzname{2.7}}:
+
+\begin{itemize}\setlength{\itemsep}{10pt}
+ \item ajouter un dossier \tkzname{prof} dans le dossier
+ \colorbox{blue!30}{\texttt{[MiKTeX-dir]/latex/tex}}
+ \item copier \tkzname{tkz-tab.sty} dans ce dossier,
+ \item mettre à jour MiKTeX, pour cela dans shell DOS lancer la commande \colorbox{red!50}{|mktexlsr -u|}
+
+ ou bien encore, choisir \colorbox{red!50}{|Start/Programs/Miktex/Settings/General|}
+
+ puis appuyer sur le bouton \colorbox{red!50}{|Refresh FNDB|}.
+\end{itemize}
+
+\vfill \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-main.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-main.tex
new file mode 100644
index 0000000000..e9ffc3a560
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-main.tex
@@ -0,0 +1,161 @@
+
+% 25 / 02 /2009 v1.0c TKZdoc-tab-main 11h
+% $Id: TKZdoc-tab-main.tex alain matthes $
+% encoding : utf8
+% linknodesdoc.tex
+% Created by Alain Matthes on 2008-01-19.
+% Copyright (C) 2009 Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/generic/pgf/licenses/LICENSE for more details.%
+% See http://www.latex-project.org/lppl.txt for details.
+%
+%
+% ``TKZdoc-tab-main '' is the french doc of tkz-tab
+%
+%
+\documentclass[DIV=14,fontsize=10,headinclude=false,index=totoc,footinclude=false,headings=small]{tkz-doc}
+
+\usepackage{tkz-tab}
+\usetikzlibrary[petri]
+\usepackage[frenchb]{babel}
+\usepackage[np,autolanguage]{numprint}
+
+\usepackage[pdftex,unicode,
+ colorlinks=true,
+ pdfpagelabels,
+ urlcolor=blue,
+ filecolor=pdffilecolor,
+ linkcolor=blue,
+ breaklinks =false,
+ hyperfootnotes=false,
+ bookmarks=false,
+ bookmarksopen=false,
+ linktocpage=true,
+ pdfsubject={qcm},
+ pdfauthor={Alain Matthes},
+ pdftitle={alterqcm},
+ pdfkeywords={qcm, mathematics, table},
+ pdfcreator={LaTeX}
+ ]{hyperref}
+\usepackage{url}
+\def\UrlFont{\small\ttfamily}
+\usepackage[protrusion = true,
+ expansion,
+ final,
+ verbose = false,
+ babel = true]{microtype}
+
+
+\DisableLigatures{encoding = T1, family = tt*}
+\usepackage[parfill]{parskip}
+
+
+
+\gdef\urlauthorcom{http://altermundus.com}
+
+\gdef\nameofpack{Tkz-Tab}
+\gdef\versionofpack{1.1c}
+\gdef\dateofpack{2010/02/24}
+\gdef\nameofdoc{doc-tkz-tab}
+\gdef\dateofdoc{2010/02/24}
+\gdef\authorofpack{Alain Matthes}
+\gdef\adressofauthor{}
+\gdef\namecollection{AlterMundus}
+\gdef\urlauthor{http://altermundus.fr}
+\gdef\urlauthor{http://altermundus.com}
+
+\usepackage{shortvrb}
+\makeatletter
+\renewcommand*\l@subsubsection{\bprot@dottedtocline{3}{3.8em}{4em}}
+\makeatother
+\AtBeginDocument{\MakeShortVerb{\|}}
+
+\pdfcompresslevel=9
+\pdfinfo{
+ /Title (doc-tkz-tab.pdf)
+ /Creator (TeX)
+ /Producer (pdfeTeX)
+ /Author (Alain Matthes)
+ /CreationDate (13 mars 2009)
+ /Subject (Documentation du package tkz-tab v 1.1c)
+ /Keywords (pdfeTeX, tab, variations, function, sign, maths, pdflatex) }
+
+\colorlet{graphicbackground}{white}
+\colorlet{codebackground}{Peach!20}
+\newcommand*{\E}{\ensuremath{\mathrm{e}}}
+\usepackage{tkzexample}
+%<--------------------------------------------------------------------------->
+\begin{document}
+
+
+\title{\nameofpack}
+\date{\today}
+\clearpage
+\thispagestyle{empty}
+\maketitle
+\clearpage
+
+\definecolor{fondpaille}{cmyk}{0,0,0.1,0}
+\colorlet{graphicbackground}{fondpaille}
+\colorlet{codebackground}{brown!15}
+\colorlet{codeonlybackground}{brown!15}
+\colorlet{textcodecolor}{Maroon}
+\pagecolor{fondpaille}
+\color{Maroon}
+\tkzTabColors[backgroundcolor=fondpaille,color=Maroon]
+
+\nameoffile{\nameofpack}
+\defoffile{\textbf{tkz-tab.sty} est un package pour créer à l'aide de \TIKZ des tableaux de signes et de variations le plus simplement possible. Il est dépendant de \TIKZ et fera partie d'une série de packages ayant comme point commun, la création de dessins utiles dans l'enseignement des mathématiques. La lecture de cette documentation va, je l'espère vous permettre d'apprécier la simplicité d'utilisation de \TIKZ et vous permettre de commencer à le pratiquer.}
+
+\presentation
+
+\vfill
+\lefthand\ Je remercie \tkzimp{Till Tantau} pour nous permettre d'utiliser \tkzname{\TIKZ}.
+
+\lefthand\ Je remercie \tkzimp{Michel Bovani} pour nous permettre d'utiliser \tkzname{fourier} et \tkzname{utopia} avec \LaTeX.
+
+\lefthand\ Je remercie \tkzimp{Henri-Claude Dufresne } pour sa lecture approfondie de la documentation et ses propositions de correction.
+
+henri-claude Dufresne
+\lefthand\ Je remercie également \tkzimp{Jean-Côme Charpentier}, \tkzimp{Manuel Pégourié-Gonnard}, \tkzimp{Franck Pastor}, \tkzimp{Ulrike Fischer} et \tkzimp{Josselin Noirel} pour les différentes idées et conseils qui m'ont permis de faire ce package, ainsi que \tkzimp{Herbert Vo\ss } pour son document \tkzname{mathmode.pdf}.
+
+
+
+\clearpage
+\tableofcontents
+%<--------------------------------------------------------------------------->
+\newcommand*{\va}{\colorbox{red!50} {$\scriptscriptstyle V_a$}}
+\newcommand*{\vb}{\colorbox{blue!50} {$\scriptscriptstyle V_b$}}
+\newcommand*{\vbo}{\colorbox{blue!50} {$\scriptscriptstyle V_{b1}$}}
+\newcommand*{\vbt}{\colorbox{yellow!50}{$\scriptscriptstyle V_{b2}$}}
+\newcommand*{\vc}{\colorbox{gray!50} {$\scriptscriptstyle V_c$}}
+\newcommand*{\vd}{\colorbox{magenta!50}{$\scriptscriptstyle V_d$}}
+\newcommand*{\ve}{\colorbox{orange!50} {$\scriptscriptstyle V_e$}}
+%<--------------------------------------------------------------------------->
+\tkzTabColors[backgroundcolor=fondpaille,color=Maroon]
+
+\include{TKZdoc-tab-install}
+\include{TKZdoc-tab-init}
+\include{TKZdoc-tab-sign}
+\include{TKZdoc-tab-variation}
+\include{TKZdoc-tab-tv}
+\include{TKZdoc-tab-valeurs}
+\include{TKZdoc-tab-image}
+\include{TKZdoc-tab-tangente}
+\include{TKZdoc-tab-slope}
+\include{TKZdoc-tab-style}
+\include{TKZdoc-tab-adapt}
+\include{TKZdoc-tab-examples}
+%<-------------------------------------------------------------------------->
+\printindex
+\end{document}
+%<------------------------------------------------------------------------->
+
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-sign.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-sign.tex
new file mode 100644
index 0000000000..3d898779df
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-sign.tex
@@ -0,0 +1,312 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+% 22 / 02 /2009 v1.0c TKZdoc-tab-sign 10h
+\section{Création d'une ligne de signes : \tkzcname{tkzTabLine}}
+\subsection{Définition}
+
+\begin{NewMacroBox}{tkzTabLine}{\oarg{local options}\var{s(1),...,s(2n-1)}}
+ $n$ est le nombre d'éléments du second argument de \tkzname{tkzTabInit}.
+
+\medskip
+\begin{tabular}{lll}
+\toprule
+symbole de rang impair & & définition \\
+\midrule
+\TAline{z} {} {place un trait en pointillés et un zéro centré}
+\TAline{t} {} {place un trait en pointillés centré}
+\TAline{d} {} {place une double barre centrée}
+\TAline{\BS textvisiblespace}{} {aucune action }
+\bottomrule
+\end{tabular}
+
+\medskip
+\begin{tabular}{lll}
+\toprule
+symbole de rang pair & & définition \\
+\midrule
+\TAline{h} {} {zone interdite}
+\TAline{+} {} {le signe $+$}
+\TAline{-} {} {le signe $-$}
+\TAline{\BS textvisiblespace}{} {aucune action }
+\bottomrule
+
+\end{tabular}
+
+
+\medskip
+\noindent\emph{\tkzcname{tkzTabLine} accepte comme argument une liste constituée de symboles. Dans une utilisation \tkzname{normale}, les symboles font partie de deux catégories; les symboles de rang impair et les symboles de rang pair. Cette distinction est due au fait que les symboles de rang impair sont en général des traits (filets) et ceux pour les places de rang pair sont en général des signes \og $+$ ou $-$ \fg. Les symboles de rang impair agissent graphiquement, et permettent de tracer des filets verticaux. L'argument de \tkzcname{tkzTabLine} en contient \tkzname{$n$} si on suppose que le deuxième argument de \tkzcname{tkzTabInit} possède \textcolor{red}{$n$} éléments (antécédents). Les symboles de rang pair permettent d'obtenir un signe \og $+$ ou $-$ \fg\ ou bien une zone interdite (hachurée ou colorée). Chaque ligne de signes en contient \tkzname{$n-1$} et contiendra donc un total de \tkzname{$2n-1$} éléments, c'est à dire \tkzname{$2n-2$} virgules !\\
+Les différents symboles "reconnus" sont donnés dans le tableau ci-dessus, mais vous devez savoir que l'on peut mettre pratiquement n'importe quoi. Cependant attention! la virgule \textcolor{red}{(,)} est le séparateur de liste aussi vous devez prendre des précautions pour introduire un nombre à virgule. Vous avez plusieurs possibilités~:
+\begin{itemize}
+\item[--] \{4,5\} on place le nombre entre des accolades.
+\item[--] \tkzcname{numprint\{4,5\}} ou encore \tkzcname{np\{4,5\}}, ce qui nécessite de charger l'excellent package \tkzname{numprint}\NamePack{numprint} avec l'option \tkzname{np} pour le raccourci.
+\end{itemize}}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+options & défaut & définition \\
+\midrule
+\TOline{style} {dotted } {style des traits verticaux }
+\TOline{help} {no default} {affiche la structure d'une ligne de signes}
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Il est possible de changer localement le style des filets verticaux et il est possible d'avoir des renseignements sur la structure de la ligne.}
+\end{NewMacroBox}
+
+\subsection{Nombre d'arguments utilisés.}
+La syntaxe générale est :
+
+\begin{tkzltxexample}[]
+ \tkzTabInit{ e(1),...,e(i),...,e(p)} % tableau à p lignes.
+ { a(1),...,a(i),...,a(n)} % n antécédents
+ \tkzTabLine{ s(1),...,s(i),...,s(2n-1)}
+\end{tkzltxexample}
+
+
+\medskip
+Si on utilise \tkzname{$n$} antécédents pour la première ligne alors il y aura \tkzname{$n$} symboles de rang impair et \tkzname{$n-1$} symboles de rang pair, soit \tkzname{$2n-1$} symboles.
+
+ Les principaux symboles utilisés sont : \tkzname{z} pour un zéro placé sur un trait, \tkzname{t} pour un trait correspondant à un zéro d'une autre ligne, \tkzname{d} pour une valeur pour laquelle l'expression n'est pas définie.
+
+Voyons une illustration simple : trois antécédents $a_1$, $a_2$, et $a_3$ permettront de mettre $2\times3 -1 =5$ symboles. Les $3$ valeurs de la première ligne impliquent pour l'argument de \tkzcname{tkzTabLine} de posséder {$2\times 3-1=5$} éléments c'est-à-dire être une liste comportant $3$ symboles de rang impair et $2$ symboles de rang pair, soit un total de $5$ symboles qui seront séparés par $4$ virgules.
+
+\begin{center}
+ \begin{tikzpicture}
+ \tkzTabInit[espcl=3,lgt=2]%
+ {\colorbox{red!40}{\textcolor{white}{$x$}} / 1,%
+ \colorbox{red!40}{\textcolor{white}{$f(x)$}} / 1}%
+ {\colorbox{blue!40}{\textcolor{white}{ $a_1$}},%
+ \colorbox{blue!40}{\textcolor{white}{ $a_2$}},%
+ \colorbox{blue!40}{\textcolor{white}{ $a_3$}}}%
+ \path (N11)--(N12) node[circle,draw, fill= lightgray,midway] {1};
+ \path (N12)--(N21) node[midway] {$,$};
+ \path (N21)--(N22) node[circle, draw, fill= lightgray,midway] {3};
+ \path (N31)--(N32) node[circle,draw, fill= lightgray,midway] {5};
+ \path (M11)--(M12) node[circle, draw, fill= orange!30,midway] {2};
+ \path (M21)--(M22) node[circle,draw, fill= orange!30,midway] {4};
+ \end{tikzpicture}
+\end{center}
+
+Pour obtenir cette ligne, il faut entrer
+\begin{tkzexample}[code only]\tkzTabLine{ $1$ , $2$ , $3$ , $4$ , $5$}
+\end{tkzexample}
+
+
+
+
+
+\subsection{Emploi minimum}
+La deuxième ligne est vide mais l'argument \tkzcname{tkzTabLine} doit comporter \tkzname{$4$} virgules. C'est en effet une liste comportant \tkzname{$5 = 2\times3-1$} valeurs.
+
+\begin{tkzexample}[code only]
+ \tkzTabLine{,,,,} ou \tkzTabLine{ , , , , }\end{tkzexample}
+
+\begin{tkzexample}[width=8cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=1.5]
+ {$x$ / 1 ,$f(x)$ /1 }%
+ {$v_1$ , $v_2$ , $v_3$ }%
+ \tkzTabLine{ , , , , }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{t}} : ajout d'un trait}
+Cette option place un simple trait verticalement.
+\begin{tkzexample}[width=8cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=1.5]
+ {$x$ / 1 ,$f(x)$ /1 }%
+ {$v_1$ , $v_2$ , $v_3$ }%
+ \tkzTabLine{ t, , t , ,t }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{z}} : ajout d'un zéro sur un trait vertical}
+\begin{tkzexample}[width=8cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=1.5]
+ {$x$ / 1 ,$f(x)$ /1 }%
+ {$v_1$ , $v_2$ , $v_3$ }%
+ \tkzTabLine{ z, , z , ,z }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{d}} : double barre}
+
+On peut aussi avoir le cas d'une fonction non définie en $0$ et en $2$ mais s'annulant en $1$. On place à chaque extrémité le symbole |d|.
+
+\begin{tkzexample}[width=7cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=1.5]%
+ {$x$ / 1,$g(x)$ / 1}%
+ {$0$,$1$,$2$}%
+\tkzTabLine{d,+,0,-,d}
+\end{tikzpicture}
+\end{tkzexample}
+
+On peut aussi avoir le cas d'une fonction admettant une dérivée à droite différente de la dérivée à gauche
+
+\begin{tkzexample}[width=7cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1.5,espcl=1.75]%
+ {$x$ / 1,$f'(x)$ / 1}%
+ {$-\infty$,$0$,$+\infty$}%
+ \tkzTabLine{,+,d,-,}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Utilisation des symboles de rang pair}
+
+Pour un tableau de signe, en principe les symboles de rang pair mais il est possible de détourner l'emploi de base de cette macro. L'exemple suivant montre un cas classique d'une zone du tableau qui correspond à des valeurs interdites. par défaut avec le symbole \tkzname{h}, la zone est grisée mais on peut hachurer cette zone si on préfère.
+Le dernier exemple montre comment détourner l'usage principal.
+
+\subsubsection{\texttt{\textcolor{red}{h}} : zone interdite}
+
+Une fonction peut ne pas être définie sur un intervalle, ici $[1~;~2]$. La partie du tableau qui correspond à cet intervalle sera hachurée ou bien colorée (par défaut, la zone est grisée). Des options permettant de personnaliser seront offertes. Pour l'exemple suivant, il suffit de placer |h| entre les deux |d| qui correspondent aux valeurs interdites\index{valeurs interdites} $1$ et $2$.
+
+\begin{tkzexample}[width=8cm, small]
+\begin{tikzpicture}
+ \tkzTabInit[color,espcl=1.5]
+ {$x$ / 1,$g(x)$ / 1}
+ {$0$,$1$,$2$,$3$}%
+ \tkzTabLine{z, + , d , h , d , - , t}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Utilisation des options}
+
+\subsubsection{\tkzname{t style} : modification du style des traits verticaux}
+\Istyle{tkzTabLine}{t style}
+
+\begin{tkzexample}[width=8cm, small]
+\begin{tikzpicture}
+\tikzset{t style/.style = {style = dashed}}
+ \tkzTabInit[espcl=1.5]
+ {$x$ / 1 ,$f(x)$ /1 }%
+ {$v_1$ , $v_2$ , $v_3$ }%
+ \tkzTabLine{ t, , t , ,t }
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\begin{tkzexample}[width=8cm, small]
+ \tikzset{t style/.style = {style = densely dashed}}
+\begin{tikzpicture}
+ \tkzTabInit[espcl=1.5]
+ {$x$ / 1 ,$f(x)$ /1 }%
+ {$v_1$ , $v_2$ , $v_3$ }%
+ \tkzTabLine{ z, , z , ,z }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\tkzname{help} : Affiche la structure du tableau}
+\Iopt{tkzTabLine}{help}
+Voir la section \og personnalisation \fg\ (\ref{pers}).
+
+
+\subsection{Utilisation des styles}
+
+\subsubsection{\tkzname{h style} : modification de la couleur d'une zone interdite}
+\Istyle{tkzTabLine}{h style} \index{zone interdite}
+Si vous préférez hachurer une zone du tableau, alors il faut modifier un style.
+\begin{tkzexample}[small]
+\begin{tikzpicture}
+ \tikzset{h style/.style = {fill=red!50}}
+ \tkzTabInit[color,espcl=1.5]%
+ {$x$ / 1,$g(x)$ / 1}%
+ {$0$,$1$,$2$,$3$}%
+ \tkzTabLine{z,+,d,h,d,-,t}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+Cette fois la zone est hachurée.
+ \index{hachures}
+\begin{tkzexample}[small]
+\begin{tikzpicture}
+ \tikzset{h style/.style =
+ {pattern=north west lines}}
+ \tkzTabInit[color,espcl=1.5]%
+ {$x$ / 1,$g(x)$ / 1}%
+ {$0$,$1$,$2$,$3$}%
+ \tkzTabLine{z,+,,h,d,-,t}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+\subsection{Exemples}
+
+\subsubsection{Simplification d'une expression comportant une valeur absolue }
+
+\begin{tkzexample}[width=7cm,small]
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=2,espcl=1.75]%
+ {$x$/1,$2-x$/1, $\vert 2-x \vert $/1}%
+ {$-\infty$,$2$,$+\infty$}%
+ \tkzTabLine{ , + , z , - , }
+ \tkzTabLine{ , 2-x ,z, x-2, }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Tableau de signes}
+
+\begin{tkzexample}[ small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=3,espcl=1.5]%
+ {$x$ /1,
+ $x^2-3x+2$ /1,
+ $(x-\E)\ln x$ /1,
+ $\dfrac{x^2-3x+2}{(x-\E)\ln x}$ /2}
+ {$0$ , $1$ , $2$ , $\E$ ,$+\infty$}
+ \tkzTabLine{ t,+,z,-,z,+,t,+,}
+ \tkzTabLine{ d,+,z,-,t,-,z,+,}
+ \tkzTabLine{ d,+,d,+,z,-,d,+,}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Signe d'une expression du second degré}
+
+Si $\Delta \geq 0$ on peut écrire $\displaystyle ax^2+bx+c=a\left(x-\dfrac{-b-\sqrt{b^2-4ac}}{2a}\right)\left(x-\dfrac{-b+\sqrt{b^2-4ac}}{2a}\right)$
+
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[color,lgt=5,espcl=3]%
+ {$x$ / .8,$\Delta>0$\\ Le signe de\\ $ax^2+bx+c$ /1.5}%
+ {$-\infty$,$x_1$,$x_2$,$+\infty$}%
+ \tkzTabLine{ , \genfrac{}{}{0pt}{0}{\text{signe de}}{a}, z
+ , \genfrac{}{}{0pt}{0}{\text{signe}}{\text{opposé de}\ a}, z
+ , \genfrac{}{}{0pt}{0}{\text{signe de}}{a}, }
+ \end{tikzpicture}
+\end{tkzexample}
+ Il faut noter l'emploi de la macro \tkzcname{genfrac}\footnote{\tkzcname{genfrac} est une macro du package \tkzname{amsmath}}.
+
+\medskip
+Si $\Delta = 0$ alors on peut écrire $\displaystyle ax^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2$
+
+\begin{tkzexample}[vbox,width=7cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[color,lgt=5,espcl=3]%
+ {$x$ / 1 , $\Delta=0$\\ Le signe de\\ $ax^2+bx+c$ / 2}%
+ {$-\infty$,$\dfrac{-b}{2a}$,$+\infty$}%
+ \tkzTabLine{ , \genfrac{}{}{0pt}{0}{\text{signe de}}{ a} , z
+ , \genfrac{}{}{0pt}{0}{\text{signe de}}{a}, }
+\end{tikzpicture}
+\end{tkzexample}
+
+Si $\Delta < 0$ alors $\displaystyle ax^2+bx+c=a\left[\left(x+\dfrac{b}{2a}\right)^2 -\dfrac{b^2-4ac}{4a^2}\right]$
+
+\begin{tkzexample}[vbox,width=7cm,small]
+\begin{tikzpicture}
+ \tkzTabInit[color,lgt=5,espcl=5]%
+ {$x$/.8,$\Delta<0$\\ Le signe de\\ $ax^2+bx+c$/2}%
+ {$-\infty$,$+\infty$}%
+ \tkzTabLine{ , \genfrac{}{}{0pt}{0}{\text{signe de}}{ a}, }
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-slope.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-slope.tex
new file mode 100644
index 0000000000..07eba64a95
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-slope.tex
@@ -0,0 +1,41 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+% 20 / 02 /2009 v1.00c TKZdoc-tab-slope
+\section{Nombres dérivés : \addbs{tkzTabSlope}}
+
+\begin{NewMacroBox}{tkzTabSlope}{\{Liste\}}
+
+\begin{tabular}{lllc}
+\toprule
+\texttt{arguments} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IargName{tkzTabSlope}{Liste} & |no default| & $i$/eg($i$)/ed($i$) \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{$i$ est compris entre $1$ et $n$, $n$ étant le nombre de valeurs de la première ligne.
+Cette macro permet de personnaliser les signes d'une fonction dérivée en indiquant par exemples des limites, les valeurs d'une dérivée à droite, à gauche. $i$ est le rang de l'antécédent qui correspond à la valeur de la dérivée, \tkzname{eg} et \tkzname{ed} sont les expressions que l'on veut placer soit à gauche et soit à droite.}
+\end{NewMacroBox}
+
+\subsection{Ajout de nombres dérivés}
+\Iaccent{nombres deriv}{nombres dérivés}
+Étude de la fonction $f~:~ x \longmapsto \sqrt {x(x-1)^2}$ sur $[0~;~4]$
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+\tkzTabInit[lgt=3]%
+ {$x$/1,%
+ Signe\\ de $f'(x)$ /1,%
+ Variations\\ de\\ $\sqrt {x(x-1)^2}$ /4}%
+ {$0$ , $\dfrac{1}{3}$ , $1$ , $4$}%
+\tkzTabLine{d ,+, 0 ,-, d ,+, }
+\tkzTabSlope{1//+\infty,3/-1 /+1}
+\tkzTabVar %
+ {- / $0$ ,
+ + / $\dfrac{2\sqrt3}{9}$ ,
+ - / $0$ ,
+ + / $6$ }
+\end{tikzpicture}
+\end{tkzexample}
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-style.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-style.tex
new file mode 100644
index 0000000000..4364f11701
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-style.tex
@@ -0,0 +1,292 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+
+% $Id$
+% TKZdoc-tab-style
+% v 1.0c
+% Created by Alain Matthes on 2010-02-23.
+% Copyright (c) 2010 __Collège Sévigné__. All rights reserved.
+%
+\section{Utilisation des styles}
+\subsection{Définition de \tkzcname{tkzTabSetup}}
+
+Le plus simple est d'utiliser la macro \tkzcname{tkzTabSetup}. Celle-ci permet de modifier les styles principaux.
+
+\begin{NewMacroBox}{tkzTabSetup}{\oarg{local options}}
+
+\begin{tabular}{llc}
+\toprule
+\texttt{arguments} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IargName{tkzTabSetup}{doubledistance} & |1pt| & écart double barre \\
+\IargName{tkzTabSetup}{doublecolor} & |white| & couleur centrale dans la double barre \\
+\IargName{tkzTabSetup}{lw} & |0.4pt| & épaisseur d'un trait \\
+\IargName{tkzTabSetup}{color} & |black| & couleur d'un trait \\
+\midrule
+\IargName{tkzTabSetup}{tstyle} & |dotted| & style des traits verticaux \\
+\IargName{tkzTabSetup}{tcolor } & |black| & couleur des traits verticaux \\
+\IargName{tkzTabSetup}{tanarrowstyle}&|latex'|&style d'une flèche pour une tangente \\
+\IargName{tkzTabSetup}{tanstyle}& |->| & style d'une tangente \\
+\IargName{tkzTabSetup}{tancolor}& |black| & couleur d'une tangente \\
+\IargName{tkzTabSetup}{tanwidth}& |0.4pt|& épaisseur d'une tangente \\
+\IargName{tkzTabSetup}{fromarrowstyle}&|latex'|&style d'une flèche antécédent -> image \\
+\IargName{tkzTabSetup}{fromstyle }& |->| & style antécédent -> image \\
+\IargName{tkzTabSetup}{fromcolor }& |black| & couleur antécédent -> image \\
+\IargName{tkzTabSetup}{fromwidth }& |0.4pt| & épaisseur antécédent -> image \\
+\IargName{tkzTabSetup}{hcolor } & |gray| & couleur d'une zone interdite \\
+\IargName{tkzTabSetup}{hopacity } & |0.4| & transparence de la couleur d'une zone interdite \\
+\IargName{tkzTabSetup}{crosslines}& |false| & booléen true hachure la zone interdite \\
+\IargName{tkzTabSetup}{arrowcolor}& |black| & couleur d'une flèche de variation \\
+\IargName{tkzTabSetup}{arrowstyle}& |latex'| & style d'une flèche de variation \\
+\IargName{tkzTabSetup}{arrowlinewidth}&|0.4pt|&épaisseur d'une flèche de variation \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Cette macro s'utilise dès le début. Les épaisseurs sont en générale donnée en \tkzname{pt}, la valeur par défaut est la plus fréquente. }
+
+\end{NewMacroBox}
+
+\subsubsection{Utilisation de \tkzname{doubledistance} et \tkzname{hcolor}}
+
+\begin{center}
+\begin{tikzpicture}
+ \tkzTabColors[backgroundcolor=fondpaille,%
+ color=Maroon]
+ \tkzTabSetup[doubledistance = 2pt]
+ \tkzTabInit[lgt=2,espcl=1]
+ {$x$ /1, $x^2-3x+2$ /1, $\ln (x^2-1)$ /1, $E(x)$ /1}%
+ {$-\infty$ ,$-\sqrt{2}$, $-1$ , $1$ ,$\sqrt{2}$ , $2$ , $+\infty$}%
+ \tkzTabLine{ , + , t , + , t , + , z , - , t , - , z , + , }
+ \tkzTabLine{ , + , z , - , d , h , d , - , z , + , t , + , }
+ \tkzTabLine{ , + , z , - , d , h , d , + ,z , - , z , + , }
+\end{tikzpicture}
+\end{center}
+
+
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}
+ \tkzTabColors[backgroundcolor=fondpaille,%
+ color=Maroon]
+\tkzTabSetup[doubledistance = 2pt]
+\tkzTabInit[lgt=2,espcl=1]
+{$x$ /1, $x^2-3x+2$ /1, $\ln (x^2-1)$ /1, $E(x)$ /1}%
+{$-\infty$ ,$-\sqrt{2}$, $-1$ , $1$ ,$\sqrt{2}$ , $2$ , $+\infty$}%
+\tkzTabLine{ , + , t , + , t , + , z , - , t , - , z , + , }
+\tkzTabLine{ , + , z , - , d , h , d , - , z , + , t , + , }
+\tkzTabLine{ , + , z , - , d , h , d , + ,z , - , z , + , }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Utilisation de \tkzname{fromcolor} et \tkzname{tancolor}}
+
+\begin{center}
+ \begin{tikzpicture}
+ \tkzTabSetup[fromcolor = red, tancolor = blue,,backgroundcolor=fondpaille,%
+ color=Maroon]
+ \tkzTabInit[espcl=4]
+ { $x$ /1, $f''(x)$ /1, $f'$ /3, $f$ /4}%
+ { $0$ , $1$ , $\alpha$,$+\infty$ }%
+ \tkzTabLine {d , + , z , - , , - }%
+ \tkzTabVar
+ {- / $1$ /, + / /, R / /, - / $-\infty$ /}
+
+ \tkzTabVal[draw]{2}{4}{0.5}{}{0}
+ \tkzTabIma[draw]{2}{4}{3}{$0$}
+ \tkzTabTan[pos]{1}{2}{2}{$2$}
+ \tkzTabVar
+ {- / $-\infty$ , R / , + / $1$ , - / $0$ }
+ \tkzTabIma[draw]{1}{3}{2}{$0$}
+ \end{tikzpicture}
+\end{center}
+
+
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}
+ \tkzTabSetup[fromcolor = red, tancolor = blue,,backgroundcolor=fondpaille,%
+ color=Maroon]
+ \tkzTabInit[espcl=4]
+ { $x$ /1, $f''(x)$ /1, $f'$ /3, $f$ /4}%
+ { $0$ , $1$ , $\alpha$,$+\infty$ }%
+ \tkzTabLine {d , + , z , - , , - }%
+ \tkzTabVar
+ {- / $1$ /, + / /, R / /, - / $-\infty$ /}
+
+ \tkzTabVal[draw]{2}{4}{0.5}{}{0}
+ \tkzTabIma[draw]{2}{4}{3}{$0$}
+ \tkzTabTan[pos]{1}{2}{2}{$2$}
+ \tkzTabVar
+ {- / $-\infty$ , R / , + / $1$ , - / $0$ }
+ \tkzTabIma[draw]{1}{3}{2}{$0$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Utilisation de \tkzcname{tikzset} pour modifier les styles}
+
+Voici la liste des styles qui sont utilisés et leurs définitions.
+
+\begin{tabular}{ll}
+\toprule
+\tkzname{node style} & style des nodes utilisé pour les valeurs placées dans le tableau \\
+\tkzname{low left} & valeur située en bas et à gauche d'un trait vertical \\
+\tkzname{low right} & valeur située en bas et à droite d'un trait vertical\\
+\tkzname{hight left} & valeur située en haut et à gauche d'un trait vertical\\
+\tkzname{hight right}& valeur située en haut et à droite d'un trait vertical\\
+\tkzname{low} & valeur située en bas d'un trait vertical \\
+\tkzname{hight } & valeur située en haut d'un trait vertical \\
+\tkzname{on double} & couleur du fond sous une double barre \\
+\tkzname{tan style} & style pour une tangente\\
+\tkzname{arrow style} & style pour les flèches des variations\\
+\tkzname{from style} & style pour la ligne allant d'un antécédent à une image\\
+\tkzname{h style} & style pour une zone interdite\\
+\tkzname{double style} & style pour une double barre\\
+\tkzname{t style} & style pour un trait vertical\\
+\bottomrule
+\end{tabular}
+
+
+Les valeurs par défaut utilisées sont les suivantes :
+\begin{tkzexample}[code only, small]
+\def\tkzTabDefaultWritingColor{black}
+\def\tkzTabDefaultBackgroundColor{white}
+\def\tkzTabDefaultLineWidth{0.4pt}
+\def\tkzTabDefaultArrowStyle{latex'}
+\def\tkzTabDefaultSep{2pt}
+\end{tkzexample}
+
+les principaux styles par défaut sont :
+
+\begin{tkzexample}[code only, small]
+\tikzset{node style/.style = {inner sep = \tkzTabDefaultSep,
+ outer sep = \tkzTabDefaultSep,
+ fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{tan style/.style = {> = \tkzTabDefaultArrowStyle,
+ ->,
+ color = \tkzTabDefaultBackgroundColor}}
+\tikzset{arrow style/.style = {\tkzTabDefaultWritingColor,
+ ->,
+ > = \tkzTabDefaultArrowStyle,
+ shorten > = \tkzTabDefaultSep,
+ shorten < = \tkzTabDefaultSep}}
+\tikzset{from style/.style = {shorten > = \tkzTabDefaultSep,
+ shorten < = \tkzTabDefaultSep,
+ line width = \tkzTabDefaultLineWidth,
+ > = \tkzTabDefaultArrowStyle,
+ ->,
+ draw = \tkzTabDefaultWritingColor,
+ dotted}}
+\tikzset{t style/.style = {style = dotted,
+ draw = \tkzTabDefaultWritingColor}}
+\tikzset{h style/.style = {pattern = north west lines,
+ pattern color = \tkzTabDefaultWritingColor}}
+\tikzset{on double/.style = {fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{double style/.append style = {%
+ draw = \tkzTabDefaultWritingColor,
+ double = \tkzTabDefaultBackgroundColor}}
+\end{tkzexample}
+
+Les couleurs de fond pour les différentes sont définies par les styles :
+\begin{tkzexample}[code only, small]
+\tikzset{fondC/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondL/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondT/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondV/.style={fill = \tkzTabDefaultBackgroundColor}}
+\end{tkzexample}
+Enfin les approches des valeurs par les flèches sont :
+\begin{tkzexample}[code only, small]
+\tikzset{low left/.style = {above left = \tkzTabDefaultSep}}
+\tikzset{low right/.style = {above right = \tkzTabDefaultSep}}
+\tikzset{high right/.style = {below right = \tkzTabDefaultSep}}
+\tikzset{high left/.style = {below left = \tkzTabDefaultSep}}
+\tikzset{low/.style = {above = \tkzTabDefaultSep}}
+\tikzset{high/.style = {below = \tkzTabDefaultSep}}
+\end{tkzexample}
+
+\subsubsection{Utilisation de \tkzcname{tikzset} et \tkzname{h style}}
+
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+ \tkzTabColors[backgroundcolor=fondpaille,%
+ color=Maroon]
+ \tkzTabSetup[doubledistance = 2pt]
+ \tikzset{h style/.style = {fill=red!50}}
+ \tkzTabInit[color,espcl=1.5]%
+ {$x$ / 1,$g(x)$ / 1}%
+ {$0$,$1$,$2$,$3$}%
+ \tkzTabLine{z,+,d,h,d,-,t}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Utilisation de \tkzcname{tikzset} et \tkzname{h style}}
+
+\begin{tkzexample}[latex=7cm,small]
+\begin{tikzpicture}
+\tikzset{h style/.append style = {%
+ pattern=north east lines}}
+\tkzTabInit[color,espcl=1.5]%
+ {$x$ / 1,$g(x)$ / 1}%
+ {$0$,$1$,$2$,$3$}%
+\tkzTabLine{z,+,,h,d,-,t}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Utilisation de \tkzcname{tikzset} et \tkzname{arrow style}}
+
+\begin{center}
+ \begin{tkzexample}[vbox,small]
+ %\newcommand*{\E}{\ensuremath{\mathrm{e}}}
+ \begin{tikzpicture}
+
+ \tikzset{arrow style/.append style = {red,shorten >=6pt,shorten <=6pt}}
+ \tkzTabInit[espcl=5]{$x$ /1, $\ln x +1$ /1.5, $x \ln x$ /2}%
+ {$0$ ,$1/\E$ , $+\infty$}%
+ \tkzTabLine{d,-,z,+,}
+ \tkzTabVar%
+ { D+/ / $0$ ,%
+ -/ \colorbox{black}{\textcolor{white}{$\dfrac{-1}{e}$}}/ ,%
+ +/ $+\infty$ / }%
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+
+\subsubsection{Utilisation de \tkzcname{tikzset} et \tkzcname{tkzTabSetup}}
+
+ On remarquera la dernière utilisation de \tkzcname{tkzTabSetup} qui remet les valeurs par défaut.
+
+\begin{center}
+ \begin{tkzexample}[vbox,small]
+ % \newcommand*{\va}{\colorbox{red!50} {$\scriptscriptstyle V_a$}}
+ % \newcommand*{\vb}{\colorbox{blue!50} {$\scriptscriptstyle V_b$}}
+ % \newcommand*{\vc}{\colorbox{gray!50} {$\scriptscriptstyle V_c$}}
+ % \newcommand*{\vd}{\colorbox{magenta!50}{$\scriptscriptstyle V_d$}}
+ % \newcommand*{\ve}{\colorbox{orange!50} {$\scriptscriptstyle V_e$}}
+
+ \begin{tikzpicture}
+ \tkzTabSetup[fromcolor = red,
+ fromstyle = dashed,
+ fromwidth = 1pt,
+ fromarrowstyle = stealth',
+ arrowcolor = green ]
+ \tkzTabInit[lgt=1.5,espcl=5]{ $x$/.7,$f''(x)$/.7,$f'$/3,$f$/3 }%
+ { $a$ , $d$ ,$e$}
+ \tkzTabLine{ z,+ ,z,- ,z }
+ \tkzTabVar {-/\va ,+/\vd , -/ \ve}
+ \tkzTabVal[draw,remember=vb]{1}{2}{0.333}{b}{$1$}
+ \tikzset{from style/.append style = {draw = blue}}
+ \tkzTabVal[draw,remember=vc]{1}{2}{0.666}{c}{$2$}
+ \tkzTabVar{-/$-\infty$ ,R/ , +/ $+\infty$}
+ \tkzTabSetup
+ \tkzTabVal[draw]{1}{3}{0.5}{}{$0$}
+ \draw[opacity=0.5,fill=red!40] (vb) circle(2ex);
+ \draw[opacity=0.5,fill=blue!40] (vc) circle(2ex);
+ \end{tikzpicture}
+ \end{tkzexample}
+\end{center}
+
+
+
+\endinput
+
+
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-tangente.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-tangente.tex
new file mode 100644
index 0000000000..f7d7354d54
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-tangente.tex
@@ -0,0 +1,183 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+% $Id$
+% 20 / 02 /2009 v1.00c TKZdoc-tab-tangente
+% Created by Alain Matthes on 2010-02-23.
+% Copyright (c) 2010 __Collège Sévigné__. All rights reserved.
+%
+
+\section{Tangente horizontale : \addbs{tkzTabTan} et \addbs{tkzTabTanFrom}}
+\subsection{Définition de \tkzcname{tkzTabTan}}
+
+\begin{NewMacroBox}{tkzTabTan}{\oarg{local options}\{Début\}\{Fin\}\{Position\}\{Image\}}
+
+\begin{tabular}{lllc}
+\toprule
+\texttt{arguments} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IargName{tkzTabTan}{Début}&|no default|&rang de l'origine de la flèche \\
+\IargName{tkzTabTan}{Fin}&|no default|& rang de l'extrémité de la flèche \\
+\IargName{tkzTabTan}{Position} & |no default| & rang de l'antécédent \\
+\IargName{tkzTabTan}{Image} & |no default| & valeur de l'image \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Il s'agit de savoir sur quelle flèche, on va positionner la tangente. \tkzname{Début} et \tkzname{Fin} sont les rangs des valeurs qui déterminent les extrémités de la flèche. \tkzname{Position} est le rang de la valeur qui correspond à la tangente. \tkzname{Image} est la valeur que l'on peut joindre à la tangente (ordonnée du point de contact).}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+\texttt{options} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IoptName{tkzTabTan}{pos} & |below| & position de la valeur \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Il existe une option \tkzname{pos} qui permet de positionner cette valeur sous la tangente.\\}
+
+\end{NewMacroBox}
+
+
+\subsection{Utilisation des arguments}
+
+\subsubsection{Palier}
+La flèche débute pour la valeur initiale $0$ donc de rang $1$ et se termine pour $+\infty$, valeur de rang $3$. La tangente est ici en $x=1$ soit la valeur de rang $2$.
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \tkzTab[espcl=6]{$x$/1,$f'(x)$ /1, $f$/3}%
+ {$0$ , $1$ , $+\infty$}%
+ {d , + , 0 , + , }
+ {D- / $-\infty$ , R / , +/ $+\infty$}%
+ \tkzTabTan{1}{3}{2}{\scriptsize $2$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Tangente à l'extrémité d'un intervalle}
+Dans l'exemple ci-dessous, la flèche débute pour la valeur initiale $0$ donc de rang $1$ et se termine pour $1$, valeur de rang $2$. La tangente est ici en $x=1$ soit la valeur de rang $2$. Il faut remarquer que la macro \tkzcname{tkzTabTan} s'applique à la ligne de variations qui la précède.
+
+La valeur $0$ de l'image de $1$ par $f$ n'est pas indiquée dans \tkzcname{tkzTabVar}. Elle serait sous les flèches représentant la tangente, aussi elle est passée comme argument de \tkzcname{tkzTabTan} avec l'option \tkzname{pos=below}.
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=6]{$x$ /1,$f'(x)$/1,$f$/2}{$0$,$1$,$+\infty$}%
+ \tkzTabLine{t , + , z , - , }%
+ \tkzTabVar{-/ $-1$ , +/ , -/$-\infty$ }
+ \tkzTabTan[pos=below]{1}{2}{2}{$0$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Utilisation des options}
+
+\subsubsection{\texttt{\textcolor{red}{pos}} : position de la valeur}
+
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=5]{$x$/1,$f''{x}$/1,$f'(x)$/2,$f(x)$/2}{$0$,$1$,$+\infty$}%
+ \tkzTabLine{d,+,0,-,}%
+ \tkzTabVar{-/ $-\infty$ ,+/ ,-/$-\infty$}
+ \tkzTabTan[pos=below]{1}{2}{2}{$0$}
+ \tkzTabVar{+/ $+\infty$ , R/ , -/ $0$}
+ \tkzTabTan{1}{3}{2}{$1$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Variations imbriquées}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=3]
+ {$x$ /1,
+ $f''(x)$ /1,
+ $f'$ /3,
+ $f$ /3}%
+ {$0$ , $\alpha$ , $1$ , $\beta$, $+\infty$ }%
+ \tkzTabLine {d , +, , + , z , - , , - }%
+ \tkzTabVar {-/ $-1$ / , R/ ,+/ , R/ , -/ $-\infty$ }
+ \tkzTabIma[draw]{1}{3}{2}{0}
+ \tkzTabIma[draw]{3}{5}{4}{0}
+ \tkzTabTan[pos]{1}{3}{3}{$2$}
+ \tkzTabVar{+/ $+\infty$ , - / , R/,+/ , -/ $0$ }
+ \tkzTabTan[]{1}{2}{2}{$1$}
+ \tkzTabTan[pos=below]{2}{4}{4}{$2$}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsection{Définition de \textcolor{red}{tkzTabTanFrom}}
+
+\begin{NewMacroBox}{tkzTabTanFrom}{\oarg{local options}\{Début\}\{Fin\}\{Position\}\{Image\}}
+
+\begin{tabular}{lllc}
+\toprule
+\texttt{arguments} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IargName{tkzTabTanFrom}{Début} & |no default| & rang de l'origine de la flèche \\
+\IargName{tkzTabTanFrom}{Fin} & |no default| & rang de l'extrémité de la flèche \\
+\IargName{tkzTabTanFrom}{Position} & |no default| & nom d'un point \\
+\IargName{tkzTabTanFrom}{Image} & |no default| & valeur de l'image \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{La position est donnée par le nom d'un point ou d'un node.}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+\texttt{options} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IoptName{tkzTabTan}{pos} & |below| & position de la valeur \\
+\bottomrule
+\end{tabular}
+
+
+\end{NewMacroBox}
+\subsection{Le nom est défini par le tableau}
+Le nom du node qui correspond à $\alpha$ est ici \tkzname{N21} (antécédent de rang 2, premier filet sous la valeur.)
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+\tkzTabInit[ espcl=6]
+{ $x$ /1,
+ $f'(x)$ /1,
+ $f$ /3}
+{ $0$ , $\alpha$ , $+\infty$ }%
+\tkzTabLine { , ,+, , }%
+\tkzTabVar{-/ $-1$ , R , +/ $+1$ /}%
+\tkzTabTanFrom[pos=below]{1}{3}{N21}{$0$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Le nom est donné par l'utilisateur avec l'option \texttt{\textcolor{red}{remember}}}
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+\tkzTabInit[ espcl=4]
+{ $x$ /1,
+ $f''(x)$ /1,
+ $f'$ /2,
+ Signe de $f'(x)$ /2,
+ $f$ /3}
+{ $0$ , $1$ , $\alpha$ , $+\infty$ }%
+\tkzTabLine {d,+,0,-, ,- }%
+\tkzTabVar
+{-/ $1$ ,
+ +/ ,
+ R/ ,
+ -/ $-\infty$ }%
+\tkzTabTan[pos,remember=v1]{1}{2}{2}{$2$}%
+\tkzTabVal[remember=v2]{2}{4}{0.5}{}{0}%
+\tkzTabLine { ,, +,, z,- }%
+\tkzTabVar
+{-/ $-\infty$ ,
+ R/ ,
+ +/ ,
+ -/ $0$ }
+\tkzTabImaFrom[]{1}{3}{v1}{0}%
+\tkzTabImaFrom[]{3}{4}{v2}{}%
+\tkzTabTanFrom[pos=below]{3}{4}{v2}{$1$}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-tv.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-tv.tex
new file mode 100644
index 0000000000..54a611b720
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-tv.tex
@@ -0,0 +1,87 @@
+% 20 / 02 /2009 v1.00c TKZdoc-tab-tv
+\section{Création d'un tableau de variations : \addbs{tkzTab}}
+\subsection{Définition}
+\begin{NewMacroBox}{tkzTab}%
+{\oarg{local options}\var{liste1}\var{liste2}\var{liste3}\var{liste4}}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+\texttt{arguments} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IargName{tkzTab}{liste1} & |no default| & \var{e(1)/h(1),\dots,e(p)/h(p)} première colonne \\
+\IargName{tkzTab}{liste2} & |no default| & \var{a(1),\dots,a(n)} antécédents de la première ligne \\
+\IargName{tkzTab}{liste3} & |no default| & \var{s(1),\dots,s(2n-1)} symboles de la ligne de signes \\
+\IargName{tkzTab}{liste4} & |no default| & \var{s(1)/eg(1)/ed(1),\dots,s($q$)/eg($q$)/ed($q$)} variations \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{La macro \emph{\tkzcname{tkzTab}} est un raccourci pour enchaîner \tkzcname{tkzTabInit}, \tkzcname{tkzTabLine} et \tkzcname{tkzTabVar}. Les \tkzname{options} sont identiques à celles de \tkzcname{tkzTabInit}. Ces tableaux ne concernent que les tableaux à trois lignes pour la variable, le signe de la dérivée et les variations de la fonction.}
+\end{NewMacroBox}
+
+\medskip
+
+\begin{tkzexample}[code only]
+ \tkzTab{ e(1) / h(1) ,
+ ... ,
+ e(p) / h(p)}
+ { v(1), ... ,v(n) }
+ { a(1),...,a(2n-1)}
+ { s(1) / eg(1) / ed(1), ... ,s(n) / eg(n) / ed(n)}
+\end{tkzexample}
+
+\subsection{Exemple 1}
+
+Étude de la fonction $f~:~ x \longmapsto x^2$ sur $[-5~;~7]$
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+\tkzTab[lgt=3,espcl=5]{ $x$ / 1,
+ $f'(x)$ / 1,
+ Variations de \\$f$ / 2}
+ { $-5$ , $0$ ,$7$}
+ { ,-,z,+,}
+ { +/$25$ , -/$0$ , +/ $49$}%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Exemple 2}
+Étude de la fonction $f~:~ x \longmapsto x \ln x $ sur $]0~;~+\infty]$
+
+\begin{tkzexample}[vbox,small]
+ \begin{tikzpicture}
+ \tkzTab[espcl=5,lgt=3]{$x$ / 1, Signe de \\$\ln x +1$ / 1.5,%
+ Variations de \\$f$ / 3}%
+ {$0$ ,$1/\E$ , $+\infty$}{d,-,z,+,}
+ {D+/ $0$,%
+ -/ \colorbox{black}{\textcolor{white}{$\dfrac{-1}{e}$}} ,%
+ +/ $+\infty$ }%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Exemple 3}
+ Étude de la fonction $f~:~ $x$ \longmapsto \sqrt{x^2-1}$ sur $]-\infty~;~-1] \cup [1~;~+\infty[$
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTab{ $x$ / 1, $f'(x)$ / 1, $f$ / 2}%
+ { $-\infty$, $-1$ ,$1$, $+\infty$}
+ { ,-,d,h,d,+, }
+ { +/$+\infty$ , -H/$0$, -/$0$ , +/ $+\infty$ }%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Exemple 4}
+ Étude de la fonction $f~:~ $t$ \longmapsto \frac{t^2}{t^2-1}$ sur $[0~;~+\infty[$
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTab{ $t$ / 1, Signe de\\ $f'(t)$ / 2, Variation de \\$f$ / 2}%
+ { $0$, $1$, $+\infty$}
+ { z , - , d , - , }
+ { +/$0$ , -D+/$-\infty$/$+\infty$, -/ $1$ }%
+\end{tikzpicture}
+\end{tkzexample}
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-valeurs.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-valeurs.tex
new file mode 100644
index 0000000000..dda8e4a336
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-valeurs.tex
@@ -0,0 +1,166 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+% 20 / 02 /2009 v1.00c TKZdoc-tab-valeurs
+\section{Valeurs intermédiaires \addbs{tkzTabVal}}
+Cette macro permet de placer une valeur sur une flèche de la ligne des variations. Elle doit être employée juste après la commande \tkzcname{tkzTabVar} définissant la ligne de variations sur laquelle on souhaite placer les valeurs intermédiaires. On ne peut placer une valeur que dans un intervalle où la fonction est \tkzname{monotone}. Cette macro permet d'afficher une nouvelle valeur (intermédiaire) dans la première ligne.
+
+\subsection{Définition de \addbs{tkzTabVal}}
+
+\begin{NewMacroBox}{tkzTabVal}{\oarg{local options}\{Début\}\{Fin\}\{Position\}\{Antécédent\}\{Image\}}
+
+\begin{tabular}{lllc}
+\toprule
+\texttt{arguments} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IargName{tkzTabVal}{Début} & |no default| & rang de l'origine de la flèche \\
+\IargName{tkzTabVal}{Fin} & |no default| & rang de l'extrémité de la flèche \\
+\IargName{tkzTabVal}{Position} & |no default| & nombre décimal entre $0$ et $1$ \\
+\IargName{tkzTabVal}{Antécédent}& |no default| & valeur de l'antécédent si nécessaire \\
+\IargName{tkzTabVal}{Image} & |no default| & valeur de l'image si nécessaire \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Ceci mérite quelques commentaires : Il s'agit de savoir sur quelle flèche, on va positionner l'image. \tkzname{Début} et \tkzname{Fin} sont les rangs des valeurs qui déterminent les extrémités de la flèche. \tkzname{Antécédent} \tkzname{Image} sont les valeurs que l'on veut placer. \tkzname{Position} est un nombre qui est obligatoirement compris entre $0$ et $1$. C'est une abscisse en prenant comme origine \tkzname{Début} et comme extrémité \tkzname{Fin}.}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+\texttt{options} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IoptName{tkzTabVal}{draw} & |true| & dessin d'une flèche entre l'antécédent et son image \\
+\IoptName{tkzTabVal}{remember}& |lastval|& définit un node personnalisé \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{Si vous voulez une flèche entre l'antécédent et l'image, il vous suffit de passer en option \tkzname{draw}. Si vous voulez référencer le point où se situe l'image alors il faut utiliser l'option \tkzname{remember}.}
+\end{NewMacroBox}
+
+\subsubsection{Ajout de valeurs intermédiaires}
+
+Le premier exemple montre des valeurs remarquables pour la fonction $\ln$. Il s'agit de mettre en évidence des valeurs importantes pour la fonction. La fonction est monotone entre les valeurs de rang $1$ ($0$) et $2$ ($+\infty$), ainsi les deux premiers arguments sont $1$ et $2$. Les coefficients utilisés pour \tkzname{Position} sont des nombres \tkzname{décimaux} ici $0.33$ et $0.66$. Les antécédents n'étaient pas présents dans la première ligne aussi leurs valeurs sont passées dans les arguments.
+
+\begin{tkzexample}[code only]
+ \tkzTabVal{1}{2}{0.33}{1}{0}
+ \tkzTabVal{1}{2}{0.66}{\E}{1}
+\end{tkzexample}
+
+\begin{tkzexample}[vbox, small]
+\begin{tikzpicture}
+\tkzTabInit[lgt=3,espcl=10] {$x$ /1, Signe\\ de $\dfrac{1}{x}$ /1.5,%
+ Variation\\ de $\ln$ /2} {$0$ , $+\infty$}%
+ \tkzTabLine{d,+,}%
+ \tkzTabVar[color=red]{ D- / $-\infty$, + / $+\infty$ }
+ \tkzTabVal{1}{2}{0.33}{1}{0}
+ \tkzTabVal{1}{2}{0.66}{\E}{1}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Ajout de valeurs intermédiaires avec une fonction non monotone }
+
+On ne peut utiliser la macro que sur un intervalle où la fonction est monotone, ici il y a trois valeurs
+\mbox{$0$, $\E$ et $+\infty$}. La fonction est monotone entre les deux premières c'est à dire entre les valeurs de rang $1$ et $2$ ainsi qu'entre les deux dernières de rang $2$ et $3$.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=6]{$x$ / 1 , $f'(x)$ / 1, $f(x)$ / 2}
+ {$0$, $\E$ , $+\infty$}%
+ \tkzTabLine{d,+,0,-,}%
+ \tkzTabVar{D- / $-\infty$, + / $\E$, - / $0$ }%
+ \tkzTabVal[draw]{1}{2}{0.6}{$1$}{$\dfrac{1}{\E}$}%
+ \tkzTabVal[draw]{2}{3}{0.4}{$\E^2$}{$1$}%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Ajout de valeurs intermédiaires avec un palier}
+
+Il ne faut pas s'arrêter au deuxième antécédent. La fonction est monotone mais admet un palier. L'option \tkzname{R} permet d'éviter qu'une flèche s'arrête pour $\sqrt\E$. La flèche va donc de la valeur de rang $1$ à la valeur de rang $3$. Le code est donc :
+\begin{tkzexample}[code only]
+ \tkzTabVal[draw]{1}{3}{0.6}{\E}{$\dfrac{-1}{\E}$}
+\end{tkzexample}
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=6]{$x$/1,$f'(x)$/1, $f(x)$/2}
+ {$0$,$\sqrt\E$,$+\infty$}%
+ \tkzTabLine{d,+,0,+,}%
+ \tkzTabVar{D- / $-\infty$,R / ,+ / $0$ }
+ \tkzTabVal[draw]{1}{3}{0.4}{$1$}{$-\E$}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{Valeurs intermédiaires et plusieurs lignes de variations }
+\Iopt{tkzTabVal}{draw}
+
+Les variations de $f$ et $f'$ sont représentées. Pour $f$ la valeur $1$ n'est pas utilisée, on passe donc du rang $1$ au rang $3$.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=6]{$x$/1,$f''(x)$/1,$f'(x)$/3,$f(x)$/3}
+ {$0$,$1$,$+\infty$}%
+ \tkzTabLine{d,+,0,-, }%
+ \tkzTabVar{-/ $-\infty$ ,+/ ,-/ $-\infty$ }
+ \tkzTabVal[draw]{1}{2}{0.3}{$0,3$}{$-2$}
+ \tkzTabVal[draw]{2}{3}{0.6}{$4$}{$-1$}
+ \tkzTabVar{+/ $+\infty$,R ,-/ $-1$}
+ \tkzTabVal[draw]{1}{3}{0.6}{$2$}{$0$}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Utilisation des options}
+
+\subsubsection{\texttt{\textcolor{red}{draw}} : ajout d'une flèche vers la valeur ajoutée}\Iopt{tkzTabVal}{draw}
+L'option a déjà été utilisée dans les exemples précédents, en voici un autre.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=3,espcl=10]{$x$ /1,
+ Signe\\ de $\dfrac{1}{x}$ /2,
+ Variation\\ de $\ln$ /3}
+ {$0$ , $+\infty$ }%
+ \tkzTabLine {d,+ , }%
+ \tkzTabVar[color=red]{D-/ $-\infty$ , +/$+\infty$}%
+ \tkzTabVal[draw]{1}{2}{0.24}{\scriptsize $1-h$}{$<0$}%
+ \tkzTabVal[draw]{1}{2}{0.3}{$1$}{$0$}%
+ \tkzTabVal[draw]{1}{2}{0.36}{\scriptsize $1+h$}{$>0$}%
+ \tkzTabVal[draw]{1}{2}{0.64}{$2,7$}{$<$}%
+ \tkzTabVal[draw]{1}{2}{0.7}{$\E$}{$1$}%
+ \tkzTabVal[draw]{1}{2}{0.76}{$2,8$}{$>$}%
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{\texttt{\textcolor{red}{remember}} : attribuer un nom à un point ou un node.}
+\Iopt{tkzTabVal}{remember}
+
+Cette option permet d'utiliser \tkzcname{tkzTabImaFrom} mais il est possible de récupérer les noms des nodes et de les traiter avec par exemple du code de \TIKZ.
+
+\begin{tkzexample}[code only]
+ \draw[opacity=0.4,fill=red!20] (vb) circle(3ex);
+ \draw[opacity=0.4,fill=blue!20] (vc) circle(3ex);
+\end{tkzexample}
+
+
+\begin{tkzexample}[,small]
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=3,espcl=6]{ $x$/1,/1,/3,/3 }%
+ { $a$ , $d$ ,$e$}
+ \tkzTabLine{ z,+ ,z,- ,z }
+ \tkzTabVar {-/\va ,+/\vd , -/ \ve}
+
+ \tkzTabVal[draw,remember=vb]{1}{2}{0.333}{$b$}{$0$}
+ \tkzTabVal[draw,remember=vc]{1}{2}{0.666}{$c$}{$1$}
+
+ \tkzTabVar{-/\va ,R/ , +/ \ve}
+
+ \tkzTabVal[draw]{1}{3}{0.5}{}{$0$}
+
+ \draw[opacity=0.4,fill=red!20] (vb) circle(3ex);
+ \draw[opacity=0.4,fill=blue!20] (vc) circle(3ex);
+ \end{tikzpicture}
+\end{tkzexample}
+
+\medskip
+Il faut remarquer que $b$ et $c$ sont des valeurs intermédiaires car le tableau a été défini avec $a$, $d$ et $e$.
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-variation.tex b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-variation.tex
new file mode 100644
index 0000000000..9faa02ec66
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab-variation.tex
@@ -0,0 +1,854 @@
+%!TEX root = /Users/ego/Boulot/TKZ/tkz-tab/doc/TKZdoc-tab-main.tex
+% 22 / 02 /2009 v1.0c TKZdoc-tab-variation 10h
+\section{Création d'une ligne de variations : \addbs{tkzTabVar}}
+\subsection{Définition}
+
+\begin{NewMacroBox}{tkzTabVar}{\oarg{local options}\var{el($1$),\dots,el($n$)}}
+ avec \tkzname{el($i$) = s($i$) / e($i$)} ou bien \tkzname{el($i$) = s($i$) / eg($i$) / ed($i$)}.
+
+\noindent\tkzname{s($i$)} est une série de symboles à choisir dans le tableau ci-dessous. \tkzname{eg($i$)} et \tkzname{ed($i$)} sont des expressions mathématiques qui se placent à gauche et à droite des filets verticaux. \tkzname{e($i$)} est une expression centrée sur un filet.
+
+\medskip
+ \begin{tabular}{llrl}
+\toprule
+ Groupe 1& \emph{avec un seul signe} &&\\
+\midrule
+\tkzname{s($i$)} & Position des expressions & \tkzname{el($i$)} & \\
+\midrule
+\IargName{tkzTabVar}{$-~~~$}& expression unique et centrée en bas eg=ed & $- $&$/e $ \\
+\IargName{tkzTabVar}{$+~~~$}& expression unique et centrée en haut eg=ed & $+ $&$/e $ \\
+\IargName{tkzTabVar}{$~R~~$}& rien, on passe à l'expression suivante & $~R $&$(/) $ \\
+\IargName{tkzTabVar}{$-C$} & prolongement par continuité en bas, centrée & $-C $&$/e $ \\
+\IargName{tkzTabVar}{$+C$} & prolongement par continuité en haut, centrée& $+C $&$/e $ \\
+\IargName{tkzTabVar}{$-H$} & expression en bas et centrée puis zone interdite & $-H $&$/e $ \\
+\IargName{tkzTabVar}{$+H$} & expression en haut et centrée puis zone interdite & $+H $&$/e $ \\
+\IargName{tkzTabVar}{$+D~~$}& discontinuité, expression en haut à gauche & $+D $&$/e $ \\
+\IargName{tkzTabVar}{$-D~~$}& discontinuité, expression en bas à gauche & $-D $&$/e $ \\
+\IargName{tkzTabVar}{$~D+~$}& discontinuité, expression en haut et à droite & $D+ $&$/e $ \\
+\IargName{tkzTabVar}{$~D-~$}& discontinuité, expression en bas et droite & $D- $&$/e $ \\
+\IargName{tkzTabVar}{$+DH$} & discontinuité à gauche et en haut puis zone interdite& $+DH $&$/e $ \\
+\IargName{tkzTabVar}{$-DH$} & discontinuité à gauche et en bas puis zone interdite & $-DH $&$/e $ \\
+\IargName{tkzTabVar}{$+CH$} & prolongement par continuité puis zone interdite & $+CH $&$/e $ \\
+\IargName{tkzTabVar}{$-CH$} & idem mais expression en bas et à gauche & $-CH $&$/e $ \\
+\midrule
+ Groupe 2& \emph{avec deux signes}& &\\
+\midrule
+\IargName{tkzTabVar}{$+D-$} & discontinuité,\hfill deux expressions & $+D- $&$/eg/ed$ \\
+\IargName{tkzTabVar}{$-D+$} & discontinuité, \dots \hfill qui sont & $-D+ $&$/eg/ed$ \\
+\IargName{tkzTabVar}{$+D+$} & discontinuité, \dots \hfill soit à gauche ,soit à droite &$+D+ $&$/eg/ed$ \\
+\IargName{tkzTabVar}{$-D-$} & discontinuité, \dots \hfill soit en haut, soit en bas&$-D- $&$/eg/ed$ \\
+\IargName{tkzTabVar}{$+CD+$}& prolongement par continuité à gauche et & $+CD+$&$/eg/ed$ \\
+\IargName{tkzTabVar}{$-CD-$}& \dots \hfill deux expressions qui sont & $-CD-$&$/eg/ed$ \\
+\IargName{tkzTabVar}{$+CD-$}& \dots \hfill soit à gauche ,soit à droite & $+CD-$&$/eg/ed$ \\
+\IargName{tkzTabVar}{$-CD+$}& \dots \hfill soit en haut, soit en bas & $-CD+$&$/eg/ed$ \\
+\IargName{tkzTabVar}{$+DC+$}& prolongement par continuité à droite et & $+DC+$&$/eg/ed$ \\
+\IargName{tkzTabVar}{$-DC-$}& \dots \hfill deux expressions qui sont & $-DC-$&$/eg/ed$ \\
+\IargName{tkzTabVar}{$+DC-$}& \dots \hfill soit à gauche ,soit à droite & $+DC-$&$/eg/ed$ \\
+\IargName{tkzTabVar}{$-DC+$}& \dots \hfill soit en haut, soit en bas & $-DC+$&$/eg/ed$ \\
+\IargName{tkzTabVar}{$+V+$} & comme une discontinuité mais sans double barre et& $+V+ $&$/eg/ed$ \\
+\IargName{tkzTabVar}{$-V-$} & \dots \hfill deux expressions qui sont & $-V- $&$/eg/ed$ \\
+\IargName{tkzTabVar}{$+V-$} & \dots \hfill soit à gauche ,soit à droite & $+V- $&$/eg/ed$ \\
+\IargName{tkzTabVar}{$-V+$} & \dots \hfill soit en haut, soit en bas & $-V+ $&$/eg/ed$ \\
+\midrule
+\tkzname{\textvisiblespace} & laisse la place vide dans certains cas& & \\
+\bottomrule
+\end{tabular}
+
+\medskip
+\noindent\emph{La macro \tkzcname{tkzTabVar} nécessite un argument qui est une liste. Cette liste contient \tkzname{$n$} éléments correspondant aux \tkzname{$n$} antécédents de la première ligne. Chaque élément donne la position d'une ou de deux expressions par rapport à la ligne avec un signe $+$ (en haut) ou bien un signe $-$ (en bas). Ces expressions sont, soit des images, soit des limites.}
+
+\noindent\emph{Les éléments \tkzname{el($i$)} ont pour forme~:\\
+ soit \mbox{\tkzname{\{ s($i$)/ e($i$)\}}} ou bien \mbox{\tkzname{\{ s($i$)/ e($i$) / \}}}, soit \mbox{\tkzname{\{ s($i$)/ eg($i$) / ed($i$)\}}}.}
+
+\noindent\emph{La première forme correspond aux symboles qui ne possèdent qu'un signe \tkzname{$+$} ou \tkzname{$-$} et qui placent une seule expression; la seconde correspond aux symboles qui possèdent deux signes et qui placent deux expressions. Les expressions sont des valeurs prises à gauche \tkzname{ eg($i$)\}} ou bien à droite \tkzname{ed($i$)} par la fonction ou encore des limites mais les expressions peuvent être vides. Un signe \tkzname{$+$} ou \tkzname{$-$} à gauche (resp. à droite) des symboles correspond à \tkzname{eg($i$)} (resp. à \tkzname{ed($i$)}).}
+
+\medskip
+\begin{tabular}{lllc}
+\toprule
+\texttt{options} & \texttt{défaut} & \texttt{définition} \\
+\midrule
+\IoptName{tkzTabVar}{color} & |black| & couleur des flèches \\
+\IoptName{tkzTabVar}{help} & affiche la structure d'une ligne de variations \\
+ \bottomrule
+\end{tabular}
+
+\end{NewMacroBox}
+
+ \medskip
+Un schéma étant parfois plus simple qu'un long discours \dots
+
+ \begin{center}
+\begin{tikzpicture}
+\tkzTabInit[lgt=2,espcl=3]{$x$/1,$f'(x)$/1,$f(x)$/3}%
+{$0$,$1$,$2$,$+\infty$}%
+\tkzTabLine{t,-,d,-,z,+,}%
+\tkzTabVar{}%
+\node[below =3pt] (FN12) at (N12){};
+\node[below =3pt] (FN22) at (N22){};
+\node[below =3pt] (FN32) at (N32){};
+\node[below =3pt] (FN42) at (N42){};
+
+\node[above =3pt] (FN13) at (N13){};
+\node[above =3pt] (FN23) at (N23){};
+\node[above =3pt] (FN33) at (N33){};
+\node[above =3pt] (FN43) at (N43){};
+
+\node[below right=3pt] (FRN12) at (N12){};
+\node[below right=3pt] (FRN22) at (N22){};
+\node[below right=3pt] (FRN32) at (N32){};
+\node[below right=3pt] (FRN42) at (N42){};
+
+\node[above right=3pt] (FRN13) at (N13){};
+\node[above right=3pt] (FRN23) at (N23){};
+\node[above right=3pt] (FRN33) at (N33){};
+
+\node[below left=3pt] (FLN22) at (N22){};
+\node[below left=3pt] (FLN32) at (N32){};
+\node[below left=3pt] (FLN42) at (N42){};
+
+\node[above left=3pt] (FLN13) at (N13){};
+\node[above left=3pt] (FLN23) at (N23){};
+\node[above left=3pt] (FLN33) at (N33){};
+\node[above left=3pt] (FLN43) at (N43){};
+
+\draw[fill=red!50] (FN12) circle(2pt) node[below=2pt,text=red!50] {\small e} node[left=1cm,red] {$+$};
+\draw[fill=red!50] (FN22) circle(2pt);
+\draw[fill=red!50] (FN32) circle(2pt);
+\draw[fill=red!50] (FN42) circle(2pt);
+
+\draw[fill=red!50] (FN13) circle(2pt) node[left=1cm,red] {$-$};
+\draw[fill=red!50] (FN23) circle(2pt);
+\draw[fill=red!50] (FN33) circle(2pt) node[above=2pt,text=red!50] {\small e};
+\draw[fill=red!50] (FN43) circle(2pt);
+
+\draw[fill=blue!30] (FRN12) circle(2pt);
+\draw[fill=blue!30] (FRN22) circle(2pt) node[below right=2pt,text=blue!30] {\small ed};
+\draw[fill=blue!30] (FRN32) circle(2pt);
+\draw[fill=blue!30] (FRN13) circle(2pt);
+\draw[fill=blue!30] (FRN23) circle(2pt);
+\draw[fill=blue!30] (FRN33) circle(2pt);
+
+\draw[fill=green!50] (FLN22) circle(2pt);
+\draw[fill=green!50] (FLN32) circle(2pt);
+\draw[fill=green!50] (FLN42) circle(2pt) node[below left =2pt,text=green!50] {\small eg};
+\draw[fill=green!50] (FLN23) circle(2pt) node[above left =2pt,text=green!50] {\small eg};
+\draw[fill=green!50] (FLN33) circle(2pt);
+\draw[fill=green!50] (FLN43) circle(2pt);
+\end{tikzpicture}
+\end{center}
+
+\medskip
+Pour les besoins de certains tableaux , j'ai employé les macros suivantes~:
+
+\begin{tkzexample}[code only]
+ \newcommand*{\va}{\colorbox{red!50} {$\scriptscriptstyle V_a$}}
+ \newcommand*{\vb}{\colorbox{blue!50} {$\scriptscriptstyle V_b$}}
+ \newcommand*{\vbo}{\colorbox{blue!50} {$\scriptscriptstyle V_{b1}$}}
+ \newcommand*{\vbt}{\colorbox{yellow!50}{$\scriptscriptstyle V_{b2}$}}
+ \newcommand*{\vc}{\colorbox{gray!50} {$\scriptscriptstyle V_c$}}
+ \newcommand*{\vd}{\colorbox{magenta!50}{$\scriptscriptstyle V_d$}}
+ \newcommand*{\ve}{\colorbox{orange!50} {$\scriptscriptstyle V_e$}}
+\end{tkzexample}
+
+\medskip
+ \begin{center}
+\begin{tikzpicture}
+\tkzTabInit[lgt=2,espcl=3]{$x$/1,$f'(x)$/1,$f(x)$/3}%
+{$0$,$1$,$2$,$+\infty$}%
+ \tkzTabLine{t,-,d,-,z,+,}%
+ \tkzTabVar{+/\va , -D+/\vb/\vc,-/\vd, +D/\ve}%
+\end{tikzpicture}
+\end{center}
+
+\begin{tkzexample}[code only]
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=2,espcl=3]{$x$/1,$f'(x)$/1,$f(x)$/3}%
+ {$0$,$1$,$2$,$+\infty$}%
+\tkzTabLine{t,-,d,-,z,+,}%
+ \tkzTabVar{+/\va , -D+/\vb/\vc,-/\vd, +D/\ve}%
+\end{tikzpicture}
+\end{tkzexample}
+
+Commentaires : Les signes $+$ et $-$ permettent de positionner une extrémité de la flèche en haut ou en bas de la ligne. Ensuite, en présence d'un seul signe, une seule expression est nécessaire. La position par rapport à la colonne est donnée par la position du signe par rapport aux autres symboles (voir \tkzname{$+D$}). \tkzname{$-D+$} nécessite deux expressions.
+
+\subsection{Utilisation des symboles}
+
+\medskip
+\bgroup\parindent=0pt
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+ /\va , -/\vb }
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+ {+ /\va , -/\vb }
+ \end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {-/\va , +/\vb}
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+{-/\va , +/\vb}
+ \end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/\va , +/\vb}
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+{+/\va , +/\vb}
+ \end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {-/\va , -/\vb}
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+{-/\va , -/\vb}
+ \end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/\va , -C / \vb}
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+{+/\va , -C / \vb}
+ \end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+{-/\va , +C / \vb }\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+{-/\va , +C / \vb }
+ \end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+C / \va , -C / \vb}
+\end{tkzexample}
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+ {+C / \va , -C / \vb }
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {-C /\va , +C /\vb}
+\end{tkzexample}
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+ {-C /\va , +C /\vb}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ { D+ /\va , -/\vb}
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+ { D+ /\va , -/\vb}
+ \end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ { D- /\va , +/\vb}
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar
+ { D- /\va , +/\vb}
+ \end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/\va , -D / \vb}
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+{+/\va , -D / \vb}
+ \end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {-/\va , +D / \vb }
+\end{tkzexample}
+ \begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+{-/\va , +D / \vb }
+ \end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D+ / \va , -D / \vb }
+\end{tkzexample}
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+ {D+ / \va , -D / \vb }
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D- /\va , +D /\vb}
+\end{tkzexample}
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1]{ /0.5,/2 }{ a , b }
+ \tkzTabVar%
+ {D- /\va , +D /\vb}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/ \va , -/ \vb , +/ \vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {+/ \va , -/ \vb ,+/ \vc}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/ \va ,-C/ \vb , +/ \vc/ }
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {+/ \va ,-C/ \vb , +/ \vc/ }
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {- /\va , R , +/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{- /\va , R, +/\vc}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {- /\va , R , +/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2}{ a , b , c }
+\tkzTabVar%
+{- /\va , R , +/\vc}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D-/\va , +DH/\vbo/ , }
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D-/\va , +DH/\vbo/ , }
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D-/\va , -DH/\va/\vb , D+/}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D-/\va , -DH/\vbo , D+/}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D-/\va , +D-/\vbo/\vbt , +D/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D-/\va , +D-/\vbo/\vbt , +D/\vc}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D-/\va , +D-/\vbo/\vbt , +D/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D-/\va , -D-/\vbo/\vbt , +D/\vc}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/\va , -D- / \vbo/\vbt , +/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {+/ \va , -D- /\vbo/\vbt,+/\vc }
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+ /\va,-DC- /\vbo/\vbt,+ /\vc}
+\end{tkzexample}
+\begin{tikzpicture}\tikzset{low/.style = {above = 15pt}}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {+ /\va ,-DC- /\vbo/\vbt ,+ /\vc}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D-/\va, +DC-/\vbo/\vbt, +D/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D-/\va , +DC-/\vbo/\vbt ,+D/\vc}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D+/\va , +DC-/\vbo/\vbt , +D/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D+/\va , +DC-/\vbo/\vbt ,+D/\vc}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D-/\va , +CD-/\vbo/\vbt , +D/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D-/\va , +CD-/\vbo/\vbt , +D/\vc}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D-/\va , +CD-/\vbo/\vbt ,+D/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D+/\va , +CD-/\vbo/\vbt , +D/\vc}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/\va, -DC+ /\vbo/\vbt, - /\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {+ /\va ,-DC+ /\vbo/\vbt , -/\vc}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {D- /\va, -DC- /\vbo/\vbt,+D/\vc}
+\end{tkzexample}
+\begin{tikzpicture}\tikzset{low/.style = {above = 15pt}}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{D- /\va , -DC- /\vbo/\vbt , +D/\vc}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/\va , -CH /\vbo/\vbt , D+/}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{+/\va , -CH /\vbo/\vbt , D+/}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+ /\va , -CH/\vb, //}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar%
+{+ /\va , -CH/\vb, //}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/\va , -V- /\vbo /\vbt, +/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {+/\va,-V- /\vbo /\vbt, +/\vc}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/ \va ,-V+ / \vbo/ \vbt ,-/ \vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {+/ \va ,-V+ / \vbo/ \vbt ,-/ \vc}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {+/ \va ,+V- /\vbo/ \vbt , -/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {+/ \va ,+V- / \vbo/ \vbt , -/\vc}
+\end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}{7cm}
+\begin{tkzexample}[code only]
+ {-/ \va, +V+ / \vbo/\vbt, -/\vc}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=2.5]{ /0.5,/2 }{ a , b , c }
+\tkzTabVar {-/ \va ,+V+ / \vbo / \vbt, -/\vc}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{16cm}
+\begin{tkzexample}[code only]
+ {-/ \va ,+H/\vb,-/\vc, +/ \vd}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=3]{ /0.5,/2 }{ a , b , c , d }
+\tkzTabVar {-/ \va ,+H/\vb,-/\vc, +/ \vd}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{16cm}
+\begin{tkzexample}[code only]
+ {+/ \va ,-H/\vb,-/\vc, +/ \vd}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=3]{ /0.5,/2 }{ a , b , c , d }
+\tkzTabVar {+/ \va ,-H/\vb,-/\vc, +/ \vd}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{16cm}
+\begin{tkzexample}[code only]
+ {-/ \va , R , R , R , +/ \ve}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=3]{ /0.5,/2 }{ a , b , c , d , e}
+\tkzTabVar {-/ \va ,R,R,R, +/ \ve}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{16cm}
+\begin{tkzexample}[code only]
+ {-/ \va , +/\vb , -DH/\vc , -/\vd , +/ \ve}
+ \end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=3]{ /0.5,/2 }{ a , b , c , d , e}
+\tkzTabVar {-/ \va ,+/\vb ,-DH/\vc,-/\vd, +/ \ve}
+\end{tikzpicture}
+\end{minipage}
+
+\begin{minipage}{16cm}
+\begin{tkzexample}[code only]
+ {D-/ \va , +DH/\vb/ , D-/\vc , +/\vd , +D/\ve}
+\end{tkzexample}
+\begin{tikzpicture}
+\tkzTabInit[lgt=1,espcl=3]{ /0.5,/2 }{ a , b , c , d , e}
+\tkzTabVar {D-/ \va ,+DH/\vb/,D-/\vc,+/\vd, -D/\ve}
+\end{tikzpicture}
+\end{minipage}
+\egroup
+
+\medskip
+Commentaires
+\begin{itemize}
+ \item on peut employer la syntaxe suivante dans pratiquement tous les cas $s(i)/\ldots/\ldots$ mais alors il faut bien positionner les expressions;
+
+ \item l'argument vide est employé parfois à la fin d'une ligne mais dans ce cas aucune flèche n'est tracée;
+
+ \item $C+$ et $C-$ n'existent pas. $+C$ et $-C$ suffisent car les expressions sont centrées;
+ \item $D+$ et $D-$ existent .
+
+\end{itemize}
+
+
+\subsection{Utilisation des options}
+
+\subsubsection{\texttt{\textcolor{red}{color}} : modification de la couleur des flèches}
+Il est possible de personnaliser le tableau à l'aide de styles.
+\begin{tkzexample}[vbox, small]
+\begin{tikzpicture}
+ \tkzTabInit[color,espcl=8]%
+ {$x$ /1,%
+ Signe\\ de $\dfrac{1}{x}$ /1.5,
+ Variation\\ de $\ln$ /1.5}%
+ {$0$,$+\infty$}%
+ \tkzTabLine{d,+,}%
+ \tkzTabVar[color=red]%
+ {D-/ / $-\infty$,+/ $+\infty$ /}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{help}} : affiche la structure du tableau}
+\Iopt{tkzTabVar}{help}
+Voir le chapitre personnalisation\ref{pers}
+\subsection{Utilisation des styles}
+
+\subsubsection{Modification de la couleur d'une zone interdite}
+\Istyle{tkzTabvar}{h style}
+Si vous préférez hachurer une zone du tableau, alors il faut modifier un style.
+
+Par défaut, \tkzname{h style} est défini ainsi:
+\begin{tkzexample}[code only]
+ \tikzset{h style/.style = {fill=gray,opacity=0.4}}
+\end{tkzexample}
+
+Une autre définition peut être :
+
+\begin{tkzexample}[code only]
+ \tikzset{h style/.style = {fill=red!50}}
+\end{tkzexample}
+
+\begin{tkzexample}[vbox,width=9cm]
+\begin{tikzpicture}
+ \tikzset{h style/.style = {fill=red!50}}
+ \tkzTabInit[lgt=1,espcl=2]{$x$ /1, $f$ /2}{$0$,$1$,$2$,$3$}%
+ \tkzTabVar{+/ $1$ / , -CH/ $-2$ / , +C/ $5$, -/ $0$ / }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{h style}} Zone interdite hachurée}
+\Istyle{tkzTabVar}{h style}
+
+\begin{tkzexample}[code only]
+ \tikzset{h style/.style = {pattern=north west lines}}
+\end{tkzexample}
+ Ce code permet d'hachurer la zone
+
+\begin{tkzexample}[vbox,width=9cm,small]
+\begin{tikzpicture}
+ \tikzset{h style/.style = {pattern=north west lines}}
+ \tkzTabInit[lgt=1,espcl=2]{$x$ /1, $f$ /2}{$0$,$1$,$2$,$3$}%
+ \tkzTabVar{+/ $1$ / , -CH/ $-2$ / , +C/ $5$, -/ $0$ / }
+\end{tikzpicture}
+\end{tkzexample}
+
+
+\subsubsection{\texttt{\textcolor{red}{arrow style}} style des flèches.}
+\Istyle{tkzTabVar}{arrow}
+Le style des flèches est \tkzname{arrow style} et il est défini ainsi :
+
+\begin{tkzexample}[code only]
+ \tikzset{arrow style/.style = {\cmdTAB@VA@color,
+ ->,
+ > = latex',
+ shorten > = 2pt,
+ shorten < = 2pt}}
+\end{tkzexample}
+
+ On limite l'approche des nodes par les arrows. Voici une modification possible du style
+
+\begin{tkzexample}[code only]
+ \tikzset{arrow style/.style = {blue,
+ ->,
+ > = latex',
+ shorten > = 6pt,
+ shorten < = 6pt}}
+\end{tkzexample}
+
+ La couleur et l'approche des flèches sont modifiées.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tikzset{arrow style/.style = {blue,
+ ->,
+ > = latex',
+ shorten > = 6pt,
+ shorten < = 6pt}}
+ \tkzTabInit[espcl=5]{$x$ /1, $\ln x +1$ /1.5, $x \ln x$ /2}%
+ {$0$ ,$1/\E$ , $+\infty$}%
+ \tkzTabLine{d,-,z,+,}
+ \tkzTabVar%
+ { D+/ / $0$ ,%
+ -/ \colorbox{black}{\textcolor{white}{$\dfrac{-1}{e}$}}/ ,%
+ +/ $+\infty$ / }%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{\texttt{\textcolor{red}{node style}} Style des nodes}
+\Istyle{tkzTabVar}{node style}
+Par défaut, Le style des nodes est \tkzname{node style} et il est défini ainsi :
+\begin{tkzexample}[code only]
+\tikzset{node style/.style = {inner sep = 2pt,
+ outer sep = 2pt,
+ fill = \cmdTAB@tbs@colorT}}\end{tkzexample}
+Si on veut apporter des modifications mais conserver une partie de ce style, on peut agir ainsi :
+
+\begin{tkzexample}[code only]
+ \tikzset{node style/.append style = {draw,circle,fill=red!40,opacity=.4}}
+\end{tkzexample}
+
+ Par défaut les nodes sont des rectangles non tracés, ils deviennent des disques
+
+\begin{tikzpicture}
+ \tikzset{node style/.append style = {draw,circle,fill=red!40,opacity=.4}}
+ \tkzTabInit[espcl=5]{$x$ /1, $\ln x +1$ /1.5, $x \ln x$ /2}%
+ {$0$ ,$1/\E$ , $+\infty$}%
+ \tkzTabLine{d,-,z,+,}
+ \tkzTabVar%
+ { D+/ / $0$ ,%
+ -/ \colorbox{black}{\textcolor{white}{$\dfrac{-1}{e}$}}/ ,%
+ +/ $+\infty$ / }%
+\end{tikzpicture}
+
+\begin{tkzexample}[code only,small]
+\begin{tikzpicture}
+ \tikzset{node style/.append style = {draw,circle,fill=red!40,opacity=.4}}
+ \tkzTabInit[espcl=5]{$x$ /1, $\ln x +1$ /1.5, $x \ln x$ /2}%
+ {$0$ ,$1/\E$ , $+\infty$}%
+ \tkzTabLine{d,-,z,+,}
+ \tkzTabVar%
+ { D+/ / $0$ ,%
+ -/ \colorbox{black}{\textcolor{white}{$\dfrac{-1}{e}$}}/ ,%
+ +/ $+\infty$ / }%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsection{Quelques exemples}
+\subsubsection{Fonction inverse}
+Étude de la fonction inverse $i~:~ x \longmapsto \frac{1}{x}$ sur $]-\infty~;~0[ \cup ]0~;~+\infty[$
+
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1.5,espcl=6.5]{$x$ /1,$i'(x)$ /1,$i$ /3}
+ {$-\infty$,$0$,$+\infty$}%
+ \tkzTabLine{,-,d,-,}
+ \tkzTabVar{+/ $0$ / ,-D+/ $-\infty$ / $+\infty$ , -/ $0$ /}
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Fonction avec des paliers, emploi du symbole \texttt{\textcolor{red}{R}}}
+Il est possible avec R de passer plusieurs valeurs.
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=4]{$x$ /1,$f'(x)$ /1,$f(x)$ /2}
+ {$0$ , $1$ ,$2$, $+\infty$}%
+ \tkzTabLine {d,+ , z,+ , z,+ , }
+ \tkzTabVar{D-/ / $-\infty$,R/ /,R/ /,+/ $+\infty$ /}%
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Zone interdite}
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$ /1, $f$ /2}{$0$,$1$,$2$,$3$}%
+ \tkzTabVar{+/ $1$ / ,-DH/ $-\infty$ / ,D+/ / $+\infty$, -/ $2$ / }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Zone interdite + prolongement par continuité}
+\index{zone interdite}
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$ /1, $f$ /2}{$0$,$1$,$2$,$3$}%
+ \tkzTabVar{+/ $1$ / ,-CH/ $-2$ /, D+/ / $+\infty$,-/ $2$ / }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Zone interdite + double prolongement par continuité}
+\index{prolongement par continuité}
+\begin{tkzexample}[vbox]
+\begin{tikzpicture}
+ \tkzTabInit[lgt=1,espcl=2]{$x$ /1, $f$ /2}{$0$,$1$,$2$,$3$}%
+ \tkzTabVar{+/ $1$ / , -CH/ $-2$ / , +C/ $5$, -/ $0$ / }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Exemple d'une fonction partiellement constante}
+
+Utilisation de l'option nocadre qui supprime le cadre extérieur, sinon on peut constater que l'on peut mettre pratiquement ce que l'on veut avec la macro \tkzcname{signe}.
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTab[nocadre,lgt=3,espcl=4]
+ {$x$ /1,
+ Signe\\ de $f'(x)$ /1.5,
+ Variations\\ de\\ $f$ /2}
+ {$-\infty$, $-2$,$\dfrac{1}{\E}$,$\E$}%
+ {z, <--- 0 --->,d, -, d, \genfrac{}{}{0pt}{0}{\text{signe de}}{ a}, d}
+ {+/ $\dfrac{2}{3}$, +/ $\dfrac{2}{3}$,
+ -D-/ $-\infty$ / $-\infty$,+D/ $+\infty$ }
+\end{tikzpicture}
+\end{tkzexample}
+
+\subsubsection{Double variations}
+
+\begin{tkzexample}[vbox,small]
+\begin{tikzpicture}
+ \tkzTabInit[espcl=6]
+ {$x$ /1, $f''{x}$ /1,$f'(x)$ /2, $f(x)$ /2}%
+ {$0$ , $1$ , $+\infty$ }%
+ \tkzTabLine{d,+,z,-, }%
+ \tkzTabVar {D-/ /$1$,+/ $\E$ /,-/ $0$ /}%
+ \tkzTabVar {D-/ /$-\infty$ ,R/ $0$ /, +/ $+8$ /}
+\end{tikzpicture}
+\end{tkzexample}
+
+
+
+\endinput \ No newline at end of file
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab.ist b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab.ist
new file mode 100644
index 0000000000..935392d700
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/latex/TKZdoc-tab.ist
@@ -0,0 +1,6 @@
+heading_prefix "{\\bfseries\\hfil "
+heading_suffix "\\hfil}\\nopagebreak\n"
+headings_flag 1
+delim_0 "\\dotfill"
+delim_1 "\\dotfill"
+delim_2 "\\dotfill"
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/tkz-tab-screen.pdf b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/tkz-tab-screen.pdf
new file mode 100644
index 0000000000..2814b10b5c
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/doc/tkz-tab-screen.pdf
Binary files differ
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/latex/tkz-tab.sty b/obsolete/macros/latex/contrib/tkz/tkz-tab/latex/tkz-tab.sty
new file mode 100644
index 0000000000..8119748eef
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/latex/tkz-tab.sty
@@ -0,0 +1,943 @@
+% Copyright (C) 2009 Alain Matthes
+%
+% This file may be distributed and/or modified
+%
+% 1. under the LaTeX Project Public License , either version 1.3
+% of this license or (at your option) any later version and/or
+% 2. under the GNU Public License.
+%
+% See the file doc/generic/pgf/licenses/LICENSE for more details.%
+% See http://www.latex-project.org/lppl.txt for details.
+%
+%
+% ``tkz-tab'' package for create tables of signs and variations.
+%
+%
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % tkz-tab.sty encodage : utf8 %
+ % %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % %
+ % Créé par Alain Matthes le 04-01-2007. %
+ % CTAN version %
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%% Objet : Création de tableaux (signes et variations)
+%<----------------------------------------------------------------------------->
+\NeedsTeXFormat{LaTeX2e}
+\ProvidesPackage{tkz-tab}[2019/01/19 v1.4e variations (ctan version) ]
+%<----------------------------------------------------------------------------->
+\ifx\e@alloc\@undefined
+ \RequirePackage{etex}
+\fi
+\RequirePackage{ifthen}
+\RequirePackage{xkeyval}[2005/11/25]
+\RequirePackage{tikz}[2008/01/15]
+\usetikzlibrary{arrows,patterns}
+
+%<------------------------------ Initialisation ----------------------------->
+
+%<------------------------------ Styles ----------------------------->
+%<------------------------------ Colors ----------------------------->
+\def\tkzTabDefaultWritingColor{black}
+\def\tkzTabDefaultBackgroundColor{white}
+\def\tkzTabDefaultLineWidth{0.4pt}
+\def\tkzTabDefaultArrowStyle{latex'}
+\def\tkzTabDefaultSep{2pt}
+\def\cmdTAB@backgroundcolor{white}
+\def\cmdTAB@writecolor{black}
+\def\cmdTAB@TTS@doubledistance{1pt}
+\def\cmdTAB@TG@hcolor{gray}
+\let\cmdTAB@TG@patterncolor\cmdTAB@writecolor
+\def\cmdTAB@TG@patternstyle{north west lines}
+\let\cmdTAB@TG@color\cmdTAB@writecolor
+\let\cmdTAB@tbs@colorT\cmdTAB@backgroundcolor
+\let\cmdTAB@VA@color\cmdTAB@writecolor
+\let\cmdTAB@arrowcolor\cmdTAB@writecolor
+%<-------------------------------------------------------------------------->
+\tikzset{node style/.style = {inner sep = \tkzTabDefaultSep,
+ outer sep = \tkzTabDefaultSep,
+ fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{low left/.style = {above left = \tkzTabDefaultSep}}
+\tikzset{low right/.style = {above right = \tkzTabDefaultSep}}
+\tikzset{high right/.style = {below right = \tkzTabDefaultSep}}
+\tikzset{high left/.style = {below left = \tkzTabDefaultSep}}
+\tikzset{low/.style = {above = \tkzTabDefaultSep}}
+\tikzset{high/.style = {below = \tkzTabDefaultSep}}
+\tikzset{on double/.style = {fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{tan style/.style = {> = \tkzTabDefaultArrowStyle,
+ ->,
+ color = \tkzTabDefaultWritingColor}}
+\tikzset{arrow style/.style = {\tkzTabDefaultWritingColor,
+ ->,
+ > = \tkzTabDefaultArrowStyle,
+ shorten > = \tkzTabDefaultSep,
+ shorten < = \tkzTabDefaultSep}}
+\tikzset{from style/.style = {shorten > = \tkzTabDefaultSep,
+ shorten < = \tkzTabDefaultSep,
+ line width = \tkzTabDefaultLineWidth,
+ > = \tkzTabDefaultArrowStyle,
+ ->,
+ draw = \tkzTabDefaultWritingColor,
+ dotted}}
+
+\tikzset{t style/.style = {style = dotted,
+ draw = \tkzTabDefaultWritingColor}}
+
+\tikzset{h style/.style = {pattern = north west lines,
+ pattern color = \tkzTabDefaultWritingColor}}
+
+\tikzset{double style/.append style = {%
+ draw = \tkzTabDefaultWritingColor,
+ double = \tkzTabDefaultBackgroundColor}}
+%<--------------------- Colorisation du fond ------------------------------>
+\tikzset{fondC/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondL/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondT/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondV/.style={fill = \tkzTabDefaultBackgroundColor}}
+%<------------------------------ End of Styles ---------------------------->
+\newdimen\tkz@XF
+\newdimen\tkz@YF
+\newcounter{tkz@cnt@line}
+\newcounter{tkz@cnt@lg}
+\newcounter{tkz@cnt@cl}
+\newcounter{tkz@cnt@pred}
+\newcounter{tkz@cnt@temp}
+\newcounter{tkz@cnt@arrow}
+\newcounter{tkz@cnt@zone}
+\newcounter{tkz@cnt@lgnext}
+\newcounter{tkz@cnt@clnext}
+\newcounter{tkz@cnt@pair}
+\newcounter{tkz@cnt@impair}
+\newcounter{tkz@cnt@aw}
+%<--------------------------------------------------------------------------->
+\define@cmdkey [TAB] {TTC} {color}{}
+\define@cmdkey [TAB] {TTC} {backgroundcolor}{}
+\presetkeys [TAB] {TTC} {color = black,
+ backgroundcolor = white}{}
+\newcommand*{\tkzTabColors}[1][]{%
+\setkeys[TAB]{TTC}{#1}
+\let\tkzTabDefaultWritingColor\cmdTAB@TTC@color
+\let\tkzTabDefaultBackgroundColor\cmdTAB@TTC@backgroundcolor
+\let\cmdTAB@backgroundcolor\cmdTAB@TTC@backgroundcolor
+\let\cmdTAB@writecolor\cmdTAB@TTC@color
+\let\cmdTAB@doublecolor\cmdTAB@TTC@backgroundcolor
+\let\cmdTAB@patterncolor\cmdTAB@TTC@color
+\let\cmdTAB@tcolor\cmdTAB@TTC@color
+\tikzset{fondC/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondL/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondT/.style={fill = \tkzTabDefaultBackgroundColor}}
+\tikzset{fondV/.style={fill = \tkzTabDefaultBackgroundColor}}
+}
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\define@boolkey [TAB] {TTS} {crosslines}[true]{}
+\define@cmdkey [TAB] {TTS} {doubledistance}{}
+\define@cmdkey [TAB] {TTS} {lw}{}
+\define@cmdkey [TAB] {TTS} {doublecolor}{}
+\define@cmdkey [TAB] {TTS} {color}{}
+\define@cmdkey [TAB] {TTS} {backgroundcolor}{}
+\define@cmdkey [TAB] {TTS} {patterncolor}{}
+\define@cmdkey [TAB] {TTS} {patternstyle}{}
+\define@cmdkey [TAB] {TTS} {tstyle}{}
+\define@cmdkey [TAB] {TTS} {tcolor}{}
+\define@cmdkey [TAB] {TTS} {tanstyle}{}
+\define@cmdkey [TAB] {TTS} {tanarrowstyle}{}
+\define@cmdkey [TAB] {TTS} {tancolor}{}
+\define@cmdkey [TAB] {TTS} {tanwidth}{}
+\define@cmdkey [TAB] {TTS} {fromstyle}{}
+\define@cmdkey [TAB] {TTS} {fromarrowstyle}{}
+\define@cmdkey [TAB] {TTS} {fromcolor}{}
+\define@cmdkey [TAB] {TTS} {fromwidth}{}
+\define@cmdkey [TAB] {TTS} {twidth}{}
+\define@cmdkey [TAB] {TTS} {hcolor}{}
+\define@cmdkey [TAB] {TTS} {hopacity}{}
+\define@cmdkey [TAB] {TTS} {arrowcolor}{}
+\define@cmdkey [TAB] {TTS} {arrowstyle}{}
+\define@cmdkey [TAB] {TTS} {arrowlinewidth}{}
+%<--------------------------------------------------------------------------->
+\presetkeys [TAB] {TTS} {doubledistance = 1pt,
+ doublecolor = \tkzTabDefaultBackgroundColor,
+ lw = \tkzTabDefaultLineWidth,
+ color = \tkzTabDefaultWritingColor,
+ backgroundcolor = \tkzTabDefaultBackgroundColor,
+ patterncolor = \tkzTabDefaultWritingColor,
+ patternstyle = north west lines,
+ tstyle = dotted,
+ tcolor = \tkzTabDefaultWritingColor,
+ tanarrowstyle = \tkzTabDefaultArrowStyle,
+ tanstyle = ->,
+ tancolor = \tkzTabDefaultWritingColor,
+ tanwidth = \tkzTabDefaultLineWidth,
+ fromarrowstyle = \tkzTabDefaultArrowStyle,
+ fromstyle = ->,
+ fromcolor = \tkzTabDefaultWritingColor,
+ fromwidth = \tkzTabDefaultLineWidth,
+ twidth = \tkzTabDefaultLineWidth,
+ hcolor = \tkzTabDefaultWritingColor,
+ hopacity = 0.4,
+ crosslines = false,
+ arrowcolor = \tkzTabDefaultWritingColor,
+ arrowstyle = \tkzTabDefaultArrowStyle,
+ arrowlinewidth = \tkzTabDefaultLineWidth}{}
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTabSetup}[1][]{%
+\setkeys[TAB]{TTS}{#1}
+\tikzset{from style/.append style = {line width = \cmdTAB@TTS@fromwidth,
+ > = \cmdTAB@TTS@fromarrowstyle,
+ \cmdTAB@TTS@fromstyle,
+ \cmdTAB@TTS@fromcolor}}
+
+\tikzset{tan style/.style = {\cmdTAB@TTS@tanstyle,
+ > = \cmdTAB@TTS@tanarrowstyle,
+ \cmdTAB@TTS@tancolor}}
+
+\tikzset{double style/.append style = {%
+ draw = \cmdTAB@TTS@color,
+ double = \cmdTAB@TTS@doublecolor,
+ double distance = \cmdTAB@TTS@doubledistance,
+ line width = \cmdTAB@TTS@lw}}
+\tikzset{t style/.style = {style = \cmdTAB@TTS@tstyle,
+ draw = \cmdTAB@TTS@tcolor,
+ line width = \cmdTAB@TTS@twidth}}
+\tikzset{arrow style/.append style = {\cmdTAB@TTS@arrowcolor,
+ > = \cmdTAB@TTS@arrowstyle,
+ line width = \cmdTAB@TTS@arrowlinewidth}}
+\tikzset{node style/.append style = { fill = \cmdTAB@TTS@backgroundcolor}}
+\tikzset{fondC/.style={fill = \cmdTAB@TTS@backgroundcolor}}
+\tikzset{fondL/.style={fill = \cmdTAB@TTS@backgroundcolor}}
+\tikzset{fondT/.style={fill = \cmdTAB@TTS@backgroundcolor}}
+\tikzset{fondV/.style={fill = \cmdTAB@TTS@backgroundcolor}}
+\ifTAB@TTS@crosslines%
+ \tikzset{h style/.style = {pattern = north west lines,
+ pattern color = \cmdTAB@TTS@patterncolor}}
+\else
+ \tikzset{h style/.style = {fill = \cmdTAB@TTS@patterncolor!50,
+ opacity = \cmdTAB@TTS@hopacity}}
+\fi
+}
+%<--------------------- tracé du cadre extérieur --------------------------->
+\define@boolkey [TAB] {tbs} {help}[true]{}
+\define@boolkey [TAB] {tbs} {color}[true]{}
+\define@boolkey [TAB] {tbs} {nocadre}[true]{}
+\define@cmdkey [TAB] {tbs} {lw}{}
+\define@cmdkey [TAB] {tbs} {textw}{}
+\define@cmdkey [TAB] {tbs} {colorC}{}
+\define@cmdkey [TAB] {tbs} {colorL}{}
+\define@cmdkey [TAB] {tbs} {colorT}{}
+\define@cmdkey [TAB] {tbs} {colorV}{}
+\define@cmdkey [TAB] {tbs} {lgt}{}
+\define@cmdkey [TAB] {tbs} {espcl}{}
+\define@cmdkey [TAB] {tbs} {deltacl}{}
+\presetkeys [TAB] {tbs} {help = false,
+ espcl = 3,
+ lgt = 2,
+ textw = \cmdTAB@tbs@lgt,
+ lw = \tkzTabDefaultLineWidth,
+ colorC = \tkzTabDefaultBackgroundColor,
+ colorL = \tkzTabDefaultBackgroundColor,
+ colorT = \tkzTabDefaultBackgroundColor,
+ colorV = \tkzTabDefaultBackgroundColor,
+ color = false,
+ nocadre = false,
+ deltacl = 0.5}{}
+%<--------------------------------------------------------------------------->
+%<-------------- Macro principale : détermine les dim ----------------------->
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTabInit}[3][]{%
+ \setkeys[TAB]{tbs}{#1}
+ \setcounter{tkz@cnt@line}{1}
+ \setcounter{tkz@cnt@lgnext}{0}
+ \setcounter{tkz@cnt@clnext}{0}
+ \setcounter{tkz@cnt@aw}{0}
+ \setcounter{tkz@cnt@lg}{0}
+ \setcounter{tkz@cnt@cl}{0}
+ \setcounter{tkz@cnt@pred}{0}
+ \setcounter{tkz@cnt@temp}{0}
+ \setcounter{tkz@cnt@arrow}{0}
+ \setcounter{tkz@cnt@zone}{0}
+ \gdef\tkz@deltaY{0}
+%<----------------------- Première colonne ---------------------------------->
+\foreach \ligne/\ecart in {#2}{%
+ \stepcounter{tkz@cnt@lg}%
+}%
+\stepcounter{tkz@cnt@lg}%
+\foreach \colonne in {#3}{%
+ \stepcounter{tkz@cnt@cl}%
+}%
+\addtocounter{tkz@cnt@cl}{-1}%
+\let\tkz@nbinterv\thetkz@cnt@cl
+\addtocounter{tkz@cnt@lg}{-1}%
+\xdef\maxtkz@cnt@lg{\thetkz@cnt@lg}%
+\xdef\tkz@maxcl{\thetkz@cnt@cl}%
+\pgfmathparse{\cmdTAB@tbs@lgt+2*\cmdTAB@tbs@deltacl+\cmdTAB@tbs@espcl*\tkz@nbinterv}%
+\global\let\tkz@lgttab\pgfmathresult
+\global\let\tkz@lgttab\tkz@lgttab
+\coordinate(T00) at (0,0);
+\coordinate(T10) at (\cmdTAB@tbs@lgt,0);
+\coordinate(T20) at (\tkz@lgttab,0);
+\setcounter{tkz@cnt@lg}{0}%
+\foreach \ligne/\tkz@deltaH in {#2}{%
+ \setcounter{tkz@cnt@cl}{0}%
+ \foreach \x in {#3}{%
+ \pgfmathmultiply{\cmdTAB@tbs@espcl}{\value{tkz@cnt@cl}}%
+ \global\let\ecartcl\pgfmathresult
+ \pgfmathparse{\cmdTAB@tbs@lgt+\cmdTAB@tbs@deltacl+\ecartcl}%
+ \global\let\tkz@ddx\pgfmathresult
+ \stepcounter{tkz@cnt@cl}%
+ \coordinate(N\thetkz@cnt@cl 0) at (\tkz@ddx,-\tkz@deltaY);}}%
+\foreach \m in {1,...,\tkz@maxcl}{%
+ \setcounter{tkz@cnt@clnext}{\m}%
+ \stepcounter{tkz@cnt@clnext}%
+ \path (N\m 0)--(N\thetkz@cnt@clnext 0) coordinate[midway](M\m 0);}%
+\setcounter{tkz@cnt@cl}{0}%
+\setcounter{tkz@cnt@lg}{0}%
+\foreach \ligne/\tkz@deltaH in {#2}{%
+ \stepcounter{tkz@cnt@lg}%
+ \pgfmathadd{\tkz@deltaY}{\tkz@deltaH}%
+ \global\let\tkz@deltaY\pgfmathresult
+ \coordinate(T0\thetkz@cnt@lg) at (0,-\tkz@deltaY);
+ \coordinate(T1\thetkz@cnt@lg) at (\cmdTAB@tbs@lgt,-\tkz@deltaY);
+ \coordinate(T2\thetkz@cnt@lg) at (\tkz@lgttab,-\tkz@deltaY);
+ \setcounter{tkz@cnt@cl}{0}%
+ \foreach \x in {#3}{%
+ \pgfmathparse{\cmdTAB@tbs@lgt+\cmdTAB@tbs@deltacl+%
+ \cmdTAB@tbs@espcl*\thetkz@cnt@cl}%
+ \global\let\tkz@ddx\pgfmathresult
+ \stepcounter{tkz@cnt@cl}%
+ \coordinate(N\number\value{tkz@cnt@cl}%
+ \number\value{tkz@cnt@lg})%
+ at (\tkz@ddx,-\tkz@deltaY);
+ }%
+ \foreach \m in {1,...,\tkz@maxcl}{%
+ \setcounter{tkz@cnt@clnext}{\m}%
+ \stepcounter{tkz@cnt@clnext}%
+ \path (N\m\number\value{tkz@cnt@lg})--%
+ (N\thetkz@cnt@clnext\number\value{tkz@cnt@lg})%
+ coordinate[midway](M\m\number\value{tkz@cnt@lg});
+ \ifTAB@tbs@help%
+ \draw[fill=green!30!black] (M\m\number\value{tkz@cnt@lg}) circle(2pt)%
+ node[below right,green!30!black] {%
+ \footnotesize M\m\number\value{tkz@cnt@lg}};
+ \fi
+ }%
+ \pgfmathdivide{\cmdTAB@tbs@lgt}{2}%
+ \global\let\tkz@tab@dx\pgfmathresult
+ \pgfmathdivide{\tkz@deltaH}{2}%
+ \global\let\tkz@halfdeltaH\pgfmathresult
+ \pgfmathsubtract{\tkz@halfdeltaH}{\tkz@deltaY}%
+ \global\let\tkz@tab@dy\pgfmathresult
+ \setcounter{tkz@cnt@temp}{\thetkz@cnt@lg}%
+ \addtocounter{tkz@cnt@temp}{-1}%
+ \path (\tkz@tab@dx,\tkz@tab@dy) coordinate(F\thetkz@cnt@temp);}%
+%
+%<--------------------- Colorisation du fond ------------------------------>
+\tikzset{fondC/.style={fill = \cmdTAB@tbs@colorC}}
+\tikzset{fondL/.style={fill = \cmdTAB@tbs@colorL}}
+\tikzset{fondT/.style={fill = \cmdTAB@tbs@colorT}}
+\tikzset{fondV/.style={fill = \cmdTAB@tbs@colorV}}
+\ifTAB@tbs@color
+ \draw[fondC] (T01) rectangle (T1\maxtkz@cnt@lg);
+ \draw[fondL] (T11) rectangle (T20);
+ \draw[fondT] (T11) rectangle (T2\maxtkz@cnt@lg);
+ \draw[fondV] (T00) rectangle (T11);
+\fi
+%<-------------------Fin Colorisation du fond ------------------------------>
+%
+%<--------------- Écriture des formules en colonne 1 --------------------->
+\setcounter{tkz@cnt@lg}{-1}%
+\pgfmathsubtract{\cmdTAB@tbs@textw}{0.4}%
+\xdef\cmdTAB@tbs@textw{\pgfmathresult}%
+\foreach \ligne/\tkz@deltaH in {#2}{%
+\stepcounter{tkz@cnt@lg}%
+\ifTAB@tbs@help%
+\node[draw,fill=green!50,inner sep=1pt] at (F\number\value{tkz@cnt@lg}) {\footnotesize F\thetkz@cnt@lg};
+\else
+\node[text width = \cmdTAB@tbs@textw cm,text centered,inner sep=0pt] at (F\thetkz@cnt@lg) {\ligne};
+\fi}%
+%<--------------- Cadre = true on trace tout sinon condition---------------->
+\ifTAB@tbs@nocadre%
+\draw[line width = \cmdTAB@tbs@lw] (T10) --(T1\maxtkz@cnt@lg);
+\setcounter{tkz@cnt@temp}{\maxtkz@cnt@lg}%
+\addtocounter {tkz@cnt@temp}{-1}%
+\xdef\maxtkz@cnt@lg{\thetkz@cnt@temp}%
+\foreach \y in {1,...,\maxtkz@cnt@lg}{\draw[line width = \cmdTAB@tbs@lw] (T0\y) --(T2\y);}%
+\else
+\foreach \y in {1,...,\maxtkz@cnt@lg}{\draw[line width = \cmdTAB@tbs@lw] (T0\y) --(T2\y);}%
+\draw[line width = \cmdTAB@tbs@lw] (T00) rectangle (T2\maxtkz@cnt@lg);
+\draw[line width = \cmdTAB@tbs@lw] (T10) -- (T1\maxtkz@cnt@lg);
+\fi
+%<------------ Première ligne et Nodes variations -------------------------->
+\setcounter{tkz@cnt@cl}{0}%
+\pgfextractx{\tkz@XF}{\pgfpointanchor{F0}{center}}%
+\pgfextracty{\tkz@YF}{\pgfpointanchor{F0}{center}}%
+\foreach \x in {#3}{%
+\pgfmathparse{\cmdTAB@tbs@deltacl+\cmdTAB@tbs@lgt/2+%
+ \cmdTAB@tbs@espcl*\thetkz@cnt@cl}%
+ \global\let\tkz@tab@dx\pgfmathresult
+ \stepcounter{tkz@cnt@cl}%
+ \ifTAB@tbs@help%
+ \node[draw,fill=blue!50,inner sep=1pt] (L\number\value{tkz@cnt@cl})%
+ at (\tkz@XF + \tkz@tab@dx cm,\tkz@YF) {\footnotesize L\number\value{tkz@cnt@cl}};%
+ \else
+ \node (L\thetkz@cnt@cl) at (\tkz@XF + \tkz@tab@dx cm,\tkz@YF) {\x};%
+ \fi}%
+%<------------------------ help ----------------------------->
+\ifTAB@tbs@help%
+\foreach \colonne in {0,1,2}{%
+\foreach \ligne in {0,...,\maxtkz@cnt@lg}{\draw (T\colonne\ligne)%
+ node[draw,fill=red!50,inner sep=1pt] {\textbf{\footnotesize T\colonne\ligne}};}}%
+\setcounter{tkz@cnt@temp}{\tkz@maxcl}
+\stepcounter{tkz@cnt@temp}
+\xdef\tkz@maxcl{\thetkz@cnt@temp}%
+\foreach \ligne in {0,...,\maxtkz@cnt@lg}
+{\foreach \colonne in {1,...,\tkz@maxcl}{%
+ \draw[fill=red] (N\colonne\ligne) circle(2pt)%
+ node[above right,red,inner sep=1pt] {\footnotesize N\colonne\ligne};}}%
+\fi
+}% fin de tkzTabInit
+%<--------------------------------------------------------------------------->
+%<--------------------- Ligne de Signes ------------------------------------->
+%<----------------------- tkzTabLine ----------------------------------->
+\newcommand*\stripspaces[1]{%
+ \strip@spaces{#1}}
+\newcommand\strip@spaces{\renewcommand\strip@spaces[1]}%
+\expandafter\strip@spaces{%
+ \@firstofone{\expandafter\strip@lastspace\@firstofone #1\@nil}
+\@nil\@@nil}
+\@ifdefinable\strip@lastspace{%
+ \def\strip@lastspace#1 \@nil#2\@@nil{\strip@nil#1\@nil\@@nil}}
+\@ifdefinable\strip@nil{%
+ \def\strip@nil#1\@nil#2\@@nil{#1}}
+%<--------------------------------------------------------------------------->
+\define@boolkey[TAB]{TL}{help}[true]{}
+\presetkeys[TAB]{TL}{help=false}{}
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTabLine}[2][]{%
+\setkeys[TAB]{TL}{#1}%
+ \setcounter{tkz@cnt@lg}{\thetkz@cnt@line}%
+ \stepcounter{tkz@cnt@line}%
+ \setcounter{tkz@cnt@lgnext}{\thetkz@cnt@line}%
+ \setcounter{tkz@cnt@cl}{1}%
+ \setcounter{tkz@cnt@pair}{1}%
+ \setcounter{tkz@cnt@impair}{1}%
+ \ifTAB@TL@help%
+ \foreach \x in {#2}
+ {%
+ \ifthenelse{\isodd{\value{tkz@cnt@cl}}}{%
+ \path (N\thetkz@cnt@impair\thetkz@cnt@lg) --%
+ node[draw,inner sep =1pt,midway,fill=yellow] {%
+ \footnotesize Z\thetkz@cnt@impair\thetkz@cnt@lg}%
+ (N\thetkz@cnt@impair\thetkz@cnt@lgnext);
+ \stepcounter{tkz@cnt@impair}}{%
+ \path (M\thetkz@cnt@pair\thetkz@cnt@lg)--%
+ node[draw,inner sep =1pt,midway,fill=yellow] {%
+ \footnotesize S\thetkz@cnt@pair\thetkz@cnt@lg}%
+ (M\thetkz@cnt@pair\thetkz@cnt@lgnext);
+ \stepcounter{tkz@cnt@pair}}%
+ \stepcounter{tkz@cnt@cl}%
+ }%
+ \else
+ \ifTAB@tbs@color%
+ \draw(T1\thetkz@cnt@lg) rectangle (T2\thetkz@cnt@line);%
+ \fi
+ \foreach \x in {#2}
+ {%
+ \ifthenelse{\isodd{\value{tkz@cnt@cl}}}{%
+ \path (N\thetkz@cnt@impair\thetkz@cnt@lg) --%
+ coordinate[midway](Z\thetkz@cnt@impair\thetkz@cnt@lg)%
+ (N\thetkz@cnt@impair\thetkz@cnt@lgnext);
+ \ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{z}}{%
+ \draw[line width = \cmdTAB@tbs@lw,t style]%
+ (N\thetkz@cnt@impair\thetkz@cnt@lg) -- %
+ (N\thetkz@cnt@impair\thetkz@cnt@lgnext);
+ \node at (Z\thetkz@cnt@impair\thetkz@cnt@lg){$0$};
+ }{%
+ \ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{}}{%
+ }{%
+ \ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{t}}{%
+ \draw[line width = \cmdTAB@tbs@lw,t style]
+ (N\thetkz@cnt@impair\thetkz@cnt@lg) -- %
+ (N\thetkz@cnt@impair\thetkz@cnt@lgnext);}{%
+ \ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{d}}{%
+ \draw[line width =\cmdTAB@tbs@lw,double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@impair\thetkz@cnt@lg)--%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@impair\thetkz@cnt@lgnext);
+ }{%
+ \path (N\thetkz@cnt@impair\thetkz@cnt@lg)--%
+ (N\thetkz@cnt@impair\thetkz@cnt@lgnext);
+ \node at (Z\thetkz@cnt@impair\thetkz@cnt@lg){$\x$};
+ }%
+ }}}\stepcounter{tkz@cnt@impair}%
+ }{%
+ \path (M\thetkz@cnt@pair\thetkz@cnt@lg)--%
+ coordinate[midway](S\thetkz@cnt@pair\thetkz@cnt@lg)%
+ (M\thetkz@cnt@pair\thetkz@cnt@lgnext);%
+ \ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{h}}{%
+ \setcounter{tkz@cnt@clnext}{\thetkz@cnt@pair}%
+ \stepcounter{tkz@cnt@clnext}%
+ \pgfmathparse{\cmdTAB@TTS@doubledistance/2+\cmdTAB@tbs@lw}
+ \global\let\tkz@deltax\pgfmathresult
+ \fill[h style]([xshift=\tkz@deltax,yshift=-\cmdTAB@tbs@lw/2]%
+ N\thetkz@cnt@pair\thetkz@cnt@lg)
+ rectangle%
+ ([xshift=-\tkz@deltax,yshift=\cmdTAB@tbs@lw/2]%
+ N\thetkz@cnt@clnext\thetkz@cnt@lgnext);
+}{%
+ \node at (S\thetkz@cnt@pair\thetkz@cnt@lg) {$\x$};
+ }%
+ \stepcounter{tkz@cnt@pair}%
+ }%
+ \stepcounter{tkz@cnt@cl}%
+ }% end foreach
+ \fi
+}%
+%<--------------------------------------------------------------------------->
+%<---------------------------- Variations ------------------------------->
+%<--------------------------------------------------------------------------->
+%<----------------------- Macro pour tracer une flèche ---------------------->
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzDrawArrow}{%
+\ifthenelse{\equal{\thetkz@cnt@zone}{0}}{%
+ \setcounter{tkz@cnt@pred}{\thetkz@cnt@cl}
+ \addtocounter{tkz@cnt@pred}{-1}
+ \ifthenelse{\thetkz@cnt@temp>0}{%
+ \addtocounter{tkz@cnt@pred}{-\thetkz@cnt@temp}%
+ \setcounter{tkz@cnt@temp}{0}}{}%
+ \ifTAB@VA@help%
+ \draw[fill=orange] (FR\thetkz@cnt@pred\thetkz@cnt@lg) circle(2pt)%
+ node[right,orange] {\footnotesize FR\thetkz@cnt@pred\thetkz@cnt@lg};
+ \draw[fill=orange] (FL\thetkz@cnt@cl\thetkz@cnt@lg)circle(2pt)%
+ node[left,orange] {\footnotesize FL\thetkz@cnt@cl\thetkz@cnt@lg};
+ \else
+ \draw[arrow style] (FR\thetkz@cnt@pred\thetkz@cnt@lg) to%
+ (FL\thetkz@cnt@cl\thetkz@cnt@lg);%
+ \fi
+ }{%
+ \setcounter{tkz@cnt@zone}{0}%
+ }%
+}%
+%<--------------------------------------------------------------------------->
+\define@boolkey[TAB]{VA}{help}[true]{}
+\define@cmdkey[TAB]{VA}{color}{}
+\presetkeys[TAB]{VA}{color = \tkzTabDefaultWritingColor,
+ help = false}{}
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTabVar}[2][]{%
+\setkeys[TAB]{VA}{#1}%
+\setcounter{tkz@cnt@lg}{\thetkz@cnt@line}%
+\stepcounter{tkz@cnt@line}%
+\setcounter{tkz@cnt@lgnext}{\thetkz@cnt@line}%
+\begin{scope}
+\tikzset{every node/.style={inner sep =3pt}}%
+\setcounter{tkz@cnt@cl}{0}%
+\setcounter{tkz@cnt@aw}{0}%
+\setcounter{tkz@cnt@temp}{0}%
+\setcounter{tkz@cnt@arrow}{0}%
+\pgfmathparse{\cmdTAB@TTS@doubledistance/2+\cmdTAB@tbs@lw}
+\global\let\tkz@deltax\pgfmathresult
+
+\ifTAB@tbs@color%
+ \draw (T1\thetkz@cnt@lg) rectangle (T2\thetkz@cnt@line);%
+\fi%
+%<----------------- Lecture des données et création des nodes --------------->
+\foreach \x/\tl/\tr in {#2}
+{\stepcounter{tkz@cnt@aw}\stepcounter{tkz@cnt@cl}%
+%<------------------------------------------------------------------- D- ---->
+\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{D-}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low right] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};%
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<------------------------------------------------------------------- D+ ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{D+}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high right] (FR\thetkz@cnt@cl\thetkz@cnt@lg)%
+ at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tr\fi};%
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<------------------------------------------------------------------- +D ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+D}}%
+{\draw[double style]%
+ ([yshift=-\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) -- ([yshift=\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};%
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<------------------------------------------------------------------- +C ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+C}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg)--%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);%
+\node[node style,high,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};%
+\node[node style,high,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};%
+\ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<------------------------------------------------------------------ -D ----->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-D}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};%
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<------------------------------------------------------------------ -C ----->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-C}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};%
+ \node[node style,low,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};%
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<------------------------------------------------------------------- + ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+}}%
+{\node[node style,high] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,high] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<---------------------------------------------------------------- +V+ ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+V+}}%
+{\node[node style,high left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,high right] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<--------------------------------------------------------------- -V- ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-V-}}%
+{\node[node style,low left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,low right] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<-------------------------------------------------------------- -V+ ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-V+}}%
+{\node[node style,low left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,high right] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<---------------------------------------------------------------- +V- ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+V-}}%
+{\node[node style,high left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,low right] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<------------------------------------------------------------------- - ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-}}%
+{\node[node style,low] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,low] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<------------------------------------------------------------------ -D+ ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-D+}}%
+{\draw[line width =\cmdTAB@tbs@lw,double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,high right] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<------------------------------------------------------------------ +D- ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+D-}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};%
+ \node[node style,low right] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<----------------------------------------------------------------- -CD+ ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-CD+}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,high right,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<----------------------------------------------------------------- -CD- ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-CD-}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,low right,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<----------------------------------------------------------------- +CD- ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+CD-}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,low right,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}
+%<----------------------------------------------------------------- -DC+ ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-DC+}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) -- %
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low left,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,high,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<----------------------------------------------------------------- +DC- ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+DC-}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) -- %
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high left,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,low,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<----------------------------------------------------------------- -DC- ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-DC-}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) -- %
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low left,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,low,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<----------------------------------------------------------------- +DC+ ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+DC+}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high left,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,high,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<------------------------------------------------------------------ +D+ ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+D+}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) -- %
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high left,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,high right,on double] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<------------------------------------------------------------------ -D- ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-D-}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) -- %
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \node[node style,low right] (FR\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tr\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}%
+}%
+%<------------------------------------------------------------------ R ------>
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{R}}%
+{\stepcounter{tkz@cnt@temp}%
+}%
+%<------------------------------------------------------------------ +DH ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+DH}}%
+{\draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) -- %
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+ \setcounter{tkz@cnt@clnext}{\thetkz@cnt@cl}\stepcounter{tkz@cnt@clnext}
+ \fill[h style]%
+ ([xshift=\tkz@deltax] N\thetkz@cnt@cl\thetkz@cnt@lg)%
+ rectangle%
+ (N\thetkz@cnt@clnext\thetkz@cnt@lgnext);
+\ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}\stepcounter{tkz@cnt@zone}%
+}%
+%<------------------------------------------------------------------ -DH ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-DH}}%
+{\draw[double style]%
+ ([yshift=-\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift=\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low left] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@cl\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \setcounter{tkz@cnt@clnext}{\thetkz@cnt@cl}\stepcounter{tkz@cnt@clnext}%
+ \fill[h style]%
+ ([xshift=\tkz@deltax] N\thetkz@cnt@cl\thetkz@cnt@lg)%
+ rectangle%
+ (N\thetkz@cnt@clnext\thetkz@cnt@lgnext);
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}\stepcounter{tkz@cnt@zone}%
+}%
+%<------------------------------------------------------------------ +CH ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+CH}}%
+{\setcounter{tkz@cnt@clnext}{\thetkz@cnt@cl}\stepcounter{tkz@cnt@clnext}
+\fill[h style]%
+(N\thetkz@cnt@cl\thetkz@cnt@lg)%
+ rectangle%
+ (N\thetkz@cnt@clnext\thetkz@cnt@lgnext);
+ \draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};
+\ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}\stepcounter{tkz@cnt@zone}%
+}%
+%<------------------------------------------------------------------ -CH ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-CH}}%
+{\setcounter{tkz@cnt@clnext}{\thetkz@cnt@cl}\stepcounter{tkz@cnt@clnext}%
+ \fill[h style]%
+ ([xshift=\tkz@deltax] N\thetkz@cnt@cl\thetkz@cnt@lg)%
+ rectangle%
+ (N\thetkz@cnt@clnext\thetkz@cnt@lgnext);
+ \draw[double style]%
+ ([yshift = -\cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lg) --%
+ ([yshift = \cmdTAB@tbs@lw/2] N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low,on double](FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+ \ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}\stepcounter{tkz@cnt@zone}%
+}%
+%<------------------------------------------------------------------ +H ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{+H}}%
+{\setcounter{tkz@cnt@clnext}{\thetkz@cnt@cl}\stepcounter{tkz@cnt@clnext}
+ \fill[h style]%
+ (N\thetkz@cnt@cl\thetkz@cnt@lg)%
+ rectangle %
+ (N\thetkz@cnt@clnext\thetkz@cnt@lgnext);
+ \draw[]%
+ (N\thetkz@cnt@cl\thetkz@cnt@lg) -- (N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,high,on double] (FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lg){\ifTAB@VA@help\else\tl\fi};%
+\ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}\stepcounter{tkz@cnt@zone}%
+}%
+%<------------------------------------------------------------------ -H ---->
+{\ifthenelse{\equal{\expandafter\stripspaces\expandafter{\x}}{-H}}%
+{\setcounter{tkz@cnt@clnext}{\thetkz@cnt@cl}\stepcounter{tkz@cnt@clnext}
+ \fill[h style]%
+ (N\thetkz@cnt@cl\thetkz@cnt@lg)%
+ rectangle %
+ (N\thetkz@cnt@clnext\thetkz@cnt@lgnext);
+ \draw[]%
+ (N\thetkz@cnt@cl\thetkz@cnt@lg) -- (N\thetkz@cnt@cl\thetkz@cnt@lgnext);
+ \node[node style,low,on double](FL\thetkz@cnt@cl\thetkz@cnt@lg) at (N\thetkz@cnt@aw\thetkz@cnt@lgnext){\ifTAB@VA@help\else\tl\fi};
+\ifthenelse{\equal{\thetkz@cnt@arrow}{0}}{}{\tkzDrawArrow}\stepcounter{tkz@cnt@zone}%
+}{}% non prévu
+}}}}}}}}}}}}}}}}}}}}}}}}}}}}}%
+\stepcounter{tkz@cnt@arrow}}% end de la boucle
+%<-------------------------------------------------- Tracé des flèches ------>
+\end{scope}%
+}% fin de la macro variation
+%<--------------------------------------------------------------------------->
+%<------------------------- Valeur Intermédiaire ---------------------------->
+%<--------------------------------------------------------------------------->
+\define@boolkey[TAB] {VI} {draw}[true]{}
+\define@cmdkey [TAB] {VI} {remember}{}
+\presetkeys [TAB] {VI} {draw = false,
+ remember= lastval}{}
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTabVal}[6][]{%
+\setkeys[TAB]{VI}{#1}%
+\setcounter{tkz@cnt@lg}{\thetkz@cnt@line}%
+\addtocounter{tkz@cnt@lg}{-1}%
+\pgfextractx{\tkz@XF}{\pgfpointanchor{L#2}{center}}
+\pgfextracty{\tkz@YF}{\pgfpointanchor{L#2}{center}}
+\pgfmathparse{\cmdTAB@tbs@espcl * (#4)*(#3-#2)}%
+\global\let\tkz@tab@dx\pgfmathresult
+\node[inner sep = 0pt,fondL] (ANT) at (\tkz@XF + \tkz@tab@dx cm,\tkz@YF) {#5};
+\path coordinate (ANTa) at ([xshift=\tkz@tab@dx cm]N#21);
+\path coordinate (ANTb) at ([xshift=\tkz@tab@dx cm]N#2\thetkz@cnt@line);
+\path (intersection cs:%
+ first line = {(FR#2\thetkz@cnt@lg)--(FL#3\thetkz@cnt@lg)},%
+ second line = {(ANTa)--(ANTb)}) node[node style,fondT](VAL){#6};
+\path coordinate (\cmdTAB@VI@remember) at (VAL);
+\ifTAB@VI@draw%
+ \draw[from style] (ANTa.center) to (VAL);
+\fi
+}%
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\define@boolkey[TAB] {IM} {draw}[true]{}
+\define@cmdkey [TAB] {IM} {remember}{}
+\presetkeys [TAB] {IM} {draw = false,
+ remember= lastval}{}
+\newcommand*{\tkzTabIma}[5][]{%
+\setkeys[TAB]{IM}{#1}%
+\setcounter{tkz@cnt@lg}{\thetkz@cnt@line}%
+\addtocounter{tkz@cnt@lg}{-1}%
+\setcounter{tkz@cnt@lgnext}{\thetkz@cnt@line}%
+\path (intersection cs:
+ first line = {(FR#2\thetkz@cnt@lg)--(FL#3\thetkz@cnt@lg)},%
+ second line = {(N#4\thetkz@cnt@lg) --(N#4\thetkz@cnt@lgnext)}) node[node style,fondT](IMA){#5};
+ \path coordinate (\cmdTAB@IM@remember) at (IMA);
+\ifTAB@IM@draw%
+ \draw[from style] (N#41) to (IMA);
+\fi
+}%
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTabImaFrom}[5][]{%
+\setkeys[TAB]{IM}{#1}%
+\setcounter{tkz@cnt@lg}{\thetkz@cnt@line}%
+\addtocounter{tkz@cnt@lg}{-1}%
+\path (intersection cs:%
+ first line = {(FR#2\thetkz@cnt@lg)--(FL#3\thetkz@cnt@lg)},%
+ second line={(#4)--([yshift=-0.5 cm]#4)}) node[node style,fondT](IMA){#5};
+ \path coordinate (\cmdTAB@IM@remember) at (IMA);
+\ifTAB@IM@draw
+ \draw[from style] (#4) to (IMA);
+\fi
+}%
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+%<---------------------- tangente horizontale ----------------------------->
+% args 1--> options ;
+% 2--> tkz@cnt@cl debut fl ;
+% 3--> tkz@cnt@clnext fin de fl ;%
+% 4---> n°de val ;
+% 5----> image
+\define@cmdkey [TAB] {TA} {pos}[below]{}
+\define@cmdkey [TAB] {TA} {color}{}
+\define@boolkey[TAB] {TA} {draw}[true]{}
+\define@cmdkey [TAB] {TA} {remember}{}
+\presetkeys [TAB] {TA} {draw = false,
+ color = \tkzTabDefaultWritingColor,
+ pos = above,
+ remember = lastval}{}
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTabTan}[5][]{%
+\setkeys[TAB]{TA}{#1}%
+\setcounter{tkz@cnt@lg}{\thetkz@cnt@line}%
+\addtocounter{tkz@cnt@lg}{-1}%
+\setcounter{tkz@cnt@lgnext}{\thetkz@cnt@line}%
+\path (intersection cs:
+ first line = {(FR#2\thetkz@cnt@lg)--(FL#3\thetkz@cnt@lg)},%
+ second line = {(N#4\thetkz@cnt@lg) --(N#4\thetkz@cnt@lgnext)}) coordinate(tgt);
+\draw[fill,color=\cmdTAB@TA@color] (tgt) circle (1pt);
+\node[\cmdTAB@TA@pos =1pt] at (tgt) {#5};
+\path coordinate (\cmdTAB@TA@remember) at (tgt);
+\draw[tan style] (tgt) -- ++(.75,0);
+\draw[tan style] (tgt) -- ++(-.75,0);
+\ifTAB@TA@draw \draw[from style] (N#41) to (tgt); \fi
+}%
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTabTanFrom}[5][]{%
+\setkeys[TAB]{TA}{#1}%
+ \setcounter{tkz@cnt@lg}{\thetkz@cnt@line}%
+ \addtocounter{tkz@cnt@lg}{-1}%
+ \setcounter{tkz@cnt@lgnext}{\thetkz@cnt@line}%
+ \path (intersection cs:
+ first line = {(FR#2\thetkz@cnt@lg)--(FR#3\thetkz@cnt@lg)},%
+ second line = {(#4) --([yshift=-0.5 cm]#4)}) coordinate(tgt);
+ \draw[fill,color=\cmdTAB@TA@color] (tgt) circle (1pt);
+ \node[\cmdTAB@TA@pos = 1pt] at (tgt) {#5};
+ \path coordinate (\cmdTAB@TA@remember) at (tgt);
+ \draw[arrow style] (tgt) -- ++(.75,0);
+ \draw[arrow style] (tgt) -- ++(-.75,0);
+ \ifTAB@TA@draw \draw[from style] (#4) -- (tgt); \fi
+}%
+%<--------------------------------------------------------------------------->
+%<---------------------- dérivée droite gauche ------------------------------>
+\newcommand*{\tkzTabSlope}[1]{%
+\foreach \x/\y/\z in {#1}{%
+ \node[left = 3pt] at (Z\x 1) {\scriptsize $\y$};
+ \node[right = 3pt] at (Z\x 1) {\scriptsize $\z$};
+ }%
+}
+%<--------------------------------------------------------------------------->
+%<--------------------------------------------------------------------------->
+\newcommand*{\tkzTab}[5][]{%
+ \tkzTabInit[#1]{#2}{#3}%
+ \tkzTabLine{#4}%
+ \tkzTabVar{#5}%
+}
+%<-------------------------------The End ------------------------------------>
+\endinput
+
diff --git a/obsolete/macros/latex/contrib/tkz/tkz-tab/readme-us.txt b/obsolete/macros/latex/contrib/tkz/tkz-tab/readme-us.txt
new file mode 100644
index 0000000000..43f477355f
--- /dev/null
+++ b/obsolete/macros/latex/contrib/tkz/tkz-tab/readme-us.txt
@@ -0,0 +1,73 @@
+% utf8
+% version 1.4e 19/01/2019
+
+A. Purpose
+
+The 'tkz-tab' package is built on top of PGF and its associated front-end,
+ TikZ and is a (La)TeX-friendly drawing package. The aim is to provide some
+ useful macros to build tables showing variations of functions as they are
+ used in France.
+These macros may be used by only LaTeX TeX users. The documentation is in
+ French.
+
+B. Features
+ -- works with utf8 and pdflatex
+ -- provides 'help' option,
+ -- allows to draw tables of variations with a "forbidden zone",
+ -- allows to use TikZ.
+
+C. Licence
+
+You may freely use and distribute this package under the terms of lppl and/or gpl.
+
+Read file TKZdoc-tab.pdf.pdf in the doc directory, for the complete
+ documentation
+
+D. Contents of the folder (encoding utf8)
+
+ -- README (this file)
+ -- inputs: tkz-tab.sty
+ -- doc: TKZdoc-tab.pdf,
+ tkz-doc.cls,
+ tkzexample.sty,
+ doctab.ist,
+ TKZdoc-tab-adapt.tex
+ TKZdoc-tab-examples.tex,
+ TKZdoc-tab-images.tex,
+ TKZdoc-tab-init.tex,
+ TKZdoc-tab-install.tex,
+ TKZdoc-tab-main.tex
+ TKZdoc-tab-sign.tex,
+ TKZdoc-tab-slope.tex,
+ TKZdoc-tab-tangente.tex,
+ TKZdoc-tab-tv.tex,
+ TKZdoc-tab-valeurs.tex,
+ TKZdoc-tab-variation.tex
+ var-latin1.tex ( example with latin1)
+ var-latin1.pdf
+ sign-latin1.tex( example with latin1)
+ sign-latin1.pdf
+
+tkz-doc.cls is a class (beta version) to make the documentation. You need also
+ the tkzexample.sty package (beta version) and KOMA-Script 2009/01/24 v3.02b to compile the documentation.
+
+E. Installation
+
+If you need to install it by yourself, a TDS compliant zip archive is
+provided (tkz-tab.zip). Just download that file, and unpack it in
+your TDS directory (~/texmf for Unix-like systems). If you only need to use
+ 'tkz-tab.sty' then you have to copy 'tkz-tab.sty' into '~/texmf/tex/latex'.
+ If you want also to compile the documentation then you need to copy tkz-doc.cls and tkzexample.sty in the same folder and you need to use pdf(e)tex.
+
+With MiKTeX, copy folder 'tkz-tab.sty' into 'C:\texmf\tex\latex', then
+run 'MiKTeX Options'. In the 'File name database' section, click on
+'Refresh now'.
+
+F. The author of the 'tkz-tab.sty' package is Alain Matthes.
+--
+ Alain Matthes
+ 5 rue de Valence
+ Paris 75005
+
+ al (dot) ma (at) mac (dot) com
+