summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/aiaa/pre2004/demos/talk/smptalk.tex
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex/contrib/aiaa/pre2004/demos/talk/smptalk.tex')
-rw-r--r--macros/latex/contrib/aiaa/pre2004/demos/talk/smptalk.tex296
1 files changed, 296 insertions, 0 deletions
diff --git a/macros/latex/contrib/aiaa/pre2004/demos/talk/smptalk.tex b/macros/latex/contrib/aiaa/pre2004/demos/talk/smptalk.tex
new file mode 100644
index 0000000000..4dba1b85ff
--- /dev/null
+++ b/macros/latex/contrib/aiaa/pre2004/demos/talk/smptalk.tex
@@ -0,0 +1,296 @@
+%
+% 'smptalk.tex' sample slide presentation - courtesy of karen bibb
+%
+% typical (unix) processing sequence for postscript printer:
+%
+% latex smptalk - create dvi file
+% xdvi -paper usr smptalk - preview dvi file
+% dvips -t landscape smptalk - transform dvi file to postscript
+% ghostview -landscape -swap smptalk.ps - check postscript output
+% lpr smptalk.ps - print postscript file
+
+\documentclass[landscape]{slides}
+
+% load custom command definitions and other default settings:
+\usepackage{smptalk}
+
+% un-comment for ``page'' numbers:
+%\pagestyle{plain}
+
+% un-comment for processing only a select few slides or notes:
+%\onlyslides{1-2,5,10-999}
+%\onlynotes{1-2,12}
+% or, for interactive prompting, un-comment the following:
+%\typein[\slides]{Which slides to do?}
+%\onlyslides{\slides}
+%\onlynotes{\slides}
+
+\begin{document}
+
+\begin{slide}\typeout{Title:}
+ \begin{center}
+ {\Large\bf Hypersonic Flow Computations On Unstructured Meshes}
+
+ {\large\bf AIAA 97--0625}
+
+ \begin{tabular}{cc}
+ K. L. Bibb & J. Peraire \\[.1in]
+ \it NASA Langley Research & \it Massachusetts Institute \\
+ \it Center & \it of Technology \\
+ \it Hampton, Virginia & \it Cambridge, Massachusetts
+ \end{tabular}
+
+ C. J. Riley \\[.1in]
+ \it NASA Langley Research Center \\
+ Hampton, Virginia
+ \end{center}
+\end{slide}
+
+\begin{note}
+ \begin{describe}[1.5in]
+ \item [Session] Applied Computational Aero
+ \item [Time] wed afternoon
+ \item [Mention] colleagues
+ \begin{items}
+ \item Ram Prabhu for running codes
+ \item Bill Scallion \& Matt Rhode for UPWT data
+ \end{items}
+ \end{describe}
+\end{note}
+
+\begin{slide}\typeout{Background:}
+ \title{Background}
+ \begin{items}
+ \item Rapid, accurate aerodynamic screening capability is
+ needed:
+ \begin{items}
+ \item aerodynamic performance coefficients
+ \item pressure loads for preliminary structural analysis
+ \item general flow features, for example, shock location
+ \end{items}
+ \item Unstructured grids offer flexible and rapid grid generation
+ \item Historically, unstructured Euler schemes
+ are not robust hypersonically
+ \end{items}
+\end{slide}
+
+\begin{slide}\typeout{Outline:}
+ \title{Outline}
+ \leftmargin 3in
+ \begin{items}
+ \item Computational algorithm
+ \item Comparisons to other codes\\
+ and experiment
+ \item Use as a screening tool
+ \item Concluding remarks
+ \end{items}
+\end{slide}
+
+\begin{note}
+ \begin{items}
+ \item details are in the paper for the algorithm
+ \item screening tools are talked about throughout
+ \end{items}
+\end{note}
+
+\begin{slide}\typeout{Flow solver (overview):}
+ \title{FELISA System}
+ \begin{items}
+ \item Unstructured mesh generation
+ \item `Standard' Euler flow solver,
+ for subsonic $\Rightarrow$ low supersonic
+ \item Hypersonic Euler flow solver, FELISA\_HYP
+ \begin{items}
+ \item perfect gas
+ \item equilibrium air
+ \item CF$_4$
+ \end{items}
+ \item Parallel versions of flow solvers
+ \end{items}
+\end{slide}
+
+\begin{note}
+ \begin{items}
+ \item for parallel: work on IBM sP2, J90, workstation clusters.
+ \item not used for the calculations in the paper
+ \end{items}
+\end{note}
+
+\begin{slide}\typeout{Flow solver (FELISA):}
+
+ \title{Unstructured Inviscid\\ Hypersonic Flow Solver\\ (FELISA\_HYP)}
+ \leftmargin 3in
+ \begin{items}
+ \item Euler equations
+ \item Finite volume formulation
+ \item Edge data structure
+ \item H\"{a}nel flux vector splitting
+ \item MUSCL reconstruction
+ \item Explicit time stepping
+ \end{items}
+\end{slide}
+
+\begin{note}
+ \title{Time Stepping}
+ \leftmargin 2.5in
+ \begin{items}
+ \item check to ensure monotonicity
+ \item eliminate limit cycle behavior
+ \end{items}
+\end{note}
+
+\begin{slide}\typeout{Edge Data Structure:}
+ \title{Edge Data Structure}
+ \begin{center}
+ \begin{minipage}{.45\linewidth}
+ \incfig[\linewidth]{smpfig}
+ \end{minipage}
+ \hspace{0.05\linewidth}
+ \begin{minipage}{.45\linewidth}
+ \begin{items}
+ \item control volumes are tetrahedra surrounding each node
+ \item fluxes computed across outer faces of control volume
+ \item flux computations grouped by edge
+ \end{items}
+ \end{minipage}
+ \end{center}
+\end{slide}
+
+\begin{note}
+ \title{Old Edge Data Structure notes\ldots}
+ \leftmargin 2in
+ \begin{items}
+ \item edge il is used in all of the figures\ldots\
+ \end{items}
+ \leftmargin 0in
+ \begin{tabular}{p{.45\linewidth}p{.45\linewidth}}
+ \begin{items}
+ \item fluxes computed across faces of tetrahedra
+ \item control volume is tetrahedra
+ \item nodal info for cells is stored
+ \end{items}&
+ \begin{items}
+ \item fluxes computed across $S^e$ for all edges of node~$i$
+ \item control volume surrounds node
+ \item weights for $S^e$ stored
+ \end{items}
+ \end{tabular}
+\end{note}
+
+\begin{slide}
+ \typeout{Flux vector splitting:}
+ \title{H\"anel Flux Vector Splitting}
+ \begin{items}
+ \item Upwind formulation; allows for stable computations
+ across strong shocks
+ \item No 'free' parameters are required
+ \item Allows for constant enthalpy solution where solution is
+ fully converged
+ \end{items}
+\end{slide}
+
+\begin{slide}\typeout{Reconstruction:}
+ \title{Gradient Reconstruction}
+ \incfig[.8\linewidth]{smpfig}
+\end{slide}
+
+\begin{note}
+ \title{Gradient Reconstruction notes}
+ \begin{items}
+ \item compare to structured grid gradient calculation\\
+ \item edge il is used in all of the figures...\\
+ \item MUSCL reconstruction
+ (Monotone Upwind Scheme Conservation Law)
+ \end{items}
+\end{note}
+
+\begin{slide}\typeout{NASA's use of FELISA:}
+ \title{Recent Applications of the FELISA System}
+ \leftmargin 1in
+ \begin{items}
+ \item Lockheed-Martin RLV/X-33 Phase I; aerodynamics
+ \item Lockheed-Martin RLV/X-33 Phase II;
+ Ascent shock interaction study; transonic aerodynamic screening
+ \item McDonnell Douglas Phase I RLV/X-33;
+ control surface loading (NASA CR 201606)
+ and aerodynamics\\
+ (subsonic $\Rightarrow$ hypersonic)
+ \item OSC X-34, transonic screening, control surface loading
+ \end{items}
+\end{slide}
+
+\begin{slide}\typeout{X-33 body:}
+ \title{Code to Code Comparisons for\\
+ Preliminary Lockheed--Martin X-33 Vehicle}
+ \begin{items}
+ \item Codes:\\
+ -- FELISA\_HYP: inviscid, unstructured mesh\\
+ -- LAURA: viscous, structured grid\\
+ -- DPLUR: inviscid, structured grid, parallel
+ \item Flow feature, surface pressure comparisons:\\
+ -- $M_\infty = 9.8$, $\alpha = 40^{\circ}$
+ \item Aerodynamic force and moment comparisons:\\
+ -- $M_\infty = 4.5$, experimental data from LaRC UPWT
+ \end{items}
+\end{slide}
+
+\begin{slide}
+ \title{X33 Configuration}
+ \begin{center}
+ \begin{tabular}{cc}
+ \incfig[.45\linewidth]{smpfig}&
+ \incfig[.45\linewidth]{smpfig}
+ \end{tabular}
+ \end{center}
+\end{slide}
+
+\begin{note}
+ \title{Code to Code Comparisons for
+ Preliminary Lockheed--Martin X-33 Vehicle}
+ \leftmargin 3in
+ \begin{items}
+ \item mention code authors
+ \end{items}
+\end{note}
+
+\begin{slide}\typeout{How has FELISAHYP been used?}
+ \title{Grid Generation Time Comparisons}
+ \begin{items}
+ \item Initial geometry definition, surface and volume mesh generation
+ for an X-33 configuration, first~time~$\|$ most~recent:
+ \begin{items}
+ \item FELISA: 1.5 weeks $\|$ 4 days
+ \item structured: 6 weeks $\|$ 3.5 weeks
+ \end{items}
+ \item Case-specific grid generation:
+ bow shock spacing: time consuming for FELISA, 1-2 days
+ control surface deflections:
+ \begin{items}
+ \item $1/2$ day for unstructured
+ \item $1/2$ week for LAURA
+ \end{items}
+ \end{items}
+\end{slide}
+
+\begin{note}
+ \title{Grid Generation Time Comparisons}
+ \begin{describe}[.9in]
+ \item[felisa] put together surfaces, intersection curves, topology
+ \item[laura] build surface on cad
+ \end{describe}
+\end{note}
+
+\begin{slide}\typeout{Concluding Remarks:}
+ \title{Concluding Remarks}
+ \begin{items}
+ \item FELISA\_HYP flow solver developed\\
+ \item Applied FELISA System with FELISA\_HYP to complex \\configurations
+ \begin{items}
+ \item Comparable accuracy to structured grid solvers
+ \item Faster turn--around time than structured grid methods
+ \end{items}
+ \item Significant impact on major NASA programs
+ \end{items}
+\end{slide}
+
+\end{document}