diff options
Diffstat (limited to 'graphics/asymptote/LspCpp/third_party/uri/deps/docs/primer.md')
-rw-r--r-- | graphics/asymptote/LspCpp/third_party/uri/deps/docs/primer.md | 482 |
1 files changed, 482 insertions, 0 deletions
diff --git a/graphics/asymptote/LspCpp/third_party/uri/deps/docs/primer.md b/graphics/asymptote/LspCpp/third_party/uri/deps/docs/primer.md new file mode 100644 index 0000000000..f6318a5dbe --- /dev/null +++ b/graphics/asymptote/LspCpp/third_party/uri/deps/docs/primer.md @@ -0,0 +1,482 @@ +# Googletest Primer + +## Introduction: Why googletest? + +*googletest* helps you write better C++ tests. + +googletest is a testing framework developed by the Testing Technology team with +Google's specific requirements and constraints in mind. Whether you work on +Linux, Windows, or a Mac, if you write C++ code, googletest can help you. And it +supports *any* kind of tests, not just unit tests. + +So what makes a good test, and how does googletest fit in? We believe: + +1. Tests should be *independent* and *repeatable*. It's a pain to debug a test + that succeeds or fails as a result of other tests. googletest isolates the + tests by running each of them on a different object. When a test fails, + googletest allows you to run it in isolation for quick debugging. +2. Tests should be well *organized* and reflect the structure of the tested + code. googletest groups related tests into test suites that can share data + and subroutines. This common pattern is easy to recognize and makes tests + easy to maintain. Such consistency is especially helpful when people switch + projects and start to work on a new code base. +3. Tests should be *portable* and *reusable*. Google has a lot of code that is + platform-neutral; its tests should also be platform-neutral. googletest + works on different OSes, with different compilers, with or without + exceptions, so googletest tests can work with a variety of configurations. +4. When tests fail, they should provide as much *information* about the problem + as possible. googletest doesn't stop at the first test failure. Instead, it + only stops the current test and continues with the next. You can also set up + tests that report non-fatal failures after which the current test continues. + Thus, you can detect and fix multiple bugs in a single run-edit-compile + cycle. +5. The testing framework should liberate test writers from housekeeping chores + and let them focus on the test *content*. googletest automatically keeps + track of all tests defined, and doesn't require the user to enumerate them + in order to run them. +6. Tests should be *fast*. With googletest, you can reuse shared resources + across tests and pay for the set-up/tear-down only once, without making + tests depend on each other. + +Since googletest is based on the popular xUnit architecture, you'll feel right +at home if you've used JUnit or PyUnit before. If not, it will take you about 10 +minutes to learn the basics and get started. So let's go! + +## Beware of the nomenclature + +{: .callout .note} +_Note:_ There might be some confusion arising from different definitions of the +terms _Test_, _Test Case_ and _Test Suite_, so beware of misunderstanding these. + +Historically, googletest started to use the term _Test Case_ for grouping +related tests, whereas current publications, including International Software +Testing Qualifications Board ([ISTQB](http://www.istqb.org/)) materials and +various textbooks on software quality, use the term +_[Test Suite][istqb test suite]_ for this. + +The related term _Test_, as it is used in googletest, corresponds to the term +_[Test Case][istqb test case]_ of ISTQB and others. + +The term _Test_ is commonly of broad enough sense, including ISTQB's definition +of _Test Case_, so it's not much of a problem here. But the term _Test Case_ as +was used in Google Test is of contradictory sense and thus confusing. + +googletest recently started replacing the term _Test Case_ with _Test Suite_. +The preferred API is *TestSuite*. The older TestCase API is being slowly +deprecated and refactored away. + +So please be aware of the different definitions of the terms: + + +Meaning | googletest Term | [ISTQB](http://www.istqb.org/) Term +:----------------------------------------------------------------------------------- | :---------------------- | :---------------------------------- +Exercise a particular program path with specific input values and verify the results | [TEST()](#simple-tests) | [Test Case][istqb test case] + + +[istqb test case]: http://glossary.istqb.org/en/search/test%20case +[istqb test suite]: http://glossary.istqb.org/en/search/test%20suite + +## Basic Concepts + +When using googletest, you start by writing *assertions*, which are statements +that check whether a condition is true. An assertion's result can be *success*, +*nonfatal failure*, or *fatal failure*. If a fatal failure occurs, it aborts the +current function; otherwise the program continues normally. + +*Tests* use assertions to verify the tested code's behavior. If a test crashes +or has a failed assertion, then it *fails*; otherwise it *succeeds*. + +A *test suite* contains one or many tests. You should group your tests into test +suites that reflect the structure of the tested code. When multiple tests in a +test suite need to share common objects and subroutines, you can put them into a +*test fixture* class. + +A *test program* can contain multiple test suites. + +We'll now explain how to write a test program, starting at the individual +assertion level and building up to tests and test suites. + +## Assertions + +googletest assertions are macros that resemble function calls. You test a class +or function by making assertions about its behavior. When an assertion fails, +googletest prints the assertion's source file and line number location, along +with a failure message. You may also supply a custom failure message which will +be appended to googletest's message. + +The assertions come in pairs that test the same thing but have different effects +on the current function. `ASSERT_*` versions generate fatal failures when they +fail, and **abort the current function**. `EXPECT_*` versions generate nonfatal +failures, which don't abort the current function. Usually `EXPECT_*` are +preferred, as they allow more than one failure to be reported in a test. +However, you should use `ASSERT_*` if it doesn't make sense to continue when the +assertion in question fails. + +Since a failed `ASSERT_*` returns from the current function immediately, +possibly skipping clean-up code that comes after it, it may cause a space leak. +Depending on the nature of the leak, it may or may not be worth fixing - so keep +this in mind if you get a heap checker error in addition to assertion errors. + +To provide a custom failure message, simply stream it into the macro using the +`<<` operator or a sequence of such operators. See the following example, using +the [`ASSERT_EQ` and `EXPECT_EQ`](reference/assertions.md#EXPECT_EQ) macros to +verify value equality: + +```c++ +ASSERT_EQ(x.size(), y.size()) << "Vectors x and y are of unequal length"; + +for (int i = 0; i < x.size(); ++i) { + EXPECT_EQ(x[i], y[i]) << "Vectors x and y differ at index " << i; +} +``` + +Anything that can be streamed to an `ostream` can be streamed to an assertion +macro--in particular, C strings and `string` objects. If a wide string +(`wchar_t*`, `TCHAR*` in `UNICODE` mode on Windows, or `std::wstring`) is +streamed to an assertion, it will be translated to UTF-8 when printed. + +GoogleTest provides a collection of assertions for verifying the behavior of +your code in various ways. You can check Boolean conditions, compare values +based on relational operators, verify string values, floating-point values, and +much more. There are even assertions that enable you to verify more complex +states by providing custom predicates. For the complete list of assertions +provided by GoogleTest, see the [Assertions Reference](reference/assertions.md). + +## Simple Tests + +To create a test: + +1. Use the `TEST()` macro to define and name a test function. These are + ordinary C++ functions that don't return a value. +2. In this function, along with any valid C++ statements you want to include, + use the various googletest assertions to check values. +3. The test's result is determined by the assertions; if any assertion in the + test fails (either fatally or non-fatally), or if the test crashes, the + entire test fails. Otherwise, it succeeds. + +```c++ +TEST(TestSuiteName, TestName) { + ... test body ... +} +``` + +`TEST()` arguments go from general to specific. The *first* argument is the name +of the test suite, and the *second* argument is the test's name within the test +suite. Both names must be valid C++ identifiers, and they should not contain any +underscores (`_`). A test's *full name* consists of its containing test suite +and its individual name. Tests from different test suites can have the same +individual name. + +For example, let's take a simple integer function: + +```c++ +int Factorial(int n); // Returns the factorial of n +``` + +A test suite for this function might look like: + +```c++ +// Tests factorial of 0. +TEST(FactorialTest, HandlesZeroInput) { + EXPECT_EQ(Factorial(0), 1); +} + +// Tests factorial of positive numbers. +TEST(FactorialTest, HandlesPositiveInput) { + EXPECT_EQ(Factorial(1), 1); + EXPECT_EQ(Factorial(2), 2); + EXPECT_EQ(Factorial(3), 6); + EXPECT_EQ(Factorial(8), 40320); +} +``` + +googletest groups the test results by test suites, so logically related tests +should be in the same test suite; in other words, the first argument to their +`TEST()` should be the same. In the above example, we have two tests, +`HandlesZeroInput` and `HandlesPositiveInput`, that belong to the same test +suite `FactorialTest`. + +When naming your test suites and tests, you should follow the same convention as +for +[naming functions and classes](https://google.github.io/styleguide/cppguide.html#Function_Names). + +**Availability**: Linux, Windows, Mac. + +## Test Fixtures: Using the Same Data Configuration for Multiple Tests {#same-data-multiple-tests} + +If you find yourself writing two or more tests that operate on similar data, you +can use a *test fixture*. This allows you to reuse the same configuration of +objects for several different tests. + +To create a fixture: + +1. Derive a class from `::testing::Test` . Start its body with `protected:`, as + we'll want to access fixture members from sub-classes. +2. Inside the class, declare any objects you plan to use. +3. If necessary, write a default constructor or `SetUp()` function to prepare + the objects for each test. A common mistake is to spell `SetUp()` as + **`Setup()`** with a small `u` - Use `override` in C++11 to make sure you + spelled it correctly. +4. If necessary, write a destructor or `TearDown()` function to release any + resources you allocated in `SetUp()` . To learn when you should use the + constructor/destructor and when you should use `SetUp()/TearDown()`, read + the [FAQ](faq.md#CtorVsSetUp). +5. If needed, define subroutines for your tests to share. + +When using a fixture, use `TEST_F()` instead of `TEST()` as it allows you to +access objects and subroutines in the test fixture: + +```c++ +TEST_F(TestFixtureName, TestName) { + ... test body ... +} +``` + +Like `TEST()`, the first argument is the test suite name, but for `TEST_F()` +this must be the name of the test fixture class. You've probably guessed: `_F` +is for fixture. + +Unfortunately, the C++ macro system does not allow us to create a single macro +that can handle both types of tests. Using the wrong macro causes a compiler +error. + +Also, you must first define a test fixture class before using it in a +`TEST_F()`, or you'll get the compiler error "`virtual outside class +declaration`". + +For each test defined with `TEST_F()`, googletest will create a *fresh* test +fixture at runtime, immediately initialize it via `SetUp()`, run the test, clean +up by calling `TearDown()`, and then delete the test fixture. Note that +different tests in the same test suite have different test fixture objects, and +googletest always deletes a test fixture before it creates the next one. +googletest does **not** reuse the same test fixture for multiple tests. Any +changes one test makes to the fixture do not affect other tests. + +As an example, let's write tests for a FIFO queue class named `Queue`, which has +the following interface: + +```c++ +template <typename E> // E is the element type. +class Queue { + public: + Queue(); + void Enqueue(const E& element); + E* Dequeue(); // Returns NULL if the queue is empty. + size_t size() const; + ... +}; +``` + +First, define a fixture class. By convention, you should give it the name +`FooTest` where `Foo` is the class being tested. + +```c++ +class QueueTest : public ::testing::Test { + protected: + void SetUp() override { + q0_.Enqueue(1); + q1_.Enqueue(2); + q2_.Enqueue(3); + } + + // void TearDown() override {} + + Queue<int> q0_; + Queue<int> q1_; + Queue<int> q2_; +}; +``` + +In this case, `TearDown()` is not needed since we don't have to clean up after +each test, other than what's already done by the destructor. + +Now we'll write tests using `TEST_F()` and this fixture. + +```c++ +TEST_F(QueueTest, IsEmptyInitially) { + EXPECT_EQ(q0_.size(), 0); +} + +TEST_F(QueueTest, DequeueWorks) { + int* n = q0_.Dequeue(); + EXPECT_EQ(n, nullptr); + + n = q1_.Dequeue(); + ASSERT_NE(n, nullptr); + EXPECT_EQ(*n, 1); + EXPECT_EQ(q1_.size(), 0); + delete n; + + n = q2_.Dequeue(); + ASSERT_NE(n, nullptr); + EXPECT_EQ(*n, 2); + EXPECT_EQ(q2_.size(), 1); + delete n; +} +``` + +The above uses both `ASSERT_*` and `EXPECT_*` assertions. The rule of thumb is +to use `EXPECT_*` when you want the test to continue to reveal more errors after +the assertion failure, and use `ASSERT_*` when continuing after failure doesn't +make sense. For example, the second assertion in the `Dequeue` test is +`ASSERT_NE(n, nullptr)`, as we need to dereference the pointer `n` later, which +would lead to a segfault when `n` is `NULL`. + +When these tests run, the following happens: + +1. googletest constructs a `QueueTest` object (let's call it `t1`). +2. `t1.SetUp()` initializes `t1`. +3. The first test (`IsEmptyInitially`) runs on `t1`. +4. `t1.TearDown()` cleans up after the test finishes. +5. `t1` is destructed. +6. The above steps are repeated on another `QueueTest` object, this time + running the `DequeueWorks` test. + +**Availability**: Linux, Windows, Mac. + +## Invoking the Tests + +`TEST()` and `TEST_F()` implicitly register their tests with googletest. So, +unlike with many other C++ testing frameworks, you don't have to re-list all +your defined tests in order to run them. + +After defining your tests, you can run them with `RUN_ALL_TESTS()`, which +returns `0` if all the tests are successful, or `1` otherwise. Note that +`RUN_ALL_TESTS()` runs *all tests* in your link unit--they can be from different +test suites, or even different source files. + +When invoked, the `RUN_ALL_TESTS()` macro: + +* Saves the state of all googletest flags. + +* Creates a test fixture object for the first test. + +* Initializes it via `SetUp()`. + +* Runs the test on the fixture object. + +* Cleans up the fixture via `TearDown()`. + +* Deletes the fixture. + +* Restores the state of all googletest flags. + +* Repeats the above steps for the next test, until all tests have run. + +If a fatal failure happens the subsequent steps will be skipped. + +{: .callout .important} +> IMPORTANT: You must **not** ignore the return value of `RUN_ALL_TESTS()`, or +> you will get a compiler error. The rationale for this design is that the +> automated testing service determines whether a test has passed based on its +> exit code, not on its stdout/stderr output; thus your `main()` function must +> return the value of `RUN_ALL_TESTS()`. +> +> Also, you should call `RUN_ALL_TESTS()` only **once**. Calling it more than +> once conflicts with some advanced googletest features (e.g., thread-safe +> [death tests](advanced.md#death-tests)) and thus is not supported. + +**Availability**: Linux, Windows, Mac. + +## Writing the main() Function + +Most users should _not_ need to write their own `main` function and instead link +with `gtest_main` (as opposed to with `gtest`), which defines a suitable entry +point. See the end of this section for details. The remainder of this section +should only apply when you need to do something custom before the tests run that +cannot be expressed within the framework of fixtures and test suites. + +If you write your own `main` function, it should return the value of +`RUN_ALL_TESTS()`. + +You can start from this boilerplate: + +```c++ +#include "this/package/foo.h" + +#include "gtest/gtest.h" + +namespace my { +namespace project { +namespace { + +// The fixture for testing class Foo. +class FooTest : public ::testing::Test { + protected: + // You can remove any or all of the following functions if their bodies would + // be empty. + + FooTest() { + // You can do set-up work for each test here. + } + + ~FooTest() override { + // You can do clean-up work that doesn't throw exceptions here. + } + + // If the constructor and destructor are not enough for setting up + // and cleaning up each test, you can define the following methods: + + void SetUp() override { + // Code here will be called immediately after the constructor (right + // before each test). + } + + void TearDown() override { + // Code here will be called immediately after each test (right + // before the destructor). + } + + // Class members declared here can be used by all tests in the test suite + // for Foo. +}; + +// Tests that the Foo::Bar() method does Abc. +TEST_F(FooTest, MethodBarDoesAbc) { + const std::string input_filepath = "this/package/testdata/myinputfile.dat"; + const std::string output_filepath = "this/package/testdata/myoutputfile.dat"; + Foo f; + EXPECT_EQ(f.Bar(input_filepath, output_filepath), 0); +} + +// Tests that Foo does Xyz. +TEST_F(FooTest, DoesXyz) { + // Exercises the Xyz feature of Foo. +} + +} // namespace +} // namespace project +} // namespace my + +int main(int argc, char **argv) { + ::testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} +``` + +The `::testing::InitGoogleTest()` function parses the command line for +googletest flags, and removes all recognized flags. This allows the user to +control a test program's behavior via various flags, which we'll cover in the +[AdvancedGuide](advanced.md). You **must** call this function before calling +`RUN_ALL_TESTS()`, or the flags won't be properly initialized. + +On Windows, `InitGoogleTest()` also works with wide strings, so it can be used +in programs compiled in `UNICODE` mode as well. + +But maybe you think that writing all those `main` functions is too much work? We +agree with you completely, and that's why Google Test provides a basic +implementation of main(). If it fits your needs, then just link your test with +the `gtest_main` library and you are good to go. + +{: .callout .note} +NOTE: `ParseGUnitFlags()` is deprecated in favor of `InitGoogleTest()`. + +## Known Limitations + +* Google Test is designed to be thread-safe. The implementation is thread-safe + on systems where the `pthreads` library is available. It is currently + _unsafe_ to use Google Test assertions from two threads concurrently on + other systems (e.g. Windows). In most tests this is not an issue as usually + the assertions are done in the main thread. If you want to help, you can + volunteer to implement the necessary synchronization primitives in + `gtest-port.h` for your platform. |