summaryrefslogtreecommitdiff
path: root/graphics/asymptote/LspCpp/third_party/uri/deps/docs/gmock_faq.md
diff options
context:
space:
mode:
Diffstat (limited to 'graphics/asymptote/LspCpp/third_party/uri/deps/docs/gmock_faq.md')
-rw-r--r--graphics/asymptote/LspCpp/third_party/uri/deps/docs/gmock_faq.md390
1 files changed, 390 insertions, 0 deletions
diff --git a/graphics/asymptote/LspCpp/third_party/uri/deps/docs/gmock_faq.md b/graphics/asymptote/LspCpp/third_party/uri/deps/docs/gmock_faq.md
new file mode 100644
index 0000000000..8f220bf7a8
--- /dev/null
+++ b/graphics/asymptote/LspCpp/third_party/uri/deps/docs/gmock_faq.md
@@ -0,0 +1,390 @@
+# Legacy gMock FAQ
+
+### When I call a method on my mock object, the method for the real object is invoked instead. What's the problem?
+
+In order for a method to be mocked, it must be *virtual*, unless you use the
+[high-perf dependency injection technique](gmock_cook_book.md#MockingNonVirtualMethods).
+
+### Can I mock a variadic function?
+
+You cannot mock a variadic function (i.e. a function taking ellipsis (`...`)
+arguments) directly in gMock.
+
+The problem is that in general, there is *no way* for a mock object to know how
+many arguments are passed to the variadic method, and what the arguments' types
+are. Only the *author of the base class* knows the protocol, and we cannot look
+into his or her head.
+
+Therefore, to mock such a function, the *user* must teach the mock object how to
+figure out the number of arguments and their types. One way to do it is to
+provide overloaded versions of the function.
+
+Ellipsis arguments are inherited from C and not really a C++ feature. They are
+unsafe to use and don't work with arguments that have constructors or
+destructors. Therefore we recommend to avoid them in C++ as much as possible.
+
+### MSVC gives me warning C4301 or C4373 when I define a mock method with a const parameter. Why?
+
+If you compile this using Microsoft Visual C++ 2005 SP1:
+
+```cpp
+class Foo {
+ ...
+ virtual void Bar(const int i) = 0;
+};
+
+class MockFoo : public Foo {
+ ...
+ MOCK_METHOD(void, Bar, (const int i), (override));
+};
+```
+
+You may get the following warning:
+
+```shell
+warning C4301: 'MockFoo::Bar': overriding virtual function only differs from 'Foo::Bar' by const/volatile qualifier
+```
+
+This is a MSVC bug. The same code compiles fine with gcc, for example. If you
+use Visual C++ 2008 SP1, you would get the warning:
+
+```shell
+warning C4373: 'MockFoo::Bar': virtual function overrides 'Foo::Bar', previous versions of the compiler did not override when parameters only differed by const/volatile qualifiers
+```
+
+In C++, if you *declare* a function with a `const` parameter, the `const`
+modifier is ignored. Therefore, the `Foo` base class above is equivalent to:
+
+```cpp
+class Foo {
+ ...
+ virtual void Bar(int i) = 0; // int or const int? Makes no difference.
+};
+```
+
+In fact, you can *declare* `Bar()` with an `int` parameter, and define it with a
+`const int` parameter. The compiler will still match them up.
+
+Since making a parameter `const` is meaningless in the method declaration, we
+recommend to remove it in both `Foo` and `MockFoo`. That should workaround the
+VC bug.
+
+Note that we are talking about the *top-level* `const` modifier here. If the
+function parameter is passed by pointer or reference, declaring the pointee or
+referee as `const` is still meaningful. For example, the following two
+declarations are *not* equivalent:
+
+```cpp
+void Bar(int* p); // Neither p nor *p is const.
+void Bar(const int* p); // p is not const, but *p is.
+```
+
+### I can't figure out why gMock thinks my expectations are not satisfied. What should I do?
+
+You might want to run your test with `--gmock_verbose=info`. This flag lets
+gMock print a trace of every mock function call it receives. By studying the
+trace, you'll gain insights on why the expectations you set are not met.
+
+If you see the message "The mock function has no default action set, and its
+return type has no default value set.", then try
+[adding a default action](gmock_cheat_sheet.md#OnCall). Due to a known issue,
+unexpected calls on mocks without default actions don't print out a detailed
+comparison between the actual arguments and the expected arguments.
+
+### My program crashed and `ScopedMockLog` spit out tons of messages. Is it a gMock bug?
+
+gMock and `ScopedMockLog` are likely doing the right thing here.
+
+When a test crashes, the failure signal handler will try to log a lot of
+information (the stack trace, and the address map, for example). The messages
+are compounded if you have many threads with depth stacks. When `ScopedMockLog`
+intercepts these messages and finds that they don't match any expectations, it
+prints an error for each of them.
+
+You can learn to ignore the errors, or you can rewrite your expectations to make
+your test more robust, for example, by adding something like:
+
+```cpp
+using ::testing::AnyNumber;
+using ::testing::Not;
+...
+ // Ignores any log not done by us.
+ EXPECT_CALL(log, Log(_, Not(EndsWith("/my_file.cc")), _))
+ .Times(AnyNumber());
+```
+
+### How can I assert that a function is NEVER called?
+
+```cpp
+using ::testing::_;
+...
+ EXPECT_CALL(foo, Bar(_))
+ .Times(0);
+```
+
+### I have a failed test where gMock tells me TWICE that a particular expectation is not satisfied. Isn't this redundant?
+
+When gMock detects a failure, it prints relevant information (the mock function
+arguments, the state of relevant expectations, and etc) to help the user debug.
+If another failure is detected, gMock will do the same, including printing the
+state of relevant expectations.
+
+Sometimes an expectation's state didn't change between two failures, and you'll
+see the same description of the state twice. They are however *not* redundant,
+as they refer to *different points in time*. The fact they are the same *is*
+interesting information.
+
+### I get a heapcheck failure when using a mock object, but using a real object is fine. What can be wrong?
+
+Does the class (hopefully a pure interface) you are mocking have a virtual
+destructor?
+
+Whenever you derive from a base class, make sure its destructor is virtual.
+Otherwise Bad Things will happen. Consider the following code:
+
+```cpp
+class Base {
+ public:
+ // Not virtual, but should be.
+ ~Base() { ... }
+ ...
+};
+
+class Derived : public Base {
+ public:
+ ...
+ private:
+ std::string value_;
+};
+
+...
+ Base* p = new Derived;
+ ...
+ delete p; // Surprise! ~Base() will be called, but ~Derived() will not
+ // - value_ is leaked.
+```
+
+By changing `~Base()` to virtual, `~Derived()` will be correctly called when
+`delete p` is executed, and the heap checker will be happy.
+
+### The "newer expectations override older ones" rule makes writing expectations awkward. Why does gMock do that?
+
+When people complain about this, often they are referring to code like:
+
+```cpp
+using ::testing::Return;
+...
+ // foo.Bar() should be called twice, return 1 the first time, and return
+ // 2 the second time. However, I have to write the expectations in the
+ // reverse order. This sucks big time!!!
+ EXPECT_CALL(foo, Bar())
+ .WillOnce(Return(2))
+ .RetiresOnSaturation();
+ EXPECT_CALL(foo, Bar())
+ .WillOnce(Return(1))
+ .RetiresOnSaturation();
+```
+
+The problem, is that they didn't pick the **best** way to express the test's
+intent.
+
+By default, expectations don't have to be matched in *any* particular order. If
+you want them to match in a certain order, you need to be explicit. This is
+gMock's (and jMock's) fundamental philosophy: it's easy to accidentally
+over-specify your tests, and we want to make it harder to do so.
+
+There are two better ways to write the test spec. You could either put the
+expectations in sequence:
+
+```cpp
+using ::testing::Return;
+...
+ // foo.Bar() should be called twice, return 1 the first time, and return
+ // 2 the second time. Using a sequence, we can write the expectations
+ // in their natural order.
+ {
+ InSequence s;
+ EXPECT_CALL(foo, Bar())
+ .WillOnce(Return(1))
+ .RetiresOnSaturation();
+ EXPECT_CALL(foo, Bar())
+ .WillOnce(Return(2))
+ .RetiresOnSaturation();
+ }
+```
+
+or you can put the sequence of actions in the same expectation:
+
+```cpp
+using ::testing::Return;
+...
+ // foo.Bar() should be called twice, return 1 the first time, and return
+ // 2 the second time.
+ EXPECT_CALL(foo, Bar())
+ .WillOnce(Return(1))
+ .WillOnce(Return(2))
+ .RetiresOnSaturation();
+```
+
+Back to the original questions: why does gMock search the expectations (and
+`ON_CALL`s) from back to front? Because this allows a user to set up a mock's
+behavior for the common case early (e.g. in the mock's constructor or the test
+fixture's set-up phase) and customize it with more specific rules later. If
+gMock searches from front to back, this very useful pattern won't be possible.
+
+### gMock prints a warning when a function without EXPECT_CALL is called, even if I have set its behavior using ON_CALL. Would it be reasonable not to show the warning in this case?
+
+When choosing between being neat and being safe, we lean toward the latter. So
+the answer is that we think it's better to show the warning.
+
+Often people write `ON_CALL`s in the mock object's constructor or `SetUp()`, as
+the default behavior rarely changes from test to test. Then in the test body
+they set the expectations, which are often different for each test. Having an
+`ON_CALL` in the set-up part of a test doesn't mean that the calls are expected.
+If there's no `EXPECT_CALL` and the method is called, it's possibly an error. If
+we quietly let the call go through without notifying the user, bugs may creep in
+unnoticed.
+
+If, however, you are sure that the calls are OK, you can write
+
+```cpp
+using ::testing::_;
+...
+ EXPECT_CALL(foo, Bar(_))
+ .WillRepeatedly(...);
+```
+
+instead of
+
+```cpp
+using ::testing::_;
+...
+ ON_CALL(foo, Bar(_))
+ .WillByDefault(...);
+```
+
+This tells gMock that you do expect the calls and no warning should be printed.
+
+Also, you can control the verbosity by specifying `--gmock_verbose=error`. Other
+values are `info` and `warning`. If you find the output too noisy when
+debugging, just choose a less verbose level.
+
+### How can I delete the mock function's argument in an action?
+
+If your mock function takes a pointer argument and you want to delete that
+argument, you can use testing::DeleteArg<N>() to delete the N'th (zero-indexed)
+argument:
+
+```cpp
+using ::testing::_;
+ ...
+ MOCK_METHOD(void, Bar, (X* x, const Y& y));
+ ...
+ EXPECT_CALL(mock_foo_, Bar(_, _))
+ .WillOnce(testing::DeleteArg<0>()));
+```
+
+### How can I perform an arbitrary action on a mock function's argument?
+
+If you find yourself needing to perform some action that's not supported by
+gMock directly, remember that you can define your own actions using
+[`MakeAction()`](#NewMonoActions) or
+[`MakePolymorphicAction()`](#NewPolyActions), or you can write a stub function
+and invoke it using [`Invoke()`](#FunctionsAsActions).
+
+```cpp
+using ::testing::_;
+using ::testing::Invoke;
+ ...
+ MOCK_METHOD(void, Bar, (X* p));
+ ...
+ EXPECT_CALL(mock_foo_, Bar(_))
+ .WillOnce(Invoke(MyAction(...)));
+```
+
+### My code calls a static/global function. Can I mock it?
+
+You can, but you need to make some changes.
+
+In general, if you find yourself needing to mock a static function, it's a sign
+that your modules are too tightly coupled (and less flexible, less reusable,
+less testable, etc). You are probably better off defining a small interface and
+call the function through that interface, which then can be easily mocked. It's
+a bit of work initially, but usually pays for itself quickly.
+
+This Google Testing Blog
+[post](https://testing.googleblog.com/2008/06/defeat-static-cling.html) says it
+excellently. Check it out.
+
+### My mock object needs to do complex stuff. It's a lot of pain to specify the actions. gMock sucks!
+
+I know it's not a question, but you get an answer for free any way. :-)
+
+With gMock, you can create mocks in C++ easily. And people might be tempted to
+use them everywhere. Sometimes they work great, and sometimes you may find them,
+well, a pain to use. So, what's wrong in the latter case?
+
+When you write a test without using mocks, you exercise the code and assert that
+it returns the correct value or that the system is in an expected state. This is
+sometimes called "state-based testing".
+
+Mocks are great for what some call "interaction-based" testing: instead of
+checking the system state at the very end, mock objects verify that they are
+invoked the right way and report an error as soon as it arises, giving you a
+handle on the precise context in which the error was triggered. This is often
+more effective and economical to do than state-based testing.
+
+If you are doing state-based testing and using a test double just to simulate
+the real object, you are probably better off using a fake. Using a mock in this
+case causes pain, as it's not a strong point for mocks to perform complex
+actions. If you experience this and think that mocks suck, you are just not
+using the right tool for your problem. Or, you might be trying to solve the
+wrong problem. :-)
+
+### I got a warning "Uninteresting function call encountered - default action taken.." Should I panic?
+
+By all means, NO! It's just an FYI. :-)
+
+What it means is that you have a mock function, you haven't set any expectations
+on it (by gMock's rule this means that you are not interested in calls to this
+function and therefore it can be called any number of times), and it is called.
+That's OK - you didn't say it's not OK to call the function!
+
+What if you actually meant to disallow this function to be called, but forgot to
+write `EXPECT_CALL(foo, Bar()).Times(0)`? While one can argue that it's the
+user's fault, gMock tries to be nice and prints you a note.
+
+So, when you see the message and believe that there shouldn't be any
+uninteresting calls, you should investigate what's going on. To make your life
+easier, gMock dumps the stack trace when an uninteresting call is encountered.
+From that you can figure out which mock function it is, and how it is called.
+
+### I want to define a custom action. Should I use Invoke() or implement the ActionInterface interface?
+
+Either way is fine - you want to choose the one that's more convenient for your
+circumstance.
+
+Usually, if your action is for a particular function type, defining it using
+`Invoke()` should be easier; if your action can be used in functions of
+different types (e.g. if you are defining `Return(*value*)`),
+`MakePolymorphicAction()` is easiest. Sometimes you want precise control on what
+types of functions the action can be used in, and implementing `ActionInterface`
+is the way to go here. See the implementation of `Return()` in `gmock-actions.h`
+for an example.
+
+### I use SetArgPointee() in WillOnce(), but gcc complains about "conflicting return type specified". What does it mean?
+
+You got this error as gMock has no idea what value it should return when the
+mock method is called. `SetArgPointee()` says what the side effect is, but
+doesn't say what the return value should be. You need `DoAll()` to chain a
+`SetArgPointee()` with a `Return()` that provides a value appropriate to the API
+being mocked.
+
+See this [recipe](gmock_cook_book.md#mocking-side-effects) for more details and
+an example.
+
+### I have a huge mock class, and Microsoft Visual C++ runs out of memory when compiling it. What can I do?
+
+We've noticed that when the `/clr` compiler flag is used, Visual C++ uses 5~6
+times as much memory when compiling a mock class. We suggest to avoid `/clr`
+when compiling native C++ mocks.