summaryrefslogtreecommitdiff
path: root/Master/tlpkg/tlperl.straw/lib/DBI.pm
blob: 95b398fc751f99d16bc625d03be71d52cf927258 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
# $Id: DBI.pm 12812 2009-06-05 22:34:47Z timbo $
# vim: ts=8:sw=4:noet
#
# Copyright (c) 1994-2009  Tim Bunce  Ireland
#
# See COPYRIGHT section in pod text below for usage and distribution rights.
#

require 5.006_00;

BEGIN {
$DBI::VERSION = "1.609"; # ==> ALSO update the version in the pod text below!
}

=head1 NAME

DBI - Database independent interface for Perl

=head1 SYNOPSIS

  use DBI;

  @driver_names = DBI->available_drivers;
  %drivers      = DBI->installed_drivers;
  @data_sources = DBI->data_sources($driver_name, \%attr);

  $dbh = DBI->connect($data_source, $username, $auth, \%attr);

  $rv  = $dbh->do($statement);
  $rv  = $dbh->do($statement, \%attr);
  $rv  = $dbh->do($statement, \%attr, @bind_values);

  $ary_ref  = $dbh->selectall_arrayref($statement);
  $hash_ref = $dbh->selectall_hashref($statement, $key_field);

  $ary_ref  = $dbh->selectcol_arrayref($statement);
  $ary_ref  = $dbh->selectcol_arrayref($statement, \%attr);

  @row_ary  = $dbh->selectrow_array($statement);
  $ary_ref  = $dbh->selectrow_arrayref($statement);
  $hash_ref = $dbh->selectrow_hashref($statement);

  $sth = $dbh->prepare($statement);
  $sth = $dbh->prepare_cached($statement);

  $rc = $sth->bind_param($p_num, $bind_value);
  $rc = $sth->bind_param($p_num, $bind_value, $bind_type);
  $rc = $sth->bind_param($p_num, $bind_value, \%attr);

  $rv = $sth->execute;
  $rv = $sth->execute(@bind_values);
  $rv = $sth->execute_array(\%attr, ...);

  $rc = $sth->bind_col($col_num, \$col_variable);
  $rc = $sth->bind_columns(@list_of_refs_to_vars_to_bind);

  @row_ary  = $sth->fetchrow_array;
  $ary_ref  = $sth->fetchrow_arrayref;
  $hash_ref = $sth->fetchrow_hashref;

  $ary_ref  = $sth->fetchall_arrayref;
  $ary_ref  = $sth->fetchall_arrayref( $slice, $max_rows );

  $hash_ref = $sth->fetchall_hashref( $key_field );

  $rv  = $sth->rows;

  $rc  = $dbh->begin_work;
  $rc  = $dbh->commit;
  $rc  = $dbh->rollback;

  $quoted_string = $dbh->quote($string);

  $rc  = $h->err;
  $str = $h->errstr;
  $rv  = $h->state;

  $rc  = $dbh->disconnect;

I<The synopsis above only lists the major methods and parameters.>


=head2 GETTING HELP

If you have questions about DBI, or DBD driver modules, you can get
help from the I<dbi-users@perl.org> mailing list.  You don't have to subscribe
to the list in order to post, though I'd recommend it. You can get help on
subscribing and using the list by emailing I<dbi-users-help@perl.org>.

I don't recommend the DBI cpanforum (at http://www.cpanforum.com/dist/DBI)
because relatively few people read it compared with dbi-users@perl.org.

To help you make the best use of the dbi-users mailing list,
and any other lists or forums you may use, I I<strongly>
recommend that you read "How To Ask Questions The Smart Way"
by Eric Raymond: L<http://www.catb.org/~esr/faqs/smart-questions.html>.

If you think you've found a bug then please also read
"How to Report Bugs Effectively" by Simon Tatham:
L<http://www.chiark.greenend.org.uk/~sgtatham/bugs.html>.

The DBI home page at L<http://dbi.perl.org/> and the DBI FAQ
at L<http://faq.dbi-support.com/> are always worth a visit.
They include links to other resources.

Before asking any questions, reread this document, consult the
archives and read the DBI FAQ. The archives are listed
at the end of this document and on the DBI home page.

This document often uses terms like I<references>, I<objects>,
I<methods>.  If you're not familiar with those terms then it would
be a good idea to read at least the following perl manuals first:
L<perlreftut>, L<perldsc>, L<perllol>, and L<perlboot>.

Please note that Tim Bunce does not maintain the mailing lists or the
web page (generous volunteers do that).  So please don't send mail
directly to him; he just doesn't have the time to answer questions
personally. The I<dbi-users> mailing list has lots of experienced
people who should be able to help you if you need it. If you do email
Tim he's very likely to just forward it to the mailing list.

=head2 NOTES

This is the DBI specification that corresponds to the DBI version 1.609
($Revision: 12812 $).

The DBI is evolving at a steady pace, so it's good to check that
you have the latest copy.

The significant user-visible changes in each release are documented
in the L<DBI::Changes> module so you can read them by executing
C<perldoc DBI::Changes>.

Some DBI changes require changes in the drivers, but the drivers
can take some time to catch up. Newer versions of the DBI have
added features that may not yet be supported by the drivers you
use.  Talk to the authors of your drivers if you need a new feature
that's not yet supported.

Features added after DBI 1.21 (February 2002) are marked in the
text with the version number of the DBI release they first appeared in.

Extensions to the DBI API often use the C<DBIx::*> namespace.
See L</Naming Conventions and Name Space>. DBI extension modules
can be found at L<http://search.cpan.org/search?mode=module&query=DBIx>.
And all modules related to the DBI can be found at
L<http://search.cpan.org/search?query=DBI&mode=all>.

=cut

# The POD text continues at the end of the file.


package DBI;

use Carp();
use DynaLoader ();
use Exporter ();

BEGIN {
@ISA = qw(Exporter DynaLoader);

# Make some utility functions available if asked for
@EXPORT    = ();		    # we export nothing by default
@EXPORT_OK = qw(%DBI %DBI_methods hash); # also populated by export_ok_tags:
%EXPORT_TAGS = (
   sql_types => [ qw(
	SQL_GUID
	SQL_WLONGVARCHAR
	SQL_WVARCHAR
	SQL_WCHAR
	SQL_BIGINT
	SQL_BIT
	SQL_TINYINT
	SQL_LONGVARBINARY
	SQL_VARBINARY
	SQL_BINARY
	SQL_LONGVARCHAR
	SQL_UNKNOWN_TYPE
	SQL_ALL_TYPES
	SQL_CHAR
	SQL_NUMERIC
	SQL_DECIMAL
	SQL_INTEGER
	SQL_SMALLINT
	SQL_FLOAT
	SQL_REAL
	SQL_DOUBLE
	SQL_DATETIME
	SQL_DATE
	SQL_INTERVAL
	SQL_TIME
	SQL_TIMESTAMP
	SQL_VARCHAR
	SQL_BOOLEAN
	SQL_UDT
	SQL_UDT_LOCATOR
	SQL_ROW
	SQL_REF
	SQL_BLOB
	SQL_BLOB_LOCATOR
	SQL_CLOB
	SQL_CLOB_LOCATOR
	SQL_ARRAY
	SQL_ARRAY_LOCATOR
	SQL_MULTISET
	SQL_MULTISET_LOCATOR
	SQL_TYPE_DATE
	SQL_TYPE_TIME
	SQL_TYPE_TIMESTAMP
	SQL_TYPE_TIME_WITH_TIMEZONE
	SQL_TYPE_TIMESTAMP_WITH_TIMEZONE
	SQL_INTERVAL_YEAR
	SQL_INTERVAL_MONTH
	SQL_INTERVAL_DAY
	SQL_INTERVAL_HOUR
	SQL_INTERVAL_MINUTE
	SQL_INTERVAL_SECOND
	SQL_INTERVAL_YEAR_TO_MONTH
	SQL_INTERVAL_DAY_TO_HOUR
	SQL_INTERVAL_DAY_TO_MINUTE
	SQL_INTERVAL_DAY_TO_SECOND
	SQL_INTERVAL_HOUR_TO_MINUTE
	SQL_INTERVAL_HOUR_TO_SECOND
	SQL_INTERVAL_MINUTE_TO_SECOND
   ) ],
   sql_cursor_types => [ qw(
	 SQL_CURSOR_FORWARD_ONLY
	 SQL_CURSOR_KEYSET_DRIVEN
	 SQL_CURSOR_DYNAMIC
	 SQL_CURSOR_STATIC
	 SQL_CURSOR_TYPE_DEFAULT
   ) ], # for ODBC cursor types
   utils     => [ qw(
	neat neat_list $neat_maxlen dump_results looks_like_number
	data_string_diff data_string_desc data_diff
   ) ],
   profile   => [ qw(
	dbi_profile dbi_profile_merge dbi_profile_merge_nodes dbi_time
   ) ], # notionally "in" DBI::Profile and normally imported from there
);

$DBI::dbi_debug = 0;
$DBI::neat_maxlen = 1000;
$DBI::stderr = 2_000_000_000; # a very round number below 2**31

# If you get an error here like "Can't find loadable object ..."
# then you haven't installed the DBI correctly. Read the README
# then install it again.
if ( $ENV{DBI_PUREPERL} ) {
    eval { bootstrap DBI } if       $ENV{DBI_PUREPERL} == 1;
    require DBI::PurePerl  if $@ or $ENV{DBI_PUREPERL} >= 2;
    $DBI::PurePerl ||= 0; # just to silence "only used once" warnings
}
else {
    bootstrap DBI;
}

$EXPORT_TAGS{preparse_flags} = [ grep { /^DBIpp_\w\w_/ } keys %{__PACKAGE__."::"} ];

Exporter::export_ok_tags(keys %EXPORT_TAGS);

}

# Alias some handle methods to also be DBI class methods
for (qw(trace_msg set_err parse_trace_flag parse_trace_flags)) {
  no strict;
  *$_ = \&{"DBD::_::common::$_"};
}

use strict;

DBI->trace(split /=/, $ENV{DBI_TRACE}, 2) if $ENV{DBI_TRACE};

$DBI::connect_via ||= "connect";

# check if user wants a persistent database connection ( Apache + mod_perl )
if ($INC{'Apache/DBI.pm'} && $ENV{MOD_PERL}) {
    $DBI::connect_via = "Apache::DBI::connect";
    DBI->trace_msg("DBI connect via $DBI::connect_via in $INC{'Apache/DBI.pm'}\n");
}

# check for weaken support, used by ChildHandles
my $HAS_WEAKEN = eval {
    require Scalar::Util;
    # this will croak() if this Scalar::Util doesn't have a working weaken().
    Scalar::Util::weaken( \my $test ); # same test as in t/72childhandles.t
    1;
};

%DBI::installed_drh = ();  # maps driver names to installed driver handles
sub installed_drivers { %DBI::installed_drh }
%DBI::installed_methods = (); # XXX undocumented, may change
sub installed_methods { %DBI::installed_methods }

# Setup special DBI dynamic variables. See DBI::var::FETCH for details.
# These are dynamically associated with the last handle used.
tie $DBI::err,    'DBI::var', '*err';    # special case: referenced via IHA list
tie $DBI::state,  'DBI::var', '"state';  # special case: referenced via IHA list
tie $DBI::lasth,  'DBI::var', '!lasth';  # special case: return boolean
tie $DBI::errstr, 'DBI::var', '&errstr'; # call &errstr in last used pkg
tie $DBI::rows,   'DBI::var', '&rows';   # call &rows   in last used pkg
sub DBI::var::TIESCALAR{ my $var = $_[1]; bless \$var, 'DBI::var'; }
sub DBI::var::STORE    { Carp::croak("Can't modify \$DBI::${$_[0]} special variable") }

{   # used to catch DBI->{Attrib} mistake
    sub DBI::DBI_tie::TIEHASH { bless {} }
    sub DBI::DBI_tie::STORE   { Carp::carp("DBI->{$_[1]} is invalid syntax (you probably want \$h->{$_[1]})");}
    *DBI::DBI_tie::FETCH = \&DBI::DBI_tie::STORE;
}
tie %DBI::DBI => 'DBI::DBI_tie';

# --- Driver Specific Prefix Registry ---

my $dbd_prefix_registry = {
  ad_      => { class => 'DBD::AnyData',	},
  ado_     => { class => 'DBD::ADO',		},
  amzn_    => { class => 'DBD::Amazon',		},
  best_    => { class => 'DBD::BestWins',	},
  csv_     => { class => 'DBD::CSV',		},
  db2_     => { class => 'DBD::DB2',		},
  dbi_     => { class => 'DBI',			},
  dbm_     => { class => 'DBD::DBM',		},
  df_      => { class => 'DBD::DF',		},
  f_       => { class => 'DBD::File',		},
  file_    => { class => 'DBD::TextFile',	},
  go_      => { class => 'DBD::Gofer',  	},
  ib_      => { class => 'DBD::InterBase',	},
  ing_     => { class => 'DBD::Ingres',		},
  ix_      => { class => 'DBD::Informix',	},
  jdbc_    => { class => 'DBD::JDBC',		},
  monetdb_ => { class => 'DBD::monetdb',	},
  msql_    => { class => 'DBD::mSQL',		},
  mvsftp_  => { class => 'DBD::MVS_FTPSQL',	},
  mysql_   => { class => 'DBD::mysql',		},
  mx_      => { class => 'DBD::Multiplex',	},
  nullp_   => { class => 'DBD::NullP',		},
  odbc_    => { class => 'DBD::ODBC',		},
  ora_     => { class => 'DBD::Oracle',		},
  pg_      => { class => 'DBD::Pg',		},
  pgpp_    => { class => 'DBD::PgPP',		},
  plb_     => { class => 'DBD::Plibdata',	},
  proxy_   => { class => 'DBD::Proxy',		},
  rdb_     => { class => 'DBD::RDB',		},
  sapdb_   => { class => 'DBD::SAP_DB',		},
  solid_   => { class => 'DBD::Solid',		},
  sponge_  => { class => 'DBD::Sponge',		},
  sql_     => { class => 'SQL::Statement',	},
  sqlite_  => { class => 'DBD::SQLite',  	},
  syb_     => { class => 'DBD::Sybase',		},
  tdat_    => { class => 'DBD::Teradata',	},
  tmpl_    => { class => 'DBD::Template',	},
  tmplss_  => { class => 'DBD::TemplateSS',	},
  tuber_   => { class => 'DBD::Tuber',		},
  uni_     => { class => 'DBD::Unify',		},
  vt_      => { class => 'DBD::Vt',		},
  wmi_     => { class => 'DBD::WMI',		},
  x_       => { }, # for private use
  xbase_   => { class => 'DBD::XBase',		},
  xl_      => { class => 'DBD::Excel',		},
  yaswi_   => { class => 'DBD::Yaswi',		},
};

sub dump_dbd_registry {
    require Data::Dumper;
    local $Data::Dumper::Sortkeys=1;
    local $Data::Dumper::Indent=1;
    print Data::Dumper->Dump([$dbd_prefix_registry], [qw($dbd_prefix_registry)]);
}

# --- Dynamically create the DBI Standard Interface

my $keeperr = { O=>0x0004 };

%DBI::DBI_methods = ( # Define the DBI interface methods per class:

    common => {		# Interface methods common to all DBI handle classes
	'DESTROY'	=> { O=>0x004|0x10000 },
	'CLEAR'  	=> $keeperr,
	'EXISTS' 	=> $keeperr,
	'FETCH'		=> { O=>0x0404 },
	'FETCH_many'	=> { O=>0x0404 },
	'FIRSTKEY'	=> $keeperr,
	'NEXTKEY'	=> $keeperr,
	'STORE'		=> { O=>0x0418 | 0x4 },
	_not_impl	=> undef,
	can		=> { O=>0x0100 }, # special case, see dispatch
	debug 	 	=> { U =>[1,2,'[$debug_level]'],	O=>0x0004 }, # old name for trace
	dump_handle 	=> { U =>[1,3,'[$message [, $level]]'],	O=>0x0004 },
	err		=> $keeperr,
	errstr		=> $keeperr,
	state		=> $keeperr,
	func	   	=> { O=>0x0006	},
	parse_trace_flag   => { U =>[2,2,'$name'],	O=>0x0404, T=>8 },
	parse_trace_flags  => { U =>[2,2,'$flags'],	O=>0x0404, T=>8 },
	private_data	=> { U =>[1,1],			O=>0x0004 },
	set_err		=> { U =>[3,6,'$err, $errmsg [, $state, $method, $rv]'], O=>0x0010 },
	trace		=> { U =>[1,3,'[$trace_level, [$filename]]'],	O=>0x0004 },
	trace_msg	=> { U =>[2,3,'$message_text [, $min_level ]' ],	O=>0x0004, T=>8 },
	swap_inner_handle => { U =>[2,3,'$h [, $allow_reparent ]'] },
        private_attribute_info => { },
        visit_child_handles => { U => [2,3,'$coderef [, $info ]'], O=>0x0404, T=>4 },
    },
    dr => {		# Database Driver Interface
	'connect'  =>	{ U =>[1,5,'[$db [,$user [,$passwd [,\%attr]]]]'], H=>3, O=>0x8000 },
	'connect_cached'=>{U=>[1,5,'[$db [,$user [,$passwd [,\%attr]]]]'], H=>3, O=>0x8000 },
	'disconnect_all'=>{ U =>[1,1], O=>0x0800 },
	data_sources => { U =>[1,2,'[\%attr]' ], O=>0x0800 },
	default_user => { U =>[3,4,'$user, $pass [, \%attr]' ] },
	dbixs_revision  => $keeperr,
    },
    db => {		# Database Session Class Interface
	data_sources	=> { U =>[1,2,'[\%attr]' ], O=>0x0200 },
	take_imp_data	=> { U =>[1,1], O=>0x10000 },
	clone   	=> { U =>[1,2,'[\%attr]'] },
	connected   	=> { U =>[1,0], O => 0x0004 },
	begin_work   	=> { U =>[1,2,'[ \%attr ]'], O=>0x0400 },
	commit     	=> { U =>[1,1], O=>0x0480|0x0800 },
	rollback   	=> { U =>[1,1], O=>0x0480|0x0800 },
	'do'       	=> { U =>[2,0,'$statement [, \%attr [, @bind_params ] ]'], O=>0x3200 },
	last_insert_id	=> { U =>[5,6,'$catalog, $schema, $table_name, $field_name [, \%attr ]'], O=>0x2800 },
	preparse    	=> {  }, # XXX
	prepare    	=> { U =>[2,3,'$statement [, \%attr]'],                    O=>0xA200 },
	prepare_cached	=> { U =>[2,4,'$statement [, \%attr [, $if_active ] ]'],   O=>0xA200 },
	selectrow_array	=> { U =>[2,0,'$statement [, \%attr [, @bind_params ] ]'], O=>0x2000 },
	selectrow_arrayref=>{U =>[2,0,'$statement [, \%attr [, @bind_params ] ]'], O=>0x2000 },
	selectrow_hashref=>{ U =>[2,0,'$statement [, \%attr [, @bind_params ] ]'], O=>0x2000 },
	selectall_arrayref=>{U =>[2,0,'$statement [, \%attr [, @bind_params ] ]'], O=>0x2000 },
	selectall_hashref=>{ U =>[3,0,'$statement, $keyfield [, \%attr [, @bind_params ] ]'], O=>0x2000 },
	selectcol_arrayref=>{U =>[2,0,'$statement [, \%attr [, @bind_params ] ]'], O=>0x2000 },
	ping       	=> { U =>[1,1], O=>0x0404 },
	disconnect 	=> { U =>[1,1], O=>0x0400|0x0800|0x10000 },
	quote      	=> { U =>[2,3, '$string [, $data_type ]' ], O=>0x0430 },
	quote_identifier=> { U =>[2,6, '$name [, ...] [, \%attr ]' ],    O=>0x0430 },
	rows       	=> $keeperr,

	tables          => { U =>[1,6,'$catalog, $schema, $table, $type [, \%attr ]' ], O=>0x2200 },
	table_info      => { U =>[1,6,'$catalog, $schema, $table, $type [, \%attr ]' ],	O=>0x2200|0x8800 },
	column_info     => { U =>[5,6,'$catalog, $schema, $table, $column [, \%attr ]'],O=>0x2200|0x8800 },
	primary_key_info=> { U =>[4,5,'$catalog, $schema, $table [, \%attr ]' ],	O=>0x2200|0x8800 },
	primary_key     => { U =>[4,5,'$catalog, $schema, $table [, \%attr ]' ],	O=>0x2200 },
	foreign_key_info=> { U =>[7,8,'$pk_catalog, $pk_schema, $pk_table, $fk_catalog, $fk_schema, $fk_table [, \%attr ]' ], O=>0x2200|0x8800 },
	statistics_info => { U =>[6,7,'$catalog, $schema, $table, $unique_only, $quick, [, \%attr ]' ], O=>0x2200|0x8800 },
	type_info_all	=> { U =>[1,1], O=>0x2200|0x0800 },
	type_info	=> { U =>[1,2,'$data_type'], O=>0x2200 },
	get_info	=> { U =>[2,2,'$info_type'], O=>0x2200|0x0800 },
    },
    st => {		# Statement Class Interface
	bind_col	=> { U =>[3,4,'$column, \\$var [, \%attr]'] },
	bind_columns	=> { U =>[2,0,'\\$var1 [, \\$var2, ...]'] },
	bind_param	=> { U =>[3,4,'$parameter, $var [, \%attr]'] },
	bind_param_inout=> { U =>[4,5,'$parameter, \\$var, $maxlen, [, \%attr]'] },
	execute		=> { U =>[1,0,'[@args]'], O=>0x1040 },

	bind_param_array  => { U =>[3,4,'$parameter, $var [, \%attr]'] },
	bind_param_inout_array => { U =>[4,5,'$parameter, \\@var, $maxlen, [, \%attr]'] },
	execute_array     => { U =>[2,0,'\\%attribs [, @args]'],         O=>0x1040|0x4000 },
	execute_for_fetch => { U =>[2,3,'$fetch_sub [, $tuple_status]'], O=>0x1040|0x4000 },

	fetch    	  => undef, # alias for fetchrow_arrayref
	fetchrow_arrayref => undef,
	fetchrow_hashref  => undef,
	fetchrow_array    => undef,
	fetchrow   	  => undef, # old alias for fetchrow_array

	fetchall_arrayref => { U =>[1,3, '[ $slice [, $max_rows]]'] },
	fetchall_hashref  => { U =>[2,2,'$key_field'] },

	blob_read  =>	{ U =>[4,5,'$field, $offset, $len [, \\$buf [, $bufoffset]]'] },
	blob_copy_to_file => { U =>[3,3,'$field, $filename_or_handleref'] },
	dump_results => { U =>[1,5,'$maxfieldlen, $linesep, $fieldsep, $filehandle'] },
	more_results => { U =>[1,1] },
	finish     => 	{ U =>[1,1] },
	cancel     => 	{ U =>[1,1], O=>0x0800 },
	rows       =>	$keeperr,

	_get_fbav	=> undef,
	_set_fbav	=> { T=>6 },
    },
);

while ( my ($class, $meths) = each %DBI::DBI_methods ) {
    my $ima_trace = 0+($ENV{DBI_IMA_TRACE}||0);
    while ( my ($method, $info) = each %$meths ) {
	my $fullmeth = "DBI::${class}::$method";
	if ($DBI::dbi_debug >= 15) { # quick hack to list DBI methods
	    # and optionally filter by IMA flags
	    my $O = $info->{O}||0;
	    printf "0x%04x %-20s\n", $O, $fullmeth
	        unless $ima_trace && !($O & $ima_trace);
	}
	DBI->_install_method($fullmeth, 'DBI.pm', $info);
    }
}

{
    package DBI::common;
    @DBI::dr::ISA = ('DBI::common');
    @DBI::db::ISA = ('DBI::common');
    @DBI::st::ISA = ('DBI::common');
}

# End of init code


END {
    return unless defined &DBI::trace_msg; # return unless bootstrap'd ok
    local ($!,$?);
    DBI->trace_msg(sprintf("    -- DBI::END (\$\@: %s, \$!: %s)\n", $@||'', $!||''), 2);
    # Let drivers know why we are calling disconnect_all:
    $DBI::PERL_ENDING = $DBI::PERL_ENDING = 1;	# avoid typo warning
    DBI->disconnect_all() if %DBI::installed_drh;
}


sub CLONE {
    my $olddbis = $DBI::_dbistate;
    _clone_dbis() unless $DBI::PurePerl; # clone the DBIS structure
    DBI->trace_msg(sprintf "CLONE DBI for new thread %s\n",
	$DBI::PurePerl ? "" : sprintf("(dbis %x -> %x)",$olddbis, $DBI::_dbistate));
    while ( my ($driver, $drh) = each %DBI::installed_drh) {
	no strict 'refs';
	next if defined &{"DBD::${driver}::CLONE"};
	warn("$driver has no driver CLONE() function so is unsafe threaded\n");
    }
    %DBI::installed_drh = ();	# clear loaded drivers so they have a chance to reinitialize
}

sub parse_dsn {
    my ($class, $dsn) = @_;
    $dsn =~ s/^(dbi):(\w*?)(?:\((.*?)\))?://i or return;
    my ($scheme, $driver, $attr, $attr_hash) = (lc($1), $2, $3);
    $driver ||= $ENV{DBI_DRIVER} || '';
    $attr_hash = { split /\s*=>?\s*|\s*,\s*/, $attr, -1 } if $attr;
    return ($scheme, $driver, $attr, $attr_hash, $dsn);
}

sub visit_handles {
    my ($class, $code, $outer_info) = @_;
    $outer_info = {} if not defined $outer_info;
    my %drh = DBI->installed_drivers;
    for my $h (values %drh) {
	my $child_info = $code->($h, $outer_info)
	    or next;
	$h->visit_child_handles($code, $child_info);
    }
    return $outer_info;
}


# --- The DBI->connect Front Door methods

sub connect_cached {
    # For library code using connect_cached() with mod_perl
    # we redirect those calls to Apache::DBI::connect() as well
    my ($class, $dsn, $user, $pass, $attr) = @_;
    my $dbi_connect_method = ($DBI::connect_via eq "Apache::DBI::connect")
	    ? 'Apache::DBI::connect' : 'connect_cached';
    $attr = {
        $attr ? %$attr : (), # clone, don't modify callers data
        dbi_connect_method => $dbi_connect_method,
    };
    return $class->connect($dsn, $user, $pass, $attr);
}

sub connect {
    my $class = shift;
    my ($dsn, $user, $pass, $attr, $old_driver) = my @orig_args = @_;
    my $driver;

    if ($attr and !ref($attr)) { # switch $old_driver<->$attr if called in old style
	Carp::carp("DBI->connect using 'old-style' syntax is deprecated and will be an error in future versions");
        ($old_driver, $attr) = ($attr, $old_driver);
    }

    my $connect_meth = $attr->{dbi_connect_method};
    $connect_meth ||= $DBI::connect_via;	# fallback to default

    $dsn ||= $ENV{DBI_DSN} || $ENV{DBI_DBNAME} || '' unless $old_driver;

    if ($DBI::dbi_debug) {
	local $^W = 0;
	pop @_ if $connect_meth ne 'connect';
	my @args = @_; $args[2] = '****'; # hide password
	DBI->trace_msg("    -> $class->$connect_meth(".join(", ",@args).")\n");
    }
    Carp::croak('Usage: $class->connect([$dsn [,$user [,$passwd [,\%attr]]]])')
	if (ref $old_driver or ($attr and not ref $attr) or ref $pass);

    # extract dbi:driver prefix from $dsn into $1
    $dsn =~ s/^dbi:(\w*?)(?:\((.*?)\))?://i
			or '' =~ /()/; # ensure $1 etc are empty if match fails
    my $driver_attrib_spec = $2 || '';

    # Set $driver. Old style driver, if specified, overrides new dsn style.
    $driver = $old_driver || $1 || $ENV{DBI_DRIVER}
	or Carp::croak("Can't connect to data source '$dsn' "
            ."because I can't work out what driver to use "
            ."(it doesn't seem to contain a 'dbi:driver:' prefix "
            ."and the DBI_DRIVER env var is not set)");

    my $proxy;
    if ($ENV{DBI_AUTOPROXY} && $driver ne 'Proxy' && $driver ne 'Sponge' && $driver ne 'Switch') {
	my $dbi_autoproxy = $ENV{DBI_AUTOPROXY};
	$proxy = 'Proxy';
	if ($dbi_autoproxy =~ s/^dbi:(\w*?)(?:\((.*?)\))?://i) {
	    $proxy = $1;
	    $driver_attrib_spec = join ",",
                ($driver_attrib_spec) ? $driver_attrib_spec : (),
                ($2                 ) ? $2                  : ();
	}
	$dsn = "$dbi_autoproxy;dsn=dbi:$driver:$dsn";
	$driver = $proxy;
	DBI->trace_msg("       DBI_AUTOPROXY: dbi:$driver($driver_attrib_spec):$dsn\n");
    }
    # avoid recursion if proxy calls DBI->connect itself
    local $ENV{DBI_AUTOPROXY} if $ENV{DBI_AUTOPROXY};

    my %attributes;	# take a copy we can delete from
    if ($old_driver) {
	%attributes = %$attr if $attr;
    }
    else {		# new-style connect so new default semantics
	%attributes = (
	    PrintError => 1,
	    AutoCommit => 1,
	    ref $attr           ? %$attr : (),
	    # attributes in DSN take precedence over \%attr connect parameter
	    $driver_attrib_spec ? (split /\s*=>?\s*|\s*,\s*/, $driver_attrib_spec, -1) : (),
	);
    }
    $attr = \%attributes; # now set $attr to refer to our local copy

    my $drh = $DBI::installed_drh{$driver} || $class->install_driver($driver)
	or die "panic: $class->install_driver($driver) failed";

    # attributes in DSN take precedence over \%attr connect parameter
    $user = $attr->{Username} if defined $attr->{Username};
    $pass = $attr->{Password} if defined $attr->{Password};
    delete $attr->{Password}; # always delete Password as closure stores it securely
    if ( !(defined $user && defined $pass) ) {
        ($user, $pass) = $drh->default_user($user, $pass, $attr);
    }
    $attr->{Username} = $user; # force the Username to be the actual one used

    my $connect_closure = sub {
	my ($old_dbh, $override_attr) = @_;

        #use Data::Dumper;
        #warn "connect_closure: ".Data::Dumper::Dumper([$attr,\%attributes, $override_attr]);

	my $dbh;
	unless ($dbh = $drh->$connect_meth($dsn, $user, $pass, $attr)) {
	    $user = '' if !defined $user;
	    $dsn = '' if !defined $dsn;
	    # $drh->errstr isn't safe here because $dbh->DESTROY may not have
	    # been called yet and so the dbh errstr would not have been copied
	    # up to the drh errstr. Certainly true for connect_cached!
	    my $errstr = $DBI::errstr;
            # Getting '(no error string)' here is a symptom of a ref loop
	    $errstr = '(no error string)' if !defined $errstr;
	    my $msg = "$class connect('$dsn','$user',...) failed: $errstr";
	    DBI->trace_msg("       $msg\n");
	    # XXX HandleWarn
	    unless ($attr->{HandleError} && $attr->{HandleError}->($msg, $drh, $dbh)) {
		Carp::croak($msg) if $attr->{RaiseError};
		Carp::carp ($msg) if $attr->{PrintError};
	    }
	    $! = 0; # for the daft people who do DBI->connect(...) || die "$!";
	    return $dbh; # normally undef, but HandleError could change it
	}

        # merge any attribute overrides but don't change $attr itself (for closure)
        my $apply = { ($override_attr) ? (%$attr, %$override_attr ) : %$attr };

        # handle basic RootClass subclassing:
        my $rebless_class = $apply->{RootClass} || ($class ne 'DBI' ? $class : '');
        if ($rebless_class) {
            no strict 'refs';
            if ($apply->{RootClass}) { # explicit attribute (ie not static methd call class)
                delete $apply->{RootClass};
                DBI::_load_class($rebless_class, 0);
            }
            unless (@{"$rebless_class\::db::ISA"} && @{"$rebless_class\::st::ISA"}) {
                Carp::carp("DBI subclasses '$rebless_class\::db' and ::st are not setup, RootClass ignored");
                $rebless_class = undef;
                $class = 'DBI';
            }
            else {
                $dbh->{RootClass} = $rebless_class; # $dbh->STORE called via plain DBI::db
                DBI::_set_isa([$rebless_class], 'DBI');     # sets up both '::db' and '::st'
                DBI::_rebless($dbh, $rebless_class);        # appends '::db'
            }
        }

	if (%$apply) {

            if ($apply->{DbTypeSubclass}) {
                my $DbTypeSubclass = delete $apply->{DbTypeSubclass};
                DBI::_rebless_dbtype_subclass($dbh, $rebless_class||$class, $DbTypeSubclass);
            }
	    my $a;
	    foreach $a (qw(Profile RaiseError PrintError AutoCommit)) { # do these first
		next unless  exists $apply->{$a};
		$dbh->{$a} = delete $apply->{$a};
	    }
	    while ( my ($a, $v) = each %$apply) {
		eval { $dbh->{$a} = $v } or $@ && warn $@;
	    }
	}

        # confirm to driver (ie if subclassed) that we've connected sucessfully
        # and finished the attribute setup. pass in the original arguments
	$dbh->connected(@orig_args); #if ref $dbh ne 'DBI::db' or $proxy;

	DBI->trace_msg("    <- connect= $dbh\n") if $DBI::dbi_debug;

	return $dbh;
    };

    my $dbh = &$connect_closure(undef, undef);

    $dbh->{dbi_connect_closure} = $connect_closure if $dbh;

    return $dbh;
}


sub disconnect_all {
    keys %DBI::installed_drh; # reset iterator
    while ( my ($name, $drh) = each %DBI::installed_drh ) {
	$drh->disconnect_all() if ref $drh;
    }
}


sub disconnect {		# a regular beginners bug
    Carp::croak("DBI->disconnect is not a DBI method (read the DBI manual)");
}


sub install_driver {		# croaks on failure
    my $class = shift;
    my($driver, $attr) = @_;
    my $drh;

    $driver ||= $ENV{DBI_DRIVER} || '';

    # allow driver to be specified as a 'dbi:driver:' string
    $driver = $1 if $driver =~ s/^DBI:(.*?)://i;

    Carp::croak("usage: $class->install_driver(\$driver [, \%attr])")
		unless ($driver and @_<=3);

    # already installed
    return $drh if $drh = $DBI::installed_drh{$driver};

    $class->trace_msg("    -> $class->install_driver($driver"
			.") for $^O perl=$] pid=$$ ruid=$< euid=$>\n")
	if $DBI::dbi_debug;

    # --- load the code
    my $driver_class = "DBD::$driver";
    eval qq{package			# hide from PAUSE
		DBI::_firesafe;		# just in case
	    require $driver_class;	# load the driver
    };
    if ($@) {
	my $err = $@;
	my $advice = "";
	if ($err =~ /Can't find loadable object/) {
	    $advice = "Perhaps DBD::$driver was statically linked into a new perl binary."
		 ."\nIn which case you need to use that new perl binary."
		 ."\nOr perhaps only the .pm file was installed but not the shared object file."
	}
	elsif ($err =~ /Can't locate.*?DBD\/$driver\.pm in \@INC/) {
	    my @drv = $class->available_drivers(1);
	    $advice = "Perhaps the DBD::$driver perl module hasn't been fully installed,\n"
		     ."or perhaps the capitalisation of '$driver' isn't right.\n"
		     ."Available drivers: ".join(", ", @drv).".";
	}
	elsif ($err =~ /Can't load .*? for module DBD::/) {
	    $advice = "Perhaps a required shared library or dll isn't installed where expected";
	}
	elsif ($err =~ /Can't locate .*? in \@INC/) {
	    $advice = "Perhaps a module that DBD::$driver requires hasn't been fully installed";
	}
	Carp::croak("install_driver($driver) failed: $err$advice\n");
    }
    if ($DBI::dbi_debug) {
	no strict 'refs';
	(my $driver_file = $driver_class) =~ s/::/\//g;
	my $dbd_ver = ${"$driver_class\::VERSION"} || "undef";
	$class->trace_msg("       install_driver: $driver_class version $dbd_ver"
		." loaded from $INC{qq($driver_file.pm)}\n");
    }

    # --- do some behind-the-scenes checks and setups on the driver
    $class->setup_driver($driver_class);

    # --- run the driver function
    $drh = eval { $driver_class->driver($attr || {}) };
    unless ($drh && ref $drh && !$@) {
	my $advice = "";
        $@ ||= "$driver_class->driver didn't return a handle";
	# catch people on case in-sensitive systems using the wrong case
	$advice = "\nPerhaps the capitalisation of DBD '$driver' isn't right."
		if $@ =~ /locate object method/;
	Carp::croak("$driver_class initialisation failed: $@$advice");
    }

    $DBI::installed_drh{$driver} = $drh;
    $class->trace_msg("    <- install_driver= $drh\n") if $DBI::dbi_debug;
    $drh;
}

*driver = \&install_driver;	# currently an alias, may change


sub setup_driver {
    my ($class, $driver_class) = @_;
    my $type;
    foreach $type (qw(dr db st)){
	my $class = $driver_class."::$type";
	no strict 'refs';
	push @{"${class}::ISA"},     "DBD::_::$type"
	    unless UNIVERSAL::isa($class, "DBD::_::$type");
	my $mem_class = "DBD::_mem::$type";
	push @{"${class}_mem::ISA"}, $mem_class
	    unless UNIVERSAL::isa("${class}_mem", $mem_class)
	    or $DBI::PurePerl;
    }
}


sub _rebless {
    my $dbh = shift;
    my ($outer, $inner) = DBI::_handles($dbh);
    my $class = shift(@_).'::db';
    bless $inner => $class;
    bless $outer => $class; # outer last for return
}


sub _set_isa {
    my ($classes, $topclass) = @_;
    my $trace = DBI->trace_msg("       _set_isa([@$classes])\n");
    foreach my $suffix ('::db','::st') {
	my $previous = $topclass || 'DBI'; # trees are rooted here
	foreach my $class (@$classes) {
	    my $base_class = $previous.$suffix;
	    my $sub_class  = $class.$suffix;
	    my $sub_class_isa  = "${sub_class}::ISA";
	    no strict 'refs';
	    if (@$sub_class_isa) {
		DBI->trace_msg("       $sub_class_isa skipped (already set to @$sub_class_isa)\n")
		    if $trace;
	    }
	    else {
		@$sub_class_isa = ($base_class) unless @$sub_class_isa;
		DBI->trace_msg("       $sub_class_isa = $base_class\n")
		    if $trace;
	    }
	    $previous = $class;
	}
    }
}


sub _rebless_dbtype_subclass {
    my ($dbh, $rootclass, $DbTypeSubclass) = @_;
    # determine the db type names for class hierarchy
    my @hierarchy = DBI::_dbtype_names($dbh, $DbTypeSubclass);
    # add the rootclass prefix to each ('DBI::' or 'MyDBI::' etc)
    $_ = $rootclass.'::'.$_ foreach (@hierarchy);
    # load the modules from the 'top down'
    DBI::_load_class($_, 1) foreach (reverse @hierarchy);
    # setup class hierarchy if needed, does both '::db' and '::st'
    DBI::_set_isa(\@hierarchy, $rootclass);
    # finally bless the handle into the subclass
    DBI::_rebless($dbh, $hierarchy[0]);
}


sub _dbtype_names { # list dbtypes for hierarchy, ie Informix=>ADO=>ODBC
    my ($dbh, $DbTypeSubclass) = @_;

    if ($DbTypeSubclass && $DbTypeSubclass ne '1' && ref $DbTypeSubclass ne 'CODE') {
	# treat $DbTypeSubclass as a comma separated list of names
	my @dbtypes = split /\s*,\s*/, $DbTypeSubclass;
	$dbh->trace_msg("    DbTypeSubclass($DbTypeSubclass)=@dbtypes (explicit)\n");
	return @dbtypes;
    }

    # XXX will call $dbh->get_info(17) (=SQL_DBMS_NAME) in future?

    my $driver = $dbh->{Driver}->{Name};
    if ( $driver eq 'Proxy' ) {
        # XXX Looking into the internals of DBD::Proxy is questionable!
        ($driver) = $dbh->{proxy_client}->{application} =~ /^DBI:(.+?):/i
		or die "Can't determine driver name from proxy";
    }

    my @dbtypes = (ucfirst($driver));
    if ($driver eq 'ODBC' || $driver eq 'ADO') {
	# XXX will move these out and make extensible later:
	my $_dbtype_name_regexp = 'Oracle'; # eg 'Oracle|Foo|Bar'
	my %_dbtype_name_map = (
	     'Microsoft SQL Server'	=> 'MSSQL',
	     'SQL Server'		=> 'Sybase',
	     'Adaptive Server Anywhere'	=> 'ASAny',
	     'ADABAS D'			=> 'AdabasD',
	);

        my $name;
	$name = $dbh->func(17, 'GetInfo') # SQL_DBMS_NAME
		if $driver eq 'ODBC';
	$name = $dbh->{ado_conn}->Properties->Item('DBMS Name')->Value
		if $driver eq 'ADO';
	die "Can't determine driver name! ($DBI::errstr)\n"
		unless $name;

	my $dbtype;
        if ($_dbtype_name_map{$name}) {
            $dbtype = $_dbtype_name_map{$name};
        }
	else {
	    if ($name =~ /($_dbtype_name_regexp)/) {
		$dbtype = lc($1);
	    }
	    else { # generic mangling for other names:
		$dbtype = lc($name);
	    }
	    $dbtype =~ s/\b(\w)/\U$1/g;
	    $dbtype =~ s/\W+/_/g;
	}
	# add ODBC 'behind' ADO
	push    @dbtypes, 'ODBC' if $driver eq 'ADO';
	# add discovered dbtype in front of ADO/ODBC
	unshift @dbtypes, $dbtype;
    }
    @dbtypes = &$DbTypeSubclass($dbh, \@dbtypes)
	if (ref $DbTypeSubclass eq 'CODE');
    $dbh->trace_msg("    DbTypeSubclass($DbTypeSubclass)=@dbtypes\n");
    return @dbtypes;
}

sub _load_class {
    my ($load_class, $missing_ok) = @_;
    DBI->trace_msg("    _load_class($load_class, $missing_ok)\n", 2);
    no strict 'refs';
    return 1 if @{"$load_class\::ISA"};	# already loaded/exists
    (my $module = $load_class) =~ s!::!/!g;
    DBI->trace_msg("    _load_class require $module\n", 2);
    eval { require "$module.pm"; };
    return 1 unless $@;
    return 0 if $missing_ok && $@ =~ /^Can't locate \Q$module.pm\E/;
    die $@;
}


sub init_rootclass {	# deprecated
    return 1;
}


*internal = \&DBD::Switch::dr::driver;


sub available_drivers {
    my($quiet) = @_;
    my(@drivers, $d, $f);
    local(*DBI::DIR, $@);
    my(%seen_dir, %seen_dbd);
    my $haveFileSpec = eval { require File::Spec };
    foreach $d (@INC){
	chomp($d); # Perl 5 beta 3 bug in #!./perl -Ilib from Test::Harness
	my $dbd_dir =
	    ($haveFileSpec ? File::Spec->catdir($d, 'DBD') : "$d/DBD");
	next unless -d $dbd_dir;
	next if $seen_dir{$d};
	$seen_dir{$d} = 1;
	# XXX we have a problem here with case insensitive file systems
	# XXX since we can't tell what case must be used when loading.
	opendir(DBI::DIR, $dbd_dir) || Carp::carp "opendir $dbd_dir: $!\n";
	foreach $f (readdir(DBI::DIR)){
	    next unless $f =~ s/\.pm$//;
	    next if $f eq 'NullP';
	    if ($seen_dbd{$f}){
		Carp::carp "DBD::$f in $d is hidden by DBD::$f in $seen_dbd{$f}\n"
		    unless $quiet;
            } else {
		push(@drivers, $f);
	    }
	    $seen_dbd{$f} = $d;
	}
	closedir(DBI::DIR);
    }

    # "return sort @drivers" will not DWIM in scalar context.
    return wantarray ? sort @drivers : @drivers;
}

sub installed_versions {
    my ($class, $quiet) = @_;
    my %error;
    my %version = ( DBI => $DBI::VERSION );
    $version{"DBI::PurePerl"} = $DBI::PurePerl::VERSION
	if $DBI::PurePerl;
    for my $driver ($class->available_drivers($quiet)) {
	next if $DBI::PurePerl && grep { -d "$_/auto/DBD/$driver" } @INC;
	my $drh = eval {
	    local $SIG{__WARN__} = sub {};
	    $class->install_driver($driver);
	};
	($error{"DBD::$driver"}=$@),next if $@;
	no strict 'refs';
	my $vers = ${"DBD::$driver" . '::VERSION'};
	$version{"DBD::$driver"} = $vers || '?';
    }
    if (wantarray) {
       return map { m/^DBD::(\w+)/ ? ($1) : () } sort keys %version;
    }
    if (!defined wantarray) {	# void context
	require Config;		# add more detail
	$version{OS}   = "$^O\t($Config::Config{osvers})";
	$version{Perl} = "$]\t($Config::Config{archname})";
	$version{$_}   = (($error{$_} =~ s/ \(\@INC.*//s),$error{$_})
	    for keys %error;
	printf "  %-16s: %s\n",$_,$version{$_}
	    for reverse sort keys %version;
    }
    return \%version;
}


sub data_sources {
    my ($class, $driver, @other) = @_;
    my $drh = $class->install_driver($driver);
    my @ds = $drh->data_sources(@other);
    return @ds;
}


sub neat_list {
    my ($listref, $maxlen, $sep) = @_;
    $maxlen = 0 unless defined $maxlen;	# 0 == use internal default
    $sep = ", " unless defined $sep;
    join($sep, map { neat($_,$maxlen) } @$listref);
}


sub dump_results {	# also aliased as a method in DBD::_::st
    my ($sth, $maxlen, $lsep, $fsep, $fh) = @_;
    return 0 unless $sth;
    $maxlen ||= 35;
    $lsep   ||= "\n";
    $fh ||= \*STDOUT;
    my $rows = 0;
    my $ref;
    while($ref = $sth->fetch) {
	print $fh $lsep if $rows++ and $lsep;
	my $str = neat_list($ref,$maxlen,$fsep);
	print $fh $str;	# done on two lines to avoid 5.003 errors
    }
    print $fh "\n$rows rows".($DBI::err ? " ($DBI::err: $DBI::errstr)" : "")."\n";
    $rows;
}


sub data_diff {
    my ($a, $b, $logical) = @_;

    my $diff   = data_string_diff($a, $b);
    return "" if $logical and !$diff;

    my $a_desc = data_string_desc($a);
    my $b_desc = data_string_desc($b);
    return "" if !$diff and $a_desc eq $b_desc;

    $diff ||= "Strings contain the same sequence of characters"
    	if length($a);
    $diff .= "\n" if $diff;
    return "a: $a_desc\nb: $b_desc\n$diff";
}


sub data_string_diff {
    # Compares 'logical' characters, not bytes, so a latin1 string and an
    # an equivalent unicode string will compare as equal even though their
    # byte encodings are different.
    my ($a, $b) = @_;
    unless (defined $a and defined $b) {             # one undef
	return ""
		if !defined $a and !defined $b;
	return "String a is undef, string b has ".length($b)." characters"
		if !defined $a;
	return "String b is undef, string a has ".length($a)." characters"
		if !defined $b;
    }

    require utf8;
    # hack to cater for perl 5.6
    *utf8::is_utf8 = sub { (DBI::neat(shift)=~/^"/) } unless defined &utf8::is_utf8;

    my @a_chars = (utf8::is_utf8($a)) ? unpack("U*", $a) : unpack("C*", $a);
    my @b_chars = (utf8::is_utf8($b)) ? unpack("U*", $b) : unpack("C*", $b);
    my $i = 0;
    while (@a_chars && @b_chars) {
	++$i, shift(@a_chars), shift(@b_chars), next
	    if $a_chars[0] == $b_chars[0];# compare ordinal values
	my @desc = map {
	    $_ > 255 ?                    # if wide character...
	      sprintf("\\x{%04X}", $_) :  # \x{...}
	      chr($_) =~ /[[:cntrl:]]/ ?  # else if control character ...
	      sprintf("\\x%02X", $_) :    # \x..
	      chr($_)                     # else as themselves
	} ($a_chars[0], $b_chars[0]);
	# highlight probable double-encoding?
        foreach my $c ( @desc ) {
	    next unless $c =~ m/\\x\{08(..)}/;
	    $c .= "='" .chr(hex($1)) ."'"
	}
	return sprintf "Strings differ at index $i: a[$i]=$desc[0], b[$i]=$desc[1]";
    }
    return "String a truncated after $i characters" if @b_chars;
    return "String b truncated after $i characters" if @a_chars;
    return "";
}


sub data_string_desc {	# describe a data string
    my ($a) = @_;
    require bytes;
    require utf8;

    # hacks to cater for perl 5.6
    *utf8::is_utf8 = sub { (DBI::neat(shift)=~/^"/) } unless defined &utf8::is_utf8;
    *utf8::valid   = sub {                        1 } unless defined &utf8::valid;

    # Give sufficient info to help diagnose at least these kinds of situations:
    # - valid UTF8 byte sequence but UTF8 flag not set
    #   (might be ascii so also need to check for hibit to make it worthwhile)
    # - UTF8 flag set but invalid UTF8 byte sequence
    # could do better here, but this'll do for now
    my $utf8 = sprintf "UTF8 %s%s",
	utf8::is_utf8($a) ? "on" : "off",
	utf8::valid($a||'') ? "" : " but INVALID encoding";
    return "$utf8, undef" unless defined $a;
    my $is_ascii = $a =~ m/^[\000-\177]*$/;
    return sprintf "%s, %s, %d characters %d bytes",
	$utf8, $is_ascii ? "ASCII" : "non-ASCII",
	length($a), bytes::length($a);
}


sub connect_test_perf {
    my($class, $dsn,$dbuser,$dbpass, $attr) = @_;
	Carp::croak("connect_test_perf needs hash ref as fourth arg") unless ref $attr;
    # these are non standard attributes just for this special method
    my $loops ||= $attr->{dbi_loops} || 5;
    my $par   ||= $attr->{dbi_par}   || 1;	# parallelism
    my $verb  ||= $attr->{dbi_verb}  || 1;
    my $meth  ||= $attr->{dbi_meth}  || 'connect';
    print "$dsn: testing $loops sets of $par connections:\n";
    require "FileHandle.pm";	# don't let toke.c create empty FileHandle package
    local $| = 1;
    my $drh = $class->install_driver($dsn) or Carp::croak("Can't install $dsn driver\n");
    # test the connection and warm up caches etc
    $drh->connect($dsn,$dbuser,$dbpass) or Carp::croak("connect failed: $DBI::errstr");
    my $t1 = dbi_time();
    my $loop;
    for $loop (1..$loops) {
	my @cons;
	print "Connecting... " if $verb;
	for (1..$par) {
	    print "$_ ";
	    push @cons, ($drh->connect($dsn,$dbuser,$dbpass)
		    or Carp::croak("connect failed: $DBI::errstr\n"));
	}
	print "\nDisconnecting...\n" if $verb;
	for (@cons) {
	    $_->disconnect or warn "disconnect failed: $DBI::errstr"
	}
    }
    my $t2 = dbi_time();
    my $td = $t2 - $t1;
    printf "$meth %d and disconnect them, %d times: %.4fs / %d = %.4fs\n",
        $par, $loops, $td, $loops*$par, $td/($loops*$par);
    return $td;
}


# Help people doing DBI->errstr, might even document it one day
# XXX probably best moved to cheaper XS code if this gets documented
sub err    { $DBI::err    }
sub errstr { $DBI::errstr }


# --- Private Internal Function for Creating New DBI Handles

# XXX move to PurePerl?
*DBI::dr::TIEHASH = \&DBI::st::TIEHASH;
*DBI::db::TIEHASH = \&DBI::st::TIEHASH;


# These three special constructors are called by the drivers
# The way they are called is likely to change.

our $shared_profile;

sub _new_drh {	# called by DBD::<drivername>::driver()
    my ($class, $initial_attr, $imp_data) = @_;
    # Provide default storage for State,Err and Errstr.
    # Note that these are shared by all child handles by default! XXX
    # State must be undef to get automatic faking in DBI::var::FETCH
    my ($h_state_store, $h_err_store, $h_errstr_store) = (undef, 0, '');
    my $attr = {
	# these attributes get copied down to child handles by default
	'State'		=> \$h_state_store,  # Holder for DBI::state
	'Err'		=> \$h_err_store,    # Holder for DBI::err
	'Errstr'	=> \$h_errstr_store, # Holder for DBI::errstr
	'TraceLevel' 	=> 0,
	FetchHashKeyName=> 'NAME',
	%$initial_attr,
    };
    my ($h, $i) = _new_handle('DBI::dr', '', $attr, $imp_data, $class);

    # XXX DBI_PROFILE unless DBI::PurePerl because for some reason
    # it kills the t/zz_*_pp.t tests (they silently exit early)
    if ($ENV{DBI_PROFILE} && !$DBI::PurePerl) {
	# The profile object created here when the first driver is loaded
	# is shared by all drivers so we end up with just one set of profile
	# data and thus the 'total time in DBI' is really the true total.
	if (!$shared_profile) {	# first time
	    $h->{Profile} = $ENV{DBI_PROFILE};
	    $shared_profile = $h->{Profile};
	}
	else {
	    $h->{Profile} = $shared_profile;
	}
    }
    return $h unless wantarray;
    ($h, $i);
}

sub _new_dbh {	# called by DBD::<drivername>::dr::connect()
    my ($drh, $attr, $imp_data) = @_;
    my $imp_class = $drh->{ImplementorClass}
	or Carp::croak("DBI _new_dbh: $drh has no ImplementorClass");
    substr($imp_class,-4,4) = '::db';
    my $app_class = ref $drh;
    substr($app_class,-4,4) = '::db';
    $attr->{Err}    ||= \my $err;
    $attr->{Errstr} ||= \my $errstr;
    $attr->{State}  ||= \my $state;
    _new_handle($app_class, $drh, $attr, $imp_data, $imp_class);
}

sub _new_sth {	# called by DBD::<drivername>::db::prepare)
    my ($dbh, $attr, $imp_data) = @_;
    my $imp_class = $dbh->{ImplementorClass}
	or Carp::croak("DBI _new_sth: $dbh has no ImplementorClass");
    substr($imp_class,-4,4) = '::st';
    my $app_class = ref $dbh;
    substr($app_class,-4,4) = '::st';
    _new_handle($app_class, $dbh, $attr, $imp_data, $imp_class);
}


# end of DBI package



# --------------------------------------------------------------------
# === The internal DBI Switch pseudo 'driver' class ===

{   package	# hide from PAUSE
	DBD::Switch::dr;
    DBI->setup_driver('DBD::Switch');	# sets up @ISA

    $DBD::Switch::dr::imp_data_size = 0;
    $DBD::Switch::dr::imp_data_size = 0;	# avoid typo warning
    my $drh;

    sub driver {
	return $drh if $drh;	# a package global

	my $inner;
	($drh, $inner) = DBI::_new_drh('DBD::Switch::dr', {
		'Name'    => 'Switch',
		'Version' => $DBI::VERSION,
		'Attribution' => "DBI $DBI::VERSION by Tim Bunce",
	    });
	Carp::croak("DBD::Switch init failed!") unless ($drh && $inner);
	return $drh;
    }
    sub CLONE {
	undef $drh;
    }

    sub FETCH {
	my($drh, $key) = @_;
	return DBI->trace if $key eq 'DebugDispatch';
	return undef if $key eq 'DebugLog';	# not worth fetching, sorry
	return $drh->DBD::_::dr::FETCH($key);
	undef;
    }
    sub STORE {
	my($drh, $key, $value) = @_;
	if ($key eq 'DebugDispatch') {
	    DBI->trace($value);
	} elsif ($key eq 'DebugLog') {
	    DBI->trace(-1, $value);
	} else {
	    $drh->DBD::_::dr::STORE($key, $value);
	}
    }
}


# --------------------------------------------------------------------
# === OPTIONAL MINIMAL BASE CLASSES FOR DBI SUBCLASSES ===

# We only define default methods for harmless functions.
# We don't, for example, define a DBD::_::st::prepare()

{   package		# hide from PAUSE
	DBD::_::common; # ====== Common base class methods ======
    use strict;

    # methods common to all handle types:

    sub _not_impl {
	my ($h, $method) = @_;
	$h->trace_msg("Driver does not implement the $method method.\n");
	return;	# empty list / undef
    }

    # generic TIEHASH default methods:
    sub FIRSTKEY { }
    sub NEXTKEY  { }
    sub EXISTS   { defined($_[0]->FETCH($_[1])) } # XXX undef?
    sub CLEAR    { Carp::carp "Can't CLEAR $_[0] (DBI)" }

    sub FETCH_many {    # XXX should move to C one day
        my $h = shift;
        # scalar is needed to workaround drivers that return an empty list
        # for some attributes
        return map { scalar $h->FETCH($_) } @_;
    }

    *dump_handle = \&DBI::dump_handle;

    sub install_method {
	# special class method called directly by apps and/or drivers
	# to install new methods into the DBI dispatcher
	# DBD::Foo::db->install_method("foo_mumble", { usage => [...], options => '...' });
	my ($class, $method, $attr) = @_;
	Carp::croak("Class '$class' must begin with DBD:: and end with ::db or ::st")
	    unless $class =~ /^DBD::(\w+)::(dr|db|st)$/;
	my ($driver, $subtype) = ($1, $2);
	Carp::croak("invalid method name '$method'")
	    unless $method =~ m/^([a-z]+_)\w+$/;
	my $prefix = $1;
	my $reg_info = $dbd_prefix_registry->{$prefix};
	Carp::carp("method name prefix '$prefix' is not associated with a registered driver") unless $reg_info;

	my $full_method = "DBI::${subtype}::$method";
	$DBI::installed_methods{$full_method} = $attr;

	my (undef, $filename, $line) = caller;
	# XXX reformat $attr as needed for _install_method
	my %attr = %{$attr||{}}; # copy so we can edit
	DBI->_install_method("DBI::${subtype}::$method", "$filename at line $line", \%attr);
    }

    sub parse_trace_flags {
	my ($h, $spec) = @_;
	my $level = 0;
	my $flags = 0;
	my @unknown;
	for my $word (split /\s*[|&,]\s*/, $spec) {
	    if (DBI::looks_like_number($word) && $word <= 0xF && $word >= 0) {
		$level = $word;
	    } elsif ($word eq 'ALL') {
		$flags = 0x7FFFFFFF; # XXX last bit causes negative headaches
		last;
	    } elsif (my $flag = $h->parse_trace_flag($word)) {
		$flags |= $flag;
	    }
	    else {
		push @unknown, $word;
	    }
	}
	if (@unknown && (ref $h ? $h->FETCH('Warn') : 1)) {
	    Carp::carp("$h->parse_trace_flags($spec) ignored unknown trace flags: ".
		join(" ", map { DBI::neat($_) } @unknown));
	}
	$flags |= $level;
	return $flags;
    }

    sub parse_trace_flag {
	my ($h, $name) = @_;
	#      0xddDDDDrL (driver, DBI, reserved, Level)
	return 0x00000100 if $name eq 'SQL';
	return;
    }

    sub private_attribute_info {
        return undef;
    }

    sub visit_child_handles {
	my ($h, $code, $info) = @_;
	$info = {} if not defined $info;
	for my $ch (@{ $h->{ChildHandles} || []}) {
	    next unless $ch;
	    my $child_info = $code->($ch, $info)
		or next;
	    $ch->visit_child_handles($code, $child_info);
	}
	return $info;
    }
}


{   package		# hide from PAUSE
	DBD::_::dr;	# ====== DRIVER ======
    @DBD::_::dr::ISA = qw(DBD::_::common);
    use strict;

    sub default_user {
	my ($drh, $user, $pass, $attr) = @_;
	$user = $ENV{DBI_USER} unless defined $user;
	$pass = $ENV{DBI_PASS} unless defined $pass;
	return ($user, $pass);
    }

    sub connect { # normally overridden, but a handy default
	my ($drh, $dsn, $user, $auth) = @_;
	my ($this) = DBI::_new_dbh($drh, {
	    'Name' => $dsn,
	});
	# XXX debatable as there's no "server side" here
	# (and now many uses would trigger warnings on DESTROY)
	# $this->STORE(Active => 1);
        # so drivers should set it in their own connect
	$this;
    }


    sub connect_cached {
        my $drh = shift;
	my ($dsn, $user, $auth, $attr) = @_;

	my $cache = $drh->{CachedKids} ||= {};
	my $key = do { local $^W;
	    join "!\001", $dsn, $user, $auth, DBI::_concat_hash_sorted($attr, "=\001", ",\001", 0, 0)
	};
	my $dbh = $cache->{$key};
        $drh->trace_msg(sprintf("    connect_cached: key '$key', cached dbh $dbh\n", DBI::neat($key), DBI::neat($dbh)))
            if $DBI::dbi_debug >= 4;

        my $cb = $attr->{Callbacks}; # take care not to autovivify
	if ($dbh && $dbh->FETCH('Active') && eval { $dbh->ping }) {
            # If the caller has provided a callback then call it
            if ($cb and $cb = $cb->{"connect_cached.reused"}) {
		local $_ = "connect_cached.reused";
		$cb->($dbh, $dsn, $user, $auth, $attr);
            }
	    return $dbh;
	}

	# If the caller has provided a callback then call it
	if ($cb and $cb = $cb->{"connect_cached.new"}) {
	    local $_ = "connect_cached.new";
	    $cb->($dbh, $dsn, $user, $auth, $attr);
	}

	$dbh = $drh->connect(@_);
	$cache->{$key} = $dbh;	# replace prev entry, even if connect failed
	return $dbh;
    }

}


{   package		# hide from PAUSE
	DBD::_::db;	# ====== DATABASE ======
    @DBD::_::db::ISA = qw(DBD::_::common);
    use strict;

    sub clone {
	my ($old_dbh, $attr) = @_;
	my $closure = $old_dbh->{dbi_connect_closure} or return;
	unless ($attr) {
	    # copy attributes visible in the attribute cache
	    keys %$old_dbh;	# reset iterator
	    while ( my ($k, $v) = each %$old_dbh ) {
		# ignore non-code refs, i.e., caches, handles, Err etc
		next if ref $v && ref $v ne 'CODE'; # HandleError etc
		$attr->{$k} = $v;
	    }
	    # explicitly set attributes which are unlikely to be in the
	    # attribute cache, i.e., boolean's and some others
	    $attr->{$_} = $old_dbh->FETCH($_) for (qw(
		AutoCommit ChopBlanks InactiveDestroy
		LongTruncOk PrintError PrintWarn Profile RaiseError
		ShowErrorStatement TaintIn TaintOut
	    ));
	}
	# use Data::Dumper; warn Dumper([$old_dbh, $attr]);
	my $new_dbh = &$closure($old_dbh, $attr);
	unless ($new_dbh) {
	    # need to copy err/errstr from driver back into $old_dbh
	    my $drh = $old_dbh->{Driver};
	    return $old_dbh->set_err($drh->err, $drh->errstr, $drh->state);
	}
	return $new_dbh;
    }

    sub quote_identifier {
	my ($dbh, @id) = @_;
	my $attr = (@id > 3 && ref($id[-1])) ? pop @id : undef;

	my $info = $dbh->{dbi_quote_identifier_cache} ||= [
	    $dbh->get_info(29)  || '"',	# SQL_IDENTIFIER_QUOTE_CHAR
	    $dbh->get_info(41)  || '.',	# SQL_CATALOG_NAME_SEPARATOR
	    $dbh->get_info(114) ||   1,	# SQL_CATALOG_LOCATION
	];

	my $quote = $info->[0];
	foreach (@id) {			# quote the elements
	    next unless defined;
	    s/$quote/$quote$quote/g;	# escape embedded quotes
	    $_ = qq{$quote$_$quote};
	}

	# strip out catalog if present for special handling
	my $catalog = (@id >= 3) ? shift @id : undef;

	# join the dots, ignoring any null/undef elements (ie schema)
	my $quoted_id = join '.', grep { defined } @id;

	if ($catalog) {			# add catalog correctly
	    $quoted_id = ($info->[2] == 2)	# SQL_CL_END
		    ? $quoted_id . $info->[1] . $catalog
		    : $catalog   . $info->[1] . $quoted_id;
	}
	return $quoted_id;
    }

    sub quote {
	my ($dbh, $str, $data_type) = @_;

	return "NULL" unless defined $str;
	unless ($data_type) {
	    $str =~ s/'/''/g;		# ISO SQL2
	    return "'$str'";
	}

	my $dbi_literal_quote_cache = $dbh->{'dbi_literal_quote_cache'} ||= [ {} , {} ];
	my ($prefixes, $suffixes) = @$dbi_literal_quote_cache;

	my $lp = $prefixes->{$data_type};
	my $ls = $suffixes->{$data_type};

	if ( ! defined $lp || ! defined $ls ) {
	    my $ti = $dbh->type_info($data_type);
	    $lp = $prefixes->{$data_type} = $ti ? $ti->{LITERAL_PREFIX} || "" : "'";
	    $ls = $suffixes->{$data_type} = $ti ? $ti->{LITERAL_SUFFIX} || "" : "'";
	}
	return $str unless $lp || $ls; # no quoting required

	# XXX don't know what the standard says about escaping
	# in the 'general case' (where $lp != "'").
	# So we just do this and hope:
	$str =~ s/$lp/$lp$lp/g
		if $lp && $lp eq $ls && ($lp eq "'" || $lp eq '"');
	return "$lp$str$ls";
    }

    sub rows { -1 }	# here so $DBI::rows 'works' after using $dbh

    sub do {
	my($dbh, $statement, $attr, @params) = @_;
	my $sth = $dbh->prepare($statement, $attr) or return undef;
	$sth->execute(@params) or return undef;
	my $rows = $sth->rows;
	($rows == 0) ? "0E0" : $rows;
    }

    sub _do_selectrow {
	my ($method, $dbh, $stmt, $attr, @bind) = @_;
	my $sth = ((ref $stmt) ? $stmt : $dbh->prepare($stmt, $attr))
	    or return;
	$sth->execute(@bind)
	    or return;
	my $row = $sth->$method()
	    and $sth->finish;
	return $row;
    }

    sub selectrow_hashref {  return _do_selectrow('fetchrow_hashref',  @_); }

    # XXX selectrow_array/ref also have C implementations in Driver.xst
    sub selectrow_arrayref { return _do_selectrow('fetchrow_arrayref', @_); }
    sub selectrow_array {
	my $row = _do_selectrow('fetchrow_arrayref', @_) or return;
	return $row->[0] unless wantarray;
	return @$row;
    }

    # XXX selectall_arrayref also has C implementation in Driver.xst
    # which fallsback to this if a slice is given
    sub selectall_arrayref {
	my ($dbh, $stmt, $attr, @bind) = @_;
	my $sth = (ref $stmt) ? $stmt : $dbh->prepare($stmt, $attr)
	    or return;
	$sth->execute(@bind) || return;
	my $slice = $attr->{Slice}; # typically undef, else hash or array ref
	if (!$slice and $slice=$attr->{Columns}) {
	    if (ref $slice eq 'ARRAY') { # map col idx to perl array idx
		$slice = [ @{$attr->{Columns}} ];	# take a copy
		for (@$slice) { $_-- }
	    }
	}
	my $rows = $sth->fetchall_arrayref($slice, my $MaxRows = $attr->{MaxRows});
	$sth->finish if defined $MaxRows;
	return $rows;
    }

    sub selectall_hashref {
	my ($dbh, $stmt, $key_field, $attr, @bind) = @_;
	my $sth = (ref $stmt) ? $stmt : $dbh->prepare($stmt, $attr);
	return unless $sth;
	$sth->execute(@bind) || return;
	return $sth->fetchall_hashref($key_field);
    }

    sub selectcol_arrayref {
	my ($dbh, $stmt, $attr, @bind) = @_;
	my $sth = (ref $stmt) ? $stmt : $dbh->prepare($stmt, $attr);
	return unless $sth;
	$sth->execute(@bind) || return;
	my @columns = ($attr->{Columns}) ? @{$attr->{Columns}} : (1);
	my @values  = (undef) x @columns;
	my $idx = 0;
	for (@columns) {
	    $sth->bind_col($_, \$values[$idx++]) || return;
	}
	my @col;
	if (my $max = $attr->{MaxRows}) {
	    push @col, @values while @col<$max && $sth->fetch;
	}
	else {
	    push @col, @values while $sth->fetch;
	}
	return \@col;
    }

    sub prepare_cached {
	my ($dbh, $statement, $attr, $if_active) = @_;

	# Needs support at dbh level to clear cache before complaining about
	# active children. The XS template code does this. Drivers not using
	# the template must handle clearing the cache themselves.
	my $cache = $dbh->{CachedKids} ||= {};
	my $key = do { local $^W;
	    join "!\001", $statement, DBI::_concat_hash_sorted($attr, "=\001", ",\001", 0, 0)
	};
	my $sth = $cache->{$key};

	if ($sth) {
	    return $sth unless $sth->FETCH('Active');
	    Carp::carp("prepare_cached($statement) statement handle $sth still Active")
		unless ($if_active ||= 0);
	    $sth->finish if $if_active <= 1;
	    return $sth  if $if_active <= 2;
	}

	$sth = $dbh->prepare($statement, $attr);
	$cache->{$key} = $sth if $sth;

	return $sth;
    }

    sub ping {
	my $dbh = shift;
	$dbh->_not_impl('ping');
	# "0 but true" is a special kind of true 0 that is used here so
	# applications can check if the ping was a real ping or not
	($dbh->FETCH('Active')) ?  "0 but true" : 0;
    }

    sub begin_work {
	my $dbh = shift;
	return $dbh->set_err($DBI::stderr, "Already in a transaction")
		unless $dbh->FETCH('AutoCommit');
	$dbh->STORE('AutoCommit', 0); # will croak if driver doesn't support it
	$dbh->STORE('BegunWork',  1); # trigger post commit/rollback action
	return 1;
    }

    sub primary_key {
	my ($dbh, @args) = @_;
	my $sth = $dbh->primary_key_info(@args) or return;
	my ($row, @col);
	push @col, $row->[3] while ($row = $sth->fetch);
	Carp::croak("primary_key method not called in list context")
		unless wantarray; # leave us some elbow room
	return @col;
    }

    sub tables {
	my ($dbh, @args) = @_;
	my $sth    = $dbh->table_info(@args[0,1,2,3,4]) or return;
	my $tables = $sth->fetchall_arrayref or return;
	my @tables;
	if ($dbh->get_info(29)) { # SQL_IDENTIFIER_QUOTE_CHAR
	    @tables = map { $dbh->quote_identifier( @{$_}[0,1,2] ) } @$tables;
	}
	else {		# temporary old style hack (yeach)
	    @tables = map {
		my $name = $_->[2];
		if ($_->[1]) {
		    my $schema = $_->[1];
		    # a sad hack (mostly for Informix I recall)
		    my $quote = ($schema eq uc($schema)) ? '' : '"';
		    $name = "$quote$schema$quote.$name"
		}
		$name;
	    } @$tables;
	}
	return @tables;
    }

    sub type_info {	# this should be sufficient for all drivers
	my ($dbh, $data_type) = @_;
	my $idx_hash;
	my $tia = $dbh->{dbi_type_info_row_cache};
	if ($tia) {
	    $idx_hash = $dbh->{dbi_type_info_idx_cache};
	}
	else {
	    my $temp = $dbh->type_info_all;
	    return unless $temp && @$temp;
	    # we cache here because type_info_all may be expensive to call
	    # (and we take a copy so the following shift can't corrupt
	    # the data that may be returned by future calls to type_info_all)
	    $tia      = $dbh->{dbi_type_info_row_cache} = [ @$temp ];
	    $idx_hash = $dbh->{dbi_type_info_idx_cache} = shift @$tia;
	}

	my $dt_idx   = $idx_hash->{DATA_TYPE} || $idx_hash->{data_type};
	Carp::croak("type_info_all returned non-standard DATA_TYPE index value ($dt_idx != 1)")
	    if $dt_idx && $dt_idx != 1;

	# --- simple DATA_TYPE match filter
	my @ti;
	my @data_type_list = (ref $data_type) ? @$data_type : ($data_type);
	foreach $data_type (@data_type_list) {
	    if (defined($data_type) && $data_type != DBI::SQL_ALL_TYPES()) {
		push @ti, grep { $_->[$dt_idx] == $data_type } @$tia;
	    }
	    else {	# SQL_ALL_TYPES
		push @ti, @$tia;
	    }
	    last if @ti;	# found at least one match
	}

	# --- format results into list of hash refs
	my $idx_fields = keys %$idx_hash;
	my @idx_names  = map { uc($_) } keys %$idx_hash;
	my @idx_values = values %$idx_hash;
	Carp::croak "type_info_all result has $idx_fields keys but ".(@{$ti[0]})." fields"
		if @ti && @{$ti[0]} != $idx_fields;
	my @out = map {
	    my %h; @h{@idx_names} = @{$_}[ @idx_values ]; \%h;
	} @ti;
	return $out[0] unless wantarray;
	return @out;
    }

    sub data_sources {
	my ($dbh, @other) = @_;
	my $drh = $dbh->{Driver}; # XXX proxy issues?
	return $drh->data_sources(@other);
    }

}


{   package		# hide from PAUSE
	DBD::_::st;	# ====== STATEMENT ======
    @DBD::_::st::ISA = qw(DBD::_::common);
    use strict;

    sub bind_param { Carp::croak("Can't bind_param, not implement by driver") }

#
# ********************************************************
#
#	BEGIN ARRAY BINDING
#
#	Array binding support for drivers which don't support
#	array binding, but have sufficient interfaces to fake it.
#	NOTE: mixing scalars and arrayrefs requires using bind_param_array
#	for *all* params...unless we modify bind_param for the default
#	case...
#
#	2002-Apr-10	D. Arnold

    sub bind_param_array {
	my $sth = shift;
	my ($p_id, $value_array, $attr) = @_;

	return $sth->set_err($DBI::stderr, "Value for parameter $p_id must be a scalar or an arrayref, not a ".ref($value_array))
	    if defined $value_array and ref $value_array and ref $value_array ne 'ARRAY';

	return $sth->set_err($DBI::stderr, "Can't use named placeholder '$p_id' for non-driver supported bind_param_array")
	    unless DBI::looks_like_number($p_id); # because we rely on execute(@ary) here

	return $sth->set_err($DBI::stderr, "Placeholder '$p_id' is out of range")
	    if $p_id <= 0; # can't easily/reliably test for too big

	# get/create arrayref to hold params
	my $hash_of_arrays = $sth->{ParamArrays} ||= { };

	# If the bind has attribs then we rely on the driver conforming to
	# the DBI spec in that a single bind_param() call with those attribs
	# makes them 'sticky' and apply to all later execute(@values) calls.
	# Since we only call bind_param() if we're given attribs then
	# applications using drivers that don't support bind_param can still
	# use bind_param_array() so long as they don't pass any attribs.

	$$hash_of_arrays{$p_id} = $value_array;
	return $sth->bind_param($p_id, undef, $attr)
		if $attr;
	1;
    }

    sub bind_param_inout_array {
	my $sth = shift;
	# XXX not supported so we just call bind_param_array instead
	# and then return an error
	my ($p_num, $value_array, $attr) = @_;
	$sth->bind_param_array($p_num, $value_array, $attr);
	return $sth->set_err($DBI::stderr, "bind_param_inout_array not supported");
    }

    sub bind_columns {
	my $sth = shift;
	my $fields = $sth->FETCH('NUM_OF_FIELDS') || 0;
	if ($fields <= 0 && !$sth->{Active}) {
	    return $sth->set_err($DBI::stderr, "Statement has no result columns to bind"
		    ." (perhaps you need to successfully call execute first)");
	}
	# Backwards compatibility for old-style call with attribute hash
	# ref as first arg. Skip arg if undef or a hash ref.
	my $attr;
	$attr = shift if !defined $_[0] or ref($_[0]) eq 'HASH';

	my $idx = 0;
	$sth->bind_col(++$idx, shift, $attr) or return
	    while (@_ and $idx < $fields);

	return $sth->set_err($DBI::stderr, "bind_columns called with ".($idx+@_)." values but $fields are needed")
	    if @_ or $idx != $fields;

	return 1;
    }

    sub execute_array {
	my $sth = shift;
	my ($attr, @array_of_arrays) = @_;
	my $NUM_OF_PARAMS = $sth->FETCH('NUM_OF_PARAMS'); # may be undef at this point

	# get tuple status array or hash attribute
	my $tuple_sts = $attr->{ArrayTupleStatus};
	return $sth->set_err($DBI::stderr, "ArrayTupleStatus attribute must be an arrayref")
		if $tuple_sts and ref $tuple_sts ne 'ARRAY';

	# bind all supplied arrays
	if (@array_of_arrays) {
	    $sth->{ParamArrays} = { };	# clear out old params
	    return $sth->set_err($DBI::stderr,
		    @array_of_arrays." bind values supplied but $NUM_OF_PARAMS expected")
		if defined ($NUM_OF_PARAMS) && @array_of_arrays != $NUM_OF_PARAMS;
	    $sth->bind_param_array($_, $array_of_arrays[$_-1]) or return
		foreach (1..@array_of_arrays);
	}

	my $fetch_tuple_sub;

	if ($fetch_tuple_sub = $attr->{ArrayTupleFetch}) {	# fetch on demand

	    return $sth->set_err($DBI::stderr,
		    "Can't use both ArrayTupleFetch and explicit bind values")
		if @array_of_arrays; # previous bind_param_array calls will simply be ignored

	    if (UNIVERSAL::isa($fetch_tuple_sub,'DBI::st')) {
		my $fetch_sth = $fetch_tuple_sub;
		return $sth->set_err($DBI::stderr,
			"ArrayTupleFetch sth is not Active, need to execute() it first")
		    unless $fetch_sth->{Active};
		# check column count match to give more friendly message
		my $NUM_OF_FIELDS = $fetch_sth->{NUM_OF_FIELDS};
		return $sth->set_err($DBI::stderr,
			"$NUM_OF_FIELDS columns from ArrayTupleFetch sth but $NUM_OF_PARAMS expected")
		    if defined($NUM_OF_FIELDS) && defined($NUM_OF_PARAMS)
		    && $NUM_OF_FIELDS != $NUM_OF_PARAMS;
		$fetch_tuple_sub = sub { $fetch_sth->fetchrow_arrayref };
	    }
	    elsif (!UNIVERSAL::isa($fetch_tuple_sub,'CODE')) {
		return $sth->set_err($DBI::stderr, "ArrayTupleFetch '$fetch_tuple_sub' is not a code ref or statement handle");
	    }

	}
	else {
	    my $NUM_OF_PARAMS_given = keys %{ $sth->{ParamArrays} || {} };
	    return $sth->set_err($DBI::stderr,
		    "$NUM_OF_PARAMS_given bind values supplied but $NUM_OF_PARAMS expected")
		if defined($NUM_OF_PARAMS) && $NUM_OF_PARAMS != $NUM_OF_PARAMS_given;

	    # get the length of a bound array
	    my $maxlen;
	    my %hash_of_arrays = %{$sth->{ParamArrays}};
	    foreach (keys(%hash_of_arrays)) {
		my $ary = $hash_of_arrays{$_};
		next unless ref $ary eq 'ARRAY';
		$maxlen = @$ary if !$maxlen || @$ary > $maxlen;
	    }
	    # if there are no arrays then execute scalars once
	    $maxlen = 1 unless defined $maxlen;
	    my @bind_ids = 1..keys(%hash_of_arrays);

	    my $tuple_idx = 0;
	    $fetch_tuple_sub = sub {
		return if $tuple_idx >= $maxlen;
		my @tuple = map {
		    my $a = $hash_of_arrays{$_};
		    ref($a) ? $a->[$tuple_idx] : $a
		} @bind_ids;
		++$tuple_idx;
		return \@tuple;
	    };
	}
	# pass thru the callers scalar or list context
	return $sth->execute_for_fetch($fetch_tuple_sub, $tuple_sts);
    }

    sub execute_for_fetch {
	my ($sth, $fetch_tuple_sub, $tuple_status) = @_;
	# start with empty status array
	($tuple_status) ? @$tuple_status = () : $tuple_status = [];

        my $rc_total = 0;
	my $err_count;
	while ( my $tuple = &$fetch_tuple_sub() ) {
	    if ( my $rc = $sth->execute(@$tuple) ) {
		push @$tuple_status, $rc;
		$rc_total = ($rc >= 0 && $rc_total >= 0) ? $rc_total + $rc : -1;
	    }
	    else {
		$err_count++;
		push @$tuple_status, [ $sth->err, $sth->errstr, $sth->state ];
                # XXX drivers implementing execute_for_fetch could opt to "last;" here
                # if they know the error code means no further executes will work.
	    }
	}
        my $tuples = @$tuple_status;
        return $sth->set_err($DBI::stderr, "executing $tuples generated $err_count errors")
            if $err_count;
	$tuples ||= "0E0";
	return $tuples unless wantarray;
	return ($tuples, $rc_total);
    }


    sub fetchall_arrayref {	# ALSO IN Driver.xst
	my ($sth, $slice, $max_rows) = @_;

        # when batch fetching with $max_rows were very likely to try to
        # fetch the 'next batch' after the previous batch returned
        # <=$max_rows. So don't treat that as an error.
        return undef if $max_rows and not $sth->FETCH('Active');

	my $mode = ref($slice) || 'ARRAY';
	my @rows;
	my $row;
	if ($mode eq 'ARRAY') {
	    # we copy the array here because fetch (currently) always
	    # returns the same array ref. XXX
	    if ($slice && @$slice) {
                $max_rows = -1 unless defined $max_rows;
		push @rows, [ @{$row}[ @$slice] ]
		    while($max_rows-- and $row = $sth->fetch);
	    }
	    elsif (defined $max_rows) {
		push @rows, [ @$row ]
		    while($max_rows-- and $row = $sth->fetch);
	    }
	    else {
		push @rows, [ @$row ] while($row = $sth->fetch);
	    }
	}
	elsif ($mode eq 'HASH') {
	    $max_rows = -1 unless defined $max_rows;
	    if (keys %$slice) {
		my @o_keys = keys %$slice;
		my @i_keys = map { lc } keys %$slice;
                # XXX this could be made faster by pre-binding a local hash
                # using bind_columns and then copying it per row
		while ($max_rows-- and $row = $sth->fetchrow_hashref('NAME_lc')) {
		    my %hash;
		    @hash{@o_keys} = @{$row}{@i_keys};
		    push @rows, \%hash;
		}
	    }
	    else {
		# XXX assumes new ref each fetchhash
		push @rows, $row
		    while ($max_rows-- and $row = $sth->fetchrow_hashref());
	    }
	}
	else { Carp::croak("fetchall_arrayref($mode) invalid") }
	return \@rows;
    }

    sub fetchall_hashref {
	my ($sth, $key_field) = @_;

        my $hash_key_name = $sth->{FetchHashKeyName} || 'NAME';
        my $names_hash = $sth->FETCH("${hash_key_name}_hash");
        my @key_fields = (ref $key_field) ? @$key_field : ($key_field);
        my @key_indexes;
        my $num_of_fields = $sth->FETCH('NUM_OF_FIELDS');
        foreach (@key_fields) {
           my $index = $names_hash->{$_};  # perl index not column
           $index = $_ - 1 if !defined $index && DBI::looks_like_number($_) && $_>=1 && $_ <= $num_of_fields;
           return $sth->set_err($DBI::stderr, "Field '$_' does not exist (not one of @{[keys %$names_hash]})")
                unless defined $index;
           push @key_indexes, $index;
        }
        my $rows = {};
        my $NAME = $sth->FETCH($hash_key_name);
        my @row = (undef) x $num_of_fields;
        $sth->bind_columns(\(@row));
        while ($sth->fetch) {
            my $ref = $rows;
            $ref = $ref->{$row[$_]} ||= {} for @key_indexes;
            @{$ref}{@$NAME} = @row;
        }
        return $rows;
    }

    *dump_results = \&DBI::dump_results;

    sub blob_copy_to_file {	# returns length or undef on error
	my($self, $field, $filename_or_handleref, $blocksize) = @_;
	my $fh = $filename_or_handleref;
	my($len, $buf) = (0, "");
	$blocksize ||= 512;	# not too ambitious
	local(*FH);
	unless(ref $fh) {
	    open(FH, ">$fh") || return undef;
	    $fh = \*FH;
	}
	while(defined($self->blob_read($field, $len, $blocksize, \$buf))) {
	    print $fh $buf;
	    $len += length $buf;
	}
	close(FH);
	$len;
    }

    sub more_results {
	shift->{syb_more_results};	# handy grandfathering
    }

}

unless ($DBI::PurePerl) {   # See install_driver
    { @DBD::_mem::dr::ISA = qw(DBD::_mem::common);	}
    { @DBD::_mem::db::ISA = qw(DBD::_mem::common);	}
    { @DBD::_mem::st::ISA = qw(DBD::_mem::common);	}
    # DBD::_mem::common::DESTROY is implemented in DBI.xs
}

1;
__END__

=head1 DESCRIPTION

The DBI is a database access module for the Perl programming language.  It defines
a set of methods, variables, and conventions that provide a consistent
database interface, independent of the actual database being used.

It is important to remember that the DBI is just an interface.
The DBI is a layer
of "glue" between an application and one or more database I<driver>
modules.  It is the driver modules which do most of the real work. The DBI
provides a standard interface and framework for the drivers to operate
within.


=head2 Architecture of a DBI Application

             |<- Scope of DBI ->|
                  .-.   .--------------.   .-------------.
  .-------.       | |---| XYZ Driver   |---| XYZ Engine  |
  | Perl  |       | |   `--------------'   `-------------'
  | script|  |A|  |D|   .--------------.   .-------------.
  | using |--|P|--|B|---|Oracle Driver |---|Oracle Engine|
  | DBI   |  |I|  |I|   `--------------'   `-------------'
  | API   |       | |...
  |methods|       | |... Other drivers
  `-------'       | |...
                  `-'

The API, or Application Programming Interface, defines the
call interface and variables for Perl scripts to use. The API
is implemented by the Perl DBI extension.

The DBI "dispatches" the method calls to the appropriate driver for
actual execution.  The DBI is also responsible for the dynamic loading
of drivers, error checking and handling, providing default
implementations for methods, and many other non-database specific duties.

Each driver
contains implementations of the DBI methods using the
private interface functions of the corresponding database engine.  Only authors
of sophisticated/multi-database applications or generic library
functions need be concerned with drivers.

=head2 Notation and Conventions

The following conventions are used in this document:

  $dbh    Database handle object
  $sth    Statement handle object
  $drh    Driver handle object (rarely seen or used in applications)
  $h      Any of the handle types above ($dbh, $sth, or $drh)
  $rc     General Return Code  (boolean: true=ok, false=error)
  $rv     General Return Value (typically an integer)
  @ary    List of values returned from the database, typically a row of data
  $rows   Number of rows processed (if available, else -1)
  $fh     A filehandle
  undef   NULL values are represented by undefined values in Perl
  \%attr  Reference to a hash of attribute values passed to methods

Note that Perl will automatically destroy database and statement handle objects
if all references to them are deleted.


=head2 Outline Usage

To use DBI,
first you need to load the DBI module:

  use DBI;
  use strict;

(The C<use strict;> isn't required but is strongly recommended.)

Then you need to L</connect> to your data source and get a I<handle> for that
connection:

  $dbh = DBI->connect($dsn, $user, $password,
                      { RaiseError => 1, AutoCommit => 0 });

Since connecting can be expensive, you generally just connect at the
start of your program and disconnect at the end.

Explicitly defining the required C<AutoCommit> behaviour is strongly
recommended and may become mandatory in a later version.  This
determines whether changes are automatically committed to the
database when executed, or need to be explicitly committed later.

The DBI allows an application to "prepare" statements for later
execution.  A prepared statement is identified by a statement handle
held in a Perl variable.
We'll call the Perl variable C<$sth> in our examples.

The typical method call sequence for a C<SELECT> statement is:

  prepare,
    execute, fetch, fetch, ...
    execute, fetch, fetch, ...
    execute, fetch, fetch, ...

for example:

  $sth = $dbh->prepare("SELECT foo, bar FROM table WHERE baz=?");

  $sth->execute( $baz );

  while ( @row = $sth->fetchrow_array ) {
    print "@row\n";
  }

The typical method call sequence for a I<non>-C<SELECT> statement is:

  prepare,
    execute,
    execute,
    execute.

for example:

  $sth = $dbh->prepare("INSERT INTO table(foo,bar,baz) VALUES (?,?,?)");

  while(<CSV>) {
    chomp;
    my ($foo,$bar,$baz) = split /,/;
	$sth->execute( $foo, $bar, $baz );
  }

The C<do()> method can be used for non repeated I<non>-C<SELECT> statement
(or with drivers that don't support placeholders):

  $rows_affected = $dbh->do("UPDATE your_table SET foo = foo + 1");

To commit your changes to the database (when L</AutoCommit> is off):

  $dbh->commit;  # or call $dbh->rollback; to undo changes

Finally, when you have finished working with the data source, you should
L</disconnect> from it:

  $dbh->disconnect;


=head2 General Interface Rules & Caveats

The DBI does not have a concept of a "current session". Every session
has a handle object (i.e., a C<$dbh>) returned from the C<connect> method.
That handle object is used to invoke database related methods.

Most data is returned to the Perl script as strings. (Null values are
returned as C<undef>.)  This allows arbitrary precision numeric data to be
handled without loss of accuracy.  Beware that Perl may not preserve
the same accuracy when the string is used as a number.

Dates and times are returned as character strings in the current
default format of the corresponding database engine.  Time zone effects
are database/driver dependent.

Perl supports binary data in Perl strings, and the DBI will pass binary
data to and from the driver without change. It is up to the driver
implementors to decide how they wish to handle such binary data.

Perl supports two kinds of strings: unicode (utf8 internally) and non-unicode
(defaults to iso-8859-1 if forced to assume an encoding).  Drivers should
accept both kinds of strings and, if required, convert them to the character
set of the database being used. Similarly, when fetching from the database
character data that isn't iso-8859-1 the driver should convert it into utf8.

Multiple SQL statements may not be combined in a single statement
handle (C<$sth>), although some databases and drivers do support this
(notably Sybase and SQL Server).

Non-sequential record reads are not supported in this version of the DBI.
In other words, records can only be fetched in the order that the
database returned them, and once fetched they are forgotten.

Positioned updates and deletes are not directly supported by the DBI.
See the description of the C<CursorName> attribute for an alternative.

Individual driver implementors are free to provide any private
functions and/or handle attributes that they feel are useful.
Private driver functions can be invoked using the DBI C<func()> method.
Private driver attributes are accessed just like standard attributes.

Many methods have an optional C<\%attr> parameter which can be used to
pass information to the driver implementing the method. Except where
specifically documented, the C<\%attr> parameter can only be used to pass
driver specific hints. In general, you can ignore C<\%attr> parameters
or pass it as C<undef>.


=head2 Naming Conventions and Name Space

The DBI package and all packages below it (C<DBI::*>) are reserved for
use by the DBI. Extensions and related modules use the C<DBIx::>
namespace (see L<http://www.perl.com/CPAN/modules/by-module/DBIx/>).
Package names beginning with C<DBD::> are reserved for use
by DBI database drivers.  All environment variables used by the DBI
or by individual DBDs begin with "C<DBI_>" or "C<DBD_>".

The letter case used for attribute names is significant and plays an
important part in the portability of DBI scripts.  The case of the
attribute name is used to signify who defined the meaning of that name
and its values.

  Case of name  Has a meaning defined by
  ------------  ------------------------
  UPPER_CASE    Standards, e.g.,  X/Open, ISO SQL92 etc (portable)
  MixedCase     DBI API (portable), underscores are not used.
  lower_case    Driver or database engine specific (non-portable)

It is of the utmost importance that Driver developers only use
lowercase attribute names when defining private attributes. Private
attribute names must be prefixed with the driver name or suitable
abbreviation (e.g., "C<ora_>" for Oracle, "C<ing_>" for Ingres, etc).


=head2 SQL - A Query Language

Most DBI drivers require applications to use a dialect of SQL
(Structured Query Language) to interact with the database engine.
The L</"Standards Reference Information"> section provides links
to useful information about SQL.

The DBI itself does not mandate or require any particular language to
be used; it is language independent. In ODBC terms, the DBI is in
"pass-thru" mode, although individual drivers might not be. The only requirement
is that queries and other statements must be expressed as a single
string of characters passed as the first argument to the L</prepare> or
L</do> methods.

For an interesting diversion on the I<real> history of RDBMS and SQL,
from the people who made it happen, see:

  http://ftp.digital.com/pub/DEC/SRC/technical-notes/SRC-1997-018-html/sqlr95.html

Follow the "Full Contents" then "Intergalactic dataspeak" links for the
SQL history.

=head2 Placeholders and Bind Values

Some drivers support placeholders and bind values.
I<Placeholders>, also called parameter markers, are used to indicate
values in a database statement that will be supplied later,
before the prepared statement is executed.  For example, an application
might use the following to insert a row of data into the SALES table:

  INSERT INTO sales (product_code, qty, price) VALUES (?, ?, ?)

or the following, to select the description for a product:

  SELECT description FROM products WHERE product_code = ?

The C<?> characters are the placeholders.  The association of actual
values with placeholders is known as I<binding>, and the values are
referred to as I<bind values>.
Note that the C<?> is not enclosed in quotation marks, even when the
placeholder represents a string.

Some drivers also allow placeholders like C<:>I<name> and C<:>I<N> (e.g.,
C<:1>, C<:2>, and so on) in addition to C<?>, but their use is not portable.

If the C<:>I<N> form of placeholder is supported by the driver you're using,
then you should be able to use either L</bind_param> or L</execute> to bind
values. Check your driver documentation.

With most drivers, placeholders can't be used for any element of a
statement that would prevent the database server from validating the
statement and creating a query execution plan for it. For example:

  "SELECT name, age FROM ?"         # wrong (will probably fail)
  "SELECT name, ?   FROM people"    # wrong (but may not 'fail')

Also, placeholders can only represent single scalar values.
For example, the following
statement won't work as expected for more than one value:

  "SELECT name, age FROM people WHERE name IN (?)"    # wrong
  "SELECT name, age FROM people WHERE name IN (?,?)"  # two names

When using placeholders with the SQL C<LIKE> qualifier, you must
remember that the placeholder substitutes for the whole string.
So you should use "C<... LIKE ? ...>" and include any wildcard
characters in the value that you bind to the placeholder.

B<NULL Values>

Undefined values, or C<undef>, are used to indicate NULL values.
You can insert and update columns with a NULL value as you would a
non-NULL value.  These examples insert and update the column
C<age> with a NULL value:

  $sth = $dbh->prepare(qq{
    INSERT INTO people (fullname, age) VALUES (?, ?)
  });
  $sth->execute("Joe Bloggs", undef);

  $sth = $dbh->prepare(qq{
    UPDATE people SET age = ? WHERE fullname = ?
  });
  $sth->execute(undef, "Joe Bloggs");

However, care must be taken when trying to use NULL values in a
C<WHERE> clause.  Consider:

  SELECT fullname FROM people WHERE age = ?

Binding an C<undef> (NULL) to the placeholder will I<not> select rows
which have a NULL C<age>!  At least for database engines that
conform to the SQL standard.  Refer to the SQL manual for your database
engine or any SQL book for the reasons for this.  To explicitly select
NULLs you have to say "C<WHERE age IS NULL>".

A common issue is to have a code fragment handle a value that could be
either C<defined> or C<undef> (non-NULL or NULL) at runtime.
A simple technique is to prepare the appropriate statement as needed,
and substitute the placeholder for non-NULL cases:

  $sql_clause = defined $age? "age = ?" : "age IS NULL";
  $sth = $dbh->prepare(qq{
    SELECT fullname FROM people WHERE $sql_clause
  });
  $sth->execute(defined $age ? $age : ());

The following technique illustrates qualifying a C<WHERE> clause with
several columns, whose associated values (C<defined> or C<undef>) are
in a hash %h:

  for my $col ("age", "phone", "email") {
    if (defined $h{$col}) {
      push @sql_qual, "$col = ?";
      push @sql_bind, $h{$col};
    }
    else {
      push @sql_qual, "$col IS NULL";
    }
  }
  $sql_clause = join(" AND ", @sql_qual);
  $sth = $dbh->prepare(qq{
      SELECT fullname FROM people WHERE $sql_clause
  });
  $sth->execute(@sql_bind);

The techniques above call prepare for the SQL statement with each call to
execute.  Because calls to prepare() can be expensive, performance
can suffer when an application iterates many times over statements
like the above.

A better solution is a single C<WHERE> clause that supports both
NULL and non-NULL comparisons.  Its SQL statement would need to be
prepared only once for all cases, thus improving performance.
Several examples of C<WHERE> clauses that support this are presented
below.  But each example lacks portability, robustness, or simplicity.
Whether an example is supported on your database engine depends on
what SQL extensions it provides, and where it supports the C<?>
placeholder in a statement.

  0)  age = ?
  1)  NVL(age, xx) = NVL(?, xx)
  2)  ISNULL(age, xx) = ISNULL(?, xx)
  3)  DECODE(age, ?, 1, 0) = 1
  4)  age = ? OR (age IS NULL AND ? IS NULL)
  5)  age = ? OR (age IS NULL AND SP_ISNULL(?) = 1)
  6)  age = ? OR (age IS NULL AND ? = 1)

Statements formed with the above C<WHERE> clauses require execute
statements as follows.  The arguments are required, whether their
values are C<defined> or C<undef>.

  0,1,2,3)  $sth->execute($age);
  4,5)      $sth->execute($age, $age);
  6)        $sth->execute($age, defined($age) ? 0 : 1);

Example 0 should not work (as mentioned earlier), but may work on
a few database engines anyway (e.g. Sybase).  Example 0 is part
of examples 4, 5, and 6, so if example 0 works, these other
examples may work, even if the engine does not properly support
the right hand side of the C<OR> expression.

Examples 1 and 2 are not robust: they require that you provide a
valid column value xx (e.g. '~') which is not present in any row.
That means you must have some notion of what data won't be stored
in the column, and expect clients to adhere to that.

Example 5 requires that you provide a stored procedure (SP_ISNULL
in this example) that acts as a function: it checks whether a value
is null, and returns 1 if it is, or 0 if not.

Example 6, the least simple, is probably the most portable, i.e., it
should work with with most, if not all, database engines.

Here is a table that indicates which examples above are known to
work on various database engines:

                   -----Examples------
                   0  1  2  3  4  5  6
                   -  -  -  -  -  -  -
  Oracle 9         N  Y  N  Y  Y  ?  Y
  Informix IDS 9   N  N  N  Y  N  Y  Y
  MS SQL           N  N  Y  N  Y  ?  Y
  Sybase           Y  N  N  N  N  N  Y
  AnyData,DBM,CSV  Y  N  N  N  Y  Y* Y
  SQLite 3.3       N  N  N  N  Y  N  N

* Works only because Example 0 works.

DBI provides a sample perl script that will test the examples above
on your database engine and tell you which ones work.  It is located
in the F<ex/> subdirectory of the DBI source distribution, or here:
L<http://svn.perl.org/modules/dbi/trunk/ex/perl_dbi_nulls_test.pl>
Please use the script to help us fill-in and maintain this table.

B<Performance>

Without using placeholders, the insert statement shown previously would have to
contain the literal values to be inserted and would have to be
re-prepared and re-executed for each row. With placeholders, the insert
statement only needs to be prepared once. The bind values for each row
can be given to the C<execute> method each time it's called. By avoiding
the need to re-prepare the statement for each row, the application
typically runs many times faster. Here's an example:

  my $sth = $dbh->prepare(q{
    INSERT INTO sales (product_code, qty, price) VALUES (?, ?, ?)
  }) or die $dbh->errstr;
  while (<>) {
      chomp;
      my ($product_code, $qty, $price) = split /,/;
      $sth->execute($product_code, $qty, $price) or die $dbh->errstr;
  }
  $dbh->commit or die $dbh->errstr;

See L</execute> and L</bind_param> for more details.

The C<q{...}> style quoting used in this example avoids clashing with
quotes that may be used in the SQL statement. Use the double-quote like
C<qq{...}> operator if you want to interpolate variables into the string.
See L<perlop/"Quote and Quote-like Operators"> for more details.

See also the L</bind_columns> method, which is used to associate Perl
variables with the output columns of a C<SELECT> statement.

=head1 THE DBI PACKAGE AND CLASS

In this section, we cover the DBI class methods, utility functions,
and the dynamic attributes associated with generic DBI handles.

=head2 DBI Constants

Constants representing the values of the SQL standard types can be
imported individually by name, or all together by importing the
special C<:sql_types> tag.

The names and values of all the defined SQL standard types can be
produced like this:

  foreach (@{ $DBI::EXPORT_TAGS{sql_types} }) {
    printf "%s=%d\n", $_, &{"DBI::$_"};
  }

These constants are defined by SQL/CLI, ODBC or both.
C<SQL_BIGINT> is (currently) omitted, because SQL/CLI and ODBC provide
conflicting codes.

See the L</type_info>, L</type_info_all>, and L</bind_param> methods
for possible uses.

Note that just because the DBI defines a named constant for a given
data type doesn't mean that drivers will support that data type.


=head2 DBI Class Methods

The following methods are provided by the DBI class:

=head3 C<parse_dsn>

  ($scheme, $driver, $attr_string, $attr_hash, $driver_dsn) = DBI->parse_dsn($dsn)
      or die "Can't parse DBI DSN '$dsn'";

Breaks apart a DBI Data Source Name (DSN) and returns the individual
parts. If $dsn doesn't contain a valid DSN then parse_dsn() returns
an empty list.

$scheme is the first part of the DSN and is currently always 'dbi'.
$driver is the driver name, possibly defaulted to $ENV{DBI_DRIVER},
and may be undefined.  $attr_string is the contents of the optional attribute
string, which may be undefined.  If $attr_string is not empty then $attr_hash
is a reference to a hash containing the parsed attribute names and values.
$driver_dsn is the last part of the DBI DSN string. For example:

  ($scheme, $driver, $attr_string, $attr_hash, $driver_dsn)
      = DBI->parse_dsn("DBI:MyDriver(RaiseError=>1):db=test;port=42");
  $scheme      = 'dbi';
  $driver      = 'MyDriver';
  $attr_string = 'RaiseError=>1';
  $attr_hash   = { 'RaiseError' => '1' };
  $driver_dsn  = 'db=test;port=42';

The parse_dsn() method was added in DBI 1.43.

=head3 C<connect>

  $dbh = DBI->connect($data_source, $username, $password)
            or die $DBI::errstr;
  $dbh = DBI->connect($data_source, $username, $password, \%attr)
            or die $DBI::errstr;

Establishes a database connection, or session, to the requested C<$data_source>.
Returns a database handle object if the connection succeeds. Use
C<$dbh-E<gt>disconnect> to terminate the connection.

If the connect fails (see below), it returns C<undef> and sets both C<$DBI::err>
and C<$DBI::errstr>. (It does I<not> explicitly set C<$!>.) You should generally
test the return status of C<connect> and C<print $DBI::errstr> if it has failed.

Multiple simultaneous connections to multiple databases through multiple
drivers can be made via the DBI. Simply make one C<connect> call for each
database and keep a copy of each returned database handle.

The C<$data_source> value must begin with "C<dbi:>I<driver_name>C<:>".
The I<driver_name> specifies the driver that will be used to make the
connection. (Letter case is significant.)

As a convenience, if the C<$data_source> parameter is undefined or empty,
the DBI will substitute the value of the environment variable C<DBI_DSN>.
If just the I<driver_name> part is empty (i.e., the C<$data_source>
prefix is "C<dbi::>"), the environment variable C<DBI_DRIVER> is
used. If neither variable is set, then C<connect> dies.

Examples of C<$data_source> values are:

  dbi:DriverName:database_name
  dbi:DriverName:database_name@hostname:port
  dbi:DriverName:database=database_name;host=hostname;port=port

There is I<no standard> for the text following the driver name. Each
driver is free to use whatever syntax it wants. The only requirement the
DBI makes is that all the information is supplied in a single string.
You must consult the documentation for the drivers you are using for a
description of the syntax they require.

It is recommended that drivers support the ODBC style, shown in the
last example above. It is also recommended that that they support the
three common names 'C<host>', 'C<port>', and 'C<database>' (plus 'C<db>'
as an alias for C<database>). This simplifies automatic construction
of basic DSNs: C<"dbi:$driver:database=$db;host=$host;port=$port">.
Drivers should aim to 'do something reasonable' when given a DSN
in this form, but if any part is meaningless for that driver (such
as 'port' for Informix) it should generate an error if that part
is not empty.

If the environment variable C<DBI_AUTOPROXY> is defined (and the
driver in C<$data_source> is not "C<Proxy>") then the connect request
will automatically be changed to:

  $ENV{DBI_AUTOPROXY};dsn=$data_source

C<DBI_AUTOPROXY> is typically set as "C<dbi:Proxy:hostname=...;port=...>".
If $ENV{DBI_AUTOPROXY} doesn't begin with 'C<dbi:>' then "dbi:Proxy:"
will be prepended to it first.  See the DBD::Proxy documentation
for more details.

If C<$username> or C<$password> are undefined (rather than just empty),
then the DBI will substitute the values of the C<DBI_USER> and C<DBI_PASS>
environment variables, respectively.  The DBI will warn if the
environment variables are not defined.  However, the everyday use
of these environment variables is not recommended for security
reasons. The mechanism is primarily intended to simplify testing.
See below for alternative way to specify the username and password.

C<DBI-E<gt>connect> automatically installs the driver if it has not been
installed yet. Driver installation either returns a valid driver
handle, or it I<dies> with an error message that includes the string
"C<install_driver>" and the underlying problem. So C<DBI-E<gt>connect>
will die
on a driver installation failure and will only return C<undef> on a
connect failure, in which case C<$DBI::errstr> will hold the error message.
Use C<eval { ... }> if you need to catch the "C<install_driver>" error.

The C<$data_source> argument (with the "C<dbi:...:>" prefix removed) and the
C<$username> and C<$password> arguments are then passed to the driver for
processing. The DBI does not define any interpretation for the
contents of these fields.  The driver is free to interpret the
C<$data_source>, C<$username>, and C<$password> fields in any way, and supply
whatever defaults are appropriate for the engine being accessed.
(Oracle, for example, uses the ORACLE_SID and TWO_TASK environment
variables if no C<$data_source> is specified.)

The C<AutoCommit> and C<PrintError> attributes for each connection
default to "on". (See L</AutoCommit> and L</PrintError> for more information.)
However, it is strongly recommended that you explicitly define C<AutoCommit>
rather than rely on the default. The C<PrintWarn> attribute defaults to
on if $^W is true, i.e., perl is running with warnings enabled.

The C<\%attr> parameter can be used to alter the default settings of
C<PrintError>, C<RaiseError>, C<AutoCommit>, and other attributes. For example:

  $dbh = DBI->connect($data_source, $user, $pass, {
	PrintError => 0,
	AutoCommit => 0
  });

The username and password can also be specified using the attributes
C<Username> and C<Password>, in which case they take precedence
over the C<$username> and C<$password> parameters.

You can also define connection attribute values within the C<$data_source>
parameter. For example:

  dbi:DriverName(PrintWarn=>1,PrintError=>0,Taint=>1):...

Individual attributes values specified in this way take precedence over
any conflicting values specified via the C<\%attr> parameter to C<connect>.

The C<dbi_connect_method> attribute can be used to specify which driver
method should be called to establish the connection. The only useful
values are 'connect', 'connect_cached', or some specialized case like
'Apache::DBI::connect' (which is automatically the default when running
within Apache).

Where possible, each session (C<$dbh>) is independent from the transactions
in other sessions. This is useful when you need to hold cursors open
across transactions--for example, if you use one session for your long lifespan
cursors (typically read-only) and another for your short update
transactions.

For compatibility with old DBI scripts, the driver can be specified by
passing its name as the fourth argument to C<connect> (instead of C<\%attr>):

  $dbh = DBI->connect($data_source, $user, $pass, $driver);

In this "old-style" form of C<connect>, the C<$data_source> should not start
with "C<dbi:driver_name:>". (If it does, the embedded driver_name
will be ignored). Also note that in this older form of C<connect>,
the C<$dbh-E<gt>{AutoCommit}> attribute is I<undefined>, the
C<$dbh-E<gt>{PrintError}> attribute is off, and the old C<DBI_DBNAME>
environment variable is
checked if C<DBI_DSN> is not defined. Beware that this "old-style"
C<connect> will soon be withdrawn in a future version of DBI.

=head3 C<connect_cached>

  $dbh = DBI->connect_cached($data_source, $username, $password)
            or die $DBI::errstr;
  $dbh = DBI->connect_cached($data_source, $username, $password, \%attr)
            or die $DBI::errstr;

C<connect_cached> is like L</connect>, except that the database handle
returned is also
stored in a hash associated with the given parameters. If another call
is made to C<connect_cached> with the same parameter values, then the
corresponding cached C<$dbh> will be returned if it is still valid.
The cached database handle is replaced with a new connection if it
has been disconnected or if the C<ping> method fails.

That the behaviour of this method differs in several respects from the
behaviour of persistent connections implemented by Apache::DBI.
However, if Apache::DBI is loaded then C<connect_cached> will use it.

Caching connections can be useful in some applications, but it can
also cause problems, such as too many connections, and so should
be used with care. In particular, avoid changing the attributes of
a database handle created via connect_cached() because it will affect
other code that may be using the same handle.

Where multiple separate parts of a program are using connect_cached()
to connect to the same database with the same (initial) attributes
it is a good idea to add a private attribute to the connect_cached()
call to effectively limit the scope of the caching. For example:

  DBI->connect_cached(..., { private_foo_cachekey => "Bar", ... });

Handles returned from that connect_cached() call will only be returned
by other connect_cached() call elsewhere in the code if those other
calls also pass in the same attribute values, including the private one.
(I've used C<private_foo_cachekey> here as an example, you can use
any attribute name with a C<private_> prefix.)

Taking that one step further, you can limit a particular connect_cached()
call to return handles unique to that one place in the code by setting the
private attribute to a unique value for that place:

  DBI->connect_cached(..., { private_foo_cachekey => __FILE__.__LINE__, ... });

By using a private attribute you still get connection caching for
the individual calls to connect_cached() but, by making separate
database connections for separate parts of the code, the database
handles are isolated from any attribute changes made to other handles.

The cache can be accessed (and cleared) via the L</CachedKids> attribute:

  my $CachedKids_hashref = $dbh->{Driver}->{CachedKids};
  %$CachedKids_hashref = () if $CachedKids_hashref;


=head3 C<available_drivers>

  @ary = DBI->available_drivers;
  @ary = DBI->available_drivers($quiet);

Returns a list of all available drivers by searching for C<DBD::*> modules
through the directories in C<@INC>. By default, a warning is given if
some drivers are hidden by others of the same name in earlier
directories. Passing a true value for C<$quiet> will inhibit the warning.

=head3 C<installed_drivers>

  %drivers = DBI->installed_drivers();

Returns a list of driver name and driver handle pairs for all drivers
'installed' (loaded) into the current process.  The driver name does not
include the 'DBD::' prefix.

To get a list of all drivers available in your perl installation you can use
L</available_drivers>.

Added in DBI 1.49.

=head3 C<installed_versions>

  DBI->installed_versions;
  @ary  = DBI->installed_versions;
  %hash = DBI->installed_versions;

Calls available_drivers() and attempts to load each of them in turn
using install_driver().  For each load that succeeds the driver
name and version number are added to a hash. When running under
L<DBI::PurePerl> drivers which appear not be pure-perl are ignored.

When called in array context the list of successfully loaded drivers
is returned (without the 'DBD::' prefix).

When called in scalar context a reference to the hash is returned
and the hash will also contain other entries for the C<DBI> version,
C<OS> name, etc.

When called in a void context the installed_versions() method will
print out a formatted list of the hash contents, one per line.

Due to the potentially high memory cost and unknown risks of loading
in an unknown number of drivers that just happen to be installed
on the system, this method is not recommended for general use.
Use available_drivers() instead.

The installed_versions() method is primarily intended as a quick
way to see from the command line what's installed. For example:

  perl -MDBI -e 'DBI->installed_versions'

The installed_versions() method was added in DBI 1.38.

=head3 C<data_sources>

  @ary = DBI->data_sources($driver);
  @ary = DBI->data_sources($driver, \%attr);

Returns a list of data sources (databases) available via the named
driver.  If C<$driver> is empty or C<undef>, then the value of the
C<DBI_DRIVER> environment variable is used.

The driver will be loaded if it hasn't been already. Note that if the
driver loading fails then data_sources() I<dies> with an error message
that includes the string "C<install_driver>" and the underlying problem.

Data sources are returned in a form suitable for passing to the
L</connect> method (that is, they will include the "C<dbi:$driver:>" prefix).

Note that many drivers have no way of knowing what data sources might
be available for it. These drivers return an empty or incomplete list
or may require driver-specific attributes.

There is also a data_sources() method defined for database handles.


=head3 C<trace>

  DBI->trace($trace_setting)
  DBI->trace($trace_setting, $trace_filename)
  DBI->trace($trace_setting, $trace_filehandle)
  $trace_setting = DBI->trace;

The C<DBI-E<gt>trace> method sets the I<global default> trace
settings and returns the I<previous> trace settings. It can also
be used to change where the trace output is sent.

There's a similar method, C<$h-E<gt>trace>, which sets the trace
settings for the specific handle it's called on.

See the L</TRACING> section for full details about the DBI's powerful
tracing facilities.


=head3 C<visit_handles>

  DBI->visit_handles( $coderef );
  DBI->visit_handles( $coderef, $info );

Where $coderef is a reference to a subroutine and $info is an arbitrary value
which, if undefined, defaults to a reference to an empty hash. Returns $info.

For each installed driver handle, if any, $coderef is invoked as:

  $coderef->($driver_handle, $info);

If the execution of $coderef returns a true value then L</visit_child_handles>
is called on that child handle and passed the returned value as $info.

For example:

  my $info = $dbh->{Driver}->visit_child_handles(sub {
      my ($h, $info) = @_;
      ++$info->{ $h->{Type} }; # count types of handles (dr/db/st)
      return $info; # visit kids
  });

See also L</visit_child_handles>.


=head2 DBI Utility Functions

In addition to the DBI methods listed in the previous section,
the DBI package also provides several utility functions.

These can be imported into your code by listing them in
the C<use> statement. For example:

  use DBI qw(neat data_diff);

Alternatively, all these utility functions (except hash) can be
imported using the C<:utils> import tag. For example:

  use DBI qw(:utils);

=head3 C<data_string_desc>

  $description = data_string_desc($string);

Returns an informal description of the string. For example:

  UTF8 off, ASCII, 42 characters 42 bytes
  UTF8 off, non-ASCII, 42 characters 42 bytes
  UTF8 on, non-ASCII, 4 characters 6 bytes
  UTF8 on but INVALID encoding, non-ASCII, 4 characters 6 bytes
  UTF8 off, undef

The initial C<UTF8> on/off refers to Perl's internal SvUTF8 flag.
If $string has the SvUTF8 flag set but the sequence of bytes it
contains are not a valid UTF-8 encoding then data_string_desc()
will report C<UTF8 on but INVALID encoding>.

The C<ASCII> vs C<non-ASCII> portion shows C<ASCII> if I<all> the
characters in the string are ASCII (have code points <= 127).

The data_string_desc() function was added in DBI 1.46.

=head3 C<data_string_diff>

  $diff = data_string_diff($a, $b);

Returns an informal description of the first character difference
between the strings. If both $a and $b contain the same sequence
of characters then data_string_diff() returns an empty string.
For example:

 Params a & b     Result
 ------------     ------
 'aaa', 'aaa'     ''
 'aaa', 'abc'     'Strings differ at index 2: a[2]=a, b[2]=b'
 'aaa', undef     'String b is undef, string a has 3 characters'
 'aaa', 'aa'      'String b truncated after 2 characters'

Unicode characters are reported in C<\x{XXXX}> format. Unicode
code points in the range U+0800 to U+08FF are unassigned and most
likely to occur due to double-encoding. Characters in this range
are reported as C<\x{08XX}='C'> where C<C> is the corresponding
latin-1 character.

The data_string_diff() function only considers logical I<characters>
and not the underlying encoding. See L</data_diff> for an alternative.

The data_string_diff() function was added in DBI 1.46.

=head3 C<data_diff>

  $diff = data_diff($a, $b);
  $diff = data_diff($a, $b, $logical);

Returns an informal description of the difference between two strings.
It calls L</data_string_desc> and L</data_string_diff>
and returns the combined results as a multi-line string.

For example, C<data_diff("abc", "ab\x{263a}")> will return:

  a: UTF8 off, ASCII, 3 characters 3 bytes
  b: UTF8 on, non-ASCII, 3 characters 5 bytes
  Strings differ at index 2: a[2]=c, b[2]=\x{263A}

If $a and $b are identical in both the characters they contain I<and>
their physical encoding then data_diff() returns an empty string.
If $logical is true then physical encoding differences are ignored
(but are still reported if there is a difference in the characters).

The data_diff() function was added in DBI 1.46.

=head3 C<neat>

  $str = neat($value);
  $str = neat($value, $maxlen);

Return a string containing a neat (and tidy) representation of the
supplied value.

Strings will be quoted, although internal quotes will I<not> be escaped.
Values known to be numeric will be unquoted. Undefined (NULL) values
will be shown as C<undef> (without quotes).

If the string is flagged internally as utf8 then double quotes will
be used, otherwise single quotes are used and unprintable characters
will be replaced by dot (.).

For result strings longer than C<$maxlen> the result string will be
truncated to C<$maxlen-4> and "C<...'>" will be appended.  If C<$maxlen> is 0
or C<undef>, it defaults to C<$DBI::neat_maxlen> which, in turn, defaults to 400.

This function is designed to format values for human consumption.
It is used internally by the DBI for L</trace> output. It should
typically I<not> be used for formatting values for database use.
(See also L</quote>.)

=head3 C<neat_list>

  $str = neat_list(\@listref, $maxlen, $field_sep);

Calls C<neat> on each element of the list and returns a string
containing the results joined with C<$field_sep>. C<$field_sep> defaults
to C<", ">.

=head3 C<looks_like_number>

  @bool = looks_like_number(@array);

Returns true for each element that looks like a number.
Returns false for each element that does not look like a number.
Returns C<undef> for each element that is undefined or empty.

=head3 C<hash>

  $hash_value = DBI::hash($buffer, $type);

Return a 32-bit integer 'hash' value corresponding to the contents of $buffer.
The $type parameter selects which kind of hash algorithm should be used.

For the technically curious, type 0 (which is the default if $type
isn't specified) is based on the Perl 5.1 hash except that the value
is forced to be negative (for obscure historical reasons).
Type 1 is the better "Fowler / Noll / Vo" (FNV) hash. See
L<http://www.isthe.com/chongo/tech/comp/fnv/> for more information.
Both types are implemented in C and are very fast.

This function doesn't have much to do with databases, except that
it can be handy to store hash values in a database.


=head2 DBI Dynamic Attributes

Dynamic attributes are always associated with the I<last handle used>
(that handle is represented by C<$h> in the descriptions below).

Where an attribute is equivalent to a method call, then refer to
the method call for all related documentation.

Warning: these attributes are provided as a convenience but they
do have limitations. Specifically, they have a short lifespan:
because they are associated with
the last handle used, they should only be used I<immediately> after
calling the method that "sets" them.
If in any doubt, use the corresponding method call.

=head3 C<$DBI::err>

Equivalent to C<$h-E<gt>err>.

=head3 C<$DBI::errstr>

Equivalent to C<$h-E<gt>errstr>.

=head3 C<$DBI::state>

Equivalent to C<$h-E<gt>state>.

=head3 C<$DBI::rows>

Equivalent to C<$h-E<gt>rows>. Please refer to the documentation
for the L</rows> method.

=head3 C<$DBI::lasth>

Returns the DBI object handle used for the most recent DBI method call.
If the last DBI method call was a DESTROY then $DBI::lasth will return
the handle of the parent of the destroyed handle, if there is one.


=head1 METHODS COMMON TO ALL HANDLES

The following methods can be used by all types of DBI handles.

=head3 C<err>

  $rv = $h->err;

Returns the I<native> database engine error code from the last driver
method called. The code is typically an integer but you should not
assume that.

The DBI resets $h->err to undef before almost all DBI method calls, so the
value only has a short lifespan. Also, for most drivers, the statement
handles share the same error variable as the parent database handle,
so calling a method on one handle may reset the error on the
related handles.

(Methods which don't reset err before being called include err() and errstr(),
obviously, state(), rows(), func(), trace(), trace_msg(), ping(), and the
tied hash attribute FETCH() and STORE() methods.)

If you need to test for specific error conditions I<and> have your program be
portable to different database engines, then you'll need to determine what the
corresponding error codes are for all those engines and test for all of them.

The DBI uses the value of $DBI::stderr as the C<err> value for internal errors.
Drivers should also do likewise.  The default value for $DBI::stderr is 2000000000.

A driver may return C<0> from err() to indicate a warning condition
after a method call. Similarly, a driver may return an empty string
to indicate a 'success with information' condition. In both these
cases the value is false but not undef. The errstr() and state()
methods may be used to retrieve extra information in these cases.

See L</set_err> for more information.

=head3 C<errstr>

  $str = $h->errstr;

Returns the native database engine error message from the last DBI
method called. This has the same lifespan issues as the L</err> method
described above.

The returned string may contain multiple messages separated by
newline characters.

The errstr() method should not be used to test for errors, use err()
for that, because drivers may return 'success with information' or
warning messages via errstr() for methods that have not 'failed'.

See L</set_err> for more information.

=head3 C<state>

  $str = $h->state;

Returns a state code in the standard SQLSTATE five character format.
Note that the specific success code C<00000> is translated to any empty string
(false). If the driver does not support SQLSTATE (and most don't),
then state() will return C<S1000> (General Error) for all errors.

The driver is free to return any value via C<state>, e.g., warning
codes, even if it has not declared an error by returning a true value
via the L</err> method described above.

The state() method should not be used to test for errors, use err()
for that, because drivers may return a 'success with information' or
warning state code via state() for methods that have not 'failed'.

=head3 C<set_err>

  $rv = $h->set_err($err, $errstr);
  $rv = $h->set_err($err, $errstr, $state);
  $rv = $h->set_err($err, $errstr, $state, $method);
  $rv = $h->set_err($err, $errstr, $state, $method, $rv);

Set the C<err>, C<errstr>, and C<state> values for the handle.
This method is typically only used by DBI drivers and DBI subclasses.

If the L</HandleSetErr> attribute holds a reference to a subroutine
it is called first. The subroutine can alter the $err, $errstr, $state,
and $method values. See L</HandleSetErr> for full details.
If the subroutine returns a true value then the handle C<err>,
C<errstr>, and C<state> values are not altered and set_err() returns
an empty list (it normally returns $rv which defaults to undef, see below).

Setting C<err> to a I<true> value indicates an error and will trigger
the normal DBI error handling mechanisms, such as C<RaiseError> and
C<HandleError>, if they are enabled, when execution returns from
the DBI back to the application.

Setting C<err> to C<""> indicates an 'information' state, and setting
it to C<"0"> indicates a 'warning' state. Setting C<err> to C<undef>
also sets C<errstr> to undef, and C<state> to C<"">, irrespective
of the values of the $errstr and $state parameters.

The $method parameter provides an alternate method name for the
C<RaiseError>/C<PrintError>/C<PrintWarn> error string instead of
the fairly unhelpful 'C<set_err>'.

The C<set_err> method normally returns undef.  The $rv parameter
provides an alternate return value.

Some special rules apply if the C<err> or C<errstr>
values for the handle are I<already> set...

If C<errstr> is true then: "C< [err was %s now %s]>" is appended if $err is
true and C<err> is already true and the new err value differs from the original
one. Similarly "C< [state was %s now %s]>" is appended if $state is true and C<state> is
already true and the new state value differs from the original one. Finally
"C<\n>" and the new $errstr are appended if $errstr differs from the existing
errstr value. Obviously the C<%s>'s above are replaced by the corresponding values.

The handle C<err> value is set to $err if: $err is true; or handle
C<err> value is undef; or $err is defined and the length is greater
than the handle C<err> length. The effect is that an 'information'
state only overrides undef; a 'warning' overrides undef or 'information',
and an 'error' state overrides anything.

The handle C<state> value is set to $state if $state is true and
the handle C<err> value was set (by the rules above).

Support for warning and information states was added in DBI 1.41.

=head3 C<trace>

  $h->trace($trace_settings);
  $h->trace($trace_settings, $trace_filename);
  $trace_settings = $h->trace;

The trace() method is used to alter the trace settings for a handle
(and any future children of that handle).  It can also be used to
change where the trace output is sent.

There's a similar method, C<DBI-E<gt>trace>, which sets the global
default trace settings.

See the L</TRACING> section for full details about the DBI's powerful
tracing facilities.

=head3 C<trace_msg>

  $h->trace_msg($message_text);
  $h->trace_msg($message_text, $min_level);

Writes C<$message_text> to the trace file if the trace level is
greater than or equal to $min_level (which defaults to 1).
Can also be called as C<DBI-E<gt>trace_msg($msg)>.

See L</TRACING> for more details.

=head3 C<func>

  $h->func(@func_arguments, $func_name) or die ...;

The C<func> method can be used to call private non-standard and
non-portable methods implemented by the driver. Note that the function
name is given as the I<last> argument.

It's also important to note that the func() method does not clear
a previous error ($DBI::err etc.) and it does not trigger automatic
error detection (RaiseError etc.) so you must check the return
status and/or $h->err to detect errors.

(This method is not directly related to calling stored procedures.
Calling stored procedures is currently not defined by the DBI.
Some drivers, such as DBD::Oracle, support it in non-portable ways.
See driver documentation for more details.)

See also install_method() in L<DBI::DBD> for how you can avoid needing to
use func() and gain direct access to driver-private methods.

=head3 C<can>

  $is_implemented = $h->can($method_name);

Returns true if $method_name is implemented by the driver or a
default method is provided by the DBI.
It returns false where a driver hasn't implemented a method and the
default method is provided by the DBI is just an empty stub.

=head3 C<parse_trace_flags>

  $trace_settings_integer = $h->parse_trace_flags($trace_settings);

Parses a string containing trace settings and returns the corresponding
integer value used internally by the DBI and drivers.

The $trace_settings argument is a string containing a trace level
between 0 and 15 and/or trace flag names separated by vertical bar
("C<|>") or comma ("C<,>") characters. For example: C<"SQL|3|foo">.

It uses the parse_trace_flag() method, described below, to process
the individual trace flag names.

The parse_trace_flags() method was added in DBI 1.42.

=head3 C<parse_trace_flag>

  $bit_flag = $h->parse_trace_flag($trace_flag_name);

Returns the bit flag corresponding to the trace flag name in
$trace_flag_name.  Drivers are expected to override this method and
check if $trace_flag_name is a driver specific trace flags and, if
not, then call the DBI's default parse_trace_flag().

The parse_trace_flag() method was added in DBI 1.42.

=head3 C<private_attribute_info>

  $hash_ref = $h->private_attribute_info();

Returns a reference to a hash whose keys are the names of driver-private
attributes available for the kind of handle (driver, database, statement)
that the method was called on.

For example, the return value when called with a DBD::Sybase $dbh could look like this:

  {
      syb_dynamic_supported => undef,
      syb_oc_version => undef,
      syb_server_version => undef,
      syb_server_version_string => undef,
  }

and when called with a DBD::Sybase $sth they could look like this:

  {
      syb_types => undef,
      syb_proc_status => undef,
      syb_result_type => undef,
  }

The values should be undef. Meanings may be assigned to particular values in future.

=head3 C<swap_inner_handle>

  $rc = $h1->swap_inner_handle( $h2 );
  $rc = $h1->swap_inner_handle( $h2, $allow_reparent );

Brain transplants for handles. You don't need to know about this
unless you want to become a handle surgeon.

A DBI handle is a reference to a tied hash. A tied hash has an
I<inner> hash that actually holds the contents.  The swap_inner_handle()
method swaps the inner hashes between two handles. The $h1 and $h2
handles still point to the same tied hashes, but what those hashes
are tied to has been swapped.  In effect $h1 I<becomes> $h2 and
vice-versa. This is powerful stuff, expect problems. Use with care.

As a small safety measure, the two handles, $h1 and $h2, have to
share the same parent unless $allow_reparent is true.

The swap_inner_handle() method was added in DBI 1.44.

Here's a quick kind of 'diagram' as a worked example to help think about what's
happening:

    Original state:
            dbh1o -> dbh1i
            sthAo -> sthAi(dbh1i)
            dbh2o -> dbh2i

    swap_inner_handle dbh1o with dbh2o:
            dbh2o -> dbh1i
            sthAo -> sthAi(dbh1i)
            dbh1o -> dbh2i

    create new sth from dbh1o:
            dbh2o -> dbh1i
            sthAo -> sthAi(dbh1i)
            dbh1o -> dbh2i
            sthBo -> sthBi(dbh2i)

    swap_inner_handle sthAo with sthBo:
            dbh2o -> dbh1i
            sthBo -> sthAi(dbh1i)
            dbh1o -> dbh2i
            sthAo -> sthBi(dbh2i)

=head3 C<visit_child_handles>

  $h->visit_child_handles( $coderef );
  $h->visit_child_handles( $coderef, $info );

Where $coderef is a reference to a subroutine and $info is an arbitrary value
which, if undefined, defaults to a reference to an empty hash. Returns $info.

For each child handle of $h, if any, $coderef is invoked as:

  $coderef->($child_handle, $info);

If the execution of $coderef returns a true value then C<visit_child_handles>
is called on that child handle and passed the returned value as $info.

For example:

  # count database connections with names (DSN) matching a pattern
  my $connections = 0;
  $dbh->{Driver}->visit_child_handles(sub {
      my ($h, $info) = @_;
      ++$connections if $h->{Name} =~ /foo/;
      return 0; # don't visit kids
  })

See also L</visit_handles>.

=head1 ATTRIBUTES COMMON TO ALL HANDLES

These attributes are common to all types of DBI handles.

Some attributes are inherited by child handles. That is, the value
of an inherited attribute in a newly created statement handle is the
same as the value in the parent database handle. Changes to attributes
in the new statement handle do not affect the parent database handle
and changes to the database handle do not affect existing statement
handles, only future ones.

Attempting to set or get the value of an unknown attribute generates a warning,
except for private driver specific attributes (which all have names
starting with a lowercase letter).

Example:

  $h->{AttributeName} = ...;	# set/write
  ... = $h->{AttributeName};	# get/read

=head3 C<Warn> (boolean, inherited)

The C<Warn> attribute enables useful warnings for certain bad
practices. It is enabled by default and should only be disabled in
rare circumstances.  Since warnings are generated using the Perl
C<warn> function, they can be intercepted using the Perl C<$SIG{__WARN__}>
hook.

The C<Warn> attribute is not related to the C<PrintWarn> attribute.

=head3 C<Active> (boolean, read-only)

The C<Active> attribute is true if the handle object is "active". This is rarely used in
applications. The exact meaning of active is somewhat vague at the
moment. For a database handle it typically means that the handle is
connected to a database (C<$dbh-E<gt>disconnect> sets C<Active> off).  For
a statement handle it typically means that the handle is a C<SELECT>
that may have more data to fetch. (Fetching all the data or calling C<$sth-E<gt>finish>
sets C<Active> off.)

=head3 C<Executed> (boolean)

The C<Executed> attribute is true if the handle object has been "executed".
Currently only the $dbh do() method and the $sth execute(), execute_array(),
and execute_for_fetch() methods set the C<Executed> attribute.

When it's set on a handle it is also set on the parent handle at the
same time. So calling execute() on a $sth also sets the C<Executed>
attribute on the parent $dbh.

The C<Executed> attribute for a database handle is cleared by the commit() and
rollback() methods (even if they fail). The C<Executed> attribute of a
statement handle is not cleared by the DBI under any circumstances and so acts
as a permanent record of whether the statement handle was ever used.

The C<Executed> attribute was added in DBI 1.41.

=head3 C<Kids> (integer, read-only)

For a driver handle, C<Kids> is the number of currently existing database
handles that were created from that driver handle.  For a database
handle, C<Kids> is the number of currently existing statement handles that
were created from that database handle.
For a statement handle, the value is zero.

=head3 C<ActiveKids> (integer, read-only)

Like C<Kids>, but only counting those that are C<Active> (as above).

=head3 C<CachedKids> (hash ref)

For a database handle, C<CachedKids> returns a reference to the cache (hash) of
statement handles created by the L</prepare_cached> method.  For a
driver handle, returns a reference to the cache (hash) of
database handles created by the L</connect_cached> method.

=head3 C<Type> (scalar, read-only)

The C<Type> attribute identifies the type of a DBI handle.  Returns
"dr" for driver handles, "db" for database handles and "st" for
statement handles.

=head3 C<ChildHandles> (array ref)

The ChildHandles attribute contains a reference to an array of all the
handles created by this handle which are still accessible.  The
contents of the array are weak-refs and will become undef when the
handle goes out of scope.

C<ChildHandles> returns undef if your perl version does not support weak
references (check the L<Scalar::Util|Scalar::Util> module).  The referenced
array returned should be treated as read-only.

For example, to enumerate all driver handles, database handles and
statement handles:

    sub show_child_handles {
        my ($h, $level) = @_;
        printf "%sh %s %s\n", $h->{Type}, "\t" x $level, $h;
        show_child_handles($_, $level + 1)
            for (grep { defined } @{$h->{ChildHandles}});
    }

    my %drivers = DBI->installed_drivers();
    show_child_handles($_, 0) for (values %drivers);

=head3 C<CompatMode> (boolean, inherited)

The C<CompatMode> attribute is used by emulation layers (such as
Oraperl) to enable compatible behaviour in the underlying driver
(e.g., DBD::Oracle) for this handle. Not normally set by application code.

It also has the effect of disabling the 'quick FETCH' of attribute
values from the handles attribute cache. So all attribute values
are handled by the drivers own FETCH method. This makes them slightly
slower but is useful for special-purpose drivers like DBD::Multiplex.

=head3 C<InactiveDestroy> (boolean)

The default value, false, means a handle will be fully destroyed
as normal when the last reference to it is removed, just as you'd expect.

If set true then the handle will be treated by the DESTROY as if it was no
longer Active, and so the I<database engine> related effects of DESTROYing a
handle will be skipped.

Think of the name as meaning 'treat the handle as not-Active in the DESTROY
method'.

For a database handle, this attribute does not disable an I<explicit>
call to the disconnect method, only the implicit call from DESTROY
that happens if the handle is still marked as C<Active>.

This attribute is specifically designed for use in Unix applications
that "fork" child processes. Either the parent or the child process,
but not both, should set C<InactiveDestroy> true on all their shared handles.
(Note that some databases, including Oracle, don't support passing a
database connection across a fork.)

To help tracing applications using fork the process id is shown in
the trace log whenever a DBI or handle trace() method is called.
The process id also shown for I<every> method call if the DBI trace
level (not handle trace level) is set high enough to show the trace
from the DBI's method dispatcher, e.g. >= 9.

=head3 C<PrintWarn> (boolean, inherited)

The C<PrintWarn> attribute controls the printing of warnings recorded
by the driver.  When set to a true value the DBI will check method
calls to see if a warning condition has been set. If so, the DBI
will effectively do a C<warn("$class $method warning: $DBI::errstr")>
where C<$class> is the driver class and C<$method> is the name of
the method which failed. E.g.,

  DBD::Oracle::db execute warning: ... warning text here ...

By default, C<DBI-E<gt>connect> sets C<PrintWarn> "on" if $^W is true,
i.e., perl is running with warnings enabled.

If desired, the warnings can be caught and processed using a C<$SIG{__WARN__}>
handler or modules like CGI::Carp and CGI::ErrorWrap.

See also L</set_err> for how warnings are recorded and L</HandleSetErr>
for how to influence it.

Fetching the full details of warnings can require an extra round-trip
to the database server for some drivers. In which case the driver
may opt to only fetch the full details of warnings if the C<PrintWarn>
attribute is true. If C<PrintWarn> is false then these drivers should
still indicate the fact that there were warnings by setting the
warning string to, for example: "3 warnings".

=head3 C<PrintError> (boolean, inherited)

The C<PrintError> attribute can be used to force errors to generate warnings (using
C<warn>) in addition to returning error codes in the normal way.  When set
"on", any method which results in an error occurring will cause the DBI to
effectively do a C<warn("$class $method failed: $DBI::errstr")> where C<$class>
is the driver class and C<$method> is the name of the method which failed. E.g.,

  DBD::Oracle::db prepare failed: ... error text here ...

By default, C<DBI-E<gt>connect> sets C<PrintError> "on".

If desired, the warnings can be caught and processed using a C<$SIG{__WARN__}>
handler or modules like CGI::Carp and CGI::ErrorWrap.

=head3 C<RaiseError> (boolean, inherited)

The C<RaiseError> attribute can be used to force errors to raise exceptions rather
than simply return error codes in the normal way. It is "off" by default.
When set "on", any method which results in an error will cause
the DBI to effectively do a C<die("$class $method failed: $DBI::errstr")>,
where C<$class> is the driver class and C<$method> is the name of the method
that failed. E.g.,

  DBD::Oracle::db prepare failed: ... error text here ...

If you turn C<RaiseError> on then you'd normally turn C<PrintError> off.
If C<PrintError> is also on, then the C<PrintError> is done first (naturally).

Typically C<RaiseError> is used in conjunction with C<eval { ... }>
to catch the exception that's been thrown and followed by an
C<if ($@) { ... }> block to handle the caught exception.
For example:

  eval {
    ...
    $sth->execute();
    ...
  };
  if ($@) {
    # $sth->err and $DBI::err will be true if error was from DBI
    warn $@; # print the error
    ... # do whatever you need to deal with the error
  }

In that eval block the $DBI::lasth variable can be useful for
diagnosis and reporting if you can't be sure which handle triggered
the error.  For example, $DBI::lasth->{Type} and $DBI::lasth->{Statement}.

See also L</Transactions>.

If you want to temporarily turn C<RaiseError> off (inside a library function
that is likely to fail, for example), the recommended way is like this:

  {
    local $h->{RaiseError};  # localize and turn off for this block
    ...
  }

The original value will automatically and reliably be restored by Perl,
regardless of how the block is exited.
The same logic applies to other attributes, including C<PrintError>.

=head3 C<HandleError> (code ref, inherited)

The C<HandleError> attribute can be used to provide your own alternative behaviour
in case of errors. If set to a reference to a subroutine then that
subroutine is called when an error is detected (at the same point that
C<RaiseError> and C<PrintError> are handled).

The subroutine is called with three parameters: the error message
string that C<RaiseError> and C<PrintError> would use,
the DBI handle being used, and the first value being returned by
the method that failed (typically undef).

If the subroutine returns a false value then the C<RaiseError>
and/or C<PrintError> attributes are checked and acted upon as normal.

For example, to C<die> with a full stack trace for any error:

  use Carp;
  $h->{HandleError} = sub { confess(shift) };

Or to turn errors into exceptions:

  use Exception; # or your own favourite exception module
  $h->{HandleError} = sub { Exception->new('DBI')->raise($_[0]) };

It is possible to 'stack' multiple HandleError handlers by using
closures:

  sub your_subroutine {
    my $previous_handler = $h->{HandleError};
    $h->{HandleError} = sub {
      return 1 if $previous_handler and &$previous_handler(@_);
      ... your code here ...
    };
  }

Using a C<my> inside a subroutine to store the previous C<HandleError>
value is important.  See L<perlsub> and L<perlref> for more information
about I<closures>.

It is possible for C<HandleError> to alter the error message that
will be used by C<RaiseError> and C<PrintError> if it returns false.
It can do that by altering the value of $_[0]. This example appends
a stack trace to all errors and, unlike the previous example using
Carp::confess, this will work C<PrintError> as well as C<RaiseError>:

  $h->{HandleError} = sub { $_[0]=Carp::longmess($_[0]); 0; };

It is also possible for C<HandleError> to hide an error, to a limited
degree, by using L</set_err> to reset $DBI::err and $DBI::errstr,
and altering the return value of the failed method. For example:

  $h->{HandleError} = sub {
    return 0 unless $_[0] =~ /^\S+ fetchrow_arrayref failed:/;
    return 0 unless $_[1]->err == 1234; # the error to 'hide'
    $h->set_err(undef,undef);	# turn off the error
    $_[2] = [ ... ];	# supply alternative return value
    return 1;
  };

This only works for methods which return a single value and is hard
to make reliable (avoiding infinite loops, for example) and so isn't
recommended for general use!  If you find a I<good> use for it then
please let me know.

=head3 C<HandleSetErr> (code ref, inherited)

The C<HandleSetErr> attribute can be used to intercept
the setting of handle C<err>, C<errstr>, and C<state> values.
If set to a reference to a subroutine then that subroutine is called
whenever set_err() is called, typically by the driver or a subclass.

The subroutine is called with five arguments, the first five that
were passed to set_err(): the handle, the C<err>, C<errstr>, and
C<state> values being set, and the method name. These can be altered
by changing the values in the @_ array. The return value affects
set_err() behaviour, see L</set_err> for details.

It is possible to 'stack' multiple HandleSetErr handlers by using
closures. See L</HandleError> for an example.

The C<HandleSetErr> and C<HandleError> subroutines differ in subtle
but significant ways. HandleError is only invoked at the point where
the DBI is about to return to the application with C<err> set true.
It's not invoked by the failure of a method that's been called by
another DBI method.  HandleSetErr, on the other hand, is called
whenever set_err() is called with a defined C<err> value, even if false.
So it's not just for errors, despite the name, but also warn and info states.
The set_err() method, and thus HandleSetErr, may be called multiple
times within a method and is usually invoked from deep within driver code.

In theory a driver can use the return value from HandleSetErr via
set_err() to decide whether to continue or not. If set_err() returns
an empty list, indicating that the HandleSetErr code has 'handled'
the 'error', the driver could then continue instead of failing (if
that's a reasonable thing to do).  This isn't excepted to be
common and any such cases should be clearly marked in the driver
documentation and discussed on the dbi-dev mailing list.

The C<HandleSetErr> attribute was added in DBI 1.41.

=head3 C<ErrCount> (unsigned integer)

The C<ErrCount> attribute is incremented whenever the set_err()
method records an error. It isn't incremented by warnings or
information states. It is not reset by the DBI at any time.

The C<ErrCount> attribute was added in DBI 1.41. Older drivers may
not have been updated to use set_err() to record errors and so this
attribute may not be incremented when using them.


=head3 C<ShowErrorStatement> (boolean, inherited)

The C<ShowErrorStatement> attribute can be used to cause the relevant
Statement text to be appended to the error messages generated by
the C<RaiseError>, C<PrintError>, and C<PrintWarn> attributes.
Only applies to errors on statement handles
plus the prepare(), do(), and the various C<select*()> database handle methods.
(The exact format of the appended text is subject to change.)

If C<$h-E<gt>{ParamValues}> returns a hash reference of parameter
(placeholder) values then those are formatted and appended to the
end of the Statement text in the error message.

=head3 C<TraceLevel> (integer, inherited)

The C<TraceLevel> attribute can be used as an alternative to the
L</trace> method to set the DBI trace level and trace flags for a
specific handle.  See L</TRACING> for more details.

The C<TraceLevel> attribute is especially useful combined with
C<local> to alter the trace settings for just a single block of code.

=head3 C<FetchHashKeyName> (string, inherited)

The C<FetchHashKeyName> attribute is used to specify whether the fetchrow_hashref()
method should perform case conversion on the field names used for
the hash keys. For historical reasons it defaults to 'C<NAME>' but
it is recommended to set it to 'C<NAME_lc>' (convert to lower case)
or 'C<NAME_uc>' (convert to upper case) according to your preference.
It can only be set for driver and database handles.  For statement
handles the value is frozen when prepare() is called.


=head3 C<ChopBlanks> (boolean, inherited)

The C<ChopBlanks> attribute can be used to control the trimming of trailing space
characters from fixed width character (CHAR) fields. No other field
types are affected, even where field values have trailing spaces.

The default is false (although it is possible that the default may change).
Applications that need specific behaviour should set the attribute as
needed.

Drivers are not required to support this attribute, but any driver which
does not support it must arrange to return C<undef> as the attribute value.


=head3 C<LongReadLen> (unsigned integer, inherited)

The C<LongReadLen> attribute may be used to control the maximum
length of 'long' type fields (LONG, BLOB, CLOB, MEMO, etc.) which the driver will
read from the database automatically when it fetches each row of data.

The C<LongReadLen> attribute only relates to fetching and reading
long values; it is not involved in inserting or updating them.

A value of 0 means not to automatically fetch any long data.
Drivers may return undef or an empty string for long fields when
C<LongReadLen> is 0.

The default is typically 0 (zero) or 80 bytes but may vary between drivers.
Applications fetching long fields should set this value to slightly
larger than the longest long field value to be fetched.

Some databases return some long types encoded as pairs of hex digits.
For these types, C<LongReadLen> relates to the underlying data
length and not the doubled-up length of the encoded string.

Changing the value of C<LongReadLen> for a statement handle after it
has been C<prepare>'d will typically have no effect, so it's common to
set C<LongReadLen> on the C<$dbh> before calling C<prepare>.

For most drivers the value used here has a direct effect on the
memory used by the statement handle while it's active, so don't be
too generous. If you can't be sure what value to use you could
execute an extra select statement to determine the longest value.
For example:

  $dbh->{LongReadLen} = $dbh->selectrow_array(qq{
      SELECT MAX(OCTET_LENGTH(long_column_name))
      FROM table WHERE ...
  });
  $sth = $dbh->prepare(qq{
      SELECT long_column_name, ... FROM table WHERE ...
  });

You may need to take extra care if the table can be modified between
the first select and the second being executed. You may also need to
use a different function if OCTET_LENGTH() does not work for long
types in your database. For example, for Sybase use DATALENGTH() and
for Oracle use LENGTHB().

See also L</LongTruncOk> for information on truncation of long types.

=head3 C<LongTruncOk> (boolean, inherited)

The C<LongTruncOk> attribute may be used to control the effect of
fetching a long field value which has been truncated (typically
because it's longer than the value of the C<LongReadLen> attribute).

By default, C<LongTruncOk> is false and so fetching a long value that
needs to be truncated will cause the fetch to fail.
(Applications should always be sure to
check for errors after a fetch loop in case an error, such as a divide
by zero or long field truncation, caused the fetch to terminate
prematurely.)

If a fetch fails due to a long field truncation when C<LongTruncOk> is
false, many drivers will allow you to continue fetching further rows.

See also L</LongReadLen>.

=head3 C<TaintIn> (boolean, inherited)

If the C<TaintIn> attribute is set to a true value I<and> Perl is running in
taint mode (e.g., started with the C<-T> option), then all the arguments
to most DBI method calls are checked for being tainted. I<This may change.>

The attribute defaults to off, even if Perl is in taint mode.
See L<perlsec> for more about taint mode.  If Perl is not
running in taint mode, this attribute has no effect.

When fetching data that you trust you can turn off the TaintIn attribute,
for that statement handle, for the duration of the fetch loop.

The C<TaintIn> attribute was added in DBI 1.31.

=head3 C<TaintOut> (boolean, inherited)

If the C<TaintOut> attribute is set to a true value I<and> Perl is running in
taint mode (e.g., started with the C<-T> option), then most data fetched
from the database is considered tainted. I<This may change.>

The attribute defaults to off, even if Perl is in taint mode.
See L<perlsec> for more about taint mode.  If Perl is not
running in taint mode, this attribute has no effect.

When fetching data that you trust you can turn off the TaintOut attribute,
for that statement handle, for the duration of the fetch loop.

Currently only fetched data is tainted. It is possible that the results
of other DBI method calls, and the value of fetched attributes, may
also be tainted in future versions. That change may well break your
applications unless you take great care now. If you use DBI Taint mode,
please report your experience and any suggestions for changes.

The C<TaintOut> attribute was added in DBI 1.31.

=head3 C<Taint> (boolean, inherited)

The C<Taint> attribute is a shortcut for L</TaintIn> and L</TaintOut> (it is also present
for backwards compatibility).

Setting this attribute sets both L</TaintIn> and L</TaintOut>, and retrieving
it returns a true value if and only if L</TaintIn> and L</TaintOut> are
both set to true values.

=head3 C<Profile> (inherited)

The C<Profile> attribute enables the collection and reporting of method call timing statistics.
See the L<DBI::Profile> module documentation for I<much> more detail.

The C<Profile> attribute was added in DBI 1.24.

=head3 C<ReadOnly> (boolean, inherited)

An application can set the C<ReadOnly> attribute of a handle to a true value to
indicate that it will not be attempting to make any changes using that handle
or any children of it.

Note that the exact definition of 'read only' is rather fuzzy.
For more details see the documentation for the driver you're using.

If the driver can make the handle truly read-only then it should
(unless doing so would have unpleasant side effect, like changing the
consistency level from per-statement to per-session).
Otherwise the attribute is simply advisory.

A driver can set the C<ReadOnly> attribute itself to indicate that the data it
is connected to cannot be changed for some reason.

Library modules and proxy drivers can use the attribute to influence their behavior.
For example, the DBD::Gofer driver considers the C<ReadOnly> attribute when
making a decision about whether to retry an operation that failed.

The attribute should be set to 1 or 0 (or undef). Other values are reserved.

=head3 C<private_your_module_name_*>

The DBI provides a way to store extra information in a DBI handle as
"private" attributes. The DBI will allow you to store and retrieve any
attribute which has a name starting with "C<private_>".

It is I<strongly> recommended that you use just I<one> private
attribute (e.g., use a hash ref) I<and> give it a long and unambiguous
name that includes the module or application name that the attribute
relates to (e.g., "C<private_YourFullModuleName_thingy>").

Because of the way the Perl tie mechanism works you cannot reliably
use the C<||=> operator directly to initialise the attribute, like this:

  my $foo = $dbh->{private_yourmodname_foo} ||= { ... }; # WRONG

you should use a two step approach like this:

  my $foo = $dbh->{private_yourmodname_foo};
  $foo ||= $dbh->{private_yourmodname_foo} = { ... };

This attribute is primarily of interest to people sub-classing DBI,
or for applications to piggy-back extra information onto DBI handles.

=head1 DBI DATABASE HANDLE OBJECTS

This section covers the methods and attributes associated with
database handles.

=head2 Database Handle Methods

The following methods are specified for DBI database handles:

=head3 C<clone>

  $new_dbh = $dbh->clone();
  $new_dbh = $dbh->clone(\%attr);

The C<clone> method duplicates the $dbh connection by connecting
with the same parameters ($dsn, $user, $password) as originally used.

The attributes for the cloned connect are the same as those used
for the original connect, with some other attribute merged over
them depending on the \%attr parameter.

If \%attr is given then the attributes it contains are merged into
the original attributes and override any with the same names.
Effectively the same as doing:

  %attribues_used = ( %original_attributes, %attr );

If \%attr is not given then it defaults to a hash containing all
the attributes in the attribute cache of $dbh excluding any non-code
references, plus the main boolean attributes (RaiseError, PrintError,
AutoCommit, etc.). This behaviour is subject to change.

The clone method can be used even if the database handle is disconnected.

The C<clone> method was added in DBI 1.33. It is very new and likely
to change.

=head3 C<data_sources>

  @ary = $dbh->data_sources();
  @ary = $dbh->data_sources(\%attr);

Returns a list of data sources (databases) available via the $dbh
driver's data_sources() method, plus any extra data sources that
the driver can discover via the connected $dbh. Typically the extra
data sources are other databases managed by the same server process
that the $dbh is connected to.

Data sources are returned in a form suitable for passing to the
L</connect> method (that is, they will include the "C<dbi:$driver:>" prefix).

The data_sources() method, for a $dbh, was added in DBI 1.38.

=head3 C<do>

  $rows = $dbh->do($statement)           or die $dbh->errstr;
  $rows = $dbh->do($statement, \%attr)   or die $dbh->errstr;
  $rows = $dbh->do($statement, \%attr, @bind_values) or die ...

Prepare and execute a single statement. Returns the number of rows
affected or C<undef> on error. A return value of C<-1> means the
number of rows is not known, not applicable, or not available.

This method is typically most useful for I<non>-C<SELECT> statements that
either cannot be prepared in advance (due to a limitation of the
driver) or do not need to be executed repeatedly. It should not
be used for C<SELECT> statements because it does not return a statement
handle (so you can't fetch any data).

The default C<do> method is logically similar to:

  sub do {
      my($dbh, $statement, $attr, @bind_values) = @_;
      my $sth = $dbh->prepare($statement, $attr) or return undef;
      $sth->execute(@bind_values) or return undef;
      my $rows = $sth->rows;
      ($rows == 0) ? "0E0" : $rows; # always return true if no error
  }

For example:

  my $rows_deleted = $dbh->do(q{
      DELETE FROM table
      WHERE status = ?
  }, undef, 'DONE') or die $dbh->errstr;

Using placeholders and C<@bind_values> with the C<do> method can be
useful because it avoids the need to correctly quote any variables
in the C<$statement>. But if you'll be executing the statement many
times then it's more efficient to C<prepare> it once and call
C<execute> many times instead.

The C<q{...}> style quoting used in this example avoids clashing with
quotes that may be used in the SQL statement. Use the double-quote-like
C<qq{...}> operator if you want to interpolate variables into the string.
See L<perlop/"Quote and Quote-like Operators"> for more details.

=head3 C<last_insert_id>

  $rv = $dbh->last_insert_id($catalog, $schema, $table, $field);
  $rv = $dbh->last_insert_id($catalog, $schema, $table, $field, \%attr);

Returns a value 'identifying' the row just inserted, if possible.
Typically this would be a value assigned by the database server
to a column with an I<auto_increment> or I<serial> type.
Returns undef if the driver does not support the method or can't
determine the value.

The $catalog, $schema, $table, and $field parameters may be required
for some drivers (see below).  If you don't know the parameter values
and your driver does not need them, then use C<undef> for each.

There are several caveats to be aware of with this method if you want
to use it for portable applications:

B<*> For some drivers the value may only available immediately after
the insert statement has executed (e.g., mysql, Informix).

B<*> For some drivers the $catalog, $schema, $table, and $field parameters
are required, for others they are ignored (e.g., mysql).

B<*> Drivers may return an indeterminate value if no insert has
been performed yet.

B<*> For some drivers the value may only be available if placeholders
have I<not> been used (e.g., Sybase, MS SQL). In this case the value
returned would be from the last non-placeholder insert statement.

B<*> Some drivers may need driver-specific hints about how to get
the value. For example, being told the name of the database 'sequence'
object that holds the value. Any such hints are passed as driver-specific
attributes in the \%attr parameter.

B<*> If the underlying database offers nothing better, then some
drivers may attempt to implement this method by executing
"C<select max($field) from $table>". Drivers using any approach
like this should issue a warning if C<AutoCommit> is true because
it is generally unsafe - another process may have modified the table
between your insert and the select. For situations where you know
it is safe, such as when you have locked the table, you can silence
the warning by passing C<Warn> => 0 in \%attr.

B<*> If no insert has been performed yet, or the last insert failed,
then the value is implementation defined.

Given all the caveats above, it's clear that this method must be
used with care.

The C<last_insert_id> method was added in DBI 1.38.

=head3 C<selectrow_array>

  @row_ary = $dbh->selectrow_array($statement);
  @row_ary = $dbh->selectrow_array($statement, \%attr);
  @row_ary = $dbh->selectrow_array($statement, \%attr, @bind_values);

This utility method combines L</prepare>, L</execute> and
L</fetchrow_array> into a single call. If called in a list context, it
returns the first row of data from the statement.  The C<$statement>
parameter can be a previously prepared statement handle, in which case
the C<prepare> is skipped.

If any method fails, and L</RaiseError> is not set, C<selectrow_array>
will return an empty list.

If called in a scalar context for a statement handle that has more
than one column, it is undefined whether the driver will return
the value of the first column or the last. So don't do that.
Also, in a scalar context, an C<undef> is returned if there are no
more rows or if an error occurred. That C<undef> can't be distinguished
from an C<undef> returned because the first field value was NULL.
For these reasons you should exercise some caution if you use
C<selectrow_array> in a scalar context, or just don't do that.


=head3 C<selectrow_arrayref>

  $ary_ref = $dbh->selectrow_arrayref($statement);
  $ary_ref = $dbh->selectrow_arrayref($statement, \%attr);
  $ary_ref = $dbh->selectrow_arrayref($statement, \%attr, @bind_values);

This utility method combines L</prepare>, L</execute> and
L</fetchrow_arrayref> into a single call. It returns the first row of
data from the statement.  The C<$statement> parameter can be a previously
prepared statement handle, in which case the C<prepare> is skipped.

If any method fails, and L</RaiseError> is not set, C<selectrow_array>
will return undef.


=head3 C<selectrow_hashref>

  $hash_ref = $dbh->selectrow_hashref($statement);
  $hash_ref = $dbh->selectrow_hashref($statement, \%attr);
  $hash_ref = $dbh->selectrow_hashref($statement, \%attr, @bind_values);

This utility method combines L</prepare>, L</execute> and
L</fetchrow_hashref> into a single call. It returns the first row of
data from the statement.  The C<$statement> parameter can be a previously
prepared statement handle, in which case the C<prepare> is skipped.

If any method fails, and L</RaiseError> is not set, C<selectrow_hashref>
will return undef.


=head3 C<selectall_arrayref>

  $ary_ref = $dbh->selectall_arrayref($statement);
  $ary_ref = $dbh->selectall_arrayref($statement, \%attr);
  $ary_ref = $dbh->selectall_arrayref($statement, \%attr, @bind_values);

This utility method combines L</prepare>, L</execute> and
L</fetchall_arrayref> into a single call. It returns a reference to an
array containing a reference to an array (or hash, see below) for each row of
data fetched.

The C<$statement> parameter can be a previously prepared statement handle,
in which case the C<prepare> is skipped. This is recommended if the
statement is going to be executed many times.

If L</RaiseError> is not set and any method except C<fetchall_arrayref>
fails then C<selectall_arrayref> will return C<undef>; if
C<fetchall_arrayref> fails then it will return with whatever data
has been fetched thus far. You should check C<$sth-E<gt>err>
afterwards (or use the C<RaiseError> attribute) to discover if the data is
complete or was truncated due to an error.

The L</fetchall_arrayref> method called by C<selectall_arrayref>
supports a $max_rows parameter. You can specify a value for $max_rows
by including a 'C<MaxRows>' attribute in \%attr. In which case finish()
is called for you after fetchall_arrayref() returns.

The L</fetchall_arrayref> method called by C<selectall_arrayref>
also supports a $slice parameter. You can specify a value for $slice by
including a 'C<Slice>' or 'C<Columns>' attribute in \%attr. The only
difference between the two is that if C<Slice> is not defined and
C<Columns> is an array ref, then the array is assumed to contain column
index values (which count from 1), rather than perl array index values.
In which case the array is copied and each value decremented before
passing to C</fetchall_arrayref>.

You may often want to fetch an array of rows where each row is stored as a
hash. That can be done simple using:

  my $emps = $dbh->selectall_arrayref(
      "SELECT ename FROM emp ORDER BY ename",
      { Slice => {} }
  );
  foreach my $emp ( @$emps ) {
      print "Employee: $emp->{ename}\n";
  }

Or, to fetch into an array instead of an array ref:

  @result = @{ $dbh->selectall_arrayref($sql, { Slice => {} }) };

See L</fetchall_arrayref> method for more details.

=head3 C<selectall_hashref>

  $hash_ref = $dbh->selectall_hashref($statement, $key_field);
  $hash_ref = $dbh->selectall_hashref($statement, $key_field, \%attr);
  $hash_ref = $dbh->selectall_hashref($statement, $key_field, \%attr, @bind_values);

This utility method combines L</prepare>, L</execute> and
L</fetchall_hashref> into a single call. It returns a reference to a
hash containing one entry, at most, for each row, as returned by fetchall_hashref().

The C<$statement> parameter can be a previously prepared statement handle,
in which case the C<prepare> is skipped.  This is recommended if the
statement is going to be executed many times.

The C<$key_field> parameter defines which column, or columns, are used as keys
in the returned hash. It can either be the name of a single field, or a
reference to an array containing multiple field names. Using multiple names
yields a tree of nested hashes.

If a row has the same key as an earlier row then it replaces the earlier row.

If any method except C<fetchrow_hashref> fails, and L</RaiseError> is not set,
C<selectall_hashref> will return C<undef>.  If C<fetchrow_hashref> fails and
L</RaiseError> is not set, then it will return with whatever data it
has fetched thus far. $DBI::err should be checked to catch that.

See fetchall_hashref() for more details.

=head3 C<selectcol_arrayref>

  $ary_ref = $dbh->selectcol_arrayref($statement);
  $ary_ref = $dbh->selectcol_arrayref($statement, \%attr);
  $ary_ref = $dbh->selectcol_arrayref($statement, \%attr, @bind_values);

This utility method combines L</prepare>, L</execute>, and fetching one
column from all the rows, into a single call. It returns a reference to
an array containing the values of the first column from each row.

The C<$statement> parameter can be a previously prepared statement handle,
in which case the C<prepare> is skipped. This is recommended if the
statement is going to be executed many times.

If any method except C<fetch> fails, and L</RaiseError> is not set,
C<selectcol_arrayref> will return C<undef>.  If C<fetch> fails and
L</RaiseError> is not set, then it will return with whatever data it
has fetched thus far. $DBI::err should be checked to catch that.

The C<selectcol_arrayref> method defaults to pushing a single column
value (the first) from each row into the result array. However, it can
also push another column, or even multiple columns per row, into the
result array. This behaviour can be specified via a 'C<Columns>'
attribute which must be a ref to an array containing the column number
or numbers to use. For example:

  # get array of id and name pairs:
  my $ary_ref = $dbh->selectcol_arrayref("select id, name from table", { Columns=>[1,2] });
  my %hash = @$ary_ref; # build hash from key-value pairs so $hash{$id} => name

You can specify a maximum number of rows to fetch by including a
'C<MaxRows>' attribute in \%attr.

=head3 C<prepare>

  $sth = $dbh->prepare($statement)          or die $dbh->errstr;
  $sth = $dbh->prepare($statement, \%attr)  or die $dbh->errstr;

Prepares a statement for later execution by the database
engine and returns a reference to a statement handle object.

The returned statement handle can be used to get attributes of the
statement and invoke the L</execute> method. See L</Statement Handle Methods>.

Drivers for engines without the concept of preparing a
statement will typically just store the statement in the returned
handle and process it when C<$sth-E<gt>execute> is called. Such drivers are
unlikely to give much useful information about the
statement, such as C<$sth-E<gt>{NUM_OF_FIELDS}>, until after C<$sth-E<gt>execute>
has been called. Portable applications should take this into account.

In general, DBI drivers do not parse the contents of the statement
(other than simply counting any L</Placeholders>). The statement is
passed directly to the database engine, sometimes known as pass-thru
mode. This has advantages and disadvantages. On the plus side, you can
access all the functionality of the engine being used. On the downside,
you're limited if you're using a simple engine, and you need to take extra care if
writing applications intended to be portable between engines.

Portable applications should not assume that a new statement can be
prepared and/or executed while still fetching results from a previous
statement.

Some command-line SQL tools use statement terminators, like a semicolon,
to indicate the end of a statement. Such terminators should not normally
be used with the DBI.


=head3 C<prepare_cached>

  $sth = $dbh->prepare_cached($statement)
  $sth = $dbh->prepare_cached($statement, \%attr)
  $sth = $dbh->prepare_cached($statement, \%attr, $if_active)

Like L</prepare> except that the statement handle returned will be
stored in a hash associated with the C<$dbh>. If another call is made to
C<prepare_cached> with the same C<$statement> and C<%attr> parameter values,
then the corresponding cached C<$sth> will be returned without contacting the
database server.

The C<$if_active> parameter lets you adjust the behaviour if an
already cached statement handle is still Active.  There are several
alternatives:

=over 4

=item B<0>: A warning will be generated, and finish() will be called on
the statement handle before it is returned.  This is the default
behaviour if $if_active is not passed.

=item B<1>: finish() will be called on the statement handle, but the
warning is suppressed.

=item B<2>: Disables any checking.

=item B<3>: The existing active statement handle will be removed from the
cache and a new statement handle prepared and cached in its place.
This is the safest option because it doesn't affect the state of the
old handle, it just removes it from the cache. [Added in DBI 1.40]

=back

Here are some examples of C<prepare_cached>:

  sub insert_hash {
    my ($table, $field_values) = @_;
    # sort to keep field order, and thus sql, stable for prepare_cached
    my @fields = sort keys %$field_values;
    my @values = @{$field_values}{@fields};
    my $sql = sprintf "insert into %s (%s) values (%s)",
	$table, join(",", @fields), join(",", ("?")x@fields);
    my $sth = $dbh->prepare_cached($sql);
    return $sth->execute(@values);
  }

  sub search_hash {
    my ($table, $field_values) = @_;
    # sort to keep field order, and thus sql, stable for prepare_cached
    my @fields = sort keys %$field_values;
    my @values = @{$field_values}{@fields};
    my $qualifier = "";
    $qualifier = "where ".join(" and ", map { "$_=?" } @fields) if @fields;
    $sth = $dbh->prepare_cached("SELECT * FROM $table $qualifier");
    return $dbh->selectall_arrayref($sth, {}, @values);
  }

I<Caveat emptor:> This caching can be useful in some applications,
but it can also cause problems and should be used with care. Here
is a contrived case where caching would cause a significant problem:

  my $sth = $dbh->prepare_cached('SELECT * FROM foo WHERE bar=?');
  $sth->execute(...);
  while (my $data = $sth->fetchrow_hashref) {

    # later, in some other code called within the loop...
    my $sth2 = $dbh->prepare_cached('SELECT * FROM foo WHERE bar=?');
    $sth2->execute(...);
    while (my $data2 = $sth2->fetchrow_arrayref) {
      do_stuff(...);
    }
  }

In this example, since both handles are preparing the exact same statement,
C<$sth2> will not be its own statement handle, but a duplicate of C<$sth>
returned from the cache. The results will certainly not be what you expect.
Typically the the inner fetch loop will work normally, fetching all
the records and terminating when there are no more, but now $sth
is the same as $sth2 the outer fetch loop will also terminate.

You'll know if you run into this problem because prepare_cached()
will generate a warning by default (when $if_active is false).

The cache used by prepare_cached() is keyed by both the statement
and any attributes so you can also avoid this issue by doing something
like:

  $sth = $dbh->prepare_cached("...", { dbi_dummy => __FILE__.__LINE__ });

which will ensure that prepare_cached only returns statements cached
by that line of code in that source file.

If you'd like the cache to managed intelligently, you can tie the
hashref returned by C<CachedKids> to an appropriate caching module,
such as L<Tie::Cache::LRU>:

  my $cache;
  tie %$cache, 'Tie::Cache::LRU', 500;
  $dbh->{CachedKids} = $cache;

=head3 C<commit>

  $rc  = $dbh->commit     or die $dbh->errstr;

Commit (make permanent) the most recent series of database changes
if the database supports transactions and AutoCommit is off.

If C<AutoCommit> is on, then calling
C<commit> will issue a "commit ineffective with AutoCommit" warning.

See also L</Transactions> in the L</FURTHER INFORMATION> section below.

=head3 C<rollback>

  $rc  = $dbh->rollback   or die $dbh->errstr;

Rollback (undo) the most recent series of uncommitted database
changes if the database supports transactions and AutoCommit is off.

If C<AutoCommit> is on, then calling
C<rollback> will issue a "rollback ineffective with AutoCommit" warning.

See also L</Transactions> in the L</FURTHER INFORMATION> section below.

=head3 C<begin_work>

  $rc  = $dbh->begin_work   or die $dbh->errstr;

Enable transactions (by turning C<AutoCommit> off) until the next call
to C<commit> or C<rollback>. After the next C<commit> or C<rollback>,
C<AutoCommit> will automatically be turned on again.

If C<AutoCommit> is already off when C<begin_work> is called then
it does nothing except return an error. If the driver does not support
transactions then when C<begin_work> attempts to set C<AutoCommit> off
the driver will trigger a fatal error.

See also L</Transactions> in the L</FURTHER INFORMATION> section below.


=head3 C<disconnect>

  $rc = $dbh->disconnect  or warn $dbh->errstr;

Disconnects the database from the database handle. C<disconnect> is typically only used
before exiting the program. The handle is of little use after disconnecting.

The transaction behaviour of the C<disconnect> method is, sadly,
undefined.  Some database systems (such as Oracle and Ingres) will
automatically commit any outstanding changes, but others (such as
Informix) will rollback any outstanding changes.  Applications not
using C<AutoCommit> should explicitly call C<commit> or C<rollback> before
calling C<disconnect>.

The database is automatically disconnected by the C<DESTROY> method if
still connected when there are no longer any references to the handle.
The C<DESTROY> method for each driver should implicitly call C<rollback> to
undo any uncommitted changes. This is vital behaviour to ensure that
incomplete transactions don't get committed simply because Perl calls
C<DESTROY> on every object before exiting. Also, do not rely on the order
of object destruction during "global destruction", as it is undefined.

Generally, if you want your changes to be committed or rolled back when
you disconnect, then you should explicitly call L</commit> or L</rollback>
before disconnecting.

If you disconnect from a database while you still have active
statement handles (e.g., SELECT statement handles that may have
more data to fetch), you will get a warning. The warning may indicate
that a fetch loop terminated early, perhaps due to an uncaught error.
To avoid the warning call the C<finish> method on the active handles.


=head3 C<ping>

  $rc = $dbh->ping;

Attempts to determine, in a reasonably efficient way, if the database
server is still running and the connection to it is still working.
Individual drivers should implement this function in the most suitable
manner for their database engine.

The current I<default> implementation always returns true without
actually doing anything. Actually, it returns "C<0 but true>" which is
true but zero. That way you can tell if the return value is genuine or
just the default. Drivers should override this method with one that
does the right thing for their type of database.

Few applications would have direct use for this method. See the specialized
Apache::DBI module for one example usage.


=head3 C<get_info>

  $value = $dbh->get_info( $info_type );

Returns information about the implementation, i.e. driver and data
source capabilities, restrictions etc. It returns C<undef> for
unknown or unimplemented information types. For example:

  $database_version  = $dbh->get_info(  18 ); # SQL_DBMS_VER
  $max_select_tables = $dbh->get_info( 106 ); # SQL_MAXIMUM_TABLES_IN_SELECT

See L</"Standards Reference Information"> for more detailed information
about the information types and their meanings and possible return values.

The DBI::Const::GetInfoType module exports a %GetInfoType hash that
can be used to map info type names to numbers. For example:

  $database_version = $dbh->get_info( $GetInfoType{SQL_DBMS_VER} );

The names are a merging of the ANSI and ODBC standards (which differ
in some cases). See L<DBI::Const::GetInfoType> for more details.

Because some DBI methods make use of get_info(), drivers are strongly
encouraged to support I<at least> the following very minimal set
of information types to ensure the DBI itself works properly:

 Type  Name                        Example A     Example B
 ----  --------------------------  ------------  ----------------
   17  SQL_DBMS_NAME               'ACCESS'      'Oracle'
   18  SQL_DBMS_VER                '03.50.0000'  '08.01.0721 ...'
   29  SQL_IDENTIFIER_QUOTE_CHAR   '`'           '"'
   41  SQL_CATALOG_NAME_SEPARATOR  '.'           '@'
  114  SQL_CATALOG_LOCATION        1             2

=head3 C<table_info>

  $sth = $dbh->table_info( $catalog, $schema, $table, $type );
  $sth = $dbh->table_info( $catalog, $schema, $table, $type, \%attr );

  # then $sth->fetchall_arrayref or $sth->fetchall_hashref etc

Returns an active statement handle that can be used to fetch
information about tables and views that exist in the database.

The arguments $catalog, $schema and $table may accept search patterns
according to the database/driver, for example: $table = '%FOO%';
Remember that the underscore character ('C<_>') is a search pattern
that means match any character, so 'FOO_%' is the same as 'FOO%'
and 'FOO_BAR%' will match names like 'FOO1BAR'.

The value of $type is a comma-separated list of one or more types of
tables to be returned in the result set. Each value may optionally be
quoted, e.g.:

  $type = "TABLE";
  $type = "'TABLE','VIEW'";

In addition the following special cases may also be supported by some drivers:

=over 4

=item *
If the value of $catalog is '%' and $schema and $table name
are empty strings, the result set contains a list of catalog names.
For example:

  $sth = $dbh->table_info('%', '', '');

=item *
If the value of $schema is '%' and $catalog and $table are empty
strings, the result set contains a list of schema names.

=item *
If the value of $type is '%' and $catalog, $schema, and $table are all
empty strings, the result set contains a list of table types.

=back

If your driver doesn't support one or more of the selection filter
parameters then you may get back more than you asked for and can
do the filtering yourself.

This method can be expensive, and can return a large amount of data.
(For example, small Oracle installation returns over 2000 rows.)
So it's a good idea to use the filters to limit the data as much as possible.

The statement handle returned has at least the following fields in the
order show below. Other fields, after these, may also be present.

B<TABLE_CAT>: Table catalog identifier. This field is NULL (C<undef>) if not
applicable to the data source, which is usually the case. This field
is empty if not applicable to the table.

B<TABLE_SCHEM>: The name of the schema containing the TABLE_NAME value.
This field is NULL (C<undef>) if not applicable to data source, and
empty if not applicable to the table.

B<TABLE_NAME>: Name of the table (or view, synonym, etc).

B<TABLE_TYPE>: One of the following: "TABLE", "VIEW", "SYSTEM TABLE",
"GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS", "SYNONYM" or a type
identifier that is specific to the data
source.

B<REMARKS>: A description of the table. May be NULL (C<undef>).

Note that C<table_info> might not return records for all tables.
Applications can use any valid table regardless of whether it's
returned by C<table_info>.

See also L</tables>, L</"Catalog Methods"> and
L</"Standards Reference Information">.

=head3 C<column_info>

  $sth = $dbh->column_info( $catalog, $schema, $table, $column );

  # then $sth->fetchall_arrayref or $sth->fetchall_hashref etc

Returns an active statement handle that can be used to fetch
information about columns in specified tables.

The arguments $schema, $table and $column may accept search patterns
according to the database/driver, for example: $table = '%FOO%';

Note: The support for the selection criteria is driver specific. If the
driver doesn't support one or more of them then you may get back more
than you asked for and can do the filtering yourself.

If the arguments don't match any tables then you'll still get a statement
handle, it'll just return no rows.

The statement handle returned has at least the following fields in the
order shown below. Other fields, after these, may also be present.

B<TABLE_CAT>: The catalog identifier.
This field is NULL (C<undef>) if not applicable to the data source,
which is often the case.  This field is empty if not applicable to the
table.

B<TABLE_SCHEM>: The schema identifier.
This field is NULL (C<undef>) if not applicable to the data source,
and empty if not applicable to the table.

B<TABLE_NAME>: The table identifier.
Note: A driver may provide column metadata not only for base tables, but
also for derived objects like SYNONYMS etc.

B<COLUMN_NAME>: The column identifier.

B<DATA_TYPE>: The concise data type code.

B<TYPE_NAME>: A data source dependent data type name.

B<COLUMN_SIZE>: The column size.
This is the maximum length in characters for character data types,
the number of digits or bits for numeric data types or the length
in the representation of temporal types.
See the relevant specifications for detailed information.

B<BUFFER_LENGTH>: The length in bytes of transferred data.

B<DECIMAL_DIGITS>: The total number of significant digits to the right of
the decimal point.

B<NUM_PREC_RADIX>: The radix for numeric precision.
The value is 10 or 2 for numeric data types and NULL (C<undef>) if not
applicable.

B<NULLABLE>: Indicates if a column can accept NULLs.
The following values are defined:

  SQL_NO_NULLS          0
  SQL_NULLABLE          1
  SQL_NULLABLE_UNKNOWN  2

B<REMARKS>: A description of the column.

B<COLUMN_DEF>: The default value of the column, in a format that can be used
directly in an SQL statement.

Note that this may be an expression and not simply the text used for the
default value in the original CREATE TABLE statement. For example, given:

    col1 char(30) default current_user    -- a 'function'
    col2 char(30) default 'string'        -- a string literal

where "current_user" is the name of a function, the corresponding C<COLUMN_DEF>
values would be:

    Database        col1                     col2
    --------        ----                     ----
    Oracle:         current_user             'string'
    Postgres:       "current_user"()         'string'::text
    MS SQL:         (user_name())            ('string')

B<SQL_DATA_TYPE>: The SQL data type.

B<SQL_DATETIME_SUB>: The subtype code for datetime and interval data types.

B<CHAR_OCTET_LENGTH>: The maximum length in bytes of a character or binary
data type column.

B<ORDINAL_POSITION>: The column sequence number (starting with 1).

B<IS_NULLABLE>: Indicates if the column can accept NULLs.
Possible values are: 'NO', 'YES' and ''.

SQL/CLI defines the following additional columns:

  CHAR_SET_CAT
  CHAR_SET_SCHEM
  CHAR_SET_NAME
  COLLATION_CAT
  COLLATION_SCHEM
  COLLATION_NAME
  UDT_CAT
  UDT_SCHEM
  UDT_NAME
  DOMAIN_CAT
  DOMAIN_SCHEM
  DOMAIN_NAME
  SCOPE_CAT
  SCOPE_SCHEM
  SCOPE_NAME
  MAX_CARDINALITY
  DTD_IDENTIFIER
  IS_SELF_REF

Drivers capable of supplying any of those values should do so in
the corresponding column and supply undef values for the others.

Drivers wishing to provide extra database/driver specific information
should do so in extra columns beyond all those listed above, and
use lowercase field names with the driver-specific prefix (i.e.,
'ora_...'). Applications accessing such fields should do so by name
and not by column number.

The result set is ordered by TABLE_CAT, TABLE_SCHEM, TABLE_NAME
and ORDINAL_POSITION.

Note: There is some overlap with statement handle attributes (in perl) and
SQLDescribeCol (in ODBC). However, SQLColumns provides more metadata.

See also L</"Catalog Methods"> and L</"Standards Reference Information">.

=head3 C<primary_key_info>

  $sth = $dbh->primary_key_info( $catalog, $schema, $table );

  # then $sth->fetchall_arrayref or $sth->fetchall_hashref etc

Returns an active statement handle that can be used to fetch information
about columns that make up the primary key for a table.
The arguments don't accept search patterns (unlike table_info()).

The statement handle will return one row per column, ordered by
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and KEY_SEQ.
If there is no primary key then the statement handle will fetch no rows.

Note: The support for the selection criteria, such as $catalog, is
driver specific.  If the driver doesn't support catalogs and/or
schemas, it may ignore these criteria.

The statement handle returned has at least the following fields in the
order shown below. Other fields, after these, may also be present.

B<TABLE_CAT>: The catalog identifier.
This field is NULL (C<undef>) if not applicable to the data source,
which is often the case.  This field is empty if not applicable to the
table.

B<TABLE_SCHEM>: The schema identifier.
This field is NULL (C<undef>) if not applicable to the data source,
and empty if not applicable to the table.

B<TABLE_NAME>: The table identifier.

B<COLUMN_NAME>: The column identifier.

B<KEY_SEQ>: The column sequence number (starting with 1).
Note: This field is named B<ORDINAL_POSITION> in SQL/CLI.

B<PK_NAME>: The primary key constraint identifier.
This field is NULL (C<undef>) if not applicable to the data source.

See also L</"Catalog Methods"> and L</"Standards Reference Information">.

=head3 C<primary_key>

  @key_column_names = $dbh->primary_key( $catalog, $schema, $table );

Simple interface to the primary_key_info() method. Returns a list of
the column names that comprise the primary key of the specified table.
The list is in primary key column sequence order.
If there is no primary key then an empty list is returned.

=head3 C<foreign_key_info>

  $sth = $dbh->foreign_key_info( $pk_catalog, $pk_schema, $pk_table
                               , $fk_catalog, $fk_schema, $fk_table );

  $sth = $dbh->foreign_key_info( $pk_catalog, $pk_schema, $pk_table
                               , $fk_catalog, $fk_schema, $fk_table
                               , \%attr );

  # then $sth->fetchall_arrayref or $sth->fetchall_hashref etc

Returns an active statement handle that can be used to fetch information
about foreign keys in and/or referencing the specified table(s).
The arguments don't accept search patterns (unlike table_info()).

C<$pk_catalog>, C<$pk_schema>, C<$pk_table>
identify the primary (unique) key table (B<PKT>).

C<$fk_catalog>, C<$fk_schema>, C<$fk_table>
identify the foreign key table (B<FKT>).

If both B<PKT> and B<FKT> are given, the function returns the foreign key, if
any, in table B<FKT> that refers to the primary (unique) key of table B<PKT>.
(Note: In SQL/CLI, the result is implementation-defined.)

If only B<PKT> is given, then the result set contains the primary key
of that table and all foreign keys that refer to it.

If only B<FKT> is given, then the result set contains all foreign keys
in that table and the primary keys to which they refer.
(Note: In SQL/CLI, the result includes unique keys too.)

For example:

  $sth = $dbh->foreign_key_info( undef, $user, 'master');
  $sth = $dbh->foreign_key_info( undef, undef,   undef , undef, $user, 'detail');
  $sth = $dbh->foreign_key_info( undef, $user, 'master', undef, $user, 'detail');

  # then $sth->fetchall_arrayref or $sth->fetchall_hashref etc

Note: The support for the selection criteria, such as C<$catalog>, is
driver specific.  If the driver doesn't support catalogs and/or
schemas, it may ignore these criteria.

The statement handle returned has the following fields in the order shown below.
Because ODBC never includes unique keys, they define different columns in the
result set than SQL/CLI. SQL/CLI column names are shown in parentheses.

B<PKTABLE_CAT    ( UK_TABLE_CAT      )>:
The primary (unique) key table catalog identifier.
This field is NULL (C<undef>) if not applicable to the data source,
which is often the case.  This field is empty if not applicable to the
table.

B<PKTABLE_SCHEM  ( UK_TABLE_SCHEM    )>:
The primary (unique) key table schema identifier.
This field is NULL (C<undef>) if not applicable to the data source,
and empty if not applicable to the table.

B<PKTABLE_NAME   ( UK_TABLE_NAME     )>:
The primary (unique) key table identifier.

B<PKCOLUMN_NAME  (UK_COLUMN_NAME    )>:
The primary (unique) key column identifier.

B<FKTABLE_CAT    ( FK_TABLE_CAT      )>:
The foreign key table catalog identifier.
This field is NULL (C<undef>) if not applicable to the data source,
which is often the case.  This field is empty if not applicable to the
table.

B<FKTABLE_SCHEM  ( FK_TABLE_SCHEM    )>:
The foreign key table schema identifier.
This field is NULL (C<undef>) if not applicable to the data source,
and empty if not applicable to the table.

B<FKTABLE_NAME   ( FK_TABLE_NAME     )>:
The foreign key table identifier.

B<FKCOLUMN_NAME  ( FK_COLUMN_NAME    )>:
The foreign key column identifier.

B<KEY_SEQ        ( ORDINAL_POSITION  )>:
The column sequence number (starting with 1).

B<UPDATE_RULE    ( UPDATE_RULE       )>:
The referential action for the UPDATE rule.
The following codes are defined:

  CASCADE              0
  RESTRICT             1
  SET NULL             2
  NO ACTION            3
  SET DEFAULT          4

B<DELETE_RULE    ( DELETE_RULE       )>:
The referential action for the DELETE rule.
The codes are the same as for UPDATE_RULE.

B<FK_NAME        ( FK_NAME           )>:
The foreign key name.

B<PK_NAME        ( UK_NAME           )>:
The primary (unique) key name.

B<DEFERRABILITY  ( DEFERABILITY      )>:
The deferrability of the foreign key constraint.
The following codes are defined:

  INITIALLY DEFERRED   5
  INITIALLY IMMEDIATE  6
  NOT DEFERRABLE       7

B<               ( UNIQUE_OR_PRIMARY )>:
This column is necessary if a driver includes all candidate (i.e. primary and
alternate) keys in the result set (as specified by SQL/CLI).
The value of this column is UNIQUE if the foreign key references an alternate
key and PRIMARY if the foreign key references a primary key, or it
may be undefined if the driver doesn't have access to the information.

See also L</"Catalog Methods"> and L</"Standards Reference Information">.

=head3 C<statistics_info>

B<Warning:> This method is experimental and may change.

  $sth = $dbh->statistics_info( $catalog, $schema, $table, $unique_only, $quick );

  # then $sth->fetchall_arrayref or $sth->fetchall_hashref etc

Returns an active statement handle that can be used to fetch statistical
information about a table and its indexes.

The arguments don't accept search patterns (unlike L</table_info>).

If the boolean argument $unique_only is true, only UNIQUE indexes will be
returned in the result set, otherwise all indexes will be returned.

If the boolean argument $quick is set, the actual statistical information
columns (CARDINALITY and PAGES) will only be returned if they are readily
available from the server, and might not be current.  Some databases may
return stale statistics or no statistics at all with this flag set.

The statement handle will return at most one row per column name per index,
plus at most one row for the entire table itself, ordered by NON_UNIQUE, TYPE,
INDEX_QUALIFIER, INDEX_NAME, and ORDINAL_POSITION.

Note: The support for the selection criteria, such as $catalog, is
driver specific.  If the driver doesn't support catalogs and/or
schemas, it may ignore these criteria.

The statement handle returned has at least the following fields in the
order shown below. Other fields, after these, may also be present.

B<TABLE_CAT>: The catalog identifier.
This field is NULL (C<undef>) if not applicable to the data source,
which is often the case.  This field is empty if not applicable to the
table.

B<TABLE_SCHEM>: The schema identifier.
This field is NULL (C<undef>) if not applicable to the data source,
and empty if not applicable to the table.

B<TABLE_NAME>: The table identifier.

B<NON_UNIQUE>: Unique index indicator.
Returns 0 for unique indexes, 1 for non-unique indexes

B<INDEX_QUALIFIER>: Index qualifier identifier.
The identifier that is used to qualify the index name when doing a
C<DROP INDEX>; NULL (C<undef>) is returned if an index qualifier is not
supported by the data source.
If a non-NULL (defined) value is returned in this column, it must be used
to qualify the index name on a C<DROP INDEX> statement; otherwise,
the TABLE_SCHEM should be used to qualify the index name.

B<INDEX_NAME>: The index identifier.

B<TYPE>: The type of information being returned.  Can be any of the
following values: 'table', 'btree', 'clustered', 'content', 'hashed',
or 'other'.

In the case that this field is 'table', all fields
other than TABLE_CAT, TABLE_SCHEM, TABLE_NAME, TYPE,
CARDINALITY, and PAGES will be NULL (C<undef>).

B<ORDINAL_POSITION>: Column sequence number (starting with 1).

B<COLUMN_NAME>: The column identifier.

B<ASC_OR_DESC>: Column sort sequence.
C<A> for Ascending, C<D> for Descending, or NULL (C<undef>) if
not supported for this index.

B<CARDINALITY>: Cardinality of the table or index.
For indexes, this is the number of unique values in the index.
For tables, this is the number of rows in the table.
If not supported, the value will be NULL (C<undef>).

B<PAGES>: Number of storage pages used by this table or index.
If not supported, the value will be NULL (C<undef>).

B<FILTER_CONDITION>: The index filter condition as a string.
If the index is not a filtered index, or it cannot be determined
whether the index is a filtered index, this value is NULL (C<undef>).
If the index is a filtered index, but the filter condition
cannot be determined, this value is the empty string C<''>.
Otherwise it will be the literal filter condition as a string,
such as C<SALARY <= 4500>.

See also L</"Catalog Methods"> and L</"Standards Reference Information">.

=head3 C<tables>

  @names = $dbh->tables( $catalog, $schema, $table, $type );
  @names = $dbh->tables;	# deprecated

Simple interface to table_info(). Returns a list of matching
table names, possibly including a catalog/schema prefix.

See L</table_info> for a description of the parameters.

If C<$dbh-E<gt>get_info(29)> returns true (29 is SQL_IDENTIFIER_QUOTE_CHAR)
then the table names are constructed and quoted by L</quote_identifier>
to ensure they are usable even if they contain whitespace or reserved
words etc. This means that the table names returned will include
quote characters.

=head3 C<type_info_all>

  $type_info_all = $dbh->type_info_all;

Returns a reference to an array which holds information about each data
type variant supported by the database and driver. The array and its
contents should be treated as read-only.

The first item is a reference to an 'index' hash of C<Name =>E<gt> C<Index> pairs.
The items following that are references to arrays, one per supported data
type variant. The leading index hash defines the names and order of the
fields within the arrays that follow it.
For example:

  $type_info_all = [
    {   TYPE_NAME         => 0,
	DATA_TYPE         => 1,
	COLUMN_SIZE       => 2,     # was PRECISION originally
	LITERAL_PREFIX    => 3,
	LITERAL_SUFFIX    => 4,
	CREATE_PARAMS     => 5,
	NULLABLE          => 6,
	CASE_SENSITIVE    => 7,
	SEARCHABLE        => 8,
	UNSIGNED_ATTRIBUTE=> 9,
	FIXED_PREC_SCALE  => 10,    # was MONEY originally
	AUTO_UNIQUE_VALUE => 11,    # was AUTO_INCREMENT originally
	LOCAL_TYPE_NAME   => 12,
	MINIMUM_SCALE     => 13,
	MAXIMUM_SCALE     => 14,
	SQL_DATA_TYPE     => 15,
	SQL_DATETIME_SUB  => 16,
	NUM_PREC_RADIX    => 17,
	INTERVAL_PRECISION=> 18,
    },
    [ 'VARCHAR', SQL_VARCHAR,
	undef, "'","'", undef,0, 1,1,0,0,0,undef,1,255, undef
    ],
    [ 'INTEGER', SQL_INTEGER,
	undef,  "", "", undef,0, 0,1,0,0,0,undef,0,  0, 10
    ],
  ];

More than one row may have the same value in the C<DATA_TYPE>
field if there are different ways to spell the type name and/or there
are variants of the type with different attributes (e.g., with and
without C<AUTO_UNIQUE_VALUE> set, with and without C<UNSIGNED_ATTRIBUTE>, etc).

The rows are ordered by C<DATA_TYPE> first and then by how closely each
type maps to the corresponding ODBC SQL data type, closest first.

The meaning of the fields is described in the documentation for
the L</type_info> method.

An 'index' hash is provided so you don't need to rely on index
values defined above.  However, using DBD::ODBC with some old ODBC
drivers may return older names, shown as comments in the example above.
Another issue with the index hash is that the lettercase of the
keys is not defined. It is usually uppercase, as show here, but
drivers may return names with any lettercase.

Drivers are also free to return extra driver-specific columns of
information - though it's recommended that they start at column
index 50 to leave room for expansion of the DBI/ODBC specification.

The type_info_all() method is not normally used directly.
The L</type_info> method provides a more usable and useful interface
to the data.

=head3 C<type_info>

  @type_info = $dbh->type_info($data_type);

Returns a list of hash references holding information about one or more
variants of $data_type. The list is ordered by C<DATA_TYPE> first and
then by how closely each type maps to the corresponding ODBC SQL data
type, closest first.  If called in a scalar context then only the first
(best) element is returned.

If $data_type is undefined or C<SQL_ALL_TYPES>, then the list will
contain hashes for all data type variants supported by the database and driver.

If $data_type is an array reference then C<type_info> returns the
information for the I<first> type in the array that has any matches.

The keys of the hash follow the same letter case conventions as the
rest of the DBI (see L</Naming Conventions and Name Space>). The
following uppercase items should always exist, though may be undef:

=over 4

=item TYPE_NAME (string)

Data type name for use in CREATE TABLE statements etc.

=item DATA_TYPE (integer)

SQL data type number.

=item COLUMN_SIZE (integer)

For numeric types, this is either the total number of digits (if the
NUM_PREC_RADIX value is 10) or the total number of bits allowed in the
column (if NUM_PREC_RADIX is 2).

For string types, this is the maximum size of the string in characters.

For date and interval types, this is the maximum number of characters
needed to display the value.

=item LITERAL_PREFIX (string)

Characters used to prefix a literal. A typical prefix is "C<'>" for characters,
or possibly "C<0x>" for binary values passed as hexadecimal.  NULL (C<undef>) is
returned for data types for which this is not applicable.


=item LITERAL_SUFFIX (string)

Characters used to suffix a literal. Typically "C<'>" for characters.
NULL (C<undef>) is returned for data types where this is not applicable.

=item CREATE_PARAMS (string)

Parameter names for data type definition. For example, C<CREATE_PARAMS> for a
C<DECIMAL> would be "C<precision,scale>" if the DECIMAL type should be
declared as C<DECIMAL(>I<precision,scale>C<)> where I<precision> and I<scale>
are integer values.  For a C<VARCHAR> it would be "C<max length>".
NULL (C<undef>) is returned for data types for which this is not applicable.

=item NULLABLE (integer)

Indicates whether the data type accepts a NULL value:
C<0> or an empty string = no, C<1> = yes, C<2> = unknown.

=item CASE_SENSITIVE (boolean)

Indicates whether the data type is case sensitive in collations and
comparisons.

=item SEARCHABLE (integer)

Indicates how the data type can be used in a WHERE clause, as
follows:

  0 - Cannot be used in a WHERE clause
  1 - Only with a LIKE predicate
  2 - All comparison operators except LIKE
  3 - Can be used in a WHERE clause with any comparison operator

=item UNSIGNED_ATTRIBUTE (boolean)

Indicates whether the data type is unsigned.  NULL (C<undef>) is returned
for data types for which this is not applicable.

=item FIXED_PREC_SCALE (boolean)

Indicates whether the data type always has the same precision and scale
(such as a money type).  NULL (C<undef>) is returned for data types
for which
this is not applicable.

=item AUTO_UNIQUE_VALUE (boolean)

Indicates whether a column of this data type is automatically set to a
unique value whenever a new row is inserted.  NULL (C<undef>) is returned
for data types for which this is not applicable.

=item LOCAL_TYPE_NAME (string)

Localized version of the C<TYPE_NAME> for use in dialog with users.
NULL (C<undef>) is returned if a localized name is not available (in which
case C<TYPE_NAME> should be used).

=item MINIMUM_SCALE (integer)

The minimum scale of the data type. If a data type has a fixed scale,
then C<MAXIMUM_SCALE> holds the same value.  NULL (C<undef>) is returned for
data types for which this is not applicable.

=item MAXIMUM_SCALE (integer)

The maximum scale of the data type. If a data type has a fixed scale,
then C<MINIMUM_SCALE> holds the same value.  NULL (C<undef>) is returned for
data types for which this is not applicable.

=item SQL_DATA_TYPE (integer)

This column is the same as the C<DATA_TYPE> column, except for interval
and datetime data types.  For interval and datetime data types, the
C<SQL_DATA_TYPE> field will return C<SQL_INTERVAL> or C<SQL_DATETIME>, and the
C<SQL_DATETIME_SUB> field below will return the subcode for the specific
interval or datetime data type. If this field is NULL, then the driver
does not support or report on interval or datetime subtypes.

=item SQL_DATETIME_SUB (integer)

For interval or datetime data types, where the C<SQL_DATA_TYPE>
field above is C<SQL_INTERVAL> or C<SQL_DATETIME>, this field will
hold the I<subcode> for the specific interval or datetime data type.
Otherwise it will be NULL (C<undef>).

Although not mentioned explicitly in the standards, it seems there
is a simple relationship between these values:

  DATA_TYPE == (10 * SQL_DATA_TYPE) + SQL_DATETIME_SUB

=item NUM_PREC_RADIX (integer)

The radix value of the data type. For approximate numeric types,
C<NUM_PREC_RADIX>
contains the value 2 and C<COLUMN_SIZE> holds the number of bits. For
exact numeric types, C<NUM_PREC_RADIX> contains the value 10 and C<COLUMN_SIZE> holds
the number of decimal digits. NULL (C<undef>) is returned either for data types
for which this is not applicable or if the driver cannot report this information.

=item INTERVAL_PRECISION (integer)

The interval leading precision for interval types. NULL is returned
either for data types for which this is not applicable or if the driver
cannot report this information.

=back

For example, to find the type name for the fields in a select statement
you can do:

  @names = map { scalar $dbh->type_info($_)->{TYPE_NAME} } @{ $sth->{TYPE} }

Since DBI and ODBC drivers vary in how they map their types into the
ISO standard types you may need to search for more than one type.
Here's an example looking for a usable type to store a date:

  $my_date_type = $dbh->type_info( [ SQL_DATE, SQL_TIMESTAMP ] );

Similarly, to more reliably find a type to store small integers, you could
use a list starting with C<SQL_SMALLINT>, C<SQL_INTEGER>, C<SQL_DECIMAL>, etc.

See also L</"Standards Reference Information">.


=head3 C<quote>

  $sql = $dbh->quote($value);
  $sql = $dbh->quote($value, $data_type);

Quote a string literal for use as a literal value in an SQL statement,
by escaping any special characters (such as quotation marks)
contained within the string and adding the required type of outer
quotation marks.

  $sql = sprintf "SELECT foo FROM bar WHERE baz = %s",
                $dbh->quote("Don't");

For most database types, at least those that conform to SQL standards, quote
would return C<'Don''t'> (including the outer quotation marks). For others it
may return something like C<'Don\'t'>

An undefined C<$value> value will be returned as the string C<NULL> (without
single quotation marks) to match how NULLs are represented in SQL.

If C<$data_type> is supplied, it is used to try to determine the required
quoting behaviour by using the information returned by L</type_info>.
As a special case, the standard numeric types are optimized to return
C<$value> without calling C<type_info>.

Quote will probably I<not> be able to deal with all possible input
(such as binary data or data containing newlines), and is not related in
any way with escaping or quoting shell meta-characters.

It is valid for the quote() method to return an SQL expression that
evaluates to the desired string. For example:

  $quoted = $dbh->quote("one\ntwo\0three")

may return something like:

  CONCAT('one', CHAR(12), 'two', CHAR(0), 'three')

The quote() method should I<not> be used with L</"Placeholders and
Bind Values">.

=head3 C<quote_identifier>

  $sql = $dbh->quote_identifier( $name );
  $sql = $dbh->quote_identifier( $catalog, $schema, $table, \%attr );

Quote an identifier (table name etc.) for use in an SQL statement,
by escaping any special characters (such as double quotation marks)
it contains and adding the required type of outer quotation marks.

Undefined names are ignored and the remainder are quoted and then
joined together, typically with a dot (C<.>) character. For example:

  $id = $dbh->quote_identifier( undef, 'Her schema', 'My table' );

would, for most database types, return C<"Her schema"."My table">
(including all the double quotation marks).

If three names are supplied then the first is assumed to be a
catalog name and special rules may be applied based on what L</get_info>
returns for SQL_CATALOG_NAME_SEPARATOR (41) and SQL_CATALOG_LOCATION (114).
For example, for Oracle:

  $id = $dbh->quote_identifier( 'link', 'schema', 'table' );

would return C<"schema"."table"@"link">.

=head3 C<take_imp_data>

  $imp_data = $dbh->take_imp_data;

Leaves the $dbh in an almost dead, zombie-like, state and returns
a binary string of raw implementation data from the driver which
describes the current database connection. Effectively it detaches
the underlying database API connection data from the DBI handle.
After calling take_imp_data(), all other methods except C<DESTROY>
will generate a warning and return undef.

Why would you want to do this? You don't, forget I even mentioned it.
Unless, that is, you're implementing something advanced like a
multi-threaded connection pool. See L<DBI::Pool>.

The returned $imp_data can be passed as a C<dbi_imp_data> attribute
to a later connect() call, even in a separate thread in the same
process, where the driver can use it to 'adopt' the existing
connection that the implementation data was taken from.

Some things to keep in mind...

B<*> the $imp_data holds the only reference to the underlying
database API connection data. That connection is still 'live' and
won't be cleaned up properly unless the $imp_data is used to create
a new $dbh which is then allowed to disconnect() normally.

B<*> using the same $imp_data to create more than one other new
$dbh at a time may well lead to unpleasant problems. Don't do that.

Any child statement handles are effectively destroyed when take_imp_data() is
called.

The C<take_imp_data> method was added in DBI 1.36 but wasn't useful till 1.49.


=head2 Database Handle Attributes

This section describes attributes specific to database handles.

Changes to these database handle attributes do not affect any other
existing or future database handles.

Attempting to set or get the value of an unknown attribute generates a warning,
except for private driver-specific attributes (which all have names
starting with a lowercase letter).

Example:

  $h->{AutoCommit} = ...;	# set/write
  ... = $h->{AutoCommit};	# get/read

=head3 C<AutoCommit>  (boolean)

If true, then database changes cannot be rolled-back (undone).  If false,
then database changes automatically occur within a "transaction", which
must either be committed or rolled back using the C<commit> or C<rollback>
methods.

Drivers should always default to C<AutoCommit> mode (an unfortunate
choice largely forced on the DBI by ODBC and JDBC conventions.)

Attempting to set C<AutoCommit> to an unsupported value is a fatal error.
This is an important feature of the DBI. Applications that need
full transaction behaviour can set C<$dbh-E<gt>{AutoCommit} = 0> (or
set C<AutoCommit> to 0 via L</connect>)
without having to check that the value was assigned successfully.

For the purposes of this description, we can divide databases into three
categories:

  Databases which don't support transactions at all.
  Databases in which a transaction is always active.
  Databases in which a transaction must be explicitly started (C<'BEGIN WORK'>).

B<* Databases which don't support transactions at all>

For these databases, attempting to turn C<AutoCommit> off is a fatal error.
C<commit> and C<rollback> both issue warnings about being ineffective while
C<AutoCommit> is in effect.

B<* Databases in which a transaction is always active>

These are typically mainstream commercial relational databases with
"ANSI standard" transaction behaviour.
If C<AutoCommit> is off, then changes to the database won't have any
lasting effect unless L</commit> is called (but see also
L</disconnect>). If L</rollback> is called then any changes since the
last commit are undone.

If C<AutoCommit> is on, then the effect is the same as if the DBI
called C<commit> automatically after every successful database
operation. So calling C<commit> or C<rollback> explicitly while
C<AutoCommit> is on would be ineffective because the changes would
have already been committed.

Changing C<AutoCommit> from off to on will trigger a L</commit>.

For databases which don't support a specific auto-commit mode, the
driver has to commit each statement automatically using an explicit
C<COMMIT> after it completes successfully (and roll it back using an
explicit C<ROLLBACK> if it fails).  The error information reported to the
application will correspond to the statement which was executed, unless
it succeeded and the commit or rollback failed.

B<* Databases in which a transaction must be explicitly started>

For these databases, the intention is to have them act like databases in
which a transaction is always active (as described above).

To do this, the driver will automatically begin an explicit transaction
when C<AutoCommit> is turned off, or after a L</commit> or
L</rollback> (or when the application issues the next database
operation after one of those events).

In this way, the application does not have to treat these databases
as a special case.

See L</commit>, L</disconnect> and L</Transactions> for other important
notes about transactions.


=head3 C<Driver>  (handle)

Holds the handle of the parent driver. The only recommended use for this
is to find the name of the driver using:

  $dbh->{Driver}->{Name}


=head3 C<Name>  (string)

Holds the "name" of the database. Usually (and recommended to be) the
same as the "C<dbi:DriverName:...>" string used to connect to the database,
but with the leading "C<dbi:DriverName:>" removed.


=head3 C<Statement>  (string, read-only)

Returns the statement string passed to the most recent L</prepare> method
called in this database handle, even if that method failed. This is especially
useful where C<RaiseError> is enabled and the exception handler checks $@
and sees that a 'prepare' method call failed.


=head3 C<RowCacheSize>  (integer)

A hint to the driver indicating the size of the local row cache that the
application would like the driver to use for future C<SELECT> statements.
If a row cache is not implemented, then setting C<RowCacheSize> is ignored
and getting the value returns C<undef>.

Some C<RowCacheSize> values have special meaning, as follows:

  0 - Automatically determine a reasonable cache size for each C<SELECT>
  1 - Disable the local row cache
 >1 - Cache this many rows
 <0 - Cache as many rows that will fit into this much memory for each C<SELECT>.

Note that large cache sizes may require a very large amount of memory
(I<cached rows * maximum size of row>). Also, a large cache will cause
a longer delay not only for the first fetch, but also whenever the
cache needs refilling.

See also the L</RowsInCache> statement handle attribute.

=head3 C<Username>  (string)

Returns the username used to connect to the database.


=head1 DBI STATEMENT HANDLE OBJECTS

This section lists the methods and attributes associated with DBI
statement handles.

=head2 Statement Handle Methods

The DBI defines the following methods for use on DBI statement handles:

=head3 C<bind_param>

  $sth->bind_param($p_num, $bind_value)
  $sth->bind_param($p_num, $bind_value, \%attr)
  $sth->bind_param($p_num, $bind_value, $bind_type)

The C<bind_param> method takes a copy of $bind_value and associates it
(binds it) with a placeholder, identified by $p_num, embedded in
the prepared statement. Placeholders are indicated with question
mark character (C<?>). For example:

  $dbh->{RaiseError} = 1;        # save having to check each method call
  $sth = $dbh->prepare("SELECT name, age FROM people WHERE name LIKE ?");
  $sth->bind_param(1, "John%");  # placeholders are numbered from 1
  $sth->execute;
  DBI::dump_results($sth);

See L</"Placeholders and Bind Values"> for more information.


B<Data Types for Placeholders>

The C<\%attr> parameter can be used to hint at the data type the
placeholder should have. This is rarely needed. Typically, the driver is only
interested in knowing if the placeholder should be bound as a number or a string.

  $sth->bind_param(1, $value, { TYPE => SQL_INTEGER });

As a short-cut for the common case, the data type can be passed
directly, in place of the C<\%attr> hash reference. This example is
equivalent to the one above:

  $sth->bind_param(1, $value, SQL_INTEGER);

The C<TYPE> value indicates the standard (non-driver-specific) type for
this parameter. To specify the driver-specific type, the driver may
support a driver-specific attribute, such as C<{ ora_type =E<gt> 97 }>.

The SQL_INTEGER and other related constants can be imported using

  use DBI qw(:sql_types);

See L</"DBI Constants"> for more information.

The data type is 'sticky' in that bind values passed to execute() are bound
with the data type specified by earlier bind_param() calls, if any.
Portable applications should not rely on being able to change the data type
after the first C<bind_param> call.

Perl only has string and number scalar data types. All database types
that aren't numbers are bound as strings and must be in a format the
database will understand except where the bind_param() TYPE attribute
specifies a type that implies a particular format. For example, given:

  $sth->bind_param(1, $value, SQL_DATETIME);

the driver should expect $value to be in the ODBC standard SQL_DATETIME
format, which is 'YYYY-MM-DD HH:MM:SS'. Similarly for SQL_DATE, SQL_TIME etc.

As an alternative to specifying the data type in the C<bind_param> call,
you can let the driver pass the value as the default type (C<VARCHAR>).
You can then use an SQL function to convert the type within the statement.
For example:

  INSERT INTO price(code, price) VALUES (?, CONVERT(MONEY,?))

The C<CONVERT> function used here is just an example. The actual function
and syntax will vary between different databases and is non-portable.

See also L</"Placeholders and Bind Values"> for more information.


=head3 C<bind_param_inout>

  $rc = $sth->bind_param_inout($p_num, \$bind_value, $max_len)  or die $sth->errstr;
  $rv = $sth->bind_param_inout($p_num, \$bind_value, $max_len, \%attr)     or ...
  $rv = $sth->bind_param_inout($p_num, \$bind_value, $max_len, $bind_type) or ...

This method acts like L</bind_param>, but also enables values to be
updated by the statement. The statement is typically
a call to a stored procedure. The C<$bind_value> must be passed as a
reference to the actual value to be used.

Note that unlike L</bind_param>, the C<$bind_value> variable is not
copied when C<bind_param_inout> is called. Instead, the value in the
variable is read at the time L</execute> is called.

The additional C<$max_len> parameter specifies the minimum amount of
memory to allocate to C<$bind_value> for the new value. If the value
returned from the database is too
big to fit, then the execution should fail. If unsure what value to use,
pick a generous length, i.e., a length larger than the longest value that would ever be
returned.  The only cost of using a larger value than needed is wasted memory.

Undefined values or C<undef> are used to indicate null values.
See also L</"Placeholders and Bind Values"> for more information.


=head3 C<bind_param_array>

  $rc = $sth->bind_param_array($p_num, $array_ref_or_value)
  $rc = $sth->bind_param_array($p_num, $array_ref_or_value, \%attr)
  $rc = $sth->bind_param_array($p_num, $array_ref_or_value, $bind_type)

The C<bind_param_array> method is used to bind an array of values
to a placeholder embedded in the prepared statement which is to be executed
with L</execute_array>. For example:

  $dbh->{RaiseError} = 1;        # save having to check each method call
  $sth = $dbh->prepare("INSERT INTO staff (first_name, last_name, dept) VALUES(?, ?, ?)");
  $sth->bind_param_array(1, [ 'John', 'Mary', 'Tim' ]);
  $sth->bind_param_array(2, [ 'Booth', 'Todd', 'Robinson' ]);
  $sth->bind_param_array(3, "SALES"); # scalar will be reused for each row
  $sth->execute_array( { ArrayTupleStatus => \my @tuple_status } );

The C<%attr> ($bind_type) argument is the same as defined for L</bind_param>.
Refer to L</bind_param> for general details on using placeholders.

(Note that bind_param_array() can I<not> be used to expand a
placeholder into a list of values for a statement like "SELECT foo
WHERE bar IN (?)".  A placeholder can only ever represent one value
per execution.)

Scalar values, including C<undef>, may also be bound by
C<bind_param_array>. In which case the same value will be used for each
L</execute> call. Driver-specific implementations may behave
differently, e.g., when binding to a stored procedure call, some
databases may permit mixing scalars and arrays as arguments.

The default implementation provided by DBI (for drivers that have
not implemented array binding) is to iteratively call L</execute> for
each parameter tuple provided in the bound arrays.  Drivers may
provide more optimized implementations using whatever bulk operation
support the database API provides. The default driver behaviour should
match the default DBI behaviour, but always consult your driver
documentation as there may be driver specific issues to consider.

Note that the default implementation currently only supports non-data
returning statements (INSERT, UPDATE, but not SELECT). Also,
C<bind_param_array> and L</bind_param> cannot be mixed in the same
statement execution, and C<bind_param_array> must be used with
L</execute_array>; using C<bind_param_array> will have no effect
for L</execute>.

The C<bind_param_array> method was added in DBI 1.22.

=head3 C<execute>

  $rv = $sth->execute                or die $sth->errstr;
  $rv = $sth->execute(@bind_values)  or die $sth->errstr;

Perform whatever processing is necessary to execute the prepared
statement.  An C<undef> is returned if an error occurs.  A successful
C<execute> always returns true regardless of the number of rows affected,
even if it's zero (see below). It is always important to check the
return status of C<execute> (and most other DBI methods) for errors
if you're not using L</RaiseError>.

For a I<non>-C<SELECT> statement, C<execute> returns the number of rows
affected, if known. If no rows were affected, then C<execute> returns
"C<0E0>", which Perl will treat as 0 but will regard as true. Note that it
is I<not> an error for no rows to be affected by a statement. If the
number of rows affected is not known, then C<execute> returns -1.

For C<SELECT> statements, execute simply "starts" the query within the
database engine. Use one of the fetch methods to retrieve the data after
calling C<execute>.  The C<execute> method does I<not> return the number of
rows that will be returned by the query (because most databases can't
tell in advance), it simply returns a true value.

You can tell if the statement was a C<SELECT> statement by checking if
C<$sth-E<gt>{NUM_OF_FIELDS}> is greater than zero after calling C<execute>.

If any arguments are given, then C<execute> will effectively call
L</bind_param> for each value before executing the statement.  Values
bound in this way are usually treated as C<SQL_VARCHAR> types unless
the driver can determine the correct type (which is rare), or unless
C<bind_param> (or C<bind_param_inout>) has already been used to
specify the type.

Note that passing C<execute> an empty array is the same as passing no arguments
at all, which will execute the statement with previously bound values.
That's probably not what you want.

If execute() is called on a statement handle that's still active
($sth->{Active} is true) then it should effectively call finish()
to tidy up the previous execution results before starting this new
execution.

=head3 C<execute_array>

  $tuples = $sth->execute_array(\%attr) or die $sth->errstr;
  $tuples = $sth->execute_array(\%attr, @bind_values) or die $sth->errstr;

  ($tuples, $rows) = $sth->execute_array(\%attr) or die $sth->errstr;
  ($tuples, $rows) = $sth->execute_array(\%attr, @bind_values) or die $sth->errstr;

Execute the prepared statement once for each parameter tuple
(group of values) provided either in the @bind_values, or by prior
calls to L</bind_param_array>, or via a reference passed in \%attr.

When called in scalar context the execute_array() method returns the
number of tuples executed, or C<undef> if an error occurred.  Like
execute(), a successful execute_array() always returns true regardless
of the number of tuples executed, even if it's zero. If there were any
errors the ArrayTupleStatus array can be used to discover which tuples
failed and with what errors.

When called in list context the execute_array() method returns two scalars;
$tuples is the same as calling execute_array() in scalar context and $rows is
the sum of the number of rows affected for each tuple, if available or
-1 if the driver cannot determine this.
If you are doing an update operation the returned rows affected may not be what
you expect if, for instance, one or more of the tuples affected the same row
multiple times.  Some drivers may not yet support list context, in which case
$rows will be undef, or may not be able to provide the number of rows affected
when performing this batch operation, in which case $rows will be -1.

Bind values for the tuples to be executed may be supplied row-wise
by an C<ArrayTupleFetch> attribute, or else column-wise in the
C<@bind_values> argument, or else column-wise by prior calls to
L</bind_param_array>.

Where column-wise binding is used (via the C<@bind_values> argument
or calls to bind_param_array()) the maximum number of elements in
any one of the bound value arrays determines the number of tuples
executed. Placeholders with fewer values in their parameter arrays
are treated as if padded with undef (NULL) values.

If a scalar value is bound, instead of an array reference, it is
treated as a I<variable> length array with all elements having the
same value. It's does not influence the number of tuples executed,
so if all bound arrays have zero elements then zero tuples will
be executed. If I<all> bound values are scalars then one tuple
will be executed, making execute_array() act just like execute().

The C<ArrayTupleFetch> attribute can be used to specify a reference
to a subroutine that will be called to provide the bind values for
each tuple execution. The subroutine should return an reference to
an array which contains the appropriate number of bind values, or
return an undef if there is no more data to execute.

As a convenience, the C<ArrayTupleFetch> attribute can also be
used to specify a statement handle. In which case the fetchrow_arrayref()
method will be called on the given statement handle in order to
provide the bind values for each tuple execution.

The values specified via bind_param_array() or the @bind_values
parameter may be either scalars, or arrayrefs.  If any C<@bind_values>
are given, then C<execute_array> will effectively call L</bind_param_array>
for each value before executing the statement.  Values bound in
this way are usually treated as C<SQL_VARCHAR> types unless the
driver can determine the correct type (which is rare), or unless
C<bind_param>, C<bind_param_inout>, C<bind_param_array>, or
C<bind_param_inout_array> has already been used to specify the type.
See L</bind_param_array> for details.

The C<ArrayTupleStatus> attribute can be used to specify a
reference to an array which will receive the execute status of each
executed parameter tuple. Note the C<ArrayTupleStatus> attribute was
mandatory until DBI 1.38.

For tuples which are successfully executed, the element at the same
ordinal position in the status array is the resulting rowcount.
If the execution of a tuple causes an error, then the corresponding
status array element will be set to a reference to an array containing
the error code and error string set by the failed execution.

If B<any> tuple execution returns an error, C<execute_array> will
return C<undef>. In that case, the application should inspect the
status array to determine which parameter tuples failed.
Some databases may not continue executing tuples beyond the first
failure. In this case the status array will either hold fewer
elements, or the elements beyond the failure will be undef.

If all parameter tuples are successfully executed, C<execute_array>
returns the number tuples executed.  If no tuples were executed,
then execute_array() returns "C<0E0>", just like execute() does,
which Perl will treat as 0 but will regard as true.

For example:

  $sth = $dbh->prepare("INSERT INTO staff (first_name, last_name) VALUES (?, ?)");
  my $tuples = $sth->execute_array(
      { ArrayTupleStatus => \my @tuple_status },
      \@first_names,
      \@last_names,
  );
  if ($tuples) {
      print "Successfully inserted $tuples records\n";
  }
  else {
      for my $tuple (0..@last_names-1) {
          my $status = $tuple_status[$tuple];
          $status = [0, "Skipped"] unless defined $status;
          next unless ref $status;
          printf "Failed to insert (%s, %s): %s\n",
              $first_names[$tuple], $last_names[$tuple], $status->[1];
      }
  }

Support for data returning statements such as SELECT is driver-specific
and subject to change. At present, the default implementation
provided by DBI only supports non-data returning statements.

Transaction semantics when using array binding are driver and
database specific.  If C<AutoCommit> is on, the default DBI
implementation will cause each parameter tuple to be individually
committed (or rolled back in the event of an error). If C<AutoCommit>
is off, the application is responsible for explicitly committing
the entire set of bound parameter tuples.  Note that different
drivers and databases may have different behaviours when some
parameter tuples cause failures. In some cases, the driver or
database may automatically rollback the effect of all prior parameter
tuples that succeeded in the transaction; other drivers or databases
may retain the effect of prior successfully executed parameter
tuples. Be sure to check your driver and database for its specific
behaviour.

Note that, in general, performance will usually be better with
C<AutoCommit> turned off, and using explicit C<commit> after each
C<execute_array> call.

The C<execute_array> method was added in DBI 1.22, and ArrayTupleFetch
was added in 1.36.

=head3 C<execute_for_fetch>

  $tuples = $sth->execute_for_fetch($fetch_tuple_sub);
  $tuples = $sth->execute_for_fetch($fetch_tuple_sub, \@tuple_status);

  ($tuples, $rows) = $sth->execute_for_fetch($fetch_tuple_sub);
  ($tuples, $rows) = $sth->execute_for_fetch($fetch_tuple_sub, \@tuple_status);

The execute_for_fetch() method is used to perform bulk operations
and is most often used via the execute_array() method, not directly.

The fetch subroutine, referenced by $fetch_tuple_sub, is expected
to return a reference to an array (known as a 'tuple') or undef.

The execute_for_fetch() method calls $fetch_tuple_sub, without any
parameters, until it returns a false value. Each tuple returned is
used to provide bind values for an $sth->execute(@$tuple) call.

In scalar context execute_for_fetch() returns C<undef> if there were any
errors and the number of tuples executed otherwise. Like execute() and
execute_array() a zero is returned as "0E0" so execute_for_fetch() is
only false on error.  If there were any errors the @tuple_status array
can be used to discover which tuples failed and with what errors.

When called in list context execute_for_fetch() returns two scalars;
$tuples is the same as calling execute_for_fetch() in scalar context and $rows is
the sum of the number of rows affected for each tuple, if available or -1
if the driver cannot determine this.
If you are doing an update operation the returned rows affected may not be what
you expect if, for instance, one or more of the tuples affected the same row
multiple times.  Some drivers may not yet support list context, in which case
$rows will be undef, or may not be able to provide the number of rows affected
when performing this batch operation, in which case $rows will be -1.

If \@tuple_status is passed then the execute_for_fetch method uses
it to return status information. The tuple_status array holds one
element per tuple. If the corresponding execute() did not fail then
the element holds the return value from execute(), which is typically
a row count. If the execute() did fail then the element holds a
reference to an array containing ($sth->err, $sth->errstr, $sth->state).

If the driver detects an error that it knows means no further tuples can be
executed then it may return, with an error status, even though $fetch_tuple_sub
may still have more tuples to be executed.

Although each tuple returned by $fetch_tuple_sub is effectively used
to call $sth->execute(@$tuple_array_ref) the exact timing may vary.
Drivers are free to accumulate sets of tuples to pass to the
database server in bulk group operations for more efficient execution.
However, the $fetch_tuple_sub is specifically allowed to return
the same array reference each time (which is what fetchrow_arrayref()
usually does).

For example:

  my $sel = $dbh1->prepare("select foo, bar from table1");
  $sel->execute;

  my $ins = $dbh2->prepare("insert into table2 (foo, bar) values (?,?)");
  my $fetch_tuple_sub = sub { $sel->fetchrow_arrayref };

  my @tuple_status;
  $rc = $ins->execute_for_fetch($fetch_tuple_sub, \@tuple_status);
  my @errors = grep { ref $_ } @tuple_status;

Similarly, if you already have an array containing the data rows
to be processed you'd use a subroutine to shift off and return
each array ref in turn:

  $ins->execute_for_fetch( sub { shift @array_of_arrays }, \@tuple_status);

The C<execute_for_fetch> method was added in DBI 1.38.


=head3 C<fetchrow_arrayref>

  $ary_ref = $sth->fetchrow_arrayref;
  $ary_ref = $sth->fetch;    # alias

Fetches the next row of data and returns a reference to an array
holding the field values.  Null fields are returned as C<undef>
values in the array.
This is the fastest way to fetch data, particularly if used with
C<$sth-E<gt>bind_columns>.

If there are no more rows or if an error occurs, then C<fetchrow_arrayref>
returns an C<undef>. You should check C<$sth-E<gt>err> afterwards (or use the
C<RaiseError> attribute) to discover if the C<undef> returned was due to an
error.

Note that the same array reference is returned for each fetch, so don't
store the reference and then use it after a later fetch.  Also, the
elements of the array are also reused for each row, so take care if you
want to take a reference to an element. See also L</bind_columns>.

=head3 C<fetchrow_array>

 @ary = $sth->fetchrow_array;

An alternative to C<fetchrow_arrayref>. Fetches the next row of data
and returns it as a list containing the field values.  Null fields
are returned as C<undef> values in the list.

If there are no more rows or if an error occurs, then C<fetchrow_array>
returns an empty list. You should check C<$sth-E<gt>err> afterwards (or use
the C<RaiseError> attribute) to discover if the empty list returned was
due to an error.

If called in a scalar context for a statement handle that has more
than one column, it is undefined whether the driver will return
the value of the first column or the last. So don't do that.
Also, in a scalar context, an C<undef> is returned if there are no
more rows or if an error occurred. That C<undef> can't be distinguished
from an C<undef> returned because the first field value was NULL.
For these reasons you should exercise some caution if you use
C<fetchrow_array> in a scalar context.

=head3 C<fetchrow_hashref>

 $hash_ref = $sth->fetchrow_hashref;
 $hash_ref = $sth->fetchrow_hashref($name);

An alternative to C<fetchrow_arrayref>. Fetches the next row of data
and returns it as a reference to a hash containing field name and field
value pairs.  Null fields are returned as C<undef> values in the hash.

If there are no more rows or if an error occurs, then C<fetchrow_hashref>
returns an C<undef>. You should check C<$sth-E<gt>err> afterwards (or use the
C<RaiseError> attribute) to discover if the C<undef> returned was due to an
error.

The optional C<$name> parameter specifies the name of the statement handle
attribute. For historical reasons it defaults to "C<NAME>", however using either
"C<NAME_lc>" or "C<NAME_uc>" is recomended for portability.

The keys of the hash are the same names returned by C<$sth-E<gt>{$name}>. If
more than one field has the same name, there will only be one entry in
the returned hash for those fields.

Because of the extra work C<fetchrow_hashref> and Perl have to perform, it
is not as efficient as C<fetchrow_arrayref> or C<fetchrow_array>.

By default a reference to a new hash is returned for each row.
It is likely that a future version of the DBI will support an
attribute which will enable the same hash to be reused for each
row. This will give a significant performance boost, but it won't
be enabled by default because of the risk of breaking old code.


=head3 C<fetchall_arrayref>

  $tbl_ary_ref = $sth->fetchall_arrayref;
  $tbl_ary_ref = $sth->fetchall_arrayref( $slice );
  $tbl_ary_ref = $sth->fetchall_arrayref( $slice, $max_rows  );

The C<fetchall_arrayref> method can be used to fetch all the data to be
returned from a prepared and executed statement handle. It returns a
reference to an array that contains one reference per row.

If there are no rows to return, C<fetchall_arrayref> returns a reference
to an empty array. If an error occurs, C<fetchall_arrayref> returns the
data fetched thus far, which may be none.  You should check C<$sth-E<gt>err>
afterwards (or use the C<RaiseError> attribute) to discover if the data is
complete or was truncated due to an error.

If $slice is an array reference, C<fetchall_arrayref> uses L</fetchrow_arrayref>
to fetch each row as an array ref. If the $slice array is not empty
then it is used as a slice to select individual columns by perl array
index number (starting at 0, unlike column and parameter numbers which
start at 1).

With no parameters, or if $slice is undefined, C<fetchall_arrayref>
acts as if passed an empty array ref.

If $slice is a hash reference, C<fetchall_arrayref> uses L</fetchrow_hashref>
to fetch each row as a hash reference. If the $slice hash is empty then
fetchrow_hashref() is simply called in a tight loop and the keys in the hashes
have whatever name lettercase is returned by default from fetchrow_hashref.
(See L</FetchHashKeyName> attribute.) If the $slice hash is not
empty, then it is used as a slice to select individual columns by
name.  The values of the hash should be set to 1.  The key names
of the returned hashes match the letter case of the names in the
parameter hash, regardless of the L</FetchHashKeyName> attribute.

For example, to fetch just the first column of every row:

  $tbl_ary_ref = $sth->fetchall_arrayref([0]);

To fetch the second to last and last column of every row:

  $tbl_ary_ref = $sth->fetchall_arrayref([-2,-1]);

To fetch all fields of every row as a hash ref:

  $tbl_ary_ref = $sth->fetchall_arrayref({});

To fetch only the fields called "foo" and "bar" of every row as a hash ref
(with keys named "foo" and "BAR"):

  $tbl_ary_ref = $sth->fetchall_arrayref({ foo=>1, BAR=>1 });

The first two examples return a reference to an array of array refs.
The third and forth return a reference to an array of hash refs.

If $max_rows is defined and greater than or equal to zero then it
is used to limit the number of rows fetched before returning.
fetchall_arrayref() can then be called again to fetch more rows.
This is especially useful when you need the better performance of
fetchall_arrayref() but don't have enough memory to fetch and return
all the rows in one go.

Here's an example (assumes RaiseError is enabled):

  my $rows = []; # cache for batches of rows
  while( my $row = ( shift(@$rows) || # get row from cache, or reload cache:
                     shift(@{$rows=$sth->fetchall_arrayref(undef,10_000)||[]}) )
  ) {
    ...
  }

That I<might> be the fastest way to fetch and process lots of rows using the DBI,
but it depends on the relative cost of method calls vs memory allocation.

A standard C<while> loop with column binding is often faster because
the cost of allocating memory for the batch of rows is greater than
the saving by reducing method calls. It's possible that the DBI may
provide a way to reuse the memory of a previous batch in future, which
would then shift the balance back towards fetchall_arrayref().


=head3 C<fetchall_hashref>

  $hash_ref = $sth->fetchall_hashref($key_field);

The C<fetchall_hashref> method can be used to fetch all the data to be
returned from a prepared and executed statement handle. It returns a reference
to a hash containing a key for each distinct value of the $key_field column
that was fetched. For each key the corresponding value is a reference to a hash
containing all the selected columns and their values, as returned by fetchrow_hashref().

If there are no rows to return, C<fetchall_hashref> returns a reference
to an empty hash. If an error occurs, C<fetchall_hashref> returns the
data fetched thus far, which may be none.  You should check
C<$sth-E<gt>err> afterwards (or use the C<RaiseError> attribute) to
discover if the data is complete or was truncated due to an error.

The $key_field parameter provides the name of the field that holds the
value to be used for the key for the returned hash.  For example:

  $dbh->{FetchHashKeyName} = 'NAME_lc';
  $sth = $dbh->prepare("SELECT FOO, BAR, ID, NAME, BAZ FROM TABLE");
  $sth->execute;
  $hash_ref = $sth->fetchall_hashref('id');
  print "Name for id 42 is $hash_ref->{42}->{name}\n";

The $key_field parameter can also be specified as an integer column
number (counting from 1).  If $key_field doesn't match any column in
the statement, as a name first then as a number, then an error is
returned.

For queries returning more than one 'key' column, you can specify
multiple column names by passing $key_field as a reference to an
array containing one or more key column names (or index numbers).
For example:

  $sth = $dbh->prepare("SELECT foo, bar, baz FROM table");
  $sth->execute;
  $hash_ref = $sth->fetchall_hashref( [ qw(foo bar) ] );
  print "For foo 42 and bar 38, baz is $hash_ref->{42}->{38}->{baz}\n";

The fetchall_hashref() method is normally used only where the key
fields values for each row are unique.  If multiple rows are returned
with the same values for the key fields then later rows overwrite
earlier ones.

=head3 C<finish>

  $rc  = $sth->finish;

Indicate that no more data will be fetched from this statement handle
before it is either executed again or destroyed.  The C<finish> method
is rarely needed, and frequently overused, but can sometimes be
helpful in a few very specific situations to allow the server to free
up resources (such as sort buffers).

When all the data has been fetched from a C<SELECT> statement, the
driver should automatically call C<finish> for you. So you should
I<not> normally need to call it explicitly I<except> when you know
that you've not fetched all the data from a statement handle.
The most common example is when you only want to fetch one row,
but in that case the C<selectrow_*> methods are usually better anyway.
Adding calls to C<finish> after each fetch loop is a common mistake,
don't do it, it can mask genuine problems like uncaught fetch errors.

Consider a query like:

  SELECT foo FROM table WHERE bar=? ORDER BY foo

where you want to select just the first (smallest) "foo" value from a
very large table. When executed, the database server will have to use
temporary buffer space to store the sorted rows. If, after executing
the handle and selecting one row, the handle won't be re-executed for
some time and won't be destroyed, the C<finish> method can be used to tell
the server that the buffer space can be freed.

Calling C<finish> resets the L</Active> attribute for the statement.  It
may also make some statement handle attributes (such as C<NAME> and C<TYPE>)
unavailable if they have not already been accessed (and thus cached).

The C<finish> method does not affect the transaction status of the
database connection.  It has nothing to do with transactions. It's mostly an
internal "housekeeping" method that is rarely needed.
See also L</disconnect> and the L</Active> attribute.

The C<finish> method should have been called C<discard_pending_rows>.


=head3 C<rows>

  $rv = $sth->rows;

Returns the number of rows affected by the last row affecting command,
or -1 if the number of rows is not known or not available.

Generally, you can only rely on a row count after a I<non>-C<SELECT>
C<execute> (for some specific operations like C<UPDATE> and C<DELETE>), or
after fetching all the rows of a C<SELECT> statement.

For C<SELECT> statements, it is generally not possible to know how many
rows will be returned except by fetching them all.  Some drivers will
return the number of rows the application has fetched so far, but
others may return -1 until all rows have been fetched.  So use of the
C<rows> method or C<$DBI::rows> with C<SELECT> statements is not
recommended.

One alternative method to get a row count for a C<SELECT> is to execute a
"SELECT COUNT(*) FROM ..." SQL statement with the same "..." as your
query and then fetch the row count from that.


=head3 C<bind_col>

  $rc = $sth->bind_col($column_number, \$var_to_bind);
  $rc = $sth->bind_col($column_number, \$var_to_bind, \%attr );
  $rc = $sth->bind_col($column_number, \$var_to_bind, $bind_type );

Binds a Perl variable and/or some attributes to an output column
(field) of a C<SELECT> statement.  Column numbers count up from 1.
You do not need to bind output columns in order to fetch data.
For maximum portability between drivers, bind_col() should be called
after execute() and not before.
See also C<bind_columns> for an example.

The binding is performed at a low level using Perl aliasing.
Whenever a row is fetched from the database $var_to_bind appears
to be automatically updated simply because it now refers to the same
memory location as the corresponding column value.  This makes using
bound variables very efficient.
Binding a tied variable doesn't work, currently.

The L</bind_param> method
performs a similar, but opposite, function for input variables.

B<Data Types for Column Binding>

The C<\%attr> parameter can be used to hint at the data type
formatting the column should have. For example, you can use:

  $sth->bind_col(1, undef, { TYPE => SQL_DATETIME });

to specify that you'd like the column (which presumably is some
kind of datetime type) to be returned in the standard format for
SQL_DATETIME, which is 'YYYY-MM-DD HH:MM:SS', rather than the
native formatting the database would normally use.

There's no $var_to_bind in that example to emphasize the point
that bind_col() works on the underlying column and not just
a particular bound variable.

As a short-cut for the common case, the data type can be passed
directly, in place of the C<\%attr> hash reference. This example is
equivalent to the one above:

  $sth->bind_col(1, undef, SQL_DATETIME);

The C<TYPE> value indicates the standard (non-driver-specific) type for
this parameter. To specify the driver-specific type, the driver may
support a driver-specific attribute, such as C<{ ora_type =E<gt> 97 }>.

The SQL_DATETIME and other related constants can be imported using

  use DBI qw(:sql_types);

See L</"DBI Constants"> for more information.

Few drivers support specifying a data type via a C<bind_col> call (most will
simply ignore the data type). Fewer still allow the data type to be altered
once set.

The TYPE attribute for bind_col() was first specified in DBI 1.41.


=head3 C<bind_columns>

  $rc = $sth->bind_columns(@list_of_refs_to_vars_to_bind);

Calls L</bind_col> for each column of the C<SELECT> statement.

The list of references should have the same number of elements as the number of
columns in the C<SELECT> statement. If it doesn't then C<bind_columns> will
bind the elements given, up to the number of columns, and then return an error.

For maximum portability between drivers, bind_columns() should be called
after execute() and not before.

For example:

  $dbh->{RaiseError} = 1; # do this, or check every call for errors
  $sth = $dbh->prepare(q{ SELECT region, sales FROM sales_by_region });
  $sth->execute;
  my ($region, $sales);

  # Bind Perl variables to columns:
  $rv = $sth->bind_columns(\$region, \$sales);

  # you can also use Perl's \(...) syntax (see perlref docs):
  #     $sth->bind_columns(\($region, $sales));

  # Column binding is the most efficient way to fetch data
  while ($sth->fetch) {
      print "$region: $sales\n";
  }

For compatibility with old scripts, the first parameter will be
ignored if it is C<undef> or a hash reference.

Here's a more fancy example that binds columns to the values I<inside>
a hash (thanks to H.Merijn Brand):

  $sth->execute;
  my %row;
  $sth->bind_columns( \( @row{ @{$sth->{NAME_lc} } } ));
  while ($sth->fetch) {
      print "$row{region}: $row{sales}\n";
  }


=head3 C<dump_results>

  $rows = $sth->dump_results($maxlen, $lsep, $fsep, $fh);

Fetches all the rows from C<$sth>, calls C<DBI::neat_list> for each row, and
prints the results to C<$fh> (defaults to C<STDOUT>) separated by C<$lsep>
(default C<"\n">). C<$fsep> defaults to C<", "> and C<$maxlen> defaults to 35.

This method is designed as a handy utility for prototyping and
testing queries. Since it uses L</neat_list> to
format and edit the string for reading by humans, it is not recommended
for data transfer applications.


=head2 Statement Handle Attributes

This section describes attributes specific to statement handles. Most
of these attributes are read-only.

Changes to these statement handle attributes do not affect any other
existing or future statement handles.

Attempting to set or get the value of an unknown attribute generates a warning,
except for private driver specific attributes (which all have names
starting with a lowercase letter).

Example:

  ... = $h->{NUM_OF_FIELDS};	# get/read

Some drivers cannot provide valid values for some or all of these
attributes until after C<$sth-E<gt>execute> has been successfully
called. Typically the attribute will be C<undef> in these situations.

Some attributes, like NAME, are not appropriate to some types of
statement, like SELECT. Typically the attribute will be C<undef>
in these situations.

For drivers which support stored procedures and multiple result sets
(see L</more_results>) these attributes relate to the I<current> result set.

See also L</finish> to learn more about the effect it
may have on some attributes.

=head3 C<NUM_OF_FIELDS>  (integer, read-only)

Number of fields (columns) in the data the prepared statement may return.
Statements that don't return rows of data, like C<DELETE> and C<CREATE>
set C<NUM_OF_FIELDS> to 0 (though it may be undef in some drivers).


=head3 C<NUM_OF_PARAMS>  (integer, read-only)

The number of parameters (placeholders) in the prepared statement.
See SUBSTITUTION VARIABLES below for more details.


=head3 C<NAME>  (array-ref, read-only)

Returns a reference to an array of field names for each column. The
names may contain spaces but should not be truncated or have any
trailing space. Note that the names have the letter case (upper, lower
or mixed) as returned by the driver being used. Portable applications
should use L</NAME_lc> or L</NAME_uc>.

  print "First column name: $sth->{NAME}->[0]\n";

=head3 C<NAME_lc>  (array-ref, read-only)

Like L</NAME> but always returns lowercase names.

=head3 C<NAME_uc>  (array-ref, read-only)

Like L</NAME> but always returns uppercase names.

=head3 C<NAME_hash>  (hash-ref, read-only)

=head3 C<NAME_lc_hash>  (hash-ref, read-only)

=head3 C<NAME_uc_hash>  (hash-ref, read-only)

The C<NAME_hash>, C<NAME_lc_hash>, and C<NAME_uc_hash> attributes
return column name information as a reference to a hash.

The keys of the hash are the names of the columns.  The letter case of
the keys corresponds to the letter case returned by the C<NAME>,
C<NAME_lc>, and C<NAME_uc> attributes respectively (as described above).

The value of each hash entry is the perl index number of the
corresponding column (counting from 0). For example:

  $sth = $dbh->prepare("select Id, Name from table");
  $sth->execute;
  @row = $sth->fetchrow_array;
  print "Name $row[ $sth->{NAME_lc_hash}{name} ]\n";


=head3 C<TYPE>  (array-ref, read-only)

Returns a reference to an array of integer values for each
column. The value indicates the data type of the corresponding column.

The values correspond to the international standards (ANSI X3.135
and ISO/IEC 9075) which, in general terms, means ODBC. Driver-specific
types that don't exactly match standard types should generally return
the same values as an ODBC driver supplied by the makers of the
database. That might include private type numbers in ranges the vendor
has officially registered with the ISO working group:

  ftp://sqlstandards.org/SC32/SQL_Registry/

Where there's no vendor-supplied ODBC driver to be compatible with,
the DBI driver can use type numbers in the range that is now
officially reserved for use by the DBI: -9999 to -9000.

All possible values for C<TYPE> should have at least one entry in the
output of the C<type_info_all> method (see L</type_info_all>).

=head3 C<PRECISION>  (array-ref, read-only)

Returns a reference to an array of integer values for each column.

For numeric columns, the value is the maximum number of digits
(without considering a sign character or decimal point). Note that
the "display size" for floating point types (REAL, FLOAT, DOUBLE)
can be up to 7 characters greater than the precision (for the
sign + decimal point + the letter E + a sign + 2 or 3 digits).

For any character type column the value is the OCTET_LENGTH,
in other words the number of bytes, not characters.

(More recent standards refer to this as COLUMN_SIZE but we stick
with PRECISION for backwards compatibility.)

=head3 C<SCALE>  (array-ref, read-only)

Returns a reference to an array of integer values for each column.
NULL (C<undef>) values indicate columns where scale is not applicable.

=head3 C<NULLABLE>  (array-ref, read-only)

Returns a reference to an array indicating the possibility of each
column returning a null.  Possible values are C<0>
(or an empty string) = no, C<1> = yes, C<2> = unknown.

  print "First column may return NULL\n" if $sth->{NULLABLE}->[0];


=head3 C<CursorName>  (string, read-only)

Returns the name of the cursor associated with the statement handle, if
available. If not available or if the database driver does not support the
C<"where current of ..."> SQL syntax, then it returns C<undef>.


=head3 C<Database>  (dbh, read-only)

Returns the parent $dbh of the statement handle.


=head3 C<Statement>  (string, read-only)

Returns the statement string passed to the L</prepare> method.


=head3 C<ParamValues>  (hash ref, read-only)

Returns a reference to a hash containing the values currently bound
to placeholders.  The keys of the hash are the 'names' of the
placeholders, typically integers starting at 1.  Returns undef if
not supported by the driver.

See L</ShowErrorStatement> for an example of how this is used.

* Keys:

If the driver supports C<ParamValues> but no values have been bound
yet then the driver should return a hash with placeholders names
in the keys but all the values undef, but some drivers may return
a ref to an empty hash because they can't pre-determine the names.

It is possible that the keys in the hash returned by C<ParamValues>
are not exactly the same as those implied by the prepared statement.
For example, DBD::Oracle translates 'C<?>' placeholders into 'C<:pN>'
where N is a sequence number starting at 1.

* Values:

It is possible that the values in the hash returned by C<ParamValues>
are not I<exactly> the same as those passed to bind_param() or execute().
The driver may have slightly modified values in some way based on the
TYPE the value was bound with. For example a floating point value
bound as an SQL_INTEGER type may be returned as an integer.
The values returned by C<ParamValues> can be passed to another
bind_param() method with the same TYPE and will be seen by the
database as the same value. See also L</ParamTypes> below.

The C<ParamValues> attribute was added in DBI 1.28.

=head3 C<ParamTypes>  (hash ref, read-only)

Returns a reference to a hash containing the type information
currently bound to placeholders.
Returns undef if not supported by the driver.

* Keys:

See L</ParamValues> above.

* Values:

The hash values are hashrefs of type information in the same form as that
passed to the various bind_param() methods (See L</bind_param> for the format
and values).

It is possible that the values in the hash returned by C<ParamTypes>
are not exactly the same as those passed to bind_param() or execute().
Param attributes specified using the abreviated form, like this:

    $sth->bind_param(1, SQL_INTEGER);

are returned in the expanded form, as if called like this:

    $sth->bind_param(1, { TYPE => SQL_INTEGER });

The driver may have modified the type information in some way based
on the bound values, other hints provided by the prepare()'d
SQL statement, or alternate type mappings required by the driver or target
database system. The driver may also add private keys (with names beginning
with the drivers reserved prefix, e.g., odbc_xxx).

* Example:

The keys and values in the returned hash can be passed to the various
bind_param() methods to effectively reproduce a previous param binding.
For example:

  # assuming $sth1 is a previously prepared statement handle
  my $sth2 = $dbh->prepare( $sth1->{Statement} );
  my $ParamValues = $sth1->{ParamValues} || {};
  my $ParamTypes  = $sth1->{ParamTypes}  || {};
  $sth2->bind_param($_, $PV->{$_} $PT->{$_})
    for keys %{ %$PV, %$PT };
  $sth2->execute();

The C<ParamTypes> attribute was added in DBI 1.49. Implementation
is the responsibility of individual drivers; the DBI layer default
implementation simply returns undef.


=head3 C<ParamArrays>  (hash ref, read-only)

Returns a reference to a hash containing the values currently bound to
placeholders with L</execute_array> or L</bind_param_array>.  The
keys of the hash are the 'names' of the placeholders, typically
integers starting at 1.  Returns undef if not supported by the driver
or no arrays of parameters are bound.

Each key value is an array reference containing a list of the bound
parameters for that column.

For example:

  $sth = $dbh->prepare("INSERT INTO staff (id, name) values (?,?)");
  $sth->execute_array({},[1,2], ['fred','dave']);
  if ($sth->{ParamArrays}) {
      foreach $param (keys %{$sth->{ParamArrays}}) {
	  printf "Parameters for %s : %s\n", $param,
	  join(",", @{$sth->{ParamArrays}->{$param}});
      }
  }

It is possible that the values in the hash returned by C<ParamArrays>
are not I<exactly> the same as those passed to L</bind_param_array> or
L</execute_array>.  The driver may have slightly modified values in some
way based on the TYPE the value was bound with. For example a floating
point value bound as an SQL_INTEGER type may be returned as an
integer.

It is also possible that the keys in the hash returned by
C<ParamArrays> are not exactly the same as those implied by the
prepared statement.  For example, DBD::Oracle translates 'C<?>'
placeholders into 'C<:pN>' where N is a sequence number starting at 1.

=head3 C<RowsInCache>  (integer, read-only)

If the driver supports a local row cache for C<SELECT> statements, then
this attribute holds the number of un-fetched rows in the cache. If the
driver doesn't, then it returns C<undef>. Note that some drivers pre-fetch
rows on execute, whereas others wait till the first fetch.

See also the L</RowCacheSize> database handle attribute.

=head1 FURTHER INFORMATION

=head2 Catalog Methods

An application can retrieve metadata information from the DBMS by issuing
appropriate queries on the views of the Information Schema. Unfortunately,
C<INFORMATION_SCHEMA> views are seldom supported by the DBMS.
Special methods (catalog methods) are available to return result sets
for a small but important portion of that metadata:

  column_info
  foreign_key_info
  primary_key_info
  table_info
  statistics_info

All catalog methods accept arguments in order to restrict the result sets.
Passing C<undef> to an optional argument does not constrain the search for
that argument.
However, an empty string ('') is treated as a regular search criteria
and will only match an empty value.

B<Note>: SQL/CLI and ODBC differ in the handling of empty strings. An
empty string will not restrict the result set in SQL/CLI.

Most arguments in the catalog methods accept only I<ordinary values>, e.g.
the arguments of C<primary_key_info()>.
Such arguments are treated as a literal string, i.e. the case is significant
and quote characters are taken literally.

Some arguments in the catalog methods accept I<search patterns> (strings
containing '_' and/or '%'), e.g. the C<$table> argument of C<column_info()>.
Passing '%' is equivalent to leaving the argument C<undef>.

B<Caveat>: The underscore ('_') is valid and often used in SQL identifiers.
Passing such a value to a search pattern argument may return more rows than
expected!
To include pattern characters as literals, they must be preceded by an
escape character which can be achieved with

  $esc = $dbh->get_info( 14 );  # SQL_SEARCH_PATTERN_ESCAPE
  $search_pattern =~ s/([_%])/$esc$1/g;

The ODBC and SQL/CLI specifications define a way to change the default
behaviour described above: All arguments (except I<list value arguments>)
are treated as I<identifier> if the C<SQL_ATTR_METADATA_ID> attribute is
set to C<SQL_TRUE>.
I<Quoted identifiers> are very similar to I<ordinary values>, i.e. their
body (the string within the quotes) is interpreted literally.
I<Unquoted identifiers> are compared in UPPERCASE.

The DBI (currently) does not support the C<SQL_ATTR_METADATA_ID> attribute,
i.e. it behaves like an ODBC driver where C<SQL_ATTR_METADATA_ID> is set to
C<SQL_FALSE>.


=head2 Transactions

Transactions are a fundamental part of any robust database system. They
protect against errors and database corruption by ensuring that sets of
related changes to the database take place in atomic (indivisible,
all-or-nothing) units.

This section applies to databases that support transactions and where
C<AutoCommit> is off.  See L</AutoCommit> for details of using C<AutoCommit>
with various types of databases.

The recommended way to implement robust transactions in Perl
applications is to use C<RaiseError> and S<C<eval { ... }>>
(which is very fast, unlike S<C<eval "...">>). For example:

  $dbh->{AutoCommit} = 0;  # enable transactions, if possible
  $dbh->{RaiseError} = 1;
  eval {
      foo(...)        # do lots of work here
      bar(...)        # including inserts
      baz(...)        # and updates
      $dbh->commit;   # commit the changes if we get this far
  };
  if ($@) {
      warn "Transaction aborted because $@";
      # now rollback to undo the incomplete changes
      # but do it in an eval{} as it may also fail
      eval { $dbh->rollback };
      # add other application on-error-clean-up code here
  }

If the C<RaiseError> attribute is not set, then DBI calls would need to be
manually checked for errors, typically like this:

  $h->method(@args) or die $h->errstr;

With C<RaiseError> set, the DBI will automatically C<die> if any DBI method
call on that handle (or a child handle) fails, so you don't have to
test the return value of each method call. See L</RaiseError> for more
details.

A major advantage of the C<eval> approach is that the transaction will be
properly rolled back if I<any> code (not just DBI calls) in the inner
application dies for any reason. The major advantage of using the
C<$h-E<gt>{RaiseError}> attribute is that all DBI calls will be checked
automatically. Both techniques are strongly recommended.

After calling C<commit> or C<rollback> many drivers will not let you
fetch from a previously active C<SELECT> statement handle that's a child
of the same database handle. A typical way round this is to connect the
the database twice and use one connection for C<SELECT> statements.

See L</AutoCommit> and L</disconnect> for other important information
about transactions.


=head2 Handling BLOB / LONG / Memo Fields

Many databases support "blob" (binary large objects), "long", or similar
datatypes for holding very long strings or large amounts of binary
data in a single field. Some databases support variable length long
values over 2,000,000,000 bytes in length.

Since values of that size can't usually be held in memory, and because
databases can't usually know in advance the length of the longest long
that will be returned from a C<SELECT> statement (unlike other data
types), some special handling is required.

In this situation, the value of the C<$h-E<gt>{LongReadLen}>
attribute is used to determine how much buffer space to allocate
when fetching such fields.  The C<$h-E<gt>{LongTruncOk}> attribute
is used to determine how to behave if a fetched value can't fit
into the buffer.

See the description of L</LongReadLen> for more information.

When trying to insert long or binary values, placeholders should be used
since there are often limits on the maximum size of an C<INSERT>
statement and the L</quote> method generally can't cope with binary
data.  See L</Placeholders and Bind Values>.


=head2 Simple Examples

Here's a complete example program to select and fetch some data:

  my $data_source = "dbi::DriverName:db_name";
  my $dbh = DBI->connect($data_source, $user, $password)
      or die "Can't connect to $data_source: $DBI::errstr";

  my $sth = $dbh->prepare( q{
          SELECT name, phone
          FROM mytelbook
  }) or die "Can't prepare statement: $DBI::errstr";

  my $rc = $sth->execute
      or die "Can't execute statement: $DBI::errstr";

  print "Query will return $sth->{NUM_OF_FIELDS} fields.\n\n";
  print "Field names: @{ $sth->{NAME} }\n";

  while (($name, $phone) = $sth->fetchrow_array) {
      print "$name: $phone\n";
  }
  # check for problems which may have terminated the fetch early
  die $sth->errstr if $sth->err;

  $dbh->disconnect;

Here's a complete example program to insert some data from a file.
(This example uses C<RaiseError> to avoid needing to check each call).

  my $dbh = DBI->connect("dbi:DriverName:db_name", $user, $password, {
      RaiseError => 1, AutoCommit => 0
  });

  my $sth = $dbh->prepare( q{
      INSERT INTO table (name, phone) VALUES (?, ?)
  });

  open FH, "<phone.csv" or die "Unable to open phone.csv: $!";
  while (<FH>) {
      chomp;
      my ($name, $phone) = split /,/;
      $sth->execute($name, $phone);
  }
  close FH;

  $dbh->commit;
  $dbh->disconnect;

Here's how to convert fetched NULLs (undefined values) into empty strings:

  while($row = $sth->fetchrow_arrayref) {
    # this is a fast and simple way to deal with nulls:
    foreach (@$row) { $_ = '' unless defined }
    print "@$row\n";
  }

The C<q{...}> style quoting used in these examples avoids clashing with
quotes that may be used in the SQL statement. Use the double-quote like
C<qq{...}> operator if you want to interpolate variables into the string.
See L<perlop/"Quote and Quote-like Operators"> for more details.

=head2 Threads and Thread Safety

Perl 5.7 and later support a new threading model called iThreads.
(The old "5.005 style" threads are not supported by the DBI.)

In the iThreads model each thread has it's own copy of the perl
interpreter.  When a new thread is created the original perl
interpreter is 'cloned' to create a new copy for the new thread.

If the DBI and drivers are loaded and handles created before the
thread is created then it will get a cloned copy of the DBI, the
drivers and the handles.

However, the internal pointer data within the handles will refer
to the DBI and drivers in the original interpreter. Using those
handles in the new interpreter thread is not safe, so the DBI detects
this and croaks on any method call using handles that don't belong
to the current thread (except for DESTROY).

Because of this (possibly temporary) restriction, newly created
threads must make their own connections to the database. Handles
can't be shared across threads.

But BEWARE, some underlying database APIs (the code the DBD driver
uses to talk to the database, often supplied by the database vendor)
are not thread safe. If it's not thread safe, then allowing more
than one thread to enter the code at the same time may cause
subtle/serious problems. In some cases allowing more than
one thread to enter the code, even if I<not> at the same time,
can cause problems. You have been warned.

Using DBI with perl threads is not yet recommended for production
environments. For more information see
L<http://www.perlmonks.org/index.pl?node_id=288022>

Note: There is a bug in perl 5.8.2 when configured with threads
and debugging enabled (bug #24463) which causes a DBI test to fail.

=head2 Signal Handling and Canceling Operations

[The following only applies to systems with unix-like signal handling.
I'd welcome additions for other systems, especially Windows.]

The first thing to say is that signal handling in Perl versions less
than 5.8 is I<not> safe. There is always a small risk of Perl
crashing and/or core dumping when, or after, handling a signal
because the signal could arrive and be handled while internal data
structures are being changed. If the signal handling code
used those same internal data structures it could cause all manner
of subtle and not-so-subtle problems.  The risk was reduced with
5.4.4 but was still present in all perls up through 5.8.0.

Beginning in perl 5.8.0 perl implements 'safe' signal handling if
your system has the POSIX sigaction() routine. Now when a signal
is delivered perl just makes a note of it but does I<not> run the
%SIG handler. The handling is 'deferred' until a 'safe' moment.

Although this change made signal handling safe, it also lead to
a problem with signals being deferred for longer than you'd like.
If a signal arrived while executing a system call, such as waiting
for data on a network connection, the signal is noted and then the
system call that was executing returns with an EINTR error code
to indicate that it was interrupted. All fine so far.

The problem comes when the code that made the system call sees the
EINTR code and decides it's going to call it again. Perl doesn't
do that, but database code sometimes does. If that happens then the
signal handler doesn't get called until later. Maybe much later.

Fortunately there are ways around this which we'll discuss below.
Unfortunately they make signals unsafe again.

The two most common uses of signals in relation to the DBI are for
canceling operations when the user types Ctrl-C (interrupt), and for
implementing a timeout using C<alarm()> and C<$SIG{ALRM}>.

=over 4

=item Cancel

The DBI provides a C<cancel> method for statement handles. The
C<cancel> method should abort the current operation and is designed
to be called from a signal handler.  For example:

  $SIG{INT} = sub { $sth->cancel };

However, few drivers implement this (the DBI provides a default
method that just returns C<undef>) and, even if implemented, there
is still a possibility that the statement handle, and even the
parent database handle, will not be usable afterwards.

If C<cancel> returns true, then it has successfully
invoked the database engine's own cancel function.  If it returns false,
then C<cancel> failed. If it returns C<undef>, then the database
driver does not have cancel implemented - very few do.

=item Timeout

The traditional way to implement a timeout is to set C<$SIG{ALRM}>
to refer to some code that will be executed when an ALRM signal
arrives and then to call alarm($seconds) to schedule an ALRM signal
to be delivered $seconds in the future. For example:

  eval {
    local $SIG{ALRM} = sub { die "TIMEOUT\n" };
    alarm($seconds);
    ... code to execute with timeout here ...
    alarm(0);  # cancel alarm (if code ran fast)
  };
  alarm(0);    # cancel alarm (if eval failed)
  if ( $@ eq "TIMEOUT\n" ) { ... }

Unfortunately, as described above, this won't always work as expected,
depending on your perl version and the underlying database code.

With Oracle for instance (DBD::Oracle), if the system which hosts
the database is down the DBI->connect() call will hang for several
minutes before returning an error.

=back

The solution on these systems is to use the C<POSIX::sigaction()>
routine to gain low level access to how the signal handler is installed.

The code would look something like this (for the DBD-Oracle connect()):

   use POSIX ':signal_h';

   my $mask = POSIX::SigSet->new( SIGALRM ); # signals to mask in the handler
   my $action = POSIX::SigAction->new(
       sub { die "connect timeout" },        # the handler code ref
       $mask,
       # not using (perl 5.8.2 and later) 'safe' switch or sa_flags
   );
   my $oldaction = POSIX::SigAction->new();
   sigaction( 'ALRM', $action, $oldaction );
   my $dbh;
   eval {
      alarm(5); # seconds before time out
      $dbh = DBI->connect("dbi:Oracle:$dsn" ... );
      alarm(0); # cancel alarm (if connect worked fast)
   };
   alarm(0);    # cancel alarm (if eval failed)
   sigaction( 'ALRM', $oldaction );  # restore original signal handler
   if ( $@ ) ....

Similar techniques can be used for canceling statement execution.

Unfortunately, this solution is somewhat messy, and it does I<not> work with
perl versions less than perl 5.8 where C<POSIX::sigaction()> appears to be broken.

For a cleaner implementation that works across perl versions, see Lincoln Baxter's
Sys::SigAction module at L<http://search.cpan.org/~lbaxter/Sys-SigAction/>.
The documentation for Sys::SigAction includes an longer discussion
of this problem, and a DBD::Oracle test script.

Be sure to read all the signal handling sections of the L<perlipc> manual.

And finally, two more points to keep firmly in mind. Firstly,
remember that what we've done here is essentially revert to old
style I<unsafe> handling of these signals. So do as little as
possible in the handler.  Ideally just die(). Secondly, the handles
in use at the time the signal is handled may not be safe to use
afterwards.


=head2 Subclassing the DBI

DBI can be subclassed and extended just like any other object
oriented module.  Before we talk about how to do that, it's important
to be clear about the various DBI classes and how they work together.

By default C<$dbh = DBI-E<gt>connect(...)> returns a $dbh blessed
into the C<DBI::db> class.  And the C<$dbh-E<gt>prepare> method
returns an $sth blessed into the C<DBI::st> class (actually it
simply changes the last four characters of the calling handle class
to be C<::st>).

The leading 'C<DBI>' is known as the 'root class' and the extra
'C<::db>' or 'C<::st>' are the 'handle type suffixes'. If you want
to subclass the DBI you'll need to put your overriding methods into
the appropriate classes.  For example, if you want to use a root class
of C<MySubDBI> and override the do(), prepare() and execute() methods,
then your do() and prepare() methods should be in the C<MySubDBI::db>
class and the execute() method should be in the C<MySubDBI::st> class.

To setup the inheritance hierarchy the @ISA variable in C<MySubDBI::db>
should include C<DBI::db> and the @ISA variable in C<MySubDBI::st>
should include C<DBI::st>.  The C<MySubDBI> root class itself isn't
currently used for anything visible and so, apart from setting @ISA
to include C<DBI>, it can be left empty.

So, having put your overriding methods into the right classes, and
setup the inheritance hierarchy, how do you get the DBI to use them?
You have two choices, either a static method call using the name
of your subclass:

  $dbh = MySubDBI->connect(...);

or specifying a C<RootClass> attribute:

  $dbh = DBI->connect(..., { RootClass => 'MySubDBI' });

If both forms are used then the attribute takes precedence.

The only differences between the two are that using an explicit
RootClass attribute will a) make the DBI automatically attempt to load
a module by that name if the class doesn't exist, and b) won't call
your MySubDBI::connect() method, if you have one.

When subclassing is being used then, after a successful new
connect, the DBI->connect method automatically calls:

  $dbh->connected($dsn, $user, $pass, \%attr);

The default method does nothing. The call is made just to simplify
any post-connection setup that your subclass may want to perform.
The parameters are the same as passed to DBI->connect.
If your subclass supplies a connected method, it should be part of the
MySubDBI::db package.

One more thing to note: you must let the DBI do the handle creation.  If you
want to override the connect() method in your *::dr class then it must still
call SUPER::connect to get a $dbh to work with. Similarly, an overridden
prepare() method in *::db must still call SUPER::prepare to get a $sth.
If you try to create your own handles using bless() then you'll find the DBI
will reject them with an "is not a DBI handle (has no magic)" error.

Here's a brief example of a DBI subclass.  A more thorough example
can be found in F<t/subclass.t> in the DBI distribution.

  package MySubDBI;

  use strict;

  use DBI;
  use vars qw(@ISA);
  @ISA = qw(DBI);

  package MySubDBI::db;
  use vars qw(@ISA);
  @ISA = qw(DBI::db);

  sub prepare {
    my ($dbh, @args) = @_;
    my $sth = $dbh->SUPER::prepare(@args)
        or return;
    $sth->{private_mysubdbi_info} = { foo => 'bar' };
    return $sth;
  }

  package MySubDBI::st;
  use vars qw(@ISA);
  @ISA = qw(DBI::st);

  sub fetch {
    my ($sth, @args) = @_;
    my $row = $sth->SUPER::fetch(@args)
        or return;
    do_something_magical_with_row_data($row)
        or return $sth->set_err(1234, "The magic failed", undef, "fetch");
    return $row;
  }

When calling a SUPER::method that returns a handle, be careful to
check the return value before trying to do other things with it in
your overridden method. This is especially important if you want to
set a hash attribute on the handle, as Perl's autovivification will
bite you by (in)conveniently creating an unblessed hashref, which your
method will then return with usually baffling results later on like
the error "dbih_getcom handle HASH(0xa4451a8) is not a DBI handle (has
no magic".  It's best to check right after the call and return undef
immediately on error, just like DBI would and just like the example
above.

If your method needs to record an error it should call the set_err()
method with the error code and error string, as shown in the example
above. The error code and error string will be recorded in the
handle and available via C<$h-E<gt>err> and C<$DBI::errstr> etc.
The set_err() method always returns an undef or empty list as
appropriate. Since your method should nearly always return an undef
or empty list as soon as an error is detected it's handy to simply
return what set_err() returns, as shown in the example above.

If the handle has C<RaiseError>, C<PrintError>, or C<HandleError>
etc. set then the set_err() method will honour them. This means
that if C<RaiseError> is set then set_err() won't return in the
normal way but will 'throw an exception' that can be caught with
an C<eval> block.

You can stash private data into DBI handles
via C<$h-E<gt>{private_..._*}>.  See the entry under L</ATTRIBUTES
COMMON TO ALL HANDLES> for info and important caveats.


=head1 TRACING

The DBI has a powerful tracing mechanism built in. It enables you
to see what's going on 'behind the scenes', both within the DBI and
the drivers you're using.

=head2 Trace Settings

Which details are written to the trace output is controlled by a
combination of a I<trace level>, an integer from 0 to 15, and a set
of I<trace flags> that are either on or off. Together these are known
as the I<trace settings> and are stored together in a single integer.
For normal use you only need to set the trace level, and generally
only to a value between 1 and 4.

Each handle has it's own trace settings, and so does the DBI.
When you call a method the DBI merges the handles settings into its
own for the duration of the call: the trace flags of the handle are
OR'd into the trace flags of the DBI, and if the handle has a higher
trace level then the DBI trace level is raised to match it.
The previous DBI trace settings are restored when the called method
returns.

=head2 Trace Levels

Trace I<levels> are as follows:

  0 - Trace disabled.
  1 - Trace top-level DBI method calls returning with results or errors.
  2 - As above, adding tracing of top-level method entry with parameters.
  3 - As above, adding some high-level information from the driver
      and some internal information from the DBI.
  4 - As above, adding more detailed information from the driver.
      This is the first level to trace all the rows being fetched.
  5 to 15 - As above but with more and more internal information.

Trace level 1 is best for a simple overview of what's happening.
Trace levels 2 thru 4 a good choice for general purpose tracing.
Levels 5 and above are best reserved for investigating a specific
problem, when you need to see "inside" the driver and DBI.

The trace output is detailed and typically very useful. Much of the
trace output is formatted using the L</neat> function, so strings
in the trace output may be edited and truncated by that function.

=head2 Trace Flags

Trace I<flags> are used to enable tracing of specific activities
within the DBI and drivers. The DBI defines some trace flags and
drivers can define others. DBI trace flag names begin with a capital
letter and driver specific names begin with a lowercase letter, as
usual.

Currently the DBI only defines two trace flags:

  ALL - turn on all DBI and driver flags (not recommended)
  SQL - trace SQL statements executed
        (not yet implemented in DBI but implemented in some DBDs)

The L</parse_trace_flags> and L</parse_trace_flag> methods are used
to convert trace flag names into the corresponding integer bit flags.

=head2 Enabling Trace

The C<$h-E<gt>trace> method sets the trace settings for a handle
and C<DBI-E<gt>trace> does the same for the DBI.

In addition to the L</trace> method, you can enable the same trace
information, and direct the output to a file, by setting the
C<DBI_TRACE> environment variable before starting Perl.
See L</DBI_TRACE> for more information.

Finally, you can set, or get, the trace settings for a handle using
the C<TraceLevel> attribute.

All of those methods use parse_trace_flags() and so allow you set
both the trace level and multiple trace flags by using a string
containing the trace level and/or flag names separated by vertical
bar ("C<|>") or comma ("C<,>") characters. For example:

  local $h->{TraceLevel} = "3|SQL|foo";

=head2 Trace Output

Initially trace output is written to C<STDERR>.  Both the
C<$h-E<gt>trace> and C<DBI-E<gt>trace> methods take an optional
$trace_file parameter, which may be either the name of a file to be
opened by DBI in append mode, or a reference to an existing writable
(possibly layered) filehandle. If $trace_file is a filename,
and can be opened in append mode, or $trace_file is a writable
filehandle, then I<all> trace output (currently including that from
other handles) is redirected to that file. A warning is generated
if $trace_file can't be opened or is not writable.

Further calls to trace() without $trace_file do not alter where
the trace output is sent. If $trace_file is undefined, then
trace output is sent to C<STDERR> and, if the prior trace was opened with
$trace_file as a filename, the previous trace file is closed; if $trace_file was
a filehandle, the filehandle is B<not> closed.

B<NOTE>: If $trace_file is specified as a filehandle, the filehandle
should not be closed until all DBI operations are completed, or the
application has reset the trace file via another call to
C<trace()> that changes the trace file.

=head2 Tracing to Layered Filehandles

B<NOTE>:

=over 4

=item *
Tied filehandles are not currently supported, as
tie operations are not available to the PerlIO
methods used by the DBI.

=item *
PerlIO layer support requires Perl version 5.8 or higher.

=back

As of version 5.8, Perl provides the ability to layer various
"disciplines" on an open filehandle via the L<PerlIO> module.

A simple example of using PerlIO layers is to use a scalar as the output:

    my $scalar = '';
    open( my $fh, "+>:scalar", \$scalar );
    $dbh->trace( 2, $fh );

Now all trace output is simply appended to $scalar.

A more complex application of tracing to a layered filehandle is the
use of a custom layer (I<Refer to >L<Perlio::via> I<for details
on creating custom PerlIO layers.>). Consider an application with the
following logger module:

    package MyFancyLogger;

    sub new
    {
        my $self = {};
        my $fh;
        open $fh, '>', 'fancylog.log';
        $self->{_fh} = $fh;
        $self->{_buf} = '';
        return bless $self, shift;
    }

    sub log
    {
        my $self = shift;
        return unless exists $self->{_fh};
        my $fh = $self->{_fh};
        $self->{_buf} .= shift;
    #
    # DBI feeds us pieces at a time, so accumulate a complete line
    # before outputing
    #
        print $fh "At ", scalar localtime(), ':', $self->{_buf}, "\n" and
        $self->{_buf} = ''
            if $self->{_buf}=~tr/\n//;
    }

    sub close {
        my $self = shift;
        return unless exists $self->{_fh};
        my $fh = $self->{_fh};
        print $fh "At ", scalar localtime(), ':', $self->{_buf}, "\n" and
        $self->{_buf} = ''
            if $self->{_buf};
        close $fh;
        delete $self->{_fh};
    }

    1;

To redirect DBI traces to this logger requires creating
a package for the layer:

    package PerlIO::via::MyFancyLogLayer;

    sub PUSHED
    {
        my ($class,$mode,$fh) = @_;
        my $logger;
        return bless \$logger,$class;
    }

    sub OPEN {
        my ($self, $path, $mode, $fh) = @_;
        #
        # $path is actually our logger object
        #
        $$self = $path;
        return 1;
    }

    sub WRITE
    {
        my ($self, $buf, $fh) = @_;
        $$self->log($buf);
        return length($buf);
    }

    sub CLOSE {
        my $self = shift;
        $$self->close();
        return 0;
    }

    1;


The application can then cause DBI traces to be routed to the
logger using

    use PerlIO::via::MyFancyLogLayer;

    open my $fh, '>:via(MyFancyLogLayer)', MyFancyLogger->new();

    $dbh->trace('SQL', $fh);

Now all trace output will be processed by MyFancyLogger's
log() method.

=head2 Trace Content

Many of the values embedded in trace output are formatted using the neat()
utility function. This means they may be quoted, sanitized, and possibly
truncated if longer than C<$DBI::neat_maxlen>. See L</neat> for more details.

=head2 Tracing Tips

You can add tracing to your own application code using the L</trace_msg> method.

It can sometimes be handy to compare trace files from two different runs of the
same script. However using a tool like C<diff> on the original log output
doesn't work well because the trace file is full of object addresses that may
differ on each run.

The DBI includes a handy utility called dbilogstrip that can be used to
'normalize' the log content. It can be used as a filter like this:

    DBI_TRACE=2 perl yourscript.pl ...args1... 2>&1 | dbilogstrip > dbitrace1.log
    DBI_TRACE=2 perl yourscript.pl ...args2... 2>&1 | dbilogstrip > dbitrace2.log
    diff -u dbitrace1.log dbitrace2.log

See L<dbilogstrip> for more information.

=head1 DBI ENVIRONMENT VARIABLES

The DBI module recognizes a number of environment variables, but most of
them should not be used most of the time.
It is better to be explicit about what you are doing to avoid the need
for environment variables, especially in a web serving system where web
servers are stingy about which environment variables are available.

=head2 DBI_DSN

The DBI_DSN environment variable is used by DBI->connect if you do not
specify a data source when you issue the connect.
It should have a format such as "dbi:Driver:databasename".

=head2 DBI_DRIVER

The DBI_DRIVER environment variable is used to fill in the database
driver name in DBI->connect if the data source string starts "dbi::"
(thereby omitting the driver).
If DBI_DSN omits the driver name, DBI_DRIVER can fill the gap.

=head2 DBI_AUTOPROXY

The DBI_AUTOPROXY environment variable takes a string value that starts
"dbi:Proxy:" and is typically followed by "hostname=...;port=...".
It is used to alter the behaviour of DBI->connect.
For full details, see DBI::Proxy documentation.

=head2 DBI_USER

The DBI_USER environment variable takes a string value that is used as
the user name if the DBI->connect call is given undef (as distinct from
an empty string) as the username argument.
Be wary of the security implications of using this.

=head2 DBI_PASS

The DBI_PASS environment variable takes a string value that is used as
the password if the DBI->connect call is given undef (as distinct from
an empty string) as the password argument.
Be extra wary of the security implications of using this.

=head2 DBI_DBNAME (obsolete)

The DBI_DBNAME environment variable takes a string value that is used only when the
obsolescent style of DBI->connect (with driver name as fourth parameter) is used, and
when no value is provided for the first (database name) argument.

=head2 DBI_TRACE

The DBI_TRACE environment variable specifies the global default
trace settings for the DBI at startup. Can also be used to direct
trace output to a file. When the DBI is loaded it does:

  DBI->trace(split /=/, $ENV{DBI_TRACE}, 2) if $ENV{DBI_TRACE};

So if C<DBI_TRACE> contains an "C<=>" character then what follows
it is used as the name of the file to append the trace to.

output appended to that file. If the name begins with a number
followed by an equal sign (C<=>), then the number and the equal sign are
stripped off from the name, and the number is used to set the trace
level. For example:

  DBI_TRACE=1=dbitrace.log perl your_test_script.pl

On Unix-like systems using a Bourne-like shell, you can do this easily
on the command line:

  DBI_TRACE=2 perl your_test_script.pl

See L</TRACING> for more information.

=head2 PERL_DBI_DEBUG (obsolete)

An old variable that should no longer be used; equivalent to DBI_TRACE.

=head2 DBI_PROFILE

The DBI_PROFILE environment variable can be used to enable profiling
of DBI method calls. See L<DBI::Profile> for more information.

=head2 DBI_PUREPERL

The DBI_PUREPERL environment variable can be used to enable the
use of DBI::PurePerl.  See L<DBI::PurePerl> for more information.

=head1 WARNING AND ERROR MESSAGES

=head2 Fatal Errors

=over 4

=item Can't call method "prepare" without a package or object reference

The C<$dbh> handle you're using to call C<prepare> is probably undefined because
the preceding C<connect> failed. You should always check the return status of
DBI methods, or use the L</RaiseError> attribute.

=item Can't call method "execute" without a package or object reference

The C<$sth> handle you're using to call C<execute> is probably undefined because
the preceding C<prepare> failed. You should always check the return status of
DBI methods, or use the L</RaiseError> attribute.

=item DBI/DBD internal version mismatch

The DBD driver module was built with a different version of DBI than
the one currently being used.  You should rebuild the DBD module under
the current version of DBI.

(Some rare platforms require "static linking". On those platforms, there
may be an old DBI or DBD driver version actually embedded in the Perl
executable being used.)

=item DBD driver has not implemented the AutoCommit attribute

The DBD driver implementation is incomplete. Consult the author.

=item Can't [sg]et %s->{%s}: unrecognised attribute

You attempted to set or get an unknown attribute of a handle.  Make
sure you have spelled the attribute name correctly; case is significant
(e.g., "Autocommit" is not the same as "AutoCommit").

=back

=head1 Pure-Perl DBI

A pure-perl emulation of the DBI is included in the distribution
for people using pure-perl drivers who, for whatever reason, can't
install the compiled DBI. See L<DBI::PurePerl>.

=head1 SEE ALSO

=head2 Driver and Database Documentation

Refer to the documentation for the DBD driver that you are using.

Refer to the SQL Language Reference Manual for the database engine that you are using.

=head2 ODBC and SQL/CLI Standards Reference Information

More detailed information about the semantics of certain DBI methods
that are based on ODBC and SQL/CLI standards is available on-line
via microsoft.com, for ODBC, and www.jtc1sc32.org for the SQL/CLI
standard:

 DBI method        ODBC function     SQL/CLI Working Draft
 ----------        -------------     ---------------------
 column_info       SQLColumns        Page 124
 foreign_key_info  SQLForeignKeys    Page 163
 get_info          SQLGetInfo        Page 214
 primary_key_info  SQLPrimaryKeys    Page 254
 table_info        SQLTables         Page 294
 type_info         SQLGetTypeInfo    Page 239
 statistics_info   SQLStatistics

For example, for ODBC information on SQLColumns you'd visit:

  http://msdn.microsoft.com/library/en-us/odbc/htm/odbcsqlcolumns.asp

If that URL ceases to work then use the MSDN search facility at:

  http://search.microsoft.com/us/dev/

and search for C<SQLColumns returns> using the exact phrase option.
The link you want will probably just be called C<SQLColumns> and will
be part of the Data Access SDK.

And for SQL/CLI standard information on SQLColumns you'd read page 124 of
the (very large) SQL/CLI Working Draft available from:

  http://jtc1sc32.org/doc/N0701-0750/32N0744T.pdf

=head2 Standards Reference Information

A hyperlinked, browsable version of the BNF syntax for SQL92 (plus
Oracle 7 SQL and PL/SQL) is available here:

  http://cui.unige.ch/db-research/Enseignement/analyseinfo/SQL92/BNFindex.html

A BNF syntax for SQL3 is available here:

  http://www.sqlstandards.org/SC32/WG3/Progression_Documents/Informal_working_drafts/iso-9075-2-1999.bnf

The following links provide further useful information about SQL.
Some of these are rather dated now but may still be useful.

  http://www.jcc.com/SQLPages/jccs_sql.htm
  http://www.contrib.andrew.cmu.edu/~shadow/sql.html
  http://www.altavista.com/query?q=sql+tutorial


=head2 Books and Articles

Programming the Perl DBI, by Alligator Descartes and Tim Bunce.
L<http://books.perl.org/book/154>

Programming Perl 3rd Ed. by Larry Wall, Tom Christiansen & Jon Orwant.
L<http://books.perl.org/book/134>

Learning Perl by Randal Schwartz.
L<http://books.perl.org/book/101>

Details of many other books related to perl can be found at L<http://books.perl.org>

=head2 Perl Modules

Index of DBI related modules available from CPAN:

 http://search.cpan.org/search?mode=module&query=DBIx%3A%3A
 http://search.cpan.org/search?mode=doc&query=DBI

For a good comparison of RDBMS-OO mappers and some OO-RDBMS mappers
(including Class::DBI, Alzabo, and DBIx::RecordSet in the former
category and Tangram and SPOPS in the latter) see the Perl
Object-Oriented Persistence project pages at:

 http://poop.sourceforge.net

A similar page for Java toolkits can be found at:

 http://c2.com/cgi-bin/wiki?ObjectRelationalToolComparison

=head2 Mailing List

The I<dbi-users> mailing list is the primary means of communication among
users of the DBI and its related modules. For details send email to:

 dbi-users-help@perl.org

There are typically between 700 and 900 messages per month.  You have
to subscribe in order to be able to post. However you can opt for a
'post-only' subscription.

Mailing list archives (of variable quality) are held at:

 http://groups.google.com/groups?group=perl.dbi.users
 http://www.xray.mpe.mpg.de/mailing-lists/dbi/
 http://www.mail-archive.com/dbi-users%40perl.org/

=head2 Assorted Related WWW Links

The DBI "Home Page":

 http://dbi.perl.org/

Other DBI related links:

 http://tegan.deltanet.com/~phlip/DBUIdoc.html
 http://dc.pm.org/perl_db.html
 http://wdvl.com/Authoring/DB/Intro/toc.html
 http://www.hotwired.com/webmonkey/backend/tutorials/tutorial1.html
 http://bumppo.net/lists/macperl/1999/06/msg00197.html
 http://gmax.oltrelinux.com/dbirecipes.html

Other database related links:

 http://www.jcc.com/sql_stnd.html
 http://cuiwww.unige.ch/OSG/info/FreeDB/FreeDB.home.html
 http://www.connectionstrings.com/

Security, especially the "SQL Injection" attack:

 http://www.ngssoftware.com/research/papers.html
 http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
 http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
 http://www.esecurityplanet.com/trends/article.php/2243461
 http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf
 http://www.imperva.com/application_defense_center/white_papers/blind_sql_server_injection.html
 http://online.securityfocus.com/infocus/1644

Commercial and Data Warehouse Links

 http://www.dwinfocenter.org
 http://www.datawarehouse.com
 http://www.datamining.org
 http://www.olapcouncil.org
 http://www.idwa.org
 http://www.knowledgecenters.org/dwcenter.asp

Recommended Perl Programming Links

 http://language.perl.com/style/


=head2 FAQ

See L<http://faq.dbi-support.com/>

=head1 AUTHORS

DBI by Tim Bunce, L<http://www.tim.bunce.name>

This pod text by Tim Bunce, J. Douglas Dunlop, Jonathan Leffler and others.
Perl by Larry Wall and the C<perl5-porters>.

=head1 COPYRIGHT

The DBI module is Copyright (c) 1994-2009 Tim Bunce. Ireland.
All rights reserved.

You may distribute under the terms of either the GNU General Public
License or the Artistic License, as specified in the Perl 5.10.0 README file.

=head1 SUPPORT / WARRANTY

The DBI is free Open Source software. IT COMES WITHOUT WARRANTY OF ANY KIND.

=head2 Support

My consulting company, Data Plan Services, offers annual and
multi-annual support contracts for the DBI. These provide sustained
support for DBI development, and sustained value for you in return.
Contact me for details.

=head2 Sponsor Enhancements

The DBI Roadmap is available at L<http://search.cpan.org/~timb/DBI/Roadmap.pod>

If your company would benefit from a specific new DBI feature,
please consider sponsoring its development.  Work is performed
rapidly, and usually on a fixed-price payment-on-delivery basis.
Contact me for details.

Using such targeted financing allows you to contribute to DBI
development, and rapidly get something specific and valuable in return.

=head1 ACKNOWLEDGEMENTS

I would like to acknowledge the valuable contributions of the many
people I have worked with on the DBI project, especially in the early
years (1992-1994). In no particular order: Kevin Stock, Buzz Moschetti,
Kurt Andersen, Ted Lemon, William Hails, Garth Kennedy, Michael Peppler,
Neil S. Briscoe, Jeff Urlwin, David J. Hughes, Jeff Stander,
Forrest D Whitcher, Larry Wall, Jeff Fried, Roy Johnson, Paul Hudson,
Georg Rehfeld, Steve Sizemore, Ron Pool, Jon Meek, Tom Christiansen,
Steve Baumgarten, Randal Schwartz, and a whole lot more.

Then, of course, there are the poor souls who have struggled through
untold and undocumented obstacles to actually implement DBI drivers.
Among their ranks are Jochen Wiedmann, Alligator Descartes, Jonathan
Leffler, Jeff Urlwin, Michael Peppler, Henrik Tougaard, Edwin Pratomo,
Davide Migliavacca, Jan Pazdziora, Peter Haworth, Edmund Mergl, Steve
Williams, Thomas Lowery, and Phlip Plumlee. Without them, the DBI would
not be the practical reality it is today.  I'm also especially grateful
to Alligator Descartes for starting work on the first edition of the
"Programming the Perl DBI" book and letting me jump on board.

The DBI and DBD::Oracle were originally developed while I was Technical
Director (CTO) of Ingeneering in the UK (L<http://www.ig.co.uk>) (formerly known as the
Paul Ingram Group).  So I'd especially like to thank Paul for his generosity
and vision in supporting this work for many years.

A couple of specific DBI features have been sponsored by enlightened companies:

The development of the swap_inner_handle() method was sponsored by BizRate.com (L<http://BizRate.com>)

The development of DBD::Gofer and related modules was sponsored by
Shopzilla.com (L<http://Shopzilla.com>), where I currently work.


=head1 CONTRIBUTING

As you can see above, many people have contributed to the DBI and
drivers in many ways over many years.

If you'd like to help then see L<http://dbi.perl.org/contributing>
and L<http://search.cpan.org/~timb/DBI/Roadmap.pod>

If you'd like the DBI to do something new or different then a good way
to make that happen is to do it yourself and send me a patch to the
source code that shows the changes. (But read "Speak before you patch"
below.)

=head2 Browsing the source code repository

Use http://svn.perl.org/modules/dbi/trunk (basic)
or  http://svn.perl.org/viewcvs/modules/ (more useful)

=head2 How to create a patch using Subversion

The DBI source code is maintained using Subversion (a replacement
for CVS, see L<http://subversion.tigris.org/>). To access the source
you'll need to install a Subversion client. Then, to get the source
code, do:

  svn checkout http://svn.perl.org/modules/dbi/trunk

If it prompts for a username and password use your perl.org account
if you have one, else just 'guest' and 'guest'. The source code will
be in a new subdirectory called C<trunk>.

To keep informed about changes to the source you can send an empty email
to svn-commit-modules-dbi-subscribe@perl.org after which you'll get an email
with the change log message and diff of each change checked-in to the source.

After making your changes you can generate a patch file, but before
you do, make sure your source is still up to date using:

  svn update

If you get any conflicts reported you'll need to fix them first.
Then generate the patch file from within the C<trunk> directory using:

  svn diff > foo.patch

Read the patch file, as a sanity check, and then email it to dbi-dev@perl.org.

=head2 How to create a patch without Subversion

Unpack a fresh copy of the distribution:

  tar xfz DBI-1.40.tar.gz

Rename the newly created top level directory:

  mv DBI-1.40 DBI-1.40.your_foo

Edit the contents of DBI-1.40.your_foo/* till it does what you want.

Test your changes and then remove all temporary files:

  make test && make distclean

Go back to the directory you originally unpacked the distribution:

  cd ..

Unpack I<another> copy of the original distribution you started with:

  tar xfz DBI-1.40.tar.gz

Then create a patch file by performing a recursive C<diff> on the two
top level directories:

  diff -r -u DBI-1.40 DBI-1.40.your_foo > DBI-1.40.your_foo.patch

=head2 Speak before you patch

For anything non-trivial or possibly controversial it's a good idea
to discuss (on dbi-dev@perl.org) the changes you propose before
actually spending time working on them. Otherwise you run the risk
of them being rejected because they don't fit into some larger plans
you may not be aware of.

=head1 TRANSLATIONS

A German translation of this manual (possibly slightly out of date) is
available, thanks to O'Reilly, at:

  http://www.oreilly.de/catalog/perldbiger/

Some other translations:

 http://cronopio.net/perl/                              - Spanish
 http://member.nifty.ne.jp/hippo2000/dbimemo.htm        - Japanese


=head1 TRAINING

References to DBI related training resources. No recommendation implied.

  http://www.treepax.co.uk/
  http://www.keller.com/dbweb/

(If you offer professional DBI related training services,
please send me your details so I can add them here.)

=head1 OTHER RELATED WORK AND PERL MODULES

=over 4

=item Apache::DBI by E.Mergl@bawue.de

To be used with the Apache daemon together with an embedded Perl
interpreter like C<mod_perl>. Establishes a database connection which
remains open for the lifetime of the HTTP daemon. This way the CGI
connect and disconnect for every database access becomes superfluous.

=item SQL Parser

See also the L<SQL::Statement> module, SQL parser and engine.

=back

=cut

#  LocalWords:  DBI