1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
%% This is part of the OpTeX project, see http://petr.olsak.net/optex
\_codedecl \eoldef {OpTeX useful macros <2024-02-10>} % preloaded in format
\_doc -----------------------------
We define \`\opinput` `{<file name>}` macro which
does `\input {<file name>}` but the catcodes are set to normal catcodes
(like \OpTeX/ initializes them) and the catcodes setting is returned back to
the current values when the file is read. You can use `\opinput`
in any situation inside the document and you will be sure that the file
is read correctly with correct catcode settings.
To achieve this, we declare \`\optexcatcodes` catcode table
and \`\plaintexcatcodes`. They save the commonly used catcode tables.
Note that `\catcodetable` is a part of \LuaTeX/ extension.
The catcodetable stack is implemented by \OpTeX/ macros.
The \`\setctable` `<catcode table>` pushes
current catcode table to the stack and activates catcodes from
the `<catcode table>`. The \`\restorectable` returns to the saved catcodes
from the catcode table stack.
The `\opinput` works inside the catcode table stack. It reads `\optexcatcodes`
table and stores it to \`\_tmpcatcodes` table.
This table is actually used during `\input` (maybe catcodes are
changed here). Finally, `\_restoretable` pops the stacks and returns
to the catcodes used before `\opinput` is run.
\_cod -----------------------------
\_def\_opinput #1{\_setctable\_optexcatcodes
\_savecatcodetable\_tmpcatcodes \_catcodetable\_tmpcatcodes
\_input {#1}\_relax\_restorectable}
\_newcatcodetable \_optexcatcodes
\_newcatcodetable \_plaintexcatcodes
\_newcatcodetable \_tmpcatcodes
\_public \optexcatcodes \plaintexcatcodes \opinput ;
\_savecatcodetable\_optexcatcodes
{\_catcode`_=8 \savecatcodetable\plaintexcatcodes}
\_doc -----------------------------
The implementation of the catcodetable stack follows.
The current catcodes are
managed in the `\catcodetable0`. If the `\setctable` is used first (or at
the outer level of the stack), then the `\catcodetable0` is pushed to the
stack and the current table is re-set to the given `<catcode table>`.
The numbers of these tables are stacked to the \`\_ctablelist` macro.
The `\restorectable` reads the last saved catcode table number from the
`\_ctablelist` and uses it.
\_cod -----------------------------
\_catcodetable0
\_def\_setctable#1{\_edef\_ctablelist{{\_the\_catcodetable}\_ctablelist}%
\_catcodetable#1\_relax
}
\_def\_restorectable{\_ea\_restorectableA\_ctablelist\_relax}
\_def\_restorectableA#1#2\_relax{%
\_ifx^#2^\_opwarning
{You can't use \_noindent\restorectable without previous \_string\setctable}%
\_else \_def\_ctablelist{#2}\_catcodetable#1\_relax \_fi
}
\_def\_ctablelist{.}
\_public \setctable \restorectable ;
\_doc -----------------------------
When a special macro is defined with different catcodes then
\`\normalcatcodes` can be used at the end of such definition.
The normal catcodes are restored.
The macro reads
catcodes from `\optecatodes` table and sets it to the main catcode table 0.
\_cod -----------------------------
\_def\_normalcatcodes {\_catcodetable\_optexcatcodes \_savecatcodetable0 \_catcodetable0 }
\_public \normalcatcodes ;
\_doc -----------------------------
The \`\load` `[<filename-list>]` loads files specfied in
comma separated `<filename-list>`. The first space (after comma)
is ignored using the trick `#1#2,`: first parameter is unseparated.
The `\load` macro saves information about loaded files by setting
`\_load:<filename>` as a defined macro.
If the \`\_afterload` macro is defined then it is run after `\_opinput`.
The catcode setting should be here. Note that catcode setting done in the
loaded file is forgotten after the `\opinput`.
\_cod -----------------------------
\_def \_load [#1]{\_savemathsb \_loadA #1,,,\_end \_restoremathsb}
\_def \_loadA #1#2,{\_ifx,#1 \_ea \_loadE \_else \_loadB{#1#2}\_ea\_loadA\_fi}
\_def \_loadB #1{%
\_ifcsname _load:#1\_endcsname \_else
\_isfile {#1.opm}\_iftrue \_opinput {#1.opm}\_else \_opinput {#1}\_fi
\_sxdef{_load:#1}{}%
\_trycs{_afterload}{}\_let\_afterload=\_undefined
\_fi
}
\_def \_loadE #1\_end{}
\_public \load ;
\_doc -----------------------------
The declarator \`\optdef``\macro [<opt default>] <params>{<replacement text>}`
defines the `\macro` with the optional parameter followed by normal parameters
declared in `<params>`. The optional parameter must be used as the first
parameter in brackets `[...]`. If it isn't used then <opt default>
is taken into account. The `<replacement text>` can use `\the\opt`
because optional parameter is saved to the \`\opt` tokens register.
Note the difference from \LaTeX/ concept where the optional parameter is
in `#1`. \OpTeX/ uses `#1` as the first normal parameter (if declared).
The \`\nospaceafter` ignores the following optional space at expand
processor level using the negative `\romannumeral` trick.
The \`\nospacefuturelet` bahaves like `\futurelet` primitive, but it
ignores the following optional space and works at expand processor level.
\_cod -----------------------------
\_newtoks\_opt
\_def\_optdef#1[#2]{%
\_def#1{\_isnextchar[{\_cs{_oA:\_csstring#1}}{\_cs{_oA:\_csstring#1}[#2]}}%
\_sdef{_oA:\_csstring#1}[##1]{%
\_immediateassignment\_opt={##1}\_cs{_oB:\_csstring#1\_nospaceafter}}%
\_sdef{_oB:\_csstring#1\_nospaceafter}%
}
\_def\_nospaceafter#1{\_ea#1\_romannumeral-`\.\_noexpand}
\_def\_nospacefuturelet#1#2{\_ea\_immediateassignment
\_ea\_futurelet\_ea#1\_ea#2\_romannumeral-`\.\_noexpand}
\_public \opt \optdef \nospaceafter \nospacefuturelet ;
\_doc -----------------------------
\`\_noprefix` `<cs>` works like `\csstring` `<cs>`, but ignores not only
the first backlash but the second~\"`_`" ignores too (if it follows the
backslash).
\_cod -----------------------------
\_def\_noprefix#1{\_ea\_noprefixA \_csstring#1\_empty\_fin}
\_def\_noprefixA #1#2\_fin{\_if _#1\_else #1\_fi #2}
\_doc -----------------------------
The declarator \`\eoldef``\macro #1{<replacement text>}` defines a `\macro`
which scans its parameter to the end of the current line.
This is the parameter `#1` which can be used in the `<replacement text>`.
The catcode of the `\endlinechar` is reset temporarily when the parameter is scanned.
The macro defined by \^`\eoldef` cannot be used with its parameter inside
other macros because the catcode dancing is not possible here. But the
\`\bracedparam``\macro{<parameter>}` can be used here. The `\bracedparam`
is a prefix that re-sets temporarily the `\macro` to a `\macro` with
normal one parameter.
The \`\skiptoeol` macro reads the text to the end of the current line
and ignores it.
\_cod -----------------------------
\_def\_eoldef #1{\_def #1{\_begingroup \_catcode`\^^M=12 \_eoldefA #1}%
\_ea\_def\_csname _eol:\_noprefix #1\_endcsname}
\_catcode`\^^M=12 %
\_def\_eoldefA #1#2^^M{\_endgroup\_csname _eol:\_noprefix #1\_endcsname{#2}}%
\_normalcatcodes %
\_eoldef\_skiptoeol#1{}
\_def\_bracedparam#1{%
\_trycs{_eol:\_noprefix#1}%
{\_errmessage{\_string\bracedparam: \_string#1 isn't defined by \_string\eoldef}}%
}
\_public \eoldef \skiptoeol \bracedparam ;
\_doc -----------------------------
\`\scantoeol``\macro <text to end of line>` scans the
`<text to end of line>` in verbatim mode and runs the
`\macro{<text to end of line>}`. The `\macro`
can be defined `\def\macro#1{...\scantextokens{#1}...}`.
The new tokenization of the parameter is processed when the parameter is used,
no when the parameter is scanned. This principle is used in definition
of \^`\chap`, \^`\sec`, \^`\secc` and \^`\_Xtoc` macros.
It means that user can write \code{\\sec text `&` text} for example.
Inline verbatim works in title sections.
The verbatim scanner of `\scatoeol` keeps category 7 for `^` in
order to be able to use `^^J` as comment character which means that
the next line continues.
\_cod -----------------------------
\_def\_scantoeol#1{\_begingroup \_setscancatcodes \_scantoeolA #1}
\_def\_setscancatcodes{\_setverb \_catcode`\^^M=12\_catcode`\^=7\_catcode`\ =10\_catcode`\^^J=14 }
\_catcode`\^^M=12 %
\_def\_scantoeolA#1#2^^M{\_endgroup #1{#2}}%
\_normalcatcodes %
\_public \scantoeol ;
\_doc -----------------------------
The \`\replstring``\macro{<textA>}{<textB>}`
replaces all occurrences of `<textA>` by `<textB>` in the `\macro` body.
The `\macro` must be defined without parameters. The occurrences of
`<textA>` are not replaced if they are \"hidden" in braces, for example
`...{...<textA>...}...`. The category codes in the `<textA>` must exactly
match.
How it works: `\replstring\foo{<textA>}{<textB>}` prepares
`\_replacestringsA#1<textA>{...}` and runs
`\_replacestringsA<foo-body>?<textA>!<textA>`.
So, `#1` includes the first part of <foo-body> before first <textA>.
It is saved to \`\_tmptoks` and `\_replacestringsB` is run in a loop.
It finishes processing or appends the next part to `\_tmptoks` separated by
<textB> and continues loop. The final part of the macro removes the last `?`
from resulting `\_tmptoks` and defines a new version of the `\foo`.
The \^`\replstring` macro is not expandable, but you can create your
expandable macro, for example:
\begtt
\def\replAB#1{\immediateassigned{\def\tmp{#1}\replstring\tmp{A}{B}}\the\_tmptoks}
\replAB {text A \and A} % expands to "text B \and B"
\endtt
There exists another limitation of the \^`\replstring` macro, see
\ulink[http://petr.olsak.net/optex/optex-tricks.html\#xreplstring]{\OpTeX/ trick 0136}.
The expandable \^`\xreplstring` macro is defined by Lua code here.
And \ulink[http://petr.olsak.net/optex/optex-tricks.html\#replmacro]{\OpTeX/ trick 0137}
defines \^`\replmacro` which enables more general modifications of macros by regular expressions.
\_cod -----------------------------
\_newtoks\_tmptoks
\_catcode`!=3 \_catcode`?=3
\_def\_replstring #1#2#3{% \replstring #1{stringA}{stringB}
\_long\_def\_replacestringsA##1#2{\_tmptoks{##1}\_replacestringsB}%
\_long\_def\_replacestringsB##1#2{\_ifx!##1\_relax \_else \_toksapp\_tmptoks{#3##1}%
\_ea\_replacestringsB\_fi}%
\_ea\_replacestringsA #1?#2!#2%
\_long\_def\_replacestringsA##1?{\_tmptoks{##1}\_edef#1{\_the\_tmptoks}}%
\_ea\_replacestringsA \_the\_tmptoks}
\_normalcatcodes
\_public \replstring ;
\_doc -----------------------------
The \`\catcode` primitive is redefined here. Why?
There is very common cases like \code{\\catcode`}`<something>`
or `\catcode"<number>` but these characters
\code{\`} or \code{"} can be set as active (typically by `\verbchar` macro).
Nothing problematic happens if re-defined `\catcode` is used in this case.
If you really need primitive `\catcode` then you can use `\_catcode`.
\_cod -----------------------------
\_def\catcode#1{\_catcode \_if`\_noexpand#1\_ea`\_else\_if"\_noexpand#1"\_else
\_if'\_noexpand#1'\_else \_ea\_ea\_ea\_ea\_ea\_ea\_ea#1\_fi\_fi\_fi}
\_doc -----------------------------
The \`\removespaces` `<text with spaces >{}` expands to <textwithoutspaces>.
\nl
The `\_ea`\`\ignorept``\the<dimen>` expands to a decimal
number `\the<dimen>` but without `pt` unit.
\_cod -----------------------------
\_def\_removespaces #1 {\_isempty{#1}\_iffalse #1\_ea\_removespaces\_fi}
\_ea\_def \_ea\_ignorept \_ea#\_ea1\_detokenize{pt}{#1}
\_public \removespaces \ignorept ;
\_doc -----------------------------
If you do `\let\foo=a` then it is not simple to return from `\foo` to the original
character code of `a`. You can write \code{`a} but you cannot write \code{`\\foo}.
The macro \`\cstochar``<sequence>` solves this problem. If the sequence
is equal to a character then it expands to this character (always with
catcode 12). If it isn't equal to a character then it expands to nothing.
You can say \code{\\expanded{`\\cstochar\\foo}} if you want to extract
the character code.
\_cod -----------------------------
\_def\_cstochar#1{\_ea\_cstocharA\_meaning#1 {} {} \_fin}
\_def\_cstocharA#1 #2 #3 #4\_fin{\_isinlist{#1#2}-\_iffalse #3\_fi}
\_public \cstochar ;
\_doc -----------------------------
You can use expandable \`\bp``{<dimen>}` converter from
\TeX/ `<dimen>` (or from an expression accepted by
`\dimexpr` primitive) to a decimal value in big points
(used as natural unit in the PDF format). So, you can write, for example:
\begtt
\pdfliteral{q \_bp{.3\hsize-2mm} \_bp{2mm} m 0 \_bp{-4mm} l S Q}
\endtt
You can use expandable \`\expr``{<expression>}` for analogical purposes.
It expands to the value of the `<expression>` at expand processor level.
The `<expression>` can include `+-*/^()` and decimal numbers in common syntax.
Moreover, `a//b` means integer division and `a\%b` is remainder.
The math functions (and pi constant) have to be prefixed by `math.`,
because it is processed by Lua interpreter. For
example `\expr{math.pi*math.sqrt(2)}`.
The list of available functions is in
\ulink[https://www.lua.org/manual/5.3/manual.html\#6.7]{Lua manual}.
You can set the number of decimal digits after decimal point of the
results of `\bp` and `\expr`
by optional syntax `\bp[<digits>]{<dimen>}` and
`\expr[<digits>]{<expression>}`. Default is \`\_decdigits`.
The usage of prefixed versions `\_expr` or `\_bp` is more recommended
for macro programmers because a user can re-define the control sequences
`\expr` or `\bp`.
\_cod -----------------------------
\_def\_decdigits{3} % digits after decimal point in \_bp and \_expr outputs.
\_def\_pttopb#1{%
\_directlua{tex.print(string.format('\_pcent.#1f',
token.scan_dimen()/65781.76))}% pt to bp conversion
}
\_def\_bp{\_isnextchar[{\_bpA}{\_bpA[\_decdigits]}}
\_def\_bpA[#1]#2{\_pttopb{#1}\_dimexpr#2\_relax}
\_def\_expr{\_isnextchar[{\_exprA}{\_exprA[\_decdigits]}}
\_def\_exprA[#1]#2{\_directlua{tex.print(string.format('\_pcent.#1f',#2))}}
\_public \expr \bp ;
\_doc -----------------------------
The \^`\expr` and \^`\bp` macros return their results with given number of decimal
digits even if there are trailing zeros. There is the \^`\nnum` macro to
\"normalize" such decimal numbers. \`\nnum``{<number>}` expands its parameter
and removes trailing zeros after decimal point and removes the decimal point
if nothing follows. For example, use `\nnum{\expr[10]{<expression>}}`.
The `\nnum` macro is fully expandable.
\_cod -----------------------------
\_def\_nnum #1{\_ea\_nnumA\_expanded{#1}.\_fin}
\_def\_nnumA #1.#2\_fin{#1\_ifx~#2~\_else \_nnumB #20.\_fin \_fi}
\_def\_nnumB #10.#2\_fin{\_ifx~#2~\_nnumC#1\_else \_nnumB #1.0.\_fin \_fi}
\_def\_nnumC #1.{\_ifx~#1~\_else .#1\_fi}
\_public \nnum ;
\_doc ------------------
You can write \^`\setpos``[<label>]` somewhere and the position of such
\^`\setpos``[<label>]` can be referenced by \^`\posx``[<label>]`,
\^`\posy``[<label>]` and \^`\pospg``[<label>]`. The first two macros
expand to $x$ and $y$ position measured from left-bottom corner of the page
(dimen values) and \^`\pospg[<label>]` expands to the <gpageno>, i.e.\ to
the page number counted from one at beginning of the document.
These values are available in the second (and more) \TeX/ run, because the
information is saved to `.ref` file and restored from it at the beginning of
the \TeX/ job. If these values are not known then mentioned macros expand to
0sp, 0sp and 0. The following example implements `\linefrom[<label>]` and
`\lineto[<label>]` macros. The line connecting these two points is drawn
(after second \TeX/ run):
\begtt
\def\linefrom[#1]{\setpos[#1:f]\drawlinefromto[#1]}
\def\lineto [#1]{\setpos[#1:t]}
\def\drawlinefromto[#1]{\ifnum\pospg[#1:f]>0 \ifnum\pospg[#1:f]=\pospg[#1:t]
\pdfliteral{q 0 0 m 1 0 0 RG % << red color
\expr{\bp{\posx[#1:t]}-\bp{\posx[#1:f]}}
\expr{\bp{\posy[#1:t]}-\bp{\posy[#1:f]}} l S Q}\fi\fi
}
This is a text.\linefrom[A]\par
This is second paragraph with a text.\lineto[A]
Try to reverse from-to and watch the changes.
\endtt
The coordinates are saved to the `.ref` file in the format
\`\_Xpos``{<label>}{<x-pos>}{<y-pos>}`. The \^`\_Xpos` macro defines
`\_pos:<label>` as `{<x-pos>}{<y-pos>}{<total-pg>}{<rel-pg>}`.
We need to read only given parameter by `\_posi`, `\_posii` or `\_posiii`
auxiliary macros. The implementation of
\`\setpos`, \`\posx` and \`\posy` macros are based on `\padsavepos`
`\pdflastxpos` and `\pdflastypos` pdf\TeX/ primitives. The \`\pospg`
simply reads the data from the \~`\_currpage` macro.
\_cod ------------------
\_def\_Xpos#1#2#3{\_sxdef{_pos:#1}{{#2}{#3}\_currpage}}
\_def\_setpos[#1]{\_openref\_pdfsavepos
\_ewref\_Xpos{{#1}\_unexpanded{{\_the\_pdflastxpos}{\_the\_pdflastypos}}}}
\_def\_posx [#1]{\_ea \_posi \_expanded {\_trycs{_pos:#1}{{0}{}{}{}}sp}}
\_def\_posy [#1]{\_ea \_posii \_expanded {\_trycs{_pos:#1}{{}{0}{}{}}sp}}
\_def\_pospg[#1]{\_ea \_posiii \_expanded {\_trycs{_pos:#1}{{}{}{0}{}}}}
\_def\_posi #1#2#3#4{#1} \_def\_posii #1#2#3#4{#2} \_def\_posiii #1#2#3#4{#3}
\_public \setpos \posx \posy \pospg ;
\_doc ------------------
The pair {\`\_doc` ... \`\_cod`} is used for documenting macros and to
printing the technical documentation of the \OpTeX/. The syntax is:
{\begtt \catcode`\<=13
\_doc <ignored text>
<documentation>
\_cod <ignored text>
\endtt
}
The `<documentation>` (and `<ignored text>` too) must be `<balanced text>`.
It means that you cannot document only the `{` but you must document the `}` too.
\_cod ------------------
\_long\_def\_doc #1\_cod {\_skiptoeol}
\_doc ------------------
\`\docgen` processes lines before `\_codedecl` because the version text
in the macro `\_<pkg>_version` can be defined here. The package
documentation can print it. \^`\docgen` prints banner to log because TeX doesn't do it
when command line doesn't begin with the main file name after parameters.
\_cod ------------------
\_def\_docgen #1 {\_ea \_docgenA \_input{#1.opm}}
\_long \_def\_docgenA #1\_codedecl#2\_endcode #3\_doc {#1\_wlog{\_banner}\_skiptoeol}
\_public \docgen ;
\_endcode % -------------------------------------
2024-02-10 \optdef reimplemented, it can create expandable macros now.
2024-01-18 \bracedparam reimplemented.
2023-12-04 \nnum introduced
2023-01-18 \bp, \expr have optional syntax for setting dec-digits
2022-11-24 \setpos, \posx, \posy moved from OpTeX trick here
2022-11-22 \docgen writes banner to log
2022-11-20 \docgen reads lines before \_codedecl in order to define pkg. version
2022-11-18 \cstochar introduced
2022-11-13 \docgen introduced, \bracedparam corrected, \scantoeol modified
2022-11-05 \replstring can be expandable using \immediateassigned: \toksapp replaced
2022-11-03 \nospacefuturelet added.
2022-10-27 \_savemathsb ...\_restoremathsb added to \load (eg. \load[xstring])
2022-05-24 \optdef: used \csstring instead \string, bug fixed.
2021-04-25 \normalcatcodes: typo fixed
2021-04-22 \the\_currctable replaced by \the\_catcodetable, bug fixed.
2020-05-22 robust \catcode newly defined in order \catcode\string.... be possible
2020-05-03 \load macro introduced
2020-03-15 released
|