summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/lualatex/bezierplot/bezierplot.lua
blob: 382da2d74ead58d8fce3040d0b53c356a8334902 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
#!/usr/bin/env lua
-- Linus Romer, published 2018 under LPPL Version 1.3c
-- version 1.4 2019-06-18
abs = math.abs
acos = math.acos
asin = math.asin
atan = math.atan
cos = math.cos
exp = math.exp
e = math.exp(1)
log = math.log
pi = math.pi
sin = math.sin
sqrt = math.sqrt
tan = math.tan
huge = math.huge

-- just a helper for debugging:
local function printdifftable(t)
	for i = 1,#t do
		for j = 1, 6 do
			if j < 5 then
				io.write(t[i][j].." ")
			else
				if t[i][j] then
					io.write("true ")
				else
					io.write("false ")
				end
			end
		end
		io.write("\n")
	end
end

-- cube root defined for all real numbers x
function cbrt(x)
	if x < 0 then
		return -(-x)^(1/3)
	else
		return x^(1/3)
	end
end

function sgn(x)
	if x<0 then
		return -1
	elseif x>0 then
		return 1
	else
		return 0
	end
end

local function round(num, decimals)
	local result = tonumber(string.format("%." .. (decimals or 0) .. "f", num))
	if abs(result) == 0 then
		return 0
	else
		return result
	end
end

-- check if a point (x,y) satisfies xmin <= x <= xmax and ymin <= < <= ymax
local function is_in_window(x,y,xmin,xmax,ymin,ymax)
	if x >= xmin and x <= xmax and y >= ymin and y <= ymax then
		return true
	else
		return false
	end
end

local function evaluate(s)
	local tempfunc = assert(load("return " .. s))
	return tempfunc()
end


-- 5-stencil method
-- return from a graph from f in the form {{x,y},...}
-- the derivatives in form {{x,y,dy/dx,ddy/ddx,extrema,inflection},...}
local function diffgraph(func,graph,h)
	local dgraph = {}	
	local l = #graph
	if l < 4 then -- this is not worth the pain...
		for i = 1, l do 
			table.insert(dgraph,{graph[i][1],graph[i][2],0,0,false,false})
		end
	else
		local yh = func(graph[1][1]-h)
		local yhh = func(graph[1][1]-2*h)
		if yhh > -math.huge and yhh < math.huge  -- if defined at all
		and yh > -math.huge and yh < math.huge then
			dgraph[1] = {graph[1][1],graph[1][2],
			(yhh-8*yh+8*graph[2][2]-graph[3][2])/(12*h),
			(-yhh+16*yh-30*graph[1][2]+16*graph[2][2]-graph[3][2])
			/(12*h^2)}
			dgraph[2] = {graph[2][1],graph[2][2],
			(yh-8*graph[1][2]+8*graph[3][2]-graph[4][2])/(12*h),
			(-yh+16*graph[1][2]-30*graph[2][2]+16*graph[3][2]-graph[4][2])
			/(12*h^2)}
		else -- take neighbour values
			dgraph[1] = {graph[1][1],graph[1][2],
			(graph[1][2]-8*graph[2][2]+8*graph[4][2]-graph[5][2])/(12*h),
			(-graph[1][2]+16*graph[2][2]-30*graph[3][2]
			+16*graph[4][2]-graph[5][2])/(12*h^2)}
			dgraph[2] = {graph[2][1],graph[2][2],
			(graph[1][2]-8*graph[2][2]+8*graph[4][2]-graph[5][2])/(12*h),
			(-graph[1][2]+16*graph[2][2]-30*graph[3][2]
			+16*graph[4][2]-graph[5][2])/(12*h^2)}
		end
		for i = 3, l-2 do 
			table.insert(dgraph,{graph[i][1],graph[i][2],
			(graph[i-2][2]-8*graph[i-1][2]+8*graph[i+1][2]-graph[i+2][2])
			/(12*h),
			(-graph[i-2][2]+16*graph[i-1][2]-30*graph[i][2]
			+16*graph[i+1][2]-graph[i+2][2])
			/(12*h^2)})
		end
		yh = func(graph[l][1]+h)
		yhh = func(graph[l][1]+2*h)
		if yhh > -math.huge and yhh < math.huge  -- if defined at all
		and yh > -math.huge and yh < math.huge then
			dgraph[l-1] = {graph[l-1][1],graph[l-1][2],
			(graph[l-3][2]-8*graph[l-2][2]+8*graph[l][2]-yh)/(12*h),
			(-graph[l-3][2]+16*graph[l-2][2]-30*graph[l-1][2]
			+16*graph[l][2]-yh)/(12*h^2)}
			dgraph[l] = {graph[l][1],graph[l][2],
			(graph[l-2][2]-8*graph[l-1][2]+8*yh-yhh)/(12*h),
			(-graph[l-2][2]+16*graph[l-1][2]-30*graph[l][2]
			+16*yh-yhh)/(12*h^2)}
		else	
			-- take neighbour values
			dgraph[l] = {graph[l][1],graph[l][2],
			(graph[l-4][2]-8*graph[l-3][2]+8*graph[l-1][2]-graph[l][2])
			/(12*h),
			(-graph[l-4][2]+16*graph[l-3][2]-30*graph[l-2][2]
			+16*graph[l-1][2]-graph[l][2])/(12*h^2)}
			dgraph[l-1] = {graph[l-1][1],graph[l-2][2],
			(graph[l-4][2]-8*graph[l-3][2]+8*graph[l-1][2]-graph[l][2])
			/(12*h),
			(-graph[l-4][2]+16*graph[l-3][2]-30*graph[l-2][2]
			+16*graph[l-1][2]-graph[l][2])/(12*h^2)}
		end
		-- add information about being extremum / inflection point (true/false)
		for i = 1, l do 
			dgraph[i][5] = false -- dy/dx == 0 ? default, may change later
			dgraph[i][6] = false -- ddy/ddx == 0 ? default, may change later
		end
		for i = 1, l-1 do 
			-- if no gap is inbetween
			if not (dgraph[i+1][1] - dgraph[i][1] > 1.5*h) then
				-- check for dy/dx == 0 
				-- if not already determined as near dy/dx=0
				if dgraph[i][3] == 0 then
					if dgraph[i+1][3] == 0 then --take the later
						dgraph[i+1][5] = true
						dgraph[i][5] = false
					else
						dgraph[i][5] = true
					end
				elseif abs(dgraph[i][3]*dgraph[i+1][3]) 
				~= dgraph[i][3]*dgraph[i+1][3] then -- this must be near
					if abs(dgraph[i][4]) <= abs(dgraph[i+1][4]) then
						dgraph[i][5] = true
					else
						dgraph[i+1][5] = true
					end
				end
				-- check for ddy/ddx == 0 
				-- if not already determined as near ddy/ddx=0
				if (not dgraph[i][6]) and (abs(dgraph[i][4]*dgraph[i+1][4]) 
					~= dgraph[i][4]*dgraph[i+1][4]) then -- this must be near
					if abs(dgraph[i][4]) <= abs(dgraph[i+1][4]) then
						dgraph[i][6] = true
					else
						dgraph[i+1][6] = true
					end
				end
			end
		end
	end
	return dgraph
end

-- simplified diffgraph function, the function is derived only once
-- return from a graph from f in the form {{x,y},...}
-- the derivatives in form {{x,y,dy/dx},...}
-- we start with index 1 and then always jump indexjump to the next
-- index
local function diffgraphsimple(func,graph,h,indexjump)
	local dgraph = {}	
	local l = math.floor((#graph-1)/indexjump)*indexjump+1
	if l < 2 then -- this is not worth the pain...
		dgraph = {graph[1][1],graph[1][2],0}
	else
		local yh = func(graph[1][1]-h)
		local yhh = func(graph[1][1]-2*h)
		if yhh > -math.huge and yhh < math.huge  -- if defined at all
		and yh > -math.huge and yh < math.huge then
			dgraph[1] = {graph[1][1],graph[1][2],
			(yhh-8*yh+8*graph[2][2]-graph[3][2])/(12*h)}
		else -- take neighbour values
			dgraph[1] = {graph[1][1],graph[1][2],
			(graph[1][2]-8*graph[2][2]+8*graph[4][2]-graph[5][2])
			/(12*h)}
		end
		for i = 1+indexjump, l-1, indexjump do 
			table.insert(dgraph,{graph[i][1],graph[i][2],
			(graph[i-2][2]-8*graph[i-1][2]+8*graph[i+1][2]-graph[i+2][2])
			/(12*h)})
		end
		yh = func(graph[l][1]+h)
		yhh = func(graph[l][1]+2*h)
		if yhh > -math.huge and yhh < math.huge  -- if defined at all
		and yh > -math.huge and yh < math.huge then

			table.insert(dgraph,{graph[l][1],graph[l][2],
			(graph[l-2][2]-8*graph[l-1][2]+8*yh-yhh)/(12*h)})
		else	
			-- take neighbour values
			table.insert(dgraph,{graph[l][1],graph[l][2],
			(graph[l-4][2]-8*graph[l-3][2]+8*graph[l-1][2]-graph[l][2])
			/(12*h)})
		end
	end
	return dgraph
end

-- diffgraph for cubic function ax^3+bx^2+cx+d
-- returns the derivatives in form {{x,y,dy/dx,ddy/ddx},...}
-- if isinverse = true then the coordinates will be inversed
local function diffgraphcubic(graph,a,b,c,d,isinverse)
	local dgraph = {}	
	local l = #graph
	for i = 1, l do 
		if isinverse then
			dgraph[#dgraph+1] = {graph[i][2],graph[i][1],c
			+graph[i][2]*(2*b+3*a*graph[i][2]),6*a*graph[i][2]+2*b}
		else
			dgraph[#dgraph+1] = {graph[i][1],graph[i][2],c
			+graph[i][1]*(2*b+3*a*graph[i][1]),6*a*graph[i][1]+2*b}
		end
	end
	return dgraph
end

-- checks for 100 x, if the function given by funcstring
-- fits the graph g (up to maxerror) after filling in
-- the parameters a, b, c, d
-- if the graph is inverted, then isinverse has to be set true
local function do_parameters_fit(a,b,c,d,funcstring,funcgraph,maxerror,isinverse)
	if not (a > -math.huge and a < math.huge and b > -math.huge and b < math.huge  and
	c > -math.huge and c < math.huge and d > -math.huge and d < math.huge) then
		return false
	end
	local funcx = string.gsub(funcstring, "a", a)
	local funcx = string.gsub(funcx, "b", b)
	local funcx = string.gsub(funcx, "c", c)
	local funcx = string.gsub(funcx, "d", d)
	local func = assert(load("local x = ...; return "..funcx))
	for i = 1, #funcgraph, math.max(1,math.floor(0.01*#funcgraph)) do 
		if isinverse then
			if abs(func(funcgraph[i][2])-funcgraph[i][1]) 
			> maxerror then
				return false
			end
		else
			if abs(func(funcgraph[i][1])-funcgraph[i][2]) 
			> maxerror then
				return false
			end
		end
	end
	return true
end

-- f(x)=a*x^3+b*x+c
local function parameters_cubic(xp,yp,xq,yq,xr,yr,xs,ys)
	local a = (((xp^2 * xq) * yr) - ((xp^2 * xq) * ys) 
	- ((xp^2 * xr) * yq) + ((xp^2 * xr) * ys) + ((xp^2 * xs) * yq)
	- ((xp^2 * xs) * yr) - ((xp * xq^2) * yr) + ((xp * xq^2) * ys) 
	+ ((xp * xr^2) * yq) - ((xp * xr^2) * ys) - ((xp * xs^2) * yq) 
	+ ((xp * xs^2) * yr) + ((xq^2 * xr) * yp) - ((xq^2 * xr) * ys) 
	- ((xq^2 * xs) * yp) + ((xq^2 * xs) * yr) - ((xq * xr^2) * yp) 
	+ ((xq * xr^2) * ys) + ((xq * xs^2) * yp) - ((xq * xs^2) * yr) 
	+ ((xr^2 * xs) * yp) - ((xr^2 * xs) * yq) - ((xr * xs^2) * yp) 
	+ ((xr * xs^2) * yq)) / 
	(((xp^3 * xq^2) * xr) - ((xp^3 * xq^2) * xs) 
	- ((xp^3 * xq) * xr^2) + ((xp^3 * xq) * xs^2) 
	+ ((xp^3 * xr^2) * xs) - ((xp^3 * xr) * xs^2) 
	- ((xp^2 * xq^3) * xr) + ((xp^2 * xq^3) * xs) 
	+ ((xp^2 * xq) * xr^3) - ((xp^2 * xq) * xs^3) 
	- ((xp^2 * xr^3) * xs) + ((xp^2 * xr) * xs^3) 
	+ ((xp * xq^3) * xr^2) - ((xp * xq^3) * xs^2) 
	- ((xp * xq^2) * xr^3) + ((xp * xq^2) * xs^3) 
	+ ((xp * xr^3) * xs^2) - ((xp * xr^2) * xs^3) 
	- ((xq^3 * xr^2) * xs) + ((xq^3 * xr) * xs^2) 
	+ ((xq^2 * xr^3) * xs) - ((xq^2 * xr) * xs^3) 
	- ((xq * xr^3) * xs^2) + ((xq * xr^2) * xs^3))
	local b = ((((-xp^3) * xq) * yr) + ((xp^3 * xq) * ys) 
	+ ((xp^3 * xr) * yq) - ((xp^3 * xr) * ys) - ((xp^3 * xs) * yq) 
	+ ((xp^3 * xs) * yr) + ((xp * xq^3) * yr) - ((xp * xq^3) * ys) 
	- ((xp * xr^3) * yq) + ((xp * xr^3) * ys) + ((xp * xs^3) * yq) 
	- ((xp * xs^3) * yr) - ((xq^3 * xr) * yp) + ((xq^3 * xr) * ys) 
	+ ((xq^3 * xs) * yp) - ((xq^3 * xs) * yr) + ((xq * xr^3) * yp) 
	- ((xq * xr^3) * ys) - ((xq * xs^3) * yp) + ((xq * xs^3) * yr) 
	- ((xr^3 * xs) * yp) + ((xr^3 * xs) * yq) + ((xr * xs^3) * yp) 
	- ((xr * xs^3) * yq)) / 
	(((xp^3 * xq^2) * xr) - ((xp^3 * xq^2) * xs) 
	- ((xp^3 * xq) * xr^2) + ((xp^3 * xq) * xs^2) 
	+ ((xp^3 * xr^2) * xs) - ((xp^3 * xr) * xs^2) 
	- ((xp^2 * xq^3) * xr) + ((xp^2 * xq^3) * xs) 
	+ ((xp^2 * xq) * xr^3) - ((xp^2 * xq) * xs^3) 
	- ((xp^2 * xr^3) * xs) + ((xp^2 * xr) * xs^3) 
	+ ((xp * xq^3) * xr^2) - ((xp * xq^3) * xs^2) 
	- ((xp * xq^2) * xr^3) + ((xp * xq^2) * xs^3) 
	+ ((xp * xr^3) * xs^2) - ((xp * xr^2) * xs^3) 
	- ((xq^3 * xr^2) * xs) + ((xq^3 * xr) * xs^2) 
	+ ((xq^2 * xr^3) * xs) - ((xq^2 * xr) * xs^3) 
	- ((xq * xr^3) * xs^2) + ((xq * xr^2) * xs^3))
	local c = (((xp^3 * xq^2) * yr) - ((xp^3 * xq^2) * ys) 
	- ((xp^3 * xr^2) * yq) + ((xp^3 * xr^2) * ys) 
	+ ((xp^3 * xs^2) * yq) - ((xp^3 * xs^2) * yr) 
	- ((xp^2 * xq^3) * yr) + ((xp^2 * xq^3) * ys) 
	+ ((xp^2 * xr^3) * yq) - ((xp^2 * xr^3) * ys) 
	- ((xp^2 * xs^3) * yq) + ((xp^2 * xs^3) * yr) 
	+ ((xq^3 * xr^2) * yp) - ((xq^3 * xr^2) * ys) 
	- ((xq^3 * xs^2) * yp) + ((xq^3 * xs^2) * yr) 
	- ((xq^2 * xr^3) * yp) + ((xq^2 * xr^3) * ys) 
	+ ((xq^2 * xs^3) * yp) - ((xq^2 * xs^3) * yr) 
	+ ((xr^3 * xs^2) * yp) - ((xr^3 * xs^2) * yq) 
	- ((xr^2 * xs^3) * yp) + ((xr^2 * xs^3) * yq)) / 
	(((xp^3 * xq^2) * xr) - ((xp^3 * xq^2) * xs) 
	- ((xp^3 * xq) * xr^2) + ((xp^3 * xq) * xs^2) 
	+ ((xp^3 * xr^2) * xs) - ((xp^3 * xr) * xs^2) 
	- ((xp^2 * xq^3) * xr) + ((xp^2 * xq^3) * xs) 
	+ ((xp^2 * xq) * xr^3) - ((xp^2 * xq) * xs^3) 
	- ((xp^2 * xr^3) * xs) + ((xp^2 * xr) * xs^3) 
	+ ((xp * xq^3) * xr^2) - ((xp * xq^3) * xs^2) 
	- ((xp * xq^2) * xr^3) + ((xp * xq^2) * xs^3) 
	+ ((xp * xr^3) * xs^2) - ((xp * xr^2) * xs^3) 
	- ((xq^3 * xr^2) * xs) + ((xq^3 * xr) * xs^2) 
	+ ((xq^2 * xr^3) * xs) - ((xq^2 * xr) * xs^3) 
	- ((xq * xr^3) * xs^2) + ((xq * xr^2) * xs^3))
	local d = ((((xp^(3) * xq^(2)) * xr) * ys) 
	- (((xp^(3) * xq^(2)) * xs) * yr) - (((xp^(3) * xq) * xr^(2)) * ys) 
	+ (((xp^(3) * xq) * xs^(2)) * yr) + (((xp^(3) * xr^(2)) * xs) * yq) 
	- (((xp^(3) * xr) * xs^(2)) * yq) - (((xp^(2) * xq^(3)) * xr) * ys) 
	+ (((xp^(2) * xq^(3)) * xs) * yr) + (((xp^(2) * xq) * xr^(3)) * ys) 
	- (((xp^(2) * xq) * xs^(3)) * yr) - (((xp^(2) * xr^(3)) * xs) * yq) 
	+ (((xp^(2) * xr) * xs^(3)) * yq) + (((xp * xq^(3)) * xr^(2)) * ys) 
	- (((xp * xq^(3)) * xs^(2)) * yr) - (((xp * xq^(2)) * xr^(3)) * ys) 
	+ (((xp * xq^(2)) * xs^(3)) * yr) + (((xp * xr^(3)) * xs^(2)) * yq) 
	- (((xp * xr^(2)) * xs^(3)) * yq) - (((xq^(3) * xr^(2)) * xs) * yp) 
	+ (((xq^(3) * xr) * xs^(2)) * yp) + (((xq^(2) * xr^(3)) * xs) * yp) 
	- (((xq^(2) * xr) * xs^(3)) * yp) - (((xq * xr^(3)) * xs^(2)) * yp) 
	+ (((xq * xr^(2)) * xs^(3)) * yp)) / 
	(((xp^(3) * xq^(2)) * xr) - 
	((xp^(3) * xq^(2)) * xs) - ((xp^(3) * xq) * xr^(2)) 
	+ ((xp^(3) * xq) * xs^(2)) + ((xp^(3) * xr^(2)) * xs) 
	- ((xp^(3) * xr) * xs^(2)) - ((xp^(2) * xq^(3)) * xr) 
	+ ((xp^(2) * xq^(3)) * xs) + ((xp^(2) * xq) * xr^(3)) 
	- ((xp^(2) * xq) * xs^(3)) - ((xp^(2) * xr^(3)) * xs) 
	+ ((xp^(2) * xr) * xs^(3)) + ((xp * xq^(3)) * xr^(2)) 
	- ((xp * xq^(3)) * xs^(2)) - ((xp * xq^(2)) * xr^(3)) 
	+ ((xp * xq^(2)) * xs^(3)) + ((xp * xr^(3)) * xs^(2)) 
	- ((xp * xr^(2)) * xs^(3)) - ((xq^(3) * xr^(2)) * xs) 
	+ ((xq^(3) * xr) * xs^(2)) + ((xq^(2) * xr^(3)) * xs) 
	- ((xq^(2) * xr) * xs^(3)) - ((xq * xr^(3)) * xs^(2)) 
	+ ((xq * xr^(2)) * xs^(3)))
	return a, b, c, d
end

-- f(x)=a*x+b
local function parameters_affine(xp,yp,xq,yq)
	local a = (yp - yq) / (xp - xq)
	local b = ((xp * yq) - (xq * yp)) / (xp - xq)
	return a, b
end

-- what is the sum of the squared error
-- when comparing the bezier path
-- p.. control q and r .. s
-- with the graph g from index starti to endi
-- (looking at the points at roughly t=.33 and t=.67)
local function squareerror(f,g,starti,endi,qx,qy,rx,ry)
	local result = 0
	for t = .1, .9, .1 do
		x = (1-t)^3*g[starti][1]+3*t*(1-t)^2*qx+3*t^2*(1-t)*rx+t^3*g[endi][1]
		y = (1-t)^3*g[starti][2]+3*t*(1-t)^2*qy+3*t^2*(1-t)*ry+t^3*g[endi][2]
		result = result + (y-f(x))^2
	end
	return result
end

-- converts a table with bezier point information
-- to a string with rounded values 
-- the path is reversed, if rev is true
-- e.g. if bezierpoints = {{0,1},{2,3,4,5,6,7},{8,9,10,11,12,13}}
-- then 
-- (0,1) .. controls (2,3) and (4,5) .. (6,7) .. controls 
-- (8,9) and (10,11) .. (12,13)
-- will be returned
-- the notation "pgfplots" will change the notation to
-- YES: \addplot coordinates {(0,1) (6,7) (2,3) (4,5) (6,7) (12,13) (8,9) (10,11)}
-- NO: 0  1 \\ 6  7 \\ 2  3 \\ 4  5 \\ \\ 6  7 \\ 12 13 \\ 8  9 \\ 10 11 \\
-- As pgfplots does not connect the bezier segments
-- reverse paths are not implemented 
local function beziertabletostring(bezierpoints,rndx,rndy,rev,notation)
	local bezierstring = ""
	local b = {{round(bezierpoints[1][1],rndx),round(bezierpoints[1][2],rndy)}} -- rounded and then 
	-- reduced points (if identical after rounding)
	-- rounding
	for i = 2, #bezierpoints do
		-- check if x--coordinates are identical
		if round(bezierpoints[i][#bezierpoints[i]-1],rndx) ~=  b[#b][#b[#b]-1] then
			b[#b+1] = {}
			for j = 1, #bezierpoints[i] do
				if j % 2 == 0 then -- x coordinate
					b[#b][j] = round(bezierpoints[i][j],rndx)
				else
					b[#b][j] = round(bezierpoints[i][j],rndy)
				end
			end
		end
	end
	if #b > 1 then -- if not empty or single point
		-- check if bezierstring contains only straight lines
		local onlystraightlines = true
		for i = 1, #b do
			if #b[i] > 2 then
				onlystraightlines = false
				break
			end
		end
		if onlystraightlines then
			if rev then
				bezierstring = "(" .. b[#b][1] .. "," .. b[#b][2] ..")"
					for i = #b-1, 1, -1 do
						bezierstring = bezierstring .. 
							" -- (" .. b[i][1] .. "," .. b[i][2] ..")"
					end
			else
				if notation == "pgfplots" then
					bezierstring = "\\addplot coordinates {(" 
						.. b[1][1] .. "," .. b[1][2] .. ") (" 
						.. b[2][1] .. "," .. b[2][2] .. ") (" 
						.. b[1][1] .. "," .. b[1][2] .. ") (" 
						.. b[2][1] .. "," .. b[2][2] .. ") }" 
				else -- notation = tikz
					bezierstring = "(" .. b[1][1] .. "," .. b[1][2] ..")"
					for i = 2, #b do
						bezierstring = bezierstring .. 
							" -- (" .. b[i][1] .. "," .. b[i][2] ..")"
					end
				end	
			end
		else
			if rev then
				bezierstring = "(" .. b[#b][#b[#b]-1] .. "," 
				.. b[#b][#b[#b]] ..")" -- initial point
				for i = #b, 2, -1 do
					if #b[i] >= 6 then -- cubic bezier spline
						bezierstring = bezierstring .. " .. controls (" 
						.. b[i][3] .. "," .. b[i][4] ..") and ("
						.. b[i][1] .. "," .. b[i][2] .. ") .. (" 
						.. b[i-1][#b[i-1]-1] .. "," .. b[i-1][#b[i-1]]..")"
					else
						bezierstring = bezierstring .. " (" 
						.. b[i-1][#b[i-1]-1] .. "," .. b[i-1][#b[i-1]] ..")"
					end
				end
			else
				if notation == "pgfplots" then
					bezierstring = "\\addplot coordinates {"
					for i = 1, #b-1 do
						if #b[i+1] >= 6 then -- cubic bezier spline
							bezierstring = bezierstring .. "("
							.. b[i][#b[i]-1] .. "," .. b[i][#b[i]] .. ") (" 
							.. b[i+1][5] .. "," .. b[i+1][6] .. ") ("  
							.. b[i+1][1] .. "," .. b[i+1][2] .. ") (" 
							.. b[i+1][3] .. "," .. b[i+1][4] .. ") " 
						end
					end
					bezierstring = bezierstring .. "}"
				else -- notation = tikz
					bezierstring = "(" .. b[1][1] .. "," 
					.. b[1][2] ..")" -- initial point
					for i = 2, #b do
						if #b[i] >= 6 then -- cubic bezier spline
							bezierstring = bezierstring .. " .. controls (" 
							.. b[i][1] .. "," .. b[i][2] ..") and ("
							.. b[i][3] .. "," .. b[i][4] .. ") .. (" 
							.. b[i][5] .. "," .. b[i][6]..")"
						else
							bezierstring = bezierstring .. " (" 
							.. b[i][1] .. "," .. b[i][2] ..")"
						end
					end
				end
			end
		end
	end
	return bezierstring
end

-- take end points of a graph g of the function f
-- (from indices starti to endi)
-- without extrema or inflection points inbetween 
-- and try to approximate it with a cubic bezier curve
-- (round to rndx and rndy when printing)
-- if maxerror <= 0, the function will not be recursive anymore
local function graphtobezierapprox(f,g,starti,endi,maxerror)
	local px = g[starti][1]
	local py = g[starti][2]
	local dp = g[starti][3]
	local sx = g[endi][1]
	local sy = g[endi][2]
	local ds = g[endi][3]
	-- we compute the corner point c, where the controls would meet
	local cx = ((dp * px) - (ds * sx) - py + sy) / (dp - ds)
	local cy = (dp * ((ds * px) - (ds * sx) - py + sy) / (dp - ds)) + py
	-- now we slide q between p and c & r between s and c
	-- and search for the best qx and best rx
	local qx = px+.01*(cx-px)
	local qy = py+.01*(cy-py)
	local rx = sx+.01*(cx-sx)
	local ry = sy+.01*(cy-sy)
	local err = squareerror(f,g,starti,endi,qx,qy,rx,ry)
	for i = 2, 99 do
		for j = 2, 99 do
			xa = px+i*.01*(cx-px)
			ya = py+i*.01*(cy-py)
			xb = sx+j*.01*(cx-sx)
			yb = sy+j*.01*(cy-sy)
			-- now check, if xa and xb fit better
			-- than the last qx and rx did
			-- (sum of squares must be smaller)
			local newerror = squareerror(f,g,starti,endi,xa,ya,xb,yb)
			if newerror < err then
				qx = xa
				qy = ya
				rx = xb
				ry = yb
				err = newerror
			end
		end
	end
	if maxerror > 0 then
		-- check if it is close enough: (recycling err, xa, ya)
		err = 0
		for t = .1, .9, .1 do
			xa = (1-t)^3*g[starti][1]+3*t*(1-t)^2*qx+3*t^2*(1-t)*rx+t^3*g[endi][1]
			ya = (1-t)^3*g[starti][2]+3*t*(1-t)^2*qy+3*t^2*(1-t)*ry+t^3*g[endi][2]
			if abs(ya-f(xa)) > err then
				err = abs(ya-f(xa))
				err = abs(ya-f(xa))
			end
		end
		if (err <= maxerror)
		and qx > -math.huge and qx < math.huge
		and qy > -math.huge and qy < math.huge
		and rx > -math.huge and ry < math.huge
		and sx > -math.huge and sy < math.huge
		then
			return {qx,qy,rx,ry,sx,sy}
		else
			-- search for an intermediate point where the graph has the same
			-- slope as the line from the start point to the end point:
			local interindex = math.floor(.5*starti+.5*endi) -- will change
			for i = starti + 1, endi - 1 do
				if abs(g[i][3]-(g[endi][2]-g[starti][2])
				/(g[endi][1]-g[starti][1])) 
				< abs(g[interindex][3]-(g[endi][2]-g[starti][2])
				/(g[endi][1]-g[starti][1])) then
					interindex = i
				end
			end
			local left = graphtobezierapprox(f,g,starti,interindex,maxerror)
			local right = graphtobezierapprox(f,g,interindex,endi,maxerror)
			for i=1, #right do --now append the right to the left:
				left[#left+1] = right[i]
			end
			return left
		end
	elseif qx > -math.huge and qx < math.huge
	and qy > -math.huge and qy < math.huge
	and rx > -math.huge and ry < math.huge
	and sx > -math.huge and sy < math.huge
	then
		return {qx,qy,rx,ry,sx,sy}
	end
end

-- like above but exact for quadratic and cubic (if not inverse)
-- resp. exact for squareroot and cuberoot (if inverse)
local function graphtobezier(g,starti,endi,isinverse)
	local px = g[starti][1]
	local py = g[starti][2]
	local dp = g[starti][3]
	local sx = g[endi][1]
	local sy = g[endi][2]
	local ds = g[endi][3]
	local qx = px+(sx-px)/3
	local rx = px+2*(sx-px)/3
	local qy = py+(qx-px)*dp
	local ry = sy+(rx-sx)*ds
	if isinverse then
		return {qy,qx,ry,rx,sy,sx}
	else
		return {qx,qy,rx,ry,sx,sy}
	end
end

-- main function
function bezierplot(functionstring,xminstring,xmaxstring,yminstring,ymaxstring,samplesstring,notation)
	local fstringreplaced = string.gsub(functionstring, "%*%*", "^")
	local f = assert(load("local x = ...; return " .. fstringreplaced)) 
	local xmin = evaluate(xminstring)
	local xmax = evaluate(xmaxstring)
	local ymin = evaluate(yminstring)
	local ymax = evaluate(ymaxstring)
	local samples = evaluate(samplesstring)
	local isreverse = false
	if xmin > xmax then
		isreverse = true
	elseif xmin == xmax then
		xmax = xmin + 10
	end
	xmin, xmax = math.min(xmin,xmax), math.max(xmin,xmax)
	if ymin == ymax then
		ymax = ymin + 10
	end
	ymin, ymax = math.min(ymin,ymax), math.max(ymin,ymax)
	local xsteps = 50000 
	-- if samples < 2 the samples will be chosen as wisely as possible
	local arbitrary_samples = true
	if samples >= 2 then
		arbitrary_samples = false
		xsteps = (samples-1)*math.max(2,math.floor(xsteps/(samples-1)))
	end
	local xstep = (xmax-xmin)/xsteps
	-- the output of the x coordinates will be rounded to rndx digits
	local rndx = math.max(0,math.floor(5.5-log(xmax-xmin)/log(10)))
	local xerror = abs(xmax-xmin)/(10^rndx)
	-- the output of the y coordinates will be rounded to rndy digits
	local rndy = math.max(0,math.floor(5.5-log(ymax-ymin)/log(10)))
	local yerror = (ymax-ymin)/(10^rndy)
	-- determine parts of the graph that are inside window
	local graphs = {} -- graph split to the connected parts
	local graph = {} -- graphs concatenated (needed for function type)
	local outside = true -- value is outside window
	local i = 0
	local j = 0
	local yminreal -- determine the real minimimum of the y coord.
	local ymaxreal -- just decring
	local yminrealfound = false
	local ymaxrealfound = false
	for n = 0, xsteps do
		local x = xmin + n/xsteps*(xmax-xmin)
		if n == xsteps then
			x = xmax
		end
		local y = f(x)
		if (y >= ymin-.1*yerror and ymin ~= -huge or y > ymin and ymin == -huge)
		and (y <= ymax+.1*yerror and ymax ~= huge or y < ymax and ymax == huge)
		then -- inside
			if outside then -- if it was outside before
				outside = false
				j = 0
				i = i + 1
				graphs[i] = {}
			end
			j = j + 1
			graphs[i][j] = {x,y}
			graph[#graph+1] = {x,y}
			if not yminrealfound or yminrealfound and y < yminreal then
				yminreal = y
				yminrealfound = true
			end
			if not ymaxrealfound or ymaxrealfound and y > ymaxreal then
				ymaxreal = y
				ymaxrealfound = true
			end
		else
			outside = true
		end
	end
	
	-- some redefinitions
	if #graph ~= 0 and yminreal ~= ymaxreal then
		ymin = yminreal
		ymax = ymaxreal
		rndy = math.max(0,math.floor(5.5-log(ymax-ymin)/log(10)))
		yerror = (ymax-ymin)/(10^rndy)
	end
	
	-- check for the function type (for this, we need the concatenated
	-- parts of the graph)
	-- go through the connected parts
	local functiontype = "unknown"
	local a, b, c, d -- possible function parameter
	-- check for affine functions:
	local l = #graph
	a, b = parameters_affine(graph[1][1],graph[1][2],
	graph[l][1],graph[l][2])
	if do_parameters_fit(a,b,0,0,"a*x+b",graph,yerror,false) then
		functiontype = "affine"
	else -- check for cubic functions (includes quadratic functions)
		a, b, c, d = parameters_cubic(graph[1][1],graph[1][2],
		graph[math.floor(l/3)][1],graph[math.floor(l/3)][2],
		graph[math.floor(2*l/3)][1],graph[math.floor(2*l/3)][2],
		graph[l][1],graph[l][2])
		if do_parameters_fit(a,b,c,d,"a*x^3+b*x^2+c*x+d",graph,
		yerror,false) then
			functiontype = "cubic"
		else -- check for cuberoot functions (includes squareroots)
			a, b, c, d = parameters_cubic(graph[1][2],graph[1][1],
			graph[math.floor(l/3)][2],graph[math.floor(l/3)][1],
			graph[math.floor(2*l/3)][2],graph[math.floor(2*l/3)][1],
			graph[l][2],graph[l][1])
			if do_parameters_fit(a,b,c,d,"a*x^3+b*x^2+c*x+d",graph,
			xerror,true) then
				functiontype = "cuberoot"
			end
		end
	end
			
	local bezierpoints = {}
	-- the bezier path (0,1) .. controls 
	-- (2,3) and (4,5) .. (6,7) .. controls 
	-- (8,9) and (10,11) .. (12,13)
	-- will be stored as
	-- bezierpoints={{0,1},{2,3,4,5,6,7},{8,9,10,11,12,13}}
	
	if functiontype == "affine" then
		if arbitrary_samples then
			bezierpoints = {{graph[1][1],graph[1][2]},{graph[#graph][1],
			graph[#graph][2]}}
		else -- we can here savely assume that graphs has only one part,
		-- therefore graphs[1]=graph
			for i = 1, #graph, math.floor(xsteps/(samples-1)) do
				bezierpoints[#bezierpoints+1] = {graph[i][1],graph[i][2]}
			end
		end
	elseif functiontype == "cubic" then 
		local extrema_inflections = {} -- store the extrema and
		-- inflection points for arbitrary samples
		if arbitrary_samples then
			if math.abs(a) < yerror*1e-10 then -- quadratic case (one extremum)
				if is_in_window(-c/(2*b),(-c^2+4*b*d)/(4*b),xmin,xmax,
				ymin,ymax) then
					extrema_inflections = {{-c/(2*b),(-c^2+4*b*d)/(4*b)}}
				end
			else -- cubic case (two extrema and one inflection point)
				-- we order the points with the help of sgn
				-- check for first extrema
				if is_in_window((-sgn(a)*sqrt(-3*a*c+b^2)-b)/(3*a),
				(2*b^3+27*a^2*d-9*a*b*c+sqrt(b^2-3*a*c)*sgn(a)*
				(2*b^2-6*a*c))/(27*a^2),xmin,xmax,ymin,ymax) then
					extrema_inflections[#extrema_inflections+1] = 
					{(-sgn(a)*sqrt(-3*a*c+b^2)-b)/(3*a),(2*b^3+27*a^2*d-
					9*a*b*c+sqrt(b^2-3*a*c)*sgn(a)*(2*b^2-6*a*c))/(27*a^2)}
				end
				-- check for inflection point (has to be inbetween)
				if is_in_window(-b/(3*a),(2*b^3+27*a^2*d-9*a*b*c)
				/(27*a^2),xmin,xmax,ymin,ymax) then
					extrema_inflections[#extrema_inflections+1]={-b/(3*a),
					(2*b^3+27*a^2*d-9*a*b*c)/(27*a^2)}
				end
				-- check for second extrema
				if is_in_window((sgn(a)*sqrt(-3*a*c+b^2)-b)/(3*a),
				(2*b^3+27*a^2*d-9*a*b*c+sqrt(b^2-3*a*c)*sgn(a)*
				(-2*b^2+6*a*c))/(27*a^2),xmin,xmax,ymin,ymax) then
					extrema_inflections[#extrema_inflections+1] = 
					{(sgn(a)*sqrt(-3*a*c+b^2)-b)/(3*a),(2*b^3+27*a^2*d-
					9*a*b*c+sqrt(b^2-3*a*c)*sgn(a)*(-2*b^2+6*a*c))/(27*a^2)}
				end
			end
		end
		for part = 1, #graphs do 
			bezierpoints[#bezierpoints+1] = {graphs[part][1][1],
			graphs[part][1][2]} -- initial points
			local graphsamples = {}-- will be the graph reduced to the 
			-- samples (or the most important points)
			local dg -- will be the differentiated graph
			if arbitrary_samples then -- add extrema and inflection 
			-- points to the border points
				graphsamples = {{graphs[part][1][1],
					graphs[part][1][2]}}
				for j = 1, #extrema_inflections do
					if extrema_inflections[j][1] > math.min(
					graphs[part][1][1] ,graphs[part][#graphs[part]][1])
					and extrema_inflections[j][1] < math.max(
					graphs[part][1][1] ,graphs[part][#graphs[part]][1])
					then
						graphsamples[#graphsamples+1] = 
							{extrema_inflections[j][1],
							extrema_inflections[j][2]}
					end
				end
				graphsamples[#graphsamples+1] = 
					{graphs[part][#graphs[part]][1],
					graphs[part][#graphs[part]][2]}
			else
				for i = 1, #graphs[part], xsteps/(samples-1) do
					graphsamples[#graphsamples+1] = 
						{graphs[part][i][1],graphs[part][i][2]}
				end
			end
			dg = diffgraphcubic(graphsamples,a,b,c,d,false)
			for i = 2, #dg do
				bezierpoints[#bezierpoints+1] = graphtobezier(dg,i-1,i,false)
			end
		end
	elseif functiontype == "cuberoot" then 
		local inflection = {} -- store the inflection point
		if arbitrary_samples and math.abs(a) ~= 0
		and is_in_window((2*b^3+27*a^2*d-9*a*b*c)/(27*a^2),-b/(3*a),
		xmin,xmax,ymin,ymax) then
			inflection = {(2*b^3+27*a^2*d-9*a*b*c)/(27*a^2),-b/(3*a)}
		end
		-- (there cannot be more than one part)
		bezierpoints[#bezierpoints+1] = {graphs[1][1][1],
		graphs[1][1][2]} -- initial points
		local graphsamples = {}-- will be the graph reduced to the 
		-- samples (or the most important points)
		local dg -- will be the differentiated graph
		if arbitrary_samples then -- add inflection point (if exis.)
			graphsamples = {{graphs[1][1][1],
				graphs[1][1][2]}}
			if #inflection > 0 and inflection[1] > math.min(
				graphs[1][1][1],graphs[1][#graphs[1]][1])
				and inflection[1] < math.max(
				graphs[1][1][1],graphs[1][#graphs[1]][1])
				then
					graphsamples[#graphsamples+1] = 
						{inflection[1],inflection[2]}
			end
			graphsamples[#graphsamples+1] = 
				{graphs[1][#graphs[1]][1],
				graphs[1][#graphs[1]][2]}
		else
			for i = 1, #graphs[1], xsteps/(samples-1) do
				graphsamples[#graphsamples+1] = 
					{graphs[1][i][1],graphs[1][i][2]}
			end
		end
		dg = diffgraphcubic(graphsamples,a,b,c,d,true)
		for i = 2, #dg do
			bezierpoints[#bezierpoints+1] = graphtobezier(dg,i-1,i,true)
		end
	else	
	---------- generic case (no special function) ----------------		
		if arbitrary_samples then
			-- go through the connected parts
			for part = 1, #graphs do 
				local dg = diffgraph(f,graphs[part],xstep)
				--printdifftable(dg) -- for debugging
				bezierpoints[#bezierpoints+1] = {dg[1][1],dg[1][2]}
				local startindex = 1
				for k = 2, #dg do
					if dg[k][5] or dg[k][6] then -- extrema and inflection points
						local tobeadded = graphtobezierapprox(
						f,dg,startindex,k,10*yerror)
						-- tobeadded may contain a multiple of 6 entries
					-- e.g. {1,2,3,4,5,6,7,8,9,10,11,12}
						for i = 1, math.floor(#tobeadded/6) do
							bezierpoints[#bezierpoints+1] = {}
							for j = 1, 6 do
								bezierpoints[#bezierpoints][j] = tobeadded[(i-1)*6+j]
							end
						end
						startindex = k
					end
				end
				if startindex ~= #dg then -- if no special points inbetween
					local tobeadded = graphtobezierapprox(f,dg,
					startindex,#dg,10*yerror)
					-- tobeadded may contain a multiple of 6 entries
					-- e.g. {1,2,3,4,5,6,7,8,9,10,11,12}
					for i = 1, math.floor(#tobeadded/6) do
						bezierpoints[#bezierpoints+1] = {}
						for j = 1, 6 do
							bezierpoints[#bezierpoints][j] = tobeadded[(i-1)*6+j]
						end
					end
				end
			end
		else -- fixed samples in the generic case
			-- go through the connected parts
			for part = 1, #graphs do 
				local dg = diffgraphsimple(f,graphs[part],xstep,
					math.floor(0.5+xsteps/(samples-1)))
				bezierpoints[#bezierpoints+1] = {dg[1][1],dg[1][2]} -- initial points
				for i = 2, #dg do
					bezierpoints[#bezierpoints+1] = graphtobezier(dg,i-1,i,false)
				end
			end
		end
	end
	return beziertabletostring(bezierpoints,rndx,rndy,isreverse,notation)		
end

-- main program --

if not pcall(debug.getlocal, 4, 1) then
--if debug.getinfo(3) == nil then
	if #arg >= 1 then
		local xmin = -5
		local xmax = 5
		if #arg >= 2 then 
			xmin = arg[2]
		end
		if #arg >= 3 then
			xmax = arg[3]
		end
		local ymin = -5
		local ymax = 5
		if #arg >= 4 then 
			ymin = arg[4]
		end
		if #arg >= 5 then 
			ymax = arg[5]
		end
		local samples = 0
		if #arg >= 6 then 
			samples = arg[6]
		end
		local notation = "tikz"
		if #arg >= 7 then 
			notation = arg[7] 
		end
		print(bezierplot(arg[1],xmin,xmax,ymin,ymax,samples,notation))
	end
end