1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
% tkz-obj-eu-circles.tex
% Copyright 2022 Alain Matthes
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
% This work has the LPPL maintenance status “maintained”.
% The Current Maintainer of this work is Alain Matthes.
\def\fileversion{4.22c}
\def\filedate{2022/07/28}
\typeout{2022/07/28 4.22c tkz-obj-eu-circles.tex}
\makeatletter
%<--------------------------------------------------------------------------–>
% tkzCircle center and one point
%<--------------------------------------------------------------------------–>
% attention radius circle is defined by center and a point on the circle
% R defined by center and the value of the radius
% no need to define a circle with R tikz uses this method.
% through instead of radius
\def\tkz@numcby{0}
\pgfkeys{/tkzDefCircleBy/.cd,
translation/.code args = {from #1 to #2} { \def\tkz@numcby{0}
\def\tkzfrom{#1}
\def\tkzto{#2}},
homothety/.code args = {center #1 ratio #2}{ \def\tkz@numcby{1}
\def\tkzcenter{#1}
\def\tkzratio{#2}},
reflection/.code args = {over #1--#2}{ \def\tkz@numcby{2}
\def\tkzdeb{#1}
\def\tkzfin{#2}},
symmetry/.code args = {center #1}{ \def\tkz@numcby{3}
\def\tkzcenter{#1}},
rotation/.code args = {center #1 angle #2}{ \def\tkz@numcby{4}
\def\tkzcenter{#1}
\def\tkzangle{#2}},
inversion/.code args={center #1 through #2}{ \def\tkz@numcby{5}
\def\tkzcenter{#1}
\def\tkzpoint{#2}},
inversion negative/.code args = {center #1 through #2}{\def\tkz@numcby{6}
\def\tkzcenter{#1}
\def\tkzpoint{#2}}
}
\def\tkzDefCircleBy{\pgfutil@ifnextchar[{\tkz@DefCircleBy}{\tkz@DefCircleBy[]}}
\def\tkz@DefCircleBy[#1](#2){%
\begingroup
\pgfqkeys{/tkzDefCircleBy}{#1}
\ifcase\tkz@numcby%
\tkzDefCircleTranslation(#2)%
\or% 1
\tkzDefCircleHomothety(#2)
\or% 2
\tkzDefCircleReflection(#2)
\or% 3
\tkzDefCircleSymmetry(#2)
\or% 4
\tkzDefCircleRotation(#2)
\or% 5
\tkzDefInversionCircle(#2,\tkzcenter,\tkzpoint)
\or% 6
\tkzDefInversionNegativeCircle(#2,\tkzcenter,\tkzpoint)
\fi
\endgroup
}
%<--------------------------------------------------------------------------–>
\def\tkzDefCircleTranslation(#1,#2){%
\begingroup
\tkzUTranslation(\tkzfrom,\tkzto)(#1)
\pgfnodealias{tkzFirstPointResult}{tkzPointResult}
\tkzUTranslation(\tkzfrom,\tkzto)(#2)
\pgfnodealias{tkzSecondPointResult}{tkzPointResult}
\endgroup
}
%<--------------------------------------------------------------------------–>
\def\tkzDefCircleHomothety(#1,#2){%
\begingroup
\tkzUHomo(\tkzcenter,\tkzratio)(#1)
\pgfnodealias{tkzFirstPointResult}{tkzPointResult}
\tkzUHomo(\tkzcenter,\tkzratio)(#2)
\pgfnodealias{tkzSecondPointResult}{tkzPointResult}
\endgroup
}
%<--------------------------------------------------------------------------–>
\def\tkzDefCircleReflection(#1,#2){%
\begingroup
\tkzUSymOrth(\tkzdeb,\tkzfin)(#1)
\pgfnodealias{tkzFirstPointResult}{tkzPointResult}
\tkzUSymOrth(\tkzdeb,\tkzfin)(#2)
\pgfnodealias{tkzSecondPointResult}{tkzPointResult}
\endgroup
}
%<--------------------------------------------------------------------------–>
\def\tkzDefCircleSymmetry(#1,#2){%
\begingroup
\tkzUCSym(\tkzcenter)(#1)
\pgfnodealias{tkzFirstPointResult}{tkzPointResult}
\tkzUCSym(\tkzcenter)(#2)
\pgfnodealias{tkzSecondPointResult}{tkzPointResult}
\endgroup
}
%<--------------------------------------------------------------------------–>
\def\tkzDefCircleRotation(#1,#2){%
\begingroup
\tkzURotateAngle(\tkzcenter,\tkzangle)(#1)
\pgfnodealias{tkzFirstPointResult}{tkzPointResult}
\tkzURotateAngle(\tkzcenter,\tkzangle)(#2)
\pgfnodealias{tkzSecondPointResult}{tkzPointResult}
\endgroup
}
%<--------------------------------------------------------------------------–>
% #3,#4 cercle d'inversion centre #3. through #4
% Si le cercle passe par le pôle l'image est une droite
\def\tkzDefInversionCircle(#1,#2,#3,#4){%
\begingroup
\tkz@@CalcLengthcm(#1,#2){tkz@lna}%
\tkz@@CalcLengthcm(#1,#3){tkz@lnb}%
\gdef\tkzMathResult{\fpeval{round(abs(\tkz@lnb - \tkz@lna),6)}}
\ifdim\tkzMathResult pt < 1 pt\relax%
\tkzURotateAngle(#1,-90)(#2)
\pgfnodealias{tkz@a}{tkzPointResult}
\tkzUInversePoint(#3,#4)(tkz@a)
\pgfnodealias{tkzFirstPointResult}{tkzPointResult}
\tkzUInversePoint(#3,#4)(#2)
\pgfnodealias{tkzSecondPointResult}{tkzPointResult}
\else
\tkzURotateAngle(#1,90)(#2)
\pgfnodealias{tkz@a}{tkzPointResult}
\tkzURotateAngle(#1,-90)(#2)
\pgfnodealias{tkz@b}{tkzPointResult}
\tkzUInversePoint(#3,#4)(tkz@a)
\pgfnodealias{tkz@p1}{tkzPointResult}
\tkzUInversePoint(#3,#4)(tkz@b)
\pgfnodealias{tkz@p2}{tkzPointResult}
\tkzUInversePoint(#3,#4)(#2)
\pgfnodealias{tkz@p3}{tkzPointResult}
\tkzDefCircle[circum](tkz@p3,tkz@p1,tkz@p2)
\fi
\endgroup
}
%<--------------------------------------------------------------------------–>
\def\tkzDefInversionNegativeCircle(#1,#2,#3,#4){%
\begingroup
\tkzDefInversionCircle(#1,#2,#3,#4)
\tkzUCSym(\tkzcenter)(tkzFirstPointResult)
\pgfnodealias{tkzFirstPointResult}{tkzPointResult}
\tkzUCSym(\tkzcenter)(tkzSecondPointResult)
\pgfnodealias{tkzSecondPointResult}{tkzPointResult}
\endgroup
}
%<--------------------------------------------------------------------------–>
% End Def Circle
%<--------------------------------------------------------------------------–>
\makeatother
\endinput
|