summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/latex/tkz-elements/tkz_elements_functions_intersections.lua
blob: 7dd2c59c321d954f74a0ae7351b7d3450923eb43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
-- tkz_elements_intersections.lua
-- date 2024/02/04
-- version 2.00c
-- Copyright 2024  Alain Matthes
-- This work may be distributed and/or modified under the
-- conditions of the LaTeX Project Public License, either version 1.3
-- of this license or (at your option) any later version.
-- The latest version of this license is in
--   http://www.latex-project.org/lppl.txt
-- and version 1.3 or later is part of all distributions of LaTeX
-- version 2005/12/01 or later.
-- This work has the LPPL maintenance status “maintained”.
-- The Current Maintainer of this work is Alain Matthes.

-------------------------------------------------------------------------
-- intersection of lines
-------------------------------------------------------------------------
function intersection_ll (la,lb)
    return intersection_ll_ (la.pa,la.pb,lb.pa,lb.pb)
end
---------------------------------------------------------------------------
-- intersection of a line and a circle
---------------------------------------------------------------------------
function intersection_lc (D,C )
    return intersection_lc_ ( D.pa,D.pb ,C.center,C.through )
end -- function
---------------------------------------------------------------------------
-- intersection of two circles
---------------------------------------------------------------------------
function intersection_cc (Ca , Cb )
   return intersection_cc_(Ca.center,Ca.through,Cb.center,Cb.through)
end -- function

--  line ellipse
function intersection_le (L,E)
   local a,b,c,d,t1,t2,z1,z2,A,B,Bx,By,Ax,Ay,Rx,Ry,sd
   A = (L.pa - E.center)*(point(math.cos(E.slope),-math.sin(E.slope)))
   B = (L.pb - E.center)*(point(math.cos(E.slope),-math.sin(E.slope)))
   Rx  = E.Rx
   Ry  = E.Ry
   Ax  = A.re
   Ay  = A.im
   Bx  = B.re
   By  = B.im
    a  = Rx^2  * (By-Ay)^2 +Ry^2 * (Bx-Ax)^2
    b  = 2 * Rx^2 * Ay * (By-Ay)+ 2  * Ry^2 * Ax * (Bx-Ax)
    c  = Rx^2 * Ay^2 + Ry^2 * Ax^2 -  Rx^2 * Ry^2
    d  =  b^2 - 4 * a * c

   if d > 0 then
      sd = math.sqrt(d)
      t1 = (-(b)+sd)/(2*a)
      t2 = (-(b)-sd)/(2*a)
      z1 = point ( Ax + (Bx-Ax)*t1 ,  Ay + (By-Ay)*t1 )
      z2 = point ( Ax + (Bx-Ax)*t2 ,  Ay + (By-Ay)*t2 )
      if angle_normalize (point.arg(z1)) < angle_normalize (point.arg(z2))
      then
      return z1*(point(math.cos(E.slope),math.sin(E.slope))) + E.center,
             z2*(point(math.cos(E.slope),math.sin(E.slope))) + E.center
          else
             return z2*(point(math.cos(E.slope),math.sin(E.slope))) + E.center,
                    z1*(point(math.cos(E.slope),math.sin(E.slope))) + E.center
            end -- if 
       elseif  math.abs(d) < tkz_epsilon 
       then
           t1 = (-(b))/(2*a)
           z1 = point ( Ax + (Bx-Ax)*t1 ,  Ay + (By-Ay)*t1 )           
          return z1*(point(math.cos(E.slope),math.sin(E.slope))) + E.center,
                 z1*(point(math.cos(E.slope),math.sin(E.slope))) + E.center
       else
         return false,false
      end
end
 
function intersection_ll_ (a,b,c,d)
    local x1,x2,x3,x4,y1,y2,y3,y4,DN,NX,NY
    x1 = a.re
    y1 = a.im
    x2 = b.re
    y2 = b.im
    x3 = c.re
    y3 = c.im
    x4 = d.re
    y4 = d.im
    DN = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4)
    if math.abs ( DN ) < tkz_epsilon then
     return false 
     else
    NX = (x1*y2-y1*x2)*(x3-x4) - (x1-x2)*(x3*y4-y3*x4)
    NY = (x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4)
    return point (NX/DN,NY/DN)
    end
end

function intersection_lc_ (pa,pb,c,p)
  local zh, dh, arg_ab, test, phi,c1,c2,r
    r = point.mod (c-p)
    zh = projection_ (pa,pb,c)
    dh = point.abs  (c - zh)
    arg_ab = point.arg (pa - pb)
   if dh < tkz_epsilon
       then
       return
            c + polar_ (r , math.pi + arg_ab),  -- through center
            c + polar_ (r ,  arg_ab)
  elseif math.abs (r - dh) < tkz_epsilon
    then 
        return zh , zh -- tangent
  elseif dh > r
    then return false , false -- no intersection
  else
    phi = math.asin (dh / r)
   -- phi = angle_normalize(phi)
    test = (pa-pb) * point.conj (c-zh)
    if test.im < 0
    then phi = math.pi + phi
      end
      c1 = angle_normalize (arg_ab + phi )
      c2 = angle_normalize (math.pi + arg_ab - phi )
      if c2 < c1 then
    return
    c + polar_ (r, c2) ,
    c + polar_ (r, c1)
 else 
    return
    c + polar_ (r, c1) ,
    c + polar_ (r, c2)
   end -- if
   end -- if

end -- function

function intersection_cc_ (ca,pa,cb,pb )
  local d, cosphi, phi,ra,rb,c1,c2,epsilon
    epsilon = 12
    d  = point.abs (ca - cb)
    ra = point.abs (ca - pa)
    rb = point.abs (cb - pb)
  cosphi = tkzround(((ra * ra + d * d - rb * rb)
                           /( 2 * ra * d )) , epsilon)  
  phi =  tkzround (math.acos(cosphi),epsilon)
  if not phi then 
     return false , false 
  elseif phi == 0 then
     return ca + polar_ (ra, phi + point.arg (cb - ca)) ,
            ca + polar_ (ra, phi + point.arg (cb - ca))
  else
     c1 = angle_normalize ( phi + point.arg(cb - ca))
     c2 = angle_normalize (-phi + point.arg(cb - ca))
  if c1 < c2 then
      return
   ca + polar_(ra,  c1),
   ca + polar_(ra, c2)
else
   return
   ca + polar_(ra,  c2),
   ca + polar_(ra, c1)
      end -- if
   end -- if
 end -- function

function intersection ( X , Y )
   local i,z1,z2
   local t = {}

   if X.type == 'circle'
   then 
         if Y.type == 'circle'
         then
            z1,z2 = intersection_cc ( X , Y )
            table.insert (t , z1 )
            table.insert (t , z2 )
         else -- Y[i] est une droite
            z1,z2 = intersection_lc ( Y , X )
            table.insert (t , z1 )
            table.insert (t , z2 )
         end -- if
   else 
      if X.type == 'line' then
         if Y.type == 'circle'
         then
            z1,z2 = intersection_lc ( X , Y )
            table.insert ( t , z1 )
            table.insert ( t , z2 )
         else 
            if Y.type == 'line' then
            z1 = intersection_ll ( X , Y )
            table.insert (t , z1 )
         else -- ellipse
            z1,z2 = intersection_le ( X , Y )
            table.insert ( t , z1 )
            table.insert ( t , z2 )
         end
         end -- if
      else 
         if  X.type == 'ellipse' then
         z1,z2 = intersection_le ( Y,X)
         table.insert ( t , z1 )
         table.insert ( t , z2 )
       end
      end
   end -- if
   return table.unpack ( t )
end -- function