1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
-- tkz_elements-ellipses.lua
-- date 2025/01/06
-- version 3.10
-- Copyright 2024 Alain Matthes
-- This work may be distributed and/or modified under the
-- conditions of the LaTeX Project Public License, either version 1.3
-- of this license or (at your option) any later version.
-- The latest version of this license is in
-- http://www.latex-project.org/lppl.txt
-- and version 1.3 or later is part of all distributions of LaTeX
-- version 2005/12/01 or later.
-- This work has the LPPL maintenance status “maintained”.
-- The Current Maintainer of this work is Alain Matthes.
---------------------------------------------------------------------------
-- circles
---------------------------------------------------------------------------
ellipse = {}
function ellipse: new(pc, pa ,pb)
-- pc --> center pa --> through big axe pb --> little axe
local type = 'ellipse'
local Rx = point.abs ( pa - pc )
local Ry = point.abs ( pb - pc )
local slope = slope_ (pc,pa)
local c = math.sqrt (Rx*Rx-Ry*Ry)
local Fa = pc + c*(point(math.cos(slope),math.sin(slope)))
local Fb = pc - c*(point(math.cos(slope),math.sin(slope)))
local east = pa
local north = pb
local west = 2 * pc - pa
local south = 2 * pc - pb
local vertex = pa
local covertex = pb
local o = { center = pc,
vertex = vertex,
covertex = covertex,
Rx = Rx,
Ry = Ry,
slope = slope,
Fa = Fa,
Fb = Fb,
type = type,
north = north,
south = south,
east = east,
west = west }
setmetatable(o, self)
self.__index = self
return o
end
function ellipse: foci (f1,f2,v )
local c,a,h,b,cov
c = midpoint_ (f1,f2)
a = point.abs(v-c)
h = point.abs(f1-c)
b = math.sqrt(a^2-h^2)
cov = (v-c)*point(0,1)/point.abs(v-c)*b+c
return ellipse: new (c,v,cov)
end
function ellipse: radii (c,a,b,sl )
local z,v,cov
z = point (a*math.cos(sl),a*math.sin(sl))
v = c + z
z.V = v
cov = (v-c)*point(0,1)/point.abs(v-c)*b+c
return ellipse: new (c,v,cov)
end
function ellipse: point (t)
local phi = 2*t* math.pi
local ax,ay,bx,by,cx,cy
cx = self.center.re
cy = self.center.im
ax = self.Rx * math.cos(self.slope) * math.cos(phi)
ay = self.Rx * math.sin(self.slope) * math.cos(phi)
bx = -self.Ry * math.sin(self.slope) * math.sin(phi)
by = self.Ry * math.cos(self.slope) * math.sin(phi)
return point (cx+ax+bx,cy+ay+by)
end
function ellipse: tangent_at (pt)
local zi,u,v
zi = in_center_ (self.Fa,pt,self.Fb)
u = pt+(zi-pt)*point(0,1)
v = pt : symmetry (u)
return line : new (u,v)
end
function ellipse: tangent_from (pt)
local u,v,U,V,w,s1,s2,s3,s4
w = report_ (self.Fb,self.Fa,2 * self.Rx)
s1,s2 = intersection_cc_ (pt,self.Fa,self.Fb,w)
u,v = mediator_ (s1,self.Fa)
U = intersection_ll_ (u,v,self.Fb,s1)
u,v = mediator_ (s2,self.Fa)
V = intersection_ll_ (u,v,self.Fb,s2)
return line : new (pt,U) , line : new (pt,V)
end
function ellipse: in_out (pt)
local d,D,an,m
d = point.abs (pt - self.center)
an = point.arg (pt - self.center)
m = point(self.Rx*math.cos(an),self.Ry*math.sin(an))
D = point.abs (m - self.center)
if D-d > tkz_epsilon
then
return true
else
return false
end
end
function ellipse: orthoptic_circle ()
local r = math.sqrt(self.Rx*self.Rx+self.Ry*self.Ry)
return circle : radius (self.center, r)
end
return ellipse
|