blob: 85576f39f718c2f92001f83f097cb323c4e92663 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
%%%%%%%%%%%%% cal-util.def %%%%%%%%%%%%%%%%
% Macros shared by hijrical and hebrewcal %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the following is adapted from hebcal.sty in babel
\def\@Remainder#1#2#3{%
#3 = #1% % c = a
\divide #3 by #2% % c = a/b
\multiply #3 by -#2% % c = -b(a/b)
\advance #3 by #1}% % c = a - b(a/b)
\newif\if@Divisible
\def\@CheckIfDivisible#1#2{%
{%
\countdef\tmpx=0% % temporary variable
\@Remainder{#1}{#2}{\tmpx}%
\ifnum\tmpx=0%
\global\@Divisibletrue%
\else%
\global\@Divisiblefalse%
\fi}}
\newif\if@GregorianLeap
\def\@CheckIfGregorianLeap#1{%
{%
\@CheckIfDivisible{#1}{4}%
\if@Divisible%
\@CheckIfDivisible{#1}{100}%
\if@Divisible%
\@CheckIfDivisible{#1}{400}%
\if@Divisible%
\global\@GregorianLeaptrue%
\else%
\global\@GregorianLeapfalse%
\fi%
\else%
\global\@GregorianLeaptrue%
\fi%
\else%
\global\@GregorianLeapfalse%
\fi%
}}
%%
\newcounter{tmpA}\newcounter{tmpB}
\newcounter{tmpC}\newcounter{tmpD}
\newcounter{tmpE}\newcounter{tmpF}
%% This is an algorithm from Reingold & Dershowitz,
%% Calendrical Calculations, The Millenium Edition
%%
\def\@FixedFromGregorian#1#2#3#4{%
\setcounter{tmpA}{(#1-1)*365}%
\setcounter{tmpB}{(#1-1)/4}%
\setcounter{tmpC}{(#1-1)/100}%
\setcounter{tmpD}{(#1-1)/400}%
\setcounter{tmpE}{(367*#2-362)/12}%
\ifnum#2<3%
\setcounter{tmpF}{0}%
\else%
\@CheckIfGregorianLeap{#1}%
\if@GregorianLeap%
\setcounter{tmpF}{-1}%
\else%
\setcounter{tmpF}{-2}%
\fi%
\fi%
\@ifundefined{c@#4}{\global\newcounter{#4}}{}%
\setcounter{#4}{\value{tmpA}+\value{tmpB}-\value{tmpC}+\value{tmpD}+\value{tmpE}+\value{tmpF}+#3}%
}
\endinput
|