1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
|
% ---------------------------------------------------------------------------
% TeX macros implementing a standard set of PostScript transformations
% made in BOP (1993--2001), Gda\'nsk, Poland -- public domain software
% authors: Bogus\l{}aw Jackowski, Piotr Pianowski, Piotr Strzelczyk
% e-mail contact: bop@bop.com.pl
% ---------------------------------------------------------------------------
% S Y N O P S I S
%
% In the sequel, `box' means \hbox, \vbox, \box, or \copy, `dimen' means
% a sequence of dimens to be summed up; all macros mentioned below expand
% to \hbox{...}, they can therefore be used wherever \hbox can be.
%
% 1)
% x_scale and y_scale are given in percents (>0)
% \zscale changes uniformly x_size and y_size (x_scale=y_scale=scale)
% \xscale changes only x_size (y_scale=100)
% \yscale changes only y_size (x_scale=100)
%
% \zscale{scale} followed by a box
% \xyscale{x_scale}{y_scale} followed by a box
% \yxscale{y_scale}{x_scale} followed by a box
% \xscale{x_scale} followed by a box
% \yscale{y_scale} followed by a box
%
% 2)
% \xyscaleto resizes a box uniformly such that the resulting wd=dimen
% \yxscaleto resizes a box uniformly such that the resulting ht=dimen
% \xscaleto resizes a box horizontally such that the resulting wd=dimen
% \yscaleto resizes a box verically such that the resulting ht=dimen
%
% \xyscaleto{dimen} followed by a box
% \yxscaleto{dimen} followed by a box
% \xscaleto{dimen} followed by a box
% \yscaleto{dimen} followed by a box
%
% 3)
% \revolve rotates anticlockwise the box (either \hbox or \vbox
% following the command) by 90 degree; for the resulting box
% width=height+depth of the original box, height=width
% of the original box, and the reference point is the left top corner
% of the original box; this means that revolving a box four times
% yields the original box if and only if its depth is zero;
% \revolvedir- is equivalent to \revolve, \revolvedir+ rotates
% the box clockwise
%
% \revolve followed by a box
% \revolvedir+ followed by a box
% \revolvedir- followed by a box
% \revolveleft followed by a box (equivalent to \revolvedir-)
% \revolveright followed by a box (equivalent to \revolvedir+)
% \revolvepi followed by a box (equivalent to \xflip\yflip
% but not to \revolve\revolve)
% \rotatepi followed by a box (equivalent to \revolvepi;
% cf. also plain METAFONT rotatedaround and rotatedabout macros)
% 4)
% \rotate rotates a box by an arbitrary angle, clockwise for angle>0,
% width=height=depth=0pt for the resulting box
%
% \rotate{angle} followed by a box
%
% \rotatebb rotates a box by an arbitrary angle, clockwise for angle>0;
% the result is placed in a box having the dimensions of the resulting
% bounding box, protrusion to the left is compensated by appropriate
% shifting (see the macro \put_into_bb)
%
% \rotatebb{angle} followed by a box
%
% 5)
% \xflip and \yflip flip the box horizontally and vertically,
% respectively, i.e., with respect to the vertical and horizontal
% axis of the box, without changing the dimensions of the \box
%
% \xflip followed by a box
% \yflip followed by a box
%
% 6)
% \slant slopes a box by an angle alpha such that tan(alpha)=slant,
% without changing dimensions of the \box;
%
% \slant{slant} followed a box
%
% (negative argument value means slanting to the left)
%
% \slantbb slopes a box by an angle alpha such that tan(alpha)=slant,
% the result is placed in a box having the dimensions of the resulting
% bounding box, protrusion to the left is compensated by appropriate
% shifting (see the macro \put_into_bb)
%
% \slantbb{slant} followed a box
%
% 7)
% \clipbox clips the contents of a box that follows the command;
% the macro expects three dimen parameters: the width, the height
% and the depth of the resulting box
%
% \clipbox{width}{height}{depth} followed a box
%
% Any parameter can be empty; in such a case, the respective dimension
% of the original box is used
% ---------------------------------------------------------------------------
% HISTORY:
% 18 VIII 1993 ver. 0.1
% * first release
% 30--31 VIII 1993 ver. 0.2
% * third parameter eliminated from \scale (via \afterassignment
% and \aftergroup hackery)
% * added \zscale, \xyscale, \yxscale, \xscale, and \yscale
% with scaling given in percents
% * added \scaleto, \xyscaleto, \yxscaleto, \xscaleto, and \yscaleto
% 3 IX 1993 ver. 0.21
% * \the_scale renamed to \lastscale and made global, thus it became
% available to a user
% 8 IX 1993 ver. 0.22
% * all transformations return \hbox, because of currentpoint
% positioning
% * the old version of \scale is become undefined
% * \slant and \rotate fit the new convention of parameter's
% hackery -- they are assumed to be followed by an \hbox
% or a \vbox
% 6 XII 1993 ver. 0.23
% * \revolve added
% * \rotate with \vbox patched
% 10 II 1994 ver. 0.24
% * \revolvedir+, \revolvedir-, \xflip, and \yflip added
% 20 III 2000 ver. 0.5 (pre-release)
% * total reconstruction:
% -- all macros expand to \hbox, so that it is possible to
% superpose them, e.g., \xscale{200}\yscale{50}\hbox{...};
% one must remeber, however, that \rotate yields a box having
% null dimensions, so an attempt to scale the result
% to a given dimen will produce erroneous PostScript code
% -- the possibility of changing \ht and \dp of a \vbox abolished;
% such an operation yields hardly intuitive results; try, e.g.:
% \hrule width\hsize
% \hbox{\setbox0\hbox{\vrule height1cmwidth1cm}\ht0 0mm \box0}
% \kern20mm
% \hrule width\hsize
% \hbox{\setbox0\vbox{\hrule height1cmwidth1cm}\ht0 0mm \box0}
% -- the box expected by all macros can be a TeX box expression:
% \hbox, \vbox, \box, and \copy
% -- scaling height or width to a given dimension yields exact value
% of the height or width, respectively (or both); this change is
% backward incompatible (but reasonable, one should think)
% -- all transformations store information about the position of the
% lower left corner and the upper right corner of the resulting
% bounding box (with respect to the base point of the transformed
% box) in four globally defined macros:
% \transllx, \translly, \transurx, \transury
% (a piece of funny code for vector rotation was added)
% -- \rotatebb and \slantbb added
% 25 III 2000 ver. 0.51
% * fraction multiplication improved (speedup in trigonometric
% calculations ca 30%)
% * trigonometry calculations are performed in a group (otherwise using
% them within another \loop ... \repeat would be inconvenient);
% the result is a pair of globally defined macros (instead of dimen
% registers); they expand to a series of digits (i.e., they contain
% a count representation of the resulting dimen)
% * \unhbox (introduced in order to reduce the level of box nesting)
% should be used only in \rotatebb
% * internal macro naming changed
% 27 III 2000 ver. 0.52
% * a dimen parameter can be a sequence of dimens to be summed up
% * \clipbox added
% 7--10 X 2000 ver. 0.53
% * a bug in \slant[bb] fixed: \ht and \dp were interchanged due to
% a fallacious interpretation of a slant sign (recall that in dvips
% PostScript, unlike in METAFONT, `-' denotes slanting to the right,
% `+' -- to the left, because the y-axis is directed downwards);
% actually, the problem is much more complex: relying (unconsciously)
% on dvips coordinates means, in this case, that for non-square pixels
% both rotate and slant will not work -- need to be fixed!
% 13 XI 2000 ver. 0.54
% * @ is a letter during reading trans macros (AMSTeX uses active @)
% * local macro \undtranscode renamed to \transundcode
% 9 VI 2001 ver 0.55
% * ``mnemonic'' macros added: \revolveleft, \revolveright, \revolvepi
% and \rotatepi
% ---------------------------------------------------------------------------
\def\transspecial#1{\special{ps:#1}}% driver-oriented; default is dvips
% ---
\edef\transundcode{\the\catcode`\_}\catcode`\_11
\edef\transatcode{\the\catcode`\@}\catcode`\@11
% \z@ (0pt) and \p@ (1pt) are borrowed from plain
% ---
% a pretty general macro
\def\sumto#1{\def\sum_to_what{#1}\sum_to_what=\z@\relax \sumto_}
\def\sumto_{\futurelet\sum_tok\sumto__}
\def\sumto__{\ifx\sum_tok\relax\else\expandafter\sumto___\fi}
\def\sumto___{\afterassignment\sumto_\advance\sum_to_what}
% ---
\newbox\tmp_box % temporary box register
\newdimen\tmp_dim % temporary dimen registers
\newdimen\tmp_dim_a
\newdimen\tmp_dim_b
\newdimen\tmp_dim_c
\newdimen\tmp_dim_d
\newcount\tmp_count_a % temporary count registers
\newcount\tmp_count_b
\newcount\tmp_count_c
\newif\ifput_into_bb
% ---
\def\jump_setbox{\ifvoid\tmp_box % every box is initially void
\aftergroup\after_setbox \else \after_setbox \fi}% a general trick
% ---
\def\set_std_bb{%
\xdef\transllx{\the\z@}%
\xdef\translly{\ifdim\dp\tmp_box>\z@ -\fi\the\dp\tmp_box}%
\xdef\transurx{\the\wd\tmp_box}%
\xdef\transury{\the\ht\tmp_box}%
}
\def\put_into_bb#1{% #1 = operation: \unhbox for rotation, \box for slanting
\setbox\tmp_box\hbox{\kern-\transllx\rlap{#1\tmp_box}\kern\transurx}%
\ht\tmp_box\transury \dp\tmp_box-\translly \relax
}
% ---
\def\perc_scale#1#2{% #1 -- xscale, #2 -- yscale, in percents,
% to be followed by an \hbox or a \vbox
\def\after_setbox{%
\setbox\tmp_box\hbox{%
\transspecial{gsave
currentpoint #2 100 div div exch #1 100 div div exch
currentpoint neg #2 100 div mul exch neg #1 100 div mul exch
translate #1 100 div #2 100 div scale translate}%
\box\tmp_box \transspecial{grestore}}%
\ifdim#1\p@=100\p@ \else % special treatment of special case (100%)
\tmp_dim\wd\tmp_box
\advance\tmp_dim50sp \divide\tmp_dim100 % rounding rather than floor
\wd\tmp_box#1\tmp_dim
\fi
\ifdim#2\p@=100\p@ \else % ditto
\tmp_dim\ht\tmp_box
\advance\tmp_dim50sp \divide\tmp_dim100 % ditto
\ht\tmp_box#2\tmp_dim
\tmp_dim\dp\tmp_box
\advance\tmp_dim50sp \divide\tmp_dim100 % ditto
\dp\tmp_box#2\tmp_dim
\fi
\set_std_bb
\box\tmp_box\egroup}%
\afterassignment\jump_setbox\setbox\tmp_box =
}%
% ---
\def\xyscale#1#2{\hbox\bgroup\perc_scale{#1}{#2}}
\def\zscale#1{\xyscale{#1}{#1}}
\def\yxscale#1#2{\xyscale{#2}{#1}}
\def\xscale#1{\xyscale{#1}{100}}
\def\yscale#1{\xyscale{100}{#1}}
% ---
{\catcode`\p12 \catcode`\t12 \gdef\PT_{pt}}
\def\hull_num{\expandafter\hull_num_}
\expandafter\def\expandafter\hull_num_\expandafter#\expandafter1\PT_{#1}
% ---
\def\find_scale#1#2{% #1 -- size after rescaling, #2 -- \wd or \ht
% Finds a scale (\lastscale macro) such that the box following the macro
% call would have the respective dimen (i.e., #2) equal to #1 after rescaling
% NOTE: it is assumed that prior to calling \find_scale a macro
% \extra_complete is defined
\def\after_setbox{%
\resize\tmp_dim{100\p@}{#1}{#2\tmp_box}%
\xdef\lastscale{\hull_num\the\tmp_dim}\extra_complete}%
\afterassignment\jump_setbox\setbox\tmp_box =
}
% ---
\def\scaleto#1#2#3#4{% #1 -- size of dimen #2 (\wd or \ht) after scaling
% #3 -- actual x-size, #4 -- actual y-size
\hbox\bgroup % `initial' hbox
\sumto\tmp_dim#1\relax % freeze the argument; must not be empty
\setbox\tmp_box\hbox\bgroup % one more setbox in order to control
% the specified dimen
\def\extra_complete{%
\perc_scale{#3}{#4}\box\tmp_box % finish setbox above
#2\tmp_box=\tmp_dim % force the exactness of the specified dimension
\set_std_bb
\box\tmp_box
\egroup % close `initial' hbox
}%
\find_scale{\tmp_dim}#2}
%
\def\xyscaleto#1{\scaleto{#1}\wd\lastscale\lastscale}
\def\yxscaleto#1{\scaleto{#1}\ht\lastscale\lastscale}
\def\xscaleto#1{\scaleto{#1}\wd\lastscale{100}}
\def\yscaleto#1{\scaleto{#1}\ht{100}\lastscale}
% ---
\def\slant{\hbox\bgroup \put_into_bbfalse \slant_}
\def\slantbb{\hbox\bgroup \put_into_bbtrue \slant_}
\def\slant_#1{% #1 (slant) = tan(alpha), where alpha is the slant angle,
% to be followed by a box
\def\after_setbox{%
\transspecial{gsave 0 currentpoint neg exch pop 0 currentpoint exch pop
translate [1 0 #1 1 0 0] concat translate}%
% set bounding box
\dim_x\wd\tmp_box
\ifdim#1\p@>\z@ \dim_t-#1\ht\tmp_box \advance\dim_x#1\dp\tmp_box
\else \dim_t#1\dp\tmp_box \advance\dim_x-#1\ht\tmp_box
\fi
\xdef\transllx{\the\dim_t}%
\xdef\translly{\ifdim\dp\tmp_box>\z@ -\fi\the\dp\tmp_box}%
\xdef\transurx{\the\dim_x}%
\xdef\transury{\the\ht\tmp_box}%
\ifput_into_bb \put_into_bb\box \fi
\box\tmp_box \transspecial{grestore}\egroup}%
\afterassignment\jump_setbox\setbox\tmp_box =
}%
% ---
\def\update_bb#1#2#3{% used in \rotate
\trigcompute{-#1}{#2}{#3}% clockwise vs anti-clockwise
\ifdim\transllx>\trigxresult sp\xdef\transllx{\trigxresult sp}\fi
\ifdim\translly>\trigyresult sp\xdef\translly{\trigyresult sp}\fi
\ifdim\transurx<\trigxresult sp\xdef\transurx{\trigxresult sp}\fi
\ifdim\transury<\trigyresult sp\xdef\transury{\trigyresult sp}\fi
}
\def\rotate{\hbox\bgroup \put_into_bbfalse \rotate_}
\def\rotatebb{\hbox\bgroup \put_into_bbtrue \rotate_}
\def\rotate_#1{% #1 -- angle,
% to be followed by a box
\def\after_setbox{%
\setbox\tmp_box\hbox{% otherwise does not work with \vbox
\transspecial{gsave currentpoint currentpoint translate
#1 rotate neg exch neg exch translate}%
\box\tmp_box \transspecial{grestore}}%
% set bounding box
\xdef\transllx{\the\z@}\xdef\translly{\the\z@}%
\xdef\transurx{\the\z@}\xdef\transury{\the\z@}%
\update_bb{#1}{\z@}{\ht\tmp_box}%
\update_bb{#1}{\z@}{-\dp\tmp_box}%
\update_bb{#1}{\wd\tmp_box}{\ht\tmp_box}%
\update_bb{#1}{\wd\tmp_box}{-\dp\tmp_box}%
%
\wd\tmp_box\z@ \ht\tmp_box\z@ \dp\tmp_box\z@
\ifput_into_bb \put_into_bb\unhbox \fi
\box\tmp_box\egroup}%
\afterassignment\jump_setbox\setbox\tmp_box =
}%
% ---
\def\plus_{+}
\def\minus_{-}
\def\revolvedir#1{% to be followed by a box
\hbox\bgroup
% check parameter:
\def\param_{#1}%
\ifx\param_\plus_ \else \ifx\param_\minus_
\else
\errhelp{I would rather suggest to stop immediately.}%
\errmessage{Argument to \noexpand\revolvedir should be either + or -}%
\fi\fi
\def\after_setbox{%
\tmp_dim_a\wd\tmp_box
% prepare to revolving:
\setbox\tmp_box\hbox{%
\ifx\param_\plus_\kern-\tmp_dim_a\fi
\box\tmp_box
\ifx\param_\plus_\kern\tmp_dim_a\fi}%
% compute dimensions of the box to be revolved:
\tmp_dim_a\ht\tmp_box \advance\tmp_dim_a\dp\tmp_box
\tmp_dim_b\ht\tmp_box \tmp_dim_c\dp\tmp_box
\dp\tmp_box\z@ \ht\tmp_box\wd\tmp_box \wd\tmp_box\tmp_dim_a
% revolve:
\kern \ifx\param_\plus_ \tmp_dim_c \else \tmp_dim_b \fi
\transspecial{gsave currentpoint currentpoint translate
#190 rotate neg exch neg exch translate}%
\set_std_bb
\box\tmp_box
\transspecial{grestore}%
\kern -\ifx\param_\plus_ \tmp_dim_c \else \tmp_dim_b \fi
\egroup}%
\afterassignment\jump_setbox\setbox\tmp_box =
}%
\def\revolveleft{\revolvedir-}
\def\revolveright{\revolvedir+}
\def\revolvepi{\xflip\yflip}
\let\revolve\revolveleft
\let\rotatepi\revolvepi
% ---
\def\xflip{% to be followed by a box
\hbox\bgroup
\def\after_setbox{%
\tmp_dim_a.5\wd\tmp_box
% prepare to flipping:
\setbox\tmp_box
\hbox{\kern-\tmp_dim_a \box\tmp_box \kern\tmp_dim_a}%
% flip:
\kern\tmp_dim_a
\transspecial{gsave currentpoint currentpoint translate
[-1 0 0 1 0 0] concat neg exch neg exch translate}%
\set_std_bb
\box\tmp_box
\transspecial{grestore}%
\kern-\tmp_dim_a
\egroup}%
\afterassignment\jump_setbox\setbox\tmp_box =
}%
% ---
\def\yflip{% to be followed by a box
\hbox\bgroup
\def\after_setbox{%
\tmp_dim_a\ht\tmp_box \tmp_dim_b\dp\tmp_box
\tmp_dim_c\tmp_dim_a \advance\tmp_dim_c\tmp_dim_b
\tmp_dim_c.5\tmp_dim_c
% prepare to flipping:
\setbox\tmp_box\vbox{%
\kern\tmp_dim_c\box\tmp_box\kern-\tmp_dim_c}%
% flip:
\advance\tmp_dim_c-\tmp_dim_b
\setbox\tmp_box\hbox{%
\transspecial{gsave currentpoint currentpoint translate
[1 0 0 -1 0 0] concat neg exch neg exch translate}%
\lower\tmp_dim_c\box\tmp_box
\transspecial{grestore}}%
% restore dimensions of the flipped box:
\ht\tmp_box\tmp_dim_a \dp\tmp_box\tmp_dim_b
\set_std_bb
\box\tmp_box
\egroup}%
\afterassignment\jump_setbox\setbox\tmp_box =
}%
% ---
% save TeX registers:
\let\clip_wd\tmp_dim_a
\let\clip_ht\tmp_dim_b
\let\clip_dp\tmp_dim_c
% ---
\def\tracingclipcmyk{1 0 0 0}
\def\clip_fix_pos#1{\transspecial{%
currentpoint /clip_#1_y exch def /clip_#1_x exch def%
}}
\def\clip_use_pos#1{clip_#1_x clip_#1_y}
\def\clip_delta#1#2{#1 #2 3 -1 roll exch sub 3 1 roll sub exch}
%
\def\do_clip{\transspecial{%
newpath
\clip_use_pos{LL} moveto
\clip_delta{\clip_use_pos{UR}}{\clip_use_pos{UL}} rlineto
\clip_delta{\clip_use_pos{UR}}{\clip_use_pos{LR}} rlineto
\clip_delta{\clip_use_pos{LL}}{\clip_use_pos{LR}} rlineto
closepath
\ifx\tracingclip\unknown \else
gsave \tracingclipcmyk\space setcmykcolor fill grestore
\fi
clip newpath%
}}
%
\def\clip_use_dim#1{% #1 = wd, ht, or dp
\ifdim\csname clip_#1\endcsname=\maxdimen \csname#1\endcsname\tmp_box
\else \csname clip_#1\endcsname\fi
}
%
\def\clip_fix_dim#1#2{%
\edef\clip_use_dim_param{#2}%
\ifx\clip_use_dim_param\empty #1\maxdimen\else
\ifx\clip_use_dim_param\space #1\maxdimen\else \sumto#1#2\relax \fi\fi
}
%
\def\clipbox#1#2#3{% desired height, width and depth to be followed by a box
\hbox\bgroup
\clip_fix_dim\clip_wd{#1}%
\clip_fix_dim\clip_ht{#2}%
\clip_fix_dim\clip_dp{#3}%
\clipbox_
}
\def\clipbox_{%
\def\after_setbox{%
\setbox\tmp_box\hbox{\box\tmp_box}%
\clip_wd\clip_use_dim{wd}% freeze dimen
\clip_ht\clip_use_dim{ht}% ditto
\clip_dp\clip_use_dim{dp}% ditto
\transspecial{gsave}%
\rlap{%
\lower \clip_dp \vbox{%
\hbox to\clip_wd{\clip_fix_pos{UL}\hss\clip_fix_pos{UR}}
\kern\clip_ht \kern\clip_dp \nointerlineskip
\hbox to\clip_wd{\clip_fix_pos{LL}\hss\clip_fix_pos{LR}}
\do_clip
}%
}%
\wd\tmp_box=\clip_wd \ht\tmp_box=\clip_ht \dp\tmp_box=\clip_dp
\set_std_bb \box\tmp_box \transspecial{grestore}\egroup}%
\afterassignment\jump_setbox\setbox\tmp_box =
}
% ---------------------------------------------------------------------------
% ``floating point arithmetic'' (excerpted from T. Rokicki):
% r y
%
% ^
% |
% |
% |
% |
% |
% 0--------------> t x
%
% save TeX registers:
\let\dim_x\tmp_dim_a % horizontal size after scaling
\let\dim_y\tmp_dim_b % vertical size after scaling
\let\dim_t\tmp_dim_c % horizontal size before scaling
\let\dim_r\tmp_dim_d % vertical size before scaling
%\tmp_dim % register for arithmetic manipulation (already declared)
% ---
\def\resize
% dimen registers:
#1% y make y such that y/r=x/t
#2% r
#3% x
#4% t
% We have a sticky problem here: TeX doesn't do floating point arithmetic!
% Our goal is to compute y = rx/t. The following loop does this reasonably
% fast, with an error of at most about 16 sp (about 1/4000 pt).
{%
% save parameters to the internal variables:
\dim_r#2\relax \dim_x#3\relax \dim_t#4\relax
\tmp_dim=\dim_r \divide\tmp_dim\dim_t
\dim_y=\dim_x \multiply\dim_y\tmp_dim
\multiply\tmp_dim\dim_t \advance\dim_r-\tmp_dim
\tmp_dim=\dim_x
\loop \advance\dim_r\dim_r \divide\tmp_dim 2
\ifnum\tmp_dim>0
\ifnum\dim_r<\dim_t\else
\advance\dim_r-\dim_t \advance\dim_y\tmp_dim \fi
\repeat
% assign result:
#1\dim_y\relax
}
% ---------------------------------------------------------------------------
% ``fixed point arithmetic'' -- fractions and trigometry, inspired by mf.web:
%
% save TeX registers:
\let\fracint\tmp_dim
\let\fracfrac\tmp_count_a
\let\fracprod\tmp_count_b
\def\fracpowlimit{30}%
\def\fracone{1073741824}% = 2^\fracpowlimit
% ---
\def\fracproduct#1#2{% #1 = fraction * 2^\fracpowlimit, #2 = integer
% result: macro \fracresult = floor(#1 * #2 / 2^\fracpowlimit + 1/2)
% expanding to the count equivalent of the respective dimen
\begingroup
\fracfrac#1\relax % \fracfrac <= 2^30
\fracint#2\relax % \fracint <= \maxdimen
\ifdim\fracint<0pt \fracint-\fracint\def\fracsign{-}\else\def\fracsign{}\fi
\ifnum\fracone=\fracfrac \fracprod\fracint \else
\advance\fracfrac\fracone % \fracfrac < 2^31
\fracprod\fracone % if \fracprod were dimen, this would yield error
\divide\fracprod2 % \fracprod = 2^29 (representation of 1/2)
\loop
\ifodd\fracfrac \advance \fracprod\fracint \fi
\divide\fracprod2 \divide\fracfrac2
\ifnum \fracfrac>1 \repeat
\fi
\xdef\fracresult{\fracsign\number\fracprod}%
\endgroup
}
% ---
\newdimen\onedegree
\onedegree16pt % this must be consistent with the table below
% save TeX registers:
\let\trigangle\tmp_dim_a
\let\trigxpart\tmp_dim_b
\let\trigypart\tmp_dim_c
\let\trigxtmp\tmp_dim
\let\trigiter\tmp_count_a
\def\triglimit{28}%
% ---
\def\trigvalarg#1{\csname argscaled:\number#1\endcsname}
\def\trigvalcos#1{\csname cosscaled:\number#1\endcsname}
\def\trigvalsin#1{\csname sinscaled:\number#1\endcsname}
\def\defspectrig#1#2#3#4{%
% #1 -- ordering number (index)
% #2 -- angle in degrees * \onedegree expressed in sp; alpha=#1*2^(-20)
% #3 -- floor(cosd(alpha)*2^30+1/2) (30=\fracpowlimit)
% #4 -- floor(sind(alpha)*2^30+1/2)
\expandafter\def\csname argscaled:#1\endcsname{#2}%
\expandafter\def\csname cosscaled:#1\endcsname{#3}%
\expandafter\def\csname sinscaled:#1\endcsname{#4}%
}
\defspectrig{1}{62914560}{536870912}{929887697} % alpha=60
\defspectrig{2}{47185920}{759250125}{759250125} % 45
\defspectrig{3}{31457280}{929887697}{536870912} % 30
\defspectrig{4}{16777216}{1032146887}{295963357} % 2^4
\defspectrig{5}{8388608}{1063292242}{149435979} % 2^3
\defspectrig{6}{4194304}{1071126243}{74900443} % 2^2
\defspectrig{7}{2097152}{1073087729}{37473049} % 2^1
\defspectrig{8}{1048576}{1073578288}{18739379} % 2^0
\defspectrig{9}{524288}{1073700939}{9370046} % 2^-1
\defspectrig{10}{262144}{1073731603}{4685068} % 2^-2
\defspectrig{11}{131072}{1073739269}{2342539} % 2^-3
\defspectrig{12}{65536}{1073741185}{1171270} % 2^-4
\defspectrig{13}{32768}{1073741664}{585635} % 2^-5
\defspectrig{14}{16384}{1073741784}{292818} % 2^-6
\defspectrig{15}{8192}{1073741814}{146409} % 2^-7
\defspectrig{16}{4096}{1073741822}{73204} % 2^-8
\defspectrig{17}{2048}{1073741823}{36602} % 2^-9
\defspectrig{18}{1024}{1073741824}{18301} % 2^-10
\defspectrig{19}{512}{1073741824}{9151} % 2^-11
\defspectrig{20}{256}{1073741824}{4575} % 2^-12
\defspectrig{21}{128}{1073741824}{2288} % 2^-13
\defspectrig{22}{64}{1073741824}{1144} % 2^-14
\defspectrig{23}{32}{1073741824}{572} % 2^-15
\defspectrig{24}{16}{1073741824}{286} % 2^-16
\defspectrig{25}{8}{1073741824}{143} % 2^-17
\defspectrig{26}{4}{1073741824}{71} % 2^-18
\defspectrig{27}{2}{1073741824}{36} % 2^-19
\defspectrig{28}{1}{1073741824}{18} % 2^-20
% ---
\def\trigcompute#1#2#3{%
% #1 angle in degrees (a)
% #2 initial xpart (x)
% #3 initial ypart (y)
% result: (x',y')=(x,y) rotated a; the pair of macros
% \trigxresult and \trigyresult contain x' and y', respectively;
% both expand to the count equivalent of the respective dimen
\begingroup
\trigangle#1\onedegree \trigxpart#2\relax \trigypart#3\relax
\loop \ifdim\trigangle<0sp \advance\trigangle360\onedegree \repeat
\loop \ifdim\trigangle>360\onedegree \advance\trigangle-360\onedegree \repeat
\ifdim\trigangle=360\onedegree \trigangle0sp \fi
\ifdim\trigangle<180\onedegree \else % >=
\trigxpart-\trigxpart \trigypart-\trigypart
\advance\trigangle-180\onedegree
\fi
\ifdim\trigangle<90\onedegree \else % >=
\trigxtmp\trigxpart \trigxpart-\trigypart \trigypart\trigxtmp
\advance\trigangle-90\onedegree
\fi
\trigiter1\relax
\loop
\ifnum\trigvalarg\trigiter>\trigangle \else % <=
\advance\trigangle-\trigvalarg\trigiter sp
\trigxtmp\trigxpart
% x=x*cos[i]-y*sin[i] :
\fracproduct{\trigvalcos\trigiter}\trigxpart
\trigxpart\fracresult sp
\fracproduct{\trigvalsin\trigiter}\trigypart
\advance\trigxpart-\fracresult sp
% y=y*cos[i]+x*sin[i] :
\fracproduct{\trigvalcos\trigiter}\trigypart
\trigypart\fracresult sp
\fracproduct{\trigvalsin\trigiter}\trigxtmp
\advance\trigypart\fracresult sp
\fi
\advance\trigiter1
\ifnum\trigangle>0 \repeat
% result in dimen registers: \trigxpart and \trigypart
\xdef\trigxresult{\number\trigxpart}%
\xdef\trigyresult{\number\trigypart}%
\endgroup
}
% ---------------------------------------------------------------------------
% restore original catcodes:
\catcode`\@\transatcode
\catcode`\_\transundcode
% ---------------------------------------------------------------------------
\endinput
|