1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
|
% arrow.tex: macros for commutative diagrams.
%
% Copyright (C) 1991,1992 Steven T. Smith.
% stsmith@ll.mit.edu
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this file; see the file COPYING. If not, write to the
% Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
% Boston, MA 02110-1301, USA.
%
% As a special exception, when this file is read by TeX when
% processing a TeX source document, you may use the result without
% restriction.
% Version 0 Released for alpha testing, November 16, 1991.
% Version 0.1 Morphism positions for slanted lines improved, Nov. 17, 1991.
% Version 0.11 \biline changed to \bisline for compatible naming. 11/21/91
% Version 0.2 Equate \lft & \rt w. _ and ^ instead of L_{12} & R_{12}. 1/20/92
% Version 1.0 Distributed with Eplain. 1/20/92
% Version 1.1 Purged \newcount's, etc.; Warner ref.; \getch@nnel logic. 4/21/92
% Version 1.11 Replace \smash with \smash@@ (for amstex compatibility) 3/27/96
% Syntax: \[arrow](X,Y) or
% \[arrow](X,Y)\lft{MOR} (morphism placed left of arrow) or
% \[arrow](X,Y)\rt{MOR} (morphism placed right of arrow)
%
% [arrow] is one of
% sline (straight line)
% dotline (dotted line) * Unimplemented
% arrow (straight arrow)
% dotarrow (dotted arrow) * Unimplemented
%
% The following allow plain versions and some combination of \lft and \rt.
% biarrow (two straight arrows)
% adjarrow (two adjoint arrows)
% bisline (two straight lines)
%
% Also, for left, right, up, and down mappings:
%
% \mapright (or \mapright^{f_*}, \mapright_{f_*})
% \mapleft (ditto)
% \mapup (use \rt and \lft as above)
% \mapdown (ditto)
%
% And variants of these (can use combinations of ^/_ and lft/rt):
%
% \bimapright (two right arrows)
% \bimapleft (two left arrows)
% \adjmapright (two adjoint arrows; <- over ->)
% \adjmapleft (two adjoint arrows; -> over <-)
% \hline (horizontal line)
% \dothline (dotted horizontal line) * Unimplemented
% \bihline (two horizontal lines)
%
% \bimapdown (two down arrows)
% \bimapup (two left arrows)
% \adjmapdown (two adjoint arrows; down then up)
% \adjmapup (two adjoint arrows; up then down)
% \vline (vertical line)
% \dotvline (dotted vertical line) * Unimplemented
% \bivline (two vertical lines)
% Use \thinlines temporarily to find the current catcode of @, so we can
% restore it at the end.
\edef\thinlines{\the\catcode`@ }%
\catcode`@ = 11
\let\@oldatcatcode = \thinlines
% I changed \smash to \smash@@ in these macros to avoid AMSTEX conflict.
\def\smash@@{\relax % \relax, in case this comes first in \halign
\ifmmode\def\next{\mathpalette\mathsm@sh}\else\let\next\makesm@sh
\fi\next}
\def\makesm@sh#1{\setbox\z@\hbox{#1}\finsm@sh}
\def\mathsm@sh#1#2{\setbox\z@\hbox{$\m@th#1{#2}$}\finsm@sh}
\def\finsm@sh{\ht\z@\z@ \dp\z@\z@ \box\z@}
% Adapted LaTeX code for drawing lines and vectors
% Note: to ensure compatibility with LaTeX, all LaTeX control
% sequences have been renamed. Control sequence names containing the
% at sign (@) have been changed to contain an ampersand (&) instead.
\edef\@oldandcatcode{\the\catcode`& }%
\catcode`& = 11
% LaTeX macros changed here:
% \line - changed to \drawline
% \vector - changed to \drawvector
% \@badlinearg - simply uses \errmessage now
% \@height, \@width, and \@depth are changed to height, width, and depth
% \@sline and \@svector - changed so that \hbox{\drawline...} yields
% a box of positive width and positive height for a positive slope
% and positive depth for a negative slope.
% \@hline and \@hvector - likewise
% \unitlength eliminated; pass dimensions to \drawline and \drawvector.
% LaTeX's while loop
\def\&whilenoop#1{}%
\def\&whiledim#1\do #2{\ifdim #1\relax#2\&iwhiledim{#1\relax#2}\fi}%
\def\&iwhiledim#1{\ifdim #1\let\&nextwhile=\&iwhiledim
\else\let\&nextwhile=\&whilenoop\fi\&nextwhile{#1}}%
% LaTeX's \line and \vector macros:
\newif\if&negarg
\newdimen\&wholewidth
\newdimen\&halfwidth
\font\tenln=line10
\def\thinlines{\let\&linefnt\tenln \let\&circlefnt\tencirc
\&wholewidth\fontdimen8\tenln \&halfwidth .5\&wholewidth}%
\def\thicklines{\let\&linefnt\tenlnw \let\&circlefnt\tencircw
\&wholewidth\fontdimen8\tenlnw \&halfwidth .5\&wholewidth}%
\def\drawline(#1,#2)#3{\&xarg #1\relax \&yarg #2\relax \&linelen=#3\relax
\ifnum\&xarg =0 \&vline \else \ifnum\&yarg =0 \&hline \else \&sline\fi\fi}%
\def\&sline{\leavevmode
\ifnum\&xarg< 0 \&negargtrue \&xarg -\&xarg \&yyarg -\&yarg
\else \&negargfalse \&yyarg \&yarg \fi
\ifnum \&yyarg >0 \&tempcnta\&yyarg \else \&tempcnta -\&yyarg \fi
\ifnum\&tempcnta>6 \&badlinearg \&yyarg0 \fi
\ifnum\&xarg>6 \&badlinearg \&xarg1 \fi
\setbox\&linechar\hbox{\&linefnt\&getlinechar(\&xarg,\&yyarg)}%
\ifnum \&yyarg >0 \let\&upordown\raise \&clnht\z@
\else\let\&upordown\lower \&clnht \ht\&linechar\fi
\&clnwd=\wd\&linechar
\&whiledim \&clnwd <\&linelen \do {%
\&upordown\&clnht\copy\&linechar
\advance\&clnht \ht\&linechar
\advance\&clnwd \wd\&linechar
}%
\advance\&clnht -\ht\&linechar
\advance\&clnwd -\wd\&linechar
\&tempdima\&linelen\advance\&tempdima -\&clnwd
\&tempdimb\&tempdima\advance\&tempdimb -\wd\&linechar
\hskip\&tempdimb \multiply\&tempdima \@m
\&tempcnta \&tempdima \&tempdima \wd\&linechar \divide\&tempcnta \&tempdima
\&tempdima \ht\&linechar \multiply\&tempdima \&tempcnta
\divide\&tempdima \@m
\advance\&clnht \&tempdima
\ifdim \&linelen <\wd\&linechar \hskip \wd\&linechar
\else\&upordown\&clnht\copy\&linechar\fi}%
\def\&hline{\vrule height \&halfwidth depth \&halfwidth width \&linelen}%
\def\&getlinechar(#1,#2){\&tempcnta#1\relax\multiply\&tempcnta 8
\advance\&tempcnta -9 \ifnum #2>0 \advance\&tempcnta #2\relax\else
\advance\&tempcnta -#2\relax\advance\&tempcnta 64 \fi
\char\&tempcnta}%
\def\drawvector(#1,#2)#3{\&xarg #1\relax \&yarg #2\relax
\&tempcnta \ifnum\&xarg<0 -\&xarg\else\&xarg\fi
\ifnum\&tempcnta<5\relax \&linelen=#3\relax
\ifnum\&xarg =0 \&vvector \else \ifnum\&yarg =0 \&hvector
\else \&svector\fi\fi\else\&badlinearg\fi}%
\def\&hvector{\ifnum\&xarg<0 \rlap{\&linefnt\&getlarrow(1,0)}\fi \&hline
\ifnum\&xarg>0 \llap{\&linefnt\&getrarrow(1,0)}\fi}%
\def\&vvector{\ifnum \&yarg <0 \&downvector \else \&upvector \fi}%
\def\&svector{\&sline
\&tempcnta\&yarg \ifnum\&tempcnta <0 \&tempcnta=-\&tempcnta\fi
\ifnum\&tempcnta <5
\if&negarg\ifnum\&yarg>0 % 3d quadrant; dp > 0
\llap{\lower\ht\&linechar\hbox to\&linelen{\&linefnt
\&getlarrow(\&xarg,\&yyarg)\hss}}\else % 4th quadrant; ht > 0
\llap{\hbox to\&linelen{\&linefnt\&getlarrow(\&xarg,\&yyarg)\hss}}\fi
\else\ifnum\&yarg>0 % 1st quadrant; ht > 0
\&tempdima\&linelen \multiply\&tempdima\&yarg
\divide\&tempdima\&xarg \advance\&tempdima-\ht\&linechar
\raise\&tempdima\llap{\&linefnt\&getrarrow(\&xarg,\&yyarg)}\else
\&tempdima\&linelen \multiply\&tempdima-\&yarg % 2d quadrant; dp > 0
\divide\&tempdima\&xarg
\lower\&tempdima\llap{\&linefnt\&getrarrow(\&xarg,\&yyarg)}\fi\fi
\else\&badlinearg\fi}%
\def\&getlarrow(#1,#2){\ifnum #2 =\z@ \&tempcnta='33\else
\&tempcnta=#1\relax\multiply\&tempcnta \sixt@@n \advance\&tempcnta
-9 \&tempcntb=#2\relax\multiply\&tempcntb \tw@
\ifnum \&tempcntb >0 \advance\&tempcnta \&tempcntb\relax
\else\advance\&tempcnta -\&tempcntb\advance\&tempcnta 64
\fi\fi\char\&tempcnta}%
\def\&getrarrow(#1,#2){\&tempcntb=#2\relax
\ifnum\&tempcntb < 0 \&tempcntb=-\&tempcntb\relax\fi
\ifcase \&tempcntb\relax \&tempcnta='55 \or
\ifnum #1<3 \&tempcnta=#1\relax\multiply\&tempcnta
24 \advance\&tempcnta -6 \else \ifnum #1=3 \&tempcnta=49
\else\&tempcnta=58 \fi\fi\or
\ifnum #1<3 \&tempcnta=#1\relax\multiply\&tempcnta
24 \advance\&tempcnta -3 \else \&tempcnta=51\fi\or
\&tempcnta=#1\relax\multiply\&tempcnta
\sixt@@n \advance\&tempcnta -\tw@ \else
\&tempcnta=#1\relax\multiply\&tempcnta
\sixt@@n \advance\&tempcnta 7 \fi\ifnum #2<0 \advance\&tempcnta 64 \fi
\char\&tempcnta}%
\def\&vline{\ifnum \&yarg <0 \&downline \else \&upline\fi}%
\def\&upline{\hbox to \z@{\hskip -\&halfwidth \vrule width \&wholewidth
height \&linelen depth \z@\hss}}%
\def\&downline{\hbox to \z@{\hskip -\&halfwidth \vrule width \&wholewidth
height \z@ depth \&linelen \hss}}%
\def\&upvector{\&upline\setbox\&tempboxa\hbox{\&linefnt\char'66}\raise
\&linelen \hbox to\z@{\lower \ht\&tempboxa\box\&tempboxa\hss}}%
\def\&downvector{\&downline\lower \&linelen
\hbox to \z@{\&linefnt\char'77\hss}}%
\def\&badlinearg{\errmessage{Bad \string\arrow\space argument.}}%
%INITIALIZATION
\thinlines
% Allocate registers using the rules of p.~346 of {\sl The \TeX book}.
\countdef\&xarg 0
\countdef\&yarg 2
\countdef\&yyarg 4
\countdef\&tempcnta 6
\countdef\&tempcntb 8
\dimendef\&linelen 0
\dimendef\&clnwd 2
\dimendef\&clnht 4
\dimendef\&tempdima 6
\dimendef\&tempdimb 8
\chardef\@arrbox 0
\chardef\&linechar 2
\chardef\&tempboxa 2 % \&linechar and \&tempboxa don't interfere.
% Macros for abstract nonsense
% Macros for slanted lines and arrows.
\let\lft^%
\let\rt_% distinguish between \rt and \lft
\newif\if@pslope % test for positive slope
\def\@findslope(#1,#2){\ifnum#1>0
\ifnum#2>0 \@pslopetrue \else\@pslopefalse\fi \else
\ifnum#2>0 \@pslopefalse \else\@pslopetrue\fi\fi}%
\def\generalsmap(#1,#2){\getm@rphposn(#1,#2)\plnmorph\futurelet\next\addm@rph}%
% Put arrow in \@arrbox, then add morphisms later.
% Single lines and arrows.
\def\sline(#1,#2){\setbox\@arrbox=\hbox{\drawline(#1,#2){\sarrowlength}}%
\@findslope(#1,#2)\d@@blearrfalse\generalsmap(#1,#2)}%
\def\arrow(#1,#2){\setbox\@arrbox=\hbox{\drawvector(#1,#2){\sarrowlength}}%
\@findslope(#1,#2)\d@@blearrfalse\generalsmap(#1,#2)}%
% Double lines, arrows, and adjoint arrows.
\newif\ifd@@blearr
\def\bisline(#1,#2){\@findslope(#1,#2)%
\if@pslope \let\@upordown\raise \else \let\@upordown\lower\fi
\getch@nnel(#1,#2)\setbox\@arrbox=\hbox{\@upordown\@vchannel
\rlap{\drawline(#1,#2){\sarrowlength}}%
\hskip\@hchannel\hbox{\drawline(#1,#2){\sarrowlength}}}%
\d@@blearrtrue\generalsmap(#1,#2)}%
\def\biarrow(#1,#2){\@findslope(#1,#2)%
\if@pslope \let\@upordown\raise \else \let\@upordown\lower\fi
\getch@nnel(#1,#2)\setbox\@arrbox=\hbox{\@upordown\@vchannel
\rlap{\drawvector(#1,#2){\sarrowlength}}%
\hskip\@hchannel\hbox{\drawvector(#1,#2){\sarrowlength}}}%
\d@@blearrtrue\generalsmap(#1,#2)}%
\def\adjarrow(#1,#2){\@findslope(#1,#2)%
\if@pslope \let\@upordown\raise \else \let\@upordown\lower\fi
\getch@nnel(#1,#2)\setbox\@arrbox=\hbox{\@upordown\@vchannel
\rlap{\drawvector(#1,#2){\sarrowlength}}%
\hskip\@hchannel\hbox{\drawvector(-#1,-#2){\sarrowlength}}}%
\d@@blearrtrue\generalsmap(#1,#2)}%
% Morphism placement.
% Logic for positioning morphisms on slanted arrows:
% If \lft then
% \hskip by -\@hmorphdflt
% if \@pslopetrue then \raise by \@vmorphdflt
% else \lower by \@vmorphdflt
% Else if \rt then
% \hskip by \@hmorphdflt
% if \@pslopetrue then \lower by \@vmorphdflt
% else \raise by \@vmorphdflt
%
% \@hmorphdflt and \@vmorphdflt defined by \getm@rphposn
% Advance \morphdist by .5\channelwidth if double arrows
%
% Use \@shiftmorph to allow users to move morphisms
% Logic for \@shiftmorph:
% If \rtm@rph then
% if \hmorphposnrt=0 then hshift by\hmorphposn else hshift by\hmorphposnrt
% if \vmorphposnrt=0 then vshift by\vmorphposn else vshift by\vmorphposnrt
% Else
% if \hmorphposnlft=0 then hshift by\hmorphposn else hshift by\hmorphposnlft
% if \vmorphposnlft=0 then vshift by\vmorphposn else vshift by\vmorphposnlft
\newif\ifrtm@rph
\def\@shiftmorph#1{\hbox{\setbox0=\hbox{$\scriptstyle#1$}%
\setbox1=\hbox{\hskip\@hm@rphshift\raise\@vm@rphshift\copy0}%
\wd1=\wd0 \ht1=\ht0 \dp1=\dp0 \box1}}%
\def\@hm@rphshift{\ifrtm@rph
\ifdim\hmorphposnrt=\z@\hmorphposn\else\hmorphposnrt\fi \else
\ifdim\hmorphposnlft=\z@\hmorphposn\else\hmorphposnlft\fi \fi}%
\def\@vm@rphshift{\ifrtm@rph
\ifdim\vmorphposnrt=\z@\vmorphposn\else\vmorphposnrt\fi \else
\ifdim\vmorphposnlft=\z@\vmorphposn\else\vmorphposnlft\fi \fi}%
\def\addm@rph{\ifx\next\lft\let\temp=\lftmorph\else
\ifx\next\rt\let\temp=\rtmorph\else\let\temp\relax\fi\fi \temp}%
\def\plnmorph{\dimen1\wd\@arrbox \ifdim\dimen1<\z@ \dimen1-\dimen1\fi
\vcenter{\box\@arrbox}}%
\def\lftmorph\lft#1{\rtm@rphfalse \setbox0=\@shiftmorph{#1}%
\if@pslope \let\@upordown\raise \else \let\@upordown\lower\fi
\llap{\@upordown\@vmorphdflt\hbox to\dimen1{\hss % \dimen1=\wd\@arrbox
\llap{\box0}\hss}\hskip\@hmorphdflt}\futurelet\next\addm@rph}%
\def\rtmorph\rt#1{\rtm@rphtrue \setbox0=\@shiftmorph{#1}%
\if@pslope \let\@upordown\lower \else \let\@upordown\raise\fi
\llap{\@upordown\@vmorphdflt\hbox to\dimen1{\hss
\rlap{\box0}\hss}\hskip-\@hmorphdflt}\futurelet\next\addm@rph}%
% Get appropriate shifts for morphisms and double lines at various slopes
% Syntax e.g.: \@getshift(1,2){\@hchannel}{\@vchannel}{\channelwidth}%
\def\getm@rphposn(#1,#2){\ifd@@blearr \dimen@\morphdist \advance\dimen@ by
.5\channelwidth \@getshift(#1,#2){\@hmorphdflt}{\@vmorphdflt}{\dimen@}\else
\@getshift(#1,#2){\@hmorphdflt}{\@vmorphdflt}{\morphdist}\fi}%
\def\getch@nnel(#1,#2){\ifdim\hchannel=\z@ \ifdim\vchannel=\z@
\@getshift(#1,#2){\@hchannel}{\@vchannel}{\channelwidth}%
\else \@hchannel\hchannel \@vchannel\vchannel \fi
\else \@hchannel\hchannel \@vchannel\vchannel \fi}%
\def\@getshift(#1,#2)#3#4#5{\dimen@ #5\relax
\&xarg #1\relax \&yarg #2\relax
\ifnum\&xarg<0 \&xarg -\&xarg \fi
\ifnum\&yarg<0 \&yarg -\&yarg \fi
\ifnum\&xarg<\&yarg \&negargtrue \&yyarg\&xarg \&xarg\&yarg \&yarg\&yyarg\fi
\ifcase\&xarg \or % There is no case 0
\ifcase\&yarg % case 1
\dimen@i \z@ \dimen@ii \dimen@ \or % case (1,0)
\dimen@i .7071\dimen@ \dimen@ii .7071\dimen@ \fi \or
\ifcase\&yarg % case 2
\or % case 0,2 wrong
\dimen@i .4472\dimen@ \dimen@ii .8944\dimen@ \fi \or
\ifcase\&yarg % case 3
\or % case 0,3 wrong
\dimen@i .3162\dimen@ \dimen@ii .9486\dimen@ \or
\dimen@i .5547\dimen@ \dimen@ii .8321\dimen@ \fi \or
\ifcase\&yarg % case 4
\or % case 0,2,4 wrong
\dimen@i .2425\dimen@ \dimen@ii .9701\dimen@ \or\or
\dimen@i .6\dimen@ \dimen@ii .8\dimen@ \fi \or
\ifcase\&yarg % case 5
\or % case 0,5 wrong
\dimen@i .1961\dimen@ \dimen@ii .9801\dimen@ \or
\dimen@i .3714\dimen@ \dimen@ii .9284\dimen@ \or
\dimen@i .5144\dimen@ \dimen@ii .8575\dimen@ \or
\dimen@i .6247\dimen@ \dimen@ii .7801\dimen@ \fi \or
\ifcase\&yarg % case 6
\or % case 0,2,3,4,6 wrong
\dimen@i .1645\dimen@ \dimen@ii .9864\dimen@ \or\or\or\or
\dimen@i .6402\dimen@ \dimen@ii .7682\dimen@ \fi \fi
\if&negarg \&tempdima\dimen@i \dimen@i\dimen@ii \dimen@ii\&tempdima\fi
#3\dimen@i\relax #4\dimen@ii\relax }%
\catcode`\&=4 % Back to alignment tab
% Macros for horizontal and vertical lines and arrows.
% These macros use an idea from Appendix~D, p.~374 of the Texbook.
% Usage: `\mapright^f', `\mapleft', etc.
% `\mapdown\lft{f}', `\mapup\rt{g}', `\mapdown', etc.
% \toks@ will contain the token sequence that defines the arrow and morphisms;
% ensure that \toks@={\mathop{\vcenter{\smash@@{horiz. arrow}}}\limits} to start.
\def\generalhmap{\futurelet\next\@generalhmap}%
\def\@generalhmap{\ifx\next^ \let\temp\generalhm@rph\else
\ifx\next_ \let\temp\generalhm@rph\else \let\temp\m@kehmap\fi\fi \temp}%
\def\generalhm@rph#1#2{\ifx#1^
\toks@=\expandafter{\the\toks@#1{\rtm@rphtrue\@shiftmorph{#2}}}\else
\toks@=\expandafter{\the\toks@#1{\rtm@rphfalse\@shiftmorph{#2}}}\fi
\generalhmap}%
\def\m@kehmap{\mathrel{\smash@@{\the\toks@}}}%
\def\mapright{\toks@={\mathop{\vcenter{\smash@@{\drawrightarrow}}}\limits}%
\generalhmap}%
\def\mapleft{\toks@={\mathop{\vcenter{\smash@@{\drawleftarrow}}}\limits}%
\generalhmap}%
\def\bimapright{\toks@={\mathop{\vcenter{\smash@@{\drawbirightarrow}}}\limits}%
\generalhmap}%
\def\bimapleft{\toks@={\mathop{\vcenter{\smash@@{\drawbileftarrow}}}\limits}%
\generalhmap}%
\def\adjmapright{\toks@={\mathop{\vcenter{\smash@@{\drawadjrightarrow}}}\limits}%
\generalhmap}%
\def\adjmapleft{\toks@={\mathop{\vcenter{\smash@@{\drawadjleftarrow}}}\limits}%
\generalhmap}%
\def\hline{\toks@={\mathop{\vcenter{\smash@@{\drawhline}}}\limits}%
\generalhmap}%
\def\bihline{\toks@={\mathop{\vcenter{\smash@@{\drawbihline}}}\limits}%
\generalhmap}%
\def\drawrightarrow{\hbox{\drawvector(1,0){\harrowlength}}}%
\def\drawleftarrow{\hbox{\drawvector(-1,0){\harrowlength}}}%
\def\drawbirightarrow{\hbox{\raise.5\channelwidth
\hbox{\drawvector(1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawvector(1,0){\harrowlength}}}}%
\def\drawbileftarrow{\hbox{\raise.5\channelwidth
\hbox{\drawvector(-1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawvector(-1,0){\harrowlength}}}}%
\def\drawadjrightarrow{\hbox{\raise.5\channelwidth
\hbox{\drawvector(-1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawvector(1,0){\harrowlength}}}}%
\def\drawadjleftarrow{\hbox{\raise.5\channelwidth
\hbox{\drawvector(1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawvector(-1,0){\harrowlength}}}}%
\def\drawhline{\hbox{\drawline(1,0){\harrowlength}}}%
\def\drawbihline{\hbox{\raise.5\channelwidth
\hbox{\drawline(1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawline(1,0){\harrowlength}}}}%
% Vertical arrows are handled differently because there is no \mathop.
% \toks@ will contain the token sequence that defines the arrow and morphisms;
% ensure that \toks@={\vcenter{vertical arrow}} to start.
\def\generalvmap{\futurelet\next\@generalvmap}%
\def\@generalvmap{\ifx\next\lft \let\temp\generalvm@rph\else
\ifx\next\rt \let\temp\generalvm@rph\else \let\temp\m@kevmap\fi\fi \temp}%
% Prepend or append to \toks@ depending on \rt or \lft.
\toksdef\toks@@=1
\def\generalvm@rph#1#2{\ifx#1\rt % append
\toks@=\expandafter{\the\toks@
\rlap{$\vcenter{\rtm@rphtrue\@shiftmorph{#2}}$}}\else % prepend
\toks@@={\llap{$\vcenter{\rtm@rphfalse\@shiftmorph{#2}}$}}%
\toks@=\expandafter\expandafter\expandafter{\expandafter\the\expandafter
\toks@@ \the\toks@}\fi \generalvmap}%
\def\m@kevmap{\the\toks@}%
\def\mapdown{\toks@={\vcenter{\drawdownarrow}}\generalvmap}%
\def\mapup{\toks@={\vcenter{\drawuparrow}}\generalvmap}%
\def\bimapdown{\toks@={\vcenter{\drawbidownarrow}}\generalvmap}%
\def\bimapup{\toks@={\vcenter{\drawbiuparrow}}\generalvmap}%
\def\adjmapdown{\toks@={\vcenter{\drawadjdownarrow}}\generalvmap}%
\def\adjmapup{\toks@={\vcenter{\drawadjuparrow}}\generalvmap}%
\def\vline{\toks@={\vcenter{\drawvline}}\generalvmap}%
\def\bivline{\toks@={\vcenter{\drawbivline}}\generalvmap}%
\def\drawdownarrow{\hbox to5pt{\hss\drawvector(0,-1){\varrowlength}\hss}}%
\def\drawuparrow{\hbox to5pt{\hss\drawvector(0,1){\varrowlength}\hss}}%
\def\drawbidownarrow{\hbox to5pt{\hss\hbox{\drawvector(0,-1){\varrowlength}}%
\hskip\channelwidth\hbox{\drawvector(0,-1){\varrowlength}}\hss}}%
\def\drawbiuparrow{\hbox to5pt{\hss\hbox{\drawvector(0,1){\varrowlength}}%
\hskip\channelwidth\hbox{\drawvector(0,1){\varrowlength}}\hss}}%
\def\drawadjdownarrow{\hbox to5pt{\hss\hbox{\drawvector(0,-1){\varrowlength}}%
\hskip\channelwidth\lower\varrowlength
\hbox{\drawvector(0,1){\varrowlength}}\hss}}%
\def\drawadjuparrow{\hbox to5pt{\hss\hbox{\drawvector(0,1){\varrowlength}}%
\hskip\channelwidth\raise\varrowlength
\hbox{\drawvector(0,-1){\varrowlength}}\hss}}%
\def\drawvline{\hbox to5pt{\hss\drawline(0,1){\varrowlength}\hss}}%
\def\drawbivline{\hbox to5pt{\hss\hbox{\drawline(0,1){\varrowlength}}%
\hskip\channelwidth\hbox{\drawline(0,1){\varrowlength}}\hss}}%
% Macros for setting commutative diagrams.
% A macro inspired by Ex.~18.46 of the TeXbook.
\def\commdiag#1{\null\,
\vcenter{\commdiagbaselines
\m@th\ialign{\hfil$##$\hfil&&\hfil$\mkern4mu ##$\hfil\crcr
\mathstrut\crcr\noalign{\kern-\baselineskip}
#1\crcr\mathstrut\crcr\noalign{\kern-\baselineskip}}}\,}%
\def\commdiagbaselines{\baselineskip15pt \lineskip3pt \lineskiplimit3pt }%
% A macro inspired by Francis Borceux's Diagram macros for LaTeX
% (FBORCEUX@BUCLLN11.BITNET).
\def\gridcommdiag#1{\null\,
\vcenter{\offinterlineskip
\m@th\ialign{&\vbox to\vgrid{\vss
\hbox to\hgrid{\hss\smash@@{$##$}\hss}}\crcr
\mathstrut\crcr\noalign{\kern-\vgrid}
#1\crcr\mathstrut\crcr\noalign{\kern-.5\vgrid}}}\,}%
% Default parameters
% Define default heights and widths for arrows using the golden ratio.
% Note that 5:3 (for sline) and 3:2 (for vector) approximate this ratio.
\newdimen\harrowlength \harrowlength=60pt
\newdimen\varrowlength \varrowlength=.618\harrowlength
\newdimen\sarrowlength \sarrowlength=\harrowlength
% Morphism placement
\newdimen\hmorphposn \hmorphposn=\z@
\newdimen\vmorphposn \vmorphposn=\z@
\newdimen\morphdist \morphdist=4pt
\dimendef\@hmorphdflt 0 % These two dimensions are
\dimendef\@vmorphdflt 2 % defined by \getm@rphposn
\newdimen\hmorphposnrt \hmorphposnrt=\z@
\newdimen\hmorphposnlft \hmorphposnlft=\z@
\newdimen\vmorphposnrt \vmorphposnrt=\z@
\newdimen\vmorphposnlft \vmorphposnlft=\z@
\let\hmorphposnup=\hmorphposnrt
\let\hmorphposndn=\hmorphposnlft
\let\vmorphposnup=\vmorphposnrt
\let\vmorphposndn=\vmorphposnlft
% Default grid size for \gridcommdiag
\newdimen\hgrid \hgrid=15pt
\newdimen\vgrid \vgrid=15pt
% Horizontal and vertical distance between double lines and arrows.
\newdimen\hchannel \hchannel=0pt
\newdimen\vchannel \vchannel=0pt
\newdimen\channelwidth \channelwidth=3pt
\dimendef\@hchannel 0 % Defined via the
\dimendef\@vchannel 2 % macro \getch@nnel
\catcode`& = \@oldandcatcode
\catcode`@ = \@oldatcatcode
% Some examples
%\parskip=20pt
%
%The first example:
%$$\commdiag{A&\mapright^f&B&\mapleft^g&C\cr
%\mapdown\lft\psi&\arrow(3,-2)\rt s&\mapup\rt\phi&
%\arrow(-3,2)\lft l&\mapdown\rt\theta\cr
%D&\mapright_h&E&\mapleft_{\int_0^t{\bf A}\,d\sigma}&F\cr}$$
%
%
%Covering homotopy property (Bott and Tu, {\it Differential Forms in
%Algebraic Topology}):
%$$\commdiag{Y&\mapright^f&E\cr \mapdown&\arrow(3,2)\lft{f_t}&\mapdown\cr
%Y\times I&\mapright^{\bar f_t}&X}$$
%
%
%Universal mapping property (Warner, {\it Foundations of Differentiable
%Manifolds and Lie Groups}): $$\varrowlength=20pt
%\commdiag{V\otimes W\cr \mapup\lft\phi&\arrow(3,-1)\rt{\tilde l}\cr
%V\times W&\mapright^l&U\cr}$$
%
%
%A cube (Francis Borceux):
%$$\harrowlength=48pt \varrowlength=48pt \sarrowlength=20pt
%\def\cross#1#2{\setbox0=\hbox{$#1$}%
% \hbox to\wd0{\hss\hbox{$#2$}\hss}\llap{\unhbox0}}
%\gridcommdiag{&&B&&\mapright^b&&D\cr
%&\arrow(1,1)\lft a&&&&\arrow(1,1)\lft d\cr
%A&&\cross{\hmorphposn=12pt\mapright^c}{\vmorphposn=-12pt\mapdown\lft f}
%&&C&&\mapdown\rt h\cr\cr
%\mapdown\lft e&&F&&\cross{\hmorphposn=-12pt\mapright_j}
%{\vmorphposn=12pt\mapdown\rt g}&&H\cr
%&\arrow(1,1)\lft i&&&&\arrow(1,1)\rt l\cr
%E&&\mapright_k&&G\cr}$$
%
%Zassenhaus's Butterfly Lemma (Lang, {\it Algebra}):
%$$\hgrid=16pt \vgrid=8pt \sarrowlength=32pt
%\def\cross#1#2{\setbox0=\hbox{$#1$}%
% \hbox to\wd0{\hss\hbox{$#2$}\hss}\llap{\unhbox0}}
%\def\l#1{\llap{$#1$\hskip.5em}}
%\def\r#1{\rlap{\hskip.5em$#1$}}
%\gridcommdiag{&&U&&&&V\cr &&\bullet&&&&\bullet\cr
%&&\sarrowlength=16pt\sline(0,1)&&&&\sarrowlength=16pt\sline(0,1)\cr
%&&\l{u(U\cap V)}\bullet&&&&\bullet\r{(U\cap V)v}\cr
%&&&\sline(2,-1)&&\sline(2,1)\cr
%&&\cross{=}{\sline(0,1)}&&\bullet&&\cross{=}{\sline(0,1)}\cr\cr
%&&\l{^{\textstyle u(U\cap v)}}\bullet&&\cross{=}{\sline(0,1)}&&
% \bullet\r{^{\textstyle(u\cap V)v}}\cr
%&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)\cr
%\l{u}\bullet&&&&\bullet&&&&\bullet\r{v}\cr
%&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)\cr
%&&\bullet&&&&\bullet\cr &&u\cap V&&&&U\cap v\cr}$$
|