1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
|
%D \module
%D [ file=unic-ini,
%D version=2002.12.03,
%D title=\CONTEXT\ \UNICODE\ Support,
%D subtitle=\UNICODE\ \& UTF-8 support,
%D author=Hans Hagen,
%D date=\currentdate,
%D copyright={PRAGMA / Hans Hagen \& Ton Otten}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.
\writestatus{loading}{Context UNICODE Macros (ini)}
%D Sorry, we only support his in \ETEX.
\beginTEX
\def\useunicodevector[#1]{}
\expandafter \endinput
\endTEX
\unprotect
%D This module deals with unicode, and in particular with
%D \UTF-8 conversion. The prelude to this module was \type
%D {xtag-utf}, which is now replaced by a one||liner. The
%D macros below deal with conversions. Thanks to Taco for
%D providing the following conversion rules.
%D
%D \starttabulate[|c|c|c|c|c|]
%D \NC $b_1$ \NC $b_2$ \NC $b_3$ \NC $b_4$ \NC unicode \NC \NR
%D \NC192---223\NC128---191\NC \NC \NC 0x80---0x7FF \NC \NR
%D \NC224---239\NC128---191\NC128---191\NC \NC 0x800---0xFFFF \NC \NR
%D \NC240---247\NC128---191\NC128---191\NC128---191\NC0x10000---0x1FFFF\NC \NR
%D \stoptabulate
%D
%D In \UTF-8 the characters in the range 128---191 are illegal
%D as first characters. The characters 254 and 255 are
%D completely illegal and should not appear at all (they are
%D related to UTF16).
%D
%D The unicode number for an \UTF-8 sequence can be calculated
%D as follows:
%D
%D \starttabulate[|mc|m|mc|m|mc|m|mc|m|]
%D \NC b_1 \NC \NC \NC \NC \NC \NC \NC if b_1<=127\NC \NR
%D \NC 64(b_1-192)\NC+\NC (b_2-128)\NC \NC \NC \NC \NC if 192<=b1<=223\NC \NR
%D \NC 4096(b_1-224)\NC+\NC 64(b_2-128)\NC+\NC (b_3-128)\NC \NC \NC if 224<=b1<=239\NC \NR
%D \NC262144(b_1-240)\NC+\NC4096(b_2-128)\NC+\NC64(b_3-128)\NC+\NC(b_4-128)\NC if 240<=b1<=247\NC \NR
%D \stoptabulate
%D
%D A lot of information about unicode can be found on the
%D web (search for Markus Kuhn and unicode and you'll
%D probably end up at the right place).
%D In \ETEX\ vocabulary such a conversion looks as follows.
%D We need the \type {`} in order to turn a character into a
%D number.
%D
%D \starttyping
%D \def\utftwounicode#1#2%
%D {\number\numexpr (64*(\numexpr (#1-192))+%
%D (\numexpr(`#2-128)))}
%D
%D \def\utfthreeunicode#1#2#3%
%D {\number\numexpr (4096*(\numexpr (#1-224))+
%D 64*(\numexpr(`#2-128))+%
%D (\numexpr(`#3-128)))}
%D
%D \def\utffourunicode#1#2#3#4%
%D {\number\numexpr(262144*(\numexpr (#1-240))+
%D 4096*(\numexpr(`#1-128))+
%D 64*(\numexpr(`#2-128))+%
%D (\numexpr(`#3-128)))}
%D \stoptyping
%D
%D When we map the unicode number on one of the 256 char wide
%D unicode tables, we need to do a bit of div and mod. Watch
%D out: an \ETEX\ \type {/} is not the same as \TEX's \type
%D {\divide}. The former rounds, while the later truncates, so
%D we need to trucate ourselves. In case you wonder why we
%D use \type {\numexpr}: this is not only more convenient, but
%D also makes it possible to avoid scratch counters, so that we
%D get fast and fully expandable conversions.
%D
%D \starttyping
%D \def\utfdiv#1{\number\numexpr((#1-128)/256)}
%D \def\utfmod#1{\number\numexpr((#1)-(256*(\utfdiv{#1})))}
%D \stoptyping
%D
%D So far for the readable alternatives. When using \type
%D {\numexpr} you should be aware of rather unexpected look
%D ahead effects. The next implementation uses registers,
%D which saves tokens and is faster. In this case we gain
%D some 10\% time.
\chardef \utf@a= 64
\mathchardef \utf@b= 4096
\newcount\utf@c\utf@c=262144
\chardef \utf@d= 192
\chardef \utf@e= 224
\chardef \utf@f= 240
\chardef \utf@g= 128
\mathchardef \utf@h= 256
\chardef \utf@i= 127
\mathchardef \utf@j= 2048
%D The definitions now become:
%D
%D \starttyping
%D \def\utftwounicode#1#2%
%D {\number\numexpr(\utf@a*(\numexpr (#1-\utf@d))+%
%D (\numexpr(`#2-\utf@g)))}
%D
%D \def\utfthreeunicode#1#2#3%
%D {\number\numexpr(\utf@b*(\numexpr (#1-\utf@e))+
%D \utf@a*(\numexpr(`#2-\utf@g))+%
%D (\numexpr(`#3-\utf@g)))}
%D
%D \def\utffourunicode#1#2#3#4%
%D {\number\numexpr(\utf@c*(\numexpr (#1-\utf@f))+
%D \utf@b*(\numexpr(`#2-\utf@g))+
%D \utf@a*(\numexpr(`#3-\utf@g))+%
%D (\numexpr(`#4-\utf@g)))}
%D \stoptyping
%D
%D And:
%D
%D \starttyping
%D \def\utfdiv#1{\number\numexpr((#1-\utf@g)/\utf@h)}
%D \def\utfmod#1{\number\numexpr((#1)-(\utf@h*(\utfdiv{#1})))}
%D \stoptyping
%D
%D Depending on the usage, you can rely on parenthesis only:
%D
%D \starttyping
%D \def\utftwounicode#1#2%
%D {\numexpr(\utf@a*(#1-\utf@d)+%
%D `#2-\utf@g)}
%D
%D \def\utfthreeunicode#1#2#3%
%D {\numexpr(\utf@b*(#1-\utf@e)+%
%D \utf@a*(`#2-\utf@g)+%
%D `#3-\utf@g)}
%D
%D \def\utffourunicode#1#2#3#4%
%D {\numexpr(\utf@c*(#1-\utf@f)+%
%D \utf@b*(`#2-\utf@g)+%
%D \utf@a*(`#3-\utf@g)+%
%D `#4-\utf@g)}
%D \stoptyping
\def\utfdiv#1{\the\numexpr (#1-\utf@g)/\utf@h \relax}
\def\utfmod#1{\the\numexpr#1-\utf@h*((#1-\utf@g)/\utf@h)\relax}
%D The next one also handles the zero case well:
\def\utfdiv#1{\the\numexpr\ifcase\numexpr#1\relax0\else (#1-\utf@g)/\utf@h \fi\relax}
\def\utfmod#1{\the\numexpr\ifcase\numexpr#1\relax0\else#1-\utf@h*((#1-\utf@g)/\utf@h)\fi\relax}
% or
%
% \def\utfdiv#1{\ifcase\numexpr#1\relax0\else\the\numexpr(#1-\utf@g)/\utf@h\relax\fi}
% \def\utfmod#1{\ifcase\numexpr#1\relax0\else\the\numexpr#1-\utf@h*((#1-\utf@g)/\utf@h)\relax\fi}
%D When tracing we also need:
\def\utfvid#1{\the\numexpr(#1-\medcard)/\maxcard\relax}
%D Using the three conversion macros, we can now implement
%D a few handlers. They all call the general \type
%D {\unicodechar} conversion macro.
%D
%D \starttyping
%D \def\utftwouniglph#1#2%
%D {\unicodechar{\utftwounicode {#1}{#2}}}
%D
%D \def\utfthreeuniglph#1#2#3%
%D {\unicodechar{\utfthreeunicode{#1}{#2}{#3}}}
%D
%D \def\utffouruniglph#1#2#3#4%
%D {\unicodechar{\utffourunicode {#1}{#2}{#3}{#4}}}
%D \stoptyping
%D
%D Because the unicode number is used a few times per
%D conversion, we can expand it once (\type {\the} and \type
%D {\number} make sure of this). This saves us another 10\%.
%D
%D \starttyping
%D \def\utftwouniglph#1#2%
%D {\@EA\unicodechar\@EA{\the\utftwounicode{#1}{#2}}}
%D
%D \def\utfthreeuniglph#1#2#3%
%D {\@EA\unicodechar\@EA{\the\utfthreeunicode{#1}{#2}{#3}}}
%D
%D \def\utffouruniglph#1#2#3#4%
%D {\@EA\unicodechar\@EA{\the\utffourunicode{#1}{#2}{#3}{#4}}}
%D \stoptyping
%D
%D We can rewrite these macros to faster alternatives: the
%D less arguments we pass, the faster the conversion will be,
%D but at the price of readability. So we have:
%D
%D \starttyping
%D \def\utftwouniglph#1#2%
%D {\@EA\unicodechar\@EA{\the\numexpr(\utf@a*(#1-\utf@d)+%
%D `#2-\utf@g)}}
%D
%D \def\utfthreeuniglph#1#2#3%
%D {\@EA\unicodechar\@EA{\the\numexpr(\utf@b*(#1-\utf@e)+%
%D \utf@a*(`#2-\utf@g)+`#3-\utf@g)}}
%D
%D \def\utffouruniglph#1#2#3#4%
%D {\@EA\unicodechar\@EA{\the\numexpr(\utf@c*(#1-\utf@f)+%
%D \utf@b*(`#2-\utf@g)+\utf@a*(`#3-\utf@g)+`#4-\utf@g)}}
%D \stoptyping
%D
%D Less parsing, and therefore faster:
\def\utftwouniglph#1#2%
{\@EA\unicodechar\@EA{\the\numexpr\utf@a*(#1-\utf@d)+%
`#2-\utf@g\relax}}
\def\utfthreeuniglph#1#2#3%
{\@EA\unicodechar\@EA{\the\numexpr\utf@b*(#1-\utf@e)+%
\utf@a*(`#2-\utf@g)+`#3-\utf@g\relax}}
\def\utffouruniglph#1#2#3#4%
{\@EA\unicodechar\@EA{\the\numexpr\utf@c*(#1-\utf@f)+%
\utf@b*(`#2-\utf@g)+\utf@a*(`#3-\utf@g)+`#4-\utf@g\relax}}
%D Now we come to the unicode handler itself. We will use a few
%D constants, which saves us (at least at the time of writing
%D and testing these macros) another 10\%.
\def\@@univector {univ}
\def\@@unknownchar{unknownchar}
%D Now comes the nice part: turning codes into glyphs. The
%D actual conversion does not take place here, but is done by
%D macros in \type{unic-nnn} files. There we map a range onto
%D named glyphs, so that they fit well into the rest of
%D \CONTEXT.
%D \macros
%D {utfunicodetracer}
%D
%D By default, the converter produces a character representation,
%D but for tracing purposes, you can set a trace option.
\chardef\utfunicodetracer=0
%D \def\TraceUnic#1%
%D {\chardef\utfunicodetracer#1\relax\enableregime[utf]Ű}
%D
%D \starttabulate[|c|c|c|c|c|c|]
%D \NC option \NC number\NC mapping\NC glyph\NC string\NC example \NC \NR
%D \NC 0 \NC \NC \NC \star\NC \NC \TraceUnic0\NC \NR
%D \NC 1 \NC \star \NC \NC \NC \NC \TraceUnic1\NC \NR
%D \NC 2 \NC \NC \star \NC \NC \NC \TraceUnic2\NC \NR
%D \NC 3 \NC \star \NC \star \NC \NC \NC \TraceUnic3\NC \NR
%D \NC 4 \NC \star \NC \NC \star\NC \NC \TraceUnic4\NC \NR
%D \NC 5 \NC \NC \star \NC \star\NC \NC \TraceUnic5\NC \NR
%D \NC 6 \NC \star \NC \star \NC \star\NC \NC \TraceUnic6\NC \NR
%D \NC 7 \NC \NC \NC \NC \star \NC \TraceUnic7\NC \NR
%D \NC 8 \NC \star \NC \NC \NC \NC \TraceUnic8\NC \NR
%D \NC otherwise\NC \NC \NC \star\NC \NC \TraceUnic9\NC \NR
%D \stoptabulate
%D \macros
%D {unicodechar}
%D
%D Next we implement the character handler:
\def\unicodechar
{\ifcase\utfunicodetracer
\expandafter\utfunihash \or
\expandafter\utfunichar \or
\expandafter\utfunisplit \or
\expandafter\utfuniboth \or
\expandafter\utfunihashchar \or
\expandafter\utfunihashsplit \or
\expandafter\utfunihashboth \or
\expandafter\utfuniglyphname \or
\expandafter\utfunientity \else
\expandafter\utfunihash
\fi}
%D \startbuffer
%D \enableregime[utf] \dostepwiserecurse{0}{8}{1}
%D {\recurselevel:
%D \chardef\utfunicodetracer=\recurselevel aap‒noot coördinatie – één
%D \crlf}
%D \stopbuffer
%D
%D \typebuffer \start \getbuffer \stop
%D \macros
%D {unicodehexnumber}
%D
%D A few auxiliary macros, producing the range||char pair:
\def\unicodepair#1%
{\utfdiv{#1}:\utfmod{#1}}
\def\unicodenumber#1{\number#1}
\def\unicodehexnumber#1%
{\ifnum#1>\maxcard
\expanded{\uchexnumbers{\utfvid{#1}}}%
\expanded{\uchexnumbers{\utfdiv{\utfdiv{#1}}}}%
\else
00%
\expanded{\uchexnumbers{\utfdiv{#1}}}%
\fi
\expanded{\uchexnumbers{\utfmod{#1}}}}
%D The following macros visualize the unicode character. The
%D \type {\relax} in front of the \type {-} prevents lookahead
%D problems; somehow \type {\numexpr} cannot look beyond this
%D sign, and expects a number.
\def\utfunichar #1{{\tttf U\low{\tx\unicodenumber{#1}}}}
\def\utfunisplit #1{{\tttf U\low{\tx\unicodepair{#1}}}}
\def\utfuniboth #1{{\tttf U\low{\tx\unicodenumber{#1}->\unicodepair{#1}}}}
\def\utfunientity #1{{\tttf\&\#x\unicodehexnumber{#1};}}
%D The character itself is accessed and typeset by:
%D
%D \starttyping
%D \def\utfunihash#1%
%D {\executeifdefined{\@@univector\utfdiv{#1}}%
%D \gobbleoneargument{\utfmod{#1}}}
%D \stoptyping
%D
%D Again, we can provide a faster alternative, because inside
%D the conditional executer, the argument is expanded twice,
%D and therefore the calculation done once more than needed.
%D So, we make sure that the argument is expansion on
%D forehand. Just to remind you: \type {#1} is the \UNICODE\
%D number.
%D
%D \starttyping
%D \def\utfunihash#1%
%D {\@EA\executeifdefined\@EA{\@EA\@@univector\number\utfdiv{#1}}%
%D {\unknownchar\gobbleoneargument}{\utfmod{#1}}}
%D \stoptyping
%D
%D In order to save calculation time, I decided to change
%D this definition into:
%D \starttyping
%D \def\utfunihash#1%
%D {\@EA\doutfunihash\@EA{\number\utfdiv{#1}}{#1}}
%D
%D \def\doutfunihash#1#2%
%D {\ifcsname\@@univector\number#1\endcsname
%D \csname\csname\@@univector#1\endcsname{\utfmod{#2}}\endcsname
%D \else
%D \unknownchar
%D \fi}
%D \stoptyping
%D
%D Or leaner and meaner:
%D
%D \starttyping
%D \def\doutfunihash#1#2%
%D {\csname
%D \ifcsname\@@univector\number#1\endcsname
%D \csname\@@univector#1\endcsname{\utfmod{#2}}%
%D \else
%D \@@unknownchar
%D \fi
%D \endcsname}
%D \stoptyping
%D
%D And finaly it became:
\def\doutfunihash#1#2%
{\ifcsname\@@univector\number#1\endcsname
\csname\@@univector#1\endcsname{\utfmod{#2}}%
\else
\@@unknownchar
\fi}
\def\utfunihashglyph#1%
{\csname\@EA\doutfunihash\@EA{\number\utfdiv{#1}}{#1}\endcsname}
\def\utfunihashcommand
{\@EAEAEA\string\utfunihashglyph}
%D For practical purposes, we handle the normal \ASCII\
%D characters here:
\def\utfunihashglyph#1%
{\csname
\ifnum#1<\utf@i
\strippedcsname\unicodeasciicharacter\endcsname{#1}%
\else
\@EA\doutfunihash\@EA{\number\utfdiv{#1}}{#1}\endcsname
\fi}
%D With:
\let\unicodeasciicharacter\rawcharacter
%D Now we can say:
\let\utfunihash\utfunihashglyph
%D We also need:
\def\utfuniglyphname#1%
{{\tttf
\ifnum#1<\utf@i
\unicodeasciicharacter{#1}%
\else
\expandafter\string\csname\doutfunihash{\number\utfdiv{#1}}{#1}\endcsname
\fi}}
%D The combined presentation is implemented by:
\def\utfunihashchar #1%
{\utfunihash{#1}\low{\infofont\unicodenumber{#1}}}
\def\utfunihashsplit#1%
{\utfunihash{#1}\low{\infofont\unicodepair{#1}}}
\def\utfunihashboth #1%
{\utfunihash{#1}\low{\infofont\unicodenumber{#1}->\unicodepair{#1}}}
%D Unknown characters get a placeholder.
\unexpanded\def\unknownchar % {} prevents problems with arguments
{{\hbox{\vrule\!!width.5em\!!height1ex\!!depth\zeropoint}}}
%D So far for the conversion macros. The optimizations we
%D did, brought down the runtime some 50\%, which, given that
%D the majority of characters will be normal \ASCII\
%D characters, the penalty of conversion is not that large.
%D \macros
%D {useunicodevector}
%D
%D Since we end up with many encodings, it starts making
%D sense to postpone loading, so let's start doing this
%D with \UNICODE.
\def\doifunicodevector#1%
{\doifdefined{\@@univector#1}}
\def\useunicodevector[#1]%
{\processcommalist[#1]\douseunicodevector}
\def\douseunicodevector#1%
{\ifundefined{\@@univector#1}%
\readsysfile{\f!unicprefix\threedigits{#1}}
{\writestatus{unicode}{loading vector #1}}
{\writestatus{unicode}{unknown vector #1}}%
\fi}
%D \macros
%D {startunicodevector}
%D
%D A vector roughly looks as follows. By putting the text
%D inside the name constructor, we prevent problems with
%D partial expansion in macros and special cases.
%D
%D \starttyping
%D \startunicodevector 0
%D \ifcase\numexpr(#1-159)\or
%D \@@unknownchar\or % NO-BREAK SPACE
%D exclamdown\or
%D textcent\or
%D ....\else
%D \@@unknowncharacter
%D \fi
%D \stopunicodevector
%D \stoptyping
%D
%D In vector \type {unix-000} you will find another
%D optimizations. By using as less tokens as possible, we limit
%D the time skipping branches in the test, and save upto 20\%
%D runtime.
\def\startunicodevector #1 #2\stopunicodevector
{\setgvalue{\@@univector#1}##1{#2}}
%D We define (as a practical example) the utf signal FEFF:
\ifx\zwnbsp\undefined
\let\zwnbsp\relax % zerowidthnonbreakablespace
\fi
\startunicodevector 254
\expandafter\strippedcsname\ifnum#1<255 \unknownchar\else\zwnbsp\fi
\stopunicodevector
%D Here we provide another auxiliary macro:
%D
%D \startbuffer
%D \unicodeinfoline{196}{Ä}{LATIN CAPITAL LETTER A WITH DIAERESIS}
%D \unicodeinfoline{197}{Å}{LATIN CAPITAL LETTER A WITH RING ABOVE}
%D \unicodeinfoline{198}{Æ}{LATIN CAPITAL LETTER AE}
%D \unicodeinfoline{199}{Ç}{LATIN CAPITAL LETTER C WITH CEDILLA}
%D \unicodeinfoline{200}{È}{LATIN CAPITAL LETTER E WITH GRAVE}
%D \unicodeinfoline{201}{É}{LATIN CAPITAL LETTER E WITH ACUTE}
%D \stopbuffer
%D
%D \typebuffer
%D
%D \start \enableregime[utf]\getbuffer \stop
\def\unicodeinfoline#1#2#3%
{\ifnum#1>\utf@g % 128
\noindent \hbox
{\hbox to 4em{\tttf\unicodehexnumber{#1}\hss}\quad
\hbox to 1em{#2\hss}\quad
\hbox to 9em{\tttf\unicodenumber{#1}->\unicodepair{#1}\hss}\quad
\hbox to 9em{\tttf\let\utfunihash\utfunihashcommand#2\hss}\quad % tricky
\lowercase {\tttf#3}}\par
\fi}
%D The next code permits utf code in hyperlinks:
\def\cleanunicodechar#1{.#1.}
\appendtoks \let\unicodechar\cleanunicodechar \to \everycleanupfeatures
%D We will now hook this mechanism in the existing font
%D handler. More documentation will follow. Probably, some
%D features in \type {font-uni.tex} will be generalized
%D and moved here.
\def\unidiv{0} \def\unimod{0}
\chardef\utfunihashmode=0 % 0=hash glyph 1=font glyph
\def\utfunifontglyph#1%
{\xdef\unidiv{\number\utfdiv{#1}}%
\xdef\unimod{\number\utfmod{#1}}%
\ifnum#1<\utf@i
\char\unimod % \unicodeascii\unimod
\else\ifcsname\@@univector\unidiv\endcsname
\csname\doutfunihash{\unidiv}{#1}\endcsname
\else % so, these can be different fonts !
\unicodeglyph\unidiv\unimod % no \uchar (yet)
\fi\fi}
\chardef\utfunicommandmode=0 % 1 = hex
\def\unicodecommandchar#1#2%
{\string\char
\ifcase\utfunicommandmode
#1:#2\else\lchexnumbers#1:\lchexnumbers#2%
\fi}
\def\utfunifontcommand#1%
{\xdef\unidiv{\number\utfdiv{#1}}%
\xdef\unimod{\number\utfmod{#1}}%
\ifnum#1<\utf@i
\unicodecommandchar\unidiv\unimod
\else\ifcsname\@@univector\unidiv\endcsname
\@EA\string\csname\doutfunihash{\unidiv}{#1}\endcsname
\else
\unicodecommandchar\unidiv\unimod
\fi\fi}
\def\utfunihash
{\ifcase\utfunihashmode
\@EA\utfunihashglyph
\else
\@EA\utfunifontglyph
\fi}
\def\utfunihushcommand
{\@EAEAEA\string\utfunihashglyph}
\def\utfunihashcommand
{\ifcase\utfunihashmode
% \@EA\@EAEAEA\@EA\string\@EA\utfunihashglyph
\@EA\utfunihushcommand
\else
\@EA\utfunifontcommand
\fi}
%D We can convert from a number to some UTF code with the folowing
%D conversion macro.
% The first, na\"ive version:
%
% \def\numbertoutf#1%
% {\ifnum#1<128
% \rawcharacter{#1}%
% \else\ifnum#1<2048
% \rawcharacter{\the\numexpr192+#1/64\relax}%
% \rawcharacter{\the\numexpr128+#1-(#1/64)*64\relax}%
% \else % 3 bytes
% \rawcharacter{\the\numexpr224+#1/4096\relax}%
% \rawcharacter{\the\numexpr128+(#1-(#1/4096)*4096)/128\relax}%
% \rawcharacter{\the\numexpr128+(#1-(#1/4096)*4096)+(#1-(#1/4096)*4096)/128\relax}%
% \fi\fi}
% We have to compensate for etex's rounding (thanks to Taco and
% Nanning) for pointing/sorting this out:
% \def\numbertoutf#1%
% {\ifnum#1<128
% \rawcharacter{#1}%
% \else\ifnum#1<2048
% \rawcharacter{\the\numexpr192+(#1-32)/64\relax}%
% \rawcharacter{\the\numexpr128+(#1-((#1-32)/64)*64)\relax}%
% \else
% \rawcharacter{\the\numexpr224+(#1-2048)/4096\relax}%
% \rawcharacter{\the\numexpr128+(#1-(((#1-2048)/4096)*4096)-32)/64\relax}%
% \rawcharacter{\the\numexpr128+(#1-(((#1-2048)/4096)*4096)-((#1-(((#1-2048)/4096)*4096)-32)/64)*64)\relax}%
% \fi\fi}
\beginETEX \numexpr
\chardef \utf@a= 64
\mathchardef \utf@b= 4096
\newcount\utf@c\utf@c=262144
\chardef \utf@d= 192
\chardef \utf@e= 224
\chardef \utf@f= 240
\chardef \utf@g= 128
\mathchardef \utf@h= 256
\chardef \utf@i= 127
\mathchardef \utf@j= 2048
\chardef \utf@k= 32
\def\numbertoutf#1%
{\ifnum#1<\utf@g
\rawcharacter{#1}%
\else\ifnum#1<\utf@j
\rawcharacter{\the\numexpr\utf@d+(#1-\utf@k)/\utf@a\relax}%
\rawcharacter{\the\numexpr\utf@g+(#1-((#1-\utf@k)/\utf@a)*\utf@a)\relax}%
\else
\rawcharacter{\the\numexpr\utf@e+(#1-\utf@j)/\utf@b\relax}%
\rawcharacter{\the\numexpr\utf@g+(#1-(((#1-\utf@j)/\utf@b)*\utf@b)-\utf@k)/\utf@a\relax}%
\rawcharacter{\the\numexpr\utf@g+(#1-(((#1-\utf@j)/\utf@b)*\utf@b)-((#1-(((#1-\utf@j)/\utf@b)*\utf@b)-\utf@k)/\utf@a)*\utf@a)\relax}%
\fi\fi}
\endETEX
\beginTEX
\def\numbertoutf#1%
{[\number#1]}
\endTEX
%D Goodies:
\fetchruntimecommand \showunicodevector {\f!unicprefix\s!run}
\fetchruntimecommand \showunicodetable {\f!unicprefix\s!run}
%D Well, let's at least preload a few familiar ones. Here we
%D also load the \UTF\ regime.
\useunicodevector[0,1,2,3,4,5,30,32,33,34,39] \useregime[utf]
% 31, text mem usage first
\protect \endinput
|