summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/lualatex/pgfmolbio/pgfmolbio.dtx
blob: eb4fc315258ac2e1d96dd713800918d61d1764d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
% \iffalse meta-comment
%
% Copyright (C) 2013 by Wolfgang Skala
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
%   http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% \fi
%
% \iffalse
%<pgfmolbio-tex>\ProvidesPackage{pgfmolbio}[2013/08/01 v0.21 Molecular biology graphs with TikZ]
%<pgfmolbio-tex>\NeedsTeXFormat{LaTeX2e}[1999/12/01]
%<pgfmolbio-lua>module("pgfmolbio", package.seeall)
%<pmb-chr-tex>\ProvidesFile{pgfmolbio.chromatogram.tex}[2013/08/01 v0.21 SCF chromatograms]
%<pmb-chr-lua>module("pgfmolbio.chromatogram", package.seeall)
%<pmb-dom-tex>\ProvidesFile{pgfmolbio.domains.tex}[2013/08/01 v0.21 Protein domains]
%<pmb-dom-lua>module("pgfmolbio.domains", package.seeall)
%<pmb-con-tex>\ProvidesFile{pgfmolbio.convert.tex}[2013/08/01 v0.21 pgfmolbio graph conversion]
%
%<*driver>
\documentclass[captions=tableheading,cleardoublepage=empty,titlepage=false]{scrreprt}
	\setkomafont{title}{\rmfamily\bfseries}
	\addtokomafont{sectioning}{\rmfamily}

\usepackage[ngerman,english]{babel}
\usepackage[hdivide={2cm,*,5cm}]{geometry}
\usepackage{fontspec}
\usepackage{array,booktabs,tabularx}
\usepackage[chromatogram,domains]{pgfmolbio}
	\usetikzlibrary{patterns,backgrounds,decorations.pathreplacing}

\usepackage{ydoc-doc,ydoc-code,ydoc-desc,ydoc-expl}
	\AlsoImplementation
	\hypersetup{%
		colorlinks=false,%
		bookmarksnumbered,%
		bookmarksopen,%
		bookmarksopenlevel=1,%
		breaklinks,%
		pdfborder=0 0 0,%
		pdfhighlight=/N,%
	}
	\AtBeginDocument{%
		\lstMakeShortInline[style=latex-expl,basicstyle=\ttfamily,numbers=none,firstnumber=last]|%
		\lstMakeShortInline[style=lua-doc,basicstyle=\ttfamily,frame=none,numbers=none]§%
	}
	\makeatletter
	\newcommand\DescribeOption[4][=]{%
		\gdef\OptDefault{\textcolor{black!50}{Default:}~\texttt{#4}}%
		\DescribeMacros
		\let\DescribeMacros\y@egroup
		\optionalon
		\def\after@Macro@args{\y@egroup\PrintOptions\endgroup}%
		\hbox\y@bgroup
		\texttt{\textcolor{opt!50}{/pgfmolbio/#2}\textcolor{opt}{#3}~#1}%
		\ydoc@macrocatcodes
		\macroargsstyle
		\read@Macro@arg%
	}
	\def\PrintOptions{%
		\par\vspace\beforedescskip
		\begingroup
		\sbox\@tempboxa{\descframe{\usebox{\descbox}}}%
		\Needspace*{\dimexpr\ht\@tempboxa+2\baselineskip\relax}%
		\par\noindent
		\ifdim\wd\@tempboxa>\dimexpr\linewidth-2\descindent\relax
			\makebox[\linewidth][c]{\usebox\@tempboxa}%
		\else
			\hspace*{\descindent}%
			\usebox\@tempboxa
		\fi
		\endgroup
		\par\medskip\makebox{\kern10pt\OptDefault}
		\vspace\afterdescskip
		\par\noindent
	}
	\def\PrintExample{%
		\begingroup
		\BoxExample
		\@tempdima\textwidth
		\advance\@tempdima-\wd\examplecodebox\relax
		\advance\@tempdima-\wd\exampleresultbox\relax
		\advance\@tempdima-1cm\relax
		\ifdim\@tempdima>0pt
			\@tempdimb\wd\exampleresultbox
			\advance\@tempdimb2\fboxsep
			\advance\@tempdimb2\fboxrule
			\par\bigskip\noindent%
			\centerline{%
			\parbox[c]{\@tempdimb}{\fbox{\usebox\exampleresultbox}}
			\hskip1cm
			\parbox[c]{\wd\examplecodebox}{\usebox\examplecodebox}
			}%
			\par\bigskip
		\else
			\par\bigskip\noindent%
			\vbox{%
					\centerline{\fbox{\usebox\exampleresultbox}}%
					\vspace{\bigskipamount}%
					\centerline{\usebox\examplecodebox}%
			}%
			\par\bigskip
		\fi
		\endgroup
	}
	\newcommand\DescribeFeature{\@ifstar\DescribeFeatureNoAlias\DescribeFeatureAlias}
	\newcommand\DescribeFeatureAlias[2]{\paragraph{Feature \texttt{#1}} (\textit{alias} \texttt{#2})\\}
	\newcommand\DescribeFeatureNoAlias[1]{\paragraph{Feature \texttt{#1}} (\textit{no alias})\\}
	\makeatother
	\def\ometa#1{{\optional\meta{#1}}}
	\lstdefinestyle{exampleextract}{gobble=2}
	\lstdefinestyle{examplecode}{style=latex-expl}
	\def\ydoclistingssettings{\lstset{style=latex-expl}}
	\definecolor{opt}{named}{OliveGreen}
	\definecolor{mod}{named}{black}
	\definecolor{macrodesc}{named}{ProcessBlue}
	\definecolor{macroimpl}{named}{ProcessBlue}
	\newcommand\module[1]{\textsf{\textcolor{mod}{#1}}}
	\renewcommand*\optstyle[1]{\texttt{\textcolor{opt}{#1}}}

\lstdefinestyle{latex-expl}{
	language=[AlLaTeX]TeX,
	columns=fullflexible,
	keepspaces=true,
	tabsize=2,
	numbers=left,
	numberstyle=\sffamily\tiny\color{gray},
	numbersep=5pt,
	firstnumber=auto,
	prebreak={},
	basicstyle=\ttfamily\small,
	texcsstyle=*\color{MidnightBlue},
	texcsstyle=*[2]\color{ProcessBlue},
	keywordstyle=\color{RedOrange},
	commentstyle=\itshape\color{black!50},
	morekeywords={tikzpicture,pgfinterruptboundingbox,pgfinterruptpicture,pmbdomains,scope},
	moretexcs=[1]{
		@empty,@ifundefined,@nameuse,clip,colorlet,definecolor,directlua,draw,ifluatex,
		luaescapestring,node,path,pdfdraftmode,pgf@protocolsizes,pgf@x,pgf@y,pgfdeclareverticalshading,
		pgfkeys,pgfkeysalso,pgfkeysdef,pgfkeyssetvalue,pgfkeysvalueof,pgfmathsetmacro,pgfpoint,pgfqkeys,
		ProcessOptions,RequireLuaModule,textcolor,tikzset,useasboundingbox,usetikzlibrary
	},
	moretexcs=[2]{
		@pmb@chr@getkey,@pmb@chr@keydef,@pmb@chr@stylekeydef,
		@pmb@dom@feature@default@shape,@pmb@dom@helixsegment,@pmb@dom@helixhalfsegment,@pmb@dom@keydef,
		@pmb@toksa,@pmb@toksb,@tempa,adddisulfidefeatures,addfeature,featureSequence,currentResidue,
		pmb@chr@tikzpicturefalse,pmb@chr@tikzpicturetrue,ifpmb@chr@showbasenumbers,ifpmb@chr@tikzpicture,
		ifpmb@con@includedescription,ifpmb@con@outputtikzcode,ifpmb@dom@showname,ifpmb@dom@showruler,
		ifpmb@dom@showsecstructure,ifpmb@dom@tikzpicture,ifpmb@loadmodule@chromatogram,ifpmb@loadmodule@convert,
		ifpmb@loadmodule@domains,inputuniprot,inputgff,
		pgfmolbioset,pmb@con@outputtikzcodefalse,pmb@con@outputtikzcodetrue,
		pmb@dom@addfeature,pmb@dom@inputgff,pmb@dom@inputuniprot,pmb@dom@tikzpicturetrue,pmb@dom@tikzpicturefalse,
		pmb@loadmodule@chromatogramtrue,pmb@loadmodule@converttrue,
		pmb@loadmodule@domainstrue,pmb@magnifiedsequence@width,pmbchromatogram,pmbdomdrawfeature,
		pmbdomvalueof,pmbprotocolsizes,removedisulfidefeatures,removefeatureprintfunction,
		residueNumber,setdisulfidefeatures,setfeaturealias,
		setfeatureprintfunction,setfeatureshape,setfeatureshapealias,setfeaturestyle,setfeaturestylealias,
		turnXradius,turnYradius,xLeft,xLowerLeft,xLowerRight,xMid,xRight,xUpperLeft,xUpperRight,
		yLower,yMid,yShift,yUpper
	},
	escapebegin=\begin{rmfamily}\color{black!50},
	escapeend=\end{rmfamily}
}

\lstdefinestyle{latex-doc}{
	style=latex-expl,
	showlines,
	firstnumber=last,
	breaklines,
	frame=single,
	frameround=tttt,
	rulecolor=\color{black!50}
}

\lstdefinestyle{lua-doc}{
	language=lua,
	columns=fullflexible,
	keepspaces=true,
	tabsize=2,
	basicstyle=\ttfamily\small\color{ForestGreen},
	keywordstyle=\color{MidnightBlue},
	keywordstyle=[2]\color{ProcessBlue},
	stringstyle=\color{Red},
	identifierstyle=\color{Black},
	emphstyle=\color{BurntOrange!50!Black},
	showstringspaces=false,
	numbers=left,
	numberstyle=\sffamily\tiny\color{gray},
	numbersep=5pt,
	firstnumber=last,
	breaklines,
	showlines,
	frame=single,
	frameround=tttt,
	rulecolor=\color{black!50},
	belowskip=\bigskipamount
}

\lstdefinelanguage{lua}{
	morekeywords={and,break,do,else,elseif,end,false,for,function,if,in,local,
		nil,not,or,repeat,return,then,true,until,while},
	morekeywords=[2]{arg,assert,collectgarbage,dofile,error,_G,format,getfenv,
		getmetatable,__index,ipairs,load,loadfile,loadstring,next,pairs,pcall,print,
		rawequal,rawget,rawset,select,self,setfenv,setmetatable,tonumber,tostring,__tostring,
		type,unpack,_VERSION,xpcall},
	morekeywords=[2]{module,require,package,seeall},
	morekeywords=[2]{string,byte,char,dump,find,
		format,gmatch,string,gsub,len,lower,
		match,rep,reverse,sub,trim,upper},
	morekeywords=[2]{table,concat,insert,maxn,remove,sort},
	morekeywords=[2]{math,min},
	morekeywords=[2]{io,input,open,output,close,flush,
		lines,read,seek,setvbuf,write},
	morekeywords=[2]{os.clock,os.date,os.difftime,os.execute,os.exit,os.getenv,
		os.remove,os.rename,os.setlocale,os.time,os.tmpname},
	morekeywords=[2]{tex,sprint},
	emph={addFeature,aliasFeatureStyle,calculateDisulfideLevels,Chromatogram,clearKeys,dimToString,findBasesInStr,
		getBaseKey,getMinMaxProbability,getParameters,getRange,getSampleAndPeakIndex,new,packageError,
		packageWarning,printSequenceFeature,printHelixFeature,printTikzChromatogram,printTikzDomains,Protein,
		readGffFile,readInt,readScfFile,readUniprotFile,selectStyleFromList,setCoordinateFormat,
		setFeatureStyle,setKeys,setParameters,SpecialKeys,stdProbStyle,stringToDim,toAbsoluteResidueNumber},
	sensitive=true,
	alsoletter={0123456789},
	morecomment=[l]{--},
	morecomment=[s]{--[[}{]]--},
	morestring=[b]{"},
	morestring=[d]{'}
}

\def\TikZ{Ti\textit{k}Z}

\usepackage{caption}
	\captionsetup{format=plain,indention=1em,labelsep=colon,font={footnotesize,sf},labelfont={bf},skip=0pt}
	\makeatletter\@addtoreset{example}{chapter}\makeatother
	\renewcommand\theexample{\arabic{chapter}.\arabic{example}}

\pdfpageattr{/Group <</S /Transparency /I true /CS /DeviceRGB>>}


\begin{document}
	\DocInput{pgfmolbio.dtx}
\end{document}
%</driver>
% \fi
%
% 
%
% \CharacterTable
%  {Upper-case    \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%   Lower-case    \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%   Digits        \0\1\2\3\4\5\6\7\8\9
%   Exclamation   \!     Double quote  \"     Hash (number) \#
%   Dollar        \$     Percent       \%     Ampersand     \&
%   Acute accent  \'     Left paren    \(     Right paren   \)
%   Asterisk      \*     Plus          \+     Comma         \,
%   Minus         \-     Point         \.     Solidus       \/
%   Colon         \:     Semicolon     \;     Less than     \<
%   Equals        \=     Greater than  \>     Question mark \?
%   Commercial at \@     Left bracket  \[     Backslash     \\
%   Right bracket \]     Circumflex    \^     Underscore    \_
%   Grave accent  \`     Left brace    \{     Vertical bar  \|
%   Right brace   \}     Tilde         \~}
%
%
% \GetFileInfo{pgfmolbio.sty}
%
% \CheckSum{1254}
% 
% \pagenumbering{roman}
% \title{The \texttt{pgfmolbio} package --\texorpdfstring{\\}{}Molecular Biology Graphs with \TikZ\texorpdfstring{\footnote{This document describes version \fileversion, dated \filedate.}}{}}
% \author{\texorpdfstring{Wolfgang Skala\thanks{Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Austria; \texttt{Wolfgang.Skala@stud.sbg.ac.at}}}{Wolfgang Skala}}
% \date{\filedate}
% \maketitle
%
% \begin{abstract}
% The experimental package \pkg{pgfmolbio} draws graphs typically found in molecular biology texts. Currently, the package contains three modules: \module{chromatogram} creates DNA sequencing chromatograms from files in standard chromatogram format (\file{scf}); \module{domains} draws protein domain diagrams; \module{convert} integrates \pkg{pgfmolbio} with \TeX\ engines that lack Lua support.
% \end{abstract}
%
% \tableofcontents
%
%
% \chapter{Introduction}
% \label{cha:Introduction}
% \pagenumbering{arabic}
% 
% 
% \section{About \texorpdfstring{\pkg{pgfmolbio}}{pgfmolbio}}
% \label{sec:IntroAbout}
% 
% Over the decades, \TeX\ has gained popularity across a large number of disciplines. Although originally designed as a mere typesetting system, packages such as \pkg{pgf}\footnote{Tantau, T. (2010). The \TikZ\ and \textsc{pgf} packages. \url{http://ctan.org/tex-archive/graphics/pgf/}.} and \pkg{pstricks}\footnote{van Zandt, T., Niepraschk, R., and Voß, H. (2007). PSTricks: PostScript macros for Generic \TeX. \url{http://ctan.org/tex-archive/graphics/pstricks}.} have strongly extended its \textit{drawing} abilities. Thus, one can create complicated charts that perfectly integrate with the text.
% 
% Texts on molecular biology include a range of special graphs, e.\,g. multiple sequence alignments, membrane protein topologies, DNA sequencing chromatograms, protein domain diagrams, plasmid maps and others. The \pkg{texshade}\footnote{Beitz, E. (2000). \TeX shade: shading and labeling multiple sequence alignments using \LaTeXe. \textit{Bioinformatics}~\textbf{16}(2), 135--139.\\\url{http://ctan.org/tex-archive/macros/latex/contrib/texshade}.} and \pkg{textopo}\footnote{Beitz, E. (2000). \TeX topo: shaded membrane protein topology plots in \LaTeXe. \textit{Bioinformatics} \textbf{16}(11), 1050--1051.\\\url{http://ctan.org/tex-archive/macros/latex/contrib/textopo}.} packages cover alignments and topologies, respectively, but packages dedicated to the remaining graphs are absent. Admittedly, one may create those images with various external programs and then include them in the \TeX\ document. Nevertheless, purists (like the author of this document) might prefer a \TeX-based approach.
% 
% The \pkg{pgfmolbio} package aims at becoming such a purist solution. In the current development release, \pkg{pgfmolbio} is able to
% \begin{itemize}
% 	\item read DNA sequencing files in standard chromatogram format (\file{scf}) and draw the corresponding chromatogram;
% 	\item read protein domain information from Uniprot or general feature format files (\file{gff}) and draw domain diagrams.
% \end{itemize}
% To this end, \pkg{pgfmolbio} relies on routines from \pkg{pgf}'s \TikZ\ frontend and on the Lua scripting language implemented in Lua\TeX. Consequently, the package will not work directly with traditional engines like pdf\TeX. However, a converter module ensures a high degree of backward compatibility.
% 
% Since this is a development release, \pkg{pgfmolbio} presumably includes a number of bugs, and its commands and features are likely to change in future versions. Moreover, the current version is far from complete, but since time is scarce, I am unable to predict when (and if) additional functions become available. Nevertheless, I would greatly appreciate any comments or suggestions.
% 
% 
% \section{Getting Started}
% \label{sec:IntroGettingStarted}
% 
% Before you consider using \pkg{pgfmolbio}, please make sure that both your Lua\TeX\ (at least 0.70.2) and \pkg{pgf} (at least 2.10) installations are up-to-date. Once your \TeX\ system meets these requirements, just load \pkg{pgfmolbio} as usual, i.\,e. by
% 
% \DescribeMacro\usepackage[<module>]{pgfmolbio}
% 
% The package is divided into \textit{modules}, each of which produces a certain type of graph. Currently, three \ometa{module}s are available:
% \begin{itemize}
% 	\item \module{chromatogram} (chapter~\ref{cha:Chromatogram}) allows you to draw DNA sequencing chromatograms obtained by the Sanger sequencing method.
% 	\item \module{domains} (chapter~\ref{cha:Domains}) provides macros for drawing protein domain diagrams and is also able to read domain information from files in Uniprot or general feature format.
% 	\item Furthermore, \module{convert} (chapter~\ref{cha:Convert}) is used with one of the modules above and generates ``pure'' \TikZ\ code suitable for \TeX\ engines lacking Lua support.
% \end{itemize}
% 
% \DescribeMacro\pgfmolbioset[<module>]{<key-value list>}
% Fine-tunes the graphs produced by each \pkg{pgfmolbio} module. The possible keys are described in the sections on the respective modules.
%
%
%
% 
% \chapter{The \texorpdfstring{\module{chromatogram}}{chromatogram} module}
% \label{cha:Chromatogram}
% 
% 
% \section{Overview}
% \label{sec:ChrOverview}
% 
% The \module{chromatogram} module draws DNA sequencing chromatograms stored in standard chromatogram format (\file{scf}), which was developed by Simon Dear and Rodger Staden\footnote{Dear, S. and Staden, R. (1992). A standard file format for data from DNA sequencing instruments. \textit{DNA Seq.} \textbf{3}(2), 107--110.}. The documentation for the Staden package\footnote{\url{http://staden.sourceforge.net/}} describes the current version of the \file{scf} format in detail. As far as they are crucial to understanding the Lua code, we will discuss some details of this file format in the documented source code (section~\ref{sec:DocChrLua}). Note that \pkg{pgfmolbio} only supports \file{scf} version 3.00.
% 
% 
% \section{Drawing Chromatograms}
% \label{sec:ChrDrawingChromatograms}
% 
% \DescribeMacro\pmbchromatogram[<key-value list>]{<scf file>}
% The \module{chromatogram} module defines a single command, which reads a chromatogram from an \meta{scf file} and draws it with routines from \TikZ\ (Example~\ref{exa:ChrTikzpicture}). The options, which are set in the \ometa{key-value list}, configure the appearance of the chromatogram. The following sections will elaborate on the available keys.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrTikzpicture}
% \begin{examplecode}
% \begin{tikzpicture} % optional
% 	\pmbchromatogram{SampleScf.scf}
% \end{tikzpicture} % optional
% \end{examplecode}
% \end{exampletable}
% 
% Although you will often put |\pmbchromatogram| into a |tikzpicture| environment, you may actually use the macro on its own. \pkg{pgfmolbio} checks whether the command is surrounded by a |tikzpicture| and adds this environment if necessary.
% 
% 
% \section{Displaying Parts of the Chromatogram}
% \label{sec:ChrDisplayingParts}
% 
% \DescribeOption{chromatogram/}{sample range}{1-500 step 1}<lower>'-'<upper>[' step '<int>]\relax
% \opt{sample range} selects the part of the chromatogram which \pkg{pgfmolbio} should display. The value for this key consists of two or three parts, separated by the keywords |-| and |step|. The package will draw the chromatogram data between the \meta{lower} and \meta{upper} boundary. There are two ways of specifying these limits:
% \begin{enumerate}
% 	\item If you enter a number, \pkg{pgfmolbio} includes the data from the \meta{lower} to the \meta{upper} sample point (Example~\ref{exa:ChrLimitsSamplePoints}). A \textit{sample point} represents one measurement of the fluorescence signal along the time axis, where the first sample point has index 1. One peak comprises about 20 sample points.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrLimitsSamplePoints}
% \begin{examplecode}
% \pmbchromatogram[sample range=200-600]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 	\item If you enter the keyword |base| followed by an optional space and a number, the chromatogram starts or stops at the peak corresponding to the respective base. The first detected base peak has index 1. Compare Examples~\ref{exa:ChrLimitsSamplePoints} and~\ref{exa:ChrLimitsBases} to see the difference.
% \end{enumerate}
% The optional third part of the value for \opt{sample range} orders the package to draw every \ometa{int}th sample point. If your document contains large chromatograms or a great number of them, drawing fewer sample points increases typesetting time at the cost of image quality (Example~\ref{exa:ChrSampleStep}). Nevertheless, the key may be especially useful while optimizing the layout of complex chromatograms.
% 
% \begin{exampletable}[p]
% \caption{}
% \label{exa:ChrLimitsBases}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base60
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% \begin{exampletable}[p]
% \caption{}
% \label{exa:ChrSampleStep}
% \pgfmolbioset[chromatogram]{canvas height=1cm}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 20-base 50 step 1
% 	]{SampleScf.scf}
% \end{examplecode}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 20-base 50 step 2
% 	]{SampleScf.scf}
% \end{examplecode}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 20-base 50 step 4
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% 
% \section{General Layout}
% \label{sec:ChrGeneralLayout}
% 
% \DescribeOption{chromatogram/}{x unit}{0.2mm}<dimension>
% \DescribeOption{chromatogram/}{y unit}{0.01mm}<dimension>
% These keys set the horizontal distance between two consecutive sample points and the vertical distance between two fluorescence intensity values, respectively. Example~\ref{exa:Chrxyunit} illustrates how you can enlarge a chromatogram twofold by doubling these values.
% \begin{exampletable}
% \caption{}
% \label{exa:Chrxyunit}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		x unit=0.4mm,
% 		y unit=0.02mm
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}

% \DescribeOption{chromatogram/}{samples per line}{500}<number>
% \DescribeOption{chromatogram/}{baseline skip}{3cm}<dimension>
% A new chromatogram ``line'' starts after \meta{number} sample points, and the baselines of adjacent lines (i.\,e., the $y$-value of fluorescence signals with zero intensity) are separated by \meta{dimension}. In Example~\ref{exa:ChrSamplesPerLine}, you see two lines, each of which contains 250 of the 500 sample points drawn. Furthermore, the baselines are 3.5~cm apart.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrSamplesPerLine}
% \begin{examplecode}
% \begin{tikzpicture}%
% 		[decoration=brace]
% 	\pmbchromatogram[%
% 			sample range=401-900,
% 			samples per line=250,
% 			baseline skip=3.5cm
% 		]{SampleScf.scf}
% 	\draw[decorate]
% 		(-0.1cm, -3.5cm) -- (-0.1cm, 0cm)
% 		node[pos=0.5, rotate=90, above=5pt]
% 			{baseline skip};
% \end{tikzpicture}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeOption[/.style=]{chromatogram/}{canvas style}{draw=none, fill=none}<style>\newpage
% \DescribeOption{chromatogram/}{canvas height}{2cm}<dimension>
%
% The \textit{canvas} is the background of the trace area. Its left and right boundaries coincide with the start and the end of the chromatogram, respectively. Its lower boundary is the baseline, and its upper border is separated from the lower one by \meta{dimension}. Although the canvas is usually transparent, its \meta{style} can be changed. In Example~\ref{exa:ChrCanvasStyle}, we decrease the height of the canvas and color it light gray.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrCanvasStyle}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		canvas style/.style={draw=none, fill=black!10},
% 		canvas height=1.6cm
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% 
% \section{Traces}
% \label{sec:ChrTraces}
% 
% \DescribeOption[/.style=]{chromatogram/}{trace A style}{pmbTraceGreen}<style>
% \DescribeOption[/.style=]{chromatogram/}{trace C style}{pmbTraceBlue}<style>
% \DescribeOption[/.style=]{chromatogram/}{trace G style}{pmbTraceBlack}<style>
% \DescribeOption[/.style=]{chromatogram/}{trace T style}{pmbTraceRed}<style>
% \DescribeOption{chromatogram/}{trace style}{\textrm{(none)}}<style>
% The \textit{traces} indicate variations in fluorescence intensity during chromatography, and each trace corresponds to a base. The first four keys set the respective \meta{style} basewise, whereas \opt{trace style} changes all styles simultaneously. Note the syntax differences between \opt{trace style} and \opt{trace A style} etc. The standard styles simply color the traces; Table~\ref{tab:pmbColors} lists the color specifications.
% 
% \begin{table}[h]
% 	\centering
% 	\caption{Colors defined by the \module{chromatogram} module.}
% 	\label{tab:pmbColors}
% 	\begin{tabular}{*3{>{\ttfamily}l}l}
% 		\toprule
% 		Name          & \pkg{xcolor} model & Values & Example \\
% 		\midrule
% 		pmbTraceGreen  & RGB & ~34, 114, ~46 & \color{pmbTraceGreen}\rule{3cm}{1ex} \\
% 		pmbTraceBlue   & RGB & ~48, ~37, 199 & \color{pmbTraceBlue}\rule{3cm}{1ex} \\
% 		pmbTraceBlack  & RGB & ~~0, ~~0, ~~0 & \color{pmbTraceBlack}\rule{3cm}{1ex} \\
% 		pmbTraceRed    & RGB & 191, ~27, ~27 & \color{pmbTraceRed}\rule{3cm}{1ex} \\
% 		pmbTraceYellow & RGB & 233, 230, ~~0 & \color{pmbTraceYellow}\rule{3cm}{1ex} \\
% 		\bottomrule
% 	\end{tabular}
% \end{table}
% 
% In Example~\ref{exa:ChrTraceStyle}, we change the style of all traces to a thin line and then add some patterns and colors to the A and T trace.
% \begin{exampletable}[h]
% \caption{}
% \label{exa:ChrTraceStyle}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		trace style=thin,
% 		trace A style/.append style={dashdotted, green},
% 		trace T style/.style={thick, dashed, purple}
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeOption{chromatogram/}{traces drawn}{ACGT}'A|C|G|T|'!\textrm{any combination thereof}!
% The value of this key governs which traces appear in the chromatogram. Any combination of the single-letter abbreviations for the standard bases will work. Example~\ref{exa:ChrTracesDrawn} only draws the cytosine and guanine traces.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrTracesDrawn}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		traces drawn=CG
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% 
% \section{Ticks}
% \label{sec:ChrTicks}
% 
% \DescribeOption[/.style=]{chromatogram/}{tick A style}{thin, pmbTraceGreen}<style>
% \DescribeOption[/.style=]{chromatogram/}{tick C style}{thin, pmbTraceBlue}<style>
% \DescribeOption[/.style=]{chromatogram/}{tick G style}{thin, pmbTraceBlack}<style>
% \DescribeOption[/.style=]{chromatogram/}{tick T style}{thin, pmbTraceRed}<style>
% \DescribeOption{chromatogram/}{tick style}{\textrm{(none)}}<style>
% \textit{Ticks} below the baseline indicate the maxima of the trace peaks. The first four keys set the respective \meta{style} basewise, whereas \opt{tick style} changes all styles simultaneously. Note the syntax differences between \opt{tick style} and \opt{tick A style} etc. Example~\ref{exa:ChrTickStyle} illustrates how one can draw thick ticks, which are red if they indicate a cytosine peak.
% \begin{exampletable}[ht]
% \caption{}
% \label{exa:ChrTickStyle}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		tick style=thick,
% 		tick C style/.append style={red}
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeOption{chromatogram/}{tick length}{1mm}<dimension>
% This key determines the length of each tick. In Example~\ref{exa:ChrTickLength}, the ticks are twice as long as usual.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrTickLength}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		tick length=2mm
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeOption{chromatogram/}{ticks drawn}{ACGT}'A|C|G|T|'!\textrm{any combination thereof}!
% The value of this key governs which ticks appear in the chromatogram. Any combination of the single-letter abbreviations for the standard bases will work. Example~\ref{exa:ChrTicksDrawn} only displays the cytosine and guanine ticks.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrTicksDrawn}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		ticks drawn=CG
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% 
% \section{Base Labels}
% \label{sec:ChrBaseLabels}
% 
% \DescribeOption{chromatogram/}{base label A text}{\cs{strut} A}<text>
% \DescribeOption{chromatogram/}{base label C text}{\cs{strut} C}<text>
% \DescribeOption{chromatogram/}{base label G text}{\cs{strut} G}<text>
% \DescribeOption{chromatogram/}{base label T text}{\cs{strut} T}<text>
% \textit{Base labels} below each tick spell the nucleotide sequence deduced from the traces. By default, the \meta{text} that appears in these labels equals the single-letter abbreviation of the respective base. The |\strut| macro ensures equal vertical spacing. In Example~\ref{exa:ChrBaseLabelText}, we print lowercase letters beneath adenine and thymine.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrBaseLabelText}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		base label A text=\strut a,
% 		base label T text=\strut t
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeOption[/.style=]{chromatogram/}{base label A style}{below=4pt, font=\cs{ttfamily}\cs{footnotesize}, pmbTraceGreen}<style>
% \DescribeOption[/.style=]{chromatogram/}{base label C style}{below=4pt, font=\cs{ttfamily}\cs{footnotesize}, pmbTraceBlue}<style>
% \DescribeOption[/.style=]{chromatogram/}{base label G style}{below=4pt, font=\cs{ttfamily}\cs{footnotesize}, pmbTraceBlack}<style>
% \DescribeOption[/.style=]{chromatogram/}{base label T style}{below=4pt, font=\cs{ttfamily}\cs{footnotesize}, pmbTraceRed}<style>
% \DescribeOption{chromatogram/}{base label style}{\textrm{(none)}}<style>
% The first four keys set the respective \meta{style} basewise, whereas \opt{base label style} changes all styles simultaneously. Each base label is a \TikZ\ node anchored to the lower end of the respective tick. Thus, the \meta{style} should contain placement keys such as |below| or |anchor=south|. Example~\ref{exa:ChrBaseLabelStyle} shows some (imaginative) base label styles.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrBaseLabelStyle}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		base label style=%
% 			{below=2pt, font=\sffamily\footnotesize},
% 		base label T style/.append style=%
% 			{below=4pt, font=\tiny}
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeOption{chromatogram/}{base labels drawn}{ACGT}'A|C|G|T|'!\textrm{any combination thereof}!
% The value of this key governs which base labels appear in the chromatogram. Any combination of the single-letter abbreviations for the standard bases will work. Example~\ref{exa:ChrBaseLabelsDrawn} only displays cytosine and guanine base labels.
% \begin{exampletable}[ht]
% \caption{}
% \label{exa:ChrBaseLabelsDrawn}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		base labels drawn=CG
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% 
% \section{Base Numbers}
% \label{sec:ChrBaseNumbers}
% 
% \DescribeOption{chromatogram/}{show base numbers}{true}<boolean>
% Turns the \textit{base numbers} on or off, which indicate the indices of the base peaks below the traces.
% \DescribeOption[/.style=]{chromatogram/}{base number style}{pmbTraceBlack, below=-3pt, font=\cs{sffamily}\cs{tiny}}<style>
%  Determines the placement and appearance of the base numbers. Example~\ref{exa:ChrBaseNumberStyle} contains bold red base numbers that are shifted slightly upwards.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrBaseNumberStyle}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 40-base 50,
% 		base number style/.style={below=-3pt,%
% 			font=\rmfamily\bfseries\tiny, red}
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeOption{chromatogram/}{base number range}{auto-auto step 10}<lower>'-'<upper>[' step '<interval>]
% This key decides that every \ometa{interval}th base number from \meta{lower} to \meta{upper} should show up in the output; the |step| part is optional. If you specify the keyword |auto| instead of a number for \meta{lower} or \meta{upper}, the base numbers start or finish at the leftmost or rightmost base peak shown, respectively. In Example~\ref{exa:ChrBaseNumberRange}, only peaks 42 to 46 receive a number.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrBaseNumberRange}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 40-base 50,
% 		base number range=42-46 step 1,
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% 
% \section{Probabilities}
% \label{sec:ChrProbabilities}
% 
% Programs such as \file{phred}\footnote{Ewing, B., Hillier, L., Wendl, M.\,C., and Green, P. (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. \textit{Genome Res.} \textbf{8}(3), 175--185.} assign a \textit{probability} or \textit{quality value} $Q$ to each called base after chromatography. $Q$ is calculated from the error probability $P_e$ by $Q = -10 \log_{10} P_e$. For example, a $Q$ value of 20 means that 1 in 100 base calls is wrong.
% 
% \DescribeOption{chromatogram/}{probability distance}{0.8cm}<dimension>
% Sets the distance between the base probability rules and the baseline.
% \DescribeOption{chromatogram/}{probabilities drawn}{ACGT}'A|C|G|T|'!\textrm{any combination thereof}!
% Governs which probabilities appear in the chromatogram. Any combination of the single-letter abbreviations for the standard bases will work. In Example~\ref{exa:ChrProbabilities}, we shift the probability indicator upwards and only show the quality values of cytosine and thymine peaks.
% \begin{exampletable}
% \caption{}
% \label{exa:ChrProbabilities}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 10-base 30,
% 		probabilities drawn=CT,
% 		probability distance=1mm
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeOption{chromatogram/}{probability style function}{nil}<Lua function name>
% By default, the probability rules are colored black, red, yellow and green for quality scores $<10$, $<20$, $<30$ and $\geq30$, respectively. However, you can override this behavior by providing a \meta{Lua function name} to \opt{probability style function}. This Lua function must read a single argument of type number and return a string appropriate for the optional argument of \TikZ's |\draw| command. For instance, the function shown in Example~\ref{exa:ChrProbStyleFunction} determines the lowest and highest probability and colors intermediate values according to a red--yellow--green gradient.
% \begin{exampletable}[htp]
% \caption{}
% \label{exa:ChrProbStyleFunction}
% \begin{examplecode}
% \directlua{
% 	function probabilityGradient (prob)
% 		local minProb, maxProb = pmbChromatogram:getMinMaxProbability()
% 		local scaledProb = prob / maxProb * 100
% 		local color = ''
% 		if scaledProb < 50 then
% 			color = 'yellow!' .. scaledProb * 2 .. '!red'
% 		else
% 			color = 'green!' .. (scaledProb - 50) * 2 .. '!yellow'
% 		end
% 		return 'ultra thick, ' .. color
% 	end
% }
% \pmbchromatogram[%
% 		samples per line=1000,
% 		sample range=base 1-base 50,
% 		probability style function=probabilityGradient
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
%
%
% \section{Miscellaneous Keys}
% \label{sec:ChrMiscKeys}
% 
% \DescribeOption{chromatogram/}{bases drawn}{ACGT}'A|C|G|T|'!\textrm{any combination thereof}!
% This key simultaneously sets \opt{traces drawn}, \opt{ticks drawn}, \opt{base labels drawn} and \opt{probabilities drawn} (see Example~\ref{exa:ChrBasesDrawn}).
% \begin{exampletable}[p]
% \caption{}
% \label{exa:ChrBasesDrawn}
% \begin{examplecode}
% \pmbchromatogram[%
% 		sample range=base 50-base 60,
% 		bases drawn=AC
% 	]{SampleScf.scf}
% \end{examplecode}
% \end{exampletable}
% 
% 
% 
% \chapter{The \texorpdfstring{\module{domains}}{domains} module}
% \label{cha:Domains}
% 
% \section{Overview}
% \label{sec:DomOverview}
% 
% Protein domain diagrams appear frequently in databases such as Pfam\footnote{Finn, R.\,D., Mistry, J. \textit{et al.} (2010). The Pfam protein families database. \textit{Nucleic Acids Res.} \textbf{38}, D211--D222.} or \textsc{prosite}\footnote{Sigrist, C.\,J.\,A., Cerutti, L. \textit{et al.} (2010). \textsc{prosite}, a protein domain database for functional characterization and annotation. \textit{Nucleic Acids Res.} \textbf{38}, D161--D166.}. Domain diagrams are often drawn using standard graphics software or tools such as \textsc{prosite}'s MyDomains image creator\footnote{\url{http://prosite.expasy.org/mydomains/}}. However, the \module{domains} module provides an integrated approach for generating domain diagrams from \TeX\ code or from external files.
% 
% 
% \section{Domain Diagrams and Their Features}
% \label{sec:DomDiagrams}
% 
% \DescribeEnv[\meta{features}]{pmbdomains}[<key-value list>]{<sequence length>}
% Draws a domain diagram with the \meta{features} given. The \ometa{key-value list} configures its appearance. \meta{sequence length} is the total number of residues in the protein. (Although you must eventually specify a sequence length, you may actually leave the mandatory argument empty and use the \opt{sequence length} key instead; see section~\ref{sec:DomFileInput}).
% 
% You can put a |pmbdomains| environment into a |tikzpicture|, but you also may use the environment on its own. \pkg{pgfmolbio} checks whether it is surrounded by a |tikzpicture| and adds this environment if necessary.
%
% \DescribeOption{domains/}{name}{Protein}<text>
% The name of the protein, which usually appears centered above the diagram.
% 
% \DescribeOption{domains/}{show name}{true}<boolean>
% Determines whether both the name and sequence length are shown.
% 
% \DescribeMacro\addfeature[<key-value list>]{<type>}{<start>}{<stop>}
% Adds a feature of the given \meta{type} to the current domain diagram (only defined inside |pmbdomains|). The feature spans the residues from \meta{start} to \meta{stop}. These arguments are either numbers, which refer to residues in the relative numbering scheme, or numbers in parentheses, which refer to absolute residue numbers (see section~\ref{sec:DomGeneralLayout}).
% 
% \DescribeOption{domains/}{description}{\textrm{(none)}}<text>
% Sets the feature description (Example~\ref{exa:DomTikzpicture}).
% 
% \begin{exampletable}
% \caption{}
% \label{exa:DomTikzpicture}
% \begin{examplecode}
% \begin{tikzpicture} % optional
% 	\begin{pmbdomains}[name=\TeX ase]{200}
% 		\addfeature{disulfide}{40}{129}
% 		\addfeature{disulfide}{53}{65}
% 		\addfeature[description=Domain 1]{domain}{30}{80}
% 		\addfeature[description=Domain 2]{domain}{93}{163}
% 		\addfeature{domain}{168}{196}
% 	\end{pmbdomains}
% \end{tikzpicture} % optional
% \end{examplecode}
% \end{exampletable}
%
%
% \section{General Layout}
% \label{sec:DomGeneralLayout}
%
% \DescribeOption{domains/}{x unit}{0.5mm}<dimension>
% The width of a single residue.
% 
% \DescribeOption{domains/}{y unit}{6mm}<dimension>
% The height of a default \texttt{domain} feature.
%
% \DescribeOption{domains/}{residues per line}{200}<number>
% A new domain diagram ``line'' starts after \meta{number} residues.
% 
% \DescribeOption{domains/}{baseline skip}{3}<factor>
% The baselines of consecutive lines (i.\,e., the main chain $y$-coordinates) are separated by \meta{factor} times the value of \opt{y unit}. In Example~\ref{exa:DomResiduesPerLine}, you see four lines, each of which contains up to 30~residues. Note how domains are correctly broken across lines. Furthermore, the baselines are $2 \times 4 = 8$~mm apart.
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomResiduesPerLine}
% \begin{examplecode}
% \begin{pmbdomains}%
% 		[show name=false, x unit=2mm, y unit=4mm,
% 		residues per line=30, baseline skip=2]{110}
% 	\addfeature[description=Domain 1]{domain}{10}{23}
% 	\addfeature[description=Domain 2]{domain}{29}{71}
% 	\addfeature[description=Domain 3]{domain}{80}{105}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeOption{domains/}{residue numbering}{auto}<numbering scheme>
% A protein's amino acid residues are usually numbered consecutively starting from~1. However, there are different numbering schemes. For example, residue numbering in a serine protease related to chymotrypsin typically follows the numbering in chymotrypsinogen\footnote{Bode, W., Mayr, I. \textit{et al.} (1989). The refined 1.9 Å crystal structure of human $\alpha$-thrombin: interaction with \textsc{d}-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. \textit{EMBO J.} \textbf{8}(11), 3467--3475.}. The target protease sequence is aligned to the chymotrypsinogen sequence, and equivalent residues receive the same number. Insertions into the target sequence are indicated by appending letters to the last aligned residue (e.\,g., 186, \textit{186A}, \textit{186B}, 187), whereas gaps in the target sequence cause gaps in the numbering (e.\,g., 124, 125, 128, 129).
%
% In \pkg{pgfmolbio}, you can specify a relative \meta{numbering scheme} via the \opt{residue numbering} key. The keyword |auto| indicates that residues are numbered from 1 to (sequence length), i.\,e. absolute and relative numberings coincide. This is the case in all examples above. The complete syntax for the key is
% \begin{quote}
% 	\meta{numbering scheme} := \MacroArgs{<range>[','<range>', ...']}\\
% 	\meta{range} := \MacroArgs<start>'-'<end>' | '<start>\\
% 	\meta{start} := \MacroArgs<number>' | '<number><letter>\\
% 	\meta{end} := \MacroArgs<number>' | '<letter>
% \end{quote}
% 
% Example~\ref{exa:DomResidueNumbering} shows a custom \meta{numbering scheme}, in this case for kallikrein-related peptidase 2 (KLK2), a chymotrypsin-like serine proteases. (In the following explanation, the subscripts `abs' and `rel' denote absolute and relative numbering, respectively).
% \begin{itemize}
% 	\item Residue 1\textsubscript{abs} is labeled 16\textsubscript{rel}, residue 2\textsubscript{abs} is labeled 17\textsubscript{rel} etc. until residue 24\textsubscript{abs}, which is labeled 39\textsubscript{rel} (range |16-39|).
% 	\item Residue 25\textsubscript{abs} corresponds to 41\textsubscript{rel} etc. until residue 57\textsubscript{abs}/73\textsubscript{rel} (range |41-73|).
% 	\item Residue 40\textsubscript{rel} is missing -- no residue in KLK2 is equivalent to residue 40 in chymotrypsinogen.
% 	\item An insertion of 11 amino acids follows residue 95\textsubscript{rel}. These residues are numbered from 95A\textsubscript{rel} to 95K\textsubscript{rel}. Note that both |95A-K| and |95A-95K| are valid ranges.
% 	\item The number of the last residue is 245A\textsubscript{rel}(range |245A|).
% \end{itemize}
% 
% \begin{exampletable}
% \caption{}
% \label{exa:DomResidueNumbering}
% \begin{examplecode}
% \begin{pmbdomains}[%
% 		sequence=IVGGWECEKHSQPWQVAVYSHGWAHCGGVLVHPQWVLTAAHCLK%
% 			KNSQVWLGRHNLFEPEDTGQRVPVSHSFPHPLYNMSLLKHQSLRPDEDSSH%
% 			DLMLLRLSEPAKITDVVKVLGLPTQEPALGTTCYASGWGSIEPEEFLRPRS%
% 			LQCVSLHLLSNDMCARAYSEKVTEFMLCAGLWTGGKDTCGGDSGGPLVCNG%
% 			VLQGITSWGPEPCALPEKPAVYTKVVHYRKWIKDTIAANP,
% 		residue numbering={16-39,41-73,75-95,95A-K,96-125,%
% 			128-186,186A-186B,187-203,208-223,223A,224-245,245A},
% 		x unit=4mm,
% 		residues per line=40,
% 		show name=false,
% 		ruler range=auto-auto step 1,
% 		ruler distance=-.3,
% 		baseline skip=2
% 	]{237}
% 	\setfeaturestyle{other/main chain}{*1{draw, line width=2pt, black!10}}
% 	\addfeature{other/sequence}{16}{245A}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeOption{domains/}{residue range}{auto-auto}<lower>'-'<upper>
% All residues from \meta{lower} to \meta{upper} will appear in the output. Possible values for \meta{lower} and \meta{upper} are:
% \begin{itemize}
% 	\item |auto|, which indicates the first or last residue, respectively;
% 	\item a plain number, which denotes a residue in the \textit{relative} numbering scheme set by \opt{residue numbering};
% 	\item a parenthesized number, which denotes a residue in the \textit{absolute} numbering scheme.
% \end{itemize}
% In Example~\ref{exa:DomResidueRange}, only residues 650\textsubscript{abs} to 850\textsubscript{rel} are shown. If a domain boundary lies outside of the range shown, only the appropriate part of the domain appears.
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomResidueRange}
% \begin{examplecode}
% \begin{pmbdomains}[%
% 		show name=false, residue range=(650)-850,
% 		residue numbering={1-500,601-1100}]{1000}
% 	\addfeature[description=Domain 1]{domain}{(630)}{(660)}
% 	\addfeature[description=Domain 2]{domain}{(680)}{(710)}
% 	\addfeature[description=Domain 3]{domain}{840}{1000}
% 	\addfeature[description=Domain 4 (invisible)]{domain}{1010}{1040}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeOption{domains/}{enlarge left}{0cm}<dimension>
% \DescribeOption{domains/}{enlarge right}{0cm}<dimension>
% \DescribeOption{domains/}{enlarge top}{1cm}<dimension>
% \DescribeOption{domains/}{enlarge bottom}{0cm}<dimension>
% % \pkg{pgfmolbio} clips features that would protrude into the left or right margin. However, limits in the \TikZ\ clipping mechanism prevent correct automatic updates of the bounding box for the domain diagram. Although the package tries hard to establish a bounding box that is sufficiently large, the process may require manual intervention. To this end, each \opt{enlarge ...} key enlarges the bounding box at the respective side (Example~\ref{exa:DomEnlargeBB}).
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomEnlargeBB}
% \begin{examplecode}
% \tikzset{%
% 	baseline, tight background,%
% 	background rectangle/.style={draw=red, thick}%
% }
% \pgfmolbioset[domains]{show name=false, y unit=1cm, show ruler=false}
% 
% \begin{tikzpicture}[show background rectangle]
% 	\begin{pmbdomains}{80}
% 		\addfeature[description=Oops!]{domain}{20}{60}
% 	\end{pmbdomains}
% \end{tikzpicture}
% \begin{tikzpicture}[show background rectangle]
% 	\begin{pmbdomains}[enlarge bottom=-5mm]{80}
% 		\addfeature[description=Better!]{domain}{20}{60}
% 	\end{pmbdomains}
% \end{tikzpicture}
% \end{examplecode}
% \end{exampletable}
%
%
% \section{Feature Styles and Shapes}
% \label{sec:DomFeatureStylesAndShapes}
%
% Each (implicit and explicit) feature of a domain chart has a certain \textit{shape} and \textit{style}. For instance, you can see five different feature \textit{shapes} in Example~\ref{exa:DomTikzpicture}: We explicitly added two features of shape (and type) \texttt{disulfide} and three features of shape \texttt{domain}. Furthermore, the package implicitly included features of shape \texttt{other/name}, \texttt{other/main chain} and \texttt{other/ruler}. 
% 
% Although the three \texttt{domain} features agree in shape, they differ in color, or (more generally) \textit{style}. Since \pkg{pgfmolbio} distinguishes between shapes and styles, you may draw equally shaped features with different colors, strokes, shadings etc.
%
% \DescribeMacro\setfeaturestyle{<type>}{<style list>}
% Specifies a \meta{style list} for the given feature \meta{type}. The complete syntax ist
% 
% \begin{quote}
% 	\meta{style list} := \MacroArgs{<style list item>[','<style list item>', ...']}\\
% 	\meta{style list item} := \MacroArgs<multiplier><style>\\
% 	\meta{multiplier} := \MacroArgs['*'<number>]\\
% 	\meta{style} := \MacroArgs<single key-value pair>' | '{<key-value list>}
% \end{quote}
% 
% A style list item of the general form |*|\meta{n}|{|\meta{style}|}| instructs the package to repeat the \meta{style} \meta{n}-times. (This syntax is reminiscent of column specifications in a |tabular| environment. However, do \textit{not} enclose numbers with more than one digit in curly braces!) You may omit the trivial multiplier |*1|, but never forget the curly braces surrounding a \meta{style} that contains two or more key-value pairs. Furthermore, \pkg{pgfmolbio} loops over the style list until all features have been drawn.
% 
% For instance, the style list in Example~\ref{exa:DomFeatureStyle} fills the first feature red, then draws a green one with a thick stroke, and finally draws two dashed blue features. 
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureStyle}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false]{200}
% 	\setfeaturestyle{domain}%
% 		{fill=red, {thick, fill=green}, *2{blue, dashed}}
% 	\addfeature{domain}{11}{30}
% 	\addfeature{domain}{41}{60}
% 	\addfeature{domain}{71}{90}
% 	\addfeature{domain}{101}{120}
% 	\addfeature{domain}{131}{150}
% 	\addfeature{domain}{161}{180}
% 	\addfeature{domain}{191}{200}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}

% \DescribeOption{domains/}{style}{\textrm{(empty)}}<style>
% Although |\setfeaturestyle| may appear in a |pmbdomains| environment, changes introduced in this way are not limited to the current \TeX\ group (since feature styles are stored in Lua variables). Instead, use the \opt{style} key to locally override a feature style (Example~\ref{exa:DomFeatureStyleKey}).
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureStyleKey}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false]{100}
% 	\addfeature{domain}{11}{30}
% 	\begingroup
% 		\setfeaturestyle{domain}{{thick, fill=red}}
% 		\addfeature{domain}{41}{60}
% 	\endgroup
% 	\addfeature{domain}{71}{90} % the new style persists ...
% \end{pmbdomains}
% 
% \begin{pmbdomains}[show name=false]{100}
% 	\addfeature{domain}{11}{30}
% 	\addfeature[style={thick, fill=red}]{domain}{41}{60}
% 	\addfeature{domain}{71}{90} % correct solution
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeMacro\setfeaturestylealias{<new type>}{<existing type>}
% After calling this macro, the \meta{new type} and \meta{existing type} share a common style, while they still differ in their shapes.
%
% \DescribeMacro\setfeatureshape{<type>}{<TikZ code>}\relax
% Defines a new feature shape named \meta{type} or changes an existing one. \textbf{Caution:} If you change a shape within |pmbdomains|, you will also change the features of equal type that you already added. Thus, it is best to use |\setfeatureshape| only outside of this environment.
% 
% \begin{exampletable}[p]
% \caption{}
% \label{exa:DomFeatureShape1}
% \begin{examplecode}
% \setfeatureshape{domain}{%
% 	\draw [/pgfmolbio/domains/current style]
% 		(\xLeft, \yMid + .5 * \pmbdomvalueof{y unit}) rectangle
% 		(\xRight, \yMid - .5 * \pmbdomvalueof{y unit});
% 	\node at (\xMid, \yMid) {\pmbdomvalueof{description}};
% }
% 
% \begin{pmbdomains}[show name=false]{200}
% 	\addfeature[description=Domain 1]{domain}{30}{80}
% 	\addfeature[description=Domain 2]{domain}{93}{163}
% 	\addfeature[description=Domain 3]{domain}{168}{196}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \begin{exampletable}[p]
% \caption{}
% \label{exa:DomFeatureShape2}
% \begin{examplecode}
% \setfeatureshape{domain}{%
% 	\pgfmathsetmacro\middlecorners{%
% 		\xLeft + (\xRight - \xLeft) * .618%
% 	}
% 	\draw [/pgfmolbio/domains/current style]
% 		(\xLeft, \yMid + 2mm) --
% 		(\middlecorners pt, \yMid + 3mm) --
% 		(\xRight, \yMid) --
% 		(\middlecorners pt, \yMid - 3mm) --
% 		(\xLeft, \yMid - 2mm) --
% 		cycle;
% }
% 
% \begin{pmbdomains}[show name=false]{200}
% 	\addfeature[description=Domain 1]{domain}{30}{80}
% 	\addfeature[description=Domain 2]{domain}{93}{163}
% 	\addfeature[description=Domain 3]{domain}{168}{196}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureShape3}
% \begin{examplecode}
% \pgfdeclareverticalshading[bordercolor,middlecolor]{mydomain}{100bp}{
% 	color(0bp)=(bordercolor);
% 	color(25bp)=(bordercolor);
% 	color(40bp)=(middlecolor);
% 	color(60bp)=(middlecolor);
% 	color(75bp)=(bordercolor);
% 	color(100bp)=(bordercolor)
% }
% 
% \tikzset{%
% 	domain middle color/.code=\colorlet{middlecolor}{#1},%
% 	domain border color/.code=\colorlet{bordercolor}{#1}%
% }
% 
% \setfeatureshape{domain}{%
% 	\draw [shading=mydomain, rounded corners=2mm,
% 		/pgfmolbio/domains/current style]
% 		(\xLeft, \yMid + .5 * \pmbdomvalueof{y unit}) rectangle
% 		(\xRight, \yMid - .5 * \pmbdomvalueof{y unit});
% 	\node [above=3mm] at (\xMid, \yMid)
% 		{\pmbdomvalueof{domain font}{\pmbdomvalueof{description}}};
% }
% 
% \begin{pmbdomains}[show name=false]{200}
% 	\setfeaturestyle{domain}{%
% 		{domain middle color=yellow!85!orange,%
% 		domain border color=orange},%
% 		{domain middle color=green,%
% 		domain border color=green!50!black}%
% 		{domain middle color=cyan,%
% 		domain border color=cyan!50!black}%
% 	}
% 	\addfeature[description=Domain 1]{domain}{30}{80}
% 	\addfeature[description=Domain 2]{domain}{93}{163}
% 	\addfeature[description=Domain 3]{domain}{168}{196}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
% 
% Several commands that are only available in the \meta{TikZ code} allow you to design generic feature shapes:
% \begin{itemize}
% 	\item |\xLeft|, |\xMid| and |\xRight| expand to the left, middle and right $x$-coordinate of the feature. The coordinates are in a format suitable for |\draw| and similar commands.
% 	\item |\yMid| expands to the $y$-coordinate of the feature, i.\,e. the $y$-coordinate of the current line.
% 	\item You can access any values stored in the package’s \meta{key}s with the macro |\pmbdomvalueof{|\meta{key}|}|.
% 	\item The style key \opt{/pgfmolbio/domains/current style} represents the current feature style selected from the associated style list.
% \end{itemize}
% The commands above are available for all features. By contrast, the following macros are limited to certain feature types:
% \begin{itemize}
% 	\item |\featureSequence| provides the amino acid sequence of the current feature. This macro is only available for explicitly added features and for \texttt{other/main chain}.
% 	\item |\residueNumber| equals the current residue number. This macro is only available for shape \texttt{other/ruler} (see section~\ref{sec:DomRuler}).
% 	\item |\currentResidue| expands to a single letter amino acid abbreviation. This macro is only available for shape \texttt{other/sequence} (see section~\ref{sec:DomSequences}).
% \end{itemize}
%
% In Example~\ref{exa:DomFeatureShape1}, we develop a simple \texttt{domain} shape, which is a rectangle containing a centered label with the feature description. Example~\ref{exa:DomFeatureShape2} calculates an additional coordinate for a pentagonal domain shape and stores this coordinate in |\middlecorners|. Note that you have to insert ``pt'' after |\middlecorners| when using the stored coordinate. The domains in Example~\ref{exa:DomFeatureShape3} display a custom shading and inherit their style from the style list. 
%
% \DescribeMacro\setfeatureshapealias{<new type>}{<existing type>}
% After calling this macro, the \meta{new type} and \meta{existing type} share a common shape, while they still differ in their styles.
%
% \DescribeMacro\setfeaturealias{<new type>}{<existing type>}
% This is a shorthand for calling both |\setfeatureshape| and |\setfeaturestyle|.
%
%
% \section{Standard Features}
% \label{sec:DomStandardFeatures}
% 
% \pkg{pgfmolbio} provides a range of standard features. This section explains simple features (i.\,e., those that support no or only few options), while later sections cover advanced ones. Some features include predefined aliases, which facilitate inclusion of external files (see section~\ref{sec:DomFileInput}).
%
% \DescribeFeature*{default}
% A fallback for undefined features, in which case \TeX\ issues a warning (Example~\ref{exa:DomFeatureDefault}).
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureDefault}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false]{100}
% 	\addfeature{default}{21}{50}
% 	\addfeature{unknown}{61}{90} % i.e. default shape/style
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeFeature{domain}{DOMAIN}
% A generic feature for protein domains. It consists of a rectangle with rounded corners and a label in the center, which shows the value of \opt{description}.
%
% \DescribeOption{domains/}{domain font}{\string\footnotesize}<font commands>
% Sets the font for the label of a \texttt{domain} feature. The last command may take a single argument (Example~\ref{exa:DomFeatureDomain}).
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureDomain}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false]{100}
% 	\addfeature[description=Domain 1]{domain}{21}{50}
% 	\addfeature[description=Domain 2,%
% 		domain font=\tiny\textit]{DOMAIN}{61}{90}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeFeature{signal peptide}{SIGNAL}
% Adds a signal peptide (Example~\ref{exa:DomFeatureProSignal}).
% 
% \DescribeFeature{propeptide}{PROPEP}
% Adds a propeptide (Example~\ref{exa:DomFeatureProSignal}).
% 
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureProSignal}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false]{100}
% 	\addfeature{signal peptide}{1}{15}
% 	\addfeature{propeptide}{16}{50}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeFeature{carbohydrate}{CARBOHYD}
% Adds glycosylation (Example~\ref{exa:DomFeatureCarbohyd}).
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureCarbohyd}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false]{100}
% 	\addfeature[description=GlcNAc]{carbohydrate}{25}{25}
% 	\addfeature[description=Xyl]{CARBOHYD}{60}{60}
% 	\addfeature[description=Domain 1]{domain}{21}{50}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeFeature*{other/main chain}
% This feature is automatically added to the feature list at the end of each |pmbdomains| environment. It represents the protein main chain, which appears as a grey line by default. Nevertheless, you can alter the backbone just like any other feature (Example~\ref{exa:DomFeatureMainchain}).
%
% \begin{exampletable}[p]
% \caption{}
% \label{exa:DomFeatureMainchain}
% \begin{examplecode}
% \setfeatureshape{other/main chain}{%
% 	\draw [/pgfmolbio/domains/current style]
% 		(\xLeft, \yMid + .5 * \pmbdomvalueof{y unit}) rectangle
% 		(\xRight, \yMid - .5 * \pmbdomvalueof{y unit});
% 	\draw (\xLeft, \yMid) --
% 		(\xLeft - 2mm, \yMid)
% 		node [left] {\tiny H$_2$N};
% 	\draw (\xRight, \yMid) --
% 		(\xRight + 2mm, \yMid)
% 		node [right] {\tiny COOH};
% }
% \begin{pmbdomains}%
% 		[show name=false, enlarge left=-0.8cm, enlarge right=1.2cm]{100}
% 	\setfeaturestyle{other/main chain}{{draw=black,fill=black!20}}
% 	\addfeature[description=1]{domain}{10}{25}
% 	\addfeature[description=2]{domain}{30}{55}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \DescribeFeature*{other/name}
% This feature is automatically added to the feature list at the end of each |pmbdomains| environment. It relates to the protein name, which is normally displayed at the top center of the chart, together with the number of residues (Example~\ref{exa:DomFeatureName}). The following auxiliary commands are available for the feature style \TikZ\ code: |\xLeft|, |\xMid|, |\xRight| and \opt{current style}.
%
% \begin{exampletable}[p]
% \caption{}
% \label{exa:DomFeatureName}
% \begin{examplecode}
% \setfeatureshape{other/name}{%
% 	\node [/pgfmolbio/domains/current style]
% 		at (\xLeft, \pmbdomvalueof{baseline skip}
% 			* \pmbdomvalueof{y unit} / 2)
% 		{A \pmbdomvalueof{sequence length} residues long protein
% 			called `\pmbdomvalueof{name}'};
% }
% \begin{pmbdomains}[name=\TeX ase]{150}
% 	\setfeaturestyle{other/name}{{font=\bfseries, right}}
% 	\addfeature[description=1]{domain}{10}{25}
% 	\addfeature[description=2]{domain}{55}{123}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
%
% \section{Disulfides and Ranges}
% \label{sec:DomDisulfides}
%
% \DescribeFeature{disulfide}{DISULFID}
% \pkg{pgfmolbio} indicates disulfide bridges by brackets above the main chain. Since disulfides are often interleaved in linear representations of proteins, the package automatically stacks them in order to avoid overlaps (Example~\ref{exa:DomFeatureDisulfide}).
%
% \DescribeOption{domains/}{level}{\textrm{(empty)}}<number>
% Manually sets the level of a disulfide feature.
% 
% \DescribeOption{domains/}{disulfide base distance}{1}<number>
% The distance (as a multiple of $y$-units) between the main chain and the first level.
% 
% \DescribeOption{domains/}{disulfide level distance}{.2}<number>
% The space (as a multiple of $y$-units) between levels (see the figure below).
%
% \begin{center}
% 	\begin{tikzpicture}[decoration=brace]
% 		\begin{pmbdomains}[show name=false, disulfide level distance=.6]{100}
% 			\setfeaturestyle{disulfide}{draw=red, draw=blue, draw=violet}
% 			\addfeature{disulfide}{2}{10}
% 			\addfeature{disulfide}{5}{50}
% 			\addfeature{disulfide}{8}{15}
% 			\addfeature{disulfide}{20}{45}
% 			\addfeature[level=1]{disulfide}{70}{85}
% 			\addfeature[level=1]{disulfide}{80}{92}
% 			\addfeature{domain}{25}{60}
% 			\draw [dashed, black!80]
% 				(-5 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit}) --
% 				(105 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit})
% 				node [right] {\small Level 1};
% 			\draw [dashed, black!60]
% 				(-5 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit} +
% 					\pmbdomvalueof{disulfide level distance} * \pmbdomvalueof{y unit}) --
% 				(105 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit} +
% 					\pmbdomvalueof{disulfide level distance} * \pmbdomvalueof{y unit})
% 				node [right] {\small Level 2};
% 			\draw [dashed, black!40]
% 				(-5 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit} +
% 					2 * \pmbdomvalueof{disulfide level distance} * \pmbdomvalueof{y unit}) --
% 				(105 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit} +
% 					2 * \pmbdomvalueof{disulfide level distance} * \pmbdomvalueof{y unit})
% 				node [right] {\small Level 3};
% 			\draw [decorate]
% 				(-6 * \pmbdomvalueof{x unit},
% 					0) --
% 				(-6 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit})
% 				node [pos=.5, left] {\small\texttt{disulfide base distance}};
% 			\draw [decorate]
% 				(-6 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit} +
% 					\pmbdomvalueof{disulfide level distance} * \pmbdomvalueof{y unit}) --
% 				(-6 * \pmbdomvalueof{x unit},
% 					\pmbdomvalueof{disulfide base distance} * \pmbdomvalueof{y unit} +
% 					2 * \pmbdomvalueof{disulfide level distance} * \pmbdomvalueof{y unit})
% 				node [pos=.5, left] {\small\texttt{disulfide level distance}};
% 		\end{pmbdomains}
% 	\end{tikzpicture}
% \end{center}
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureDisulfide}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false,
% 		disulfide base distance=.7,
% 		disulfide level distance=.4]{100}
% 	\setfeaturestyle{disulfide}{draw=red, draw=blue, draw=violet}
% 	\addfeature{disulfide}{2}{10}
% 	\addfeature{disulfide}{5}{50}
% 	\addfeature{disulfide}{8}{15}
% 	\addfeature{disulfide}{20}{45}
% 	\addfeature[level=1]{disulfide}{70}{85}
% 	\addfeature[level=1]{disulfide}{80}{92}
% 	\addfeature{domain}{25}{60}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
% 
% \begin{DescribeMacros}
% 	\Macro\setdisulfidefeatures{<key list>}
% 	\Macro\adddisulfidefeatures{<key list>}
% 	\Macro\removedisulfidefeatures{<key list>}
% \end{DescribeMacros}
% These macros edit the list of ``disulfide-like'' features, i.\,e. those subject to the automatic stacking mechanism. |\setdisulfidefeatures| renews this list, replacing any previous contents. |\adddisulfidefeatures| adds the features in its \meta{key list} to an existing list, while |\removedisulfidefeatures| removes selected features. By default, there are three disulfide-like features: \texttt{disulfide}, \texttt{DISULFID} and \texttt{range}. Note that |\setfeaturealias| and its relatives do not influence the list.
% 
% \DescribeFeature*{range}
% Indicates a range of residues. \texttt{range} features are disulfide-like in order to prevent them from overlapping.
%
% \DescribeOption{domains/}{range font}{\string\sffamily\string\scriptsize}<font commands>
% Changes the font for the range label. The last command may take a single argument (Example~\ref{exa:DomFeatureRange}).
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureRange}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false]{100}
% 	\addfeature[description=1]{domain}{10}{25}
% 	\addfeature[description=2]{domain}{40}{70}
% 	\addfeature[description=Range 1]{range}{15}{30}
% 	\addfeature[description=Range 2]{range}{25}{60}
% 	\addfeature[description=Range 3,%
% 		style={very thick, draw=black},%
% 		range font=\tiny\textcolor{red}]{range}{68}{86}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
%
% \section{Ruler}
% \label{sec:DomRuler}
%
% \DescribeFeature*{other/ruler}
% This feature is automatically added to the feature list at the end of each |pmbdomains| environment. It draws a ruler below the main chain, which indicates the residue numbers (Example~\ref{exa:DomFeatureRuler}). The following auxiliary commands are available for the feature style \TikZ\ code: |\xMid|, |\yMid|, |\residueNumber| and \opt{current style}.
% 
% \DescribeOption{domains/}{show ruler}{true}<boolean>
% Determines whether the rule is drawn.
%
% \DescribeOption{domains/}{ruler range}{auto-auto}<ruler range list>
% The complete syntax for \opt{ruler range} is
% \begin{quote}
% 	\meta{ruler range list} := \MacroArgs{<ruler range>[','<ruler range>', ...']}\\
% 	\meta{ruler range} := \MacroArgs<lower>'-'<upper>[' step '<interval>]\\
% 	\meta{lower} := \MacroArgs'auto | '<number>[<letter>]' | '(<number>)\\
% 	\meta{upper} := \MacroArgs'auto | '<number>[<letter>]' | '(<number>)\\
% 	\meta{interval} := \MacroArgs<number>
% \end{quote}
% Each \meta{ruler range} tells the package to mark every \ometa{interval}th residue from \meta{lower} to \meta{upper} by an \texttt{other/ruler} feature; the |step| part is optional. Possible values for \meta{lower} and \meta{upper} are:
% \begin{itemize}
% 	\item |auto|, which indicates the leftmost or rightmost residue shown, respectively;
% 	\item a plain number (with an optional letter), which denotes a residue in the \textit{relative} numbering scheme set by \opt{residue numbering};
% 	\item a parenthesized number, which denotes a residue in the \textit{absolute} numbering scheme.
% \end{itemize}
% 
% \DescribeOption{domains/}{default ruler step size}{50}<number>
% Step size for a \meta{ruler range} that lacks the optional |step| part.
% 
% \DescribeOption{domains/}{ruler distance}{-.5}<factor>
% Separation (multiples of the $y$-unit) between ruler and main chain (Example~\ref{exa:DomFeatureRuler}).
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureRuler}
% \begin{examplecode}
% \begin{pmbdomains}[x unit=2mm,
% 		show name=false,
% 		residue numbering={1-40,101-120},
% 		ruler range={auto-10 step 1, 31-(41), 110-120 step 2},
% 		default ruler step size=5,
% 		ruler distance=-.7]{60}
% 	\addfeature{domain}{10}{25}
% 	\addfeature{domain}{40}{(50)}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
%
% \section{Sequences}
% \label{sec:DomSequences}
%
% \DescribeOption{domains/}{sequence}{\textrm{empty}}<sequence>
% Sets the amino acid \meta{sequence} of a protein (single-letter abbreviations).
%
% \DescribeFeature*{other/sequence}
% Displays a sequence which is vertically centered at the main chain. Since a residue is only 0.5~mm wide by default, you should increase the \opt{x unit} when showing \texttt{sequence} features (Example~\ref{exa:DomFeatureSequence}).
% 
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureSequence}
% \begin{examplecode}
% \begin{pmbdomains}[%
% 		sequence=MGSKRSVPSRHRSLTTYEVMFAVLFVILV%
% 			ALCAGLIAVSWLSIQGSVKDAAFGKSHEARGTL,
% 		residues per line=50,
% 		x unit=2mm, show name=false,
% 		ruler range=auto-auto step 10]{50}
% 	\setfeaturestyle{other/sequence}{font=\ttfamily\footnotesize}
% 	\addfeature{domain}{20}{35}
% 	\addfeature{other/sequence}{7}{42}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \begin{DescribeMacros}
% 	\Macro\setfeatureprintfunction{<key list>}{<Lua function>}
% 	\Macro\removefeatureprintfunction{<key list>}
% 	\Macro\pmbdomdrawfeature{<type>}
% \end{DescribeMacros}
% Some features require sophisticated coordinate calculations. Hence, you might ocasionally want to call a Lua function as ``preprocessor'' before executing the \meta{TikZ code} of |\setfeatureshape|. For this purpose, |\setfeatureprintfunction| registers such a \meta{Lua function} and |\removefeatureprintfunction| deletes the preprocessing function(s) for all features in the \meta{key list}.
%
% A suitable Lua function
% \begin{itemize}
% 	\item receives up to six arguments in the following order (see also section~\ref{ssc:DocDomLuaPrintFunctions}):
% 		\begin{enumerate}
% 			\item A table describing the feature (see section~\ref{ssc:DocDomLuaProteinClass} for its fields);
% 			\item the left $x$-coordinate of the feature (an integer);
% 			\item its right $x$-coordinate (an integer);
% 			\item the $y$-coordinate of the current line (an integer);
% 			\item the dimension stored in \opt{x unit}, converted to scaled points (an integer);
% 			\item the dimension stored in \opt{y unit}, converted to scaled points (an integer);
% 		\end{enumerate}
% 	\item performs all necessary calculations and defines all \TeX\ macros required by |\setfeatureshape|;
% 	\item may execute |\pmbdomdrawfeature| with the appropriate feature \meta{type} to draw the feature.
% \end{itemize}
% 
%
% Example~\ref{exa:DomPrintFunction} devises a new print function, §printFunnySequence§ (lines 2--17). It is similar to the default print function for \texttt{other/sequence} features, but adds random values to the $y$-coordinate of the individual letters.
% 
% §printFunnySequence§ is a function with six arguments (line 2). We add the width of half a residue to the left $x$-coordinate, §xLeft§ (line 3), since each letter should be horizontally centered. We iterate over each letter in the §sequence§ field of the §feature§ table (lines 4--16). In each loop, calculated coordinates are stored in the \TeX\ macros |\xMid| (lines 5--7) and |\yMid| (lines 8--10). The construction |\string\\...| is expanded to |\\...| when §tex.sprint§ passes its argument back to \TeX. §pgfmolbio.dimToString§ converts a number representing a dimension in scaled points to a string (e.\,g., 65536 to ``1pt'', see section~\ref{sec:DocPkgLua}). The letter of the current residue is stored in |\currentResidue| (lines 11--13). Finally, each letter is drawn by calling |\pmbdomdrawfeature{other/sequence}| (line 14), and the $x$-coordinate increases by one (line 15). Line 25 registers §printFunnySequence§ for \texttt{other/sequence} features.
%
% \begin{exampletable}
% \caption{}
% \label{exa:DomPrintFunction}
% \begin{examplecode}
% \directlua{
% 	function printFunnySequence (feature, xLeft, xRight, yMid, xUnit, yUnit)
% 		xLeft = xLeft + 0.5
% 		for currResidue in feature.sequence:gmatch(".") do
% 			tex.sprint("\string\\def\string\\xMid{" ..
% 				pgfmolbio.dimToString(xLeft * xUnit) ..
% 				"}")
% 			tex.sprint("\string\\def\string\\yMid{" ..
% 				pgfmolbio.dimToString((yMid + math.random(-5, 5) / 20) * yUnit) ..
% 				"}")
% 			tex.sprint("\string\\def\string\\currentResidue{" ..
% 				currResidue ..
% 				"}")
% 			tex.sprint("\string\\pmbdomdrawfeature{other/sequence}")
% 			xLeft = xLeft + 1
% 		end
% 	end
% }
% 
% \begin{pmbdomains}[%
% 		sequence=MGSKRSVPSRHRSLTTYEVMFAVLFVILVALCAGLIAVSWLSIQGSVKDAAF,
% 		x unit=2mm, show name=false,
% 		ruler range=auto-auto step 10]{40}
% 	\setfeaturestyle{other/sequence}{font=\ttfamily\footnotesize}
% 	\setfeatureprintfunction{other/sequence}{printFunnySequence}
% 	\addfeature{domain}{20}{30}
% 	\addfeature{other/sequence}{7}{38}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeFeature*{other/magnified sequence above}
% Displays its sequence as a single string above the main chain, with dashed lines indicating the sequence start and stop on the backbone. This feature allows you to show sequences without the need to increase the \opt{x unit}.
% 
% \DescribeFeature*{other/magnified sequence below}
% Displays the sequence \textit{below} the backbone.
%
% \DescribeOption{domains/}{magnified sequence font}{\string\ttfamily\string\footnotesize}<font commands>
% The font used for a magnified sequence (Example~\ref{exa:DomFeatureMagnifiedSequence}).
% 
% \begin{exampletable}
% \caption{}
% \label{exa:DomFeatureMagnifiedSequence}
% \begin{examplecode}
% \begin{pmbdomains}[%
% 		sequence=MGSKRSVPSRHRSLTTYEVMFAVLFVIL%
% 			VALCAGLIAVSWLSIQGSVKDAAFGKSHEARGTL,
% 		enlarge left=-1cm, enlarge right=1cm, enlarge bottom=-1cm,
% 		show name=false, show ruler=false]{50}
% 	\addfeature{other/magnified sequence above}{7}{20}
% 	\addfeature[magnified sequence font=\scriptsize\sffamily]%
% 		{other/magnified sequence below}{34}{42}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
%
% \section{Secondary Structure}
% \label{sec:DomSecondaryStructure}
% 
% \DescribeOption{domains/}{show secondary structure}{false}<boolean>
% Determines whether the secondary structure is shown.
% 
% \DescribeOption{domains/}{secondary structure distance}{1}<factor>
% Secondary structures appear along a thin line \meta{factor} times the value of \opt{y unit} above the main chain. In accordance with the categories established by the Dictionary of Protein Secondary Structure\footnote{Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. \textit{Biopolymers} \textbf{22}(12), 2577--2637.}, \pkg{pgfmolbio} provides seven features for displaying secondary structure types (Example~\ref{exa:DomShowSecStructure}):
% 
% \begin{exampletable}
% \caption{}
% \label{exa:DomShowSecStructure}
% \begin{examplecode}
% \begin{pmbdomains}[%
% 		show name=false,
% 		sequence=MGSKRSVPSRHRSLTTYEVMFAVLFVILVALCAGL,
% 		x unit=2.5mm,
% 		enlarge top=1.5cm,
% 		ruler range=auto-auto step 1,
% 		show secondary structure=true,
% 		secondary structure distance=1.5
% 	]{35}
% 	\setfeaturestyle{other/sequence}{{font=\ttfamily\small}}
% 	\addfeature{alpha helix}{2}{8}
% 	\addfeature{pi helix}{9}{11}
% 	\addfeature{310 helix}{13}{18}
% 	\addfeature{beta strand}{20}{23}
% 	\addfeature{beta bridge}{25}{28}
% 	\addfeature{beta turn}{30}{31}
% 	\addfeature{bend}{33}{34}
% 	\addfeature{other/sequence}{1}{35}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeFeature{alpha helix}{HELIX}
% Shows an $\alpha$-helix.
% 
% \DescribeFeature*{pi helix}
% Shows a $\pi$-helix.
% 
% \DescribeFeature*{310 helix}
% Shows a $3_{10}$-helix.
% 
% \DescribeFeature{beta strand}{STRAND}
% Shows a $\beta$-strand.
% 
% \DescribeFeature{beta turn}{TURN}
% Shows a $\beta$-turn.
% 
% \DescribeFeature*{beta bridge}
% Shows a $\beta$-bridge.
% 
% \DescribeFeature*{bend}
% Shows a bend.
% 
% \begin{figure}
% 	\centering
% 	\caption{Shading colors of helix features.}
% 	\label{fig:DomHelixColors}
% 	\begin{tabular}{*4{>{\ttfamily}l}}
% 		\toprule
% 		\rmfamily\itshape Name & \multicolumn{3}{c}{\itshape \pkg{xcolor} definition} \\
% 		\cmidrule(lr){2-4}
% 			& \rmfamily $\alpha$-helix & \rmfamily $\pi$-helix & \rmfamily $3_{10}$-helix \\
% 		\midrule
% 		helix back border color  & \multicolumn{3}{c}{\ttfamily white!50!black \color{white!50!black}\rule{1ex}{1ex}} \\
% 		helix back main color    & \multicolumn{3}{c}{\ttfamily white!90!black \color{white!90!black}\rule{1ex}{1ex}} \\
% 		helix back middle color  & \multicolumn{3}{c}{\ttfamily white \color{white}\rule{1ex}{1ex}} \\
% 		\midrule
% 		helix front border color & red!50!black \color{red!50!black}\rule{1ex}{1ex}
% 			& yellow!50!black \color{yellow!50!black}\rule{1ex}{1ex}
% 			& magenta!50!black \color{magenta!50!black}\rule{1ex}{1ex} \\
% 		helix front main color & red!90!black \color{red!90!black}\rule{1ex}{1ex}
% 			& yellow!70!red~~ \color{yellow!70!red}\rule{1ex}{1ex}
% 			& magenta!90!black \color{magenta!90!black}\rule{1ex}{1ex} \\
% 		helix front middle color & red!10!white \color{red!10!white}\rule{1ex}{1ex}
% 			& yellow!10!white \color{yellow!10!white}\rule{1ex}{1ex}
% 			& magenta!10!white \color{magenta!10!white}\rule{1ex}{1ex} \\
% 		\bottomrule
% 	\end{tabular}\hspace*{-67pt}\par\bigskip
% 	\begin{tikzpicture}[font=\ttfamily\scriptsize]
% 		\makeatletter
% 		\draw [shading=helix full back] (1.5, 0) \@pmb@dom@helixsegment{1.5mm};
% 		\tikzset{left}
% 		\draw [->] (0, 0) node {helix back border color} -- (.5, 0);
% 		\draw [->] (0, .225) node {helix back main color} -- (.5, .225);
% 		\draw [->] (0, .675) node {helix back middle color} -- (.5, .675);
% 		\draw [->] (0, 1.575) node {helix back main color} -- (.5, 1.575);
% 		\draw [->] (0, 2.25) node {helix back border color} -- (.5, 2.25);
% 		\tikzset{right}
% 		\draw [shading=helix full front] (4, 0) [xscale=-1] \@pmb@dom@helixsegment{1.5mm};
% 		\draw [<-] (5, 0) -- (5.5, 0) node {helix front border color};
% 		\draw [<-] (5, .675) -- (5.5, .675) node {helix front main color};
% 		\draw [<-] (5, 1.575) -- (5.5, 1.575) node {helix front middle color};
% 		\draw [<-] (5, 2.025) -- (5.5, 2.025) node {helix front main color};
% 		\draw [<-] (5, 2.25) -- (5.5, 2.25) node {helix front border color};
% 		\tikzset{font=\rmfamily\scriptsize}
% 		\draw (-4, -.2) -- (-4, -.5) -- (2.5, -.5)
% 			node [pos=.5, below] {Shading \texttt{helix full back}}
% 			-- (2.5, -.2);
% 		\draw (3, -.2) -- (3, -.5) -- (9.5, -.5)
% 			node [pos=.5, below] {Shading \texttt{helix full front}}
% 			-- (9.5, -.2);
% 	\end{tikzpicture}
% \end{figure}
% 
% \begin{table}[p]
% 	\centering
% 	\caption{Customizing helices in the \module{domains} module.}
% 	\label{tab:DomHelixHelperFeatures}
% 	\begin{tabular}{*2{>{\ttfamily}l} *2{>{\ttfamily\color{ProcessBlue}}l}}
% 		\toprule
% 		\rmfamily\itshape (a) Subfeatures
% 			& \rmfamily\itshape (b) Corresponding shadings
% 			& \multicolumn{2}{l}{\itshape (c) Coordinates} \\
% 		\cmidrule(r){1-1}\cmidrule(r){2-2}\cmidrule{3-4}
% 		helix/half upper back  & helix half upper back  & \string\xLeft  & \string\yMid   \\
% 		helix/half lower back  & helix half lower back  & \string\xRight & \string\yMid   \\
% 		helix/full back        & helix full back        & \string\xMid   & \string\yLower \\
% 		helix/half upper front & helix half upper front & \string\xRight & \string\yMid   \\
% 		helix/full front       & helix full front       & \string\xMid   & \string\yLower \\
% 		\bottomrule
% 	\end{tabular}
% \end{table}
% 
% \begin{exampletable}[p]
% \caption{}
% \label{exa:DomHelixColors}
% \begin{examplecode}
% \begin{pmbdomains}[%
% 		show name=false,
% 		x unit=2.5mm,
% 		enlarge top=1.5cm,
% 		ruler range=auto-auto step 5,
% 		show secondary structure
% 	]{35}
% 	\setfeaturestyle{alpha helix}{%
% 		*1{helix front border color=blue!50!black,%
% 		helix front main color=orange,%
% 		helix front middle color=yellow!50},%
% 		*1{helix front border color=olive,%
% 		helix front main color=magenta,%
% 		helix front middle color=green!50}%
% 	}
% 	\addfeature{alpha helix}{2}{8}
% 	\addfeature{alpha helix}{9}{15}
% 	\addfeature{alpha helix}{20}{27}
% 	\addfeature{alpha helix}{30}{34}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
% 
% \begin{exampletable}[p]
% \caption{}
% \label{exa:DomHelixHelperFeature}
% \begin{examplecode}[basicstyle=\ttfamily\tiny]
% \pgfmathsetmacro\yShift{%
% 	\pmbdomvalueof{secondary structure distance}
% 		* \pmbdomvalueof{y unit}%
% }
% 
% \setfeatureshape{helix/half upper back}{%
% 	\draw [shading=helix half upper back]
% 		(\xLeft, \yMid + \yShift pt) --
% 		(\xLeft + .5 * \pmbdomvalueof{x unit},
% 			\yMid + 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		(\xLeft + 1.5 * \pmbdomvalueof{x unit},
% 			\yMid + 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		(\xLeft + \pmbdomvalueof{x unit}, \yMid + \yShift pt) --
% 		cycle;
% }
% 
% \setfeatureshape{helix/half lower back}{%
% 	\draw [shading=helix half lower back]
% 		(\xRight, \yMid + \yShift pt) --
% 		(\xRight - .5 * \pmbdomvalueof{x unit},
% 			\yMid - 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		(\xRight - 1.5 * \pmbdomvalueof{x unit},
% 			\yMid - 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		(\xRight - \pmbdomvalueof{x unit}, \yMid + \yShift pt) --
% 		cycle;
% }
% 
% \setfeatureshape{helix/full back}{%
% 	\draw [shading=helix full back]
% 		(\xMid, \yLower + \yShift pt) --
% 		(\xMid - \pmbdomvalueof{x unit}, \yLower + \yShift pt) --
% 		(\xMid, \yLower + 3 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		(\xMid + \pmbdomvalueof{x unit},
% 			\yLower + 3 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		cycle;
% }
% 
% \setfeatureshape{helix/half upper front}{%
% 	\draw [shading=helix half upper front]
% 		(\xRight, \yMid + \yShift pt) --
% 		(\xRight - .5 * \pmbdomvalueof{x unit},
% 			\yMid + 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		(\xRight - 1.5 * \pmbdomvalueof{x unit},
% 			\yMid + 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		(\xRight - \pmbdomvalueof{x unit}, \yMid + \yShift pt) --
% 		cycle;
% }
% 
% \setfeatureshape{helix/full front}{%
% 	\draw [shading=helix full front]
% 		(\xMid, \yLower + \yShift pt) --
% 		(\xMid + \pmbdomvalueof{x unit}, \yLower + \yShift pt) --
% 		(\xMid, \yLower + 3 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		(\xMid - \pmbdomvalueof{x unit},
% 			\yLower + 3 * \pmbdomvalueof{x unit} + \yShift pt) --
% 		cycle;
% }
% 
% \begin{pmbdomains}[%
% 		show name=false, sequence=MGSKRSVPSR,
% 		x unit=2.5mm, enlarge top=1.5cm,
% 		ruler range=auto-auto step 1,
% 		show secondary structure
% 	]{10}
% 	\setfeaturestyle{other/sequence}{{font=\ttfamily\small}}
% 	\addfeature{alpha helix}{2}{6}
% 	\addfeature{alpha helix}{8}{9}
% 	\addfeature{other/sequence}{1}{10}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
%
% \bigskip  While changing the appearance of nonhelical secondary structure elements is simple, the complex helical features employ the print function §printHelixFeature§ (section~\ref{ssc:DocDomLuaPrintFunctions}). However, their appearance can be customized on several levels:
% \begin{enumerate}
% 	\item The elements of a helical feature are drawn by five ``subfeatures'', which are called by §printHelixFeature§ (Table~\ref{tab:DomHelixHelperFeatures}a).
% 	\item For each subfeature, there is a corresponding shading (Table~\ref{tab:DomHelixHelperFeatures}b; see section~\ref{ssc:DocDomTexSecondaryStructure} and section~83 of the \TikZ\ manual for their definitions).
% 	\item These shadings use six colors in total, three for front and three for back shadings (Figure~\ref{fig:DomHelixColors}). For each color, there is a key of the same name, so you can change helix colors in feature style lists (Example~\ref{exa:DomHelixColors}).
% \end{enumerate}
% 
% 
% \section{File Input}
% \label{sec:DomFileInput}
% 
% \begin{DescribeMacros}
% 	\Macro\inputuniprot{<Uniprot file>}
% 	\Macro\inputgff{<gff file>}
% \end{DescribeMacros}
% Include the features defined in an \meta{Uniprot file} or \meta{gff file}, respectively (Example~\ref{exa:DomInputExternalFiles}). These macros are only defined in |pmbdomains|.
% 
% \begin{exampletable}[hb]
% \caption{}
% \label{exa:DomInputExternalFiles}
% \begin{examplecode}
% \begin{pmbdomains}[show secondary structure]{}
% 	\setfeaturestyle{disulfide}{{draw=olive,thick}}
% 	\inputuniprot{SampleUniprot.txt}
% \end{pmbdomains}
% \end{examplecode}
% \begin{examplecode}
% \begin{pmbdomains}[show name=false,show secondary structure]{200}
% 	\setfeaturestyle{disulfide}{{draw=olive,thick}}
% 	\inputgff{SampleGff.gff}
% \end{pmbdomains}
% \end{examplecode}
% \end{exampletable}
% 
% \DescribeOption{domains/}{sequence length}{\textrm{(empty)}}<number>
% Note that in Example~\ref{exa:DomInputExternalFiles}, we had to set a sequence length for the |pmbdomains| environment that contains the |\inputgff| macro. \file{gff} files lack a sequence length field. By contrast, \pkg{pgfmolbio} reads the sequence length from an Uniprot file, and thus the mandatory argument of |pmbdomains| may remain empty. In general, the sequence length is stored in the key of the same name.
% 
% 
% 
% \chapter{The \texorpdfstring{\module{convert}}{convert} module}
% \label{cha:Convert}
% 
%
% \section{Overview}
% \label{sec:ConOverview}
% 
% The \module{convert} module supports users who wish to include \pkg{pgfmolbio} graphs, but who do not want to typeset their documents with a \TeX\ engine that implements Lua. To this end, the \module{convert} workflow comprises two steps: (1) Running Lua\LaTeX\ on an input file that contains at least one |\pmbchromatogram| or similar macros/environments. This will generate one \file{tex} file per graph macro/environment that contains only \TikZ\ commands. (2) Including this file in another \TeX\ document (via |\input|) which is then processed by any \TeX\ engine that supports \TikZ.
% 
% 
% \section{Converting Chromatograms}
% \label{sec:ConChromatograms}
%
% In order to create the external \TikZ\ file, run an input file like the one below through Lua\LaTeX:
% \begin{lstlisting}[style=latex-expl,gobble=2]
% \documentclass{article}
% \usepackage[chromatogram,convert]{pgfmolbio}
% 
% \begin{document}
% 	\pmbchromatogram[sample range=base 50-base 60]{SampleScf.scf}
% 	\pmbchromatogram[/pgfmolbio/convert/output file name=mytikzfile]%
% 		{SampleScf.scf}
% 	\pmbchromatogram[sample range=base 60-base 70]{SampleScf.scf}
% \end{document}
% \end{lstlisting}
% The \module{convert} module disables \file{pdf} output and introduces the following keys:
% 
% \DescribeOption{convert/}{output file name}{(auto)}<text>\relax
% \DescribeOption{convert/}{output file extension}{tex}<text>\relax
% With the default value for \opt{output file name} (``|(auto)|''), \pkg{pgfmolbio} creates files that are named \file{pmbconverted} and numbered consecutively (\file{pmbconverted0.tex}, \file{pmbconverted1.tex} etc.). Both keys can be changed locally (e.\,g., in the optional argument of |\pmbchromatogram|), but this turns off automatic numbering.
% 
% The code above produces the files \file{pmbconverted0.tex}, \file{mytikzfile.tex} and \file{pmbconverted2.tex}. Below is an annotated excerpt from \file{pmbconverted0.tex}:
% \begin{lstlisting}[style=latex-expl,gobble=2,escapeinside=`',basicstyle=\ttfamily\scriptsize,breaklines]
% \begin{tikzpicture}
% 	`[canvas section]'
% 	\draw [/pgfmolbio/chromatogram/canvas style] (0mm, -0mm) rectangle (25mm, 20mm);
% 	`[traces section]'
% 	\draw [/pgfmolbio/chromatogram/trace A style] (0mm, 6.37mm) -- (0.2mm, 6.66mm) -- `[many coordinates]' -- (25mm, 0mm);
% 	\draw [/pgfmolbio/chromatogram/trace C style] (0mm, 0.06mm) -- (0.2mm, 0.05mm) -- `[...]' -- (25mm, 6.27mm);
% 	\draw [/pgfmolbio/chromatogram/trace G style] (0mm, 0.01mm) -- (0.2mm, 0.01mm) -- `[...]' -- (25mm, 0.05mm);
% 	\draw [/pgfmolbio/chromatogram/trace T style] (0mm, 0mm) -- (0.2mm, 0mm) -- `[...]' -- (25mm, 0.06mm);
% 	`[ticks/base labels/probabilities section]'
% 	\draw [/pgfmolbio/chromatogram/tick A style] (0mm, -0mm) -- (0mm, -1mm) node [/pgfmolbio/chromatogram/base label A style] {\pgfkeysvalueof{/pgfmolbio/chromatogram/base label A text}} node [/pgfmolbio/chromatogram/base number style] {\strut 50};
% 	\draw [ultra thick, pmbTraceGreen] (0mm, -8mm) -- (0.9mm, -8mm);
% 	\draw [/pgfmolbio/chromatogram/tick T style] (1.8mm, -0mm) -- (1.8mm, -1mm) node [/pgfmolbio/chromatogram/base label T style] {\pgfkeysvalueof{/pgfmolbio/chromatogram/base label T text}};
% 	\draw [ultra thick, pmbTraceGreen] (0.9mm, -8mm) -- (3mm, -8mm);
% 	\draw [/pgfmolbio/chromatogram/tick A style] (4.2mm, -0mm) -- (4.2mm, -1mm) node [/pgfmolbio/chromatogram/base label A style] {\pgfkeysvalueof{/pgfmolbio/chromatogram/base label A text}};
% 	\draw [ultra thick, pmbTraceGreen] (3mm, -8mm) -- (5.4mm, -8mm);
% 	`[...]'
% 	`[more ticks, base labels and probability rules]'
% \end{tikzpicture}
% \end{lstlisting}
% 
% You can change the format of the coordinates by the following keys:
% 
% \DescribeOption{}{coordinate unit}{mm}<unit>
% \DescribeOption{}{coordinate format string}{\letterpercent s\letterpercent s}<format string>\relax
% \pkg{pgfmolbio} internally calculates dimensions in scaled points, but usually converts them before returning them to \TeX. To this end, it selects the \meta{unit} stored in \opt{coordinate unit} (any of the standard \TeX\ units of measurement: \texttt{bp}, \texttt{cc}, \texttt{cm}, \texttt{dd}, \texttt{in}, \texttt{mm}, \texttt{pc}, \texttt{pt} or \texttt{sp}). In addition, the package formats the dimension according to the \meta{format string} given by \opt{coordinate format string}. This string basically follows the syntax of C's \texttt{printf} function, as described in the Lua reference manual. (Note: Use |\letterpercent| instead of \texttt{\%}, since \TeX\ treats anything following a percent character as comment.)
% 
% Depending on the values of \opt{coordinate unit} and \opt{coordinate format string}, dimensions will be printed in different ways (Table~\ref{tab:CoordFormat}).
% 
% \begin{table}
% 	\centering
% 	\caption{Effects of \texttt{\color{opt}coordinate unit} and \texttt{\color{opt}coordinate format string} when converting an internal \pkg{pgfmolbio} dimension of 200000~[sp].}
% 	\label{tab:CoordFormat}
% 	\begin{tabularx}{\textwidth}{*3{>{\ttfamily}l}X}
% 		\toprule
% 		\multicolumn{2}{c}{\itshape Values} & \multicolumn{1}{l}{\itshape Output} & \itshape Notes \\
% 		\cmidrule(r){1-2}\cmidrule(r){3-3}\cmidrule{4-4}
% 		sp & \%s\%s   & 200000sp          & simple conversion \\
% 		mm & \%s\%s   & 1.0725702011554mm & default settings, may lead to a large number of decimal places \\
% 		mm & \%.3f\%s & 1.073mm           & round to three decimal places \\
% 		cm & \%.3f    & 0.107             & don't print any unit, i.\,e. use \TikZ's \texttt{xyz} coordinate system \\
% 		\bottomrule
% 	\end{tabularx}
% \end{table}
% 
% \bigskip
% The output files can be included in a file which is processed by pdf\LaTeX:
% \begin{lstlisting}[style=latex-expl,gobble=2]
% \documentclass{article}
% \usepackage[chromatogram]{pgfmolbio}
% 
% \begin{document}
% 	\input{pmbconverted.tex}
% \end{document}
% \end{lstlisting}
% 
% Several keys of the \module{chromatogram} module must contain their final values before conversion, while others can be changed afterwards, i.\,e., before the generated file is loaded with |\input| (Table~\ref{tab:ConvertChrKeys}).
% 
% \begin{table}[ht]
% 	\centering
% 	\caption{Keys of the \module{chromatogram} module that require final values prior to conversion.}
% 	\label{tab:ConvertChrKeys}
% 	\begin{tabular}{*3{>{\ttfamily\color{opt}}l}}
% 		\toprule
% 		\multicolumn{2}{c}{\itshape Required} & \multicolumn{1}{c}{\itshape Not required} \\
% 		\cmidrule(r){1-2}\cmidrule(l){3-3}
% 		base labels drawn          & sample range      & base label style \\
% 		base number range          & samples per line  & base label X style \\
% 		baseline skip              & show base numbers & base label X text \\
% 		bases drawn                & tick length       & base number style \\
% 		canvas height              & ticks drawn       & canvas style \\
% 		probabilities drawn        & traces drawn      & tick style \\
% 		probability distance       & x unit            & tick X style \\
% 		probability style function & y unit            & trace style \\
% 		                           &                   & trace X style \\
% 		\bottomrule
% 	\end{tabular}
% \end{table}
% 
% 
% \section{Converting Domain Diagrams}
% \label{sec:ConDomains}
% 
% \DescribeOption{convert/}{output code}{tikz}'pgfmolbio | tikz'
% In principle, domain diagrams are converted like sequencing chromatograms (section~\ref{sec:ConChromatograms}). However, \opt{output code} lets you choose the kind of code \module{convert} writes to the output file: |pgfmolbio| generates a |pmbdomains| environment containing |\addfeature| commands, |tikz| produces \TikZ\ code.
% 
% ``Converting'' one |pmbdomains| environment in the input file to another one in the output file might seem pointless. Nonetheless, this conversion mechanism can be highly useful for extracting features from a Uniprot or \file{gff} file. For example, consider the following input file:
% \begin{lstlisting}[style=latex-expl,gobble=2]
% \documentclass{article}
% \usepackage[domains,convert]{pgfmolbio}
% 
% \begin{document}
% 	\pgfmolbioset[convert]{output code=pgfmolbio}
% 	\begin{pmbdomains}{}
% 		\inputuniprot{SampleUniprot.txt}
% 	\end{pmbdomains}
% \end{document}
% \end{lstlisting}
% The corresponding output is
% \begin{lstlisting}[style=latex-expl,gobble=2,escapeinside=`']
% \begin{pmbdomains}
% 		[name={TestProtein},
% 		sequence=MGSKRSVPSRHRSL`[...]'PLATPGNVSIECP]{200}
% 	\addfeature[description={Disulfide 1}]{DISULFID}{5}{45}
% 	\addfeature[description={Disulfide 2}]{DISULFID}{30}{122}
% 	\addfeature[description={Disulfide 3}]{DISULFID}{51}{99}
% 	\addfeature[description={Domain 1}]{DOMAIN}{10}{40}
% 	\addfeature[description={Domain 2}]{DOMAIN}{60}{120}
% 	\addfeature[description={Domain 3}]{DOMAIN}{135}{178}
% 	\addfeature[description={Strand 1}]{STRAND}{15}{23}
% 	\addfeature[description={Strand 2}]{STRAND}{25}{32}
% 	\addfeature[description={Helix 1}]{HELIX}{60}{75}
% 	\addfeature[description={Helix 2}]{HELIX}{80}{108}
% 	\addfeature[description={Sugar 1}]{CARBOHYD}{151}{151}
% 	\addfeature[description={Sugar 2}]{CARBOHYD}{183}{183}
% \end{pmbdomains}
% \end{lstlisting}
% Obviously, this method is particularly suitable for Uniprot files containing many features.
% 
% \DescribeOption{convert/}{include description}{true}<boolean>
% Decides whether the feature description obtained from the input should appear in the output. Since the description field in FT entries of Uniprot files can be quite long, you may not wish to show it in the output. For example, the output of the example above with \opt{include description}|=false| looks like
% \begin{lstlisting}[style=latex-expl,gobble=2,escapeinside=`']
% \begin{pmbdomains}
% 		[name={TestProtein},
% 		sequence=MGSKRSVPSRHRSL`[...]'PLATPGNVSIECP]{200}
% 	\addfeature{DISULFID}{5}{45}
% 	\addfeature{DISULFID}{30}{122}
% 	\addfeature{DISULFID}{51}{99}
% 	`[...]'
% \end{pmbdomains}
% \end{lstlisting}
% 
% \bigskip
% With \opt{output code}|=tikz|, we obtain the following (annotated) output file:
% \begin{lstlisting}[style=latex-expl,gobble=2,escapeinside=`',basicstyle=\ttfamily\scriptsize,breaklines]
% `[set relevant keys]'
% \pgfmolbioset[domains]{name={TestProtein},sequence={MGSKRS`[...]'VSIECP},sequence length=200}
% `[the actual \TikZ\ picture]'
% \begin{tikzpicture}
% 	`[each feature appears within its own scope]'
% 	\begin{scope}\begin{pgfinterruptboundingbox}
% 		\def\xLeft{0mm}
% 		\def\xMid{50mm}
% 		\def\xRight{100mm}
% 		\def\yMid{-0mm}
% 		\def\featureSequence{MGSKRS`[...]'VSIECP}
% 		\clip (-50mm, \yMid + 100mm) rectangle (150mm, \yMid - 100mm);
% 		\pgfmolbioset[domains]{style={{draw, line width=2pt, black!25}},@layer=1}
% 		\pmbdomdrawfeature{other/main chain}
% 	\end{pgfinterruptboundingbox}\end{scope}
% 	`[more features]'
% 	`[...]'
% 	`[helix features require additional drawing commands]'
% 	\begin{scope}\begin{pgfinterruptboundingbox}
% 		\def\xLeft{29.5mm}
% 		\def\xMid{33.5mm}
% 		\def\xRight{37.5mm}
% 		\def\yMid{-0mm}
% 		\def\featureSequence{GTLKIISGATYNPHLQ}
% 		\clip (-50mm, \yMid + 100mm) rectangle (87.5mm, \yMid - 100mm);
% 		\pgfmolbioset[domains]{style={{helix front border color=red!50!black,helix front main color=red!90!black,helix front middle color=red!10!white}},description={Helix 1}}
% 		\pgfmolbioset[domains]{current style}
% 		\def\xLeft{29.5mm}
% 		\def\yMid{-0mm}
% 		\pmbdomdrawfeature{helix/half upper back}
% 		\def\xMid{30.75mm}
% 		\def\yLower{-0.75mm}
% 		\pmbdomdrawfeature{helix/full back}
% 		`[more helix parts]'
% 	\end{pgfinterruptboundingbox}\end{scope}
% 	`[...]'
% 	`[ruler section]'
% 	\begin{scope}
% 		\pgfmolbioset[domains]{current style/.style={black}}
% 			\def\xMid{0.25mm}
% 			\let\xLeft\xMid\let\xRight\xMid
% 			\def\yMid{-0mm}
% 			\def\residueNumber{1}
% 			\pmbdomdrawfeature{other/ruler}
% 		\pgfmolbioset[domains]{current style/.style={black!50}}
% 			\def\xMid{25.25mm}
% 			\let\xLeft\xMid\let\xRight\xMid
% 			\def\yMid{-0mm}
% 			\def\residueNumber{51}
% 			\pmbdomdrawfeature{other/ruler}
% 		`[more ruler numbers]'
% 		`[...]'
% 	\end{scope}
% 	`[name section]'
% 	\begin{scope}
% 		\pgfmolbioset[domains]{current style/.style={font=\sffamily }}
% 		\def\xLeft{0mm}
% 		\def\xMid{50mm}
% 		\def\xRight{100mm}
% 		\def\yMid{0mm}
% 		\pmbdomdrawfeature{other/name}
% 	\end{scope}
% 	`[adjust picture size]'
% 	\pmbprotocolsizes{\pmbdomvalueof{enlarge left}}{\pmbdomvalueof{enlarge top}}
% 	\pmbprotocolsizes{100mm + \pmbdomvalueof{enlarge right}}{-0mm + \pmbdomvalueof{enlarge bottom}}
% \end{tikzpicture}
% \end{lstlisting}
% 
% Several keys of the \module{domains} module must contain their final values before conversion, and some macros can't be used afterwards (Table~\ref{tab:ConvertDomKeysAndMacros}).
% 
% \begin{table}[ht]
% 	\caption{Keys and macros of the \module{domain} module that require final values prior to conversion or can't be used afterwards, respectively.}
% 	\label{tab:ConvertDomKeysAndMacros}\small
% 	\begin{tabular}{*3{>{\ttfamily\color{opt}}l}}
% 		\toprule
% 		\multicolumn{2}{c}{\itshape Required} & \multicolumn{1}{c}{\itshape Not required} \\
% 		\cmidrule(r){1-2}\cmidrule(l){3-3}
% 		baseline skip            & ruler distance               & domain font \\
% 		default ruler step size  & ruler range                  & enlarge bottom \\
% 		description              & secondary structure distance & enlarge left \\
% 		disulfide base distance  & sequence                     & enlarge right \\
% 		disulfide level distance & sequence length              & enlarge top \\
% 		level                    & show ruler                   & magnified sequence font \\
% 		name                     & style                        & range font \\
% 		residue numbering        & x unit                       & show secondary structure \\
% 		residue range            & y unit                       & \\
% 		residues per line        &                              & \\
% 		\cmidrule(r){1-2}\cmidrule(l){3-3}
% 		\color{ProcessBlue}\string\adddisulfidefeatures
% 			& \color{ProcessBlue}\string\setfeatureprintfunction
% 			& \color{ProcessBlue}\string\setfeaturealias \\
% 		\color{ProcessBlue}\string\removedisulfidefeatures
% 			& \color{ProcessBlue}\string\setfeaturestyle
% 			& \color{ProcessBlue}\string\setfeatureshape \\
% 		\color{ProcessBlue}\string\removefeatureprintfunction
% 			& \color{ProcessBlue}\string\setfeaturestylealias
% 			& \color{ProcessBlue}\string\setfeatureshapealias \\
% 		\color{ProcessBlue}\string\setdisulfidefeatures & & \\
% 		\bottomrule
% 	\end{tabular}\hspace*{-53pt}
% \end{table}
% 
% 
% \StopEventually{}
% \chapter{Implementation}
% \label{cha:Implementation}
% \renewcommand*\thelstnumber{\arabic{section}.\arabic{lstnumber}}
%
% \iffalse
%<*pgfmolbio-tex>
% \fi
%
% \section{\texorpdfstring{\file{pgfmolbio.sty}}{pgfmolbio.sty}}
% \label{sec:DocPkgTex}
%
% \def\ydoclistingssettings{\lstset{style=latex-doc}}
% The options for the main style file determine which module(s) should be loaded.
%
%    \begin{macrocode}
\newif\ifpmb@loadmodule@chromatogram
\newif\ifpmb@loadmodule@domains
\newif\ifpmb@loadmodule@convert

\DeclareOption{chromatogram}{%
  \pmb@loadmodule@chromatogramtrue%
}
\DeclareOption{domains}{%
  \pmb@loadmodule@domainstrue%
}
\DeclareOption{convert}{%
  \pmb@loadmodule@converttrue%
}

\ProcessOptions

%    \end{macrocode}
% The main style file also loads the following packages and \TikZ\ libraries.
%    \begin{macrocode}
\RequirePackage{ifluatex}
\ifluatex
  \RequirePackage{luatexbase-modutils}
    \RequireLuaModule{lualibs}
    \RequireLuaModule{pgfmolbio}
\fi
\RequirePackage[svgnames,dvipsnames]{xcolor}
\RequirePackage{tikz}
  \usetikzlibrary{positioning,svg.path}

%    \end{macrocode}
% \begin{macro}{\pgfmolbioset}[2]{The \ometa{module} to which the options apply.}{A \meta{key-value list} which configures the graphs.}
%    \begin{macrocode}
\newcommand\pgfmolbioset[2][]{%
  \def\@tempa{#1}%
  \ifx\@tempa\@empty%
    \pgfqkeys{/pgfmolbio}{#2}%
  \else%
    \pgfqkeys{/pgfmolbio/#1}{#2}%
  \fi%
}

%    \end{macrocode}
% \end{macro}
% We introduce two package-wide keys.
%    \begin{macrocode}
\pgfkeyssetvalue{/pgfmolbio/coordinate unit}{mm}
\pgfkeyssetvalue{/pgfmolbio/coordinate format string}{\letterpercent s\letterpercent s}

%    \end{macrocode}
% Furthermore, we define two scratch token registers. Strictly speaking, the two conditionals belong to the \module{convert} module, but all modules need to know them.
%    \begin{macrocode}
\newtoks\@pmb@toksa
\newtoks\@pmb@toksb
\newif\ifpmb@con@includedescription
\newif\ifpmb@con@outputtikzcode

%    \end{macrocode}
% \begin{macro}{\pmbprotocolsizes}[2]{$x$-coordinate.}{$y$-coordinate.}
% An improved version of |\pgf@protocolsizes| that accepts coordinate calculations.
%    \begin{macrocode}
\def\pmbprotocolsizes#1#2{%
  \pgfpoint{#1}{#2}%
  \pgf@protocolsizes{\pgf@x}{\pgf@y}%
}

%    \end{macrocode}
% \end{macro}
% Finally, we load the modules requested by the user.
%    \begin{macrocode}
\ifpmb@loadmodule@chromatogram
  \input{pgfmolbio.chromatogram.tex}
\fi
\ifpmb@loadmodule@domains
  \input{pgfmolbio.domains.tex}
\fi
\ifpmb@loadmodule@convert
  \input{pgfmolbio.convert.tex}
\fi
%    \end{macrocode}
%
% \iffalse
%</pgfmolbio-tex>
%<*pgfmolbio-lua>
% \fi
% 
% 
% \section{\texorpdfstring{\file{pgfmolbio.lua}}{pgfmolbio.lua}}
% \label{sec:DocPkgLua}
% 
% \def\ydoclistingssettings{\lstset{style=lua-doc}}\setcounter{lstnumber}{1}
% Identification of the Lua module.
%    \begin{macrocode}
if luatexbase then
  luatexbase.provides_module({
    name          = "pgfmolbio",
    version       = 0.2,
    date          = "2012/10/01",
    description   = "Molecular biology graphs wit LuaLaTeX",
    author        = "Wolfgang Skala",
    copyright     = "Wolfgang Skala",
    license       = "LPPL",
  })
end

%    \end{macrocode}
% §setCoordinateFormat§ sets the output format of §dimToString§ (see below). Both its parameters §unit§ and §fmtString§ are strings, which correspond to the values of \opt{coordinate unit} and \opt{coordinate format string}.
%    \begin{macrocode}
local coordUnit, coordFmtStr

function setCoordinateFormat(unit, fmtString)
  coordUnit = unit
  coordFmtStr = fmtString
end

%    \end{macrocode}
% §stringToDim§ converts a string describing a \TeX\ dimension to a number corresponding to scaled points. §dimToString§ converts a dimension in scaled points to a string, formatting it according to the values of the local variables §coordUnit§ and §coordFmtString§.
%    \begin{macrocode}
function stringToDim(x)
  if type(x) == "string" then
    return dimen(x)[1]
  end
end

function dimToString(x)
  return number.todimen(x, coordUnit, coordFmtStr)
end

%    \end{macrocode}
% §getRange§ extracts a variable number of strings from §rangeInput§ by applying the regular expressions in the table §matchStrings§, which derives from the varargs. §rangeInput§ contains the values of any of the \opt{... range} keys.
%    \begin{macrocode}
function getRange(rangeInput, ...)
  if type(rangeInput) ~= "string" then return end
  local result = {}
  local matchStrings = table.pack(...)
  for i = 1, matchStrings.n do
    if type(matchStrings[i]) == "string" then
      table.insert(result, rangeInput:match(matchStrings[i]))
    end
  end
  return unpack(result)
end

%    \end{macrocode}
% §packageWarning§ and §packageError§ throw \TeX\ warnings and errors, respectively. §packageError§ also sets the global variable §errorCatched§ to §true§. Some Lua functions check the value of this variable and terminate if an error has occurred.
%    \begin{macrocode}
function packageWarning(message)
  tex.sprint("\\PackageWarning{pgfmolbio}{" .. message .. "}")
end

function packageError(message)
  tex.error("Package pgfmolbio Error: " .. message)
  errorCatched = true
end

errorCatched = false

%    \end{macrocode}
% We extend the §string§ table by the function §string.trim§, which removes leading and trailing spaces.
%    \begin{macrocode}
if not string.trim then
  string.trim = function(self)
    return self:match("^%s*(.-)%s*$")
  end
end

%    \end{macrocode}
% §outputFileId§ is a counter to enumerate several output files by the \module{convert} module.
%    \begin{macrocode}
outputFileId = 0
%    \end{macrocode}
% \iffalse
%</pgfmolbio-lua>
%<*pmb-chr-tex>
% \fi
%
% \section{\texorpdfstring{\file{pgfmolbio.chromatogram.tex}}{pgfmolbio.chromatogram.tex}}
% \label{sec:DocChrTex}
%
% \def\ydoclistingssettings{\lstset{style=latex-doc}}\setcounter{lstnumber}{1}
% Since the Lua script of the \module{chromatogram} module does the bulk of the work, we can keep the \TeX\ file relatively short.
% 
%    \begin{macrocode}
\ifluatex
  \RequireLuaModule{pgfmolbio.chromatogram}
\fi

%    \end{macrocode}
% We define five custom colors for the traces and probability indicators (see Table~\ref{tab:pmbColors}).
%    \begin{macrocode}
\definecolor{pmbTraceGreen}{RGB}{34,114,46}
\definecolor{pmbTraceBlue}{RGB}{48,37,199}
\definecolor{pmbTraceBlack}{RGB}{0,0,0}
\definecolor{pmbTraceRed}{RGB}{191,27,27}
\definecolor{pmbTraceYellow}{RGB}{233,230,0}

%    \end{macrocode}
% \begin{macro}{\@pmb@chr@keydef}[2]{\meta{key} name}{default \meta{value}}
% Most of the keys simply store their value. |\@pmb@chr@keydef| simplifies the declaration of such keys by calling |\pgfkeyssetvalue| with the appropriate path, \meta{key} and \meta{value}.
%    \begin{macrocode}
\def\@pmb@chr@keydef#1#2{%
  \pgfkeyssetvalue{/pgfmolbio/chromatogram/#1}{#2}%
}
%    \end{macrocode}
% \end{macro}
% \begin{macro}{\@pmb@chr@stylekeydef}[2]{\meta{key} name}{default \meta{value}}
% This macro initializes a style \meta{key} with a \meta{value}.
%    \begin{macrocode}
\def\@pmb@chr@stylekeydef#1#2{%
  \pgfkeys{/pgfmolbio/chromatogram/#1/.style={#2}}%
}
%    \end{macrocode}
% \end{macro}
% \begin{macro}{\@pmb@chr@getkey}[1]{\meta{key} name}
% |\@pmb@chr@getkey| retrieves the value stored by the \meta{key}.
%    \begin{macrocode}
\def\@pmb@chr@getkey#1{%
  \pgfkeysvalueof{/pgfmolbio/chromatogram/#1}%
}

%    \end{macrocode}
% \end{macro}
% After providing these auxiliary macros, we define all keys of the \module{chromatogram} module.
%    \begin{macrocode}
\@pmb@chr@keydef{sample range}{1-500 step 1}

\@pmb@chr@keydef{x unit}{0.2mm}
\@pmb@chr@keydef{y unit}{0.01mm}
\@pmb@chr@keydef{samples per line}{500}
\@pmb@chr@keydef{baseline skip}{3cm}
\@pmb@chr@stylekeydef{canvas style}{draw=none, fill=none}
\@pmb@chr@keydef{canvas height}{2cm}

\@pmb@chr@stylekeydef{trace A style}{pmbTraceGreen}
\@pmb@chr@stylekeydef{trace C style}{pmbTraceBlue}
\@pmb@chr@stylekeydef{trace G style}{pmbTraceBlack}
\@pmb@chr@stylekeydef{trace T style}{pmbTraceRed}
\pgfmolbioset[chromatogram]{%
  trace style/.code=\pgfkeysalso{
    trace A style/.style={#1},
    trace C style/.style={#1},
    trace G style/.style={#1},
    trace T style/.style={#1}
  }%
}
\@pmb@chr@keydef{traces drawn}{}

\@pmb@chr@stylekeydef{tick A style}{thin, pmbTraceGreen}
\@pmb@chr@stylekeydef{tick C style}{thin, pmbTraceBlue}
\@pmb@chr@stylekeydef{tick G style}{thin, pmbTraceBlack}
\@pmb@chr@stylekeydef{tick T style}{thin, pmbTraceRed}
\pgfmolbioset[chromatogram]{%
  tick style/.code=\pgfkeysalso{
    tick A style/.style={#1},
    tick C style/.style={#1},
    tick G style/.style={#1},
    tick T style/.style={#1}
  }%
}
\@pmb@chr@keydef{tick length}{1mm}
\@pmb@chr@keydef{ticks drawn}{}

\@pmb@chr@keydef{base label A text}{\strut A}
\@pmb@chr@keydef{base label C text}{\strut C}
\@pmb@chr@keydef{base label G text}{\strut G}
\@pmb@chr@keydef{base label T text}{\strut T}
\@pmb@chr@stylekeydef{base label A style}%
  {below=4pt, font=\ttfamily\footnotesize, pmbTraceGreen}
\@pmb@chr@stylekeydef{base label C style}%
  {below=4pt, font=\ttfamily\footnotesize, pmbTraceBlue}
\@pmb@chr@stylekeydef{base label G style}%
  {below=4pt, font=\ttfamily\footnotesize, pmbTraceBlack}
\@pmb@chr@stylekeydef{base label T style}%
  {below=4pt, font=\ttfamily\footnotesize, pmbTraceRed}
\pgfmolbioset[chromatogram]{%
  base label style/.code=\pgfkeysalso{
    base label A style/.style={#1},
    base label C style/.style={#1},
    base label G style/.style={#1},
    base label T style/.style={#1}
  }%
}
\@pmb@chr@keydef{base labels drawn}{}

\newif\ifpmb@chr@showbasenumbers
\pgfmolbioset[chromatogram]{%
  show base numbers/.is if=pmb@chr@showbasenumbers,
  show base numbers
}
\@pmb@chr@stylekeydef{base number style}%
  {pmbTraceBlack, below=-3pt, font=\sffamily\tiny}
\@pmb@chr@keydef{base number range}{auto-auto step 10}

\@pmb@chr@keydef{probability distance}{0.8cm}
\@pmb@chr@keydef{probabilities drawn}{}
\@pmb@chr@keydef{probability style function}{nil}

\pgfmolbioset[chromatogram]{
  bases drawn/.code=\pgfkeysalso{
    traces drawn=#1,
    ticks drawn=#1,
    base labels drawn=#1,
    probabilities drawn=#1
  },
  bases drawn=ACGT
}

%    \end{macrocode}
% If \pkg{pgfmolbio} is used with a \TeX\ engine that does not support Lua, the package ends here.
%    \begin{macrocode}
\ifluatex\else\expandafter\endinput\fi

%    \end{macrocode}
% \begin{macro}{\pmbchromatogram}[2]{A \ometa{key-value list} that configures the chromatogram.}{The name of an \meta{scf file}.}
% If |\pmbchromatogram| appears outside of a |tikzpicture|, we implicitly start this environment, otherwise we begin a new group. ``Within a |tikzpicture|'' means that |\useasboundingbox| is defined.
%    \begin{macrocode}
\newif\ifpmb@chr@tikzpicture

\newcommand\pmbchromatogram[2][]{%
  \@ifundefined{useasboundingbox}%
    {\pmb@chr@tikzpicturefalse\begin{tikzpicture}}%
    {\pmb@chr@tikzpicturetrue\begingroup}%
%    \end{macrocode}
% Of course, we consider the \ometa{key-value list} before drawing the chromatogram.
%    \begin{macrocode}
  \pgfmolbioset[chromatogram]{#1}%
%    \end{macrocode}
% We generate a new §Chromatogram§ object and invoke several Lua functions: (1) §readScfFile§ reads the given \meta{scf file} (section~\ref{ssc:DocChrLuaReadScfFile}). (2) §setParameters§ passes the values stored by the keys to the Lua script. Note that this function is called twice, since §baseNumberRange§ requires that §sampleRange§ has been already set, and the implementation of §setParameters§ does not ensure this (section~\ref{ssc:DocChrLuaSetParameters}). (3) §pgfmolbio.setCoordinateFormat§ sets the coordinate output format (section~\ref{sec:DocPkgLua}).
%    \begin{macrocode}
  \directlua{
    pmbChromatogram = pgfmolbio.chromatogram.Chromatogram:new()
    pmbChromatogram:readScfFile("#2")
    pmbChromatogram:setParameters{
      sampleRange = "\@pmb@chr@getkey{sample range}",
      xUnit = "\@pmb@chr@getkey{x unit}",
      yUnit = "\@pmb@chr@getkey{y unit}",
      samplesPerLine = "\@pmb@chr@getkey{samples per line}",
      baselineSkip = "\@pmb@chr@getkey{baseline skip}",
      canvasHeight = "\@pmb@chr@getkey{canvas height}",
      tracesDrawn = "\@pmb@chr@getkey{traces drawn}",
      tickLength = "\@pmb@chr@getkey{tick length}",
      ticksDrawn = "\@pmb@chr@getkey{ticks drawn}",
      baseLabelsDrawn = "\@pmb@chr@getkey{base labels drawn}",
      showBaseNumbers = "\ifpmb@chr@showbasenumbers true\else false\fi",
      probDistance = "\@pmb@chr@getkey{probability distance}",
      probabilitiesDrawn = "\@pmb@chr@getkey{probabilities drawn}",
      probStyle = \@pmb@chr@getkey{probability style function}
    }
    pmbChromatogram:setParameters{
      baseNumberRange = "\@pmb@chr@getkey{base number range}",
    }
    pgfmolbio.setCoordinateFormat(
      "\pgfkeysvalueof{/pgfmolbio/coordinate unit}",
      "\pgfkeysvalueof{/pgfmolbio/coordinate format string}"
    )
%    \end{macrocode}
% If the \module{convert} module is loaded, we open the appropriate output file, change §tex.sprint§ so that the function writes to this file and then call §printTikzChromatogram§. Without the \module{convert} module, §printTikzChromatogram§ simply returns the drawing commands for the chromatogram to the \TeX\ input stream (section~\ref{ssc:DocChrLuaPrint}).
%    \begin{macrocode}
    \ifpmb@loadmodule@convert
      local filename =
        "\pgfkeysvalueof{/pgfmolbio/convert/output file name}"
      if filename == "(auto)" then
        filename = "pmbconverted" .. pgfmolbio.outputFileId
      end
      filename = filename ..
        ".\pgfkeysvalueof{/pgfmolbio/convert/output file extension}"
      outputFile, ioError = io.open(filename, "w")
      if ioError then
        tex.error(ioError)
      end
      tex.sprint = function (a) outputFile:write(a) end
      tex.sprint("\string\\begin{tikzpicture}")
      pmbChromatogram:printTikzChromatogram()
      tex.sprint("\string\n\string\\end{tikzpicture}")
      outputFile:close()
      pgfmolbio.outputFileId = pgfmolbio.outputFileId + 1
    \else
      pmbChromatogram:printTikzChromatogram()
    \fi
  }%
%    \end{macrocode}
% At the end of |\pmbchromatogram|, we either close the |tikzpicture| or the group, depending on how we started.
%    \begin{macrocode}
  \ifpmb@chr@tikzpicture\endgroup\else\end{tikzpicture}\fi%
}
%    \end{macrocode}
% \end{macro}
%
% \iffalse
%</pmb-chr-tex>
%<*pmb-chr-lua>
% \fi
%
% \section{\texorpdfstring{\file{pgfmolbio.chromatogram.lua}}{pgfmolbio.chromatogram.lua}}
% \label{sec:DocChrLua}
%
% \def\ydoclistingssettings{\lstset{style=lua-doc}}\setcounter{lstnumber}{1}
% This Lua script is the true workhorse of the \module{chromatogram} module. Remember that the documentation for the Staden package\footnote{\url{http://staden.sourceforge.net/}} is the definite source for information on the \file{scf} file format.
%    \begin{macrocode}
if luatexbase then
  luatexbase.provides_module{
    name          = "pgfmolbio.chromatogram",
    version       = 0.2,
    date          = "2012/10/01",
    description   = "DNA sequencing chromatograms",
    author        = "Wolfgang Skala",
    copyright     = "Wolfgang Skala",
    license       = "LPPL",
  }
end

%    \end{macrocode}
%
% \subsection{Module-Wide Variables and Auxiliary Functions}
% \label{ssc:DocChrLuaAuxiliaryFunctions}
%
% \begin{itemize}
% 	\item §ALL_BASES§: A table of four indexed string fields, which represent the nucleotide single-letter abbreviations.
% 	\item §PGFKEYS_PATH§: A string that contains the \pkg{pgfkeys} path for \module{chromatogram} keys.
% \end{itemize}
%    \begin{macrocode}
local ALL_BASES = {"A", "C", "G", "T"}
local PGFKEYS_PATH = "/pgfmolbio/chromatogram/"

%    \end{macrocode}
% These local functions point to functions in \file{pgfmolbio.lua} (section~\ref{sec:DocPkgLua}).
%    \begin{macrocode}
local stringToDim = pgfmolbio.stringToDim
local dimToString = pgfmolbio.dimToString
local packageError = pgfmolbio.packageError
local packageWarning = pgfmolbio.packageWarning
local getRange = pgfmolbio.getRange

%    \end{macrocode}
% §stdProbStyle§ is the default \opt{probability style function}. It returns a string representing an optional argument of |\draw|. Depending on the value of §prob§, the probability rule thus drawn is colored black, red, yellow or green for quality scores $< 10$, $< 20$, $< 30$ or $\geq 30$, respectively (see also section~\ref{sec:ChrProbabilities}).
%    \begin{macrocode}
local function stdProbStyle(prob)
  local color = ""
  if prob >= 0 and prob < 10 then
    color = "black"
  elseif prob >= 10 and prob < 20 then
    color = "pmbTraceRed"
  elseif prob >= 20 and prob < 30 then
    color = "pmbTraceYellow"
  else
    color = "pmbTraceGreen"
  end
  return "ultra thick, " .. color
end

%    \end{macrocode}
% §findBasesInStr§ searches for nucleotide single-letter abbreviations in its string argument. It returns a table of zero to four indexed string fields (one field per character found, which contains that letter).
%    \begin{macrocode}
local function findBasesInStr(target)
  if not target then return end
  local result = {}
  for _, v in ipairs(ALL_BASES) do
    if target:upper():find(v) then
      table.insert(result, v)
    end
  end
  return result
end

%    \end{macrocode}
% §readInt§ reads §n§ bytes from a §file§, starting at §offset§ or at the current position if §offset§ is §nil§. By assuming big-endian byte order, the byte sequence is converted to a number and returned.
%    \begin{macrocode}
local function readInt(file, n, offset)
  if offset then file:seek("set", offset) end
  local result = 0
  for i = 1, n do
    result = result * 0x100 + file:read(1):byte()
  end
  return result
end

%    \end{macrocode}
% 
% \subsection{The \texorpdfstring{\texttt{Chromatogram}}{Chromatogram} Class}
% \label{ssc:DocChrLuaClass}
% 
% The §Chromatogram§ class (table) represents a single \file{scf} chromatogram. The constructor §Chromatogram:new§ returns a new instance and initializes its variables, which store the values of \module{chromatogram} keys. Most variables are self-explanatory, since their name is similar to their corresponding key.
%    \begin{macrocode}
Chromatogram = {}

function Chromatogram:new()
  newChromatogram = {
    sampleMin = 1,
    sampleMax = 500,
    sampleStep = 1,
    peakMin = -1,
    peakMax = -1,
    xUnit = stringToDim("0.2mm"),
    yUnit = stringToDim("0.01mm"),
    samplesPerLine = 500,
    baselineSkip = stringToDim("3cm"),
    canvasHeight = stringToDim("2cm"),
    traceStyle = {
      A = PGFKEYS_PATH .. "trace A style",
      C = PGFKEYS_PATH .. "trace C style",
      G = PGFKEYS_PATH .. "trace G style",
      T = PGFKEYS_PATH .. "trace T style"
    },
    tickStyle = {
      A = PGFKEYS_PATH .. "tick A style",
      C = PGFKEYS_PATH .. "tick C style",
      G = PGFKEYS_PATH .. "tick G style",
      T = PGFKEYS_PATH .. "tick T style"
    },
    tickLength = stringToDim("1mm"),
    baseLabelText = {
      A = "\\pgfkeysvalueof{" .. PGFKEYS_PATH .. "base label A text}",
      C = "\\pgfkeysvalueof{" .. PGFKEYS_PATH .. "base label C text}",
      G = "\\pgfkeysvalueof{" .. PGFKEYS_PATH .. "base label G text}",
      T = "\\pgfkeysvalueof{" .. PGFKEYS_PATH .. "base label T text}"
    },
    baseLabelStyle = {
      A = PGFKEYS_PATH .. "base label A style",
      C = PGFKEYS_PATH .. "base label C style",
      G = PGFKEYS_PATH .. "base label G style",
      T = PGFKEYS_PATH .. "base label T style"
    },
    showBaseNumbers = true,
    baseNumberMin = -1,
    baseNumberMax = -1,
    baseNumberStep = 10,
    probDistance = stringToDim("0.8cm"),
    probStyle = stdProbStyle,
    tracesDrawn = ALL_BASES,
    ticksDrawn = "ACGT",
    baseLabelsDrawn = "ACGT",
    probabilitiesDrawn = "ACGT",
  }
  setmetatable(newChromatogram, self)
  self.__index = self
  return newChromatogram
end

%    \end{macrocode}
% §getMinMaxProbability§ returns the minimum and maximum probability value in the current chromatogram.
%    \begin{macrocode}
function Chromatogram:getMinMaxProbability()
  local minProb = 0
  local maxProb = 0
  for _, currPeak in ipairs(self.selectedPeaks) do
    for __, currProb in pairs(currPeak.prob) do
      if currProb > maxProb then maxProb = currProb end
      if currProb < minProb then minProb = currProb end
    end
  end
  return minProb, maxProb
end

%    \end{macrocode}
% §getSampleAndPeakIndex§ returns the sample (§sampleId§) and peak index (§peakId§) that correspond to §baseIndex§. If §baseIndex§ is a number, the function simply returns it as sample index. However, if §baseIndex§ is a string of the form §"base§ \meta{number}§"§ (as in a valid value for the \opt{sample range} key), the function returns the offset of the \meta{number}-th peak. §isLowerLimit§ must be §true§ if the function should return the indices of the lower end of a range.
%    \begin{macrocode}
function Chromatogram:getSampleAndPeakIndex(baseIndex, isLowerLimit)
  local sampleId, peakId
  
  sampleId = tonumber(baseIndex)
  if sampleId then
    for i, v in ipairs(self.peaks) do
      if isLowerLimit then
        if v.offset >= sampleId then
          peakId = i
          break
        end
      else
        if v.offset == sampleId then
          peakId = i
          break
        elseif v.offset > sampleId then
          peakId = i - 1
          break
        end
      end
    end
  else
    peakId = tonumber(baseIndex:match("base%s*(%d+)"))
    if peakId then
      sampleId = self.peaks[peakId].offset
    end
  end
  return sampleId, peakId
end

%    \end{macrocode}
%
% \subsection{Read the \texorpdfstring{\file{scf}}{scf} File}
% \label{ssc:DocChrLuaReadScfFile}
% 
% §Chromatogram:readScfFile§ introduces three further fields to §Chromatogram§:
% \begin{itemize}
% 	\item §header§: A table of 14 named number fields that save the information in the \file{scf} header.
% 	\item §samples§: A table of four named subtables §A§, §C§, §G§, §T§. Each subtable contains §header.samplesNumber§ indexed number fields that represent the fluorescence intensities along a trace.
% 	\item §peaks§: A table of §header.basesNumber§ indexed subtables which in turn contain three named fields:
% 		\begin{itemize}
% 			\item §offset§: A number indicating the offset of the current peak.
% 			\item §prob§: A table of four named number fields §A§, §C§, §G§, §T§. These numbers store the probability that the current peak is one of the four bases.
% 			\item §base§: A string that states the base represented by the current peak.
% 		\end{itemize}
% \end{itemize}
% 
% §Chromatogram:readScfFile§ checks whether the requested \file{scf} file ``§filename§'' corresponds to the most recently opened one (via §lastScfFile§). In this case, the variables §peaks§ and §samples§ already contain the relevant data, so we can refrain from re-reading the file. Otherwise, the program tries to open and evaluate the specified file, raising an error on failure.
%    \begin{macrocode}
function Chromatogram:readScfFile(filename)
  if filename ~= self.lastScfFile then
    self.lastScfFile = filename
    local scfFile, errorMsg = io.open(filename, "rb")
    if not scfFile then packageError(errorMsg) end

    self.samples = {A = {}, C = {}, G = {}, T = {}}
    self.peaks = {}
%    \end{macrocode}
% The function collects the relevant data from the file. \textit{Firstly}, §header§ saves the information in the file header:
% \begin{itemize}
% 	\item §magicNumber§: Each \file{scf} file must start with the four bytes §2E736366§, which is the string ``§.scf§''. If this sequence is absent, the \module{chromatogram} module raises an error.
% 	\item §samplesNumber§: The number of sample points.
% 	\item §samplesOffset§: The offset of the sample data start.
% 	\item §basesNumber§: The number of recognized bases.
% 	\item §version§: Since the \module{chromatogram} module currently only supports \file{scf} version 3.00 (the string ``§3.00§'' equals §332E3030§), \TeX\ stops with an error message if the file version is different.
% 	\item §sampleSize§: The size of each sample point in bytes.
% \end{itemize}
%    \begin{macrocode}
    self.header = {
      magicNumber = readInt(scfFile, 4, 0),
      samplesNumber = readInt(scfFile, 4),
      samplesOffset = readInt(scfFile, 4),
      basesNumber = readInt(scfFile, 4),
      leftClip = readInt(scfFile, 4),
      rightClip = readInt(scfFile, 4),
      basesOffset = readInt(scfFile, 4),
      comments = readInt(scfFile, 4),
      commentsOffset = readInt(scfFile, 4),
      version = readInt(scfFile, 4),
      sampleSize = readInt(scfFile, 4),
      codeSet = readInt(scfFile, 4),
      privateSize = readInt(scfFile, 4),
      privateOffset = readInt(scfFile, 4)
    }
    if self.header.magicNumber ~= 0x2E736366 then
      packageError(
        "Magic number in scf scfFile '" ..
        self.lastScfFile ..
        "' corrupt!"
      )
    end
    if self.header.version ~= 0x332E3030 then
      packageError(
        "Scf scfFile '" ..
        self.lastScfFile ..
        "' is not version 3.00!"
      )
    end
%    \end{macrocode}
% \textit{Secondly}, §samples§ receives the samples data from the file. Note that the values of the sample points are stored as unsigned integers representing second derivatives (i.\,e., differences between differences between two consecutive sample points). Hence, we convert them back to signed, absolute values.
%    \begin{macrocode}
    scfFile:seek("set", self.header.samplesOffset)
    for baseIndex, baseName in ipairs(ALL_BASES) do
      for i = 1, self.header.samplesNumber do
        self.samples[baseName][i] =
          readInt(scfFile, self.header.sampleSize)
      end

      for _ = 1, 2 do
        local preValue = 0
        for i = 1, self.header.samplesNumber do
          self.samples[baseName][i] = self.samples[baseName][i] + preValue
          if self.samples[baseName][i] > 0xFFFF then
            self.samples[baseName][i] = self.samples[baseName][i] - 0x10000
          end
          preValue = self.samples[baseName][i]
        end
      end
    end
%    \end{macrocode}
% \textit{Finally}, we store the peak information in §peaks§.
%    \begin{macrocode}
    for i = 1, self.header.basesNumber do
      self.peaks[i] = {
        offset = readInt(scfFile, 4),
        prob = {A, C, G, T},
        base
      }
    end

    for i = 1, self.header.basesNumber do
      self.peaks[i].prob.A = readInt(scfFile, 1)
    end

    for i = 1, self.header.basesNumber do
      self.peaks[i].prob.C = readInt(scfFile, 1)
    end

    for i = 1, self.header.basesNumber do
      self.peaks[i].prob.G = readInt(scfFile, 1)
    end

    for i = 1, self.header.basesNumber do
      self.peaks[i].prob.T = readInt(scfFile, 1)
    end

    for i = 1, self.header.basesNumber do
      self.peaks[i].base = string.char(readInt(scfFile, 1))
    end
    
    scfFile:close()
  end
end

%    \end{macrocode}
%
% \subsection{Set Chromatogram Parameters}
% \label{ssc:DocChrLuaSetParameters}
%
% §Chromatogram:setParameters§ passes options from the \module{chromatogram} module to the Lua script. Each field of the table §keyHash§ is named after a §Chromatogram§ attribute and represents a function that receives one string parameter (the value of a \LaTeX\ key). For instance, §keyHash.sampleRange§ extracts the range and step values from the value stored in the \opt{sample range} key.
%    \begin{macrocode}
function Chromatogram:setParameters(newParms)
  local keyHash = {
    sampleRange = function(v)
      local sampleRangeMin, sampleRangeMax, sampleRangeStep =
        getRange(
          v:trim(),
          "^([base]*%s*%d+)%s*%-",
          "%-%s*([base]*%s*%d+)",
          "step%s*(%d+)$"
        )
      self.sampleMin, self.peakMin =
        self:getSampleAndPeakIndex(sampleRangeMin, true)
      self.sampleMax, self.peakMax =
        self:getSampleAndPeakIndex(sampleRangeMax, false)
      if self.sampleMin >= self.sampleMax then
        packageError("Sample range is smaller than 1.")
      end
      self.sampleStep = sampleRangeStep or self.sampleStep
    end,
    xUnit = stringToDim,
    yUnit = stringToDim,
    samplesPerLine = tonumber,
    baselineSkip = stringToDim,
    canvasHeight = stringToDim,
    tickLength = stringToDim,
    showBaseNumbers = function(v)
      if v == "true" then return true else return false end
    end,
    baseNumberRange = function(v)
      local baseNumberRangeMin, baseNumberRangeMax, baseNumberRangeStep =
        getRange(
          v:trim(),
          "^([auto%d]*)%s+%-",
          "%-%s+([auto%d]*$)"
        )
      if tonumber(baseNumberRangeMin) then
        self.baseNumberMin = tonumber(baseNumberRangeMin)
      else
        self.baseNumberMin = self.peakMin
      end
      if tonumber(baseNumberRangeMax) then
        self.baseNumberMax = tonumber(baseNumberRangeMax)
      else
        self.baseNumberMax = self.peakMax
      end
      if self.baseNumberMin >= self.baseNumberMax then
        packageError("Base number range is smaller than 1.")
      end
      if self.baseNumberMin < self.peakMin then
        self.baseNumberMin = self.peakMin
        packageWarning("Lower base number range is smaller than lower sample range. It was adjusted to " .. self.baseNumberMin .. ".")
      end
      if self.baseNumberMax > self.peakMax then
        self.baseNumberMax = self.peakMax
        packageWarning("Upper base number range exceeds upper sample range. It was adjusted to " .. self.baseNumberMax .. ".")
      end
      self.baseNumberStep = tonumber(baseNumberRangeStep)
        or self.baseNumberStep
    end,
    probDistance = stringToDim,
    probStyle = function(v) return v end,
    tracesDrawn = findBasesInStr,
    ticksDrawn = function(v) return v end,
    baseLabelsDrawn = function(v) return v end,
    probabilitiesDrawn = function(v) return v end,
    probStyle = function(v) return v end
  }
%    \end{macrocode}
% We iterate over all fields in the argument of §setParameters§. If a field of the same name exists in §keyHash§, we call this field with the value of the corresponding field in §newParms§ as parameter.
%    \begin{macrocode}
  for key, value in pairs(newParms) do
    if keyHash[key] then
      self[key] = keyHash[key](value)
    end
  end
end

%    \end{macrocode}
% 
% \subsection{Print the Chromatogram}
% \label{ssc:DocChrLuaPrint}
%
% §Chromatogram:printTikzChromatogram§ writes all commands that draw the chromatogram to the \TeX\ input stream (via §tex.sprint§), but only if no error has occurred previously.
%    \begin{macrocode}
function Chromatogram:printTikzChromatogram()
  if pgfmolbio.errorCatched then return end
%    \end{macrocode}
% \paragraph{(1) Select peaks to draw} In order to simplify the drawing operations, we select the peaks that appear in the final output and store information on them in §selectedPeaks§. §selectedPeaks§ is a table of zero to §header.basesNumber§ indexed subtables. It is similar to §peaks§ but only describes the peaks in the displayed part of the chromatogram, which is selected by the \opt{samples range} key. Each subtable of §selectedPeaks§ consists of the following five named fields:
% 	\begin{itemize}
% 		\item §offset§: A number indicating the offset of the current peak in ``transformed'' coordinates (i.\,e., the $x$-coordinate of the first sample point shown equals 1).
% 		\item §base§: See §peaks.base§ (section~\ref{ssc:DocChrLuaReadScfFile}).
% 		\item §prob§: See §peaks.prob§ (section~\ref{ssc:DocChrLuaReadScfFile}).
% 		\item §baseIndex§: A number that stores the index of the current peak. The first detected peak in the chromatogram has index~1.
% 		\item §probXRight§: A number corresponding to the right $x$-coordinate of the probability indicator.
% 	\end{itemize}
%    \begin{macrocode}
  self.selectedPeaks = {}
  local tIndex = 1
  for rPeakIndex, currPeak in ipairs(self.peaks) do
    if currPeak.offset >= self.sampleMin
        and currPeak.offset <= self.sampleMax then
      self.selectedPeaks[tIndex] = {
        offset = currPeak.offset + 1 - self.sampleMin,
        base = currPeak.base,
        prob = currPeak.prob,
        baseIndex = rPeakIndex,
        probXRight = self.sampleMax + 1 - self.sampleMin
      }
%    \end{macrocode}
% The right $x$-coordinate of the probability indicator (§probXRight§) is the mean between the offsets of the adjacent peaks. For the last peak, §probXRight§ equals the largest transformed $x$-coordinate.
%    \begin{macrocode}
      if tIndex > 1 then
        self.selectedPeaks[tIndex-1].probXRight =
          (self.selectedPeaks[tIndex-1].offset
          + self.selectedPeaks[tIndex].offset) / 2
      end
      tIndex = tIndex + 1
    end
  end
  
%    \end{macrocode}
% Furthermore, we adjust §baseNumberMin§ and §baseNumberMax§ if any peak was detected in the displayed part of the chromatogram. The value §-1§, which indicates the keyword |auto|, is replaced by the index of the first or last peak, respectively.
%    \begin{macrocode}
  if tIndex > 1 then
    if self.baseNumberMin == -1 then
      self.baseNumberMin = self.selectedPeaks[1].baseIndex
    end
    if self.baseNumberMax == -1 then
      self.baseNumberMax = self.selectedPeaks[tIndex-1].baseIndex
    end
  end
  
%    \end{macrocode}
% \paragraph{(2) Canvas} For each line, we draw a rectangle in \opt{canvas style} whose left border coincides with the $y$-axis.\\
% §yLower§, §yUpper§, §xRight§: rectangle coordinates;\\
% §currLine§: current line, starting from 0;\\
% §samplesLeft§: sample points left to draw after the end of the current line.
%    \begin{macrocode}
  local samplesLeft = self.sampleMax - self.sampleMin + 1
  local currLine = 0
  while samplesLeft > 0 do
    local yLower = -currLine * self.baselineSkip
    local yUpper = -currLine * self.baselineSkip + self.canvasHeight
    local xRight =
      (math.min(self.samplesPerLine, samplesLeft) - 1) * self.xUnit
    tex.sprint(
      "\n\t\\draw [" .. PGFKEYS_PATH .. "canvas style] (" ..
      dimToString(0) ..
      ", " ..
      dimToString(yLower) ..
      ") rectangle (" ..
      dimToString(xRight) ..
      ", " ..
      dimToString(yUpper) ..
      ");"
    )
    samplesLeft = samplesLeft - self.samplesPerLine
    currLine = currLine + 1
  end
  
%    \end{macrocode}
% \paragraph{(3) Traces} The traces in §tracesDrawn§ are drawn sequentially.\\
% §currSampleIndex§: original $x$-coordinate of a sample point;\\
% §sampleX§: transformed $x$-coordinate of a sample point, starting at 1;\\
% §x§ and §y§: ``real'' coordinates (in scaled points) of a sample point;\\
% §currLine§: current line, starting at 0;\\
% §firstPointInLine§: boolean that indicates if the current sample point is the first in the line.
%    \begin{macrocode}
  for _, baseName in ipairs(self.tracesDrawn) do
    tex.sprint("\n\t\\draw [" .. self.traceStyle[baseName] .. "] ")
    local currSampleIndex = self.sampleMin
    local sampleX = 1
    local x = 0
    local y = 0
    local currLine = 0
    local firstPointInLine = true
    
%    \end{macrocode}
% We iterate over each sample point. As long as the current sample point is within the selected range, we calculate the real coordinates of the sample point; add the lineto operator |--| if at least one sample point has already appeared in the current line; and write the point to the \TeX\ input stream.
%    \begin{macrocode}
    while currSampleIndex <= self.sampleMax do
      x = ((sampleX - 1) % self.samplesPerLine) * self.xUnit
      y = self.samples[baseName][currSampleIndex] * self.yUnit
        - currLine * self.baselineSkip
      if sampleX % self.sampleStep == 0 then
        if not firstPointInLine then
          tex.sprint(" -- ")
        else
          firstPointInLine = false
        end
        tex.sprint(
          "(" ..
          dimToString(x) ..
          ", " ..
          dimToString(y) ..
          ")"
        )
      end
%    \end{macrocode}
% Besides, we add line breaks at the appropriate positions.
%    \begin{macrocode}
      if sampleX ~= self.sampleMax + 1 - self.sampleMin then
        if sampleX >= (currLine + 1) * self.samplesPerLine then
          currLine = currLine + 1
          tex.sprint(";\n\t\\draw [" .. self.traceStyle[baseName] .. "] ")
          firstPointInLine = true
        end
      else
        tex.sprint(";")
      end
    sampleX = sampleX + 1
    currSampleIndex = currSampleIndex + 1
    end
  end
  
%    \end{macrocode}
% \paragraph{(4) Annotations} We iterate over each selected peak and start by finding the line in which the first peak resides.\\
% §currLine§: current line, starting at 0;\\
% §lastProbX§: right $x$-coordinate of the probability rule of the last peak;\\
% §probRemainder§: string that draws the remainder of a probability indicator following a line break;\\
% §x§, §yUpper§, §yLower§: ``real'' tick coordinates;\\
% §tickOperation§: string that equals either \TikZ's moveto or lineto operation, depending on whether the current peak should be marked with a tick.
%    \begin{macrocode}
  local currLine = 0
  local lastProbX = 1
  local probRemainder = false

  for _, currPeak in ipairs(self.selectedPeaks) do
    while currPeak.offset > (currLine + 1) * self.samplesPerLine do
      currLine = currLine + 1
    end

    local x = ((currPeak.offset - 1) % self.samplesPerLine) * self.xUnit
    local yUpper = -currLine * self.baselineSkip
    local yLower = -currLine * self.baselineSkip - self.tickLength
    local tickOperation = ""
    if self.ticksDrawn:upper():find(currPeak.base) then
      tickOperation = "--"
    end
    
%    \end{macrocode}
% \paragraph{(4a) Ticks and labels} Having calculated all coordinates, we draw the tick and the base label, given the latter has been specified by \opt{base labels drawn}.
%    \begin{macrocode}
    tex.sprint(
      "\n\t\\draw [" ..
      self.tickStyle[currPeak.base] ..
      "] (" ..
      dimToString(x) ..
      ", " ..
      dimToString(yUpper) ..
      ") " ..
      tickOperation ..
      " (" ..
      dimToString(x) ..
      ", " ..
      dimToString(yLower) ..
      ")"
    )
    if self.baseLabelsDrawn:upper():find(currPeak.base) then
      tex.sprint(
        " node [" ..
        self.baseLabelStyle[currPeak.base] ..
        "] {" ..
        self.baseLabelText[currPeak.base] ..
        "}"
      )
    end

%    \end{macrocode}
% \paragraph{(4b) Base numbers} If \opt{show base numbers} is true and the current base number is within the interval given by \opt{base number range}, a base number is printed.
%    \begin{macrocode}
    if self.showBaseNumbers
        and currPeak.baseIndex >= self.baseNumberMin
        and currPeak.baseIndex <= self.baseNumberMax
        and (currPeak.baseIndex - self.baseNumberMin)
          % self.baseNumberStep == 0 then
      tex.sprint(
        " node [" ..
        PGFKEYS_PATH ..
        "base number style] {\\strut " ..
        currPeak.baseIndex ..
        "}"
      )
    end
    tex.sprint(";")
    
%    \end{macrocode}
% \paragraph{(4c) Probabilities} First, we draw the remainder of the last probability rule. Such a remainder has been stored in §probRemainder§ if the last rule had protruded into the right margin (see below). Furthermore, we determine if a probability rule should appear beneath the current peak. 
%    \begin{macrocode}
    if probRemainder then
      tex.sprint(probRemainder)
      probRemainder = false
    end
    local drawCurrProb =
      self.probabilitiesDrawn:upper():find(currPeak.base)
%    \end{macrocode}
% Now comes the tricky part. Whenever we choose to paint a probability rule, we may envision three scenarios. \textit{Firstly}, the probability rule starts in the left margin of the current line (i.\,e., §xLeft§ is negative). This means that the part protruding into the left margin must instead appear at the end of the last line. Therefore, we calculate the coordinates of this part (storing them in §xLeftPrev§, §xRightPrev§ and §yPrev§) and draw the segment. Since the remainder of the rule necessarily starts at the left border of the current line, we set §xLeft§ to zero.
%    \begin{macrocode}
    local xLeft = lastProbX - 1 - currLine * self.samplesPerLine
    if xLeft < 0 then
      local xLeftPrev = (self.samplesPerLine + xLeft) * self.xUnit
      local xRightPrev = (self.samplesPerLine - 1) * self.xUnit
      local yPrev = -(currLine-1) * self.baselineSkip - self.probDistance
      if drawCurrProb then
        tex.sprint(
          "\n\t\\draw [" ..
          self.probStyle(currPeak.prob[currPeak.base]) ..
          "] (" ..
          dimToString(xLeftPrev) ..
          ", " ..
          dimToString(yPrev) ..
          ") -- (" ..
          dimToString(xRightPrev) ..
          ", " ..
          dimToString(yPrev) ..
          ");"
        )
      end
      xLeft = 0
    else
      xLeft = xLeft * self.xUnit
    end
    
%    \end{macrocode}
% \textit{Secondly}, the probability rule ends in the right margin of the current line (i.\,e., §xRight§ at least equals §samplesPerLine§). This means that the part protruding into the right margin must instead appear at the start of the following line. Therefore, we calculate the coordinates of this part (storing them in §xRightNext§ and §yNext§) and save the drawing command in §probRemainder§ (whose contents were printed above). Since the remainder of the rule necessarily ends at the right border of the current line, we set §xRight§ to this coordinate.
%    \begin{macrocode}
    local xRight = currPeak.probXRight - 1 - currLine * self.samplesPerLine
    if xRight >= self.samplesPerLine then
      if drawCurrProb then
        local xRightNext = (xRight - self.samplesPerLine) * self.xUnit
        local yNext = -(currLine+1) * self.baselineSkip - self.probDistance
        probRemainder =
          "\n\t\\draw [" ..
          self.probStyle(currPeak.prob[currPeak.base]) ..
          "] (" ..
          dimToString(0) ..
          ", " ..
          dimToString(yNext) ..
          ") -- (" ..
          dimToString(xRightNext) ..
          ", " ..
          dimToString(yNext) ..
          ");"
      end
      xRight = (self.samplesPerLine - 1) * self.xUnit
    else
      xRight = xRight * self.xUnit
    end
    
%    \end{macrocode}
% \textit{Thirdly}, the probability rule starts and ends within the boundaries of the current line. In this lucky case, the $y$-coordinate is the only one missing, since we previously calculated §xLeft§ (case~1) and §xRight§ (case~2). Drawing of the probability rule proceeds as usual.
%    \begin{macrocode}
    local y = -currLine * self.baselineSkip - self.probDistance
    if drawCurrProb then
      tex.sprint(
        "\n\t\\draw [" ..
        self.probStyle(currPeak.prob[currPeak.base]) ..
        "] (" ..
        dimToString(xLeft) ..
        ", " ..
        dimToString(y) ..
        ") -- (" ..
        dimToString(xRight) ..
        ", " ..
        dimToString(y) ..
        ");"
      )
    end
    lastProbX = currPeak.probXRight
  end
end
%    \end{macrocode}
% \iffalse
%</pmb-chr-lua>
%<*pmb-dom-tex>
% \fi
% 
% 
% \section{\texorpdfstring{\file{pgfmolbio.domains.tex}}{pgfmolbio.domains.tex}}
% \label{sec:DocDomTex}
% 
% \def\ydoclistingssettings{\lstset{style=latex-doc}}\setcounter{lstnumber}{1}
%    \begin{macrocode}
\ProvidesFile{pgfmolbio.domains.tex}[2012/10/01 v0.2 Protein Domains]

%    \end{macrocode}
% If the \module{domains} module is requested by Lua\TeX\, it loads the corresponding Lua module and generates a new §SpecialKeys§ object, which will store all feature styles, disulfide keys and print functions (section~\ref{ssc:DocDomLuaSpecialKeysClass}).
%    \begin{macrocode}
\ifluatex
  \RequireLuaModule{pgfmolbio.domains}
  \directlua{pmbSpecialKeys = pgfmolbio.domains.SpecialKeys:new()}
\fi

%    \end{macrocode}
% 
% \subsection{Keys}
% \label{ssc:DocDomTexKeys}
% 
% \begin{macro}{\@pmb@dom@keydef}[2]{\meta{key} name}{default \meta{value}}
% |\@pmb@dom@keydef| declares a \meta{key} in path |/pgfmolbio/domains| and assigns a default \meta{value}.
%    \begin{macrocode}
\def\@pmb@dom@keydef#1#2{%
  \pgfkeyssetvalue{/pgfmolbio/domains/#1}{#2}%
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\pmbdomvalueof}[1]{\meta{key} name}
% |\pmbdomvalueof| retrieves the value of a \meta{key} in path |/pgfmolbio/domains|. Note that the control word lacks an |@| and is thus freely accessible within a \LaTeX\ document (see section~\ref{sec:DomFeatureStylesAndShapes}).
%    \begin{macrocode}
\def\pmbdomvalueof#1{%
  \pgfkeysvalueof{/pgfmolbio/domains/#1}%
}

%    \end{macrocode}
% \end{macro}
% Aided by these auxiliary macros, we define all keys of the \module{domains} module.
%    \begin{macrocode}
\@pmb@dom@keydef{name}{Protein}
\newif\ifpmb@dom@showname
\pgfmolbioset[domains]{%
  show name/.is if=pmb@dom@showname,
  show name
}
\@pmb@dom@keydef{description}{}

\@pmb@dom@keydef{x unit}{.5mm}
\@pmb@dom@keydef{y unit}{6mm}
\@pmb@dom@keydef{residues per line}{200}
\@pmb@dom@keydef{baseline skip}{3}
\@pmb@dom@keydef{residue numbering}{auto}
\@pmb@dom@keydef{residue range}{auto-auto}
\@pmb@dom@keydef{enlarge left}{0cm}
\@pmb@dom@keydef{enlarge right}{0cm}
\@pmb@dom@keydef{enlarge top}{1cm}
\@pmb@dom@keydef{enlarge bottom}{0cm}

\pgfmolbioset[domains]{%
  style/.code=\pgfmolbioset[domains]{current style/.style={#1}}
}

\@pmb@dom@keydef{domain font}{\footnotesize}

\@pmb@dom@keydef{level}{}
\@pmb@dom@keydef{disulfide base distance}{1}
\@pmb@dom@keydef{disulfide level distance}{.2}
\@pmb@dom@keydef{range font}{\sffamily\scriptsize}

\newif\ifpmb@dom@showruler
\pgfmolbioset[domains]{%
  show ruler/.is if=pmb@dom@showruler,
  show ruler
}
\@pmb@dom@keydef{ruler range}{auto-auto}
\@pmb@dom@keydef{default ruler step size}{50}
\@pmb@dom@keydef{ruler distance}{-.5}

\@pmb@dom@keydef{sequence}{}
\@pmb@dom@keydef{magnified sequence font}{\ttfamily\footnotesize}


\newif\ifpmb@dom@showsecstructure
\pgfmolbioset[domains]{%
  show secondary structure/.is if=pmb@dom@showsecstructure,
  show secondary structure=false
}
\@pmb@dom@keydef{secondary structure distance}{1}
\pgfmolbioset[domains]{%
  helix back border color/.code=\colorlet{helix back border color}{#1},
  helix back main color/.code=\colorlet{helix back main color}{#1},
  helix back middle color/.code=\colorlet{helix back middle color}{#1},
  helix front border color/.code=\colorlet{helix front border color}{#1},
  helix front main color/.code=\colorlet{helix front main color}{#1},
  helix front middle color/.code=\colorlet{helix front middle color}{#1},
  helix back border color=white!50!black,
  helix back main color=white!90!black,
  helix back middle color=white,
  helix front border color=red!50!black,
  helix front main color=red!90!black,
  helix front middle color=red!10!white
}

\@pmb@dom@keydef{sequence length}{}

\@pmb@dom@keydef{@layer}{}

%    \end{macrocode}
% 
% \subsection{Feature Shapes}
% \label{ssc:DocDomTexFeatureShapes}
% 
% \begin{macro}{\setfeatureshape}[2]{Shape \meta{name}.}{\TikZ\ \meta{code}.}
% Stores the \meta{code} for a shape in the macro |\@pmb@dom@feature@|\meta{name}|@shape|.
%    \begin{macrocode}
\newcommand\setfeatureshape[2]{%
  \expandafter\def\csname @pmb@dom@feature@#1@shape\endcsname{#2}%
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\setfeatureshapealias}[2]{New shape.}{Existing shape.}
% Links a new shape to an existing one.
%    \begin{macrocode}
\newcommand\setfeatureshapealias[2]{%
  \expandafter\def\csname @pmb@dom@feature@#1@shape\endcsname{%
    \@nameuse{@pmb@dom@feature@#2@shape}%
  }%
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\setfeaturestylealias}[2]{New style.}{Existing style.}
% This macro and the next one are only defined in Lua\TeX\. Depending on whether |\setfeaturestylealias| occurs within a |pmbdomains| environment, it either sets the feature styles of the §SpecialKeys§ object in the current §Protein§ (§pmbProtein.specialKeys§) or of the global §SpecialKeys§ object (§pmbSpecialKeys§).
% \begin{macro}{\setfeaturealias}[2]{New feature.}{Existing feature.}
% Calls |\setfeatureshapealias| and possibly |\setfeaturestylealias|.
%    \begin{macrocode}
\ifluatex
  \newcommand\setfeaturestylealias[2]{%
    \directlua{
      if pmbProtein then
        pmbProtein.specialKeys:aliasFeatureStyle("#1", "#2")
      else
        pmbSpecialKeys:aliasFeatureStyle("#1", "#2")
      end
    }%
  }
  \newcommand\setfeaturealias[2]{%
    \setfeatureshapealias{#1}{#2}%
    \setfeaturestylealias{#1}{#2}%
  }
\else
  \let\setfeaturealias\setfeatureshapealias%
\fi

%    \end{macrocode}
% \end{macro}\end{macro}
% \begin{macro}{\pmbdomdrawfeature}[1]{The feature \meta{type} that should be drawn.}
% If a feature \meta{type} (i.\,e., the corresponding macro) is undefined, we issue a warning and draw feature \texttt{default}.
%    \begin{macrocode}
\newcommand\pmbdomdrawfeature[1]{%
  \@ifundefined{@pmb@dom@feature@#1@shape}{%
    \PackageWarning{pgfmolbio}%
      {Feature shape `#1' unknown, using `default'.}%
    \@pmb@dom@feature@default@shape%
  }{%
    \@nameuse{@pmb@dom@feature@#1@shape}%
  }%
}

%    \end{macrocode}
% \end{macro}
% Definitions of standard features and their aliases.
%    \begin{macrocode}
\setfeatureshape{default}{%
  \path [/pgfmolbio/domains/current style]
    (\xLeft, \yMid + .5 * \pmbdomvalueof{y unit}) rectangle
    (\xRight, \yMid - .5 * \pmbdomvalueof{y unit});
}

\setfeatureshape{domain}{
  \draw [/pgfmolbio/domains/current style, rounded corners=2pt]
    (\xLeft, \yMid + .5 * \pmbdomvalueof{y unit}) rectangle
    (\xRight, \yMid - .5 * \pmbdomvalueof{y unit});
  \node at (\xMid, \yMid)
    {\pmbdomvalueof{domain font}{\pmbdomvalueof{description}}};
}
\setfeaturealias{DOMAIN}{domain}

\setfeatureshape{signal peptide}{%
  \path [/pgfmolbio/domains/current style]
    (\xLeft, \yMid + \pmbdomvalueof{y unit} / 5) rectangle
    (\xRight, \yMid - \pmbdomvalueof{y unit} / 5);
}
\setfeaturealias{SIGNAL}{signal peptide}

\setfeatureshape{propeptide}{%
  \path [/pgfmolbio/domains/current style]
    (\xLeft, \yMid + .5 * \pmbdomvalueof{y unit}) rectangle
    (\xRight, \yMid - .5 * \pmbdomvalueof{y unit});
}
\setfeaturealias{PROPEP}{propeptide}

\setfeatureshape{carbohydrate}{%
  \draw [/pgfmolbio/domains/current style]
    (\xMid, \yMid) --
    (\xMid, \yMid + .7 * \pmbdomvalueof{y unit})
    node [above] {\tiny\strut\pmbdomvalueof{description}};
  \fill [/pgfmolbio/domains/current style]
    (\xMid, \yMid + .7 * \pmbdomvalueof{y unit}) circle [radius=1pt];
}
\setfeaturealias{CARBOHYD}{carbohydrate}

\setfeatureshape{other/main chain}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yUpper{%
      \yMid + \pmbdomvalueof{secondary structure distance}
        * \pmbdomvalueof{y unit}%
    }
    \draw [thin]
      (\xLeft, \yUpper pt) --
      (\xRight, \yUpper pt);%
  \fi%
  \path [/pgfmolbio/domains/current style]
    (\xLeft, \yMid) --
    (\xRight, \yMid);%
}

\setfeatureshape{other/name}{%
  \ifpmb@dom@showname%
    \node [/pgfmolbio/domains/current style]
      at (\xMid, \pmbdomvalueof{baseline skip} * \pmbdomvalueof{y unit})
      {\pmbdomvalueof{name} (\pmbdomvalueof{sequence length} residues)};
  \fi%
}

\setfeatureshape{disulfide}{%
  \pgfmathsetmacro\yUpper{%
    \yMid + (
      \pmbdomvalueof{disulfide base distance} +
      (\pmbdomvalueof{level} - 1) *
      \pmbdomvalueof{disulfide level distance}
    ) * \pmbdomvalueof{y unit}
  }
  \path [/pgfmolbio/domains/current style]
    (\xLeft, \yMid) --
    (\xLeft, \yUpper pt) --
    (\xRight, \yUpper pt) --
    (\xRight, \yMid);
}
\setfeaturealias{DISULFID}{disulfide}

\setfeatureshape{range}{%
  \pgfmathsetmacro\yUpper{%
    \yMid + (
      \pmbdomvalueof{disulfide base distance} +
      (\pmbdomvalueof{level} - 1) *
      \pmbdomvalueof{disulfide level distance}
    ) * \pmbdomvalueof{y unit}
  }
  \path [/pgfmolbio/domains/current style]
    (\xLeft, \yUpper pt) --
    (\xRight, \yUpper pt)
    node [pos=.5, above]
      {\pmbdomvalueof{range font}{\pmbdomvalueof{description}}};
}

\setfeatureshape{other/ruler}{%
  \draw [/pgfmolbio/domains/current style]
    (\xMid,
      \yMid + \pmbdomvalueof{ruler distance} *
              \pmbdomvalueof{y unit}) --
    (\xMid,
      \yMid + \pmbdomvalueof{ruler distance} *
              \pmbdomvalueof{y unit} - 1mm)
    node [below=-1mm] {\tiny\sffamily\strut\residueNumber};
}


\setfeatureshape{other/sequence}{%
  \node [/pgfmolbio/domains/current style]
    at (\xMid, \yMid) {\strut\currentResidue};
}

\newlength\pmb@magnifiedsequence@width

\setfeatureshape{other/magnified sequence above}{%
  \settowidth\pmb@magnifiedsequence@width{%
    \begin{pgfinterruptpicture}%
      \pmbdomvalueof{magnified sequence font}%
      \featureSequence%
      \end{pgfinterruptpicture}%
    }%
  \pgfmathsetmacro\xUpperLeft{\xMid - \pmb@magnifiedsequence@width / 2}
  \pgfmathsetmacro\xUpperRight{\xMid + \pmb@magnifiedsequence@width / 2}
  
  \draw [/pgfmolbio/domains/current style]
    (\xLeft, \yMid) --
    (\xLeft, \yMid + \pmbdomvalueof{y unit} / 6) --
    (\xUpperLeft pt, \yMid + \pmbdomvalueof{y unit} * 4/6) --
    (\xUpperLeft pt, \yMid + \pmbdomvalueof{y unit} * 5/6)
    (\xUpperRight pt, \yMid + \pmbdomvalueof{y unit} * 5/6) --
    (\xUpperRight pt, \yMid + \pmbdomvalueof{y unit} * 4/6) --
    (\xRight, \yMid + \pmbdomvalueof{y unit} / 6) --
    (\xRight, \yMid);
  \node [anchor=mid]
    at (\xMid, \yMid + \pmbdomvalueof{y unit})
    {\pmbdomvalueof{magnified sequence font}\featureSequence};
}

\setfeatureshape{other/magnified sequence below}{%
  \settowidth\pmb@magnifiedsequence@width{%
    \begin{pgfinterruptpicture}%
      \pmbdomvalueof{magnified sequence font}%
      \featureSequence%
      \end{pgfinterruptpicture}%
    }%
  \pgfmathsetmacro\xLowerLeft{\xMid - \pmb@magnifiedsequence@width / 2}
  \pgfmathsetmacro\xLowerRight{\xMid + \pmb@magnifiedsequence@width / 2}
  
  \draw [/pgfmolbio/domains/current style]
    (\xLeft, \yMid) --
    (\xLeft, \yMid - \pmbdomvalueof{y unit} / 6) --
    (\xLowerLeft pt, \yMid - \pmbdomvalueof{y unit}) --
    (\xLowerLeft pt, \yMid - \pmbdomvalueof{y unit} * 7/6)
    (\xLowerRight pt, \yMid - \pmbdomvalueof{y unit} * 7/6) --
    (\xLowerRight pt, \yMid - \pmbdomvalueof{y unit}) --
    (\xRight, \yMid - \pmbdomvalueof{y unit} / 6) --
    (\xRight, \yMid);
  \node [anchor=mid]
    at (\xMid, \yMid - \pmbdomvalueof{y unit} * 8/6)
    {\pmbdomvalueof{magnified sequence font}\featureSequence};
}


%    \end{macrocode}
% 
% \subsection{Secondary Structure Elements}
% \label{ssc:DocDomTexSecondaryStructure}
% 
% \begin{macro}{\@pmb@dom@helixsegment}[1]{Scale factor for \TikZ's \texttt{svg} action.}
% Draws a full helix segment at the current canvas position. We use the (unusual) \file{svg} syntax since the helix segment was designed in Inkscape, and the \file{svg} commands were copied from the resulting vector graphics file.
%    \begin{macrocode}
\newcommand\@pmb@dom@helixsegment[1]{%
  svg [scale=#1] "%
    c  0.30427  0
       0.62523  0.59174
       0.79543  0.96646
    c  0.97673  2.15039
       1.34005  4.49858
       1.84538  6.6178
    c  0.56155  2.35498
       0.99602  4.514
       1.82948  6.72355
    c  0.11069  0.29346
       0.23841  0.69219
       0.56172  0.69219
    l -5        0
    c -0.27235  0.0237
      -0.55793 -0.51373
      -0.65225 -0.76773
    c -0.98048 -2.64055
      -1.40233 -5.46534
      -2.06809 -8.00784
    c -0.50047 -1.91127
      -0.94696 -3.73368
      -1.68631 -5.43929
    c -0.14066 -0.3245
      -0.34516 -0.78514
      -0.69997 -0.78514
    z"
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\@pmb@dom@helixhalfsegment}[1]{Scale factor for \TikZ's \texttt{svg} action.}
% Draws a half helix segment.
%    \begin{macrocode}
\newcommand\@pmb@dom@helixhalfsegment[1]{%
  svg [scale=#1] "%
    c  0.50663  2.18926
       0.96294  4.51494
       1.78125  6.71875
    c  0.09432  0.254
       0.35265  0.80495
       0.625    0.78125
    l  5        0
    c -0.32331  0
      -0.45181 -0.42529
      -0.5625  -0.71875
    c -0.83346 -2.20955
      -1.2822  -4.36377
      -1.84375 -6.78125
    l -5        0
    z"
}

%    \end{macrocode}
% \end{macro}
% Shadings for helix segments.
%    \begin{macrocode}
\pgfdeclareverticalshading[%
    helix back border color,%
    helix back main color,%
    helix back middle color%
  ]{helix half upper back}{100bp}{
  color(0bp)=(helix back middle color);
  color(5bp)=(helix back middle color);
  color(45bp)=(helix back main color);
  color(75bp)=(helix back border color);
  color(100bp)=(helix back border color)
}

\pgfdeclareverticalshading[%
    helix back border color,%
    helix back main color,%
    helix back middle color%
  ]{helix half lower back}{100bp}{
  color(0bp)=(helix back border color);
  color(25bp)=(helix back border color);
  color(35bp)=(helix back main color);
  color(55bp)=(helix back middle color);
  color(95bp)=(helix back main color);
  color(100bp)=(helix back main color)
}

\pgfdeclareverticalshading[%
    helix back border color,%
    helix back main color,%
    helix back middle color%
  ]{helix full back}{100bp}{
  color(0bp)=(helix back border color);
  color(25bp)=(helix back border color);
  color(30bp)=(helix back main color);
  color(40bp)=(helix back middle color);
  color(60bp)=(helix back main color);
  color(75bp)=(helix back border color);
  color(100bp)=(helix back border color)
}

\pgfdeclareverticalshading[%
    helix front border color,%
    helix front main color,%
    helix front middle color%
  ]{helix half upper front}{100bp}{
  color(0bp)=(helix front main color);
  color(5bp)=(helix front main color);
  color(45bp)=(helix front middle color);
  color(65bp)=(helix front main color);
  color(75bp)=(helix front border color);
  color(100bp)=(helix front border color)
}

\pgfdeclareverticalshading[%
    helix front border color,%
    helix front main color,%
    helix front middle color%
  ]{helix full front}{100bp}{
  color(0bp)=(helix front border color);
  color(25bp)=(helix front border color);
  color(40bp)=(helix front main color);
  color(60bp)=(helix front middle color);
  color(70bp)=(helix front main color);
  color(75bp)=(helix front border color);
  color(100bp)=(helix front border color)
}

%    \end{macrocode}
% The following features print single helical turns. They are drawn with appropriate coordinates by §printHelixFeature§ (section~\ref{ssc:DocDomLuaPrintFunctions}).
%    \begin{macrocode}
\setfeatureshape{helix/half upper back}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \draw [shading=helix half upper back]
      (\xLeft, \yMid + \yShift pt)
      \@pmb@dom@helixhalfsegment{\pmbdomvalueof{x unit} / 5};
  \fi%
}

\setfeatureshape{helix/half lower back}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \draw [shading=helix half lower back]
      (\xRight, \yMid + \yShift pt) [rotate=180]
      \@pmb@dom@helixhalfsegment{\pmbdomvalueof{x unit} / 5};
  \fi%
}

\setfeatureshape{helix/full back}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \draw [shading=helix full back]
      (\xMid, \yLower + \yShift pt)
      \@pmb@dom@helixsegment{\pmbdomvalueof{x unit} / 5};
  \fi%
}

\setfeatureshape{helix/half upper front}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \draw [shading=helix half upper front]
      (\xRight, \yMid + \yShift pt) [xscale=-1]
      \@pmb@dom@helixhalfsegment{\pmbdomvalueof{x unit} / 5};
  \fi%
}

\setfeatureshape{helix/full front}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \draw [shading=helix full front]
      (\xMid, \yLower + \yShift pt) [xscale=-1]
      \@pmb@dom@helixsegment{\pmbdomvalueof{x unit} / 5};
  \fi%
}

%    \end{macrocode}
% Definitions of the remaining secondary structure features.
%    \begin{macrocode}
\definecolor{strand left color}{RGB}{42,127,255}
\definecolor{strand right color}{RGB}{128,179,255}

\setfeatureshape{beta strand}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \draw [/pgfmolbio/domains/current style]
      (\xLeft, \yMid + \pmbdomvalueof{x unit} + \yShift pt) --
      (\xRight - 1.5 * \pmbdomvalueof{x unit},
        \yMid + \pmbdomvalueof{x unit} + \yShift pt) --
      (\xRight - 1.5 * \pmbdomvalueof{x unit},
        \yMid + 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
      (\xRight, \yMid + \yShift pt) --
      (\xRight - 1.5 * \pmbdomvalueof{x unit},
        \yMid - 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
      (\xRight - 1.5 * \pmbdomvalueof{x unit},
        \yMid - \pmbdomvalueof{x unit} + \yShift pt) --
      (\xLeft, \yMid - \pmbdomvalueof{x unit} + \yShift pt) --
      cycle;%
  \fi%
}
\setfeaturealias{STRAND}{beta strand}

\setfeatureshape{beta turn}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \pgfmathsetmacro\turnXradius{(\xRight - \xLeft) / 2}%
    \pgfmathsetmacro\turnYradius{\pmbdomvalueof{x unit} * 1.5}%
    \fill [white]
      (\xLeft, \yMid + 1mm + \yShift pt) rectangle
      (\xRight, \yMid - 1mm + \yShift pt);%
    \draw [/pgfmolbio/domains/current style]
      (\xLeft - .5pt, \yMid + \yShift pt) --
      (\xLeft, \yMid + \yShift pt) arc
        [start angle=180, end angle=0,
        x radius=\turnXradius pt, y radius=\turnYradius pt] --
      (\xRight + .5pt, \yMid + \yShift pt);%
  \fi%
}
\setfeaturealias{TURN}{beta turn}

\setfeatureshape{beta bridge}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \draw [/pgfmolbio/domains/current style]
      (\xLeft, \yMid + .25 * \pmbdomvalueof{x unit} + \yShift pt) --
      (\xRight - 1.5 * \pmbdomvalueof{x unit},
        \yMid + .25 * \pmbdomvalueof{x unit} + \yShift pt) --
      (\xRight - 1.5 * \pmbdomvalueof{x unit},
        \yMid + 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
      (\xRight, \yMid + \yShift pt) --
      (\xRight - 1.5 * \pmbdomvalueof{x unit},
        \yMid - 1.5 * \pmbdomvalueof{x unit} + \yShift pt) --
      (\xRight - 1.5 * \pmbdomvalueof{x unit},
        \yMid - .25 * \pmbdomvalueof{x unit} + \yShift pt) --
      (\xLeft, \yMid - .25 * \pmbdomvalueof{x unit} + \yShift pt) --
      cycle;%
  \fi%
}

\setfeatureshape{bend}{%
  \ifpmb@dom@showsecstructure%
    \pgfmathsetmacro\yShift{%
      \pmbdomvalueof{secondary structure distance} *
      \pmbdomvalueof{y unit}%
    }
    \fill [white]
      (\xLeft, \yMid + 1mm + \yShift pt) rectangle
      (\xRight, \yMid - 1mm + \yShift pt);%
    \draw [/pgfmolbio/domains/current style]
      (\xLeft - .5pt, \yMid + \yShift pt) --
      (\xLeft, \yMid + \yShift pt) --
      (\xMid, \yMid + .5 * \pmbdomvalueof{y unit} + \yShift pt) --
      (\xRight, \yMid + \yShift pt) --
      (\xRight + .5pt, \yMid + \yShift pt);%
  \fi%
}

%    \end{macrocode}
% This concludes the part of the package that is always loaded. The remaining code is only executed within Lua\TeX.
%    \begin{macrocode}
\ifluatex\else\expandafter\endinput\fi


%    \end{macrocode}
% 
% \subsection{Adding Features}
% \label{ssc:DocDomTexAddingFeatures}
% 
% \begin{macro}{\pmb@dom@inputuniprot}[1]{The \meta{name} of a Uniprot file.}
% |\pmb@dom@inputuniprot| reads some attributes and all features from a Uniprot file (§readUniprotFile§, section~\ref{ssc:DocDomLuaReadFiles}). It then updates some keys of the \module{domains} module (§getParameters§, section~\ref{ssc:DocDomLuaParameters}) and then passes the value of \opt{residue numbering} to the §pmbProtein§ object.
%    \begin{macrocode}
\newcommand\pmb@dom@inputuniprot[1]{%
  \directlua{
    pmbProtein:readUniprotFile("#1")
    pmbProtein:getParameters()
    pmbProtein:setParameters{
      residueNumbering = "\pmbdomvalueof{residue numbering}"
    }
  }%
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\pmb@dom@inputgff}[1]{The \meta{name} of a General Feature Format (\file{gff}) file.}
% This macro reads all features from a \file{gff} file (§readGffFile§, section~\ref{ssc:DocDomLuaReadFiles}). It then passes the value of residue numbering to §pmbProtein§.
%    \begin{macrocode}
\newcommand\pmb@dom@inputgff[1]{%
  \directlua{
    pmbProtein:readGffFile("#1")
    pmbProtein:setParameters{
      residueNumbering = "\pmbdomvalueof{residue numbering}"
    }
  }%
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\pmb@dom@addfeature}[4]{A \ometa{key-value list} that is locally applied to the feature.}{The feature \meta{key}.}{The \meta{first} \dots}{and \meta{last} residue covered by the feature.}
% This macro adds a feature to §pmbProtein§ by calling its §addFeature§ method. The \ometa{key-value list} should be stored without any expansion in the §kvList§ field of §addFeature§'s single argument table. To this end, we first store the \ometa{key-value list} in the token register |\@pmb@toksa| and then access its contents by the construction |\directlua{|[...]|\the\@pmb@toksa|[...]|}|. This code behaves similarly to |\the| inside an |\edef|, i.\,e. the contents of the token register are not further expanded.
%    \begin{macrocode}
\newcommand\pmb@dom@addfeature[4][]{%
  \begingroup%
  \pgfmolbioset[domains]{#1}%
  \@pmb@toksa{#1}%
  \directlua{
    pmbProtein:addFeature{
      key = "#2",
      start = "#3",
      stop = "#4",
      kvList = "\luaescapestring{\the\@pmb@toksa}",
      level = tonumber("\pmbdomvalueof{level}"),
      layer = tonumber("\pmbdomvalueof{@layer}")
    }
  }%
  \endgroup%
}

%    \end{macrocode}
% \end{macro}
% 
% \subsection{The Main Environment}
% \label{ssc:DocDomTexMainEnvironment}
% 
% % \begin{environment}{pmbdomains}[2]{A \ometa{key-value list} that configures the domain diagram.}{The \meta{sequence length}.}
% If |pmbdomains| appears outside of a |tikzpicture|, we implicitly start this environment, otherwise we begin a new group. ``Within a |tikzpicture|'' means that |\useasboundingbox| is defined. The \ometa{key-value list} is processed.
%    \begin{macrocode}
\newif\ifpmb@dom@tikzpicture

\newenvironment{pmbdomains}[2][]{%
  \@ifundefined{useasboundingbox}%
    {\pmb@dom@tikzpicturefalse\begin{tikzpicture}}%
    {\pmb@dom@tikzpicturetrue}%
  \pgfmolbioset[domains]{sequence length=#2, #1}%
%    \end{macrocode}
% The macros |\inputuniprot|, |\inputgff| and |\addfeature| only point to their respective internal macros (section~\ref{ssc:DocDomTexAddingFeatures}) within |pmbdomains|.
%    \begin{macrocode}
  \let\inputuniprot\pmb@dom@inputuniprot%
  \let\inputgff\pmb@dom@inputgff%
  \let\addfeature\pmb@dom@addfeature%
%    \end{macrocode}
% §pmbProtein§ is a new §Protein§ object whose §specialKeys§ attribute is initialized with the values from the package-wide §SpecialKeys§ object. Since §pmbProtein§ must know the sequence length and residue numbering before the environment's body is processed, we call §setParameters§ twice to ensure that §sequenceLength§ is set prior to §residueNumbering§.
%    \begin{macrocode}
  \directlua{
    pmbProtein = pgfmolbio.domains.Protein:new()
    pmbProtein.specialKeys =
      pgfmolbio.domains.SpecialKeys:new(pmbSpecialKeys)
    pmbProtein:setParameters{
      sequenceLength = "\pmbdomvalueof{sequence length}"
    }
    pmbProtein:setParameters{
      residueNumbering = "\pmbdomvalueof{residue numbering}"
    }
  }%
}{%
%    \end{macrocode}
% At the end of |pmbdomains|'s body, §pmbProtein§ stores all features that have been defined there. We add one more feature, \texttt{other/main chain}, which spans the whole protein and occupies the lowermost layer (this is the only instance where we need the \opt{@layer} key).
%    \begin{macrocode}
  \pmb@dom@addfeature[@layer=1]{other/main chain}%
    {(1)}{(\pmbdomvalueof{sequence length})}%
%    \end{macrocode}
% The following syntactical gem ensures that the token register |\@pmb@toksa| contains the value of the \opt{name} key without expansion of any macros within the value.
%    \begin{macrocode}
  \@pmb@toksa=%
    \expandafter\expandafter\expandafter\expandafter%
    \expandafter\expandafter\expandafter{%
      \pgfkeysvalueof{/pgfmolbio/domains/name}%
    }%
%    \end{macrocode}
% Set the remaining attributes of §pmbProtein§.
%    \begin{macrocode}
  \directlua{
    pmbProtein:setParameters{
      residueRange = "\pmbdomvalueof{residue range}",
      defaultRulerStepSize = "\pmbdomvalueof{default ruler step size}"
    }
    pmbProtein:setParameters{
      name = "\luaescapestring{\the\@pmb@toksa}",
      xUnit = "\pmbdomvalueof{x unit}",
      yUnit = "\pmbdomvalueof{y unit}",
      residuesPerLine = "\pmbdomvalueof{residues per line}",
      baselineSkip = "\pmbdomvalueof{baseline skip}",
      showRuler = "\ifpmb@dom@showruler true\else false\fi",
      rulerRange = "\pmbdomvalueof{ruler range}",
      sequence = "\pmbdomvalueof{sequence}"
    }
%    \end{macrocode}
% Calculate he appropriate levels of disulfide-like features (section~\ref{ssc:DocDomLuaDisulfideLevels}). §pgfmolbio.setCoordinateFormat§ sets the coordinate output format (section~\ref{sec:DocPkgLua}).
%    \begin{macrocode}
    pmbProtein:calculateDisulfideLevels()
    pgfmolbio.setCoordinateFormat(
      "\pgfkeysvalueof{/pgfmolbio/coordinate unit}",
      "\pgfkeysvalueof{/pgfmolbio/coordinate format string}"
    )
%    \end{macrocode}
% If the \module{convert} module is loaded, we open the appropriate output file. If we wish to output final \TikZ\ code, we change §tex.sprint§ so that the function writes to this file and then call §printTikzDomains§. Otherwise, we write a string representation of §pmbProtein§ to the file (section~\ref{ssc:DocDomLuaTostring}). Without the \module{convert} module, §printTikzDomains§ simply returns the drawing commands for the chromatogram to the \TeX\ input stream (section~\ref{ssc:DocDomLuaPrintTikzDomains}).
%    \begin{macrocode}
    \ifpmb@loadmodule@convert
      local filename =
        "\pgfkeysvalueof{/pgfmolbio/convert/output file name}"
      if filename == "(auto)" then
        filename = "pmbconverted" .. pgfmolbio.outputFileId
      end
      filename = filename ..
        ".\pgfkeysvalueof{/pgfmolbio/convert/output file extension}"
      outputFile, ioError = io.open(filename, "w")
      if ioError then
        tex.error(ioError)
      end
      \ifpmb@con@outputtikzcode
        tex.sprint = function(a) outputFile:write(a) end
        pmbProtein:getParameters()
        tex.sprint("\string\n\string\\begin{tikzpicture}")
        pmbProtein:printTikzDomains()
        tex.sprint("\string\n\string\\end{tikzpicture}")
      \else
        \ifpmb@con@includedescription
          pmbProtein.includeDescription = true
        \fi
        outputFile:write(tostring(pmbProtein))
      \fi
      outputFile:close()
      pgfmolbio.outputFileId = pgfmolbio.outputFileId + 1
    \else
      pmbProtein:printTikzDomains()
    \fi
    pmbProtein = nil
  }%
%    \end{macrocode}
% At the end of |pmbdomains|, we close an implicitly added |tikzpicture|.
%    \begin{macrocode}
  \ifpmb@dom@tikzpicture\else\end{tikzpicture}\fi%
}

%    \end{macrocode}
% \end{environment}
% 
% \subsection{Feature Styles}
% \label{ssc:DocDomTexFeatureStyles}
% 
% \begin{macro}{\setdisulfidefeatures}[1]{A list of \meta{features}.}
% Clears the list of disulfide-like features and adds the \meta{features} to the empty list. Disulfide-like features are arranged in non-overlapping layers (section~\ref{sec:DomDisulfides}). Depending on whether this macro appears inside a |pmbdomains| environment or not, the appropriate methods of either §pmbProtein.specialKeys§ or §pmbSpecialKeys§ are called, respectively.
%    \begin{macrocode}
\newcommand\setdisulfidefeatures[1]{%
  \directlua{
    if pmbProtein then
      pmbProtein.specialKeys:clearKeys("disulfideKeys")
      pmbProtein.specialKeys:setKeys("disulfideKeys", "#1", true)
    else
      pmbSpecialKeys:clearKeys("disulfideKeys")
      pmbSpecialKeys:setKeys("disulfideKeys", "#1", true)
    end
  }%
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\adddisulfidefeatures}[1]{A list of \meta{features}.}
% Adds the \meta{features} to the list of disulfide-like features without overwriting the current list.
%    \begin{macrocode}
\newcommand\adddisulfidefeatures[1]{%
  \directlua{
    if pmbProtein then
      pmbProtein.specialKeys:setKeys("disulfideKeys", "#1", true)
    else
      pmbSpecialKeys:setKeys("disulfideKeys", "#1", true)
    end
  }%
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\removedisulfidefeatures}[1]{A list of \meta{features}.}
% Removes the \meta{features} from the list of disulfide-like features.
%    \begin{macrocode}
\newcommand\removedisulfidefeatures[1]{%
  \directlua{
    if pmbProtein then
      pmbProtein.specialKeys:setKeys("disulfideKeys", "#1", nil)
    else
      pmbSpecialKeys:setKeys("disulfideKeys", "#1", nil)
    end
  }%
}

%    \end{macrocode}
% \end{macro}
% Declare the default disulfide-like features.
%    \begin{macrocode}
\setdisulfidefeatures{DISULFID, disulfide, range}

%    \end{macrocode}
% \begin{macro}{\setfeatureprintfunction}[2]{A \meta{list} of features.}{Name of a Lua \meta{function}.}
% Assigns a feature print \meta{function} to each feature in the \meta{list}. Feature print functions are preprocessors which, for instance, calculate coordinates for features (section~\ref{sec:DomSequences}).
%    \begin{macrocode}
\newcommand\setfeatureprintfunction[2]{%
  \directlua{
    if pmbProtein then
      pmbProtein.specialKeys:setKeys("printFunctions", "#1", #2)
    else
      pmbSpecialKeys:setKeys("printFunctions", "#1", #2)
    end
  }%
}

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\removefeatureprintfunction}[1]{A \meta{list} of features.}
% Removes any feature print function from the features in the \meta{list}.
%    \begin{macrocode}
\newcommand\removefeatureprintfunction[1]{%
  \directlua{
    if pmbProtein then
      pmbProtein.specialKeys:setKeys("printFunctions", "#1", nil)
    else
      pmbSpecialKeys:setKeys("printFunctions", "#1", nil)
    end
  }%
}

%    \end{macrocode}
% \end{macro}
% Assign default feature print functions.
%    \begin{macrocode}
\setfeatureprintfunction{other/sequence}%
  {pgfmolbio.domains.printSequenceFeature}
\setfeatureprintfunction{alpha helix, pi helix, 310 helix, HELIX}%
  {pgfmolbio.domains.printHelixFeature}

%    \end{macrocode}
% 
% \begin{macro}{\setfeaturestyle}[2]{A \meta{feature} name.}{A \meta{style list}.}
% Sets the style of a \meta{feature} to the style described in the \meta{style list}. Note that the contents of \meta{style list} are passed to the Lua function without expansion (via the token register |\@pmb@toksa|).
%    \begin{macrocode}
\newcommand\setfeaturestyle[2]{%
  \@pmb@toksa{#2}%
  \directlua{
    if pmbProtein then
      pmbProtein.specialKeys:setFeatureStyle(
        "#1", "\luaescapestring{\the\@pmb@toksa}"
      )
    else
      pmbSpecialKeys:setFeatureStyle(
        "#1", "\luaescapestring{\the\@pmb@toksa}"
      )
    end
  }%
}

%    \end{macrocode}
% \end{macro}
% Declare default feature styles.
%    \begin{macrocode}
\setfeaturestyle{default}{draw}
\setfeaturestyle{domain}%
  {fill=Chartreuse,fill=LightSkyBlue,fill=LightPink,fill=Gold!50}
\setfeaturestyle{signal peptide}{fill=black}
\setfeaturestyle{propeptide}%
  {*1{fill=Gold, opacity=.5, rounded corners=4pt}}
\setfeaturestyle{carbohydrate}{red}
\setfeaturestyle{other/main chain}{*1{draw, line width=2pt, black!25}}
\setfeaturestyle{other/name}{font=\sffamily}
\setfeaturestyle{disulfide}{draw=olive}
\setfeaturestyle{range}{*1{draw,decorate,decoration=brace}}
\setfeaturestyle{other/ruler}{black, black!50}
\setfeaturestyle{other/sequence}{*1{font=\ttfamily\tiny}}%
\setfeaturestyle{other/magnified sequence above}%
  {*1{draw=black!50, densely dashed}}
\setfeaturestylealias{other/magnified sequence below}%
  {other/magnified sequence above}
\setfeaturestyle{alpha helix}{%
  *1{helix front border color=red!50!black,%
  helix front main color=red!90!black,%
  helix front middle color=red!10!white}%
}
\setfeaturestylealias{HELIX}{alpha helix}
\setfeaturestyle{pi helix}{%
  *1{helix front border color=yellow!50!black,%
  helix front main color=yellow!70!red,%
  helix front middle color=yellow!10!white}%
}
\setfeaturestyle{310 helix}{%
  *1{helix front border color=magenta!50!black,%
  helix front main color=magenta!90!black,%
  helix front middle color=magenta!10!white}%
}
\setfeaturestyle{beta strand}{%
  *1{left color=strand left color, right color=strand right color}%
}
\setfeaturestyle{beta turn}{*1{draw=violet, thick}}
\setfeaturestyle{beta bridge}{*1{fill=MediumBlue}}
\setfeaturestyle{bend}{*1{draw=magenta, thick}}
%    \end{macrocode}
% 
% \iffalse
%</pmb-dom-tex>
%<*pmb-dom-lua>
% \fi
% 
% 
% 
% \section{\texorpdfstring{\file{pgfmolbio.domains.lua}}{pgfmolbio.domains.lua}}
% \label{sec:DocDomLua}
% 
% \def\ydoclistingssettings{\lstset{style=lua-doc}}\setcounter{lstnumber}{1}
%    \begin{macrocode}
if luatexbase then
  luatexbase.provides_module({
    name          = "pgfmolbio.domains",
    version       = 0.2,
    date          = "2012/10/01",
    description   = "Domain graphs",
    author        = "Wolfgang Skala",
    copyright     = "Wolfgang Skala",
    license       = "LPPL",
  })
end

%    \end{macrocode}
% These local functions point to functions in \file{pgfmolbio.lua} (section~\ref{sec:DocPkgLua}).
%    \begin{macrocode}
local stringToDim = pgfmolbio.stringToDim
local dimToString = pgfmolbio.dimToString
local packageError = pgfmolbio.packageError
local packageWarning = pgfmolbio.packageWarning
local getRange = pgfmolbio.getRange

%    \end{macrocode}
% 
% \subsection{Predefined Feature Print Functions}
% \label{ssc:DocDomLuaPrintFunctions}
% 
% §printSequenceFeature§ prints the letters of a sequence between the $x$-coordinates §xLeft§ and §xRight§.
%    \begin{macrocode}
function printSequenceFeature(feature, xLeft, xRight, yMid, xUnit, yUnit)
  xLeft = xLeft + 0.5
  for currResidue in feature.sequence:gmatch(".") do
    tex.sprint("\n\t\t\\def\\xMid{" .. dimToString(xLeft * xUnit) .. "}")
    tex.sprint("\n\t\t\\def\\yMid{" .. dimToString(yMid * yUnit) .. "}")
    tex.sprint("\n\t\t\\def\\currentResidue{" .. currResidue .. "}")
    tex.sprint("\n\t\t\\pmbdomdrawfeature{other/sequence}")
    xLeft = xLeft + 1
  end
end

%    \end{macrocode}
% 
% §printHelixFeature§ prints a helix feature between the $x$-coordinates §xLeft§ and §xRight§.
%    \begin{macrocode}
function printHelixFeature(feature, xLeft, xRight, yMid, xUnit, yUnit)
  local residuesLeft, currX
  tex.sprint("\n\t\t\\pgfmolbioset[domains]{current style}")
  
%    \end{macrocode}
% \textit{Firstly}, three different background parts are drawn: one \texttt{half upper back} at the left, zero or more \texttt{full back} in the middle and possibly one \texttt{half lower back} at the right.
%    \begin{macrocode}
  residuesLeft = feature.stop - feature.start + 1
  currX = xLeft
  tex.sprint("\n\t\t\\def\\xLeft{" .. dimToString(currX * xUnit) .. "}")
  tex.sprint("\n\t\t\\def\\yMid{" .. dimToString(yMid * yUnit) .. "}")
  tex.sprint("\n\t\t\\pmbdomdrawfeature{helix/half upper back}")
  residuesLeft = residuesLeft - 2
  currX = currX + 2.5
  
  while residuesLeft > 0 do
    if residuesLeft == 1 then
      tex.sprint(
        "\n\t\t\\def\\xRight{" ..
        dimToString((currX + 0.5) * xUnit) ..
        "}"
      )
      tex.sprint("\n\t\t\\def\\yMid{" .. dimToString(yMid * yUnit) .. "}")
      tex.sprint("\n\t\t\\pmbdomdrawfeature{helix/half lower back}")
    else
      tex.sprint("\n\t\t\\def\\xMid{" .. dimToString(currX * xUnit) .. "}")
      tex.sprint(
        "\n\t\t\\def\\yLower{" ..
        dimToString(yMid * yUnit - 1.5 * xUnit) ..
        "}"
      )
      tex.sprint("\n\t\t\\pmbdomdrawfeature{helix/full back}")
    end
    residuesLeft = residuesLeft - 2
    currX = currX + 2
  end
  
%    \end{macrocode}
% \textit{Secondly}, two different foreground parts are drawn: at least one \texttt{full front} at the left and in the middle, and possibly one \texttt{half upper front} at the right.
%    \begin{macrocode}
  residuesLeft = feature.stop - feature.start
  currX = xLeft + 1.5
  while residuesLeft > 0 do
    if residuesLeft == 1 then
      tex.sprint(
        "\n\t\t\\def\\xRight{" ..
        dimToString((currX + 0.5) * xUnit) ..
        "}"
      )
      tex.sprint("\n\t\t\\def\\yMid{" .. dimToString(yMid * yUnit) .. "}")
      tex.sprint("\n\t\t\\pmbdomdrawfeature{helix/half upper front}")
    else
      tex.sprint("\n\t\t\\def\\xMid{" .. dimToString(currX * xUnit) .. "}")
      tex.sprint(
        "\n\t\t\\def\\yLower{" ..
        dimToString(yMid * yUnit - 1.5 * xUnit) ..
        "}"
      )
      tex.sprint("\n\t\t\\pmbdomdrawfeature{helix/full front}")
    end
    residuesLeft = residuesLeft - 2
    currX = currX + 2
  end
end

%    \end{macrocode}
% 
% \subsection{The \texorpdfstring{\texttt{SpecialKeys}}{SpecialKeys} Class}
% \label{ssc:DocDomLuaSpecialKeysClass}
% 
% The §SpecialKeys§ class contains three member variables: §disulfideKeys§ (a list of keys that indicate disulfide-like features, like \texttt{disulfide}), §featureStyles§ (a list of feature styles) and §printFunctions§ (a list of keys associated with a feature print function, like \texttt{alpha helix}). Furthermore, it provides methods to manipulate these fields.
% 
% The constructor §SpecialKeys:new§ generates a new §SpecialKeys§ object and initializes it with values from §parms§.
%    \begin{macrocode}
SpecialKeys = {}

function SpecialKeys:new(parms)
  parms = parms or {}
  local newSpecialKeys = {
    disulfideKeys = {},
    featureStyles = {},
    printFunctions = {}
  }
  
  for keyList, listContents in pairs(parms) do
    for key, value in pairs(listContents) do
      newSpecialKeys[keyList][key] = value
    end
  end
  
  setmetatable(newSpecialKeys, self)
  self.__index = self
  return newSpecialKeys
end

%    \end{macrocode}
% §SpecialKeys:setKeys§ sets a §value§ for a §key§ in the §keylist§. Possible values for §keyList§ are §"disulfideKeys"§, §"featureStyles"§ or §"printFunctions"§.
%    \begin{macrocode}
function SpecialKeys:setKeys(keylist, keys, value)
  for key in keys:gmatch("([^,]+)") do
    key = key:trim()
    self[keylist][key] = value
  end
end

%    \end{macrocode}
% 
% §SpecialKeys:setFeatureStyle§ parses the style list §style§ and associates it with a certain §key§. In Lua, a style list is an array of tables. Each table contains the fields §cycles§ and §style§. §cycles§ determines how often the §style§ (a string suitable for the mandatory argument of |\pgfmolbioset|) is to be used. In addition, an optional field §alias§ contains a reference to another key, if the current key is an alias of it (see below).
%    \begin{macrocode}
function SpecialKeys:setFeatureStyle(key, style)
  local newStyleList, styleCycles, styleContents
  
  newStyleList = {}
  while style ~= "" do
    styleCycles = 1
    if style:sub(1,1) == "{" then
      styleContents = style:match("%b{}")
      style = style:match("%b{}(.*)")
    elseif style:sub(1,1) == "*" then
      styleCycles, styleContents = style:match("%*(%d*)(%b{})")
      if styleCycles == "" then styleCycles = 1 end
      style = style:match("%*%d*%b{}(.*)")
    elseif style:sub(1,1) == "," or style:sub(1,1) == " " then
      style = style:match("[,%s]+(.*)")
      styleCycles, styleContents = nil, nil
    else
      styleContents = style:match("([^,]+),")
      if not styleContents then
        styleContents = style
        style = ""
      else
        style = style:match("[^,]+,(.*)")
      end
    end
    if styleCycles then
      table.insert(
        newStyleList,
        {cycles = styleCycles, style = styleContents}
      )
    end
  end
  self.featureStyles[key] = newStyleList
end

%    \end{macrocode}
% §SpecialKeys:aliasFeatureStyle§ sets the §alias§ field of a style list so that feature §newKey§ uses the same feature style as feature §oldKey§.
%    \begin{macrocode}
function SpecialKeys:aliasFeatureStyle(newKey, oldKey)
  self.featureStyles[newKey] = {alias = oldKey}
end

%    \end{macrocode}
% §SpecialKeys:getBaseKey§ returns either the name of §key§ itself or of its parent key if §key§ is an alias.
%    \begin{macrocode}
function SpecialKeys:getBaseKey(key)
  if self.featureStyles[key] then
    if self.featureStyles[key].alias then
      return self.featureStyles[key].alias
    end
  end
  return key
end

%    \end{macrocode}
% §SpecialKeys:clearKeys§ clears a §keylist§.
%    \begin{macrocode}
function SpecialKeys:clearKeys(keylist)
  self[keylist] = {}
end

%    \end{macrocode}
% §SpecialKeys:selectStyleFromList§ returns the §styleID§-th style from the style list associated with §key§. Firstly, the correct style list is selected.
%    \begin{macrocode}
function SpecialKeys:selectStyleFromList(key, styleID)
  local styleList

  if not self.featureStyles[key] then
    packageWarning(
      "Feature style `" ..
      key ..
      "' unknown, using `default'."
      )
    styleList = self.featureStyles.default
  elseif self.featureStyles[key].alias then
    styleList = self.featureStyles[self.featureStyles[key].alias]
  else
    styleList = self.featureStyles[key]
  end

%    \end{macrocode}
% Secondly, the method choses the appropriate style in the list.
%    \begin{macrocode}
  while true do
    for _, v in ipairs(styleList) do
      styleID = styleID - v.cycles
      if styleID < 1 then
        return v.style
      end
    end
  end
end

%    \end{macrocode}
%
% \subsection{The \texorpdfstring{\texttt{Protein}}{Protein} Class}
% \label{ssc:DocDomLuaProteinClass}
% 
% The §Protein§ class represents a domain diagram in Lua. Its member variables largely correspond to the keys of the \module{domains} module. In detail:
% \begin{itemize}
% 	\item §sequenceLength§: A value of §-1§ indicates that the sequence length has not been properly set.
% 	\item §ft§ is the feature table, i.\,e. an array of tables with the following fields:
% 	\begin{itemize}
% 		\item §key§: A string that equals the feature key.
% 		\item §start§: The start \dots
% 		\item §stop§: \dots\ and the end residue of the feature, both in \textit{absolute} numbering. (For the difference between absolute and relative numbering, see section~\ref{sec:DomGeneralLayout}.)
% 		\item §kvList§: A string containing comma-separated key-value pairs, which is passed to |\pgfmolbioset| immediately before the feature is drawn.
% 		\item §level§: The level of the feature (only relevant for disulfide-like features).
% 	\end{itemize}
% 	\item §residueNumbering§: An array of strings. The indices are absolute residue numbers, while the fields represent the corresponding relative residue numbers.
% 	\item §revResidueNumbering§: The inverse of §residueNumbering§ (i.\,e., a table of numbers).
% 	\item §rulerRange§: An array of tables. Each table represents one mark of the ruler and has the fields §pos§ (position in absolute residue numbers) and §number§ (relative number of the marked residue).
% 	\item §currentStyle§: A table whose field names equal feature keys. Each field denotes the index of the style that was last selected from that feature's style list.
% 	\item §includeDescription§: This boolean field remains uninitialized. Instead, it is directly set in \file{pgfmolbio.domains.tex} if the \module{convert} module is loaded and the user requests a string representation of a §Protein§ object (section~\ref{ssc:DocDomLuaTostring}).
% \end{itemize}
% 
% The constructor §Protein:new§ initializes the member variables with default values.
%    \begin{macrocode}
Protein = {}

function Protein:new()
  local newProtein = {
    name = "",
    sequenceLength = -1,
    ft = {},
    sequence = "",
    xUnit = stringToDim("0.5mm"),
    yUnit = stringToDim("6mm"),
    residuesPerLine = 250,
    residueRangeMin = 1,
    residueRangeMax = 100,
    residueNumbering = {},
    revResidueNumbering = {},
    baselineSkip = 3,
    rulerRange = {},
    defaultRulerStepSize = 50,
    showRuler = true,
    currentStyle = {},
    specialKeys = SpecialKeys:new()
  }
  setmetatable(newProtein, self)
  self.__index = self
  return newProtein
end

%    \end{macrocode}
% §Protein:toAbsoluteResidueNumber§ converts a string that either contains an absolute or relative residue number to an absolute residue number.
%    \begin{macrocode}
function Protein:toAbsoluteResidueNumber(value)
  local result = value:match("%b()")
  if result then
    result = tonumber(result:sub(2, -2))
  else
    result = self.revResidueNumbering[(value:gsub("[<>%?]", ""))]
  end
  if not result then
    packageError("Bad or missing start/end point value: " .. value)
  end
  return result
end

%    \end{macrocode}
% 
% \subsection{Uniprot and GFF Files}
% \label{ssc:DocDomLuaReadFiles}
% 
% §Protein:readUniprotFile§ reads the relevant parts of Uniprot file §filename§\footnote{For a detailed description of this format, see \url{http://web.expasy.org/docs/userman.html}.}.
%    \begin{macrocode}
function Protein:readUniprotFile(filename)
  local uniprotFile, errorMsg = io.open(filename, "r")
  if not uniprotFile then packageError(errorMsg) end

%    \end{macrocode}
% Each line in a Uniprot file starts with a line code consisting of two letters. This code determines the syntax of the remainder of the line.
%    \begin{macrocode}
  local sequence = {}
  local inSequence = false
  local featureTable = {}

  for currLine in uniprotFile:lines() do
    local lineCode = currLine:sub(1, 2)
    local lineContents = currLine:sub(3)
%    \end{macrocode}
% The \texttt{ID} line is the first line in a Uniprot file. It provides two relevant properties of the protein, namely its name and ints sequence length. For example, in the file \file{SampleUniprot.txt} (see section~\ref{sec:DomFileInput}), the \texttt{ID} line reads\\
% |ID   TestProtein  Reviewed;        200 AA.|\\
% which declares a protein with 200 residues called TestProtein.
%    \begin{macrocode}
    if lineCode == "ID" then
      local name, sequenceLength =
        lineContents:match("%s*(%S+)%s*%a+;%s*(%d+)%s*AA%.")
      self.name = name
      self.sequenceLength = tonumber(sequenceLength)
      self.residueRangeMax = self.sequenceLength
%    \end{macrocode}
% \texttt{FT} lines describe features of the protein (domains, disulfides, sugars etc.). The first line of a feature always contains its key (columns 6--13) and endpoints (columns 15--20 and 22--27, respectively). The description (columns 35--75) may span several lines, in which case the key columns of consecutive lines are empty. For instance,\\
% |FT   DOMAIN       10     40       Domain 1|\\
% declares a \texttt{DOMAIN} feature between residues 10 and 40 with description ``Domain 1''.
%    \begin{macrocode}
    elseif lineCode == "FT" then
      local key = currLine:sub(6, 13):trim()
      local start, stop, description =
        currLine:sub(15, 20), currLine:sub(22, 27), currLine:sub(35, 75)
      if key ~= "" then
        table.insert(featureTable, {
          key = key,
          start = "(" .. start .. ")",
          stop = "(" .. stop .. ")",
          description = description,
          style = "",
          kvList = ""
        })
      else
        featureTable[#featureTable].description =
          featureTable[#featureTable].description .. description
      end
%    \end{macrocode}
% The \texttt{SQ} line starts the sequence block. Each of the following sequence data lines lacks a line code and shows the amino acid sequence in one letter code, e.\,g.\\
% |SQ   SEQUENCE   200 AA;   22041 MW;  00A52FE2EC5431D9 CRC64;|\\
% |     MGSKRSVPSR HRSLTTYEVM FAVLFVILVA LCAGLIAVSW LSIQ| [\dots]
%    \begin{macrocode}
    elseif lineCode == "SQ" then
      inSequence = true
    elseif lineCode == "  " and inSequence then
      table.insert(sequence, (lineContents:gsub("%s+", "")))
%    \end{macrocode}
% The |\\| line terminates the Uniprot file.
%    \begin{macrocode}
    elseif lineCode == "\\\\" then
      break
    end
  end
%    \end{macrocode}
% After closing the file, features are converted to the proper format (section~\ref{ssc:DocDomLuaProteinClass}).
%    \begin{macrocode}
  uniprotFile:close()
  if next(sequence) then self.sequence = table.concat(sequence) end
  for _, v in ipairs(featureTable) do self:addFeature(v) end
end

%    \end{macrocode}
% §Protein:readGffFile§ reads the relevant parts of General Feature Format file §filename§\footnote{For a detailed description of this format, see \url{http://http://www.sanger.ac.uk/resources/software/gff/spec.html}.}.
%    \begin{macrocode}
function Protein:readGffFile(filename)
  local gffFile, errorMsg = io.open(filename, "r")
  local lineContents, fields, lineNumber
  
  if not gffFile then packageError(errorMsg) end
%    \end{macrocode}
% Each line in a \file{gff} file describes a feature and consists of up to 9 tabulator-separated fields, of which only fields 3 (key), 4 (start) and 5 (end) are required for the \module{domains} module. Everything following the comment sign (|#|) on a line is ignored.
%    \begin{macrocode}
  lineNumber = 1
  for currLine in gffFile:lines() do
    lineContents = currLine:gsub("#.*$", "")
    fields = {}
    if lineContents ~= "" then
      for currField in lineContents:gmatch("([^\t]+)") do
        table.insert(fields, currField)
      end
      if not fields[5] then
        packageError("Bad line (" .. lineNumber .. ") in gff file '" ..
          filename .. "':\n" .. currLine)
        break
      end
      self:addFeature{
        key = fields[3],
        start = "(" .. fields[4] .. ")",
        stop = "(" .. fields[5] .. ")",
        description = fields[9] or "",
        style = "",
        kvList = ""
      }
    end
    lineNumber = lineNumber + 1
  end
  gffFile:close()
end

%    \end{macrocode}
% 
% \subsection{Getter and Setter Methods}
% \label{ssc:DocDomLuaParameters}
% 
% §Protein:getParameters§ informs \TeX\ of the protein name, sequence and sequence length. This method is called after reading a Uniprot file (section~\ref{ssc:DocDomTexAddingFeatures}).
%    \begin{macrocode}
function Protein:getParameters()
  tex.sprint(
    "\\pgfmolbioset[domains]{name={" ..
    self.name ..
    "},sequence={" ..
    self.sequence ..
    "},sequence length=" ..
    self.sequenceLength ..
    "}"
  )
end

%    \end{macrocode}
% §Protein:setParameters§ passes options from the \module{domains} module to the Lua script. Each field of the table §keyHash§ is named after a §Protein§ attribute and represents a function that receives one string parameter (the value of a \LaTeX\ key).
%    \begin{macrocode}
function Protein:setParameters(newParms)
  local keyHash = {
%    \end{macrocode}
% §keyHash.sequenceLength§ checks for an invalid sequence length.
%    \begin{macrocode}
    sequenceLength = function(v)
      v = tonumber(v)
      if not v then return self.sequenceLength end
      if v < 1 then
        packageError("Sequence length must be larger than zero.")
      end
      return v
    end,
%    \end{macrocode}
% §keyHash.residueNumbering§ generates the residue numbering array and its inverse (described in section~\ref{ssc:DocDomLuaProteinClass}).
%    \begin{macrocode}
    residueNumbering = function(v)
      local ranges = {}
      local start, startNumber, startLetter, stop
      self.revResidueNumbering = {}
      if v:trim() == "auto" then
        for i = 1, self.sequenceLength do
          table.insert(ranges, tostring(i))
        end
      else --example list: `1-4,5,6A-D'
        for _, value in ipairs(v:explode(",+")) do
          value = value:trim()
          start, stop = value:match("(%w*)%s*%-%s*(%w*)$")
          if not start then
            start = value:match("(%w*)")
          end
          if not start or start == "" then --invalid range
            packageError("Unknown residue numbering range: " .. value)
          end
          if stop then
            if tonumber(start) and tonumber(stop) then
              --process range `1-4'
              for currNumber = tonumber(start), tonumber(stop) do
                table.insert(ranges, tostring(currNumber))
              end
            else --process range `6A-D'
              startNumber, startLetter = start:match("(%d*)(%a)")
              stop = stop:match("(%a)")
              for currLetter = startLetter:byte(), stop:byte() do
                table.insert(ranges,
                  startNumber .. string.char(currLetter))
              end
            end
          else --process range `5'
            table.insert(ranges, start)
          end
        end
      end
      for i, value in ipairs(ranges) do
        if self.revResidueNumbering[value] then
          packageError("The range value " .. value ..
            " appears more than once.")
        else
          self.revResidueNumbering[value] = i
        end
      end
      return ranges
    end,
%    \end{macrocode}
% §keyHash.residueRange§ sets the residue range, treating possible errors.
%    \begin{macrocode}
    residueRange = function(v)
      local num
      local residueRangeMin, residueRangeMax =
        getRange(v:trim(), "^([%w%(%)]+)%s*%-", "%-%s*([%w%(%)]+)$")
      if residueRangeMin == "auto" then
        self.residueRangeMin = 1
      else
        num = residueRangeMin:match("%b()")
        if num then
          self.residueRangeMin = tonumber(num:sub(2, -2))
        elseif self.revResidueNumbering[residueRangeMin] then
          self.residueRangeMin = self.revResidueNumbering[residueRangeMin]
        else
          packageError("Invalid residue range: " .. residueRangeMin)
        end
      end
      
      if residueRangeMax == "auto" then
        self.residueRangeMax = self.sequenceLength
      else
        num = residueRangeMax:match("%b()")
        if num then
          self.residueRangeMax = tonumber(num:sub(2, -2))
        elseif self.revResidueNumbering[residueRangeMax] then
          self.residueRangeMax = self.revResidueNumbering[residueRangeMax]
        else
          packageError("Invalid residue range: " .. residueRangeMax)
        end
      end
      
      if self.residueRangeMin >= self.residueRangeMax then
        packageError("Residue range is smaller than 1.")
      end
    end,
%    \end{macrocode}
% The following fields map to functions already defined.
%    \begin{macrocode}
    defaultRulerStepSize = tonumber,
    name = tostring,
    sequence = tostring,
    xUnit = stringToDim,
    yUnit = stringToDim,
    residuesPerLine = tonumber,
    baselineSkip = tonumber,
%    \end{macrocode}
% §keyHash.rulerRange§ sets the ruler range, treating possible errors and inconsistencies (for example, if the upper ruler range exceeds the upper residue range).
%    \begin{macrocode}
    rulerRange = function(v)
      local num
      local ranges = {}
      local rulerRangeMin, rulerRangeMax, rulerRangeStep
      for _, value in ipairs(v:explode(",+")) do
        rulerRangeMin, rulerRangeMax, rulerRangeStep =
          getRange(value:trim(), "^([%w%(%)]+)",
            "%-%s*([%w%(%)]+)", "step%s*(%d+)$")
        
        if rulerRangeMin == "auto" then
          rulerRangeMin = self.residueRangeMin
        else
          num = rulerRangeMin:match("%b()")
          if num then
            rulerRangeMin = tonumber(num:sub(2, -2))
          elseif self.revResidueNumbering[rulerRangeMin] then
            rulerRangeMin = self.revResidueNumbering[rulerRangeMin]
          else
            packageError("Invalid lower ruler range: " .. rulerRangeMin)
          end
        end
        
        if rulerRangeMax then
          if rulerRangeMax == "auto" then
            rulerRangeMax = self.residueRangeMax
          else
            num = rulerRangeMax:match("%b()")
            if num then
              rulerRangeMax = tonumber(num:sub(2, -2))
            elseif self.revResidueNumbering[rulerRangeMax] then
              rulerRangeMax = self.revResidueNumbering[rulerRangeMax]
            else
              packageError("Invalid upper ruler range: " .. rulerRangeMax)
            end
          end
          
          if rulerRangeMin >= rulerRangeMax then
            packageError("Ruler range is smaller than 1.")
          end
          if rulerRangeMin < self.residueRangeMin then
            rulerRangeMin = self.residueRangeMin
            packageWarning(
              "Lower ruler range is smaller than" ..
              "lower residue range. It was adjusted to " ..
              rulerRangeMin .. "."
            )
          end
          if rulerRangeMax > self.residueRangeMax then
            rulerRangeMax = self.residueRangeMax
            packageWarning(
              "Upper ruler range exceeds" ..
              "upper residue range. It was adjusted to " ..
              rulerRangeMax .. "."
            )
          end
        else
          rulerRangeMax = rulerRangeMin
        end
        rulerRangeStep = tonumber(rulerRangeStep)
          or self.defaultRulerStepSize
        
        for i = rulerRangeMin, rulerRangeMax, rulerRangeStep do
          table.insert(
            ranges,
            {pos = i, number = self.residueNumbering[i]}
          )
        end
      end
      return ranges
    end,
%    \end{macrocode}
% §keyHash.showRuler§ determines if the ruler is visible.
%    \begin{macrocode}
    showRuler = function(v)
      if v == "true" then return true else return false end
    end
  }
%    \end{macrocode}
% We iterate over all fields in the argument of §setParameters§. If a field of the same name exists in §keyHash§, we call this field with the value of the corresponding field in §newParms§ as parameter.
%    \begin{macrocode}
  for key, value in pairs(newParms) do
    if keyHash[key] then
      self[key] = keyHash[key](value)
      if pgfmolbio.errorCatched then return end
    end
  end
end

%    \end{macrocode}
% 
% \subsection{Adding Feature}
% \label{ssc:DocDomLuaAddFeature}
% 
% §Protein:addFeature§ converts raw feature information to the format of §ft§ fields (described in section~\ref{ssc:DocDomLuaProteinClass}). Firstly, the method determines the index of the style that should be used for the current feature.
%    \begin{macrocode}
function Protein:addFeature(newFeature)
  local baseKey, ftEntry
  
  baseKey = self.specialKeys:getBaseKey(newFeature.key)
  if self.currentStyle[baseKey] then
    self.currentStyle[baseKey] = self.currentStyle[baseKey] + 1
  else
    self.currentStyle[baseKey] = 1
  end

%    \end{macrocode}
% Then, a new field for the feature table is set up.
%    \begin{macrocode}
  ftEntry = {
    key = newFeature.key,
    start = self:toAbsoluteResidueNumber(newFeature.start),
    stop = self:toAbsoluteResidueNumber(newFeature.stop),
    kvList = "style={" ..
      self.specialKeys:selectStyleFromList(baseKey,
        self.currentStyle[baseKey]) .. "}",
    level = newFeature.level or nil
  }
%    \end{macrocode}
% Finally, the key-value list §kvList§ is modified (if applicable) and the new field is inserted into §ft§.
%    \begin{macrocode}
  if newFeature.kvList ~= "" then
    ftEntry.kvList = ftEntry.kvList .. "," .. newFeature.kvList
  end
  if newFeature.description then
    ftEntry.kvList = ftEntry.kvList ..
      ",description={" .. newFeature.description .. "}"
    ftEntry.description = newFeature.description
  end
  table.insert(self.ft, newFeature.layer or #self.ft + 1, ftEntry)
end

%    \end{macrocode}
% 
% \subsection{Calculate Disulfide Levels}
% \label{ssc:DocDomLuaDisulfideLevels}
% 
% §Protein:calculateDisulfideLevels§ arranges disulfide-like features in non-\hskip0ptoverlapping levels.
%    \begin{macrocode}
function Protein:calculateDisulfideLevels()
  if pgfmolbio.errorCatched then return end
  local disulfideGrid, currLevel, levelFree
  disulfideGrid = {}
  
  for i, v in ipairs(self.ft) do
    if self.specialKeys.disulfideKeys[v.key] then
%    \end{macrocode}
% If the §level§ field of a disulfide-like feature is already specified, it overrides the automatic mechanism of level determination. This may lead to clashes.
%    \begin{macrocode}
      if v.level then
        if not disulfideGrid[v.level] then
          disulfideGrid[v.level] = {}
        end
        for currPos = v.start, v.stop do
          disulfideGrid[v.level][currPos] = true
        end
%    \end{macrocode}
% Otherwise, the algorithm looks for the first free level (starting at level 1), i.\,e. the first level the feature may occupy without clashing with another one. (1) If the level currently checked already exists, it has been created by a previous disulfide-like feature. In this case, it is considered free if the previous feature does not overlap with the current one.
%    \begin{macrocode}
      else
        currLevel = 1
        repeat
          levelFree = true
          if disulfideGrid[currLevel] then
            for currPos = v.start, v.stop do
              levelFree = levelFree
                and not disulfideGrid[currLevel][currPos]
            end
            if levelFree then
              self.ft[i].level = currLevel
              for currPos = v.start, v.stop do
                disulfideGrid[currLevel][currPos] = true
              end
            end
%    \end{macrocode}
% (2) If the level currently checked does not exist, it must be free.
%    \begin{macrocode}
          else
            self.ft[i].level = currLevel
            disulfideGrid[currLevel] = {}
            for currPos = v.start, v.stop do
              disulfideGrid[currLevel][currPos] = true
            end
            levelFree = true
          end
          currLevel = currLevel + 1
        until levelFree == true
      end
    end
  end
end

%    \end{macrocode}
% 
% \subsection{Print Domains}
% \label{ssc:DocDomLuaPrintTikzDomains}
% 
% §Protein:printTikzDomains§ is the heart of the Lua script, since it converts a §Protein§ object to \TeX\ code.
%    \begin{macrocode}
function Protein:printTikzDomains()
  if pgfmolbio.errorCatched then return end
  local xLeft, xMid, xRight, yMid, xLeftClip, xRightClip,
    currLine, residuesLeft, currStyle
  
%    \end{macrocode}
% \paragraph{(1) Features (excluding \texttt{other/ruler} and \texttt{other/name})} For each feature in the feature table, we first calculate its coordinates (§xLeft§, §xMid§, §xRight§ and §yMid§) and clipped areas (§xLeftClip§, §xRightClip§).
%    \begin{macrocode}
  for _, currFeature in ipairs(self.ft) do
    currLine = 0
    xLeft = currFeature.start - self.residueRangeMin -
      currLine * self.residuesPerLine + 1
    while xLeft > self.residuesPerLine do
      xLeft = xLeft - self.residuesPerLine
      currLine = currLine + 1
    end
    xLeft = xLeft - 1
    xRight = currFeature.stop - self.residueRangeMin -
      currLine * self.residuesPerLine + 1
    residuesLeft = self.residueRangeMax - self.residueRangeMin -
      currLine * self.residuesPerLine + 1
    xLeftClip = stringToDim("-5cm")
    xRightClip = self.residuesPerLine * self.xUnit
    
    if currFeature.start <= self.residueRangeMax
        and currFeature.stop >= self.residueRangeMin then
      repeat
        if residuesLeft <= self.residuesPerLine then
          if residuesLeft < xRight then
            xRightClip = residuesLeft * self.xUnit
          else
            xRightClip = xRight * self.xUnit + stringToDim("5cm")
          end
        else
          if xRight <= self.residuesPerLine then
            xRightClip = xRight * self.xUnit + stringToDim("5cm")
          end
        end
        if xLeft < 0 then xLeftClip = stringToDim("0cm") end
        
        xMid = (xLeft + xRight) / 2
        yMid = -currLine * self.baselineSkip
%    \end{macrocode}
% The current feature is extended by any level and sequence information present.
%    \begin{macrocode}
        if currFeature.level then
          currFeature.kvList = currFeature.kvList ..
            ",level=" .. currFeature.level
        end
        currFeature.sequence =
          self.sequence:sub(currFeature.start, currFeature.stop)
        
%    \end{macrocode}
% Each feature appears within its own |scope|. A |pgfinterruptboundingbox| ensures that the bounding box of the picture ignores the feature, since the |\clip| macro would enlarge it too much. Auxiliary macros for |\setfeatureshape| are defined (section~\ref{sec:DomFeatureStylesAndShapes}).
%    \begin{macrocode}
        tex.sprint("\n\t\\begin{scope}\\begin{pgfinterruptboundingbox}")
        tex.sprint("\n\t\t\\def\\xLeft{" ..
          dimToString(xLeft * self.xUnit) .. "}")
        tex.sprint("\n\t\t\\def\\xMid{" ..
          dimToString(xMid * self.xUnit) .. "}")
        tex.sprint("\n\t\t\\def\\xRight{" ..
          dimToString(xRight * self.xUnit) .. "}")
        tex.sprint("\n\t\t\\def\\yMid{" ..
          dimToString(yMid * self.yUnit) .. "}")
        tex.sprint("\n\t\t\\def\\featureSequence{" ..
          currFeature.sequence .. "}")
        tex.sprint(
          "\n\t\t\\clip (" ..
          dimToString(xLeftClip) ..
          ", \\yMid + " ..
          dimToString(stringToDim("10cm")) ..
          ") rectangle (" ..
          dimToString(xRightClip) ..
          ", \\yMid - " ..
          dimToString(stringToDim("10cm")) ..
          ");"
        )
        tex.sprint(
          "\n\t\t\\pgfmolbioset[domains]{" ..
          currFeature.kvList ..
          "}"
        )
%    \end{macrocode}
% We invoke either the print function associated with the current feature or directly call |\pmbdomdrawfeature|. Afterwards, we close both surrounding environments.
%    \begin{macrocode}
        if self.specialKeys.printFunctions[currFeature.key] then
          self.specialKeys.printFunctions[currFeature.key](
            currFeature, xLeft, xRight, yMid, self.xUnit, self.yUnit)
        else
          tex.sprint("\n\t\t\\pmbdomdrawfeature{" ..
            currFeature.key .. "}")
        end
        tex.sprint("\n\t\\end{pgfinterruptboundingbox}\\end{scope}")
        
%    \end{macrocode}
% Calculate coordinates for the next line of the feature.
%    \begin{macrocode}
        currLine = currLine + 1
        xLeft = xLeft - self.residuesPerLine
        xRight = xRight - self.residuesPerLine
        residuesLeft = residuesLeft - self.residuesPerLine
      until xRight < 1 or residuesLeft < 1
    end
  end
  
%    \end{macrocode}
% \paragraph{(2) Feature \texttt{other/ruler}} The ruler requires special treatment, buth the algorithm is actually simple: For each marker, calculate its coordinates, select its style and print it.
%    \begin{macrocode}
  if self.showRuler then
    currStyle = 1
    tex.sprint("\n\t\\begin{scope}")
    for _, currRuler in ipairs(self.rulerRange) do
      currLine = 0
      xMid = currRuler.pos - self.residueRangeMin -
        currLine * self.residuesPerLine + 1
      while xMid > self.residuesPerLine do
        xMid = xMid - self.residuesPerLine
        currLine = currLine + 1
      end
      xMid = xMid - 0.5
      yMid = -currLine * self.baselineSkip
      tex.sprint(
        "\n\t\t\\pgfmolbioset[domains]{current style/.style={" ..
        self.specialKeys:selectStyleFromList("other/ruler", currStyle) ..
        "}}"
      )
      tex.sprint("\n\t\t\t\\def\\xMid{" ..
        dimToString(xMid * self.xUnit) .. "}")
      tex.sprint("\n\t\t\t\\let\\xLeft\\xMid\\let\\xRight\\xMid")
      tex.sprint("\n\t\t\t\\def\\yMid{" ..
        dimToString(yMid * self.yUnit) .. "}")
      tex.sprint("\n\t\t\t\\def\\residueNumber{" ..
        currRuler.number .. "}")
      tex.sprint("\n\t\t\t\\pmbdomdrawfeature{other/ruler}")
      currStyle = currStyle + 1
    end
    tex.sprint("\n\t\\end{scope}")
  end
  
%    \end{macrocode}
% \paragraph{(3) Feature \texttt{other/name}} Similarly, we calculate the coordinates of the name and print it.
%    \begin{macrocode}
  xMid =
    math.min(
      self.residuesPerLine,
      self.residueRangeMax - self.residueRangeMin + 1
    ) / 2
  tex.sprint("\n\t\\begin{scope}")
  tex.sprint(
    "\n\t\t\\pgfmolbioset[domains]{current style/.style={" ..
    self.specialKeys:selectStyleFromList("other/name", 1) ..
    "}}"
  )
  tex.sprint("\n\t\t\\def\\xLeft{0mm}")
  tex.sprint("\n\t\t\\def\\xMid{" .. dimToString(xMid * self.xUnit) .. "}")
  tex.sprint("\n\t\t\\def\\xRight{" ..
    dimToString(self.residuesPerLine * self.xUnit) .. "}")
  tex.sprint("\n\t\t\\def\\yMid{0mm}")
  tex.sprint("\n\t\t\\pmbdomdrawfeature{other/name}")
  tex.sprint("\n\t\\end{scope}")
  
%    \end{macrocode}
% \paragraph{(4) Set bounding box} The bounding box is determined manually in order to prevent excessive enlargement due to clipping. The top left corner of the bounding box is the coordinate (|enlarge left|, |enlarge top|).
%    \begin{macrocode}
  tex.sprint(
    "\n\t\\pmbprotocolsizes{" ..
    "\\pmbdomvalueof{enlarge left}}{\\pmbdomvalueof{enlarge top}}"
  )
%    \end{macrocode}
% The $x$-coordinate of its right border is the largest line width plus the value of |enlarge right|. The $y$-coordinate of its bottom border is that of the lowermost line plus the value of |enlarge bottom|.
%    \begin{macrocode}
  currLine =
    math.ceil(
      (self.residueRangeMax - self.residueRangeMin + 1) /
        self.residuesPerLine
    ) - 1
  xRight =
    math.min(
      self.residuesPerLine,
      self.residueRangeMax - self.residueRangeMin + 1
    )
  tex.sprint(
    "\n\t\\pmbprotocolsizes{" ..
    dimToString(xRight * self.xUnit) ..
    " + \\pmbdomvalueof{enlarge right}}{" ..
    dimToString(-currLine * self.baselineSkip * self.yUnit) .. 
    " + \\pmbdomvalueof{enlarge bottom}}"
  )
end

%    \end{macrocode}
% 
% \subsection{Converting a \texorpdfstring{\texttt{Protein}}{Protein} to a String}
% \label{ssc:DocDomLuaTostring}
% 
% §Protein:__tostring§ is required by the \module{convert} module and returns a |pmbdomains| environment that contains all the information stored in the §Protein§ object (section~\ref{sec:ConDomains}). Firstly, we start the environment.
%    \begin{macrocode}
function Protein:__tostring()
  local result = {}
  local currLine
  
  currLine = "\\begin{pmbdomains}\n\t\t[name={" ..
    self.name ..
    "}"
  if self.sequence ~= "" then
    currLine = currLine ..
      ",\n\t\tsequence=" ..
      self.sequence
  end
  currLine = currLine .. 
    "]{" ..
    self.sequenceLength ..
    "}"
  table.insert(result, currLine)

%    \end{macrocode}
% Afterwards, each feature in the feature table is converted to an |\addfeature| macro. Note the use of the §includeDescription§ field (described in section~\ref{ssc:DocDomLuaProteinClass}).
%    \begin{macrocode}
  for i, v in ipairs(self.ft) do
    if v.key ~= "other/main chain" then
      currLine = "\t\\addfeature"
      if self.includeDescription and v.description then
        currLine =
          currLine ..
          "[description={" ..
          v.description ..
          "}]"
      end
      currLine =
        currLine ..
        "{" ..
        v.key ..
        "}{" ..
        v.start ..
        "}{" ..
        v.stop ..
        "}"
      table.insert(result, currLine)
    end
  end
%    \end{macrocode}
% Finally, we close the environment.
%    \begin{macrocode}
  table.insert(result,
    "\\end{pmbdomains}"
  )
  return table.concat(result, "\n")
end
%    \end{macrocode}
% 
% \iffalse
%</pmb-dom-lua>
%<*pmb-con-tex>
% \fi
% 
% 
% 
% \section{\texorpdfstring{\file{pgfmolbio.convert.tex}}{pgfmolbio.convert.tex}}
% \label{sec:DocConTex}
% 
% \def\ydoclistingssettings{\lstset{style=latex-doc}}\setcounter{lstnumber}{1}
% The code for the \module{convert} module is short: We only need to declare four options and set |\pdfdraftmode| to 1 in order to prevent pdf\TeX\ from producing any \file{pdf} output.
%    \begin{macrocode}
\pdfdraftmode1

\pgfkeyssetvalue{/pgfmolbio/convert/output file name}{(auto)}
\pgfkeyssetvalue{/pgfmolbio/convert/output file extension}{tex}

\pgfmolbioset[convert]{%
  output code/.is choice,
  output code/tikz/.code=\pmb@con@outputtikzcodetrue,
  output code/pgfmolbio/.code=\pmb@con@outputtikzcodefalse,
  output code=tikz
}

\pgfmolbioset[convert]{%
  include description/.is if=pmb@con@includedescription,
  include description
}
%    \end{macrocode}
%
% \iffalse
%</pmb-con-tex>
% \fi
%
% \Finale
\endinput