1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
|
% \section{\DTXCURR --- Mapping in maths alphabets}
% \label{sec:mathmap}
%
% \begin{macrocode}
%<*package&(XE|LU)>
% \end{macrocode}
%
% Switching to a different style of alphabetic symbols was traditionally performed with
% commands like \cmd\mathbf, which literally changes fonts to access alternate symbols.
% This is not as simple with Unicode fonts.
%
% In traditional \TeX{} maths font setups, you simply switch between different `families' (\cmd\fam), which is analogous to changing from one font to another---a symbol such as `a' will be upright in one font, bold in another, and so on.
% In pkg{unicode-math}, a different mechanism is used to switch between styles. For every letter (start with ascii a-zA-Z and numbers to keep things simple for now), they are assigned a `mathcode' with \cmd\Umathcode\ that maps from input letter to output font glyph slot. This is done with the equivalent of
% \begin{Verbatim}
% \Umathcode`\a = 7 1 "1D44E\relax
% \Umathcode`\b = 7 1 "1D44F\relax
% \Umathcode`\c = 7 1 "1D450\relax
% ...
% \end{Verbatim}
% When switching from regular letters to, say, \cmd\mathrm, we now need to execute a new mapping:
% \begin{Verbatim}
% \Umathcode`\a = 7 1 `\a\relax
% \Umathcode`\b = 7 1 `\b\relax
% \Umathcode`\c = 7 1 `\c\relax
% ...
% \end{Verbatim}
% This is fairly straightforward to perform when we're defining our own commands such as \cmd\symbf\ and so on. However, this means that `classical' \TeX\ font setups will break, because with the original mapping still in place, the engine will be attempting to insert unicode maths glyphs from a standard font.
%
% \subsection{Hooks into \LaTeXe}
%
% To overcome this, we patch \cs{use@mathgroup}.
% (An alternative is to patch \cs{extract@alph@from@version}, which constructs the \cs{mathXYZ} commands, but this method fails if the command has been defined using \cs{DeclareSymbolFontAlphabet}.)
% As far as I can tell, this is only used inside of commands such as \cs{mathXYZ}, so this shouldn't have any major side-effects.
%
% \begin{macrocode}
\cs_set:Npn \use@mathgroup #1 #2
{
\mode_if_math:T % <- not sure if this is really necessary since we've just checked for mmode and raised an error if not!
{
\math@bgroup
\cs_if_eq:cNF {M@\f@encoding} #1 {#1}
\@@_switchto_literal:
\mathgroup #2 \relax
\math@egroup
}
}
% \end{macrocode}
%
% In LaTeX maths, the command |\operator@font| is defined that switches to the |operator| mathgroup. The classic example is the |\sin| in |$\sin{x}$|; essentially we're using |\mathrm| to typeset the upright symbols, but the syntax is |{\operator@font sin}|.
% I thought that hooking into |\operator@font| would be hard because all other maths font selection in 2e uses |\mathrm{...}| style.
% Then reading source2e a little more I stumbled upon:
% \begin{macro}{\operator@font}
% \begin{macrocode}
\cs_set:Npn \operator@font
{
\@@_switchto_literal:
\@fontswitch {} { \g_@@_operator_mathfont_tl }
}
% \end{macrocode}
% \end{macro}
%
%
% \subsection{Setting styles}
%
% Algorithm for setting alphabet fonts.
% By default, when |range| is empty, we are in \emph{implicit} mode.
% If |range| contains the name of the math alphabet, we are in \emph{explicit}
% mode and do things slightly differently.
%
% Implicit mode:
% \begin{itemize}
% \item Try and set all of the alphabet shapes.
% \item Check for the first glyph of each alphabet to detect if the font supports each
% alphabet shape.
% \item For alphabets that do exist, overwrite whatever's already there.
% \item For alphabets that are not supported, \emph{do nothing}.
% (This includes leaving the old alphabet definition in place.)
% \end{itemize}
%
% Explicit mode:
% \begin{itemize}
% \item Only set the alphabets specified.
% \item Check for the first glyph of the alphabet to detect if the font contains
% the alphabet shape in the Unicode math plane.
% \item For Unicode math alphabets, overwrite whatever's already there.
% \item Otherwise, use the \ascii\ glyph slots instead.
% \end{itemize}
%
%
%
% \subsection{Defining the math style macros}
%
% We call the different shapes that a math alphabet can be a `math style'.
% Note that different alphabets can exist within the same math style. E.g.,
% we call `bold' the math style |bf| and within it there are upper and lower
% case Greek and Roman alphabets and Arabic numerals.
%
% \begin{macro}{\@@_prepare_mathstyle:n}
% \darg{math style name (e.g., \texttt{it} or \texttt{bb})}
% Define the high level math alphabet macros (\cs{mathit}, etc.) in terms of
% unicode-math definitions. Use \cs{bgroup}/\cs{egroup} so s'scripts scan the
% whole thing.
%
% The flag \cs{l_@@_mathstyle_tl} is for other applications to query the
% current math style.
% \begin{macrocode}
\cs_new:Nn \@@_prepare_mathstyle:n
{
\seq_put_right:Nn \g_@@_mathstyles_seq {#1}
\@@_init_alphabet:n {#1}
\cs_set:cpn {_@@_sym_#1_aux:n}
{ \use:c {@@_switchto_#1:} \math@egroup }
\cs_set_protected:cpx {sym#1}
{
\exp_not:n
{
\math@bgroup
\mode_if_math:F
{
\egroup\expandafter
\non@alpherr\expandafter{\csname sym#1\endcsname\space}
}
\tl_set:Nn \l_@@_mathstyle_tl {#1}
}
\exp_not:c {_@@_sym_#1_aux:n}
}
}
% \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\@@_init_alphabet:n}
% \darg{math alphabet name (e.g., \texttt{it} or \texttt{bb})}
% This macro initialises the macros used to set up a math alphabet.
% First used when the math alphabet macro is first defined, but then used
% later when redefining a particular maths alphabet.
% \begin{macrocode}
\cs_set:Nn \@@_init_alphabet:n
{
\@@_log:nx {alph-initialise} {#1}
\cs_set_eq:cN {@@_switchto_#1:} \prg_do_nothing:
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Definition of alphabets and styles}
%
% First of all, we break up unicode into `named ranges', such as |up|, |bb|, |sfup|, and so on, which refer to specific blocks of unicode that contain various symbols (usually alphabetical symbols).
%
% \begin{macrocode}
\cs_new:Nn \@@_new_named_range:n
{
\prop_new:c {g_@@_named_range_#1_prop}
}
\clist_set:Nn \g_@@_named_ranges_clist
{
up, it, tt, bfup, bfit, bb , bbit, scr, bfscr, cal, bfcal,
frak, bffrak, sfup, sfit, bfsfup, bfsfit, bfsf
}
\clist_map_inline:Nn \g_@@_named_ranges_clist
{ \@@_new_named_range:n {#1} }
% \end{macrocode}
%
%
% Each alphabet style needs to be configured.
% This happens in Section~\ref{sec:setupalphabets}.
% \begin{macrocode}
\cs_new:Nn \@@_new_alphabet_config:nnn
{
\prop_if_exist:cF {g_@@_named_range_#1_prop}
{ \@@_warning:nnn {no-named-range} {#1} {#2} }
\prop_gput:cnn {g_@@_named_range_#1_prop} { alpha_tl }
{
\prop_item:cn {g_@@_named_range_#1_prop} { alpha_tl }
{#2}
}
% Q: do I need to bother removing duplicates?
\cs_new:cn { @@_config_#1_#2:n } {#3}
}
% \end{macrocode}
% \begin{macrocode}
\cs_new:Nn \@@_alphabet_config:nnn
{
\use:c {@@_config_#1_#2:n} {#3}
}
% \end{macrocode}
% \begin{macrocode}
\prg_new_conditional:Nnn \@@_if_alphabet_exists:nn {T,TF}
{
\cs_if_exist:cTF {@@_config_#1_#2:n}
\prg_return_true: \prg_return_false:
}
% \end{macrocode}
%
% The linking between named ranges and symbol style commands happens here.
% It's currently not using all of the machinery we're in the process of setting up above.
% Baby steps.
% \begin{macrocode}
\cs_new:Nn \@@_default_mathalph:nnn
{
\seq_put_right:Nx \g_@@_named_ranges_seq { \tl_to_str:n {#1} }
\seq_put_right:Nn \g_@@_default_mathalph_seq {{#1}{#2}{#3}}
\prop_gput:cnn { g_@@_named_range_#1_prop } { default-alpha } {#2}
}
\@@_default_mathalph:nnn {up } {latin,Latin,greek,Greek,num,misc} {up }
\@@_default_mathalph:nnn {it } {latin,Latin,greek,Greek,misc} {it }
\@@_default_mathalph:nnn {bb } {latin,Latin,num,misc} {bb }
\@@_default_mathalph:nnn {bbit } {misc} {bbit }
\@@_default_mathalph:nnn {scr } {latin,Latin} {scr }
\@@_default_mathalph:nnn {cal } {Latin} {scr }
\@@_default_mathalph:nnn {bfcal } {Latin} {bfscr }
\@@_default_mathalph:nnn {frak } {latin,Latin} {frak }
\@@_default_mathalph:nnn {tt } {latin,Latin,num} {tt }
\@@_default_mathalph:nnn {sfup } {latin,Latin,num} {sfup }
\@@_default_mathalph:nnn {sfit } {latin,Latin} {sfit }
\@@_default_mathalph:nnn {bfup } {latin,Latin,greek,Greek,num,misc} {bfup }
\@@_default_mathalph:nnn {bfit } {latin,Latin,greek,Greek,misc} {bfit }
\@@_default_mathalph:nnn {bfscr } {latin,Latin} {bfscr }
\@@_default_mathalph:nnn {bffrak} {latin,Latin} {bffrak}
\@@_default_mathalph:nnn {bfsfup} {latin,Latin,greek,Greek,num,misc} {bfsfup}
\@@_default_mathalph:nnn {bfsfit} {latin,Latin,greek,Greek,misc} {bfsfit}
% \end{macrocode}
%
% \subsubsection{Define symbol style commands}
% Finally, all of the `symbol styles' commands are set up, which are the commands to access each of the named alphabet styles. There is not a one-to-one mapping between symbol style commands and named style ranges!
% \begin{macrocode}
\clist_map_inline:nn
{
up, it, bfup, bfit, sfup, sfit, bfsfup, bfsfit, bfsf,
tt, bb, bbit, scr, bfscr, cal, bfcal, frak, bffrak,
normal, literal, sf, bf,
}
{ \@@_prepare_mathstyle:n {#1} }
% \end{macrocode}
%
%
% \subsubsection{New names for legacy textmath alphabet selection}
% In case a package option overwrites, say, \cs{mathbf} with \cs{symbf}.
% \begin{macrocode}
\clist_map_inline:nn
{ rm, it, bf, sf, tt }
{ \cs_set_eq:cc { mathtext #1 } { math #1 } }
% \end{macrocode}
% Perhaps these should actually be defined using a hypothetical unicode-math interface to creating new such styles. To come.
%
%
% \subsubsection{Replacing legacy pure-maths alphabets}
% The following are alphabets which do not have a math/text ambiguity.
% \begin{macrocode}
\clist_map_inline:nn
{
normal, bb , bbit, scr, bfscr, cal, bfcal, frak, bffrak, tt,
bfup, bfit, sfup, sfit, bfsfup, bfsfit, bfsf
}
{
\cs_set:cpx { math #1 } { \exp_not:c { sym #1 } }
}
% \end{macrocode}
%
%
% \subsubsection{New commands for ambiguous alphabets}
% \begin{macrocode}
\AtBeginDocument{
\clist_map_inline:nn
{ rm, it, bf, sf, tt }
{
\cs_set_protected:cpx { math #1 }
{
\exp_not:n { \bool_if:NTF } \exp_not:c { g_@@_ math #1 _text_bool}
{ \exp_not:c { mathtext #1 } }
{ \exp_not:c { sym #1 } }
}
}}
% \end{macrocode}
%
% \paragraph{Alias \cs{mathrm} as legacy name for \cs{mathup}}
% \begin{macrocode}
\cs_set_protected:Npn \mathup { \mathrm }
\cs_set_protected:Npn \symrm { \symup }
% \end{macrocode}
%
%
%
%
% \subsection{Defining the math alphabets per style}
%
% \begin{macro}{\@@_setup_alphabets:}
% This function is called within \cs{setmathfont} to configure the
% mapping between characters inside math styles.
% \begin{macrocode}
\cs_new:Npn \@@_setup_alphabets:
{
% \end{macrocode}
% If |range=| has been used to configure styles, those choices will be in
% |\l_@@_mathalph_seq|. If not, set up the styles implicitly:
% \begin{macrocode}
\seq_if_empty:NTF \l_@@_mathalph_seq
{
\@@_log:n {setup-implicit}
\seq_set_eq:NN \l_@@_mathalph_seq \g_@@_default_mathalph_seq
\bool_set_true:N \l_@@_implicit_alph_bool
\@@_maybe_init_alphabet:n {sf}
\@@_maybe_init_alphabet:n {bf}
\@@_maybe_init_alphabet:n {bfsf}
}
% \end{macrocode}
% If |range=| has been used then we're in explicit mode:
% \begin{macrocode}
{
\@@_log:n {setup-explicit}
\bool_set_false:N \l_@@_implicit_alph_bool
\cs_set_eq:NN \@@_set_mathalphabet_char:nnn \@@_mathmap_noparse:nnn
\cs_set_eq:NN \@@_map_char_single:nn \@@_map_char_noparse:nn
}
% Now perform the mapping:
\seq_map_inline:Nn \l_@@_mathalph_seq
{
\tl_set:No \l_@@_style_tl { \use_i:nnn ##1 }
\clist_set:No \l_@@_alphabet_clist { \use_ii:nnn ##1 }
\tl_set:No \l_@@_remap_style_tl { \use_iii:nnn ##1 }
% If no set of alphabets is defined:
\clist_if_empty:NT \l_@@_alphabet_clist
{
\cs_set_eq:NN \@@_maybe_init_alphabet:n \@@_init_alphabet:n
\prop_get:cnN { g_@@_named_range_ \l_@@_style_tl _prop }
{ default-alpha } \l_@@_alphabet_clist
}
\@@_setup_math_alphabet:
}
\seq_if_empty:NF \l_@@_missing_alph_seq { \@@_log:n { missing-alphabets } }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_setup_math_alphabet:}
% \begin{macrocode}
\cs_new:Nn \@@_setup_math_alphabet:
{
% \end{macrocode}
% First check that at least one of the alphabets for the font shape is defined
% (this process is fast) \dots
% \begin{macrocode}
\clist_map_inline:Nn \l_@@_alphabet_clist
{
\tl_set:Nn \l_@@_alphabet_tl {##1}
\@@_if_alphabet_exists:nnTF \l_@@_style_tl \l_@@_alphabet_tl
{
\str_if_eq_x:nnTF {\l_@@_alphabet_tl} {misc}
{
\@@_maybe_init_alphabet:n \l_@@_style_tl
\clist_map_break:
}
{
\@@_glyph_if_exist:nT { \@@_to_usv:nn {\l_@@_style_tl} {\l_@@_alphabet_tl} }
{
\@@_maybe_init_alphabet:n \l_@@_style_tl
\clist_map_break:
}
}
}
{ \msg_warning:nnx {unicode-math} {no-alphabet} { \l_@@_style_tl / \l_@@_alphabet_tl } }
}
% \end{macrocode}
% \dots and then loop through them defining the individual ranges:
% (currently this process is slow)
% \begin{macrocode}
%<debug> \csname TIC\endcsname
\clist_map_inline:Nn \l_@@_alphabet_clist
{
\tl_set:Nx \l_@@_alphabet_tl { \tl_trim_spaces:n {##1} }
\cs_if_exist:cT {@@_config_ \l_@@_style_tl _ \l_@@_alphabet_tl :n}
{
\exp_args:No \tl_if_eq:nnTF \l_@@_alphabet_tl {misc}
{
\@@_log:nx {setup-alph} {sym \l_@@_style_tl~(\l_@@_alphabet_tl)}
\@@_alphabet_config:nnn {\l_@@_style_tl} {\l_@@_alphabet_tl} {\l_@@_remap_style_tl}
}
{
\@@_glyph_if_exist:nTF { \@@_to_usv:nn {\l_@@_remap_style_tl} {\l_@@_alphabet_tl} }
{
\@@_log:nx {setup-alph} {sym \l_@@_style_tl~(\l_@@_alphabet_tl)}
\@@_alphabet_config:nnn {\l_@@_style_tl} {\l_@@_alphabet_tl} {\l_@@_remap_style_tl}
}
{
\bool_if:NTF \l_@@_implicit_alph_bool
{
\seq_put_right:Nx \l_@@_missing_alph_seq
{
\@backslashchar sym \l_@@_style_tl \space
(\tl_use:c{c_@@_math_alphabet_name_ \l_@@_alphabet_tl _tl})
}
}
{
\@@_alphabet_config:nnn {\l_@@_style_tl} {\l_@@_alphabet_tl} {up}
}
}
}
}
}
%<debug> \csname TOC\endcsname
}
% \end{macrocode}
% \end{macro}
%
%
% \subsection{Mapping `naked' math characters}
%
% Before we show the definitions of the alphabet mappings using the functions
% |\@@_alphabet_config:nnn \l_@@_style_tl {##1} {...}|, we first want to define some functions
% to be used inside them to actually perform the character mapping.
%
% \subsubsection{Functions}
%
% \begin{macro}{\@@_map_char_single:nn}
% Wrapper for |\@@_map_char_noparse:nn| or |\@@_map_char_parse:nn|
% depending on the context.
%
% \begin{macro}{\@@_map_char_noparse:nn}
% \begin{macro}{\@@_map_char_parse:nn}
% \begin{macrocode}
\cs_new:Nn \@@_map_char_noparse:nn
{ \@@_set_mathcode:nnnn {#1}{\mathalpha}{\@@_symfont_tl}{#2} }
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_map_char_parse:nn
{
\@@_if_char_spec:nNNT {#1} {\@nil} {\mathalpha}
{ \@@_map_char_noparse:nn {#1}{#2} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_map_char_single:nnn}
% \darg{char name (`dotlessi')}
% \darg{from alphabet(s)}
% \darg{to alphabet}
% Logical interface to \cs{@@_map_char_single:nn}.
% \begin{macrocode}
\cs_new:Nn \@@_map_char_single:nnn
{
\@@_map_char_single:nn { \@@_to_usv:nn {#1}{#3} }
{ \@@_to_usv:nn {#2}{#3} }
}
% \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\@@_map_chars_range:nnnn}
% \darg{Number of chars (26)}
% \darg{From style, one or more (it)}
% \darg{To style (up)}
% \darg{Alphabet name (Latin)}
% First the function with numbers:
% \begin{macrocode}
\cs_set:Nn \@@_map_chars_range:nnn
{
\int_step_inline:nnnn {0}{1}{#1-1}
{ \@@_map_char_single:nn {#2+##1}{#3+##1} }
}
% \end{macrocode}
% And the wrapper with names:
% \begin{macrocode}
\cs_new:Nn \@@_map_chars_range:nnnn
{
\@@_map_chars_range:nnn {#1} { \@@_to_usv:nn {#2}{#4} }
{ \@@_to_usv:nn {#3}{#4} }
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Functions for `normal' alphabet symbols}
%
% \begin{macro}{\@@_set_normal_char:nnn}
% \begin{macrocode}
\cs_set:Nn \@@_set_normal_char:nnn
{
\@@_usv_if_exist:nnT {#3} {#1}
{
\clist_map_inline:nn {#2}
{
\@@_set_mathalphabet_pos:nnnn {normal} {#1} {##1} {#3}
\@@_map_char_single:nnn {##1} {#3} {#1}
}
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_normal_Latin:nn
{
\clist_map_inline:nn {#1}
{
\@@_set_mathalphabet_Latin:nnn {normal} {##1} {#2}
\@@_map_chars_range:nnnn {26} {##1} {#2} {Latin}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_normal_latin:nn
{
\clist_map_inline:nn {#1}
{
\@@_set_mathalphabet_latin:nnn {normal} {##1} {#2}
\@@_map_chars_range:nnnn {26} {##1} {#2} {latin}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_normal_greek:nn
{
\clist_map_inline:nn {#1}
{
\@@_set_mathalphabet_greek:nnn {normal} {##1} {#2}
\@@_map_chars_range:nnnn {25} {##1} {#2} {greek}
\@@_map_char_single:nnn {##1} {#2} {epsilon}
\@@_map_char_single:nnn {##1} {#2} {vartheta}
\@@_map_char_single:nnn {##1} {#2} {varkappa}
\@@_map_char_single:nnn {##1} {#2} {phi}
\@@_map_char_single:nnn {##1} {#2} {varrho}
\@@_map_char_single:nnn {##1} {#2} {varpi}
\@@_set_mathalphabet_pos:nnnn {normal} {epsilon} {##1} {#2}
\@@_set_mathalphabet_pos:nnnn {normal} {vartheta} {##1} {#2}
\@@_set_mathalphabet_pos:nnnn {normal} {varkappa} {##1} {#2}
\@@_set_mathalphabet_pos:nnnn {normal} {phi} {##1} {#2}
\@@_set_mathalphabet_pos:nnnn {normal} {varrho} {##1} {#2}
\@@_set_mathalphabet_pos:nnnn {normal} {varpi} {##1} {#2}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_normal_Greek:nn
{
\clist_map_inline:nn {#1}
{
\@@_set_mathalphabet_Greek:nnn {normal} {##1} {#2}
\@@_map_chars_range:nnnn {25} {##1} {#2} {Greek}
\@@_map_char_single:nnn {##1} {#2} {varTheta}
\@@_set_mathalphabet_pos:nnnn {normal} {varTheta} {##1} {#2}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_normal_numbers:nn
{
\@@_set_mathalphabet_numbers:nnn {normal} {#1} {#2}
\@@_map_chars_range:nnnn {10} {#1} {#2} {num}
}
% \end{macrocode}
%
%
% \subsection{Mapping chars inside a math style}
%
% \subsubsection{Functions for setting up the maths alphabets}
%
% \begin{macro}{\@@_set_mathalphabet_char:Nnn}
% This is a wrapper for either |\@@_mathmap_noparse:nnn| or
% |\@@_mathmap_parse:Nnn|, depending on the context.
% \end{macro}
%
% \begin{macro}{\@@_mathmap_noparse:nnn}
% \darg{Maths alphabet, \eg, `bb'}
% \darg{Input slot(s), \eg, the slot for `A' (comma separated)}
% \darg{Output slot, \eg, the slot for `$\mathbb{A}$'}
% Adds \cs{@@_set_mathcode:nnnn} declarations to the specified maths alphabet's definition.
% \begin{macrocode}
\cs_new:Nn \@@_mathmap_noparse:nnn
{
\clist_map_inline:nn {#2}
{
\tl_put_right:cx {@@_switchto_#1:}
{
\@@_set_mathcode:nnnn {##1} {\mathalpha} {\@@_symfont_tl} {#3}
}
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_mathmap_parse:nnn}
% \darg{Maths alphabet, \eg, `bb'}
% \darg{Input slot(s), \eg, the slot for `A' (comma separated)}
% \darg{Output slot, \eg, the slot for `$\mathbb{A}$'}
% When \cmd\@@_if_char_spec:nNNT\ is executed, it populates the \cmd\l_@@_char_nrange_clist\
% macro with slot numbers corresponding to the specified range. This range is used to
% conditionally add \cs{@@_set_mathcode:nnnn} declaractions to the maths alphabet definition.
% \begin{macrocode}
\cs_new:Nn \@@_mathmap_parse:nnn
{
\clist_if_in:NnT \l_@@_char_nrange_clist {#3}
{
\@@_mathmap_noparse:nnn {#1}{#2}{#3}
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_set_mathalphabet_char:nnnn}
% \darg{math style command}
% \darg{input math alphabet name}
% \darg{output math alphabet name}
% \darg{char name to map}
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalphabet_char:nnnn
{
\@@_set_mathalphabet_char:nnn {#1} { \@@_to_usv:nn {#2} {#4} }
{ \@@_to_usv:nn {#3} {#4} }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_set_mathalph_range:nnnn}
% \darg{Number of iterations}
% \darg{Maths alphabet}
% \darg{Starting input char (single)}
% \darg{Starting output char}
% Loops through character ranges setting \cmd\mathcode.
% First the version that uses numbers:
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalph_range:nnnn
{
\int_step_inline:nnnn {0} {1} {#1-1}
{ \@@_set_mathalphabet_char:nnn {#2} { ##1 + #3 } { ##1 + #4 } }
}
% \end{macrocode}
% Then the wrapper version that uses names:
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalph_range:nnnnn
{
\@@_set_mathalph_range:nnnn {#1} {#2} { \@@_to_usv:nn {#3} {#5} }
{ \@@_to_usv:nn {#4} {#5} }
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Individual mapping functions for different alphabets}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalphabet_pos:nnnn
{
\@@_usv_if_exist:nnT {#4} {#2}
{
\clist_map_inline:nn {#3}
{ \@@_set_mathalphabet_char:nnnn {#1} {##1} {#4} {#2} }
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalphabet_numbers:nnn
{
\clist_map_inline:nn {#2}
{ \@@_set_mathalph_range:nnnnn {10} {#1} {##1} {#3} {num} }
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalphabet_Latin:nnn
{
\clist_map_inline:nn {#2}
{ \@@_set_mathalph_range:nnnnn {26} {#1} {##1} {#3} {Latin} }
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalphabet_latin:nnn
{
\clist_map_inline:nn {#2}
{
\@@_set_mathalph_range:nnnnn {26} {#1} {##1} {#3} {latin}
\@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {h}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalphabet_Greek:nnn
{
\clist_map_inline:nn {#2}
{
\@@_set_mathalph_range:nnnnn {25} {#1} {##1} {#3} {Greek}
\@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {varTheta}
}
}
% \end{macrocode}
%
% \begin{macrocode}
\cs_new:Nn \@@_set_mathalphabet_greek:nnn
{
\clist_map_inline:nn {#2}
{
\@@_set_mathalph_range:nnnnn {25} {#1} {##1} {#3} {greek}
\@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {epsilon}
\@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {vartheta}
\@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {varkappa}
\@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {phi}
\@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {varrho}
\@@_set_mathalphabet_char:nnnn {#1} {##1} {#3} {varpi}
}
}
% \end{macrocode}
%
% \begin{macrocode}
%</package&(XE|LU)>
% \end{macrocode}
%
\endinput
|