1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
|
% \iffalse
%
%% File l3sort.dtx
%
% Copyright (C) 2012-2021 The LaTeX Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3sort} package\\ Sorting functions^^A
% }
%
% \author{^^A
% The \LaTeX{} Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released 2021-11-12}
%
% \maketitle
%
% \begin{documentation}
%
% \section{Controlling sorting}
%
% \label{sec:l3sort:mech}
%
% \LaTeX3 comes with a facility to sort list variables (sequences,
% token lists, or comma-lists) according to some user-defined
% comparison. For instance,
% \begin{verbatim}
% \clist_set:Nn \l_foo_clist { 3 , 01 , -2 , 5 , +1 }
% \clist_sort:Nn \l_foo_clist
% {
% \int_compare:nNnTF { #1 } > { #2 }
% { \sort_return_swapped: }
% { \sort_return_same: }
% }
% \end{verbatim}
% results in \cs[no-index]{l_foo_clist} holding the values
% |{ -2 , 01 , +1 , 3 , 5 }| sorted in non-decreasing order.
%
% The code defining the comparison should call
% \cs{sort_return_swapped:} if the two items given as |#1|
% and |#2| are not in the correct order, and otherwise it
% should call \cs{sort_return_same:} to indicate that
% the order of this pair of items should not be changed.
%
% For instance, a \meta{comparison code} consisting only
% of \cs{sort_return_same:} with no test yields a trivial
% sort: the final order is identical to the original order.
% Conversely, using a \meta{comparison code} consisting only
% of \cs{sort_return_swapped:} reverses the list (in a fairly
% inefficient way).
%
% \begin{texnote}
% The current implementation is limited to sorting approximately
% $20000$ items ($40000$ in \LuaTeX{}), depending on what other
% packages are loaded.
%
% Internally, the code from \pkg{l3sort} stores items in \tn{toks}
% registers allocated locally. Thus, the \meta{comparison code}
% should not call \tn{newtoks} or other commands that allocate new
% \tn{toks} registers. On the other hand, altering the value of a
% previously allocated \tn{toks} register is not a problem.
% \end{texnote}
%
% \begin{function}[added = 2017-02-06]{\sort_return_same:, \sort_return_swapped:}
% \begin{syntax}
% \cs{seq_sort:Nn} \meta{seq~var}
% ~~|{| \ldots{} \cs{sort_return_same:} or \cs{sort_return_swapped:} \ldots{} |}|
% \end{syntax}
% Indicates whether to keep the order or swap the order of two items
% that are compared in the sorting code. Only one of the
% \cs[no-index]{sort_return_\ldots{}} functions should be used by the
% code, according to the results of some tests on the items |#1| and
% |#2| to be compared.
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3sort} implementation}
%
% \begin{macrocode}
%<*package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=sort>
% \end{macrocode}
%
% \subsection{Variables}
%
% \begin{variable}{\g_@@_internal_seq, \g_@@_internal_tl}
% Sorting happens in a group; the result is stored in those global
% variables before being copied outside the group to the proper
% places. For seq and tl this is more efficient than using \cs{use:x}
% (or some \cs{exp_args:NNNx}) to smuggle the definition outside the
% group since \TeX{} does not need to re-read tokens. For clist we
% don't gain anything since the result is converted from seq to clist
% anyways.
% \begin{macrocode}
\seq_new:N \g_@@_internal_seq
\tl_new:N \g_@@_internal_tl
% \end{macrocode}
% \end{variable}
%
% \begin{variable}
% {
% \l_@@_length_int, \l_@@_min_int, \l_@@_top_int, \l_@@_max_int,
% \l_@@_true_max_int
% }
% The sequence has \cs{l_@@_length_int} items and is stored from
% \cs{l_@@_min_int} to $\cs{l_@@_top_int}-1$. While reading the
% sequence in memory, we check that \cs{l_@@_top_int} remains at most
% \cs{l_@@_max_int}, precomputed by \cs{@@_compute_range:}. That
% bound is such that the merge sort only uses \tn{toks} registers
% less than \cs{l_@@_true_max_int}, namely those that have not been
% allocated for use in other code: the user's comparison code could
% alter these.
% \begin{macrocode}
\int_new:N \l_@@_length_int
\int_new:N \l_@@_min_int
\int_new:N \l_@@_top_int
\int_new:N \l_@@_max_int
\int_new:N \l_@@_true_max_int
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_@@_block_int}
% Merge sort is done in several passes. In each pass, blocks of size
% \cs{l_@@_block_int} are merged in pairs. The block size starts
% at $1$, and, for a length in the range $[2^k+1,2^{k+1}]$, reaches
% $2^{k}$ in the last pass.
% \begin{macrocode}
\int_new:N \l_@@_block_int
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_@@_begin_int}
% \begin{variable}{\l_@@_end_int}
% When merging two blocks, \cs{l_@@_begin_int} marks the lowest
% index in the two blocks, and \cs{l_@@_end_int} marks the
% highest index, plus $1$.
% \begin{macrocode}
\int_new:N \l_@@_begin_int
\int_new:N \l_@@_end_int
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{variable}{\l_@@_A_int}
% \begin{variable}{\l_@@_B_int}
% \begin{variable}{\l_@@_C_int}
% When merging two blocks (whose end-points are \texttt{beg}
% and \texttt{end}), $A$ starts from the high end of the low
% block, and decreases until reaching \texttt{beg}. The index
% $B$ starts from the top of the range and marks the register
% in which a sorted item should be put. Finally, $C$ points
% to the copy of the high block in the interval of registers
% starting at \cs{l_@@_length_int}, upwards. $C$ starts
% from the upper limit of that range.
% \begin{macrocode}
\int_new:N \l_@@_A_int
\int_new:N \l_@@_B_int
\int_new:N \l_@@_C_int
% \end{macrocode}
% \end{variable}
% \end{variable}
% \end{variable}
%
% \begin{variable}{\s_@@_mark,\s_@@_stop}
% Internal scan marks.
% \begin{macrocode}
\scan_new:N \s_@@_mark
\scan_new:N \s_@@_stop
% \end{macrocode}
% \end{variable}
%
% \subsection{Finding available \tn{toks} registers}
%
% \begin{macro}{\@@_shrink_range:}
% \begin{macro}{\@@_shrink_range_loop:}
% After \cs{@@_compute_range:} (defined below) determines that
% \tn{toks} registers between \cs{l_@@_min_int} (included) and
% \cs{l_@@_true_max_int} (excluded) have not yet been assigned,
% \cs{@@_shrink_range:} computes \cs{l_@@_max_int} to reflect the need
% for a buffer when merging blocks in the merge sort. Given
% $2^{n}\leq A\leq 2^{n}+2^{n-1}$ registers we can sort $\lfloor
% A/2\rfloor+2^{n-2}$ items while if we have $2^{n}+2^{n-1}\leq A\leq
% 2^{n+1}$ registers we can sort $A-2^{n-1}$ items. We first find out
% a power $2^{n}$ such that $2^{n}\leq A\leq 2^{n+1}$ by repeatedly
% halving \cs{l_@@_block_int}, starting at $2^{15}$ or $2^{14}$ namely
% half the total number of registers, then we use the formulas and set
% \cs{l_@@_max_int}.
% \begin{macrocode}
\cs_new_protected:Npn \@@_shrink_range:
{
\int_set:Nn \l_@@_A_int
{ \l_@@_true_max_int - \l_@@_min_int + 1 }
\int_set:Nn \l_@@_block_int { \c_max_register_int / 2 }
\@@_shrink_range_loop:
\int_set:Nn \l_@@_max_int
{
\int_compare:nNnTF
{ \l_@@_block_int * 3 / 2 } > \l_@@_A_int
{
\l_@@_min_int
+ ( \l_@@_A_int - 1 ) / 2
+ \l_@@_block_int / 4
- 1
}
{ \l_@@_true_max_int - \l_@@_block_int / 2 }
}
}
\cs_new_protected:Npn \@@_shrink_range_loop:
{
\if_int_compare:w \l_@@_A_int < \l_@@_block_int
\tex_divide:D \l_@@_block_int 2 \exp_stop_f:
\exp_after:wN \@@_shrink_range_loop:
\fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_compute_range:, \@@_redefine_compute_range:}
% \begin{variable}{\c_@@_max_length_int}
% First find out what \tn{toks} have not yet been assigned. There are
% many cases. In \LaTeXe{} with no package, available \tn{toks} range
% from $\tn{count}15+1$ to \cs{c_max_register_int} included (this was
% not altered despite the 2015 changes). When \tn{loctoks} is
% defined, namely in plain (e)\TeX{}, or when the package \pkg{etex}
% is loaded in \LaTeXe{}, redefine \cs{@@_compute_range:} to use the
% range $\tn{count}265$ to $\tn{count}275-1$. The \pkg{elocalloc}
% package also defines \tn{loctoks} but uses yet another number for
% the upper bound, namely \cs{e@alloc@top} (minus one). We must check
% for \tn{loctoks} every time a sorting function is called, as
% \pkg{etex} or \pkg{elocalloc} could be loaded.
%
% In \ConTeXt{} MkIV the range is from
% $|\c_syst_last_allocated_toks|+1$ to \cs{c_max_register_int}, and in
% MkII it is from $|\lastallocatedtoks|+1$ to \cs{c_max_register_int}.
% In all these cases, call \cs{@@_shrink_range:}.
% \begin{macrocode}
\cs_new_protected:Npn \@@_compute_range:
{
\int_set:Nn \l_@@_min_int { \tex_count:D 15 + 1 }
\int_set:Nn \l_@@_true_max_int { \c_max_register_int + 1 }
\@@_shrink_range:
\if_meaning:w \loctoks \tex_undefined:D \else:
\if_meaning:w \loctoks \scan_stop: \else:
\@@_redefine_compute_range:
\@@_compute_range:
\fi:
\fi:
}
\cs_new_protected:Npn \@@_redefine_compute_range:
{
\cs_if_exist:cTF { ver@elocalloc.sty }
{
\cs_gset_protected:Npn \@@_compute_range:
{
\int_set:Nn \l_@@_min_int { \tex_count:D 265 }
\int_set_eq:NN \l_@@_true_max_int \e@alloc@top
\@@_shrink_range:
}
}
{
\cs_gset_protected:Npn \@@_compute_range:
{
\int_set:Nn \l_@@_min_int { \tex_count:D 265 }
\int_set:Nn \l_@@_true_max_int { \tex_count:D 275 }
\@@_shrink_range:
}
}
}
\cs_if_exist:NT \loctoks { \@@_redefine_compute_range: }
\tl_map_inline:nn { \lastallocatedtoks \c_syst_last_allocated_toks }
{
\cs_if_exist:NT #1
{
\cs_gset_protected:Npn \@@_compute_range:
{
\int_set:Nn \l_@@_min_int { #1 + 1 }
\int_set:Nn \l_@@_true_max_int { \c_max_register_int + 1 }
\@@_shrink_range:
}
}
}
% \end{macrocode}
% \end{variable}
% \end{macro}
%
% \subsection{Protected user commands}
%
% \begin{macro}{\@@_main:NNNn}
% Sorting happens in three steps. First store items in \tn{toks}
% registers ranging from \cs{l_@@_min_int} to $\cs{l_@@_top_int}-1$,
% while checking that the list is not too long. If we reach the
% maximum length, that's an error; exit the group. Secondly, sort the
% array of \tn{toks} registers, using the user-defined sorting
% function: \cs{@@_level:} calls \cs{@@_compare:nn} as needed.
% Finally, unpack the \tn{toks} registers (now sorted) into the target
% tl, or into \cs{g_@@_internal_seq} for seq and clist. This is done
% by \cs{@@_seq:NNNNn} and \cs{@@_tl:NNn}.
% \begin{macrocode}
\cs_new_protected:Npn \@@_main:NNNn #1#2#3#4
{
\@@_disable_toksdef:
\@@_compute_range:
\int_set_eq:NN \l_@@_top_int \l_@@_min_int
#1 #3
{
\if_int_compare:w \l_@@_top_int = \l_@@_max_int
\@@_too_long_error:NNw #2 #3
\fi:
\tex_toks:D \l_@@_top_int {##1}
\int_incr:N \l_@@_top_int
}
\int_set:Nn \l_@@_length_int
{ \l_@@_top_int - \l_@@_min_int }
\cs_set:Npn \@@_compare:nn ##1 ##2 {#4}
\int_set:Nn \l_@@_block_int { 1 }
\@@_level:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\tl_sort:Nn, \tl_sort:cn, \tl_gsort:Nn, \tl_gsort:cn}
% \begin{macro}{\@@_tl:NNn}
% \begin{macro}[EXP]{\@@_tl_toks:w}
% Call the main sorting function then unpack \tn{toks} registers
% outside the group into the target token list. The unpacking is done
% by \cs{@@_tl_toks:w}; registers are numbered from \cs{l_@@_min_int}
% to $\cs{l_@@_top_int}-1$. For expansion behaviour we need a couple
% of primitives. The \cs{tl_gclear:N} reduces memory usage. The
% \cs{prg_break_point:} is used by \cs{@@_main:NNNn} when the list is
% too long.
% \begin{macrocode}
\cs_new_protected:Npn \tl_sort:Nn { \@@_tl:NNn \tl_set_eq:NN }
\cs_generate_variant:Nn \tl_sort:Nn { c }
\cs_new_protected:Npn \tl_gsort:Nn { \@@_tl:NNn \tl_gset_eq:NN }
\cs_generate_variant:Nn \tl_gsort:Nn { c }
\cs_new_protected:Npn \@@_tl:NNn #1#2#3
{
\group_begin:
\@@_main:NNNn \tl_map_inline:Nn \tl_map_break:n #2 {#3}
\__kernel_tl_gset:Nx \g_@@_internal_tl
{ \@@_tl_toks:w \l_@@_min_int ; }
\group_end:
#1 #2 \g_@@_internal_tl
\tl_gclear:N \g_@@_internal_tl
\prg_break_point:
}
\cs_new:Npn \@@_tl_toks:w #1 ;
{
\if_int_compare:w #1 < \l_@@_top_int
{ \tex_the:D \tex_toks:D #1 }
\exp_after:wN \@@_tl_toks:w
\int_value:w \int_eval:n { #1 + 1 } \exp_after:wN ;
\fi:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_sort:Nn, \seq_sort:cn, \seq_gsort:Nn, \seq_gsort:cn}
% \begin{macro}{\clist_sort:Nn, \clist_sort:cn, \clist_gsort:Nn, \clist_gsort:cn}
% \begin{macro}{\@@_seq:NNNNn}
% Use the same general framework for seq and clist. Apply the general
% sorting code, then unpack \tn{toks} into \cs{g_@@_internal_seq}.
% Outside the group copy or convert (for clist) the data to the target
% variable. The \cs{seq_gclear:N} reduces memory usage. The
% \cs{prg_break_point:} is used by \cs{@@_main:NNNn} when the list is
% too long.
% \begin{macrocode}
\cs_new_protected:Npn \seq_sort:Nn
{ \@@_seq:NNNNn \seq_map_inline:Nn \seq_map_break:n \seq_set_eq:NN }
\cs_generate_variant:Nn \seq_sort:Nn { c }
\cs_new_protected:Npn \seq_gsort:Nn
{ \@@_seq:NNNNn \seq_map_inline:Nn \seq_map_break:n \seq_gset_eq:NN }
\cs_generate_variant:Nn \seq_gsort:Nn { c }
\cs_new_protected:Npn \clist_sort:Nn
{
\@@_seq:NNNNn \clist_map_inline:Nn \clist_map_break:n
\clist_set_from_seq:NN
}
\cs_generate_variant:Nn \clist_sort:Nn { c }
\cs_new_protected:Npn \clist_gsort:Nn
{
\@@_seq:NNNNn \clist_map_inline:Nn \clist_map_break:n
\clist_gset_from_seq:NN
}
\cs_generate_variant:Nn \clist_gsort:Nn { c }
\cs_new_protected:Npn \@@_seq:NNNNn #1#2#3#4#5
{
\group_begin:
\@@_main:NNNn #1 #2 #4 {#5}
\seq_gset_from_inline_x:Nnn \g_@@_internal_seq
{
\int_step_function:nnN
{ \l_@@_min_int } { \l_@@_top_int - 1 }
}
{ \tex_the:D \tex_toks:D ##1 }
\group_end:
#3 #4 \g_@@_internal_seq
\seq_gclear:N \g_@@_internal_seq
\prg_break_point:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Merge sort}
%
% \begin{macro}{\@@_level:}
% This function is called once blocks of size \cs{l_@@_block_int}
% (initially $1$) are each sorted. If the whole list fits in one
% block, then we are done (this also takes care of the case of an
% empty list or a list with one item). Otherwise, go through pairs
% of blocks starting from $0$, then double the block size, and repeat.
% \begin{macrocode}
\cs_new_protected:Npn \@@_level:
{
\if_int_compare:w \l_@@_block_int < \l_@@_length_int
\l_@@_end_int \l_@@_min_int
\@@_merge_blocks:
\tex_advance:D \l_@@_block_int \l_@@_block_int
\exp_after:wN \@@_level:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_merge_blocks:}
% This function is called to merge a pair of blocks, starting at
% the last value of \cs{l_@@_end_int} (end-point of the previous
% pair of blocks). If shifting by one block to the right we reach
% the end of the list, then this pass has ended: the end of the
% list is sorted already. Otherwise, store the result of that shift in $A$,
% which indexes the first block starting from the top end.
% Then locate the end-point (maximum) of the second block: shift
% \texttt{end} upwards by one more block, but keeping it
% $\leq\texttt{top}$. Copy this upper block of \tn{toks}
% registers in registers above \texttt{length}, indexed by $C$:
% this is covered by \cs{@@_copy_block:}. Once this is done we
% are ready to do the actual merger using \cs{@@_merge_blocks_aux:},
% after shifting $A$, $B$ and $C$ so that they point to the largest
% index in their respective ranges rather than pointing just beyond
% those ranges. Of course, once that pair of blocks is merged,
% move on to the next pair.
% \begin{macrocode}
\cs_new_protected:Npn \@@_merge_blocks:
{
\l_@@_begin_int \l_@@_end_int
\tex_advance:D \l_@@_end_int \l_@@_block_int
\if_int_compare:w \l_@@_end_int < \l_@@_top_int
\l_@@_A_int \l_@@_end_int
\tex_advance:D \l_@@_end_int \l_@@_block_int
\if_int_compare:w \l_@@_end_int > \l_@@_top_int
\l_@@_end_int \l_@@_top_int
\fi:
\l_@@_B_int \l_@@_A_int
\l_@@_C_int \l_@@_top_int
\@@_copy_block:
\int_decr:N \l_@@_A_int
\int_decr:N \l_@@_B_int
\int_decr:N \l_@@_C_int
\exp_after:wN \@@_merge_blocks_aux:
\exp_after:wN \@@_merge_blocks:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_copy_block:}
% We wish to store a copy of the \enquote{upper} block of
% \tn{toks} registers, ranging between the initial value of
% \cs{l_@@_B_int} (included) and \cs{l_@@_end_int}
% (excluded) into a new range starting at the initial value
% of \cs{l_@@_C_int}, namely \cs{l_@@_top_int}.
% \begin{macrocode}
\cs_new_protected:Npn \@@_copy_block:
{
\tex_toks:D \l_@@_C_int \tex_toks:D \l_@@_B_int
\int_incr:N \l_@@_C_int
\int_incr:N \l_@@_B_int
\if_int_compare:w \l_@@_B_int = \l_@@_end_int
\use_i:nn
\fi:
\@@_copy_block:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_merge_blocks_aux:}
% At this stage, the first block starts at \cs{l_@@_begin_int},
% and ends at \cs{l_@@_A_int}, and the second block starts at
% \cs{l_@@_top_int} and ends at \cs{l_@@_C_int}. The result
% of the merger is stored at positions indexed by \cs{l_@@_B_int},
% which starts at $\cs{l_@@_end_int}-1$ and decreases down to
% \cs{l_@@_begin_int}, covering the full range of the two blocks.
% In other words, we are building the merger starting with the
% largest values.
% The comparison function is defined to return either
% \texttt{swapped} or \texttt{same}. Of course, this
% means the arguments need to be given in the order they
% appear originally in the list.
% \begin{macrocode}
\cs_new_protected:Npn \@@_merge_blocks_aux:
{
\exp_after:wN \@@_compare:nn \exp_after:wN
{ \tex_the:D \tex_toks:D \exp_after:wN \l_@@_A_int \exp_after:wN }
\exp_after:wN { \tex_the:D \tex_toks:D \l_@@_C_int }
\prg_do_nothing:
\@@_return_mark:w
\@@_return_mark:w
\s_@@_mark
\@@_return_none_error:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\sort_return_same:, \sort_return_swapped:}
% \begin{macro}{\@@_return_mark:w}
% \begin{macro}{\@@_return_none_error:, \@@_return_two_error:}
% Each comparison should call \cs{sort_return_same:} or
% \cs{sort_return_swapped:} exactly once. If neither is called,
% \cs{@@_return_none_error:} is called, since the \texttt{return_mark}
% removes tokens until \cs{s_@@_mark}. If one is called, the
% \texttt{return_mark} auxiliary removes everything except
% \cs{@@_return_same:w} (or its \texttt{swapped} analogue) followed by
% \cs{@@_return_none_error:}. Finally if two or more are called,
% \cs{@@_return_two_error:} ends up before any \cs{@@_return_mark:w},
% so that it produces an error.
% \begin{macrocode}
\cs_new_protected:Npn \sort_return_same:
#1 \@@_return_mark:w #2 \s_@@_mark
{
#1
#2
\@@_return_two_error:
\@@_return_mark:w
\s_@@_mark
\@@_return_same:w
}
\cs_new_protected:Npn \sort_return_swapped:
#1 \@@_return_mark:w #2 \s_@@_mark
{
#1
#2
\@@_return_two_error:
\@@_return_mark:w
\s_@@_mark
\@@_return_swapped:w
}
\cs_new_protected:Npn \@@_return_mark:w #1 \s_@@_mark { }
\cs_new_protected:Npn \@@_return_none_error:
{
\msg_error:nnxx { sort } { return-none }
{ \tex_the:D \tex_toks:D \l_@@_A_int }
{ \tex_the:D \tex_toks:D \l_@@_C_int }
\@@_return_same:w \@@_return_none_error:
}
\cs_new_protected:Npn \@@_return_two_error:
{
\msg_error:nnxx { sort } { return-two }
{ \tex_the:D \tex_toks:D \l_@@_A_int }
{ \tex_the:D \tex_toks:D \l_@@_C_int }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_return_same:w}
% If the comparison function returns \texttt{same},
% then the second argument fed to \cs{@@_compare:nn}
% should remain to the right of the other one. Since
% we build the merger starting from the right, we copy
% that \tn{toks} register into the allotted range, then
% shift the pointers $B$ and $C$, and go on to do one
% more step in the merger, unless the second block has
% been exhausted: then the remainder of the first block
% is already in the correct registers and we are done
% with merging those two blocks.
% \begin{macrocode}
\cs_new_protected:Npn \@@_return_same:w #1 \@@_return_none_error:
{
\tex_toks:D \l_@@_B_int \tex_toks:D \l_@@_C_int
\int_decr:N \l_@@_B_int
\int_decr:N \l_@@_C_int
\if_int_compare:w \l_@@_C_int < \l_@@_top_int
\use_i:nn
\fi:
\@@_merge_blocks_aux:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_return_swapped:w}
% If the comparison function returns \texttt{swapped},
% then the next item to add to the merger is the first
% argument, contents of the \tn{toks} register $A$.
% Then shift the pointers $A$ and $B$ to the left, and
% go for one more step for the merger, unless the left
% block was exhausted ($A$ goes below the threshold).
% In that case, all remaining \tn{toks} registers in
% the second block, indexed by $C$, are copied
% to the merger by \cs{@@_merge_blocks_end:}.
% \begin{macrocode}
\cs_new_protected:Npn \@@_return_swapped:w #1 \@@_return_none_error:
{
\tex_toks:D \l_@@_B_int \tex_toks:D \l_@@_A_int
\int_decr:N \l_@@_B_int
\int_decr:N \l_@@_A_int
\if_int_compare:w \l_@@_A_int < \l_@@_begin_int
\@@_merge_blocks_end: \use_i:nn
\fi:
\@@_merge_blocks_aux:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_merge_blocks_end:}
% This function's task is to copy the \tn{toks} registers
% in the block indexed by $C$ to the merger indexed by $B$.
% The end can equally be detected by checking when $B$ reaches
% the threshold \texttt{begin}, or when $C$ reaches
% \texttt{top}.
% \begin{macrocode}
\cs_new_protected:Npn \@@_merge_blocks_end:
{
\tex_toks:D \l_@@_B_int \tex_toks:D \l_@@_C_int
\int_decr:N \l_@@_B_int
\int_decr:N \l_@@_C_int
\if_int_compare:w \l_@@_B_int < \l_@@_begin_int
\use_i:nn
\fi:
\@@_merge_blocks_end:
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Expandable sorting}
%
% Sorting expandably is very different from sorting and assigning to a
% variable. Since tokens cannot be stored, they must remain in the
% input stream, and be read through at every step. It is thus
% necessarily much slower (at best $O(n^2\ln n)$) than non-expandable
% sorting functions ($O(n\ln n)$).
%
% A prototypical version of expandable quicksort is as follows. If the
% argument has no item, return nothing, otherwise partition, using the
% first item as a pivot (argument |#4| of \cs{@@:nnNnn}). The
% arguments of \cs{@@:nnNnn} are 1.~items less than |#4|, 2.~items
% greater or equal to |#4|, 3.~comparison, 4.~pivot, 5.~next item to
% test. If |#5| is the tail of the list, call \cs{tl_sort:nN} on |#1|
% and on |#2|, placing |#4| in between; |\use:ff| expands the parts to
% make \cs{tl_sort:nN} \texttt{f}-expandable. Otherwise, compare |#4|
% and |#5| using |#3|. If they are ordered, place |#5| amongst the
% \enquote{greater} items, otherwise amongst the \enquote{lesser} items,
% and continue partitioning.
% \begin{verbatim}
% \cs_new:Npn \tl_sort:nN #1#2
% {
% \tl_if_blank:nF {#1}
% {
% \__sort:nnNnn { } { } #2
% #1 \q__sort_recursion_tail \q__sort_recursion_stop
% }
% }
% \cs_new:Npn \__sort:nnNnn #1#2#3#4#5
% {
% \quark_if_recursion_tail_stop_do:nn {#5}
% { \use:ff { \tl_sort:nN {#1} #3 {#4} } { \tl_sort:nN {#2} #3 } }
% #3 {#4} {#5}
% { \__sort:nnNnn {#1} { #2 {#5} } #3 {#4} }
% { \__sort:nnNnn { #1 {#5} } {#2} #3 {#4} }
% }
% \cs_generate_variant:Nn \use:nn { ff }
% \end{verbatim}
% There are quite a few optimizations available here: the code below is
% less legible, but more than twice as fast.
%
% In the simple version of the code, \cs{@@:nnNnn} is called
% \(O(n\ln n)\) times on average (the number of comparisons required by
% the quicksort algorithm). Hence most of our focus is on
% optimizing that function.
%
% The first speed up is to avoid testing for the end of the list at
% every call to \cs{@@:nnNnn}. For this, the list is prepared by
% changing each \meta{item} of the original token list into
% \meta{command} \Arg{item}, just like sequences are stored. We arrange
% things such that the \meta{command} is the \meta{conditional} provided
% by the user: the loop over the \meta{prepared tokens} then looks like
% \begin{quote}
% \ttfamily
% \cs{cs_new:Npn}~\cs{@@_loop:wNn}~\ldots{}~|#6#7|\\
% ~~|{|\\
% ~~~~|#6|~\Arg{pivot}~|{#7}|~\meta{loop big}~\meta{loop small}\\
% ~~~~~~\meta{extra arguments}\\
% ~~|}|\\
% \cs{@@_loop:wNn}~\ldots{}~\meta{prepared tokens}\\
% ~~\meta{end-loop}~|{}|~\cs{s_@@_stop}
% \end{quote}
% In this example, which matches the structure of
% \cs{@@_quick_split_i:NnnnnNn} and a few other functions below, the
% \cs{@@_loop:wNn} auxiliary normally receives the user's
% \meta{conditional} as~|#6| and an \meta{item} as~|#7|. This is
% compared to the \meta{pivot} (the argument~|#5|, not shown here), and
% the \meta{conditional} leaves the \meta{loop big} or \meta{loop small}
% auxiliary, which both have the same form as \cs{@@_loop:wNn},
% receiving the next pair \meta{conditional} \Arg{item} as |#6|
% and~|#7|. At the end, |#6| is the \meta{end-loop} function, which
% terminates the loop.
%
% The second speed up is to minimize the duplicated tokens between the
% \texttt{true} and \texttt{false} branches of the conditional. For
% this, we introduce two versions of \cs{@@:nnNnn}, which receive
% the new item as~|#1| and place it either into the list~|#2| of items
% less than the pivot~|#4| or into the list~|#3| of items greater or
% equal to the pivot.
% \begin{verbatim}
% \cs_new:Npn \__sort_i:nnnnNn #1#2#3#4#5#6
% {
% #5 {#4} {#6} \__sort_ii:nnnnNn \__sort_i:nnnnNn
% {#6} { #2 {#1} } {#3} {#4}
% }
% \cs_new:Npn \__sort_ii:nnnnNn #1#2#3#4#5#6
% {
% #5 {#4} {#6} \__sort_ii:nnnnNn \__sort_i:nnnnNn
% {#6} {#2} { #3 {#1} } {#4}
% }
% \end{verbatim}
% Note that the two functions have the form of \cs{@@_loop:wNn} above,
% receiving as~|#5| the conditional or a function to end the loop. In
% fact, the lists~|#2| and~|#3| must be made of pairs \meta{conditional}
% \Arg{item}, so we have to replace~|{#6}| above by |{|~|#5|~|{#6}|~|}|,
% and |{#1}|~by~|#1|. The actual functions have one more argument, so
% all argument numbers are shifted compared to this code.
%
% The third speed up is to avoid |\use:ff| using a continuation-passing
% style: \cs{@@_quick_split:NnNn} expects a list followed by
% \cs{s_@@_mark} \Arg{code}, and expands to \meta{code} \meta{sorted list}.
% Sorting the two parts of the list around the pivot is done with
% \begin{quote}
% \ttfamily
% \cs{@@_quick_split:NnNn} |#2| \ldots{} \cs{s_@@_mark}\\
% ~~|{|\\
% ~~~~\cs{@@_quick_split:NnNn} |#1| \ldots{} \cs{s_@@_mark} \Arg{code}\\
% ~~~~\Arg{pivot}\\
% ~~|}|
% \end{quote}
% Items which are larger than the \meta{pivot} are sorted, then placed
% after code that sorts the smaller items, and after the (braced)
% \meta{pivot}.
%
% The fourth speed up is avoid the recursive call to \cs{tl_sort:nN}
% with an empty first argument. For this, we introduce functions
% similar to the \cs{@@_i:nnnnNn} of the last example, but aware of
% whether the list of \meta{conditional} \Arg{item} read so far that are
% less than the pivot, and the list of those greater or equal, are empty
% or not: see \cs{@@_quick_split:NnNn} and functions defined below.
% Knowing whether the lists are empty or not is useless if we do not use
% distinct ending codes as appropriate. The splitting auxiliaries
% communicate to the \meta{end-loop} function (that is initially placed
% after the ``prepared'' list) by placing a specific ending function,
% ignored when looping, but useful at the end. In fact, the
% \meta{end-loop} function does nothing but place the appropriate ending
% function in front of all its arguments. The ending functions take
% care of sorting non-empty sublists, placing the pivot in between, and
% the continuation before.
%
% The final change in fact slows down the code a little, but is required
% to avoid memory issues: schematically, when \TeX{} encounters
% \begin{verbatim}
% \use:n { \use:n { \use:n { ... } ... } ... }
% \end{verbatim}
% the argument of the first \cs{use:n} is not completely read by the
% second \cs{use:n}, hence must remain in memory; then the argument of
% the second \cs{use:n} is not completely read when grabbing the
% argument of the third \cs{use:n}, hence must remain in memory, and so
% on. The memory consumption grows quadratically with the number of
% nested \cs{use:n}. In practice, this means that we must read
% everything until a trailing \cs{s_@@_stop} once in a while, otherwise
% sorting lists of more than a few thousand items would exhaust a
% typical \TeX{}'s memory.
%
% \begin{macro}[EXP]{\tl_sort:nN}
% \begin{macro}[EXP]
% {
% \@@_quick_prepare:Nnnn,
% \@@_quick_prepare_end:NNNnw,
% \@@_quick_cleanup:w
% }
% The code within the \cs{exp_not:f} sorts the list, leaving in most
% cases a leading \cs{exp_not:f}, which stops the expansion, letting
% the result be return within \cs{exp_not:n}. We filter out the case
% of a list with no item, which would otherwise cause problems. Then
% prepare the token list~|#1| by inserting the conditional~|#2| before
% each item. The \texttt{prepare} auxiliary receives the conditional
% as~|#1|, the prepared token list so far as~|#2|, the next prepared
% item as~|#3|, and the item after that as~|#4|. The loop ends
% when~|#4| contains \cs{prg_break_point:}, then the
% \texttt{prepare_end} auxiliary finds the prepared token list
% as~|#4|. The scene is then set up for \cs{@@_quick_split:NnNn},
% which sorts the prepared list and perform the post action placed
% after \cs{s_@@_mark}, namely removing the trailing \cs{s_@@_stop} and
% \cs{s_@@_stop} and leaving \cs{exp_stop_f:} to stop
% \texttt{f}-expansion.
% \begin{macrocode}
\cs_new:Npn \tl_sort:nN #1#2
{
\exp_not:f
{
\tl_if_blank:nF {#1}
{
\@@_quick_prepare:Nnnn #2 { } { }
#1
{ \prg_break_point: \@@_quick_prepare_end:NNNnw }
\s_@@_stop
}
}
}
\cs_new:Npn \@@_quick_prepare:Nnnn #1#2#3#4
{
\prg_break: #4 \prg_break_point:
\@@_quick_prepare:Nnnn #1 { #2 #3 } { #1 {#4} }
}
\cs_new:Npn \@@_quick_prepare_end:NNNnw #1#2#3#4#5 \s_@@_stop
{
\@@_quick_split:NnNn #4 \@@_quick_end:nnTFNn { }
\s_@@_mark { \@@_quick_cleanup:w \exp_stop_f: }
\s_@@_mark \s_@@_stop
}
\cs_new:Npn \@@_quick_cleanup:w #1 \s_@@_mark \s_@@_stop {#1}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]
% {
% \@@_quick_split:NnNn,
% \@@_quick_only_i:NnnnnNn,
% \@@_quick_only_ii:NnnnnNn,
% \@@_quick_split_i:NnnnnNn,
% \@@_quick_split_ii:NnnnnNn
% }
% The \texttt{only_i}, \texttt{only_ii}, \texttt{split_i} and
% \texttt{split_ii} auxiliaries receive a useless first argument, the
% new item~|#2| (that they append to either one of the next two
% arguments), the list~|#3| of items less than the pivot, bigger
% items~|#4|, the pivot~|#5|, a \meta{function}~|#6|, and an
% item~|#7|. The \meta{function} is the user's \meta{conditional}
% except at the end of the list where it is
% \cs{@@_quick_end:nnTFNn}. The comparison is applied to the
% \meta{pivot} and the \meta{item}, and calls the \texttt{only_i} or
% \texttt{split_i} auxiliaries if the \meta{item} is smaller, and the
% \texttt{only_ii} or \texttt{split_ii} auxiliaries otherwise. In
% both cases, the next auxiliary goes to work right away, with no
% intermediate expansion that would slow down operations. Note that
% the argument~|#2| left for the next call has the form
% \meta{conditional} \Arg{item}, so that the lists~|#3| and~|#4| keep
% the right form to be fed to the next sorting function.
% The \texttt{split} auxiliary differs from these in that it is
% missing three of the arguments, which would be empty, and its first
% argument is always the user's \meta{conditional} rather than an
% ending function.
% \begin{macrocode}
\cs_new:Npn \@@_quick_split:NnNn #1#2#3#4
{
#3 {#2} {#4} \@@_quick_only_ii:NnnnnNn
\@@_quick_only_i:NnnnnNn
\@@_quick_single_end:nnnwnw
{ #3 {#4} } { } { } {#2}
}
\cs_new:Npn \@@_quick_only_i:NnnnnNn #1#2#3#4#5#6#7
{
#6 {#5} {#7} \@@_quick_split_ii:NnnnnNn
\@@_quick_only_i:NnnnnNn
\@@_quick_only_i_end:nnnwnw
{ #6 {#7} } { #3 #2 } { } {#5}
}
\cs_new:Npn \@@_quick_only_ii:NnnnnNn #1#2#3#4#5#6#7
{
#6 {#5} {#7} \@@_quick_only_ii:NnnnnNn
\@@_quick_split_i:NnnnnNn
\@@_quick_only_ii_end:nnnwnw
{ #6 {#7} } { } { #4 #2 } {#5}
}
\cs_new:Npn \@@_quick_split_i:NnnnnNn #1#2#3#4#5#6#7
{
#6 {#5} {#7} \@@_quick_split_ii:NnnnnNn
\@@_quick_split_i:NnnnnNn
\@@_quick_split_end:nnnwnw
{ #6 {#7} } { #3 #2 } {#4} {#5}
}
\cs_new:Npn \@@_quick_split_ii:NnnnnNn #1#2#3#4#5#6#7
{
#6 {#5} {#7} \@@_quick_split_ii:NnnnnNn
\@@_quick_split_i:NnnnnNn
\@@_quick_split_end:nnnwnw
{ #6 {#7} } {#3} { #4 #2 } {#5}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {
% \@@_quick_end:nnTFNn,
% \@@_quick_single_end:nnnwnw,
% \@@_quick_only_i_end:nnnwnw,
% \@@_quick_only_ii_end:nnnwnw,
% \@@_quick_split_end:nnnwnw,
% }
% The \cs{@@_quick_end:nnTFNn} appears instead of the user's
% conditional, and receives as its arguments the pivot~|#1|, a fake
% item~|#2|, a \texttt{true} and a \texttt{false} branches |#3|
% and~|#4|, followed by an ending function~|#5| (one of the four
% auxiliaries here) and another copy~|#6| of the fake item. All those
% are discarded except the function~|#5|. This function receives
% lists~|#1| and~|#2| of items less than or greater than the
% pivot~|#3|, then a continuation code~|#5| just after \cs{s_@@_mark}.
% To avoid a memory problem described earlier, all of the ending
% functions read~|#6| until \cs{s_@@_stop} and place~|#6| back into the
% input stream. When the lists |#1| and~|#2| are empty, the
% \texttt{single} auxiliary simply places the continuation~|#5| before
% the pivot~|{#3}|. When |#2|~is empty, |#1|~is sorted and placed
% before the pivot~|{#3}|, taking care to feed the continuation~|#5|
% as a continuation for the function sorting~|#1|. When |#1|~is
% empty, |#2|~is sorted, and the continuation argument is used to
% place the continuation~|#5| and the pivot~|{#3}| before the sorted
% result. Finally, when both lists are non-empty, items larger than
% the pivot are sorted, then items less than the pivot, and the
% continuations are done in such a way to place the pivot in between.
% \begin{macrocode}
\cs_new:Npn \@@_quick_end:nnTFNn #1#2#3#4#5#6 {#5}
\cs_new:Npn \@@_quick_single_end:nnnwnw #1#2#3#4 \s_@@_mark #5#6 \s_@@_stop
{ #5 {#3} #6 \s_@@_stop }
\cs_new:Npn \@@_quick_only_i_end:nnnwnw #1#2#3#4 \s_@@_mark #5#6 \s_@@_stop
{
\@@_quick_split:NnNn #1
\@@_quick_end:nnTFNn { } \s_@@_mark {#5}
{#3}
#6 \s_@@_stop
}
\cs_new:Npn \@@_quick_only_ii_end:nnnwnw #1#2#3#4 \s_@@_mark #5#6 \s_@@_stop
{
\@@_quick_split:NnNn #2
\@@_quick_end:nnTFNn { } \s_@@_mark { #5 {#3} }
#6 \s_@@_stop
}
\cs_new:Npn \@@_quick_split_end:nnnwnw #1#2#3#4 \s_@@_mark #5#6 \s_@@_stop
{
\@@_quick_split:NnNn #2 \@@_quick_end:nnTFNn { } \s_@@_mark
{
\@@_quick_split:NnNn #1
\@@_quick_end:nnTFNn { } \s_@@_mark {#5}
{#3}
}
#6 \s_@@_stop
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Messages}
%
% \begin{macro}{\@@_error:}
% Bailing out of the sorting code is a bit tricky. It may not be safe
% to use a delimited argument, so instead we redefine many
% \pkg{l3sort} commands to be trivial, with \cs{@@_level:} jumping to
% the break point. This error recovery won't work in a group.
% \begin{macrocode}
\cs_new_protected:Npn \@@_error:
{
\cs_set_eq:NN \@@_merge_blocks_aux: \prg_do_nothing:
\cs_set_eq:NN \@@_merge_blocks: \prg_do_nothing:
\cs_set_protected:Npn \@@_level: { \group_end: \prg_break: }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_disable_toksdef:, \@@_disabled_toksdef:n}
% While sorting, \tn{toksdef} is locally disabled to prevent users
% from using \tn{newtoks} or similar commands in their comparison
% code: the \tn{toks} registers that would be assigned are in use by
% \pkg{l3sort}. In format mode, none of this is needed since there is
% no \tn{toks} allocator.
% \begin{macrocode}
\cs_new_protected:Npn \@@_disable_toksdef:
{ \cs_set_eq:NN \toksdef \@@_disabled_toksdef:n }
\cs_new_protected:Npn \@@_disabled_toksdef:n #1
{
\msg_error:nnx { sort } { toksdef }
{ \token_to_str:N #1 }
\@@_error:
\tex_toksdef:D #1
}
\msg_new:nnnn { sort } { toksdef }
{ Allocation~of~\iow_char:N\\toks~registers~impossible~while~sorting. }
{
The~comparison~code~used~for~sorting~a~list~has~attempted~to~
define~#1~as~a~new~\iow_char:N\\toks~register~using~
\iow_char:N\\newtoks~
or~a~similar~command.~The~list~will~not~be~sorted.
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_too_long_error:NNw}
% When there are too many items in a sequence, this is an error, and
% we clean up properly the mapping over items in the list: break using
% the type-specific breaking function |#1|.
% \begin{macrocode}
\cs_new_protected:Npn \@@_too_long_error:NNw #1#2 \fi:
{
\fi:
\msg_error:nnxxx { sort } { too-large }
{ \token_to_str:N #2 }
{ \int_eval:n { \l_@@_true_max_int - \l_@@_min_int } }
{ \int_eval:n { \l_@@_top_int - \l_@@_min_int } }
#1 \@@_error:
}
\msg_new:nnnn { sort } { too-large }
{ The~list~#1~is~too~long~to~be~sorted~by~TeX. }
{
TeX~has~#2~toks~registers~still~available:~
this~only~allows~to~sort~with~up~to~#3~
items.~The~list~will~not~be~sorted.
}
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
\msg_new:nnnn { sort } { return-none }
{ The~comparison~code~did~not~return. }
{
When~sorting~a~list,~the~code~to~compare~items~#1~and~#2~
did~not~call~
\iow_char:N\\sort_return_same: ~nor~
\iow_char:N\\sort_return_swapped: .~
Exactly~one~of~these~should~be~called.
}
\msg_new:nnnn { sort } { return-two }
{ The~comparison~code~returned~multiple~times. }
{
When~sorting~a~list,~the~code~to~compare~items~#1~and~#2~called~
\iow_char:N\\sort_return_same: ~or~
\iow_char:N\\sort_return_swapped: ~multiple~times.~
Exactly~one~of~these~should~be~called.
}
\prop_gput:Nnn \g_msg_module_name_prop { sort } { LaTeX3 }
\prop_gput:Nnn \g_msg_module_type_prop { sort } { }
% \end{macrocode}
%
% \begin{macrocode}
%</package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|