1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
% \iffalse
% This is feyn.dtx, which manages the use of the feyn Metafont
%
%% This software is copyright, 1991, 1994, 2001, Norman Gray.
%%
%% This program is free software; you can redistribute it and/or
%% modify it under the terms of the GNU General Public License
%% as published by the Free Software Foundation; either version 2
%% of the License, or (at your option) any later version.
%%
%% This program is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%% GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with this program; if not, write to the Free Software
%% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
%%
%% Author: Norman Gray, norman@astro.gla.ac.uk.
%% Department of Physics and Astronomy, University of Glasgow, UK
%%
%% See the file LICENCE for a copy of the GPL.
%% You can also find an online copy at http://www.gnu.org/copyleft/gpl.html .
%
%<+package|driver>%% RCS Info $Id: feyn.dtx,v 1.11 2002/04/23 11:26:15 norman Exp $
\def\ParseRCSDate$#1: #2 #3 ${\def\FEYN@Date{#2}}
\ParseRCSDate$Date: 2002/04/23 11:26:15 $
\def\filename{feyn}
\def\fileversion{0.1} %%VERSION%%
\def\filedate{\FEYN@Date}
\def\docdate{\FEYN@Date}
%<+package>\NeedsTeXFormat{LaTeX2e}
%<+package>\ProvidesPackage{feyn}[\filedate\space\fileversion\space textpos]
%<+package>\typeout{Package: `feyn' \fileversion\space<\filedate>}
%
%<*driver>
\documentclass{ltxdoc}
\usepackage{feyn}
\title{The feyn font%
\thanks{This file has version number \fileversion, last revised
\filedate}}
\author{Norman Gray\\(\texttt{norman@astro.gla.ac.uk})}
\date{Version \fileversion, \filedate}
\newcommand\Lopt[1]{\textsf {#1}}
\newcommand\file[1]{\texttt {#1}}
\newcommand\Lcount[1]{\textsl {\small#1}}
\newcommand\pstyle[1]{\textsl {#1}}
%% \url macro (url.sty does this better)
\def\setpathdots{\discretionary{.}{}{.}}
\def\setpathslash{\discretionary{/}{}{/}}
{\catcode`\.=\active
\catcode`\/=\active
\gdef\pathcats{%
\catcode`\%=12 \catcode`\~=12
\catcode`\.=\active \let.\setpathdots
\catcode`\/=\active \let/\setpathslash
\catcode`\#=12 \catcode`\_=12}%
}
\def\setpath#1{\ttfamily <\nobreak #1\nobreak>\endgroup}
\def\url{\begingroup\pathcats\setpath}
%\RecordChanges
%\OnlyDescription
\parskip=\medskipamount
\parindent=0pt
\begin{document}
\maketitle
\DocInput{feyn.dtx}
\end{document}
%</driver>
%
% \fi
%
%
%
% \CheckSum{175}
%% \CharacterTable
%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%% Digits \0\1\2\3\4\5\6\7\8\9
%% Exclamation \! Double quote \" Hash (number) \#
%% Dollar \$ Percent \% Ampersand \&
%% Acute accent \' Left paren \( Right paren \)
%% Asterisk \* Plus \+ Comma \,
%% Minus \- Point \. Solidus \/
%% Colon \: Semicolon \; Less than \<
%% Equals \= Greater than \> Question mark \?
%% Commercial at \@ Left bracket \[ Backslash \\
%% Right bracket \] Circumflex \^ Underscore \_
%% Grave accent \` Left brace \{ Vertical bar \|
%% Right brace \} Tilde \~}
%
%
%
%
%
%
% \newcommand{\pslash}{p\llap{/\kern-0.3pt}}
% \newcommand{\feynx}{\textsl{feyn}}
% \newcommand{\metafont}{Metafont}
%
%
% This describes the font \feynx, which can be used to produce relatively
% simple Feynman diagrams within equations in a \LaTeX\ document.
%
% The other Feynman diagram package which exists is Thorsten Ohl's
% \textsl{feynmf}/\textsl{feynmp} package. That
% works by creating \metafont\ or MetaPost figures using a preprocessor.
% It's more general than this package, but is at its best when
% creating relatively large diagrams, for figures.
% In contrast, the present system consists of a carefully-designed font
% with which you can write simple diagrams, within equations or within text,
% in a size matching the surrounding text size.
%
% \section{Status}
%
% The font, and this associated style file, should be regarded as
% beta software at present. The propagators and vertices which are
% implemented are those which \emph{I} needed. I'd be delighted to
% add more if folk feel they would be useful.
%
% \section{Description}
%
% \makeatletter
% \def\refptcirc{\lower\FEYN@maxis \hbox to 0pt{\hss$\circ$\hss}}
% \makeatother
% \begin{table}
% \def\tableskip{\noalign{\smallskip}}
% \halign{$\refptcirc\feyn{#}$%
% \hfil\quad & $#$\hfil\quad & # \hfil\qquad && # \cr
% \omit Character & \omit & Name & Width & Height & Depth \cr
% \noalign{\smallskip\hrule\smallskip}
% f & f & fermion$^*$ & 2 & 0 & 0 \cr \tableskip
% fs & fs & short fermion$^*$ & 1 & 0 & 0 \cr \tableskip
% fl & fl & fermion loop$^*$ & 4 & 2 & 2 \cr \tableskip
% fu & fu & upward fermion (45$^\circ$)& $\sqrt2$ & $\sqrt2$ & 0 \cr \tableskip
% fd & fd & downward fermion & $\sqrt2$ & $\sqrt2$ & 0 \cr \tableskip
% fv & fv & vertical fermion & 0 & 2 & 0 \cr \tableskip
% f0 & f0 & spacer$^*$ & 2 & 0 & 0 \cr \tableskip
% fs0 & fs0 & short spacer$^*$ & 1 & 0 & 0 \cr \tableskip
% g & g & gluon/photon$^*$ & 2 & 0 & 0 \cr \tableskip
% gl & gl & gluon loop$^*$ & 0 (4) & 2 & 0 \cr \tableskip
% glu & glu & gluon loop upsidedown$^*$ & 0 & 0 & 2 \cr \tableskip
% \smallbosonloop &\omit \verb-\smallbosonloop- &
% small gauge-boson loop & 0 & 1.4 & 0 \cr \tableskip
% \bigbosonloop &\omit \verb-\bigbosonloop- &
% big gauge-boson loop & 0 & 3 & 0 \cr \tableskip
% gu & gu & upward gluon (45$^\circ$) & $\sqrt2$ & $\sqrt2$ & 0 \cr \tableskip
% gd & gd & downward gluon & $\sqrt2$ & $\sqrt2$ & 0 \cr \tableskip
% gv & gv & vertical gluon & 0 & 2 & 0 \cr \tableskip
% gvs & gvs & short vertical gluon& 0 & (1) & 0 \cr \tableskip
% m & m & massive fermion$^*$ & 2 & 0 & 0 \cr \tableskip
% ms & ms & short massive fermion$^*$ & 1 & 0 & 0 \cr \tableskip
% h & h & ghost$^*$ & 2 & 0 & 0 \cr \tableskip
% hs & hs & short ghost$^*$ & 1 & 0 & 0 \cr \tableskip
% hu & hu & upward ghost (45$^\circ$) & $\sqrt2$ & $\sqrt2$ & 0 \cr \tableskip
% hd & hd & downward ghost & $\sqrt2$ & $\sqrt2$ & 0 \cr \tableskip
% x & x & counterterm vertex$^*$ & 0 & (2) & (2) \cr \tableskip
% p & p & proper vertex$^*$ & (3) & (3) & (3) \cr \tableskip
% c & c & complete vertex$^*$ & (3) & (3) & (3) \cr \tableskip
% a & a & arrow$^*$ & 0 & 0 & 0 \cr
% }
% \caption[The characters in font \feynx.]{\label{chars}
% The characters in font \feynx. A~$^*$ means that
% the character is also available in textstyle size. The~$\circ$ shows the
% reference point of each character. See the notes on page~\pageref{charnotes}}
% \end{table}
% The characters in the font are shown in table~\ref{chars}, and the macros
% defined in \file{feyn.sty} are described in table~\ref{macros}.
%
% \iffalse Notes to table~\ref{chars}:\label{charnotes}\fi
% \subsubsection*{Notes to table~\ref{chars}\label{charnotes}}
% \begin{itemize}
% \item[(1)] The short vertical gluon is slightly shorter than the
% ordinary
% \iffalse
% \tracingmacros=2 \tracingcommands=2
% \showthe\fontdimen22\textfont\symfeynman
% \tracingmacros=0 \tracingcommands=0
% \fi
% vertical gluon, and is for the diagram~\hbox{$fsfglgvsffs =
% \feyn{fsfglgvsffs}$}, in which the vertical gluon would not meet the loop
% properly if it were full size.
% \item[(2)] The counterterm vertex is the same height as the proper vertex,
% although the black part is smaller.
% \item[(3)] The proper vertex and the complete vertex are specified
% in terms of a `blob-radius' which is about half a module. They have
% a width of 2~radii, and a height and depth of 1~radius.
% \item[(4)] All the gluon loops have zero width, and are centred at
% the centre of the loop.
% \end{itemize}
% The unnassigned positions in the \feynx\ font are filled
% with an obviously wrong dummy character, so that |$\feyn{A}$|, for example,
% produces $\feyn{A}$.
%
% \begin{table}
% \begin{description}
% \item[\cs{feyn}] Selects the diagram font. This must be used
% within math mode. \cs{Feyn} selects the text-mode diagram font.
% \item[\cs{Diagram\{\}}] For building more complicated diagrams. It
% takes one argument, which is like the contents of an \texttt{\{array\}}
% environment---a series of formulae separated by \&'s and \verb-\\-. See
% below for an example. The result is a box on the math-axis.
% \item[\cs{maxis}] Raises a formula to the math-axis, which is
% occasionally useful within in-text equations: eg
% |$\Feyn{fglf} - \maxis{\Feyn{faf}}$| produces
% $\Feyn{fglf} - \maxis{\Feyn{faf}}$.
% \item[\cs{vertexlabel\{p\}\{text\}}] Allows you to label a vertex. If
% the first parameter~$p$ is~$\wedge$, the~\emph{text} is placed above the
% point at which the command is given, if it is~\texttt{\_}, it is
% placed below. For example, |$\feyn{fa\vertexlabel^{p}f}$| produces
% $\feyn{fa\vertexlabel^{p}f}$.
% \item[\cs{feynstrut\{h\}\{d\}}] For use within an (eqn)array environment, or
% the like. It modifies the control sequence \verb-\strut- to be a strut of
% height~$h$ and depth~$d$, which can therefore be used to space the array
% out.
% \item[\cs{annotate\{x\}\{y\}\{text\}}] Puts the \emph{text},
% between dollars,
% in a zero width box at offset~$(x,y)$ modules from the position of the
% |\annotate| command (which is generally the first command(s) after
% entering math-mode). Because the \emph{text} is in math-mode, anything
% that is not maths should be in an |\mbox|.
% \end{description}
% \caption{\label{macros} The macros defined in \file{feyn.sty}}
% \end{table}
%
% The \feynx\ font is modular, in the sense that all the
% dimensions are in terms of a module of 10pt, and all sizes given
% below are in units of modules. As well as 10pt, the font has 11pt
% and 12pt versions, and the correct one is selected depending on the
% text size declared (or defaulted) in the |\documentclass| command..
%
% You draw a diagram by going into math-mode (between \$\dots\$), and selecting
% the diagrams font by the font-changing command \verb-\feyn{}-
% (exactly as you might use \verb-\mathrm- in math-mode). With a couple of
% exceptions, all the characters are obtained by typing a single
% letter, or a couple of letters which form a ligature, so that the
% letter~$f$ in the diagrams font (\verb-$\feyn{f}$-) produces a
% fermion of length~2 (modules), and~$fs$ produces a short fermion of
% length~1. As usual in maths mode, space characters are ignored, so
% you can add whitespace as required to make the expressions more
% legible. Some of the more heavily used characters are available in
% both display size and text size, with the text-size version invoked
% by |\Feyn{...}|, so that |\feyn{fglf}| gives $\feyn{fglf}$ and
% |\Feyn{fglf}| gives $\Feyn{fglf}$. The displaystyle characters
% are all on the math-axis, the textstyle ones are on the text line.
%
% Here are some examples.
%
% \makeatletter
% \newdimen\halftextwidth
% \halftextwidth=\textwidth
% \divide\halftextwidth by 2
% \advance\halftextwidth by \tabcolsep
% {\obeyspaces\gdef {\hskip0.5em}}
% {\@makeother\|% \gdef\startcodeexample{\begin{tabular}{p{\halftextwidth}|c}}}
% \newenvironment{codeexample}{%
% \vskip\medskipamount
% \def\domyspecials{\do\\\do\{\do\}\do\~\do\&\do\#\do\^\do\_\do\~}
% \def\verbblock{\bgroup \let\do\@makeother\domyspecials
% \def\par{\hfil\break}\obeylines\obeyspaces\@verbblock}
% \def\@verbblock##1!{\ttfamily ##1\egroup}
% \startcodeexample
% }{%
% \crcr
% \end{tabular}
% \vskip\medskipamount
% }
% \makeatother
%
% \begin{codeexample}
% \verbblock\feyn{\vertexlabel^a f a
% \vertexlabel^p f\vertexlabel^b}
% = \displaystyle
% {i\delta^{ab} \over \pslash- m_0}!
% &
% \begin{minipage}[t]{\halftextwidth}
% $\feyn{\vertexlabel^a f a
% \vertexlabel^p f\vertexlabel^b}
% = \displaystyle
% {i\delta^{ab} \over \pslash- m_0}$
% \\
% \end{minipage}
% \end{codeexample}
% This is a simple one.
%
% \begin{codeexample}
% \verbblock\Diagram{\vertexlabel^a \\
% fd \\
% & g\vertexlabel_{\mu,c} \\
% \vertexlabel_b fu\\
% }
% = \displaystyle
% ig\gamma_\mu (T^c)_{ab}!
% &
% \begin{minipage}[t]{\halftextwidth}
% $\Diagram{\vertexlabel^a \\
% fd \\
% & g\vertexlabel_{\mu,c} \\
% \vertexlabel_b fu\\
% }
% = \displaystyle
% ig\gamma_\mu (T^c)_{ab}$
% \end{minipage}
% \end{codeexample}
% The |\Diagram| command lays out its arguments as an array.
%
% Now a few more diagrams:
% \begin{codeexample}
% \verbblock\feyn{fs f gl f glu f fs}!
% &
% $\feyn{fs f gl f glu f fs}$
% \end{codeexample}
% This is a ``short-fermion fermion gluon-loop fermion
% gluon-loop-upsidedown fermion short-fermion''.
%
% We can also have diagrams in the text, like~$\Feyn{fsfglffs}$, and we can
% annotate the diagrams
% \begin{codeexample}
% \verbblock\annotate{2}{-0.5}{\mbox{counterterm}}
% \annotate{1.3}{0.5}{l}
% \feyn{msmglgvs msxf}!
% &
% \begin{minipage}[t]{\halftextwidth}
% $\annotate{2}{-0.5}{\mbox{counterterm}}
% \annotate{1.3}{0.5}{l}
% \feyn{msmglgvs msxf}$
% \end{minipage}
% \end{codeexample}
% This is a ``short-massive massive gluon-loop short-gluon-vertical
% short-massive counterterm fermion''.
%
% The expression for the heavy-fermion self-energy in the \textsc{ope} is
% \begin{codeexample}
% \verbblock\def\bracket#1{%
% \langle #1 \rangle}
% \begin{eqnarray*}
% -i\Sigma_{\rm ope} &=&
% \left[\feyn{faf + fsfglffs
% + \cdots} \right] 1 \\
% && \quad{}+
% \left[ \feyn{ fxfs0glfs0xf
% + \cdots} \right]
% \bracket{\overline\psi M \psi} \\
% && \quad{}+ \left[
% \Diagram{ &x &x \\
% &gv &gv \\
% fs &fs &fs \\} + \cdots
% \right]
% \bracket{G_{\mu\nu}^a G_{\mu\nu}^a}\\
% \end{eqnarray*}!
% &
% \begin{minipage}[t]{\halftextwidth}
% \def\bracket#1{\langle #1 \rangle}
% \begin{eqnarray*}
% -i\Sigma_{\rm ope} &=&
% \left[\feyn{faf + fsfglffs + \cdots} \right] 1 \\
% && \quad{}+ \left[ \feyn{ fxfs0glfs0xf + \cdots} \right]
% \bracket{\overline\psi M \psi} \\
% && \quad{}+ \left[
% \Diagram{ &x &x \\
% &gv &gv \\
% fs &fs &fs \\} + \cdots
% \right]\bracket{G_{\mu\nu}^a G_{\mu\nu}^a}\\
% \end{eqnarray*}
% \end{minipage}
% \end{codeexample}
%
% The Feynman Rules are as follows:
% \begin{verbatim}
% \def\arraystretch{3} \arraycolsep=0.2cm
% \begin{array}{rcl}
% % quark propagator
% \feyn{\vertexlabel^a f a\vertexlabel^p f\vertexlabel^b}
% &=& \displaystyle
% {i\delta^{ab} \over \pslash- m_0} \\
% % quark-gluon vertex
% \Diagram{\vertexlabel^a \\ fd \\ & g\vertexlabel_{\mu,c} \\ \vertexlabel_b fu\\}
% &=& \displaystyle
% ig\gamma_\mu (t^c)_{ab} \\
% % gluon propagator
% \feyn{\vertexlabel^{\mu, a}g a\vertexlabel^k g \vertexlabel^{\nu, b}}
% &=& \displaystyle
% {-i\over k^2} \left[g_{\mu\nu} + (a_0 - 1) {k_\mu k_\nu \over k^2}\right]
% \delta^{ab} \\
% % 3-gluon vertex
% \arrow{0.7}{0.7}{7}\arrow{0.7}{-0.7}{1}\arrow{2.41}{0}{4}
% \annotate{0.9}{0.8}{p}\annotate{0.9}{-0.9}{q}
% \Diagram{\vertexlabel^{\alpha, a}\\
% gd \\
% &gd \\
% &&g\vertexlabel^{r}g \vertexlabel^{\gamma,c} \\
% &gu \\
% gu \\
% \vertexlabel_{\beta,b}}
% &=& \displaystyle
% -g f^{abc} (
% g_{\beta\gamma} (q-r)_\alpha +
% g_{\gamma\alpha} (r-p)_\beta +
% g_{\alpha\beta} (p-q)_\gamma
% ) \\
% % ghost propagator
% \feyn{\vertexlabel^a h a\vertexlabel_p h\vertexlabel^b}
% &=& \displaystyle
% {i \over p^2} \delta_{ab} \\
% % ghost-gluon vertex
% \Diagram{\vertexlabel^b \\ hd \\ & g\vertexlabel^{\mu,a} \\
% \vertexlabel_c hu\\}
% &=& \displaystyle
% -g f^{abc}p_\mu
% \quad\raise 1ex\hbox{\hsize = 0pt\vtop{
% \hbox to \hsize{where $p$ is the momentum of\hss}
% \hbox to \hsize{the outgoing positive energy ghost\hss}
% }}
% \end{array}
% \end{verbatim}
% \dots giving
% \begin{equation}
% \def\arraystretch{3} \arraycolsep=0.2cm
% \begin{array}{rcl}
% \feyn{\vertexlabel^a f a\vertexlabel^p f\vertexlabel^b}
% &=& \displaystyle
% {i\delta^{ab} \over \pslash- m_0} \\
% \Diagram{\vertexlabel^a \\ fd \\ & g\vertexlabel_{\mu,c} \\ \vertexlabel_b fu\\}
% &=& \displaystyle
% ig\gamma_\mu (t^c)_{ab} \\
% \feyn{\vertexlabel^{\mu, a}g a\vertexlabel^k g \vertexlabel^{\nu, b}}
% &=& \displaystyle
% {-i\over k^2} \left[g_{\mu\nu} + (a_0 - 1) {k_\mu k_\nu \over k^2}\right]
% \delta^{ab} \\
% \arrow{0.7}{0.7}{7}\arrow{0.7}{-0.7}{1}\arrow{2.41}{0}{4}
% \annotate{0.9}{0.8}{p}\annotate{0.9}{-0.9}{q}
% \Diagram{\vertexlabel^{\alpha, a}\\
% gd \\
% &gd \\
% &&g\vertexlabel^{r}g \vertexlabel^{\gamma,c} \\
% &gu \\
% gu \\
% \vertexlabel_{\beta,b}}
% &=& \displaystyle
% -g f^{abc} (
% g_{\beta\gamma} (q-r)_\alpha +
% g_{\gamma\alpha} (r-p)_\beta +
% g_{\alpha\beta} (p-q)_\gamma
% ) \\
% \feyn{\vertexlabel^a h a\vertexlabel_p h\vertexlabel^b}
% &=& \displaystyle
% {i \over p^2} \delta_{ab} \\
% \Diagram{\vertexlabel^b \\ hd \\ & g\vertexlabel^{\mu,a} \\
% \vertexlabel_c hu\\}
% &=& \displaystyle
% -g f^{abc}p_\mu
% \quad\raise 1ex\hbox{\hsize = 0pt\vtop{
% \hbox to \hsize{where $p$ is the momentum of\hss}
% \hbox to \hsize{the outgoing positive energy ghost\hss}
% }}
% \end{array}
% \end{equation}
%
% The diagrams can also appear as parts of equations:
% \begin{eqnarray}
% \feyn{fcf} &=& \feyn{faf + fpf + fpfpf + \cdots} \\
% &=& \sum_{n=0}^\infty \feyn{fsafs ( pfsafs)}^n \\
% &=& \feyn{\frac{fsafs}{1-(pfsafs)}}.
% \end{eqnarray}
%
% \section{Installation}
%
% If you have not done so already, you need to extract the package
% file from the distribution file using |latex feyn.ins|. The
% resulting \file{feyn.sty} should be installed in the usual location
% for style files -- that is, something like
% \file{texmf.local/tex/latex/feyn.sty}. The \metafont\ source files
% \file{*.mf} should be installed in a directory with a location such as
% \file{texmf.local/fonts/source/feyn/}. That should be all you need
% to do as regards the installation of the fonts -- if your \TeX\
% setup is installed correctly, then the usual font-generation
% commands (such as \file{mktexpk} for example) should work as normal.
%
%
% \StopEventually{}
%
% \section{Implementation}
% \begin{macrocode}
%<*package>
% \end{macrocode}
%
% Declare the feyn math font family. The |\skewchar| for this font
% (see the \TeX book, p431) can be set to zero, since it's a
% completely upright maths font (the least of its peculiarities). We
% don't have the font in much of a range of sizes.
% \begin{macrocode}
\DeclareFontFamily{OMS}{feyn}{\skewchar\font'000}
\DeclareFontShape{OMS}{feyn}{m}{n}{%
<-10.5>feyn10%
<10.5-11.5>feyn11%
<11.5->feyn12%
}{}
% \end{macrocode}
%
% Now do the same for the text-size fonts, declaring the textfeyn math
% font family.
% \begin{macrocode}
\DeclareFontFamily{OMS}{textfeyn}{\skewchar\font'000}
\DeclareFontShape{OMS}{textfeyn}{m}{n}{%
<-10.5>feyntext10%
<10.5-11.5>feyntext11%
<11.5->feyntext12%
}{}
% \end{macrocode}
%
% XXX It would be nice to arrange things so that superscripts in
% the feyn font were drawn from cmmi7, or something. The original
% feyn.sty arranged this with |\scriptfont\diagramfam=\ninmi|, but
% it's not clear what the analogue in the FSS is.
%
% Now declare the `feynman' symbol font, and make the command |\feyn|
% set its argument in that font. Similarly have |\Feyn| invoke the
% feynman symbol font for the text sizes.
% \begin{macrocode}
\DeclareSymbolFont{feynman}{OMS}{feyn}{m}{n}
\DeclareSymbolFontAlphabet{\feyn}{feynman}
\DeclareSymbolFont{textfeynman}{OMS}{textfeyn}{m}{n}
\DeclareSymbolFontAlphabet{\Feyn}{textfeynman}
% \end{macrocode}
%
%
% Now get the size of the `module' (the length of the fermion), and the
% height of the math-axis, from the font. You might think that the
% math-axis is obtainable from |\fontdimen22| of the font, but we do
% not load it as an |{operator}| font when we invoke
% |\DeclareSymbolFont|, so it does not have all 22 parameters that a
% symbol font (as the \TeX book uses the term, rather than \LaTeXe's
% NFSS). I confess I don't \emph{really} understand the ins and outs
% of this, but this route is robust and not wrong.
%
% The character |"7F| in the feyn font is blank, but has width
% |module#| and height |a#| (using the dimensions of the font
% file). Use this to set the |\FEYN@module| and |\FEYN@maxis|. Note
% that the `module' used in this package file is twice the module used
% in the \metafont\ files themselves.
% \begin{macro}{\FEYN@module}
% \begin{macro}{\FEYN@maxis}
% \begin{macrocode}
\DeclareMathSymbol{\FeynSpaceChar}{\mathord}{feynman}{"7F}
\setbox0=\hbox{$\FeynSpaceChar$}
\newdimen\FEYN@module \FEYN@module=2\wd0
\newdimen\FEYN@maxis \FEYN@maxis=\ht0
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\Diagram}
% Define the |\Diagram| macro, which lays out a semi-complicated
% diagram in 2-d.
% \begin{macrocode}
\def\Diagram#1{\setbox0=\hbox{\vbox{\offinterlineskip \let\\\cr
\halign{&$\displaystyle\feyn{##}$\cr #1\crcr}}}%
% \end{macrocode}
% At this point, |\box0| has zero depth. It must be an hbox, because
% we're fiddling with its height within a enclosing |\vbox|. See the
% \TeX book pp 388--389. This takes advantage of appx G, rule 8 to
% move box0 down by the height of the math axis. The construction
% |\dp0 = -2\fontdimen22 \textfont2| also works, in the sense of
% moving the box onto the math axis, but makes the box too small,
% which means that surrounding text can encroach.
% \begin{macrocode}
\@tempdima=\ht0
\advance\@tempdima by 2\FEYN@maxis \ht0=\@tempdima
\vcenter{\box0}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\maxis}
% Raise the argument to the math axis.
% \begin{macrocode}
\def\maxis#1{\raise\FEYN@maxis \hbox{$#1$}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\vertexlabel}
% The command |\vertexlabel^{text}| or |\vertexlabel_{text}| positions
% the |{text}| in maths mode either above or below, respectively, the
% current position. It's used at between characters to label a vertex.
% \begin{macrocode}
\def\vertexlabel#1#2{\setbox0=\hbox to 0pt{\hss$\scriptstyle #2$\hss}
\ifcat #1^
\vbox to 0pt{\vss\box0\nointerlineskip\kern2\FEYN@maxis}
%\vbox to 0pt{\vss\box0\nointerlineskip\kern6pt}
\else\ifcat #1_
\vbox to 0pt{\kern\FEYN@maxis\nointerlineskip\box0\vss}
%\vbox to 0pt{\kern2pt\nointerlineskip\box0\vss}
\else
\PackageError{feyn}
{Bad arguments for \string\vertexlabel}
{Usage: \string\vertexlabel^{text} or \string\vertexlabel_{text}}
\fi\fi
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\annotate}
% The |\annotate| command takes $x$ and $y$ coordinates in units of
% modules, and text (in math mode) to be placed on a |\diagram|.
% \begin{macrocode}
\def\annotate#1#2#3{\vcenter to 0pt{\vss
\hbox to 0pt{\hskip #1\FEYN@module\hbox to 0pt{\hss$\scriptstyle #3$\hss}\hss
}\vskip #2\FEYN@module}}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\tannotate}
% The |\tannotate| command is just the same, but the annotating text
% is in horizontal mode.
% \begin{macrocode}
\def\tannotate#1#2#3{\vcenter to 0pt{\vss
\hbox to 0pt{\hskip #1\FEYN@module\hbox to 0pt{\hss #3\hss}\hss
}\vskip #2\FEYN@module}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\feynstrut}
% The macro |\feynstrut#1#2| defines |\strut| to have a height
% |#1| modules, and depth |#2| modules.
% \begin{macrocode}
\def\feynstrut#1#2{\setbox\strutbox=\hbox{\vrule
height #1\FEYN@module depth #2\FEYN@module width 0pt}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\arrow}
% The command |\arrow#1#2#3| puts an arrow of gradient |#3|${}\times 45^\circ$
% at position |(#1,#2)|(modules). This doesn't work -- the |\char|
% results in a |\rm| character appearing, rather than a |\feyn|
% character. Putting in a symbol like `+' has the same effect, but
% putting in, say, `a' works as expected. In other words, it's to do
% with the character's mathcode, and the |\char|
% should be replaced by a |\mathchar"7?\@tempcnta| somehow. The
% problem is that that depends on the parameter |\fam| having a
% suitable value. It's not clear to me what this corresponds to in
% \LaTeXe. See the \TeX book, chapter 17.
% \begin{macrocode}
\def\arrow#1#2#3{\@tempcnta="28 \advance\@tempcnta by #3\vcenter to 0pt{\vss
\hbox to 0pt{\hskip #1\FEYN@module\hbox to 0pt{$\feyn{\char\@tempcnta}$}\hss
}\vskip #2\FEYN@module}}
% \end{macrocode}
% \end{macro}
%
% Declare symbols. All of these are ligatures.
% \begin{macrocode}
\DeclareMathSymbol{\wfermion}{0}{feynman}{"64}
%\DeclareMathSymbol{\Wfermion}{0}{feynman}{"44}
\DeclareMathSymbol{\hfermion}{0}{feynman}{"6B}
%\DeclareMathSymbol{\Hfermion}{0}{feynman}{"4B}
\DeclareMathSymbol{\shfermion}{0}{feynman}{"6C}
%\DeclareMathSymbol{\sHfermion}{0}{feynman}{"4C}
\DeclareMathSymbol{\whfermion}{0}{feynman}{"6D}
%\DeclareMathSymbol{\wHfermion}{0}{feynman}{"4D}
\DeclareMathSymbol{\gvcropped}{0}{feynman}{"07}
% \end{macrocode}
% But the following are not ligatures.
% \begin{macrocode}
\DeclareMathSymbol{\bigbosonloop}{0}{feynman}{"21}
\DeclareMathSymbol{\Bigbosonloop}{7}{feynman}{"21}
\DeclareMathSymbol{\smallbosonloop}{0}{feynman}{"20}
% \end{macrocode}
%
%
% \Finale
\endinput
|