summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/generic/kastrup/binhex.dtx
blob: 202308d3a7c214812d14c613f0022cfc6cb896b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
% \iffalse
% Copyright(c) 2001 by David Kastrup
% Any use of the code is permitted as long as this copyright notice is
% preserved in the code.
%
% In case of an emergency (no LaTeX available), you may rename this
% file to binhex.tex.  In all other cases, use the accompanying
% binhex.ins in order to extract binhex.drv (run LaTeX on it for
% getting the documentation) and binhex.tex.  If binhex.ins is
% missing, you can regenerate it by running docstrip on this file with
% the option ``installer'' set.
% \fi
% \CheckSum{251}
% \title{The \texttt{binhex.tex} package for expansible conversion
%        into binary-based number systems}
% \author{David Kastrup\thanks
%    {David.Kastrup@neuroinformatik.ruhr-uni-bochum.de}}
% \maketitle
% \tableofcontents
%
% \section{Usage}
% This is a file for expandably converting numbers into binary, octal
% and hexadecimal.  All constructs \TeX\ accepts as an argument to its
% |\number| primitive are valid.  This holds for all numeric arguments
% of the macros presented in here.
% 
% You use this package by simply inputting it with
% \begin{verbatim}
%\input binhex
% \end{verbatim}
% It will work equally well under \LaTeX\ and plain \TeX.  It does not
% even use plain \TeX, but only \TeX\ primitives.  Simply setting the
% correct |\catcode| values for |{}#| and end of line will make it
% load and work under ini\TeX.
% 
% The following macros are defined:
% \DescribeMacro{\binary}
% |\binary{|\meta{number}|}| will convert \meta{number} into its binary
% representation.
% \samples\binary{0}{\maxdimen}{-"7EE6}.
%
% \DescribeMacro{\nbinary}
% |\nbinary{|\meta{size}|}{|\meta{number}|}| will convert \meta{number}
% into a binary representation of at least \meta{size} digits length,
% filling up with leading zeros where necessary.  The |-| sign of
% negative numbers is not counted.  If both \meta{size} and
% \meta{number} are zero, an empty string is generated.  This should
% please some computer scientists in some situations.
% \samples{\nbinary{3}}{3}{-2}{-12}.
%
% \DescribeMacro{\hex}
% |\hex{|\meta{number}|}| converts \meta{number} into its hexadecimal
% representation, using uppercase letters.
% \samples\hex{34}{-4711}.
%
% \DescribeMacro{\nhex}
% |\nhex{|\meta{size}|}{|\meta{number}|}| will convert \meta{number}
% into a hexadecimal representation of at least \meta{size} digits length,
% filling up with leading zeros where necessary.  The |-| sign of
% negative numbers is not counted.  If both \meta{size} and
% \meta{number} are zero, an empty string is generated.  This should
% please some computer scientists in some situations.
% \samples{\nhex{3}}{3}{-\maxdimen}.
%
% \DescribeMacro{\oct}
% |\oct{|\meta{number}|}| converts \meta{number} into its octal
% representation.
% \samples\oct{34}{-4711}.
%
% \DescribeMacro{\noct}
% |\noct{|\meta{size}|}{|\meta{number}|}| will do the right thing.
% \samples{\noct{3}}{13}{-\maxdimen}.
%
% \DescribeMacro{\tetra}
% |\tetra{|\meta{number}|}| is for people counting with arms and legs
% instead of fingers, or for quadrupeds.
% \samples\tetra{34}{-4711}.
%
% \DescribeMacro{\ntetra}
% |\ntetra{|\meta{size}|}{|\meta{number}|}| is for those of the same
% count which have minimum requirements.
% \samples{\ntetra{3}}{3}{-\maxdimen}.
%
% \DescribeMacro{\nbinbased}
% |\nbinbased{|\meta{logbase}|}{|\meta{size}|}{|\meta{number}|}| will
% convert \meta{number} into number base $2^{\text{\meta{logbase}}}$ and
% generate at least \meta{size} digits.  Only supported values of
% \meta{logbase} are 1, 2, 3, 4.  This is called by all other macros
% except of the faster binary conversion macros.
% \samples{\nbinbased{3}{3}}{13}{-\maxdimen}.
% \samples{\nbinbased{2}{4}}{13}{-\maxdimen}.
% 
% That's it, have fun!
% \StopEventually{}
% \section{Implementation}
% Now the implementation.  First save catcode of |@| and old contents of
% |\toks0| in |\toks0|, then make |@| a letter to enable internal
% macros.
%    \begin{macrocode}
%<*style>
\edef\next{\toks0=%
   {\catcode`\noexpand\@=\the\catcode`\@\toks0{\the\toks0}}%
}
\next
\catcode`\@11
%    \end{macrocode}
% 
% \subsection{Binary conversions}
% \subsubsection{Basics}
% \begin{macro}{\bb@00}
% \begin{macro}{\bb@01}
% \begin{macro}{...}
% \begin{macro}{\bb@19}
% We now define the work horse macros for conversion of binary
% commands.  If numbers were allowed in macro names, one of those
% definitions would be
% \begin{verbatim}
%\def\bb@13#1{6\csname bb@1#1\endcsname}
% \end{verbatim}
% That is, the macro divides the decimal two-digit number (up to~19)
% embedded into its name by~2, spews out the result and starts up the
% next macro with the first digit of the name of \emph{that} being the
% remainder from its own division, and the second digit being the next
% following one.
%    \begin{macrocode}
\def\next#1#2#3{\expandafter \def \csname bb@#1\endcsname##1%
  {#2\csname bb@#3##1\endcsname}}
\next{00}00 \next{01}01 \next{02}10 \next{03}11
\next{04}20 \next{05}21 \next{06}30 \next{07}31
\next{08}40 \next{09}41 \next{10}50 \next{11}51
\next{12}60 \next{13}61 \next{14}70 \next{15}71
\next{16}80 \next{17}81 \next{18}90 \next{19}91
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{\bb@0+}
% \begin{macro}{\bb@1+}
% Now we need to end such a conversion.  For no particular reason at
% all (well, some sneakiness might explain it later), we use |+| as an
% end marker for the decimal digits.  After the |+|, we collect the
% resulting binary digits, from last to first.  So here are two macros
% to deal with the last digit produced.  Simply tacks them on after
% replacing the gobbled |+|.
%    \begin{macrocode}
\expandafter \def \csname bb@0+\endcsname {+0}
\expandafter \def \csname bb@1+\endcsname {+1}
%    \end{macrocode}
% \end{macro}
% \end{macro}
% 
% Now all that remains to be done is to initiate the process, and to
% end it again.  The process ends when the decimal number reaches~0.
% Since we want to produce one digit even when starting out, and we
% check the end of recursion by comparing the result with~|0|, we have a
% problem here.  We solve it by comparing two letters, and looking for
% the complete |0+| sequence, and we start out by prepending a trivial |0|
% before the number to convert, so that at the first run it will be |00|
% instead of |0| if the number in question is~0.
%
% \begin{macro}{(\binary)}
% \begin{macro}{(\bb@dobinary)}
% Actually, this is how we \emph{could} do things.  The actual, slightly
% different version used can be shared by the other converters, but
% we'll keep this listed for reference.
% \begin{verbatim}
%\def\binary#1{\expandafter \bb@dobinary \expandafter 0\number#1+}
%\def\bb@dobinary#1#2{\if0#1\if+#2\bb@endbinary \fi\fi
%    \expandafter \bb@dobinary \number \csname bb@0#1\endcsname #2}
% \end{verbatim}
% Notice that |\number| here serves multiple purposes.  It will
% initiate expansion that will only be stopped once the macros
% generating the next binary digit will crank out a space or anything
% else stopping expansion.  Its second purpose is to get rid of any
% leading zeros that might remain from the last loop through.
%
% \begin{macro}{\bb@endbinary}
%   |\bb@endbinary| can
% be used as written, though.  It scraps everything up to the tack
% mark |+|, leaving only the converted results accumulated behind
% that.  Since this means scrapping |\fi\fi| as well, it reinserts
% it in order to properly finish the conditional.
%    \begin{macrocode}
\def\bb@endbinary#1+{\fi\fi}
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsubsection{Negative numbers} 
% We would like negative numbers to work, too.  The semantics for
% defined field widths are unclear (so we basically just tack a |-| on
% and convert the remaining number to the full width).  Since the sign
% of the number is easy to discern, further massaging of the number to
% replace leading zeros by spaces, insert |+| signs and similar folderol
% are easy to do and left as an exercise to the reader.  We mostly
% implement this to have the conversion not fail on any number.
% 
% \begin{macro}{\bb@0-}
% The following one-liner achieves that.  Figure out why.  It is easy.
%    \begin{macrocode}
\expandafter \def \csname bb@0-\endcsname {0+-\bb@dobinary}
%    \end{macrocode}
% \end{macro}
%
% \subsubsection{Minimum field widths}
% \begin{macro}{\bb@0m}
% \begin{macro}{\bb@1m}
% We often have the situation that we want to produce a number that is
% at least of a certain length.  We specify this by tagging on an
% appropriate number of |m| characters to the decimal as sort of a
% format string.  If we match such an~|m| at the end of the conversion,
% we produce a digit and remove one~|m|, leaving all other |m| intact (or
% whatever else happens to be before our |+| sign).
%    \begin{macrocode}
\expandafter\def\csname bb@0m\endcsname#1+{#1+0}
\expandafter\def\csname bb@1m\endcsname#1+{#1+1}
%    \end{macrocode}
% \end{macro}
% \end{macro}
% 
% \begin{macro}{(\nbinary)}
% We call |\nbinary| with the number of digits as first argument, the number
% itself as second.
% 
% This now becomes trivial:
% \begin{verbatim}
%\def \nbinary#1#2{%
%   \binary{\number #2\romannumeral \number \number #1 000}%
%}
% \end{verbatim}
% 
% Whoa, what about all these calls of |\number|?  First notice the space
% after |#1|.  We need that in case |#1| happens to be octal or whatever,
% since the |000| at the end is supposed to multiply by 1000 \emph{decimal}.
% If |#1| were something like |'13| (11 decimal), the last |\number| will
% expand |'13|, the |\number| before that will remove the blank we
% inserted in case it was not needed to finish the number of digits,
% we multiply by~1000 and turn this into a roman numeral consisting of
% the appropriate amount of |m| letters.  The very first |\number| ensures
% that in case |#2| is a complete number without the need of trailing
% spaces, still |\romannumeral| will be expanded when |\binary| first sets
% sight on the whole thing.
% \end{macro}
%
% \begin{macro}{\nbinary}
% \begin{macro}{\binary}
% \begin{macro}{\bb@dobinary}
% Actually, since there is a certain logic to returning
% an empty string when 0 is to be converted into a number at least 0
% characters long, we redefine the stuff the other way round, |\binary|
% as a special case of |\nbinary|.  We check the end by testing against
% |0| followed by anything but~|m|.  This has reasons\dots
% 
%    \begin{macrocode}
\def\bb@dobinary#1#2{\if#10\if m\string#2\else\bb@endbinary\fi\fi
 \expandafter\bb@dobinary\number\csname bb@0#1\endcsname#2}
\def\nbinary#1#2{\expandafter\bb@dobinary\number\number#2%
 \romannumeral\number\number#1 000+}
\def\binary{\nbinary1}
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% 
% \subsection{Hexadecimal and the rest}
% 
% Ok, stop with the small fry.  Now we want to convert into
% hexadecimal and octal as well.  We do this by first converting into
% binary, then into the wanted base whenever enough binary digits have
% accumulated.  In the following, we will talk about hex digits
% exclusively for simplicity, even though they might indeed be octal
% instead.
% 
% \begin{macro}{\bb@h0}
% \begin{macro}{\bb@h1}
% \begin{macro}{\bb@h10}
% \begin{macro}{...}
% \begin{macro}{\bb@h1111}
% 
% The following defines the equivalents of
% \begin{verbatim}
%\def \bb@h110#1+{\bb@dohex #1+6}
% \end{verbatim}
% This is a macro that appends 6, the representation of the binary
% number in its name, after the tack mark |+|.  So what's with the
% |\number+|?  Actually, here it does nothing but disappear.  We just
% write this to remind us of how the macros will be called.  When the
% macros are called, we use the same construct, and then |\number|
% will disappear together with the~|+| (that we use as a tack mark)
% and take along any leading zeros.  We drop leading zeros so that we
% can share the conversion macros for hex and octal (and quaternary?)
% where they overlap.
% 
%    \begin{macrocode}
\def \next #1#2{\expandafter \def
 \csname bb@h\number +#1\endcsname ##1+{\bb@dohex ##1+#2}%
}
\next   {0}0 \next   {1}1 \next  {10}2 \next  {11}3
\next {100}4 \next {101}5 \next {110}6 \next {111}7
\next{1000}8 \next{1001}9 \next{1010}A \next{1011}B
\next{1100}C \next{1101}D \next{1110}E \next{1111}F
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% 
% \begin{macro}{\bb@dohex}
% |\bb@dohex| is the magic macro that initiates accumulation of enough
% binary digits for one hexadecimal one.  It is called in
% the following form:
% \begin{quote}
%   |\bb@dohex| \meta{m\{\#rhex\}} |\endcsname| \meta{m\{\#bin\}} |+|
% \end{quote}
% Where |+| is the tack after which hex digits will accumulate,
% \meta{m\{\#rhex\}} is a sequence of |m|, one for every remaining hex
% digit we want to force out (same convention as with |\nbinary| above),
% and \meta{m\{\#bin\}} is a sequence of |m| corresponding in length to
% the number of binary digits we need to accumulate for one hexadecimal
% (or octal) digit.
%    \begin{macrocode}
\def\bb@dohex #1{\csname bb@x#1\endcsname}
%    \end{macrocode}
% 
% Eeek! What is that?  Ok, let's split it into the two cases, one with
% forced digits remaining, one without any remaining forced digits.
% If no forced digits remain, we get
% \begin{quote}
% |\bb@x \endcsname \endcsname| \meta{m\{\#bin\}}
% \end{quote}
% \end{macro}
% 
% \begin{macro}{\bb@x}
% |\bb@x| is defined as
%    \begin{macrocode}
\def\bb@x\endcsname#1{ \bb@xm{m\endcsname}}
%    \end{macrocode}
% 
% Notice the space at the start of the macro!  It will stop
% expansion.  Furthermore, the |\endcsname| that |\bb@dohex| inserted is
% scrapped, as well as the first |m| from
% \meta{m\{\#bin\}}.\footnote{Why do we match |\string\endcsname| explicitly
%   for scrapping?  The answer is debugging.  We know it should always
%   be |\string\endcsname|, so let \TeX\ assert that it is indeed so.  But we
%   also know that the next character will be |m|, why don't we match
%   \emph{that} explicitly?  The answer is that we cannot be sure about the
%   |\string\catcode| of the matched~|m|.  A hand-entered |m| has
%   |\string\catcode|~11, a \TeX-generated one (with |\string\string| or
%   |\string\romannumeral| or such) has |\string\catcode|~12.  You'll
%   find that all the code here has been carefully 
%   designed so that it will not care which it gets, so we don't make
%   an exception here.
% }
% \end{macro}
% 
% \begin{macro}{\bb@xm}
% The argument fed to |\bb@xm| is part of some jiggery-pokery we want
% to happen when |\bb@dobinary| resumes expansion.  First, however, it
% will take a look and decide whether it will stop generating digits
% altogether.  As |\string \bb@xm| does not start with |m|, |\bb@dobinary|
% will stop expansion when the decimal to convert has shrunk to 0.
% Fine.  Now what does |\bb@xm| do?
%    \begin{macrocode}
\def\bb@xm #1\endcsname #2#3+{#2#3%
 \csname bb@h\number+\endcsname
 #1\endcsname m#3+}
%    \end{macrocode}
% \end{macro}
% 
% This is rather straightforward for the case of forced digits: the
% number of binary digits is encoded in the form of \meta{m\{\#bin\}} in
% |#2#3|.  After the conversion of those digits, the appropriate hex
% digit macro is called and sets up |\bb@dohex| again for the next hex
% digit.  Piece of cake.  Now what happens in the case we have resumed
% from |\do@binary| having had its option of stopping expansion?
% 
% In that case, we get called with the next \meta{digit}
% already arriving.  This looks more or less like
% \begin{quote}
%   |\csname bb@|\meta{digit}|\bb@xm \endcsname{m\endcsname}|
%   \meta{m\{\#bin-1\}}
% \end{quote}
% See what happens?  This expands |\bb@xm|, after which a command of the
% name |\bb@|\meta{digit}|m| (\meta{digit} being 0 or~1) gets executed.
% It stashes away \meta{digit} after
% the conveniently provided |+| sign, and \meta{\#bin-1} digits remain for
% conversion.
% 
% You think this contrived?  Well, buster, let me tell you that the
% previous version was way more insane.  Have it still in RCS.
% 
% \begin{macro}{\bb@nbinbased}
% The following macro needs to get |#1|, the decimal number to convert,
% in text form already.  This is so that |\number#1| will continue
% expanding after |#1|, expanding |\bb@dohex| exactly once.  This problem
% does not exist for the |\romannumeral| calls for |#2| and |#3|, so
% spurious expansion with |\number\number| does no harm, since it is
% stopped readily at the hard |\endcsname| and |+| thresholds.
%    \begin{macrocode}
\def\bb@nbinbased #1#2#3{\expandafter \bb@dobinary \number#1%
 \expandafter \bb@dohex
 \romannumeral \number\number #2 000\expandafter\endcsname
 \romannumeral \number\number #3 000+}
%    \end{macrocode}
% \end{macro}
%                                 
% \begin{macro}{\nbinbased}
% The following macro gets 3~arguments, the number of binary digits the
% output digits shall be based on, the number of digits to produce at
% least, and the number itself.  It expands the number into text
% form.  If the number is not space-terminated, the closing brace
% reliably stops expansion nevertheless, so that |\bb@nbinbased| gets a
% clean number.
%    \begin{macrocode}
\def\nbinbased #1#2#3{\expandafter\bb@nbinbased
 \expandafter {\number#3}{#2}{#1}}
%    \end{macrocode}
% \end{macro}
% \begin{macro}{\nhex}
% \begin{macro}{\noct}
% \begin{macro}{\ntetra}
% \begin{macro}{\hex}
% \begin{macro}{\oct}
% \begin{macro}{\tetra}
% Now follow the obvious definitions:
%    \begin{macrocode}
\def\nhex{\nbinbased4}
\def\noct{\nbinbased3}
\def\ntetra{\nbinbased2}
\def\hex{\nhex1}
\def\oct{\noct1}
\def\tetra{\ntetra1}
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \subsection{The end}
% Restore |\catcode`\@| and |\toks0| and finish.
%    \begin{macrocode}
\the\toks0
%</style>
%    \end{macrocode}
% And that was that!
% \section{Various drivers}
% The installer, in case it is missing.
%    \begin{macrocode}
%<installer> \input docstrip
%<installer> \generate{
%<installer>    \file{binhex.drv}{\from{binhex.dtx}{driver}}
%<installer>    \usedir{tex/generic/misc}
%<installer>    \file{binhex.tex}{\from{binhex.dtx}{style}}
%<installer> }
%<installer> \endbatchfile
%    \end{macrocode}
% And here comes the documentation driver.
%    \begin{macrocode}
%<driver> \documentclass{ltxdoc}
%<driver> \usepackage{amsmath}
%<driver> \input binhex.tex
%    \end{macrocode}
% \begin{macro}{\verbatize}
% |\detokenize| is available in e\TeX, but we may not have that\dots
% The |\fontdimen| folderol makes spaces temporarily disabled.  Looks
% prettier.  Sorry for that.
%    \begin{macrocode}
%<driver> \def\verbatize#1{\begingroup
%<driver>    \toks0{#1}\edef\next{\the\toks0}%
%<driver>    \dimen0\the\fontdimen2\font
%<driver>    \fontdimen2\font=0pt
%<driver>    \expandafter\stripit
%<driver>    \meaning\next
%<driver>    \fontdimen2\font=\dimen0
%<driver>    \endgroup}
%<driver> \def\next{}
%<driver> \expandafter\def\expandafter\stripit\meaning\next{}
%    \end{macrocode}
% \end{macro}
% \begin{macro}{\showeffect}
% |\showeffect|\meta{Stuff} will put out a one-line correspondence of
% the verbatim source of \meta{Stuff} with its expansion, to be used
% in a |aligned| environment or similar.
%    \begin{macrocode}
%<driver> \newcommand\showeffect[1]{%
%<driver>     \text{\verbatize{#1}}\quad&\rightarrow\quad\text{#1}%
%<driver>     \\}
%    \end{macrocode}
% \end{macro}
% \begin{macro}{\samples}
% |\samples| gets one parameter, and a following expression list ended
% by a period.  It applies that parameter to each of the expressions
% in the list and generates a correspondance table for each.  For
% example,
% \begin{verbatim}
%\samples{\nbinary{3}}{3}{-2}{-12}.
% \end{verbatim}
% was used in this document to produce
% \samples{\nbinary{3}}{3}{-2}{-12}.
%    \begin{macrocode}
%<driver> \def\samples{\begingroup\MacroFont\[\begin{aligned}\nextsample}
%<driver> \def\nextsample#1#2{%
%<driver>     \if.\noexpand#2\expandafter\endsamples\fi
%<driver>     \showeffect{#1{#2}}\nextsample{#1}}
%<driver> \def\endsamples#1\nextsample#2{\end{aligned}\]\endgroup}
%    \end{macrocode}
% \end{macro}
% Now all that remains is inputting the stuff.
%    \begin{macrocode}
%<driver> \begin{document}
%<driver> \DocInput{binhex.dtx}
%<driver> \end{document}
%    \end{macrocode}
% \Finale{}