1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
%D \module
%D [ file=mp-step.mp,
%D version=2001.05.22,
%D title=\CONTEXT\ \METAPOST\ graphics,
%D subtitle=steps,
%D author=Hans Hagen,
%D date=\currentdate,
%D copyright={PRAGMA / Hans Hagen \& Ton Otten}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See licen-en.pdf for
%C details.
if unknown context_tool : input mp-tool ; fi ;
if known context_step : endinput ; fi ;
boolean context_step ; context_step := true ;
%D In the associated \TEX\ module \type {m-steps}, we describe
%D three methods. The first method uses a different kind of
%D code than the other two. The method we decided to use,
%D is based on positional information (paths) provided by
%D \CONTEXT.
def initialize_step_variables =
save line_method, line_h_offset, line_v_offset ;
numeric line_method ; line_method := 1 ;
numeric line_h_offset ; line_h_offset := 3pt ;
numeric line_v_offset ; line_v_offset := 3pt ;
enddef ;
def begin_step_chart =
initialize_step_variables ;
save steps, texts, t, b, tb, nofcells ;
picture cells[][], texts[][][], lines[][][] ;
numeric t, b ; t := 1 ; b := 2 ;
numeric nofcells ; nofcells := 0 ;
enddef ;
def analyze_step_chart =
numeric n[], l[][], r[][] ; pair p[] ;
n[t] := n[b] := 0 ; numeric tb ;
for i=1 upto nofcells : for nn = t, b :
if bbwidth(cells[nn][i])>0 : n[nn] := n[nn] + 1 ; fi ;
l[t][i] := r[t][i] := l[b][i] := r[b][i] := 0 ;
endfor ; endfor ;
% count left and right points
for i=1 upto nofcells-1 : for j=i upto nofcells-1 : for nn = t, b :
if bbwidth(texts[nn][i][j])>0 :
l[nn][i] := l[nn][i] + 1 ;
r[nn][j+1] := r[nn][j+1] + 1 ;
fi ;
endfor ; endfor ; endfor ;
% calculate left and right points
vardef do (expr nn, mm, ii, ss) =
if (l[nn][ii] + r[nn][ii]) > 1 : ss else : .5 fi
[ ulcorner cells[mm][ii], urcorner cells[mm][ii] ]
enddef ;
% combined rows
tb := if n[t]>0 : t else : b fi ;
enddef ;
vardef get_step_chart_top_line (expr i, j) =
if bbwidth(cells[tb][i])>0 :
if bbwidth(texts[t][i][j])>0 :
if bbwidth(cells[tb][j+1])>0 :
p[1] := top do(t, tb, i, .6) ;
p[3] := top do(t, tb, j+1, .4) ;
p[2] := .5[p[1],p[3]] ;
if line_method = 1 :
p[2] := p[2] shifted (0, ypart
(llcorner texts[t][i][j] - ulcorner cells[tb][j+1])) ;
elseif line_method = 2 :
p[2] := center texts[t][i][j] ;
else :
% nothing
fi ;
p[1] := p[1] shifted (0,+line_v_offset) ;
p[2] := p[2] shifted (0,-line_v_offset) ;
p[3] := p[3] shifted (0,+line_v_offset) ;
(p[1] {up} ... p[2] ... {down} p[3])
else :
origin
fi
else :
origin
fi
else :
origin
fi
enddef ;
vardef get_step_chart_bot_line (expr i, j) =
if bbwidth(cells[b][i])>0 :
if bbwidth(texts[b][i][j])>0 :
if bbwidth(cells[b][j+1])>0 :
p[1] := (bot do(b, b, i, .6)) shifted (0,-bbheight(cells[b][i])) ;
p[3] := (bot do(b, b, j+1, .4)) shifted (0,-bbheight(cells[b][j+1])) ;
p[2] := .5[p[1],p[3]] ;
if line_method = 1 :
p[2] := p[2] shifted (0, -ypart
(llcorner cells[b][j+1] - ulcorner texts[b][i][j])) ;
elseif line_method = 2 :
p[2] := center texts[b][i][j] ;
fi ;
p[1] := p[1] shifted (0,-line_v_offset) ;
p[2] := p[2] shifted (0,+line_v_offset) ;
p[3] := p[3] shifted (0,-line_v_offset) ;
(p[1] {down} ... p[2] ... {up} p[3])
else :
origin
fi
else :
origin
fi
else :
origin
fi
enddef ;
def end_step_chart =
for i=1 upto nofcells : for nn = t, b :
if bbwidth(cells[nn][i]) >0 : draw cells[nn][i] ; fi ;
endfor ; endfor ;
for i=1 upto nofcells : for j=i upto nofcells : for nn = t, b :
if known lines[nn][i][j] :
if bbwidth(lines[nn][i][j])>0 : draw lines[nn][i][j] ; fi ;
fi ;
endfor ; endfor ; endfor ;
for i=1 upto nofcells : for j=i upto nofcells : for nn = t, b :
if bbwidth(texts[nn][i][j])>0 : draw texts[nn][i][j] ; fi ;
endfor ; endfor ; endfor ;
enddef ;
%D Step tables.
def begin_step_table =
initialize_step_variables ;
picture cells[], texts[], lines[] ;
numeric nofcells ; nofcells := 0 ;
enddef ;
def end_step_table =
for i=1 upto nofcells : if known cells[i] : if bbwidth(cells[i])>0 :
draw cells[i] ;
fi ; fi ; endfor ;
for i=1 upto nofcells : if known lines[i] : if bbwidth(lines[i])>0 :
draw lines[i] ;
fi ; fi ; endfor ;
for i=1 upto nofcells : if known texts[i] : if bbwidth(texts[i])>0 :
draw texts[i] ;
fi ; fi ; endfor ;
enddef ;
vardef get_step_table_line (expr i) =
pair prev, self, next ;
if known texts[i] :
self := lft .5[llcorner texts[i], ulcorner texts[i] ] ;
prev := rt if known texts[i-1] : .3 else : .5 fi [lrcorner cells[i] , urcorner cells[i] ] ;
next := rt if known texts[i+1] : .7 else : .5 fi [lrcorner cells[i+1], urcorner cells[i+1]] ;
self := self shifted (-line_h_offset,0) ;
prev := prev shifted (+line_h_offset,0) ;
next := next shifted (+line_h_offset,0) ;
prev {right} ... self ... {left} next
else :
origin
fi
enddef ;
endinput
%D The older method let \METAPOST\ do the typesetting. The
%D macros needed for that are included here for educational
%D purposes.
%D
%D \starttypen
%D def initialize_step_variables =
%D save line_color, line_width, arrow_alternative,
%D text_fill_color, text_line_color, text_line_width, text_offset,
%D cell_fill_color, cell_line_color, cell_line_width, cell_offset,
%D line_h_offset, line_v_offset ;
%D color line_color ; line_color := .4white ;
%D numeric line_width ; line_width := 1.5pt ;
%D color text_fill_color ; text_fill_color := white ;
%D color text_line_color ; text_line_color := red ;
%D numeric text_line_width ; text_line_width := 1pt ;
%D numeric text_offset ; text_offset := 2pt ;
%D color cell_fill_color ; cell_fill_color := white ;
%D color cell_line_color ; cell_line_color := blue ;
%D numeric cell_line_width ; cell_line_width := 1pt ;
%D numeric cell_offset ; cell_offset := 2pt ;
%D numeric line_alternative ; line_alternative := 1 ;
%D numeric line_h_offset ; line_h_offset := 3pt ;
%D numeric line_v_offset ; line_v_offset := 3pt ;
%D enddef ;
%D
%D def begin_step_chart =
%D begingroup ;
%D initialize_step_variables ;
%D save steps, texts, t, b ;
%D picture cells[][] ; numeric nofcells ; nofcells := 0 ;
%D picture texts[][][] ; numeric noftexts ; noftexts := 0 ;
%D numeric t, b ; t := 1 ; b := 2 ;
%D enddef ;
%D \stoptypen
%D
%D We use a couple of macros to store the content. In the
%D second (third) alternative we will directly fill the
%D cells.
%D
%D \starttypen
%D def set_step_chart_cells (expr one, two) =
%D nofcells := nofcells + 1 ; noftexts := 0 ;
%D cells[t][nofcells] := textext.rt(one) ;
%D cells[b][nofcells] := textext.rt(two) ;
%D enddef ;
%D
%D def set_step_chart_texts (expr one, two) =
%D noftexts := noftexts + 1 ;
%D texts[t][nofcells][noftexts] := textext.rt(one) ;
%D texts[b][nofcells][noftexts] := textext.rt(two) ;
%D enddef ;
%D \stoptypen
%D
%D If you compare the building macro with the later
%D alternative, you will notice that here we explicitly
%D have to calculate the distances and positions.
%D
%D \starttypen
%D def end_step_chart =
%D numeric dx ; dx := 0 ; path p ;
%D numeric n[] ; n[t] := n[b] := 0 ;
%D numeric stepsvdistance[] ;
%D vardef bbwidth (expr p) = (xpart (lrcorner p - llcorner p)) enddef ;
%D vardef bbheight (expr p) = (ypart (urcorner p - lrcorner p)) enddef ;
%D stepsvdistance[t] := stepsvdistance[b] := 0 ;
%D for i=1 upto nofcells :
%D % find largest bbox
%D p := boundingbox steps
%D [if bbwidth(cells[t][i])>bbwidth(cells[b][i]): t else: b fi][i] ;
%D % assign largest bbox
%D for nn = t, b :
%D if bbwidth(cells[nn][i])>0 :
%D setbounds cells[nn][i] to p enlarged cell_offset ;
%D n[nn] := n[nn] + 1 ;
%D fi ;
%D endfor ;
%D % determine height
%D if n[t]>0 :
%D stepsvdistance[t] := bbheight(cells[t][1]) + intertextdistance ;
%D fi ;
%D % add to row
%D for nn = t, b :
%D cells[nn][i] := cells[nn][i] shifted (dx,stepsvdistance[nn]) ;
%D if bbwidth(cells[nn][i])>0 :
%D dowithpath (boundingbox cells[nn][i],
%D cell_line_width, cell_line_color, cell_background_color) ;
%D fi ;
%D endfor ;
%D % calculate position
%D dx := dx + interstepdistance + bbwidth(cells[b][i]) ;
%D endfor ;
%D boolean stacked ; stacked := false ;
%D numeric l[][], r[][], l[][], r[][] ;
%D pair pa, pb, pc ; path p[] ;
%D for i=1 upto nofcells :
%D l[t][i] := r[t][i] := l[b][i] := r[b][i] := 0 ;
%D endfor ;
%D % count left and right points
%D for i=1 upto nofcells : for j=1 upto nofcells : for nn = t, b :
%D if known texts[nn][i][j] : if bbwidth(texts[nn][i][j])>0 :
%D l[nn][i] := l[nn][i] + 1 ;
%D r[nn][j+i] := r[nn][j+i] + 1 ;
%D stacked := (stacked or (j>1)) ;
%D setbounds texts[nn][i][j] to boundingbox texts[nn][i][j] enlarged cell_offset ;
%D fi fi ;
%D endfor ; endfor ; endfor ;
%D % calculate left and right points
%D vardef do (expr nn, mm, ii, ss) =
%D if (l[nn][ii] > 0) and (r[nn][ii] > 0) : ss else : .5 fi
%D [ ulcorner cells[mm][ii],urcorner cells[mm][ii] ]
%D enddef ;
%D % draw arrow from left to right point
%D def dodo (expr nn, ii, jj, dd) =
%D drawarrow p[nn]
%D withpen pencircle scaled arrow_line_width
%D withcolor arrow_line_color ;
%D transform tr ; tr := identity
%D shifted point .5 along p[nn]
%D shifted -center texts[nn][ii][jj]
%D if not stacked : shifted (0,dd) fi ;
%D dowithpath ((boundingbox texts[nn][ii][jj]) transformed tr,
%D text_line_width, text_line_color, text_fill_color) ;
%D enddef ;
%D % draw top and bottom text boxes
%D for i=1 upto nofcells : for j=1 upto nofcells :
%D pickup pencircle scaled arrow_line_width ;
%D if known texts[t][i][j] : if bbwidth(texts[t][i][j]) > 0 :
%D pa := top do(t, if n[t]>0 : t else : b fi, i, .6) ;
%D pb := top do(t, if n[t]>0 : t else : b fi, j+i, .4) ;
%D pc := .5[pa,pb] shifted (0,+step_arrow_depth) ;
%D p[t] := pa {up} .. if not stacked : pc .. fi {down} pb ;
%D dodo(t, i, j, +intertextdistance) ;
%D fi fi ;
%D if known texts[b][i][j] : if bbwidth(texts[b][i][j]) > 0 :
%D pa := (bot do(b, b, i, .6)) shifted (0,-bbheight(cells[b][i])) ;
%D pb := (bot do(b, b, j+i, .4)) shifted (0,-bbheight(cells[b][j+i])) ;
%D pc := .5[pa,pb] shifted (0,-step_arrow_depth) ;
%D p[b] := pa {down} .. if not stacked : pc .. fi {up} pb ;
%D dodo(b, i, j, -intertextdistance) ;
%D fi fi ;
%D endfor ; endfor ;
%D endgroup ;
%D enddef ;
%D \stoptypen
%D
%D If you compare both methods, you will notice that the
%D first method is the cleanest, but not the most efficient
%D (since it needs \TEX\ runs within \METAPOST\ runs within
%D \TEX\ runs).
|