1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
% $Id: sarith.mp,v 1.2 2004/09/19 21:47:11 karl Exp $
% Public domain.
% Macros for arithmetic on strings that represent big numbers
% All the macros below except ordinary numeric values as well
% Scvnum <number> % convert to an ordinary numeric
% Sabs <number> % absolute value
% <number> Sadd <number> % add
% <number> Ssub <number> % subtract
% <number> Smul <number> % multiply
% <number> Sdiv <number> % divide
% <number> Sleq <number> % compare <=
% <number> Sneq <number> % numeric compare <>
% All other externally visible names start with `S' and end with `_'
if unknown Mzero:
begingroup interim % marith.mp starts with `warningcheck:=0'
input marith
endgroup; % restore warningcheck; we zero it when necessary
fi
vardef Sunop_(expr x)(text o) =
interim warningcheck:=0;
o if numeric x: decimal fi x
enddef;
vardef Sbinop_@#(expr a, b)(text o) =
interim warningcheck:=0;
@# (Mlog_Str a o Mlog_Str b)
enddef;
def Ssbinop_ = Sbinop_.Mexp_str enddef;
vardef Sabs primary x = Sunop_(x, Mexp_str Mabs Mlog_str) enddef;
vardef Scvnum primary x = Sunop_(x, Mexp Mlog_str) enddef;
% The inverse of Scvnum is the `decimal' primitive.
primarydef a Smul b = Ssbinop_(a,b,Mmul) enddef;
primarydef a Sdiv b = Ssbinop_(a,b,Mdiv) enddef;
secondarydef a Sadd b = Ssbinop_(a,b,Madd) enddef;
secondarydef a Ssub b = Ssbinop_(a,b,Msub) enddef;
tertiarydef a Sleq b = Sbinop_(a,b,Mleq) enddef;
tertiarydef a Sneq b = Sbinop_(a,b,<>) enddef;
|