1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
|
% -*- coding: utf-8 -*-
% This is part of the book TeX for the Impatient.
% Copyright (C) 2003 Paul W. Abrahams, Kathryn A. Hargreaves, Karl Berry.
% See file fdl.tex for copying conditions.
\input macros
%\chapter {Commands \linebreak for composing \linebreak math formulas}
\chapter {数学公式命令}
%\bix^^{math}
%\chapterdef{math}
\bix^^{数学}
\chapterdef{math}
%This section covers commands for constructing math formulas.
%For an explanation of the conventions used in this section,
%see \headcit{Descriptions of the commands}{cmddesc}.
这一章包括了排印数学公式所需要的命令。
在\headcit{命令描述}{cmddesc}这一节中给出了这章的惯例。
\begindescriptions
%==========================================================================
%\section {Simple parts of formulas}
\section {简单公式排版}
%==========================================================================
%\subsection {Greek letters}
\subsection {希腊字母}
%\begindesc
%\bix^^{Greek letters}
%\dothreecolumns 40
%\easy\ctsdisplay alpha {}
%\ctsdisplay beta {}
%\ctsdisplay chi {}
%\ctsdisplay delta {}
%\ctsdisplay Delta {}
%\ctsdisplay epsilon {}
%\ctsdisplay varepsilon {}
%\ctsdisplay eta {}
%\ctsdisplay gamma {}
%\ctsdisplay Gamma {}
%\ctsdisplay iota {}
%\ctsdisplay kappa {}
%\ctsdisplay lambda {}
%\ctsdisplay Lambda {}
%\ctsdisplay mu {}
%\ctsdisplay nu {}
%\ctsdisplay omega {}
%\ctsdisplay Omega {}
%\ctsdisplay phi {}
%\ctsdisplay varphi {}
%\ctsdisplay Phi {}
%\ctsdisplay pi {}
%\ctsdisplay varpi {}
%\ctsdisplay Pi {}
%\ctsdisplay psi {}
%\ctsdisplay Psi {}
%\ctsdisplay rho {}
%\ctsdisplay varrho {}
%\ctsdisplay sigma {}
%\ctsdisplay varsigma {}
%\ctsdisplay Sigma {}
%\ctsdisplay tau {}
%\ctsdisplay theta {}
%\ctsdisplay vartheta {}
%\ctsdisplay Theta {}
%\ctsdisplay upsilon {}
%\ctsdisplay Upsilon {}
%\ctsdisplay xi {}
%\ctsdisplay Xi {}
%\ctsdisplay zeta {}
%\egroup
\begindesc
\bix^^{希腊字母}
\dothreecolumns 40
\easy\ctsdisplay alpha {}
\ctsdisplay beta {}
\ctsdisplay chi {}
\ctsdisplay delta {}
\ctsdisplay Delta {}
\ctsdisplay epsilon {}
\ctsdisplay varepsilon {}
\ctsdisplay eta {}
\ctsdisplay gamma {}
\ctsdisplay Gamma {}
\ctsdisplay iota {}
\ctsdisplay kappa {}
\ctsdisplay lambda {}
\ctsdisplay Lambda {}
\ctsdisplay mu {}
\ctsdisplay nu {}
\ctsdisplay omega {}
\ctsdisplay Omega {}
\ctsdisplay phi {}
\ctsdisplay varphi {}
\ctsdisplay Phi {}
\ctsdisplay pi {}
\ctsdisplay varpi {}
\ctsdisplay Pi {}
\ctsdisplay psi {}
\ctsdisplay Psi {}
\ctsdisplay rho {}
\ctsdisplay varrho {}
\ctsdisplay sigma {}
\ctsdisplay varsigma {}
\ctsdisplay Sigma {}
\ctsdisplay tau {}
\ctsdisplay theta {}
\ctsdisplay vartheta {}
\ctsdisplay Theta {}
\ctsdisplay upsilon {}
\ctsdisplay Upsilon {}
\ctsdisplay xi {}
\ctsdisplay Xi {}
\ctsdisplay zeta {}
\egroup
%\explain
%These commands produce Greek letters suitable for mathematics.
%You can only use them
%within a math formula, so if you need a Greek letter within ordinary
%text you must enclose it in dollar signs (|$|). \TeX\ does not have
%commands for Greek letters that look like their roman
%counterparts, since you can get them by using those roman
%counterparts. For example, you can get a lowercase
%^{omicron} in a formula by writing the letter `o', i.e.,
%`|{\rm o}|' or an uppercase ^{beta} (`B') by writing
%`|{\rm B}|'.
\explain
输入这些命令可以排印出数学公式中的相应的希腊字母符号.
你只能在数学模式中使用它们, 所以如在普通的文本中使用它们时,
你必须把它们括在美元符号 (|$|) 内.
\TeX\ 并不包含这些数学中使用的希腊字母所对应的正体字符的命令,
不过你可以很方便地得到这些字符.
比如说, 你可以在公式中使用 `|{\rm o}|' 来得到一个小写的 ^{omicron} `o',
又比如, 你可以使用 `|{\rm B}|' 得到大写的 ^{beta} (`B').
%Don't confuse the following letters:
%\ulist \compact
%\li |\upsilon| (`$\upsilon$'), |{\rm v}| (`v'), and |\nu| (`$\nu$').
%\li |\varsigma| (`$\varsigma$') and |\zeta| (`$\zeta$').
%\endulist
注意不要混淆下面的符号:
\ulist \compact
\li |\upsilon| (`$\upsilon$'), |{\rm v}| (`v'), 和 |\nu| (`$\nu$').
\li |\varsigma| (`$\varsigma$') 和 |\zeta| (`$\zeta$').
\endulist
%You can get slanted capital Greek letters by using the math italic
%(|\mit|) \minref{font}.
使用数学的意大利\minref{字体} (|\mit|) 可以得到斜体的大写希腊字母.
%\TeX\ treats Greek letters as ordinary symbols when it's figuring how
%much space to put around them.
在计算在希腊字母周围插入多少的空白时,\TeX\ 把它们当作正常的符号。
%\example
%If $\rho$ and $\theta$ are both positive, then $f(\theta)
%-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
%|
%\produces
%If $\rho$ and $\theta$ are both positive, then
%$f(\theta)-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
%\endexample
%\eix^^{Greek letters}
%\enddesc
\example
如果 $\rho$ 和 $\theta$ 都是正数, 那么 $f(\theta)
-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
|
\produces
如果 $\rho$ 和 $\theta$ 都是正数, 那么
$f(\theta)-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
\endexample
\eix^^{希腊字母}
\enddesc
%==========================================================================
%\subsection {Miscellaneous ordinary math symbols}
\subsection {各种普通数学符号}
\begindesc
\xrdef{specsyms}
\dothreecolumns 34
\easy\ctsdisplay infty {}
\ctsdisplay Re {}
\ctsdisplay Im {}
\ctsdisplay angle {}
\ctsdisplay triangle {}
\ctsdisplay backslash {}
\ctsdisplay vert {}
\writeidxfalse\ctsydisplay | @bar {}\writeidxtrue
\ctsdisplay Vert {}
\ctsdisplay emptyset {}
\ctsdisplay bot {}
\ctsdisplay top {}
\ctsdisplay exists {}
\ctsdisplay forall {}
\ctsdisplay hbar {}
\ctsdisplay ell {}
\ctsdisplay aleph {}
\ctsdisplay imath {}
\ctsdisplay jmath {}
\ctsdisplay nabla {}
\ctsdisplay neg {}
\ctsdisplay lnot {}
\actdisplay ' @prime \ (上标点)
\ctsdisplay prime {}
\ctsdisplay partial {}
\ctsdisplay surd {}
\ctsdisplay wp {}
\ctsdisplay flat {}
\ctsdisplay sharp {}
\ctsdisplay natural {}
\ctsdisplay clubsuit {}
\ctsdisplay diamondsuit {}
\ctsdisplay heartsuit {}
\ctsdisplay spadesuit {}
\egroup
\explain
^^{音符} ^^{花色}
这些命令可以排印各种符号.
为了把它们和其它的符号, 比如关系符号等, 区分开来, 它们被称为普通数学符号.
你只能在数学模式中使用这些符号, 所以如果在普通的文本中使用, 你必须使用美元符号 (|$|) 把它们括起来.
当你想在 `$i$' 或 `$j$' 上加上重音符号, 则需要使用 |\imath| 和 |\jmath| 命令来表示它们本身.
上标点符号 (|'|) 是一个 |\prime| 的上标的简写.
(|\prime| 本身可以排印一个很大的丑陋的撇号.)
|\!|| 和 ^|\Vert| 命令是等价的, 就像 ^|\neg| 和 ^|\lnot| 命令一样.
\margin{增加了 {\tt\\vert} 的解释}
|\vert| 符号可以排印出和 `|!||' 相同的效果.
\indexchar |
由 |\backslash|, |\vert|, 和 |\Vert| 排印的命令叫做 \minref{分界符}.
使用 ^|\bigm| 等 (\xref \bigm) 命令可以排印大号的这些字符.
\example
The Knave of $\heartsuit$s, he stole some tarts.
|
\produces
The Knave of $\heartsuit$s, he stole some tarts.
\nextexample
如 $\hat\imath < \hat\jmath$ 则 $i' \leq j^\prime$.
|
\produces
如 $\hat\imath < \hat\jmath$ 则 $i' \leq j^\prime$.
\nextexample
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$
|
\dproduces
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$
\endexample
\enddesc
%==========================================================================
\subsection {二元运算符}
\begindesc
\bix^^{运算符}
\xrdef{binops}
\dothreecolumns 34
\easy\ctsdisplay vee {}
\ctsdisplay wedge {}
\ctsdisplay amalg {}
\ctsdisplay cap {}
\ctsdisplay cup {}
\ctsdisplay uplus {}
\ctsdisplay sqcap {}
\ctsdisplay sqcup {}
\ctsdisplay dagger {}
\ctsdisplay ddagger {}
\ctsdisplay land {}
\ctsdisplay lor {}
\ctsdisplay cdot {}
\ctsdisplay diamond {}
\ctsdisplay bullet {}
\ctsdisplay circ {}
\ctsdisplay bigcirc {}
\ctsdisplay odot {}
\ctsdisplay ominus {}
\ctsdisplay oplus {}
\ctsdisplay oslash {}
\ctsdisplay otimes {}
\ctsdisplay pm {}
\ctsdisplay mp {}
\ctsdisplay triangleleft {}
\ctsdisplay triangleright {}
\ctsdisplay bigtriangledown {}
\ctsdisplay bigtriangleup {}
\ctsdisplay ast {}
\ctsdisplay star {}
\ctsdisplay times {}
\ctsdisplay div {}
\ctsdisplay setminus {}
\ctsdisplay wr {}
\egroup
\explain
这些命令可以排印各种二元运算符.
二元运算符是 \TeX\ 的一种符号\minref{集}.
\TeX\ 在不同的符号集周围会插入不同的空白.
当 \TeX\ 需要在一个数学公式中间断行时,
它会考虑在二元运算符后面进行断行---不过仅在它出现在公式的最外层时, 而不是在一个组中.
除了这些命令以外, \TeX\ 也把 `|+|' and `|-|' 作为二元运算符.
它把 `|/|' 当作一个普通符号,
因为虽然事实上在数学中它是一个二元运算,
但是它在周围加入的空白更少时看上去更漂亮.
\example
$$z = x \div y \quad \hbox{当且仅当} \quad
z \times y = x \;\hbox{且}\; y \neq 0$$
|
\dproduces
$$z = x \div y \quad \hbox{当且仅当} \quad
z \times y = x \;\hbox{且}\; y \neq 0$$
\endexample
\enddesc
\begindesc
\ctspecial * \ctsxrdef{@star}
\explain
命令 |\*| 表示乘法符号 ($\times$), 也是一个二元符号.
乘法符号在文本中的数学公式中出现时表现得和一个分词符类似.
这就是说, \TeX\ \emph{仅}会在公式该点需要断行时排版 |\times| 符号.
因为 \TeX\ 永远不会在陈列公式中断行, 所以 |\*| 在陈列公式 \minrefs{陈列公式} 中是没有任何作用的.
\example
Let $c = a\*b$. In the case that $c=0$ or $c=1$, let
$\Delta$ be $(\hbox{the smallest $q$})\*(\hbox{the
largest $q$})$ in the set of approximate $\tau$-values.
|
\produces
Let $c = a\*b$. In the case that $c=0$ or $c=1$, let
$\Delta$ be $(\hbox{the smallest $q$})\*(\hbox{the
largest $q$})$ in the set of approximate $\tau$-values.
\eix^^{运算符}
\endexample
\enddesc
%==========================================================================
\subsection {关系符号}
\begindesc
\xrdef {relations}
\bix^^{关系符}
\dothreecolumns 39
\easy\ctsdisplay asymp {}
\ctsdisplay cong {}
\ctsdisplay dashv {}
\ctsdisplay vdash {}
\ctsdisplay perp {}
\ctsdisplay mid {}
\ctsdisplay parallel {}
\ctsdisplay doteq {}
\ctsdisplay equiv {}
\ctsdisplay ge {}
\ctsdisplay geq {}
\ctsdisplay le {}
\ctsdisplay leq {}
\ctsdisplay gg {}
\ctsdisplay ll {}
\ctsdisplay models {}
\ctsdisplay ne {}
\ctsdisplay neq {}
\ctsdisplay notin {}
\ctsdisplay in {}
\ctsdisplay ni {}
\ctsdisplay owns {}
\ctsdisplay prec {}
\ctsdisplay preceq {}
\ctsdisplay succ {}
\ctsdisplay succeq {}
\ctsdisplay bowtie {}
\ctsdisplay propto {}
\ctsdisplay approx {}
\ctsdisplay sim {}
\ctsdisplay simeq {}
\ctsdisplay frown {}
\ctsdisplay smile {}
\ctsdisplay subset {}
\ctsdisplay subseteq {}
\ctsdisplay supset {}
\ctsdisplay supseteq {}
\ctsdisplay sqsubseteq {}
\ctsdisplay sqsupseteq {}
\egroup
\explain
这些命令可以排印各种关系符号.
关系符号是 \TeX\ 的数学符号中的\minref{类}之一.
\TeX\ 在不同的\minref{类}之间插入不同的空白长度.
当 \TeX\ 需要在一个数学公式处断行, \minrefs{断行}
它会考虑在一个关系符后进行断行---不过仅在它出现在公式的最外层时, 而不是在一个组中.
除了这里列出的命令以外, \TeX\ 也把 `^|=|' 和``arrow'' 命令 (\xref{arrows}) 作为关系运算符.
一些关系符有多种命令表达方式, 你可以使用任何一个来排印它们:
\ulist \compact
\li `$\ge$' (|\ge| 和 |\geq|).
\li `$\le$' (|\le| 和 |\leq|).
\li `$\ne$' (|\ne|, |\neq|, 和 |\not=|).
\li `$\ni$' (|\ni| 和 |\owns|).
\endulist
\xrdef{\not}
在这些符号前加上 |\not|, 可以排印它们的非运算:
\nobreak
\threecolumns 21
\basicdisplay {$\not\asymp$}{\\not\\asymp}\ctsidxref{asymp}
\basicdisplay {$\not\cong$}{\\not\\cong}\ctsidxref{cong}
\basicdisplay {$\not\equiv$}{\\not\\equiv}\ctsidxref{equiv}
\basicdisplay {$\not=$}{\\not=}\ttidxref{=}
\basicdisplay {$\not\ge$}{\\not\\ge}\ctsidxref{ge}
\basicdisplay {$\not\geq$}{\\not\\geq}\ctsidxref{geq}
\basicdisplay {$\not\le$}{\\not\\le}\ctsidxref{le}
\basicdisplay {$\not\leq$}{\\not\\leq}\ctsidxref{leq}
\basicdisplay {$\not\prec$}{\\not\\prec}\ctsidxref{prec}
\basicdisplay {$\not\preceq$}{\\not\\preceq}\ctsidxref{preceq}
\basicdisplay {$\not\succ$}{\\not\\succ}\ctsidxref{succ}
\basicdisplay {$\not\succeq$}{\\not\\succeq}\ctsidxref{succeq}
\basicdisplay {$\not\approx$}{\\not\\approx}\ctsidxref{approx}
\basicdisplay {$\not\sim$}{\\not\\sim}\ctsidxref{sim}
\basicdisplay {$\not\simeq$}{\\not\\simeq}\ctsidxref{simeq}
\basicdisplay {$\not\subset$}{\\not\\subset}\ctsidxref{subset}
\basicdisplay {$\not\subseteq$}{\\not\\subseteq}\ctsidxref{subseteq}
\basicdisplay {$\not\supset$}{\\not\\supset}\ctsidxref{supset}
\basicdisplay {$\not\supseteq$}{\\not\\supseteq}\ctsidxref{supseteq}
\basicdisplay {$\not\sqsubseteq$}{\\not\\sqsubseteq}%
\ctsidxref{sqsubseteq}
\basicdisplay {$\not\sqsupseteq$}{\\not\\sqsupseteq}%
\ctsidxref{sqsupseteq}
\egroup
\example
我们可以得到 $AB \perp AC$,且
$\triangle ABF \not\sim \triangle ACF$.
|
\produces
我们可以得到 $AB \perp AC$,且
$\triangle ABF \not\sim \triangle ACF$.
\eix^^{关系符}
\endexample
\enddesc
%==========================================================================
%\subsection {Left and right delimiters}
\subsection {左右定界符}
%\begindesc
%\bix^^{delimiters}
%%
%\dothreecolumns 12
%\easy\ctsdisplay lbrace {}
%\ctsydisplay { @lbrace {}
%\ctsdisplay rbrace {}
%\ctsydisplay } @rbrace {}
%\ctsdisplay lbrack {}
%\ctsdisplay rbrack {}
%\ctsdisplay langle {}
%\ctsdisplay rangle {}
%\ctsdisplay lceil {}
%\ctsdisplay rceil {}
%\ctsdisplay lfloor {}
%\ctsdisplay rfloor {}
%\egroup
%\explain
%These commands produce left and right \minref{delimiter}s.
%Mathematicians use delimiters to indicate the boundaries between parts
%of a formula. Left delimiters are also called ``^{opening}s'', and
%right delimiters are also called ``^{closing}s''. Openings and closings
%are two of \TeX's \minref{class}es of math symbols. \TeX\ puts
%different amounts of space around different \minref{class}es of math
%symbols. You might expect the space that \TeX\ puts around openings and
%closings to be symmetrical, but in fact it isn't.
\begindesc
\bix^^{定界符}
%
\dothreecolumns 12
\easy\ctsdisplay lbrace {}
\writeidxfalse\ctsydisplay { @lbrace {}\writeidxtrue
\ctsdisplay rbrace {}
\writeidxfalse\ctsydisplay } @rbrace {}\writeidxtrue
\ctsdisplay lbrack {}
\ctsdisplay rbrack {}
\ctsdisplay langle {}
\ctsdisplay rangle {}
\ctsdisplay lceil {}
\ctsdisplay rceil {}
\ctsdisplay lfloor {}
\ctsdisplay rfloor {}
\egroup
\explain
这些命令排印各种左右\minref{定界符}。
数学家用定界符指明公式各部分的边界。
左定界符又称为``^{开符号}'',右定界符又称为``^{闭符号}''。
开符号和闭符号是 \TeX\ 数学公式中的两种字符类。
\TeX\ 在不同\minref{类}的数学符号之间留下不同大小的间隔。
你也许认为在开符号和闭符号旁边的间隔是对称的,但实际上并非如此。
%Some left and right delimiters have more than one command that you can
%use to produce them:
有些左定界符和右定界符可以用不止一个命令排印:
%\ulist\compact
%\li `$\{$' (|\lbrace| and |\{|)
%\li `$\}$' (|\rbrace| and |\}|)
%\li `$[$' (|\lbrack| and `|[|')
%\li `$]$' (|\rbrack| and `|]|')
%\endulist
%\noindent You can also use the left and right bracket characters
%(in either form) outside of math mode.
\ulist\compact
\li `$\{$' (|\lbrace| 和 |\{|)
\li `$\}$' (|\rbrace| 和 |\}|)
\li `$[$' (|\lbrack| 和 `|[|')
\li `$]$' (|\rbrack| 和 `|]|')
\endulist
\noindent 左右方括号(两种形式皆可)在数学模式之外也可以使用。
%In addition to these commands, \TeX\ treats `|(|' as a left
%delimiter and `|)|' as a right delimiter.
除这些命令之外,\TeX\ 还将 `|(|' 视为左定界符,将 `|)|' 视为右定界符。
%You can have \TeX\
%choose the size for a delimiter by using |\left| and |\right| (\xref\left).
%Alternatively,
%you can get a delimiter of a specific size by using one of the |\big|$x$
%commands (see |\big| et al., \xref{\big}).
利用 |\left| 和 |\right|(\xref\left )命令,
你可以让 \TeX\ 选择定界符的尺寸。
或者利用某个 |\big|$x$ 命令(见 |\big| 等,\xref{\big}),
你可以选择特定尺寸的定界符。
%\example
%The set $\{\,x \mid x>0\,\}$ is empty.
%|
%\produces
%The set $\{\,x \mid x>0\,\}$ is empty.
\example
集合 $\{\,x \mid x>0\,\}$ 是空集.
|
\produces
集合 $\{\,x \mid x>0\,\}$ 是空集.
%\eix^^{delimiters}
%\endexample
%\enddesc
\eix^^{定界符}
\endexample
\enddesc
%==========================================================================
%\subsection {Arrows}
\subsection {箭头}
%\begindesc
%\bix^^{arrows}
%\xrdef{arrows}
%%
%{\symbolspace=24pt \makecolumns 34/2:
%\easy%
%\ctsdisplay leftarrow {}
%\ctsdisplay gets {}
%\ctsdisplay Leftarrow {}
%\ctsdisplay rightarrow {}
%\ctsdisplay to {}
%\ctsdisplay Rightarrow {}
%\ctsdisplay leftrightarrow {}
%\ctsdisplay Leftrightarrow {}
%\ctsdisplay longleftarrow {}
%\ctsdisplay Longleftarrow {}
%\ctsdisplay longrightarrow {}
%\ctsdisplay Longrightarrow {}
%\ctsdisplay longleftrightarrow {}
%\ctsdisplay Longleftrightarrow {}
%\basicdisplay {$\Longleftrightarrow$}{\\iff}\pix\ctsidxref{iff}\xrdef{\iff}
%\ctsdisplay hookleftarrow {}
%\ctsdisplay hookrightarrow {}
%\ctsdisplay leftharpoondown {}
%\ctsdisplay rightharpoondown {}
%\ctsdisplay leftharpoonup {}
%\ctsdisplay rightharpoonup {}
%\ctsdisplay rightleftharpoons {}
%\ctsdisplay mapsto {}
%\ctsdisplay longmapsto {}
%\ctsdisplay downarrow {}
%\ctsdisplay Downarrow {}
%\ctsdisplay uparrow {}
%\ctsdisplay Uparrow {}
%\ctsdisplay updownarrow {}
%\ctsdisplay Updownarrow {}
%\ctsdisplay nearrow {}
%\ctsdisplay searrow {}
%\ctsdisplay nwarrow {}
%\ctsdisplay swarrow {}
%}
%\explain
%These commands provide arrows of different kinds. They
%are classified as relations (\xref{relations}).
%The vertical arrows in the list are also \minref{delimiter}s, so you can make
%them larger by using |\big| et al.\ (\xref \big).
\begindesc
\bix^^{箭头}
\xrdef{arrows}
%
{\symbolspace=24pt \makecolumns 34/2:
\easy%
\ctsdisplay leftarrow {}
\ctsdisplay gets {}
\ctsdisplay Leftarrow {}
\ctsdisplay rightarrow {}
\ctsdisplay to {}
\ctsdisplay Rightarrow {}
\ctsdisplay leftrightarrow {}
\ctsdisplay Leftrightarrow {}
\ctsdisplay longleftarrow {}
\ctsdisplay Longleftarrow {}
\ctsdisplay longrightarrow {}
\ctsdisplay Longrightarrow {}
\ctsdisplay longleftrightarrow {}
\ctsdisplay Longleftrightarrow {}
\basicdisplay {$\Longleftrightarrow$}{\\iff}\pix\ctsidxref{iff}\xrdef{\iff}
\ctsdisplay hookleftarrow {}
\ctsdisplay hookrightarrow {}
\ctsdisplay leftharpoondown {}
\ctsdisplay rightharpoondown {}
\ctsdisplay leftharpoonup {}
\ctsdisplay rightharpoonup {}
\ctsdisplay rightleftharpoons {}
\ctsdisplay mapsto {}
\ctsdisplay longmapsto {}
\ctsdisplay downarrow {}
\ctsdisplay Downarrow {}
\ctsdisplay uparrow {}
\ctsdisplay Uparrow {}
\ctsdisplay updownarrow {}
\ctsdisplay Updownarrow {}
\ctsdisplay nearrow {}
\ctsdisplay searrow {}
\ctsdisplay nwarrow {}
\ctsdisplay swarrow {}
}
\explain
这些命令提供各种箭头。它们被划分为关系符号(\xref{relations})。
上面的竖直箭头同时也是\minref{定界符},
因此你可以用 |\big| 等命令让它们变大(\xref \big )。
%The command |\iff| differs from |\Longleftrightarrow| in that
%it produces extra space to the left and right of the arrow.
命令 |\iff| 和 |\Longleftrightarrow| 的差别之处在于,
它在箭头两边生成额外间隔。
%You can place symbols or other legends on top of a left or right arrow
%with |\buildrel| (\xref \buildrel).
你可以用 |\buildrel|(\xref \buildrel )命令将符号或者其他文字放在箭头上边。
%\example
%$$f(x)\mapsto f(y) \iff x \mapsto y$$
%|
%\dproduces
%$$f(x)\mapsto f(y) \iff x \mapsto y$$
\example
$$f(x)\mapsto f(y) \iff x \mapsto y$$
|
\dproduces
$$f(x)\mapsto f(y) \iff x \mapsto y$$
%\eix^^{arrows}
%\endexample
%\enddesc
\eix^^{箭头}
\endexample
\enddesc
%==========================================================================
%\subsection {Named mathematical functions}
\subsection {已命名的数学函数}
%\begindesc
%\xrdef{namedfns}
%\bix^^{functions, names of}
%{\symbolspace = 36pt
%\threecolumns 32
%\easy\ctsdisplay cos {}
%\ctsdisplay sin {}
%\ctsdisplay tan {}
%\ctsdisplay cot {}
%\ctsdisplay csc {}
%\ctsdisplay sec {}
%\ctsdisplay arccos {}
%\ctsdisplay arcsin {}
%\ctsdisplay arctan {}
%\ctsdisplay cosh {}
%\ctsdisplay coth {}
%\ctsdisplay sinh {}
%\ctsdisplay tanh {}
%\ctsdisplay det {}
%\ctsdisplay dim {}
%\ctsdisplay exp {}
%\ctsdisplay ln {}
%\ctsdisplay log {}
%\ctsdisplay lg {}
%\ctsdisplay arg {}
%\ctsdisplay deg {}
%\ctsdisplay gcd {}
%\ctsdisplay hom {}
%\ctsdisplay ker {}
%\ctsdisplay inf {}
%\ctsdisplay sup {}
%\ctsdisplay lim {}
%\ctsdisplay liminf {}
%\ctsdisplay limsup {}
%\ctsdisplay max {}
%\ctsdisplay min {}
%\ctsdisplay Pr {}
%\egroup}
%\explain
%These commands set the names of various mathematical functions
%in roman type, as is customary.
%If you apply a superscript or subscript to one of these commands,
%\TeX\ will in most cases typeset it in the usual place.
%In display style, \TeX\ typesets superscripts and subscripts
%on |\det|, |\gcd|, |\inf|, |\lim|, |\liminf|,
%|\limsup|, |\max|, |\min|, |\Pr|, and |\sup|
%as though they were limits,
%i.e., directly above or directly below the function name.
\begindesc
\xrdef{namedfns}
\bix^^{函数名称}
{\symbolspace = 36pt
\threecolumns 32
\easy\ctsdisplay cos {}
\ctsdisplay sin {}
\ctsdisplay tan {}
\ctsdisplay cot {}
\ctsdisplay csc {}
\ctsdisplay sec {}
\ctsdisplay arccos {}
\ctsdisplay arcsin {}
\ctsdisplay arctan {}
\ctsdisplay cosh {}
\ctsdisplay coth {}
\ctsdisplay sinh {}
\ctsdisplay tanh {}
\ctsdisplay det {}
\ctsdisplay dim {}
\ctsdisplay exp {}
\ctsdisplay ln {}
\ctsdisplay log {}
\ctsdisplay lg {}
\ctsdisplay arg {}
\ctsdisplay deg {}
\ctsdisplay gcd {}
\ctsdisplay hom {}
\ctsdisplay ker {}
\ctsdisplay inf {}
\ctsdisplay sup {}
\ctsdisplay lim {}
\ctsdisplay liminf {}
\ctsdisplay limsup {}
\ctsdisplay max {}
\ctsdisplay min {}
\ctsdisplay Pr {}
\egroup}
\explain
这些命令以惯用的罗马字体排印各种数学函数的名称。
如果你给这些命令中的任何一个加上上标或下标,
\TeX\ 将在通常的位置排版它。
在陈列样式中,对于 |\det|、|\gcd|、|\inf|、|\lim|、|\liminf|、
|\limsup|、|\max|、|\min|、|\Pr| 和 |\sup|,
\TeX\ 将上标和下标当成极限那样排版,
即将它们直接放在函数名的上边或下边。
%\example
%$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
%|
%\produces
%$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
%\endexample\enddesc
\example
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
|
\produces
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
\endexample\enddesc
%\begindesc
%\cts bmod {}
%\explain
%This command produces a binary operation for indicating a ^{modulus}
%within a formula.
%\example
%$$x = (y+1) \bmod 2$$
%|
%\dproduces
%$$x = (y+1) \bmod 2$$
%\endexample
%\enddesc
\begindesc
\cts bmod {}
\explain
此命令排印一个标明公式内的^{模运算}的二元运算符。
\example
$$x = (y+1) \bmod 2$$
|
\dproduces
$$x = (y+1) \bmod 2$$
\endexample
\enddesc
%\begindesc
%\cts pmod {}
%\explain
%This command provides a notation for indicating a ^{modulus} in parentheses
%at the end of a formula.
%\example
%$$x \equiv y+1 \pmod 2$$
%|
%\dproduces
%$$x \equiv y+1 \pmod 2$$
\begindesc
\cts pmod {}
\explain
此命令在公式末尾排印放在圆括号中的^{模运算}。
\example
$$x \equiv y+1 \pmod 2$$
|
\dproduces
$$x \equiv y+1 \pmod 2$$
%\eix^^{functions, names of}
%\endexample
%\enddesc
\eix^^{函数名称}
\endexample
\enddesc
%==========================================================================
%\subsection {Large operators}
\subsection {巨算符}
%\begindesc
%\bix^^{operators//large}
%\threecolumns 15
%\easy\ctsdoubledisplay bigcap {}
%\ctsdoubledisplay bigcup {}
%\ctsdoubledisplay bigodot {}
%\ctsdoubledisplay bigoplus {}
%\ctsdoubledisplay bigotimes {}
%\ctsdoubledisplay bigsqcup {}
%\ctsdoubledisplay biguplus {}
%\ctsdoubledisplay bigvee {}
%\ctsdoubledisplay bigwedge {}
%\ctsdoubledisplay coprod {}
%{\symbolspace = 42pt\basicdisplay {\hskip 26pt$\smallint$}%
% {\\smallint}\ddstrut}%
% \xrdef{\smallint} \pix\ctsidxref{smallint}
%\ctsdoubledisplay int {}
%\ctsdoubledisplay oint {}
%\ctsdoubledisplay prod {}
%\ctsdoubledisplay sum {}
%}
%\explain
%These commands produce various large operator symbols.
%\TeX\ produces the smaller size when it's in ^{text style}
%\minrefs{math mode} and the larger size when it's in ^{display style}.
%Operators are one of \TeX's \minref{class}es of math symbols.
%\TeX\ puts different amounts of space
%around different classes of math symbols.
\begindesc
\bix^^{运算符//巨算符}
\threecolumns 15
\easy\ctsdoubledisplay bigcap {}
\ctsdoubledisplay bigcup {}
\ctsdoubledisplay bigodot {}
\ctsdoubledisplay bigoplus {}
\ctsdoubledisplay bigotimes {}
\ctsdoubledisplay bigsqcup {}
\ctsdoubledisplay biguplus {}
\ctsdoubledisplay bigvee {}
\ctsdoubledisplay bigwedge {}
\ctsdoubledisplay coprod {}
{\symbolspace = 42pt\basicdisplay {\hskip 26pt$\smallint$}%
{\\smallint}\ddstrut}%
\xrdef{\smallint} \pix\ctsidxref{smallint}
\ctsdoubledisplay int {}
\ctsdoubledisplay oint {}
\ctsdoubledisplay prod {}
\ctsdoubledisplay sum {}
}
\explain
这些命令排印各种巨算符。
\TeX\ 在^{文内样式}中排印小号字符,
\minrefs{math mode}而在^{陈列样式}中排印大号字符.
巨算符是 \TeX\ 数学符号的其中一\minref{类}。
\TeX\ 在不同类数学符号间留下不同大小的间隔。
%The large operator symbols with `|big|' in their names are different
%from the corresponding binary operations (see \xref{binops}) such as
%|\cap| ($\cap$) since they usually appear at the beginning
%of a formula. \TeX\ uses different spacing for a large operator
%than it does for a binary operation.
名称中带有 `|big|' 的巨算符和对应的二元运算符%
(比如 |\cap| ($\cap$),见\xref{binops})不同,
因为它们通常出现公式的开头。
\TeX\ 给巨算符留下的间隔与二元运算符的不同。
%Don't confuse `$\sum$' (|\sum|) with `$\Sigma$'^^|\Sigma| (|\Sigma|)
%or confuse `$\prod$' (|\prod|) with `$\Pi$' ^^|\Pi| (|\Pi|).
%|\Sigma| and |\Pi| produce capital Greek letters, which are smaller and
%have a different appearance.
不要混淆 `$\sum$' (|\sum|) 和 `$\Sigma$'^^|\Sigma| (|\Sigma|),
或者 `$\prod$' (|\prod|) 和 `$\Pi$' ^^|\Pi| (|\Pi|)。
|\Sigma| 和 |\Pi| 排印大写希腊字母,它们尺寸更小,外观也不同。
%A large operator can have ^{limits}. The lower limit is specified as a
%subscript and the upper limit as a superscript.
巨算符可以带有^{极限}。下极限用下标指定,而上极限用上标指定。
%\example
%$$\bigcap_{k=1}^r (a_k \cup b_k)$$
%|
%\dproduces
%$$\bigcap_{k=1}^r (a_k \cup b_k)$$
%\endexample
%\interexampleskip
%\example
%$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
%|
%\dproduces
%$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
%\endexample
%\enddesc
\example
$$\bigcap_{k=1}^r (a_k \cup b_k)$$
|
\dproduces
$$\bigcap_{k=1}^r (a_k \cup b_k)$$
\endexample
\interexampleskip
\example
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
|
\dproduces
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
\endexample
\enddesc
%\begindesc
%\cts limits {}
%\explain
%When it's in text style, \TeX\ normally places limits after a large operator.
%This command tells \TeX\ to place
%limits above and below a large operator rather than after it.
\begindesc
\cts limits {}
\explain
在文内样式中,\TeX\ 通常将极限放在巨算符后边。
此命令让 \TeX\ 将极限放在巨算符的上边和下边,而不是在后边。
%If you specify more than one of |\limits|, |\nolimits|,
%and |\display!-limits|, the last command rules.
如果你多次使用 |\limits|、|\nolimits| 或 |\display!-limits|,
仅最后一个命令生效。
%\example
%Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
%two elements.
%|
%\produces
%Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
%two elements.
%\endexample
%\enddesc
\example
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
two elements.
|
\produces
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
two elements.
\endexample
\enddesc
%\begindesc
%\cts nolimits {}
%\explain
%When it's in display
%style, \TeX\ normally places limits above and below a large operator.
%(The |\int| operator is an exception---\TeX\
%places limits for |\int| after the operator in all cases.)
%^^|\int//limits after|
%This command tells \TeX\ to place
%limits after a large operator rather than above and below it.
\begindesc
\cts nolimits {}
\explain
在陈列样式中,\TeX\ 通常将极限放在巨算符的上边和下边。%
(|\int| 算符是一个例外—— \TeX\ 总是将极限放在算符的后边。)%
^^|\int//极限放在后面|
此命令让 \TeX\ 将极限放在巨算符后边,而不是上边和下边。
%If you specify more than one of |\limits|, |\nolimits|,
%and |\display!-limits|, the last command rules.
如果你多次使用 |\limits|、|\nolimits| 或 |\display!-limits|,
仅最后一个命令生效。
%\example
%$$\bigcap\nolimits_{i=1}^Nq_i$$
%|
%\dproduces
%$$\bigcap\nolimits_{i=1}^Nq_i$$
%\endexample
%\enddesc
\example
$$\bigcap\nolimits_{i=1}^Nq_i$$
|
\dproduces
$$\bigcap\nolimits_{i=1}^Nq_i$$
\endexample
\enddesc
%\begindesc
%\cts displaylimits {}
%\explain
%This command tells \TeX\ to
%follow its normal rules for placement of limits:
%\olist\compact
%\li Limits on ^|\int| are placed after the operator.
%\li Limits on other large operators are placed after the
%operator in text style.
%\li Limits on other large operators are placed above and below the operator
%in display style.
%\endolist
%It's usually simpler to use |\limits| or |\nolimits|
%to produce a specific effect, but |\display!-limits| is sometimes
%useful in \minref{macro} definitions.
\begindesc
\cts displaylimits {}
\explain
此命令让 \TeX\ 按照通常方式放置极限:
\olist\compact
\li ^|\int| 算符的极限总放在算符后边。%
\footnote{译注:此处似乎有误,在 |\displaylimits| 下 ^|\int| 和其他算符应该有相同的表现。}
\li 在文内样式中,其他巨算符的极限放在算符的后边。
\li 在陈列样式中,其他巨算符的极限放在算符的上边和下边。
\endolist
用 |\limits| 或 |\nolimits| 来排印特定效果更为简单,
但 |\display!-limits| 在\minref{宏}定义中有时会用到。
%Note that \plainTeX\ defines ^|\int| as a macro that sets |\nolimits|,
%so |\int\displaylimits| in text style restores the |\limits|
%convention.
注意 \plainTeX\ 在定义 ^|\int| 时就带有 |\nolimits|,
因此文内样式的 |\int\displaylimits| 将恢复 |\limits| 约定。%
\footnote{译注:此处似乎有误,在文内样式中,|\int\displaylimits| 的极限应该还是在后边。}
%If you specify more than one of |\limits|, |\nolimits|,
%and |\display!-limits|, the last command rules.
如果你多次使用 |\limits|、|\nolimits| 或 |\display!-limits|,
仅最后一个命令生效。
%\example
%$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
%_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
%|
%\dproduces
%$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
%_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
\example
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
|
\dproduces
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
%\eix^^{operators//large}
%\endexample
%\enddesc
\eix^^{运算符//巨算符}
\endexample
\enddesc
%==========================================================================
%\subsection {Punctuation}
\subsection {标点}
%\begindesc
%\bix^^{punctuation in math formulas}
%\cts cdotp {}
%\cts ldotp {}
%\explain
%These two commands respectively produce a centered dot and a dot
%positioned on the \minref{baseline}. They are valid only in math
%\minref{mode}. \TeX\ treats them as punctuation, putting no extra space in
%front of them but a little extra space after them.
%In contrast, \TeX\ puts an equal amount of space on both sides
%of a centered dot generated by the ^|\cdot| command (\xref \cdot).
%\example
%$x \cdotp y \quad x \ldotp y \quad x \cdot y$
%|
%\produces
%$x \cdotp y \quad x \ldotp y \quad x \cdot y$
%\endexample
%\enddesc
\begindesc
\bix^^{数学公式中的标点}
\cts cdotp {}
\cts ldotp {}
\explain
这两个命令分别排印居中的圆点和在\minref{基线}上的圆点。
它们仅可用于数学\minref{模式}中。
\TeX\ 将它们视为标点,在前面不留间隔而在后面留下一点间隔。
与此相反,对于用 ^|\cdot| 命令(\xref\cdot )生成的居中圆点,
\TeX\ 在其两侧留下相同大小的间隔。
\example
$x \cdotp y \quad x \ldotp y \quad x \cdot y$
|
\produces
$x \cdotp y \quad x \ldotp y \quad x \cdot y$
\endexample
\enddesc
%\begindesc
%\cts colon {}
%\explain
%This command produces a colon punctation symbol.
%It is valid only in math mode.
%The difference between |\colon| and the colon character (|:|) is that
%`|:|' is an operator, so \TeX\ puts extra space to the left of it whereas
%it doesn't put extra space to the left of |\colon|.
%\example
%$f \colon t \quad f : t$
%|
%\produces
%$f \colon t \quad f : t$
\begindesc
\cts colon {}
\explain
此命令排印一个冒号标点,它只能用在数学模式中。
冒号标点 |\colon| 和冒号字符(|:|)的区别在于,
`|:|' 是一个运算符,因此 \TeX\ 在其左侧留下额外间隔,
然而在 |\colon| 左侧却不留额外间隔。
\example
$f \colon t \quad f : t$
|
\produces
$f \colon t \quad f : t$
%\eix^^{punctuation in math formulas}
%\endexample
%\enddesc
\eix^^{数学公式中的标点}
\endexample
\enddesc
%==========================================================================
%\secondprinting{\vfill\eject\null\vglue-30pt\vskip0pt}
%\section {Superscripts and subscripts}
\section {上标和下标}
%\begindesc
%\margin{Two groups of commands have been combined here.}
%\bix^^{superscripts}
%\bix^^{subscripts}
%\secondprinting{\vglue-12pt}
%\makecolumns 4/2:
%\easy\ctsact _ \xrdef{@underscore} {\<argument>}
%\cts sb {\<argument>}
%\ctsact ^ \xrdef{@hat} {\<argument>}
%\cts sp {\<argument>}
%\secondprinting{\vglue-4pt}
%\explain
%The commands in each column are equivalent. The commands in the first
%column typeset \<argument> as a subscript, and those in the second
%column typeset \<argument> as a superscript. The |\sb| and |\sp|
%commands are mainly useful if you're working on a terminal that lacks an
%underscore or caret, or if you've redefined `|_|' or `|^|' and need
%access to the original definition. These commands are also used for
%setting lower and upper limits on summations and integrals. ^^{lower
%limits} ^^{upper limits}
\begindesc
\margin{Two groups of commands have been combined here.}
\bix^^{上标}
\bix^^{下标}
\secondprinting{\vglue-12pt}
\makecolumns 4/2:
\easy\ctsact _ \xrdef{@underscore} {\<argument>}
\cts sb {\<argument>}
\ctsact ^ \xrdef{@hat} {\<argument>}
\cts sp {\<argument>}
\secondprinting{\vglue-4pt}
\explain
各栏的两个命令都是等价的。第一栏的命令将 \<argument> 排版为下标,
而第二栏的命令将 \<argument> 排版为上标。
|\sb| 和 |\sp| 命令主要用于无法使用下划线和插入符的终端中,
或者用在重新定义了 `|_|' or `|^|' 但需要其原始定义的情况下。
这些命令也用于设定求和号和积分号的下极限和上极限。
^^{下极限} ^^{上极限}
%If a subscript or superscript is not a single \minref{token}, you need
%to enclose it in a \minref{group}. \TeX\ does not prioritize subscripts
%or superscripts, so it will reject formulas such as |a_i_j|, |a^i^j|, or
%|a^i_j|.
如果下标或上标不是单个\minref{记号},你需要将它放在\minref{编组}中。
\TeX\ 并不处理下标和上标的优先级,
因此它将拒绝类似 |a_i_j|、|a^i^j| 或 |a^i_j| 的公式。
%Subscripts and superscripts are normally typeset in ^{script style}, or
%in ^{scriptscript style} if they are second-order, e.g., a subscript on
%a subscript or a superscript on a a subscript. You can set \emph{any}
%text in a math formula in a script or scriptscript \minref{style} with
%the ^|\scriptstyle| and ^|\scriptscriptstyle| commands (\xref
%\scriptscriptstyle).
下标和上标排版时通常用^{标号样式},或者^{小标号样式},
如果它们是二阶标号,比如下标中的下标或下标中的上标。
利用 ^|\scriptstyle| 和 ^|\scriptscriptstyle| 命令(\xref\scriptscriptstyle ),
你可以将数学公式的\emph{任何}文本设为标号或小标号\minref{样式}。
%You can apply a subscript or superscript to any of the commands that
%produce named mathematical functions in roman type (see
%\xref{namedfns}). In certain cases (again, see \xref{namedfns}) the
%subscript or superscript appears directly above or under the function
%name as shown in the examples of ^|\lim| and ^|\det| below.
对任何以罗马字体排印命名数学函数(见\xref{namedfns})的命令,
你都可以给它添加下标和上标。
在某些情形中(同样见\xref{namedfns}),
下标和上标分别出现在函数名的下边和上边,
如下面例子中的 ^|\lim| 和 ^|\det| 所示。
%\example
%$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
% \quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
% \int_0^\infty{f(x)\,dx}$
%$$\lim_{x\leftarrow0}f(x)\qquad\det^{z\in A}\qquad\sin^2t$$
%|
%\produces
%\secondprinting{\divide\abovedisplayskip by 2}
%$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
% \quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
% \int_0^\infty{f(x)\,dx}$
%$$\lim_{x \leftarrow 0} f(x)\qquad
% \det^{z \in A}\qquad \sin^2 t$$
\example
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
\quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
\int_0^\infty{f(x)\,dx}$
$$\lim_{x\leftarrow0}f(x)\qquad\det^{z\in A}\qquad\sin^2t$$
|
\produces
%\secondprinting{\divide\abovedisplayskip by 2}
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
\quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
\int_0^\infty{f(x)\,dx}$
$$\lim_{x \leftarrow 0} f(x)\qquad
\det^{z \in A}\qquad \sin^2 t$$
%\eix^^{superscripts}
%\eix^^{subscripts}
%\endexample
%\enddesc
\eix^^{上标}
\eix^^{下标}
\endexample
\enddesc
%\secondprinting{\vfill\eject}
%==========================================================================
%\subsection {Selecting and using styles}
\subsection {选用样式}
%\begindesc
%\bix^^{styles}
%\cts textstyle {}
%\cts scriptstyle {}
%\cts scriptscriptstyle {}
%\cts displaystyle {}
%\explain
%^^{text style} ^^{script style} ^^{scriptscript style} ^^{display style}
%These commands override the normal \minref{style} and hence the
%font that \TeX\ uses in setting a formula. Like
%font-setting commands such as |\it|, they are in
%effect until the end of the group containing them.
%They are useful when \TeX's choice of style is inappropriate for the formula
%you happen to be setting.
%\example
%$t+{\scriptstyle t + {\scriptscriptstyle t}}$
%|
%\produces
%$t+{\scriptstyle t + {\scriptscriptstyle t}}$
%\endexample
%\enddesc
\begindesc
\bix^^{样式}
\cts textstyle {}
\cts scriptstyle {}
\cts scriptscriptstyle {}
\cts displaystyle {}
\explain
^^{文本样式} ^^{标号样式} ^^{小标号样式} ^^{陈列样式}
这些命令覆盖 \TeX\ 排版公式时通常使用的\minref{样式}及其字体。
如同类似 |\it| 的字体设置命令,它们在其所在编组结束前一直有效。
当 \TeX\ 给你要排版的公式选用了不合适的样式时,你可以使用这些命令。
\example
$t+{\scriptstyle t + {\scriptscriptstyle t}}$
|
\produces
$t+{\scriptstyle t + {\scriptscriptstyle t}}$
\endexample
\enddesc
%\begindesc
%\cts mathchoice {%
% \rqbraces{\<math$_1$>}
% \rqbraces{\<math$_2$>}
% \rqbraces{\<math$_3$>}
% \rqbraces{\<math$_4$>}}
%\explain
%This command tells \TeX\ to typeset one of the subformulas
%\<math$_1$>, \<math$_2$>, \<math$_3$>, or \<math$_4$>, making its choice
%according to the current \minref{style}.
%That is, if \TeX\ is in
%display style it sets the |\mathchoice| as \<math$_1$>; in text style it sets
%it as \<math$_2$>; in script style it sets it as \<math$_3$>;
%and in scriptscript style it sets it as \<math$_4$>.
%\example
%\def\mc{{\mathchoice{D}{T}{S}{SS}}}
%The strange formula $\mc_{\mc_\mc}$ illustrates a
%mathchoice.
%|
%\produces
%\def\mc{{\mathchoice{D}{T}{S}{SS}}}
%The strange formula $\mc_{\mc_\mc}$ illustrates a
%mathchoice.
%\endexample
%\enddesc
\begindesc
\cts mathchoice {%
\rqbraces{\<math$_1$>}
\rqbraces{\<math$_2$>}
\rqbraces{\<math$_3$>}
\rqbraces{\<math$_4$>}}
\explain
此命令让 \TeX\ 根据当前\minref{样式}选择并排版其中一个子公式
\<math$_1$>、\<math$_2$>、\<math$_3$> 或 \<math$_4$>。
也就是说,如果在陈列样式中,\TeX\ 将 |\mathchoice| 排版为 \<math$_1$>;
在文本样式中排版为 \<math$_2$>,在标号样式中排版为 \<math$_3$>;
而在小标号样式中排版为 \<math$_4$>。
\example
\def\mc{{\mathchoice{D}{T}{S}{SS}}}
The strange formula $\mc_{\mc_\mc}$ illustrates a
mathchoice.
|
\produces
\def\mc{{\mathchoice{D}{T}{S}{SS}}}
The strange formula $\mc_{\mc_\mc}$ illustrates a
mathchoice.
\endexample
\enddesc
%\begindesc
%\cts mathpalette {\<argument$_1$> \<argument$_2$>}
%\explain
%^^{math symbols}
%This command provides a convenient way of
%producing a math construct that works in all four \minref{style}s.
%To use it, you'll normally need to define an additional macro,
%which we'll call |\build|.
%The call on |\math!-palette| should then have the form
%|\mathpalette|\allowbreak|\build|\<argument>.
\begindesc
\cts mathpalette {\<argument$_1$> \<argument$_2$>}
\explain
^^{数学符号}
此命令提供一种生成适用于四种\minref{样式}的数学结构的简便方法。%
\footnote{译注:该宏定义为
|\def\mathpalette#1#2{\mathchoice{#1\displaystyle{#2}}|\break
|{#1\textstyle{#2}}{#1\scriptstyle{#2}}{#1\scriptscriptstyle{#2}}}|。}
要使用它,通常你需要定义一个额外的宏,假设我们称它为 |\build|。
调用 |\math!-palette| 就应该用
|\mathpalette|\allowbreak|\build|\<argument> 这种形式。
%|\build| tests what style \TeX\ is in and typesets \<argu\-ment> accordingly.
%It should be defined to have two parameters.
%When you call |\math!-palette|, it will in turn call |\build|,
%with |#1| being a
%command that selects the current style and |#2| being \<argument>.
%Thus, within the definition of |\build| you can typeset something
%in the current style by preceding it with `|#1|'.
%See \knuth{page~360} for examples of using |\mathpalette|
%and \knuth{page~151} for a further explanation of how it works.
|\build| 测试 \TeX\ 位于何种样式,并相应地排版 \<argu\-ment>。
它应该定义为有两个参数。
当你调用 |\math!-palette| 时,它以 |#1| 为选择样式的命令,
|#2| 为 \<argument> 转而调用 |\build|。
因此,在 |\build| 的定义中,
通过将某些东西放在 `|#1|' 前面,就可以用当前样式排版它。
在\knuth{第~360~页}中有如何使用 |\mathpalette| 的例子,
而在\knuth{第~151~页}中有它如何运作的进一步解释。
%\eix^^{styles}
%\enddesc
\eix^^{样式}
\enddesc
%==========================================================================
%\section {Compound symbols}
\section {复合符号}
%==========================================================================
%\subsection {Math accents}
\subsection {数学重音}
%\begindesc
%\xrdef{mathaccent}
%^^{accents}
%^^{math//accents}
%%
%\easy\ctsx acute {^{acute accent} as in $\acute x$}
%\ctsx b {^{bar-under accent} as in $\b x$}
%\ctsx bar {^{bar accent} as in $\bar x$}
%\ctsx breve {^{breve accent} as in $\breve x$}
%\ctsx check {^{check accent} as in $\check x$}
%\ctsx ddot {^{double dot accent} as in $\ddot x$}
%\ctsx dot {^{dot accent} as in $\dot x$}
%\ctsx grave {^{grave accent} as in $\grave x$}
%\ctsx hat {^{hat accent} as in $\hat x$}
%\ctsx widehat {^{wide hat accent} as in $\widehat {x+y}$}
%\ctsx tilde {^{tilde accent} as in $\tilde x$}
%\ctsx widetilde {^{wide tilde accent} as in $\widetilde {z+a}$}
%\ctsx vec {^{vector accent} as in $\vec x$}
%\explain
%These commands produce accent marks in math formulas. You'll ordinarily
%need to leave a space after any one of them.
%A wide accent can be applied to a multicharacter subformula;
%\TeX\ will center the accent over the subformula.
%The other accents are usefully applied only to a single character.
\begindesc
\xrdef{mathaccent}
^^{重音}
^^{数学//数学重音}
%
\easy\ctsx acute {^{锐音符},如同 $\acute x$}
\ctsx b {^{下线符},如同 $\b x$}
\ctsx bar {^{上线符},如同 $\bar x$}
\ctsx breve {^{短音符},如同 $\breve x$}
\ctsx check {^{抑扬符},如同 $\check x$}
\ctsx ddot {^{双点符},如同 $\ddot x$}
\ctsx dot {^{上点符},如同 $\dot x$}
\ctsx grave {^{钝音符},如同 $\grave x$}
\ctsx hat {^{尖角符},如同 $\hat x$}
\ctsx widehat {^{宽尖角符},如同 $\widehat {x+y}$}
\ctsx tilde {^{波浪符},如同 $\tilde x$}
\ctsx widetilde {^{宽波浪符},如同 $\widetilde {z+a}$}
\ctsx vec {^{向量符},如同 $\vec x$}
\explain
这些命令在数学公式上排印重音标记。你通常需要在它们后面留下空格。
宽重音可以应用到多字符子公式中;\TeX\ 将把重音放在子公式的中间。
其他重音仅在应用到单个字符时才有用。
%\example
%$\dot t^n \qquad \widetilde{v_1 + v_2}$
%|
%\produces
%$\dot t^n \qquad \widetilde{v_1 + v_2}$
%\endexample
\example
$\dot t^n \qquad \widetilde{v_1 + v_2}$
|
\produces
$\dot t^n \qquad \widetilde{v_1 + v_2}$
\endexample
%\begindesc
%\cts mathaccent {\<mathcode>}
%\explain
%This command tells \TeX\ to typeset a math accent
%whose family and character code are given by \<mathcode>. (\TeX\ ignores
%the class of the \minref{mathcode}.)
%See \knuth{Appendix~G} for the details of how \TeX\ positions such an accent.
%The usual way to use |\mathaccent| is to put it in a macro definition
%that gives a name to a math accent.
%\example
%\def\acute{\mathaccent "7013}
%|
%\endexample
%\enddesc
\begindesc
\cts mathaccent {\<mathcode>}
\explain
此命令让 \TeX\ 排版字体族和字符编码由 \<mathcode> 给出的数学重音。%
(\TeX\ 忽略\minref{数学码}中的类。)
请参阅\knuth{附录~G}对 \TeX\ 如何放置该重音的详细介绍。
经常将 |\mathaccent| 放在宏定义中,以给数学重音一个名称。
\example
\def\acute{\mathaccent "7013}
|
\endexample
\enddesc
%\see ``Accents'' (\xref {accents}).
%\enddesc
\see ``Accents''(\xref {accents})。
\enddesc
%==========================================================================
%\subsection {Fractions and other stacking operations}
\subsection {分式和其他堆叠运算}
%\begindesc
%\bix^^{fractions}
%\bix^^{stacking subformulas}
%\easy\cts over {}
%\cts atop {}
%\cts above {\<dimen>}
%\cts choose {}
%\cts brace {}
%\cts brack {}
%\explain
%{\def\fri{\<formula$_1$>}%
%\def\frii{\<formula$_2$>}%
%These commands stack one subformula on top of another one. We will explain how
%|\over| works, and then relate the other commands to it.
\begindesc
\bix^^{分式}
\bix^^{堆叠子公式}
\easy\cts over {}
\cts atop {}
\cts above {\<dimen>}
\cts choose {}
\cts brace {}
\cts brack {}
\explain
{\def\fri{\<formula$_1$>}%
\def\frii{\<formula$_2$>}%
这些命令将一个子公式堆放在另一个子公式之上。
我们将解释 |\over| 如何作用,然后说明其他命令与它的关系。
%|\over| is the command that you'd normally use to produce a fraction.
%^^{fractions//produced by \b\tt\\over\e}
%If you write something in one of the following forms:
%\csdisplay
%$$!fri\over!frii$$
%$!fri\over!frii$
%\left!<delim>!fri\over!frii\right!<delim>
%{!fri\over!frii}
%|
%you'll get a fraction with numerator \fri\ and denominator \<for\-mu\-la$_2$>,
%i.e., \fri\ over \frii.
%In the first three of
%these forms the |\over| is not implicitly contained in a group;
%it absorbs
%everything to its left and to its right until it comes to a boundary,
%namely, the beginning or end of a group.
|\over| 命令通常用于排印分式。
^^{分式//用 \b\tt\\over\e 生成}
如果你按下面几种形式之一撰写:
\csdisplay
$$!fri\over!frii$$
$!fri\over!frii$
\left!<delim>!fri\over!frii\right!<delim>
{!fri\over!frii}
|
你将得到分子为 \fri\ 分母为 \<for\-mu\-la$_2$> 的分式,
即 \fri\ 除以 \frii 。
在前面三种形式中,|\over| 非显式地包含在一个编组中;
它吸收左边和右边的内容直到遇到边界,即编组的开头和结尾。
%You can't use |\over| or any of the other commands in this group
%more than once in a formula.
%Thus a formula such as:
%\csdisplay
%$$a \over n \choose k$$
%|
%isn't legal.
%This is not a severe restriction because
%you can always enclose one of the commands in braces.
%The reason for the restriction is that if you had two of these commands
%in a single formula, \TeX\ wouldn't know how to group them.
你不可以在一个公式中多次使用 |\over| 或这批命令的其他命令。
因此下面的公式:
\csdisplay
$$a \over n \choose k$$
|
是不合法的。这不是什么严重的限制,因为你总可以将其中一个命令放在花括号中。
作此限制的原因是,如果你把这些命令的其中两个放在同一个公式中,
\TeX\ 将不知道如何划分它们。
%The other commands are similar to |\over|, with the following exceptions:
%\ulist\compact
%\li |\atop| leaves out the fraction bar.
%\li |\above| provides a fraction bar of thickness \<dimen>.
%\li |\choose|
%leaves out the fraction bar and encloses the construct in parentheses.
%(It's called ``choose'' because $n \choose k$ is the notation for the
%number of ways of choosing $k$ things out of $n$ things.)
%\li |\brace| leaves out the fraction bar and encloses the construct in braces.
%\li |\brack|
%leaves out the fraction bar and encloses the construct in brackets.
%\endulist
%}%
%\example
%$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
% {n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
% {n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
%|
%\dproduces
%$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
% {n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
% {n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
%\endexample
%\enddesc
其他命令与 |\over| 类似,但有所不同:
\ulist\compact
\li |\atop| 去掉分式的横线。
\li |\above| 给出厚度为 \<dimen> 的分式横线。
\li |\choose| 去掉分式横线,并将结构放在圆括号中。%
(称它为``选择'',
是因为 $n \choose k$ 表示从 $n$ 个东西中任取 $k$ 个的所有选取方式的数目。)%
\li |\brace| 去掉分式横线,并将结构放在花括号中。
\li |\brack| 去掉分式横线,并将结构放在方括号中。
\endulist
}%
\example
$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
{n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
{n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
|
\dproduces
$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
{n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
{n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
\endexample
\enddesc
%\begindesc
%\cts overwithdelims {\<delim$_1$> \<delim$_2$>}
%\cts atopwithdelims {\<delim$_1$> \<delim$_2$>}
%\cts abovewithdelims {\<delim$_1$> \<delim$_2$> \<dimen>}
%\explain
%Each of these commands stacks one subformula on top of another one and
%surrounds the entire construct with \<delim$_1$> on the left and
%\<delim$_2$> on the right. These commands follow the same rules as
%|\over|, |\atop|, and |\above|. The \<dimen> in |\abovewithdelims|
%specifies the thickness of the fraction bar.
%\example
%$${m \overwithdelims () n}\qquad
% {m \atopwithdelims !|!| n}\qquad
% {m \abovewithdelims \{\} 2pt n}$$
%|
%\dproduces
%$${m \overwithdelims () n}\qquad
% {m \atopwithdelims || n}\qquad
% {m \abovewithdelims \{\} 2pt n}$$
%\endexample
%\enddesc
\begindesc
\cts overwithdelims {\<delim$_1$> \<delim$_2$>}
\cts atopwithdelims {\<delim$_1$> \<delim$_2$>}
\cts abovewithdelims {\<delim$_1$> \<delim$_2$> \<dimen>}
\explain
这里的每个命令都将一个子公式堆放在另一个子公式之上,
并将整个结构的左边用 \<delim$_1$>,右边用 \<delim$_2$> 包围。
这些命令遵循与 |\over|、|\atop| 和 |\above| 相同的规则。
|\abovewithdelims| 后面的 \<dimen> 指定分式横线的厚度。
\example
$${m \overwithdelims () n}\qquad
{m \atopwithdelims !|!| n}\qquad
{m \abovewithdelims \{\} 2pt n}$$
|
\dproduces
$${m \overwithdelims () n}\qquad
{m \atopwithdelims || n}\qquad
{m \abovewithdelims \{\} 2pt n}$$
\endexample
\enddesc
%\begindesc
%\cts cases {}
%\explain
%^^{combinations, notation for}
%This command produces the mathematical form that denotes a choice among
%several cases.
%Each case has two parts, separated by `|&|'.
%\TeX\ treats the first part as a math formula
%and the second part as ordinary text. Each
%case must be followed by |\cr|.
\begindesc
\cts cases {}
\explain
^^{组合数记法}
此命令排印一个表示从多个情形中选择的数学形式。
每种情形由两部分组成,两者以 `|&|' 分隔。
\TeX\ 将第一部分视为数学公式,第二部分视为普通文本。
每个情形之后必须加上 |\cr|。
%\example
%$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
% f(y,x),&if $x>y$\cr
% 0,&otherwise.\cr}$$
%|
%\dproduces
%$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
% f(y,x),&if $x>y$\cr
% 0,&otherwise.\cr}$$
%\endexample
%\enddesc
\example
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
f(y,x),&if $x>y$\cr
0,&otherwise.\cr}$$
|
\dproduces
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
f(y,x),&if $x>y$\cr
0,&otherwise.\cr}$$
\endexample
\enddesc
%\begindesc
%\cts underbrace {\<argument>}
%\cts overbrace {\<argument>}
%\cts underline {\<argument>}
%\cts overline {\<argument>}
%\cts overleftarrow {\<argument>}
%\cts overrightarrow {\<argument>}
%\explain
%These commands place extensible ^{braces}, lines, or ^{arrows}
%over or under the subformula given by \<argument>.
%\TeX\ will make these constructs as wide as they need to be for
%the context.
%When \TeX\ produces the extended braces, lines, or arrows, it considers
%only the dimensions of the \minref{box} containing \<argument>.
%If you use more than one of these commands in a single formula, the
%braces, lines, or arrows they produce
%may not line up properly with each other.
%You can use the |\mathstrut| command (\xref \mathstrut)
%to overcome this difficulty.
%\example
%$$\displaylines{
%\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
%\underline{x \circ y}\qquad \overline{x \circ y}\qquad
%\overleftarrow{x \circ y}\qquad
%\overrightarrow{x \circ y}\cr
%{\overline r + \overline t}\qquad
%{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
%}$$
%|
%\dproduces
%$$\displaylines{
%\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
%\underline{x \circ y}\qquad \overline{x \circ y}\qquad
%\overleftarrow{x \circ y}\qquad
%\overrightarrow{x \circ y}\cr
%{\overline r + \overline t}\qquad
%{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
%}$$
%\endexample
%\enddesc
\begindesc
\cts underbrace {\<argument>}
\cts overbrace {\<argument>}
\cts underline {\<argument>}
\cts overline {\<argument>}
\cts overleftarrow {\<argument>}
\cts overrightarrow {\<argument>}
\explain
这些命令将可伸长的^{花括号}、横线或^{箭头}%
放在由 \<argument> 给出的子公式的上边或下边。
\TeX\ 将让这些结构足够宽以适应内容。
当 \TeX\ 排印可伸长的花括号、横线或箭头时,
它只考虑包含 \<argument> 的 \minref{盒子}的尺寸。
如果你在一个公式中使用这些命令中的两个以上,
其中排印的花括号、横线或箭头之间可能无法恰当地对齐。
你可以使用 |\mathstrut| 命令(\xref\mathstrut )克服此困难。
\example
$$\displaylines{
\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
\underline{x \circ y}\qquad \overline{x \circ y}\qquad
\overleftarrow{x \circ y}\qquad
\overrightarrow{x \circ y}\cr
{\overline r + \overline t}\qquad
{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
}$$
|
\dproduces
$$\displaylines{
\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
\underline{x \circ y}\qquad \overline{x \circ y}\qquad
\overleftarrow{x \circ y}\qquad
\overrightarrow{x \circ y}\cr
{\overline r + \overline t}\qquad
{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
}$$
\endexample
\enddesc
%\begindesc\secondprinting{\vglue-.5\baselineskip\vskip0pt}
%\cts buildrel {\<formula> {\bt \\over} \<relation>}
%\explain
%^^{relations//putting formulas above}
%This command produces a \minref{box} in which \<formula>
%is placed on top of \<relation>. \TeX\ treats the result as a relation
%for spacing purposes \seeconcept{class}.
%\example
%$\buildrel \rm def \over \equiv$
%|
%\produces
%$\buildrel \rm def \over \equiv$
\begindesc%\secondprinting{\vglue-.5\baselineskip\vskip0pt}
\cts buildrel {\<formula> {\bt \\over} \<relation>}
\explain
^^{关系符//将公式放在其上}
此命令将 \<formula> 所在的\minref{盒子}放在 \<relation> 上边。
\TeX\ 处理间隔时将结果视为一个关系符\seeconcept{类}。
\example
$\buildrel \rm def \over \equiv$
|
\produces
$\buildrel \rm def \over \equiv$
%\eix^^{fractions}
%\eix^^{stacking subformulas}
%\endexample
%\enddesc
\eix^^{分式}
\eix^^{堆叠子公式}
\endexample
\enddesc
%\secondprinting{\vfill\eject}
%==========================================================================
%\subsection {Dots}
\subsection {圆点}
%\begindesc
%\bix^^{dots}
%\easy\cts ldots {}
%\cts cdots {}
%\explain
%These commands produce three ^{dots} in a row. For |\ldots|, the dots
%are on the baseline; for |\cdots|, the dots are centered with respect to
%the axis (see the explanation of |\vcenter|, \xref\vcenter).
\begindesc
\bix^^{圆点}
\easy\cts ldots {}
\cts cdots {}
\explain
这两个命令都排印三个一排的^{圆点}。对于 |\ldots|,
圆点放在基线上;对于 |\cdots|,圆点放在中轴线上%
(见 \xref\vcenter 对 |\vcenter| 的解释)。
%\example
%$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
%|
%\produces
%$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
%\endexample
%\enddesc
\example
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
|
\produces
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
\endexample
\enddesc
%\begindesc
%\easy\cts vdots {}
%\explain
%This command produces three vertical dots.
%\example
%$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
% \noalign{\kern -4pt}%
% &\phantom{a}\vdots\cr % moves the dots right a bit
% f(\alpha_k)& = f(\beta_k)\cr}$$
%|
%\dproduces
%$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
% \noalign{\kern -4pt}%
% &\phantom{a}\vdots\cr
% f(\alpha_k)& = f(\beta_k)\cr}$$
%\endexample
%\enddesc
\begindesc
\easy\cts vdots {}
\explain
此命令排印三个竖直的圆点。
\example
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
\noalign{\kern -4pt}%
&\phantom{a}\vdots\cr % moves the dots right a bit
f(\alpha_k)& = f(\beta_k)\cr}$$
|
\dproduces
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
\noalign{\kern -4pt}%
&\phantom{a}\vdots\cr
f(\alpha_k)& = f(\beta_k)\cr}$$
\endexample
\enddesc
%\begindesc
%\cts ddots {}
%\explain
%This command produces three dots on a diagonal.
%Its most common use is to indicate repetition along the diagonal of a matrix.
%\example
%$$\pmatrix{0&\ldots&0\cr
% \vdots&\ddots&\vdots\cr
% 0&\ldots&0\cr}$$
%|
%\dproduces
%$$\pmatrix{0&\ldots&0\cr
% \vdots&\ddots&\vdots\cr
% 0&\ldots&0\cr}$$
\begindesc
\cts ddots {}
\explain
此命令排印斜线上的三个圆点。它常用于表示沿矩阵对角线的重复。
\example
$$\pmatrix{0&\ldots&0\cr
\vdots&\ddots&\vdots\cr
0&\ldots&0\cr}$$
|
\dproduces
$$\pmatrix{0&\ldots&0\cr
\vdots&\ddots&\vdots\cr
0&\ldots&0\cr}$$
%\eix^^{dots}
%\endexample
%\enddesc
\eix^^{圆点}
\endexample
\enddesc
%\see |\dots| \ctsref\dots.
\see |\dots|\ctsref\dots 。
%==========================================================================
%\subsection {Delimiters}
\subsection {定界符}
%\begindesc
%\bix^^{delimiters}
%%
%\cts lgroup {}
%\cts rgroup {}
%\explain
%These commands produce large left and right ^{parentheses}
%that are defined as opening and closing \minref{delimiter}s.
%The smallest available size for these delimiters is |\Big|.
%If you use smaller sizes, you'll get weird characters.
%\example
%$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
%|
%\dproduces
%$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
%\endexample
%\enddesc
\begindesc
\bix^^{定界符}
%
\cts lgroup {}
\cts rgroup {}
\explain
这两个命令排印大号的左和右^{圆括号},
它们分别作为开定界符和闭\minref{定界符}。
这两个定界符的最小可用尺寸为 |\Big|。
如果使用更小的尺寸,你将得到奇怪的字符。
\example
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
|
\dproduces
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
\endexample
\enddesc
%\begindesc
%\margin{{\tt\\vert} and {\tt\\Vert} were explained elsewhere.}
%\easy\cts left {}
%\cts right {}
%\explain
%These commands must be used together in the pattern:
%\display
%{{\bt \\left} \<delim$_1$> \<subformula> {\bt \\right} \<delim$_2$>}
%This construct causes \TeX\ to produce \<subformula>,
%enclosed in the \minref{delimiter}s \<delim$_1$> and \<delim$_2$>.
%The vertical size of the delimiter is adjusted to fit the
%vertical size (height plus depth) of \<subformula>. \<delim$_1$> and
%\<delim$_2$> need not correspond.
%For instance, you could use `|]|' as a left delimiter
%and `|(|' as a right delimiter in a single use of |\left|
%and |\right|.
\begindesc
\margin{{\tt\\vert} and {\tt\\Vert} were explained elsewhere.}
\easy\cts left {}
\cts right {}
\explain
这两个命令必须按照下面模式一起使用:
\display
{{\bt \\left} \<delim$_1$> \<subformula> {\bt \\right} \<delim$_2$>}
这个构造将让 \TeX\ 排印 \<subformula>,
并用\minref{定界符} \<delim$_1$> 和 \<delim$_2$> 包围它。
\TeX\ 调整定界符的竖直尺寸以适应 \<subformula> 的竖直尺寸(高度加深度)。
\<delim$_1$> 和 \<delim$_2$> 不需要相对应。
举个例子,在使用 |\left| 和 |\right| 时,
你可以将 `|]|' 作为左定界符,而将 `|(|' 作为右定界符。
%|\left| and |\right| have the important property that they define a
%group, i.e., they act like left and right braces. This grouping
%property is particularly useful when you put ^|\over| (\xref{\over}) or
%a related command between |\left| and |\right|, since you don't need to
%put braces around the fraction constructed by |\over|.
|\left| 和 |\right| 有个重要性质是它们定义了一个编组,
即它们能够充当左和右花括号。
当你在|\left| 和 |\right| 之间放上 ^|\over|(\xref{\over})或其他相关命令时,
此编组性质就很有用,因为你无需在 |\over| 构造的分式两边加上花括号。
%If you want a left delimiter but not a right delimiter, you can use `|.|' in
%place of the delimiter you don't want and it will turn into empty space
%(of width ^|\nulldelimiterspace|).
%\example
%$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
% \qquad \left\uparrow q_1\atop q_2\right.$$
%|
%\dproduces
%$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
% \qquad \left\uparrow q_1\atop q_2\right.$$
%\endexample
%\enddesc
如果你需要左定界符但不需要右定界符,
你可以用 `|.|' 代替你不需要的定界符,
这样它就变成一个空白(宽度为 ^|\nulldelimiterspace|)。
\example
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
\qquad \left\uparrow q_1\atop q_2\right.$$
|
\dproduces
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
\qquad \left\uparrow q_1\atop q_2\right.$$
\endexample
\enddesc
%\begindesc
%\cts delimiter {\<number>}
%\explain
%This command produces a delimiter whose characteristics are given by
%\<number>. \<number> is normally written in hexadecimal notation.
%You can use the |\delimiter| command instead of a character in any context
%where \TeX\ expects a delimiter (although the command is rarely used
%outside of a macro definition).
%Suppose that \<number> is the hexadecimal number $cs_1s_2s_3
%l_1l_2l_3$. Then \TeX\ takes the delimiter to have
%\minref{class} $c$, small variant
%$s_1s_2s_3$, and large variant $l_1l_2l_3$. Here $s_1s_2s_3$ indicates
%the math character found in position $s_2s_3$ of family $s_1$, and
%similarly for $l_1l_2l_3$. This is the same convention as the one
%used for ^|\mathcode| (\xref\mathcode).
%\example
%\def\vert{\delimiter "026A30C} % As in plain TeX.
%|
%\endexample
%\enddesc
\begindesc
\cts delimiter {\<number>}
\explain
此命令排印用 \<number> 刻画其特性的定界符。\<number> 通常用十六进制表示。
在 \TeX\ 需要定界符的任何地方你都可以用 |\delimiter| 命令代替一个字符%
(尽管此命令很少在宏定义之外的地方使用)。
假设 \<number> 为十六进制数 $cs_1s_2s_3l_1l_2l_3$。
则 \TeX\ 知道该定界符属于第$c$\minref{类},
小号变体为 $s_1s_2s_3$, 而大号变体为 $l_1l_2l_3$。
这里 $s_1s_2s_3$ 表示第 $s_1$ 族位置 $s_2s_3$ 的数学字符,
$l_1l_2l_3$ 类似。这里使用与 ^|\mathcode|(\xref\mathcode )一样的约定。
\example
\def\vert{\delimiter "026A30C} % As in plain TeX.
|
\endexample
\enddesc
%\begindesc
%\margin{{\tt\\delcode} was explained in two places. The
%combined explanation is now in `General operations'.}
%\cts delimiterfactor {\param{number}}
%\cts delimitershortfall {\param{number}}
%\explain
%^^{delimiters//height of}
%These parameters together tell \TeX\ how the height of a \minref{delimiter}
%should be related to the vertical size of the subformula
%with which the delimiter is associated.
%|\delimiterfactor| gives the minimum
%ratio of the delimiter size to the vertical size of the subformula, and
%|\delimitershortfall| gives the maximum by which the height of the
%delimiter will be reduced from that of the vertical size of the subformula.
\begindesc
\margin{{\tt\\delcode} was explained in two places. The
combined explanation is now in `General operations'.}
\cts delimiterfactor {\param{number}}
\cts delimitershortfall {\param{number}}
\explain
^^{定界符//定界符高度}
这两个参数共同确定了\minref{定界符}高度与其中子公式的竖直尺寸的关系。
|\delimiterfactor| 给出定界符高度相对子公式竖直尺寸的最小比例,
而 |\delimitershortfall| 给出定界符高度相对子公式竖直尺寸的最大差距。
%Suppose that the \minref{box} containing the subformula
%has height $h$ and depth $d$, and let $y=2\,\max(h,d)$.
%Let the value of |\delimiterfactor| be $f$ and the value of
%|\delimitershortfall| be $\delta$.
%Then \TeX\ takes the minimum delimiter size to be at least $y \cdot
%f/1000$ and at least $y-\delta$. In particular, if |\delimiterfactor|
%is exactly $1000$ then \TeX\ will try to make a delimiter at least as tall
%as the formula to which it is attached.
%See \knuth{page~152 and page~446 (Rule 19)}
%for the exact details of how \TeX\ uses these parameters.
%\PlainTeX\ sets |\delimiter!-factor| to $901$ and
%|\delimiter!-shortfall| to |5pt|.
%\enddesc
假设包含子公式的\minref{盒子}的高度为 $h$ 深度为 $d$,
且令 $y=2\,\max(h,d)$。
设 |\delimiterfactor| 的值为 $f$,|\delimitershortfall| 的值为 $\delta$。
则 \TeX\ 选取的定界符高度至少为 $y \cdot f/1000$,且至少为 $y-\delta$。
特别地,如果 |\delimiterfactor| 恰好为 $1000$,
则 \TeX\ 将试着生成一个至少和其中的子公式一样高的定界符。
见\knuth{第~152~页和第~446~页(规则19)}中 \TeX\ 如何使用这些参数的细节。
\PlainTeX\ 设定 |\delimiter!-factor| 为 $901$,
|\delimiter!-shortfall| 为 |5pt|。
\enddesc
%\see |\delcode| (\xref\delcode), |\vert|, |\Vert|,
%and |\backslash| (\xref\vert).
%\eix^^{delimiters}
\see |\delcode|(\xref\delcode )、|\vert|、|\Vert| 和 |\backslash|(\xref\vert )。
\eix^^{定界符}
%==========================================================================
%\subsection {Matrices}
\subsection {矩阵}
%\begindesc
%\cts matrix
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\cts pmatrix
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\cts bordermatrix
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\explain
%Each of these three commands produces a ^{matrix}.
%The elements of each row of the input matrix
%are separated by `|&|' and each row in turn is ended
%by |\cr|.
%(This is the same form that is used for an
%\minref{alignment}.)
%The commands differ in the following ways:
%\ulist\compact
%\li |\matrix| produces a matrix without any surrounding or inserted
%\minref{delimiter}s.
%\li |\pmatrix| produces a matrix surrounded by parentheses.
%\li |\bordermatrix| produces a matrix in which the first row and the first
%column are treated as labels. (The first element of the first row is
%usually left blank.) The rest of the matrix is enclosed in
%parentheses.
%\endulist
%\TeX\ can make the parentheses for |\pmatrix| and |\bordermatrix| as large as
%they need to be by inserting vertical extensions. If you want a matrix
%to be surrounded by delimiters other than parentheses, you should use
%|\matrix| in conjunction with |\left| and |\right| (\xref \left).
\begindesc
\cts matrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts pmatrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts bordermatrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\explain
这三个命令每个都排印一个^{矩阵},
输入矩阵时各行的元素之间用 `|&|' 分隔,而各行用 |\cr| 结尾。%
(这里使用与\minref{阵列}一样的形式。)%
这些命令之间的区别如下:
\ulist\compact
\li |\matrix| 排印一个四周空白不带\minref{定界符}的矩阵。
\li |\pmatrix| 排印一个两边带圆括号的矩阵。
\li |\bordermatrix| 排印一个将第一行和第一列视为标号的矩阵。%
(第一行的第一个元素通常为空白。)%
矩阵的其他元素被圆括号包含。
\endulist
通过增加竖直延伸,\TeX\ 能够为 |\pmatrix| 和 |\bordermatrix| 制作足够大的圆括号。
如果你需要用不同于圆括号的定界符包围矩阵,你应当将
|\matrix| 与 |\left| 和 |\right|(\xref\left )合起来使用。
%\example
%$$\displaylines{
% \matrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\qquad
%\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\right\}\cr
%\pmatrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\qquad
%\bordermatrix{&c_1&c_2&c_3\cr
% r_1&t_{11}&t_{12}&t_{13}\cr
% r_2&t_{21}&t_{22}&t_{23}\cr
% r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
%|
%\dproduces
%$$\displaylines{
% \matrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\qquad
%\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\right\}\cr
%\pmatrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\qquad
%\bordermatrix{&c_1&c_2&c_3\cr
% r_1&t_{11}&t_{12}&t_{13}\cr
% r_2&t_{21}&t_{22}&t_{23}\cr
% r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
%\endexample
%\enddesc
\example
$$\displaylines{
\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\right\}\cr
\pmatrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\bordermatrix{&c_1&c_2&c_3\cr
r_1&t_{11}&t_{12}&t_{13}\cr
r_2&t_{21}&t_{22}&t_{23}\cr
r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
|
\dproduces
$$\displaylines{
\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\right\}\cr
\pmatrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\bordermatrix{&c_1&c_2&c_3\cr
r_1&t_{11}&t_{12}&t_{13}\cr
r_2&t_{21}&t_{22}&t_{23}\cr
r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
\endexample
\enddesc
%==========================================================================
%\subsection {Roots and radicals}
\subsection {根号与根数}
%\begindesc
%\easy\cts sqrt {\<argument>}
%\explain
%This command produces the notation for the square root of \<argument>.
%\example
%$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
%|
%\dproduces
%$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
%\endexample
%\enddesc
\begindesc
\easy\cts sqrt {\<argument>}
\explain
此命令排印 \<argument> 的平方根。
\example
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
|
\dproduces
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
\endexample
\enddesc
%\begindesc
%\easy\cts root {\<argument$_1$> {\bt \\of} \<argument$_2$>}
%\explain
%This command produces the notation for a root of \<argument$_2$>, where the
%root is given by \<argument$_1$>.
%\example
%$\root \alpha \of {r \cos \theta}$
%|
%\produces
%$\root \alpha \of {r \cos \theta}$
%\endexample
%\enddesc
\begindesc
\easy\cts root {\<argument$_1$> {\bt \\of} \<argument$_2$>}
\explain
此命令排印 \<argument$_2$> 的 \<argument$_1$> 次根号。
\example
$\root \alpha \of {r \cos \theta}$
|
\produces
$\root \alpha \of {r \cos \theta}$
\endexample
\enddesc
%\begindesc
%\cts radical {\<number>}
%\explain
%This command produces a radical sign
%whose characteristics are given by
%\<number>. It uses the same representation as the delimiter code
%^^{delimiter codes}
%in the ^|\delcode| command (\xref \delcode).
\begindesc
\cts radical {\<number>}
\explain
此命令排印用 \<number> 刻画其特性的根数符号。
它使用的定界码表示法与 ^|\delcode| 命令(\xref\delcode )的相同。
^^{定界码}
%\example
%\def\sqrt{\radical "270370} % as in plain TeX
%|
%\endexample
%\enddesc
\example
\def\sqrt{\radical "270370} % as in plain TeX
|
\endexample
\enddesc
%==========================================================================
%\section {Equation numbers}
\section {方程编号}
%\begindesc
%\easy\cts eqno {}
%\cts leqno {}
%\explain
%These commands attach an equation number to a displayed formula.
%|\eqno| puts the equation number on the right and |\leqno| puts it on
%the left.
%The commands must be given at the end of the formula.
%If you have a multiline display and you want to number more than one
%of the lines, use the |\eq!-alignno| or |\leq!-alignno| command
%(\xref \eqalignno).
\begindesc
\easy\cts eqno {}
\cts leqno {}
\explain
这两个命令给陈列公式加上方程编号。
|\eqno| 将编号放在右侧,而|\leqno| 将编号放在左侧。
这两个命令必须放在公式末尾。
如果你有个多行陈列公式,而你希望给不止一行编号,
你可以用 |\eq!-alignno| 或 |\leq!-alignno| 命令(\xref\eqalignno )。
%These commands are valid only in display math mode.
这两个命令只能在陈列数学模式中使用。
%\example
%$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
%|
%\produces
%$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
%\endexample
%\example
%$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
%|
%\produces
%\abovedisplayskip = -\baselineskip
%$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
%\endexample
%\enddesc
\example
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
|
\produces
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
\endexample
\example
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
\endexample
\enddesc
%==========================================================================
%\section {Multiline displays}
\section {多行陈列公式}
%\begindesc
%\bix^^{displays//multiline}
%\cts displaylines
% {{\bt \rqbraces{\<line>\ths\\cr$\ldots$\<line>\ths\\cr}}}
%\explain
%This command produces a multiline math display in which each line is
%centered independently of the other lines.
%You can use the |\noalign| command (\xref \noalign) to change the amount
%of space between two lines of a multiline display.
\begindesc
\bix^^{陈列公式//多行陈列公式}
\cts displaylines
{{\bt \rqbraces{\<line>\ths\\cr$\ldots$\<line>\ths\\cr}}}
\explain
此命令排印一个多行陈列公式,其中的各行独立地居中放置。
你可以使用 |\noalign| 命令(\xref\noalign )改变多行陈列公式中两行的间隔。
%If you want to attach equation numbers to some or all of the equations
%in a multiline math display, you should use |\eqalignno| or
%|\leqalignno|.
%\example
%$$\displaylines{(x+a)^2 = x^2+2ax+a^2\cr
% (x+a)(x-a) = x^2-a^2\cr}$$
%|
%\dproduces\centereddisplays
%$$\displaylines{
%(x+a)^2 = x^2+2ax+a^2\cr
%(x+a)(x-a) = x^2-a^2\cr
%}$$
%\endexample
%\enddesc
如果你希望给多行陈列公式的某个或某些方程添加编号,
你应当使用|\eqalignno| 或 |\leqalignno|。
\example
$$\displaylines{(x+a)^2 = x^2+2ax+a^2\cr
(x+a)(x-a) = x^2-a^2\cr}$$
|
\dproduces\centereddisplays
$$\displaylines{
(x+a)^2 = x^2+2ax+a^2\cr
(x+a)(x-a) = x^2-a^2\cr
}$$
\endexample
\enddesc
%\begindesc
%\cts eqalign {}
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\cts eqalignno {}
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\cts leqalignno {}
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\explain
%^^{equation numbers}
%These commands produce a multiline math display
%in which certain corresponding parts of the lines are lined up vertically.
%The |\eqalignno| and |\leqalignno| commands also let you
%provide equation numbers for some or all of the lines.
%|\eqalignno| puts the equation numbers on the right and
%|\leqalignno| puts them on the left.
\begindesc
\cts eqalign {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts eqalignno {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts leqalignno {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\explain
^^{公式编号}
这些命令排印一个多行陈列公式,其中某些行的对应部分竖直对齐。
|\eqalignno| 和 |\leqalignno| 命令还允许你给某个或某些行添加方程编号。
|\eqalignno| 将方程编号放在右侧,
而 |\leqalignno| 将编号放在左侧。
%Each line in the display is ended by |\cr|. Each of the parts to be aligned
%(most often an equals sign) is preceded by
%`|&|'. An `|&|' also precedes each equation number, which comes at the
%end of a line.
%You can put more than one of these commands in a single display in order
%to produce several groups of equations. In this case, only the rightmost
%or leftmost group can be produced by |\eqalignno| or |\leqalignno|.
陈列公式的每行用 |\cr| 结尾。
各行需要对齐的各部分(多半是等号)前面加上 `|&|'。
方程编号放在公式末尾,它的前面也要加上 `|&|'。
你可以在单个陈列公式中多次使用这些命令以排印多组方程。
在这种情形中,
只有最右边或最左边的那组方程可以用 |\eqalignno| 或 |\leqalignno| 编号。
%You can use the |\noalign| command (\xref \noalign) to change the amount
%of space between two lines of a multiline display.
%\example
%$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
% f_3(t) &= t^2-1\cr}\right\}
% \left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
%|
%\dproduces
%$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
% f_3(t) &= t^2-1\cr}\right\}
%\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
%\nextexample
%$$\eqalignno{
%\sigma^2&=E(x-\mu)^2&(12)\cr
% &={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
% &=E(x^2)-\mu^2\cr}$$
%|
%\produces
%\abovedisplayskip = -\baselineskip
%$$\eqalignno{
%\sigma^2&=E(x-\mu)^2&(12)\cr
% &={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
% &=E(x^2)-\mu^2\cr}$$
%\nextexample
%$$\leqalignno{
%\sigma^2&=E(x-\mu)^2&(6)\cr
% &=E(x^2)-\mu^2&(7)\cr}$$
%|
%\produces
%\abovedisplayskip = -\baselineskip
%$$\leqalignno{
%\sigma^2&=E(x-\mu)^2&(6)\cr
% &=E(x^2)-\mu^2&(7)\cr}$$
%\nextexample
%$$\eqalignno{
% &(x+a)^2 = x^2+2ax+a^2&(19)\cr
% &(x+a)(x-a) = x^2-a^2\cr}$$
%% same effect as \displaylines but with an equation number
%|
%\dproduces
%$$\eqalignno{
%&(x+a)^2 = x^2+2ax+a^2&(19)\cr
%&(x+a)(x-a) = x^2-a^2\cr
%}$$
%% same effect as \displaylines but with an equation number
你可以使用 |\noalign| 命令(\xref\noalign )改变多行陈列公式中两行的间隔。
\example
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
f_3(t) &= t^2-1\cr}\right\}
\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
|
\dproduces
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
f_3(t) &= t^2-1\cr}\right\}
\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
\nextexample
$$\eqalignno{
\sigma^2&=E(x-\mu)^2&(12)\cr
&={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
&=E(x^2)-\mu^2\cr}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\eqalignno{
\sigma^2&=E(x-\mu)^2&(12)\cr
&={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
&=E(x^2)-\mu^2\cr}$$
\nextexample
$$\leqalignno{
\sigma^2&=E(x-\mu)^2&(6)\cr
&=E(x^2)-\mu^2&(7)\cr}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\leqalignno{
\sigma^2&=E(x-\mu)^2&(6)\cr
&=E(x^2)-\mu^2&(7)\cr}$$
\nextexample
$$\eqalignno{
&(x+a)^2 = x^2+2ax+a^2&(19)\cr
&(x+a)(x-a) = x^2-a^2\cr}$$
% same effect as \displaylines but with an equation number
|
\dproduces
$$\eqalignno{
&(x+a)^2 = x^2+2ax+a^2&(19)\cr
&(x+a)(x-a) = x^2-a^2\cr
}$$
% same effect as \displaylines but with an equation number
%\eix^^{displays//multiline}
%\endexample
%\enddesc
\eix^^{陈列公式//多行陈列公式}
\endexample
\enddesc
%==========================================================================
%\section {Fonts in math formulas}
\section {数学公式字体}
%\begindesc
%^^{fonts}
%\xrdef{mathfonts}
%%
%\easy\ctsx cal {use calligraphic uppercase font}
%\ctsx mit {use math italic font}
%\ctsx oldstyle {use old style digit font}
%\explain
%These commands cause \TeX\ to typeset the following text in the
%specified font. You can only use them in \minref{math mode}.
%The |\mit| command is useful for producing slanted capital ^{Greek letters}.
%You can also use the commands given in
%\headcit{Selecting fonts}{selfont} to change fonts in math mode.
%\example
%${\cal XYZ} \quad
%{\mit AaBb\Gamma \Delta \Sigma} \quad
%{\oldstyle 0123456789}$
%|
%\produces
%${\cal XYZ} \quad
%{\mit AaBb\Gamma \Delta \Sigma} \quad
%{\oldstyle 0123456789}$
%\endexample
%\enddesc
\begindesc
^^{字体}
\xrdef{mathfonts}
%
\easy\ctsx cal {use calligraphic uppercase font}
\ctsx mit {use math italic font}
\ctsx oldstyle {use old style digit font}
\explain
这些命令让 \TeX\ 用指定的字体排版之后的文本。
你只能在\minref{数学模式}中使用它们。
|\mit| 命令可用于排印斜体大写^{希腊字母}。
你还可以用\headcit{选择字体}{selfont}中的那些命令改变数学模式中的字体。
\example
${\cal XYZ} \quad
{\mit AaBb\Gamma \Delta \Sigma} \quad
{\oldstyle 0123456789}$
|
\produces
${\cal XYZ} \quad
{\mit AaBb\Gamma \Delta \Sigma} \quad
{\oldstyle 0123456789}$
\endexample
\enddesc
%^^{type styles}
%\begindesc
%\ctsx itfam {family for italic type}
%\ctsx bffam {family for boldface type}
%\ctsx slfam {family for slanted type}
%\ctsx ttfam {family for typewriter type}
%\explain
%These commands define type families \minrefs{family} for use in
%\minref{math mode}. Their principal use is in defining the
%|\it|, |\bf|, |\sl|, and |\tt| commands so that they work in math mode.
%\enddesc
^^{字体风格}
\begindesc
\ctsx itfam {family for italic type}
\ctsx bffam {family for boldface type}
\ctsx slfam {family for slanted type}
\ctsx ttfam {family for typewriter type}
\explain
这些命令定义几种用于\minref{数学模式}的字体族\minrefs{族}。
它们主要用在 |\it|、|\bf|、|\sl| 和 |\tt| 命令的定义中,使这些命令能在数学模式中使用。
\enddesc
%\begindesc
%\cts fam {\param{number}}
%\explain
%When \TeX\ is in \minref{math mode}, it ordinarily typesets a character
%using the font family ^^{class} given in its \minref{mathcode}.
%^^{family//given by \b\tt\\fam\e}
%However, when \TeX\ is in math mode and encounters a character whose
%\minref{class} is $7$ (Variable), it typesets that character using
%the font \minref{family} given by the value of |\fam|, provided that the
%value of |\fam| is between $0$ and $15$.
%If the value of |\fam| isn't in that range, \TeX\ uses the family in
%the character's mathcode as in the ordinary case.
%\TeX\ sets |\fam| to $-1$ whenever it enters math mode.
%Outside of math mode, |\fam| has no effect.
\begindesc
\cts fam {\param{number}}
\explain
在\minref{数学模式}时,\TeX\ 通常用字符的\minref{数学码}指定的字体族排版该字符。
^^{类}^^{族//用 \b\tt\\fam\e 给出}
但是,如果 \TeX\ 在数学模式中遇到第 $7$ \minref{类}(变量)字符,
它将用由 |\fam| 的值给出的字体\minref{族}排版该字符,
只要 |\fam| 的值在 $0$ 和 $15$ 之间。
如果 |\fam| 的值不在该范围内,
\TeX\ 就像通常情形那样使用字符的数学码指定的字体族。
\TeX\ 在进入数学模式时设定 |\fam| 为 $-1$。
在数学模式之外,|\fam| 无任何效果。
%By assigning a value to
%|\fam| you can change the way that \TeX\ typesets ordinary
%characters such as variables.
%For instance, by setting |\fam| to |\ttfam|, you cause \TeX\ to typeset
%variables using a typewriter font.
%\PlainTeX\ defines |\tt| as a \minref{macro} that, among other things,
%sets |\fam| to |\ttfam|.
%\example
%\def\bf{\fam\bffam\tenbf} % As in plain TeX.
%|
%\endexample
%\enddesc
通过赋予 |\fam| 不同的值,你能让 \TeX\ 用不同方式排版普通字符,比如变量。
举个例子,设定了 |\fam| 为 |\ttfam| ,你可以让 \TeX\ 用打字机字体排版变量。
\PlainTeX\ 在定义 |\tt| \minref{宏}时,除了其他设定之外,
还设定 |\fam| 等于 |\ttfam|。
\example
\def\bf{\fam\bffam\tenbf} % As in plain TeX.
|
\endexample
\enddesc
%\begindesc
%\cts textfont {\<family>\param{fontname}}
%\cts scriptfont {\<family>\param{fontname}}
%\cts scriptscriptfont {\<family>\param{fontname}}
%\explain
%^^{text style}
%^^{script style}
%^^{scriptscript style}
%Each of these parameters specifies the font that \TeX\ is to use for
%typesetting the indicated \minref{style} in the indicated \minref{family}.
%These choices have no effect outside of \minref{math mode}.
%\example
%\scriptfont2 = \sevensy % As in plain TeX.
%|
%\endexample
%\enddesc
\begindesc
\cts textfont {\<family>\param{fontname}}
\cts scriptfont {\<family>\param{fontname}}
\cts scriptscriptfont {\<family>\param{fontname}}
\explain
^^{文本样式}
^^{标号样式}
^^{小标号样式}
这三个参数分别选择 \TeX\ 排版指定\minref{族}的指定\minref{样式}时所用的字体。
这些选择在\minref{数学模式}之外无任何效果。
\example
\scriptfont2 = \sevensy % As in plain TeX.
|
\endexample
\enddesc
%\see ``Type styles'' (\xref{seltype}).
\see ``字体风格''(\xref{seltype})。
%==========================================================================
%\section {Constructing math symbols}
\section {构造数学符号}
%==========================================================================
%\subsection {Making delimiters bigger}
\subsection {增大定界符}
%\begindesc
%\makecolumns 16/4:
%\easy\cts big {}
%\cts bigl {}
%\cts bigm {}
%\cts bigr {}
%\cts Big {}
%\cts Bigl {}
%\cts Bigm {}
%\cts Bigr {}
%\cts bigg {}
%\cts biggl {}
%\cts biggm {}
%\cts biggr {}
%\cts Bigg {}
%\cts Biggl {}
%\cts Biggm {}
%\cts Biggr {}
%\explain
%^^{delimiters//enlarging}
%These commands make \minref{delimiter}s bigger than their normal size.
%The commands in the four columns
%produce successively larger sizes. The difference between |\big|,
%|\bigl|, |\bigr|, and |bigm| has to do with the \minref{class} of the
%enlarged delimiter:
%\ulist\compact
%\li |\big| produces an ordinary symbol.
%\li |\bigl| produces an opening symbol.
%\li |\bigr| produces a closing symbol.
%\li |\bigm| produces a relation symbol.
%\endulist
%\noindent
%\TeX\ uses the class of a symbol in order to decide how much space to put
%around that symbol.
\begindesc
\makecolumns 16/4:
\easy\cts big {}
\cts bigl {}
\cts bigm {}
\cts bigr {}
\cts Big {}
\cts Bigl {}
\cts Bigm {}
\cts Bigr {}
\cts bigg {}
\cts biggl {}
\cts biggm {}
\cts biggr {}
\cts Bigg {}
\cts Biggl {}
\cts Biggm {}
\cts Biggr {}
\explain
^^{定界符//增大定界符}
这些命令让\minref{定界符}比它们的正常尺寸还大。
这四栏中的命令生成依次增大的尺寸。|\big|、|\bigl|、|\bigr|
和 |\bigm| 的区别在于增大的定界符所属的\minref{类}:
\ulist\compact
\li |\big| 生成一个普通符号。
\li |\bigl| 生成一个开符号。
\li |\bigr| 生成一个闭符号。
\li |\bigm| 生成一个关系符号。
\endulist
\noindent
\TeX\ 从字符所属的类确定要在该字符两边留下多大的空格。
%These commands, unlike |\left| and |\right|,
%do \emph{not} define a group.
%\example
%$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
% \biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
%[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
% \biggl[x\biggr] \quad \Biggl[x\Biggr]$$
%|
%\dproduces
%$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
%\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
%[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
%\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
%\endexample
%\enddesc
\example
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
|
\dproduces
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
\endexample
\enddesc
%==========================================================================
%\subsection {Parts of large symbols}
\subsection {大符号的一部分}
%\begindesc
%\cts downbracefill {}
%\cts upbracefill {}
%\explain
%These commands respectively produce upward-pointing
%and downward-pointing extensible ^{horizontal braces}. ^^{braces}
%\TeX\ will make the braces as wide as necessary.
%These commands
%are used in the definitions of ^|\overbrace| and ^|\underbrace|
%(\xref \overbrace).
%\example
%$$\hbox to 1in{\downbracefill} \quad
% \hbox to 1in{\upbracefill}$$
%|
%\dproduces
%$$\hbox to 1in{\downbracefill} \quad
% \hbox to 1in{\upbracefill}$$
%\endexample
%\enddesc
\begindesc
\cts downbracefill {}
\cts upbracefill {}
\explain
这两个命令分别排印朝上和朝下的可伸展^{水平花括号}。^^{花括号}
\TeX\ 将让花括号足够宽。
这两个命令用于定义 ^|\overbrace| 和 ^|\underbrace|(\xref\overbrace )。
\example
$$\hbox to 1in{\downbracefill} \quad
\hbox to 1in{\upbracefill}$$
|
\dproduces
$$\hbox to 1in{\downbracefill} \quad
\hbox to 1in{\upbracefill}$$
\endexample
\enddesc
%\begindesc
%\cts arrowvert {}
%\cts Arrowvert {}
%\cts lmoustache {}
%\cts rmoustache {}
%\cts bracevert {}
%\explain
%These commands produce portions of certain large
%delimiters
%^^{delimiters//parts of}
%and can themselves be used as delimiters.
%They refer to characters in the ^|cmex10| math font.
%\example
%$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
% \Big\lmoustache \cdots \Big\rmoustache \cdots
% \Big\bracevert \cdots$$
%|
%\dproduces
%$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
% \Big\lmoustache \cdots \Big\rmoustache \cdots
% \Big\bracevert \cdots$$
%\endexample
%\enddesc
\begindesc
\cts arrowvert {}
\cts Arrowvert {}
\cts lmoustache {}
\cts rmoustache {}
\cts bracevert {}
\explain
这些命令排印某些大定界符的一部分,
^^{定界符//定界符的一部分}
把它们也用作定界符。
它们取自 ^|cmex10| 数学字体中的字符。
\example
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
\Big\lmoustache \cdots \Big\rmoustache \cdots
\Big\bracevert \cdots$$
|
\dproduces
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
\Big\lmoustache \cdots \Big\rmoustache \cdots
\Big\bracevert \cdots$$
\endexample
\enddesc
%==========================================================================
%\section {Aligning parts of a formula}
\section {对齐部分公式}
%==========================================================================
%\subsection {Aligning accents}
\subsection {对齐数学重音}
%\begindesc
%\bix^^{accents//aligning}
%\cts skew {\<number> \<argument$_1$> \<argument$_2$>}
%\explain
%This command shifts the accent \<argument$_1$> by
%\<number> \minref{mathematical unit}s to the right of its normal position
%with respect to \<argu\-ment$_2$>.
%The most common use of this command is for
%modifying the position of an accent that's over
%another accent.
%\example
%$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
% \skew 4\tilde{\hat x}$$
%|
%\dproduces
%$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
% \skew 4\tilde{\hat x}$$
%\endexample
%\enddesc
\begindesc
\bix^^{重音//对齐重音}
\cts skew {\<number> \<argument$_1$> \<argument$_2$>}
\explain
此命令将重音 \<argument$_1$> 相对 \<argu\-ment$_2$>
从它的正常位置往右移动 \<number> 个\minref{数学单位}。
此命令常用于调整在其他重音之上的重音的位置。
\example
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
\skew 4\tilde{\hat x}$$
|
\dproduces
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
\skew 4\tilde{\hat x}$$
\endexample
\enddesc
%\begindesc
%\cts skewchar {\<font>\param{number}}
%\explain
%The |\skewchar| of a font
%is the character in the font whose kerns,
%as defined in the font's metrics file, determine the positions
%of math accents. That is, suppose that \TeX\ is applying a math accent
%to the character `|x|'. \TeX\ checks if the character pair
%`|x\skewchar|' has a kern; if so, it moves the accent by the amount of
%that kern. The complete algorithm that \TeX\ uses to position math
%accents (which involves many more things) is in \knuth{Appendix~G}.
\begindesc
\cts skewchar {\<font>\param{number}}
\explain
字体的 |\skewchar| 是字体中的某个字符,
它在字体度量文件中定义的紧排确定了数学重音的位置。
也就是说,假设 \TeX\ 要给字符 `|x|' 加上数学重音,
则 \TeX\ 检查字符对 `|x\skewchar|' 是否有个紧排;
如果有,它就以该紧排的值移动该重音。
\TeX\ 放置数学重音的完整算法(这涉及到很多事情)在\knuth{附录~G}中描述。
%If the value of |\skewchar| is not in the range $0$--$255$,
%\TeX\ takes the kern value to be zero.
如果 |\skewchar| 的值不在 $0$--$255$ 的范围内,\TeX\ 将紧排的值当作零。
%Note that \<font> is a control sequence
%that names a font, not a \<font\-name> that names font files.
%Beware:
%an assignment to |\skewchar| is \emph{not} undone at the end
%of a group.
%If you want to change |\skewchar| locally, you'll need to
%save and restore its original value explicitly.
%\enddesc
注意 \<font> 是一个控制序列,它是字体的名称,而不是字体文件的名称 \<font\-name>。
小心:对 |\skewchar| 的赋值在编组结束时\emph{并不会}还原。
如果你想局部改变|\skewchar|,你需要显式地保存和还原它的原始值。
\enddesc
%\begindesc
%\cts defaultskewchar {\param{number}}
%\explain
%When \TeX\ reads the metrics file
%^^{metrics file//default skew character in}
%for a font in response to a
%^|\font| command, it sets the font's ^|\skewchar| to
%|\default!-skewchar|.
%If the value of |\default!-skewchar| is
%not in the range $0$--$255$, \TeX\ does not assign any
%skew characters by default.
%\PlainTeX\ sets |\defaultskewchar| to $-1$, and it's usually best
%to leave it there.
%\margin{Misleading example deleted.}
%\eix^^{accents//aligning}
%\enddesc
\begindesc
\cts defaultskewchar {\param{number}}
\explain
在执行 ^|\font| 命令读取字体的度量文件时,
^^{度量文件//其中的默认斜字符}
\TeX\ 设定该字体的 ^|\skewchar| 等于 |\default!-skewchar|。
如果 |\default!-skewchar| 的值不在 $0$--$255$ 的范围内,
\TeX\ 默认就不设定 |\skewchar| 的值。
\PlainTeX\ 设定 |\defaultskewchar| 等于 $-1$,一般不需要改动它。
\margin{Misleading example deleted.}
\eix^^{重音//对齐重音}
\enddesc
%==========================================================================
%\subsection {Aligning material vertically}
\subsection {竖直对齐素材}
%\begindesc
%\cts vcenter {\rqbraces{\<vertical mode material>}}
%\ctsbasic {\\vcenter to \<dimen> \rqbraces{\<vertical mode material>}}{}
%\ctsbasic {\\vcenter spread \<dimen> \rqbraces{\<vertical mode material>}}{}
%\explain
%Every math formula has an invisible
%``^{axis}'' that \TeX\ treats as a kind of
%horizontal centering line for that formula.
%For instance, the axis of a formula consisting of a
%fraction is at the center of the fraction bar.
%The |\vcenter| command tells \TeX\ to place the \<vertical mode material>
%in a \minref{vbox} and to center the vbox
%with respect to the axis of the formula it is currently constructing.
\begindesc
\cts vcenter {\rqbraces{\<vertical mode material>}}
\ctsbasic {\\vcenter to \<dimen> \rqbraces{\<vertical mode material>}}{}
\ctsbasic {\\vcenter spread \<dimen> \rqbraces{\<vertical mode material>}}{}
\explain
每个数学公式都有一个不可见的``^{轴线}'',\TeX\ 将它作为该公式的水平中心线。
举个例子,由分式组成的公式的轴线就在分数线的中心。
|\vcenter| 命令让 \TeX\ 将 \<vertical mode material> 放入\minref{竖直盒子}中,
并将该竖直盒子与当前公式的轴线居中对齐。
%The first form of the command
%centers the material as given. The second and third
%forms expand or shrink the material vertically as in the |\vbox| command
%(\xref \vbox).
此命令的第一种形式如上所述居中放置素材。
后两种形式竖直扩展或收缩素材,如同 |\vbox| 命令(\xref\vbox )。
%\example
%$${n \choose k} \buildrel \rm def \over \equiv \>
%\vcenter{\hsize 1.5 in \noindent the number of
%combinations of $n$ things taken $k$ at a time}$$
%|
%\dproduces
%$${n \choose k} \buildrel \rm def \over \equiv \>
%\vcenter{\hsize 1.5 in \noindent the number of
%combinations of $n$ things taken $k$ at a time}$$
%\endexample
%\enddesc
\example
$${n \choose k} \buildrel \rm def \over \equiv \>
\vcenter{\hsize 1.5 in \noindent the number of
combinations of $n$ things taken $k$ at a time}$$
|
\dproduces
$${n \choose k} \buildrel \rm def \over \equiv \>
\vcenter{\hsize 1.5 in \noindent the number of
combinations of $n$ things taken $k$ at a time}$$
\endexample
\enddesc
%==========================================================================
%\section {Producing spaces}
\section {生成间隔}
%==========================================================================
%\subsection {Fixed-width math spaces}
\subsection {固定宽度数学间隔}
%\begindesc
%\bix^^{space//in math formulas}
%\ctspecial ! \ctsxrdef{@shriek}
%\ctspecial , \ctsxrdef{@comma}
%\ctspecial > \ctsxrdef{@greater}
%\ctspecial ; \ctsxrdef{@semi}
%\explain
%These commands produce various amounts of ^{extra space} in formulas. They
%are defined in terms of \minref{mathematical unit}s, so \TeX\ adjusts
%the amount of space according to the current \minref{style}.
%\ulist
%\li |\!!| produces a negative thin space, i.e., it reduces the space
%between its neighboring subformulas by the amount of a thin space.
%\li |\,| produces a thin space.
%\li |\>| produces a medium space.
%\li |\;| produces a thick space.
%\endulist
%\example
%$$00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0\quad
%{\scriptstyle 00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0}$$
%|
%\dproduces
%$$00\quad0\!0\quad0\,0\quad0\>0\quad0\;0\quad
%{\scriptstyle 00\quad0\!0\quad0\,0\quad0\>0\quad0\;0}$$
%\endexample
%\enddesc
\begindesc
\bix^^{间隔//数学公式中的间隔}
\ctspecial ! \ctsxrdef{@shriek}
\ctspecial , \ctsxrdef{@comma}
\ctspecial > \ctsxrdef{@greater}
\ctspecial ; \ctsxrdef{@semi}
\explain
这些命令在公式中生成各种大小的^{额外间隔}。
它们使用\minref{数学单位}来定义,
因此 \TeX\ 会根据当前\minref{样式}调整间隔的大小。
\ulist
\li |\!!| 生成负的细小间隔,即它让相邻子公式的间隔减去该细小间隔的大小。
\li |\,| 生成细小间隔。
\li |\>| 生成中等间隔。
\li |\;| 生成较大间隔。
\endulist
\example
$$00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0\quad
{\scriptstyle 00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0}$$
|
\dproduces
$$00\quad0\!0\quad0\,0\quad0\>0\quad0\;0\quad
{\scriptstyle 00\quad0\!0\quad0\,0\quad0\>0\quad0\;0}$$
\endexample
\enddesc
%\begindesc
%\cts thinmuskip {\param{muglue}}
%\cts medmuskip {\param{muglue}}
%\cts thickmuskip {\param{muglue}}
%\explain
%These parameters define thin, medium, and thick spaces in
%math mode.
%\example
%$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
% \quad0\mskip\thickmuskip0$
%|
%\produces
%$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
% \quad0\mskip\thickmuskip0$
%\endexample
%\enddesc
\begindesc
\cts thinmuskip {\param{muglue}}
\cts medmuskip {\param{muglue}}
\cts thickmuskip {\param{muglue}}
\explain
这些参数定义了数学模式中细小、中等和较大间隔的大小。
\example
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
\quad0\mskip\thickmuskip0$
|
\produces
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
\quad0\mskip\thickmuskip0$
\endexample
\enddesc
%\begindesc
%\cts jot {\param{dimen}}
%\explain
%This parameter defines a distance that is equal to three points (unless
%you change it).
%The |\jot| is a convenient unit of measure for opening up \hbox{math displays}.
%\enddesc
\begindesc
\cts jot {\param{dimen}}
\explain
此参数定义为三个点的距离(除非你改变了它)。
在用 |\openup| 命令分开陈列公式各行时,|\jot| 是一个实用的度量单位。
\footnote{译注:下面的例子为译者所加。请参阅 |\openup| 命令(\xref\openup )。}
\example
$$\vbox{\halign{$\hfil#\hfil$\cr x\cr y\cr}}$$
$$\openup2\jot\vbox{\halign{$\hfil#\hfil$\cr x\cr y\cr}}$$
|
\produces
$$\vbox{\halign{$\hfil#\hfil$\cr x\cr y\cr}}$$
$$\openup2\jot\vbox{\halign{$\hfil#\hfil$\cr x\cr y\cr}}$$
\endexample
\enddesc
%==========================================================================
%\subsection {Variable-width math spaces}
\subsection {可变宽度数学间隔}
%\begindesc
%\cts mkern {\<mudimen>}
%\explain
%^^{kerns//in math formulas}
%This command
%produces a \minref{kern}, i.e., blank space, of width \<mudimen>.
%The kern is measured
%in \minref{mathematical unit}s, which vary according to the style.
%Aside from its unit of measurement, this command behaves just like
%|\kern| (\xref \kern) does in horizontal mode.
\begindesc
\cts mkern {\<mudimen>}
\explain
^^{紧排//数学公式中的紧排}
此命令生成一个宽度为 \<mudimen> 的\minref{紧排},即空白间隔。
该紧排用\minref{数学单位}表示,因此在不同样式中有不同的尺寸。
除了使用数学单位外,此命令与水平模式的|\kern|(\xref\kern )的表现类似。
%\example
%$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
%|
%\produces
%$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
%\endexample
%\enddesc
\example
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
|
\produces
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
\endexample
\enddesc
%\begindesc
%\cts mskip {\<mudimen$_1$> {\bt plus} \<mudimen$_2$> {\bt minus}
% \<mudimen$_3$>}
%\explain
%^^{glue}
%This command produces horizontal \minref{glue}
%that has natural width \<mu\-dimen$_1$>, stretch \<mudimen$_2$>,
%and shrink \<mudimen$_3$>.
%The glue is measured in \minref{mathematical unit}s, which vary according
%to the style. Aside from its units of measurement, this command behaves
%just like |\hskip| (\xref \hskip).
\begindesc
\cts mskip {\<mudimen$_1$> {\bt plus} \<mudimen$_2$> {\bt minus}
\<mudimen$_3$>}
\explain
^^{粘连}
此命令生成一个水平\minref{粘连},它的自然宽度为 \<mu\-dimen$_1$>,
伸长量为 \<mudimen$_2$>,收缩量为 \<mudimen$_3$>。
该粘连用\minref{数学单位}表示,因此将随着样式的变化而变化。
除了使用数学单位外,此命令与 |\hskip|(\xref\hskip )的表现类似。
%\example
%$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
%|
%\produces
%$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
%\endexample
%\enddesc
\example
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
|
\produces
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
\endexample
\enddesc
%\begindesc
%\cts nonscript {}
%\explain
%When \TeX\ is currently typesetting in script or scriptscript
%\minref{style} and encounters this command
%immediately in front of glue or a kern,
%it cancels the glue or kern.
%|\nonscript| has no effect in the other styles.
\begindesc
\cts nonscript {}
\explain
在排版标号或小标号\minref{样式}时,如果 \TeX\ 在粘连或紧排跟前遇到此命令,
它就丢弃该粘连或紧排。|\nonscript| 在其他样式中无任何效果。
%This command provides a way of ``tightening up'' the spacing in
%script and scriptscript styles, which generally are set in smaller type.
%It is of little use outside of macro definitions.
%\example
%\def\ab{a\nonscript\; b}
%$\ab^{\ab}$
%|
%\produces
%\def\ab{a\nonscript\; b}
%$\ab^{\ab}$
%\endexample
%\enddesc
此命令提供一种``收紧''标号和小标号样式中的间隔的方法;
通常用小号字体排版这两个样式。在宏定义之外的地方,此命令很少用到。
\example
\def\ab{a\nonscript\; b}
$\ab^{\ab}$
|
\produces
\def\ab{a\nonscript\; b}
$\ab^{\ab}$
\endexample
\enddesc
%\see |\kern| (\xref\kern), |\hskip| (\xref\hskip).
%\eix^^{space//in math formulas}
\see |\kern|(\xref\kern )和 |\hskip|(\xref\hskip )。
\eix^^{间隔//数学公式中的间隔}
%==========================================================================
%\subsection {Spacing parameters for displays}
\subsection {陈列公式的间隔参数}
%\begindesc
%\bix^^{displays//spacing parameters for}
%\cts displaywidth {\param{dimen}}
%\explain
%This parameter specifies the maximum width that
%\TeX\ allows for a math display. If \TeX\ cannot fit the display
%into a space of this width, it sets an overfull \minref{hbox}
%and complains.
%\TeX\ sets the value of |\displaywidth| when it encounters the `|$$|'
%that starts the display. This initial value is
%|\hsize| (\xref \hsize) unless it's overridden by changes to the
%paragraph shape.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\bix^^{陈列公式//陈列公式的间隔参数}
\cts displaywidth {\param{dimen}}
\explain
此参数指定 \TeX\ 对陈列公式所允许的最大宽度。
如果 \TeX\ 无法将陈列公式放入这样宽的空间中,
它将生成一个过满的\minref{水平盒子}并给出警告。
\TeX\ 在遇到 `|$$|' 开始陈列公式时就设定 |\displaywidth| 的值。
它的初始值为 |\hsize|(\xref\hsize ),除非段落形状改变了。
见\knuth{第~188--189~页}中对此参数的更仔细的说明。
\enddesc
%\begindesc
%\cts displayindent {\param{dimen}}
%\explain
%This parameter specifies the space by which \TeX\ indents a
%math display.
%\TeX\ sets the value of |\displayindent| when it encounters the `|$$|'
%that starts the display. Usually this initial value is zero,
%but if the paragraph shape indicates that the display should
%be shifted by an amount $s$,
%\TeX\ will set |\displayindent| to $s$.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts displayindent {\param{dimen}}
\explain
此参数指定 \TeX\ 对陈列公式的缩进量。
\TeX\ 在遇到 `|$$|' 开始陈列公式时就设定 |\displayindent| 的值。
通常它的初始值为零,但如果段落形状表明该陈列公式需要移动距离 $s$,
\TeX\ 就设定 |\displayindent| 等于 $s$。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts predisplaysize {\param{dimen}}
%\explain
%\TeX\ sets this parameter to the width of the line preceding
%a math display.
%\TeX\ uses |\predisplaysize| to determine whether or not
%the display starts to
%the left of where the previous line ends, i.e., whether or not it visually
%overlaps the previous line.
%If there is overlap, it uses the |\abovedisplayskip| and
%|\belowdisplayskip| glue in setting the display;
%otherwise it uses the |\abovedisplay!-shortskip| and
%|\belowdisplay!-shortskip| glue.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts predisplaysize {\param{dimen}}
\explain
\TeX\ 设定此参数等于陈列公式之前的文本行的宽度。
\TeX\ 利用 |\predisplaysize| 确定是否让陈列公式的起始点位于前一行结尾处的左边,
即它在外观上是否可能与前一行重叠。如果会有重叠,
\TeX\ 在排版陈列公式时使用|\abovedisplayskip| 和 |\belowdisplayskip| 粘连;
否则 \TeX\ 使用 |\abovedisplay!-shortskip| 和 |\belowdisplay!-shortskip| 粘连。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts abovedisplayskip {\param{glue}}
%\explain
%This parameter specifies the amount of vertical glue that
%\TeX\ inserts before a display when the display starts to
%the left of where the previous line ends, i.e., when it visually
%overlaps the previous line.
%\PlainTeX\ sets |\abovedisplayskip| to |12pt plus3pt minus9pt|.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts abovedisplayskip {\param{glue}}
\explain
此命令指定当陈列公式的起始点位于前一行结尾处的左边时,
即它在外观上可能与前一行有重叠时,
\TeX\ 在陈列公式之前插入的竖直粘连的大小。
\PlainTeX\ 设定 |\abovedisplayskip| 等于 |12pt plus3pt minus9pt|。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts belowdisplayskip {\param{glue}}
%\explain
%This parameter specifies the amount of vertical glue that
%\TeX\ inserts after a display when the display starts to
%the left of where the previous line ends, i.e., when it visually
%overlaps the previous line.
%\PlainTeX\ sets |\belowdisplay!-skip| to |12pt plus3pt minus9pt|.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts belowdisplayskip {\param{glue}}
\explain
此命令指定当陈列公式的起始点位于前一行结尾处的左边时,
即它在外观上可能与前一行有重叠时,
\TeX\ 在陈列公式之后插入的竖直粘连的大小。
\PlainTeX\ 设定 |\belowdisplay!-skip| 等于 |12pt plus3pt minus9pt|。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts abovedisplayshortskip {\param{glue}}
%\explain
%This parameter specifies the amount of vertical glue that
%\TeX\ inserts before a math display
%when the display starts to
%the right of where the previous line ends, i.e., when it does not visually
%overlap the previous line.
%\PlainTeX\ sets |\abovedisplay!-shortskip| to |0pt plus3pt|.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts abovedisplayshortskip {\param{glue}}
\explain
此命令指定当陈列公式的起始点位于前一行结尾处的右边时,
即它在外观上不会与前一行有重叠时,
\TeX\ 在陈列公式之前插入的竖直粘连的大小。
\PlainTeX\ 设定 |\abovedisplay!-shortskip| 等于 |0pt plus3pt|。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts belowdisplayshortskip {\param{glue}}
%\explain
%This parameter specifies the amount of vertical glue that
%\TeX\ inserts after a display
%when the display starts to
%the right of where the previous line ends, i.e., when it does not visually
%overlap the previous line.
%\PlainTeX\ sets |\belowdisplay!-shortskip| to |7pt plus3pt minus4pt|.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\begindesc
\cts belowdisplayshortskip {\param{glue}}
\explain
此命令指定当陈列公式的起始点位于前一行结尾处的右边时,
即它在外观上不会与前一行有重叠时,
\TeX\ 在陈列公式之后插入的竖直粘连的大小。
\PlainTeX\ 设定 |\belowdisplay!-shortskip| 等于 |7pt plus3pt minus4pt|。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
%\eix^^{displays//spacing parameters for}
%\enddesc
\eix^^{陈列公式//陈列公式的间隔参数}
\enddesc
%==========================================================================
\subsection {其他的数学间隔参数}
%\begindesc
%\cts mathsurround {\param{dimen}}
%\explain
%This parameter specifies the amount of space that \TeX\
%inserts before and after a math formula in text mode (i.e., a formula
%surrounded by single |$|'s). See \knuth{page~162} for further details about
%its behavior.
%\PlainTeX\ leaves |\mathsurround| at |0pt|.
%\enddesc
\begindesc
\cts mathsurround {\param{dimen}}
\explain
此参数指定 \TeX\ 在文内数学公式(即放在两个|$|之间的公式)两边插入的间隔的大小。
见\knuth{第~162~页}对此行为的进一步解释。
\PlainTeX\ 设定 |\mathsurround| 为 |0pt|。
\enddesc
%\begindesc
%\cts nulldelimiterspace {\param{dimen}}
%\explain
%^^{delimiters//null, space for}
%This parameter specifies the width of the
%space produced by a null \minref{delimiter}.
%\PlainTeX\ sets |\nulldelimiterspace| to |1.2pt|.
%\enddesc
\begindesc
\cts nulldelimiterspace {\param{dimen}}
\explain
^^{定界符//空定界符的间隔}
此参数指定空\minref{定界符}生成的间隔的大小。
\PlainTeX\ 设定 |\null!-delimiterspace| 等于 |1.2pt|。
\enddesc
%\begindesc
%\cts scriptspace {\param{dimen}}
%\explain
%This parameter specifies the amount of space that \TeX\
%inserts before and after a subscript or superscript.
%The |\nonscript| command (\xref\nonscript) ^^|\nonscript|
%after a subscript or superscript cancels this space.
%\PlainTeX\ sets |\script!-space| to |0.5pt|.
%\enddesc
\begindesc
\cts scriptspace {\param{dimen}}
\explain
此参数指定 \TeX\ 在上标或下标前后插入的间隔的大小。
上标或下标之后的 |\nonscript| 命令(\xref\nonscript )^^|\nonscript|
可以取消此间隔。
\PlainTeX\ 设定 |\script!-space| 等于 |0.5pt|。
\enddesc
%==========================================================================
%\section {Categorizing math constructs}
\section {分类数学结构}
%\begindesc
%\makecolumns 7/2:
%\cts mathord {}
%\cts mathop {}
%\cts mathbin {}
%\cts mathrel {}
%\cts mathopen {}
%\cts mathclose {}
%\cts mathpunct {}
%\explain
%These commands tell \TeX\ to treat the construct that follows as belonging
%to a particular ^{class} (see \knuth{page~154} for the definition
%of the classes). They are listed here in the order of the class numbers,
%from $0$ to $6$. Their primary
%effect is to adjust the spacing around the construct
%to be whatever it is for the specified class.
\begindesc
\makecolumns 7/2:
\cts mathord {}
\cts mathop {}
\cts mathbin {}
\cts mathrel {}
\cts mathopen {}
\cts mathclose {}
\cts mathpunct {}
\explain
这些命令让 \TeX\ 把随后的结构归入指定的^{类}(见\knuth{第~154~页}对类的定义)。
它们按照类编号的大小顺序排列,从 $0$ 到 $6$。
它们主要用于按照指定的类调整该结构两边的间隔大小。
%\example
%$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
%% By treating minmax as a math operator, we can get TeX to
%% put something underneath it.
%|
%\produces
%$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
%\endexample
%\enddesc
\example
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
% By treating minmax as a math operator, we can get TeX to
% put something underneath it.
|
\produces
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
\endexample
\enddesc
%\begindesc
%\cts mathinner {}
%\explain
%This command tells \TeX\ to treat the construct that follows
%as an ``inner formula'', e.g., a fraction, for spacing purposes.
%It resembles the class commands given just above.
%\enddesc
\begindesc
\cts mathinner {}
\explain
此命令让 \TeX\ 将随后的结构视为``内部公式'',比如分式,并据此调整间隔。
它与上面刚提到的类命令类似。
\enddesc
%==========================================================================
%\section {Special actions for math formulas}
\section {特殊处理数学公式}
%\begindesc
%\cts everymath {\param{token list}}
%\cts everydisplay {\param{token list}}
%\explain
%^^{displays//actions for every display}
%These parameters specify \minref{token} lists that \TeX\ inserts
%at the start of every text math or display math formula, respectively.
%You can
%take special actions at the start of each math formula by
%assigning those actions to |\everymath| or
%|\everydisplay|. Don't forget that if you want both kinds of formulas to
%be affected, you need to set \emph{both} parameters.
%\example
%\everydisplay={\heartsuit\quad}
%\everymath = {\clubsuit}
%$3$ is greater than $2$ for large values of $3$.
%$$4>3$$
%|
%\produces
%\everydisplay={\heartsuit\quad}
%\everymath = {\clubsuit}
%$3$ is greater than $2$ for large values of $3$.
%$$4>3$$
%\endexample
%\enddesc
\begindesc
\cts everymath {\param{token list}}
\cts everydisplay {\param{token list}}
\explain
^^{陈列公式//作用到每个陈列公式}
这两个命令分别指定 \TeX\ 在每个文内公式或陈列公式开头插入的\minref{记号}列。
你可以利用 |\everymath| 或 |\everydisplay| 在每个数学公式开头作特殊处理。
你务必清楚,若你需要同时处理两种公式,你必须\emph{同时}设定这两个参数。
\example
\everydisplay={\heartsuit\quad}
\everymath = {\clubsuit}
$3$ is greater than $2$ for large values of $3$.
$$4>3$$
|
\produces
\everydisplay={\heartsuit\quad}
\everymath = {\clubsuit}
$3$ is greater than $2$ for large values of $3$.
$$4>3$$
\endexample
\enddesc
%\enddescriptions
%\eix^^{math}
%\endchapter
%\byebye
\enddescriptions
\eix^^{数学}
\ifoldeplain\else\ifcompletebook\else
\vskip4em{\sectionfonts\leftline{本章索引}}
\readindexfile{i}
\fi\fi
\endchapter
\byebye
|