1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
%!TEX program = lualatex
% Copyright (c) 2021 Thomas Jenni
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
% SOFTWARE.
\documentclass{article}
\usepackage{luacode}
\usepackage{siunitx}
\usepackage{amsmath}
% siunitx config
\sisetup{
output-decimal-marker = {.},
per-mode = symbol,
separate-uncertainty = false,
add-decimal-zero = true,
exponent-product = \cdot,
round-mode=off
}
% empty unit
\DeclareSIUnit\unitless{}
\DeclareSIUnit\inch{in}
% init lua-physical
\begin{luacode}
physical = require("physical")
N = physical.Number
\end{luacode}
\newcommand{\q}[1]{%
\directlua{tex.print(physical.Quantity.tosiunitx(#1,"add-decimal-zero=true,scientific-notation=fixed,exponent-to-prefix=false"))}%
}
\newcommand{\qs}[1]{%
\directlua{tex.print(physical.Quantity.tosiunitx(#1,"scientific-notation=true,exponent-to-prefix=false,round-integer-to-decimal=true"))}%
}
\newcommand{\qt}[1]{%
\directlua{tex.print(physical.Quantity.tosiunitx(#1,"scientific-notation=engineering,exponent-to-prefix=true,round-integer-to-decimal=true"))}%
}
\newcommand{\qn}[1]{%
\directlua{tex.print(physical.Quantity.tosiunitx(#1,"add-decimal-zero=true,scientific-notation=fixed,exponent-to-prefix=false",1))}%
}
\newcommand{\qu}[1]{%
\directlua{tex.print(physical.Quantity.tosiunitx(#1,nil,2))}%
}
\begin{document}
\section*{Example for the {\tt lua-physical} package}.
Compile this Lua\LaTeX file with the command `{\tt lualatex lua-physical\_example.tex}'.
\begin{enumerate}
\begin{luacode}
a = 12 * _cm
b = 150 * _mm
c = 1.5 * _m
V = ( a * b * c ):to(_dm^3)
\end{luacode}
\item Find the volume of a cuboid with lengths $\q{a}$,
$\q{b}$ and $\q{c}$.
%
\begin{equation*}
V= a \cdot b \cdot c
= \q{a} \cdot \q{b} \cdot \q{c}
= \underline{\q{V}}
\end{equation*}
\begin{luacode}
l = 12 * _in
\end{luacode}
\item Convert $\q{l}$ to the unit $\qu{_cm}$.
%
\begin{equation*}
l = \q{l} \cdot \frac{\q{_in:to(_cm)}}{\qu{_in}} = \q{l:to(_cm)}
\end{equation*}
\begin{luacode}
N.omitUncertainty = true
d = N(1,0.0001) * ( _au ):to(_km)
v = N(1,0.0001) * ( _c ):to(_km/_s)
t = ( d/v ):to(_min)
\end{luacode}
\item Calculate the time, a lightray travels from the surface of the sun to the earth.
The mean distance from the sun to the eart is $\qs{d}$. The speed of light is $\q{v}$.
%
\begin{equation*}
t = \frac{d}{v} = \frac{\qs{d}}{\q{v}} = \underline{\q{t}}
\end{equation*}
\end{enumerate}
\end{document}
|