1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
\section{Quelques exemples}
\subsection{Variante intermédiaire : \TIKZ\ + \tkzname{tkz-fct}}
Les codes de \TIKZ\ et de \tkzname{tkz-fct} peuvent se compléter. Ainsi les axes et les textes sont gérés par \tkzname{tkz-fct} mais la courbe est laissée à \TIKZ\ et \tkzname{gnuplot}.
\bigskip
\begin{center}
\begin{tkzexample}[]
\begin{tikzpicture}[scale=3]
\tkzInit[xmin=0,xmax=4,ymin=-1.5,ymax=1.5]
\tkzAxeY
\tkzDefPoint(1,0){x} \tkzDrawPoint[color=blue,size=0.6pt](x)
\shade[top color=gray!80,bottom color=gray!20] (1,0)%
plot[id=ln,domain=1:2.718] function{log(x)} |-(1,0);
\draw[color=blue] plot[id=ln,domain=0.2:4,samples=200]function{log(x)};
\tkzAxeX
\tkzText[draw,color= black,fill=brown!50](2,-1)%
{$\mathcal{A} = \int_1^{\text{e}}\ln(x)\text{d}x =%
\big[x\ln(x)\big]_{1}^{\text{e}} = \text{e}$}
\tkzText[draw,color= black,fill=brown!50](2,0.3){$\mathcal{A}$}
\end{tikzpicture}
\end{tkzexample}
\end{center}
\newpage
\subsection{Courbes de \tkzname{Lorentz}}
$f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$ et $g(x)=x^3$
\begin{center}
\begin{tkzexample}[vbox]
\begin{tikzpicture}[scale=1]
\tkzInit[xmax=1,ymax=1,xstep=0.1,ystep=0.1]
\tkzGrid(0,0)(1,1)
\tkzAxeXY
\tkzFct[color = red,domain = 0:1]{(exp(\x)-1)/(exp(1)-1)}
\tkzDrawTangentLine[kl=0,kr=0.4,color=red](0)
\tkzDrawTangentLine[kl=0.2,kr=0,color=red](1)
\tkzText[draw,color = red,fill = brown!30](0.4,0.6)%
{$f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$}
\tkzFct[color = blue,domain = 0:1]{\x*\x*\x}
\tkzDrawTangentLine[kl=0,kr=0.4,color=blue](0)
\tkzDrawTangentLine[kl=0.2,kr=0,color=blue](1)
\tkzText[draw,color = blue,fill = brown!30](0.8,0.1){$g(x)=x^3$}
\tkzFct[color = orange,style = dashed,domain = 0:1]{\x}
\tkzDrawAreafg[between=c and b,color=blue!40,domain = 0:1]
\tkzDrawAreafg[between=c and a,color=red!60,domain = 0:1]
\end{tikzpicture}
\end{tkzexample}
\end{center}
\newpage
\subsection{Courbe exponentielle}
$f(x) = (-x^2+x+2)\exp(x)$
\begin{center}
\begin{tkzexample}[small]
\begin{tikzpicture}[scale=1.25]
\tkzInit[xmin=-6,xmax=4,ymin=-5,ymax=6]
\tkzGrid
\tkzAxeXY
\tkzFct[color=red,thick,domain=-6:2.1785]{(-x*x+x+2)*exp(x)}
\tkzSetUpPoint[size=6]
\tkzDrawTangentLine[draw,kl=2](0)
\tkzDefPoint(2,0){b} \tkzDrawPoint(b)
\tkzDefPoint(-1,0){c} \tkzDrawPoint(c)
\tkzText(2,4){($\mathcal{C}$)}
\tkzText(-2,-3){($\mathcal{T}$)}
\end{tikzpicture}
\end{tkzexample}
\end{center}
\subsection{Axe logarithmique}
\begin{tkzexample}[vbox]
\begin{tikzpicture}[scale=0.8]
\tkzInit[xmax=14,ymax=12]
\draw[thin,->] (0,0) -- (14,0) node[below left] {};
\draw[thin,->] (0,0) -- (0,12) node[below left] {};
\foreach \x/\xtext in {0/0,2/10,4/20,6/30,8/40,10/50,12/60,14/70}%
{\draw[shift={(\x,0)}] node[below] {$\xtext$ };}
\foreach \y/\z in {0/0,3/1,6/2,9/3,12/4}%
{\draw[shift={(0,\y)}] node[left] {$10^{\z}$};}
\foreach \x in {1,2,...,14}{\tkzVLine[gray,thin]{\x}}
\foreach \y in {3,6,...,12}{\tkzHLine[gray,thin]{\y}}
\foreach \y in {0,3,...,9}{
\foreach \z in {0.903,1.431,1.806,2.097,2.334,2.535,2.709,2.863}%
{\tkzHLine[thin,gray,shift={(0,\y)}] {\z}}}
\tkzDefPoint(0,6.90){a}
\tkzDefPoint(10,9.30){b}
\tkzDrawPoints(a,b)
\tkzLabelPoint(a){$M_{1}$}
\tkzLabelPoint(b){$M_{11}$}
\end{tikzpicture}
\end{tkzexample}
\subsection{Un peu de tout}
\begin{tkzexample}[vbox]
\begin{tikzpicture}[scale=.8]
\tkzInit[xmin=5,xmax=40,ymin=0,ymax=350,xstep=2.5,ystep=25]
\tkzDrawX[label=$q$]
\tkzDrawY[label=$C(q)$]
\tkzLabelXY
\tkzGrid[color=orange]
\tkzFct[domain=5:40]{0.1*\x**2+2*\x+60}
\foreach \vv in {5,10,...,40}{%
\tkzDefPointByFct(\vv)
\tkzDrawPoint(tkzPointResult)}
\tkzFct[domain=5:40]{(108*log(\x)-158)}
\tkzText(37.5,285){$C$}
\tkzText(37.5,220){$R$}
\tkzDefSetOfPoints{%
5/15,10/90,15/135,20/170,25/190,30/200,35/230,40/240}
\tkzDrawSetOfPoints[mark = x,mark size=3pt]
\end{tikzpicture}
\end{tkzexample}
\endinput
|