summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/tkz-euclide/TKZdoc-euclide-examples.tex
blob: ec8982331bda12d794211165a193a5ef30a5f3ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
\section{Some interesting examples}

\subsection{Square root of the integers}
\begin{tikzpicture}
\node [mybox,title={Square root of the integers}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{How to get $1$, $\sqrt{2}$, $\sqrt{3}$ with a rule and a compass.
}} 
\end{minipage}
};
\end{tikzpicture}

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
  \tkzDefPoint(0,0){O}
  \tkzDefPoint(1,0){a0}
   \tkzDrawSegment(O,a0)
  \foreach \i [count=\j] in {0,...,16}{%
    \tkzDefPointWith[orthogonal normed](a\i,O)
    \tkzGetPoint{a\j}
       \pgfmathsetmacro{\c}{5*\i} 
    \tkzDrawPolySeg[fill=teal!\c](a\i,a\j,O)}
 \end{tikzpicture}
\end{tkzexample}

\subsection{About right triangle}
\begin{tikzpicture}
\node [mybox,title={About right triangle}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{We have a segment $[AB]$ and we want to determine a point $C$ such that $AC=8$~cm    and $ABC$ is a right triangle in $B$.
}} 
\end{minipage}
};
\end{tikzpicture}

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.5]
  \tkzDefPoint["$A$" left](2,1){A}
  \tkzDefPoint["$B$" right](6,4){B}
  \tkzDefPointWith[orthogonal,K=-1](B,A)
  \tkzDrawLine[add = .5 and .5](B,tkzPointResult)
  \tkzInterLC[R](B,tkzPointResult)(A,8)
  \tkzGetPoints{J}{C}
  \tkzDrawSegment(A,B)
  \tkzDrawPoints(A,B,C)
  \tkzCompass(A,C)
  \tkzMarkRightAngle(A,B,C)
  \tkzDrawLine[color=gray,style=dashed](A,C)
  \tkzLabelPoint[above](C){$C$}
\end{tikzpicture}
\end{tkzexample}

\subsection{Archimedes}
\begin{tikzpicture}
\node [mybox,title={Archimedes}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{This is an ancient problem   proved by the great Greek mathematician Archimedes .
The figure below shows a semicircle, with diameter $AB$. A tangent line is drawn and  touches the semicircle at $B$.   An other tangent line at a point, $C$, on the semicircle is drawn. We project the point $C$ on the line segment $[AB]$  on a point $D$. The two tangent lines intersect at the point $T$. Prove that the line $(AT)$ bisects $(CD)$
}} 
\end{minipage}
};
\end{tikzpicture}

\begin{tkzexample}[]
\begin{tikzpicture}[scale=1]
  \tkzDefPoint(0,0){A}\tkzDefPoint(6,0){D}
  \tkzDefPoint(8,0){B}\tkzDefPoint(4,0){I}
  \tkzDefLine[orthogonal=through D](A,D)
  \tkzInterLC[R](D,tkzPointResult)(I,4) \tkzGetSecondPoint{C}
  \tkzDefLine[orthogonal=through C](I,C)    \tkzGetPoint{c}
  \tkzDefLine[orthogonal=through B](A,B)    \tkzGetPoint{b}
  \tkzInterLL(C,c)(B,b) \tkzGetPoint{T}
  \tkzInterLL(A,T)(C,D) \tkzGetPoint{P}
  \tkzDrawArc(I,B)(A)
  \tkzDrawSegments(A,B A,T C,D I,C) \tkzDrawSegment[new](I,C)
  \tkzDrawLine[add = 1 and 0](C,T)   \tkzDrawLine[add = 0 and 1](B,T)
  \tkzMarkRightAngle(I,C,T)
  \tkzDrawPoints(A,B,I,D,C,T)
  \tkzLabelPoints(A,B,I,D)  \tkzLabelPoints[above right](C,T)
  \tkzMarkSegment[pos=.25,mark=s|](C,D) \tkzMarkSegment[pos=.75,mark=s|](C,D)
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsubsection{Square and rectangle of same area; Golden section}

\begin{tikzpicture}
\node [mybox,title={Book II, proposition XI  \_Euclid's Elements\_}] (box){%
\begin{minipage}{0.90\textwidth}
{\emph{To construct Square and rectangle of same area.}
} 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[vbox,small]
 \begin{tikzpicture}[scale=.75]
  \tkzDefPoint(0,0){D} \tkzDefPoint(8,0){A}
  \tkzDefSquare(D,A) \tkzGetPoints{B}{C}
  \tkzDefMidPoint(D,A) \tkzGetPoint{E}
  \tkzInterLC(D,A)(E,B)\tkzGetSecondPoint{F}
  \tkzInterLC[near](B,A)(A,F)\tkzGetFirstPoint{G}
  \tkzDefSquare(A,F)\tkzGetFirstPoint{H}
  \tkzInterLL(C,D)(H,G)\tkzGetPoint{I}
  \tkzFillPolygon[teal!10](I,G,B,C)
  \tkzFillPolygon[teal!10](A,F,H,G)
  \tkzDrawArc[angles](E,B)(0,120)
  \tkzDrawSemiCircle(A,F)
  \tkzDrawSegments(A,F E,B H,I F,H)
  \tkzDrawPolygons(A,B,C,D)
  \tkzDrawPoints(A,...,I)
  \tkzLabelPoints[below right](A,E,D,F,I)
  \tkzLabelPoints[above right](C,B,G,H)
 \end{tikzpicture}
\end{tkzexample}

\newpage

\subsubsection{Steiner Line and Simson Line}

\begin{tikzpicture}
\node [mybox,title={Steiner Line and Simson Line}] (box){%
\begin{minipage}{0.90\textwidth}
{\emph{Consider the triangle ABC and a point M on its circumcircle. The projections  of M on the sides of the triangle are on a line (Steiner Line),  The three closest points to M on lines AB, AC, and BC are collinear. It's the Simson Line.
}} 
\end{minipage}
};
\end{tikzpicture}%

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.75,rotate=-20]
  \tkzDefPoint(0,0){B} 
  \tkzDefPoint(2,4){A} \tkzDefPoint(7,0){C}
  \tkzDefCircle[circum](A,B,C)  
  \tkzGetPoint{O}
  \tkzDrawCircle(O,A) 
  \tkzCalcLength(O,A)  
  \tkzGetLength{rOA} 
  \tkzDefShiftPoint[O](40:\rOA){M}
  \tkzDefShiftPoint[O](60:\rOA){N}  
  \tkzDefTriangleCenter[orthic](A,B,C)
  \tkzGetPoint{H}
  \tkzDefSpcTriangle[orthic,name=H](A,B,C){a,b,c}
  \tkzDefPointsBy[reflection=over A--B](M,N){P,P'}
  \tkzDefPointsBy[reflection=over A--C](M,N){Q,Q'}
  \tkzDefPointsBy[reflection=over C--B](M,N){R,R'}
  \tkzDefMidPoint(M,P)\tkzGetPoint{I}
  \tkzDefMidPoint(M,Q)\tkzGetPoint{J}
  \tkzDefMidPoint(M,R)\tkzGetPoint{K} 
  \tkzDrawSegments[new](P,R M,P M,Q M,R N,P'%
   N,Q' N,R' P',R' I,K)
  \tkzDrawPolygons(A,B,C)
  \tkzDrawPoints(A,B,C,H,M,N,P,Q,R,P',Q',R',I,J,K)
  \tkzLabelPoints(A,B,C,H,M,N,P,Q,R,P',Q',R',I,J,K)
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{Lune of Hippocrates}

\begin{tikzpicture}
\node [mybox,title={Lune of Hippocrates}] (box){%
\begin{minipage}{0.90\textwidth}
  { \emph{From wikipedia : In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune bounded by arcs of two circles, the smaller of which has as its diameter a chord spanning a right angle on the larger circle.In the first figure, the area of the lune is equal to the area of the triangle ABC. Hippocrates of Chios (ancient Greek mathematician,)
}} 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
 \tkzInit[xmin=-2,xmax=5,ymin=-1,ymax=6]
 \tkzClip % allows you to define a bounding box 
   % large enough
  \tkzDefPoint(0,0){A}\tkzDefPoint(4,0){B}
  \tkzDefSquare(A,B) 
  \tkzGetFirstPoint{C} 
  \tkzDrawPolygon[fill=green!5](A,B,C)
   \begin{scope}
     \tkzClipCircle[out](B,A)
     \tkzDefMidPoint(C,A) \tkzGetPoint{M}
     \tkzDrawSemiCircle[fill=teal!5](M,C)
   \end{scope}
   \tkzDrawArc[delta=0](B,C)(A)
\end{tikzpicture}
\end{tkzexample}

\subsection{Lunes of Hasan Ibn al-Haytham}

\begin{tikzpicture}
\node [mybox,title={Lune of Hippocrates}] (box){%
\begin{minipage}{0.90\textwidth}
  { \emph{From wikipedia : the Arab mathematician Hasan Ibn al-Haytham (Latinized name Alhazen) showed that two lunes, formed on the two sides of a right triangle, whose outer boundaries are semicircles and whose inner boundaries are formed by the circumcircle of the triangle, then the areas of these two lunes added together are equal to the area of the triangle. The lunes formed in this way from a right triangle are known as the lunes of Alhazen.
}} 
\end{minipage}};
\end{tikzpicture}% 

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.5,rotate=180]
  \tkzInit[xmin=-1,xmax=11,ymin=-4,ymax=7]
  \tkzClip
  \tkzDefPoints{0/0/A,8/0/B}
  \tkzDefTriangle[pythagore,swap](A,B) 
  \tkzGetPoint{C}
  \tkzDrawPolygon[fill=green!5](A,B,C)
  \tkzDefMidPoint(C,A) \tkzGetPoint{I}
  \begin{scope}
    \tkzClipCircle[out](I,A)
    \tkzDefMidPoint(B,A) \tkzGetPoint{x}
    \tkzDrawSemiCircle[fill=teal!5](x,A)
    \tkzDefMidPoint(B,C) \tkzGetPoint{y}
    \tkzDrawSemiCircle[fill=teal!5](y,B)
  \end{scope}
  \tkzSetUpCompass[/tkzcompass/delta=0]
      \tkzDefMidPoint(C,A) \tkzGetPoint{z}
  \tkzDrawSemiCircle(z,A)
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{About clipping circles}\label{About clipping circles}
\begin{tikzpicture}
\node [mybox,title={About clipping circles}] (box){%
\begin{minipage}{0.90\textwidth}
  { \emph{The problem is the management of the bounding box. First you have to define a rectangle in which the figure will be inserted. This is done with the first two lines.
}} 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}
  \tkzInit[xmin=0,xmax=6,ymin=0,ymax=6]
  \tkzClip
  \tkzDefPoints{0/0/A, 6/0/B}
  \tkzDefSquare(A,B)      \tkzGetPoints{C}{D}
  \tkzDefMidPoint(A,B)        \tkzGetPoint{M}
  \tkzDefMidPoint(A,D)        \tkzGetPoint{N}
  \tkzDefMidPoint(B,C)        \tkzGetPoint{O}
  \tkzDefMidPoint(C,D)        \tkzGetPoint{P}
 \begin{scope}
  \tkzClipCircle[out](M,B) \tkzClipCircle[out](P,D)
  \tkzFillPolygon[teal!20](M,N,P,O)
 \end{scope}
 \begin{scope}
   \tkzClipCircle[out](N,A) \tkzClipCircle[out](O,C)
   \tkzFillPolygon[teal!20](M,N,P,O)
 \end{scope}
 \begin{scope}
   \tkzClipCircle(P,C) \tkzClipCircle(N,A)      
   \tkzFillPolygon[teal!20](N,P,D)
 \end{scope}
 \begin{scope}
     \tkzClipCircle(O,C) \tkzClipCircle(P,C) 
     \tkzFillPolygon[teal!20](P,C,O)
 \end{scope}
 \begin{scope}
     \tkzClipCircle(M,B)  \tkzClipCircle(O,B)
     \tkzFillPolygon[teal!20](O,B,M)
 \end{scope}
 \begin{scope}
     \tkzClipCircle(N,A) \tkzClipCircle(M,A)  
     \tkzFillPolygon[teal!20](A,M,N)
 \end{scope}
 \tkzDrawSemiCircles(M,B N,A O,C P,D)
 \tkzDrawPolygons(A,B,C,D M,N,P,O)
 \end{tikzpicture}
 \end{tkzexample}

\newpage
\subsection{Similar isosceles triangles}

\begin{tikzpicture}
\node [mybox,title={Similar isosceles triangles}] (box){%
\begin{minipage}{0.90\textwidth}
  { \emph{The following is from the excellent site \textbf{Descartes et les Mathématiques}. I did not modify the text and I am only the author of the programming of the figures.
\url{http://debart.pagesperso-orange.fr/seconde/triangle.html}
}} 
\end{minipage}
};
\end{tikzpicture}% 

The following is from the excellent site \textbf{Descartes et les Mathématiques}. I did not modify the text and I am only the author of the programming of the figures.

\url{http://debart.pagesperso-orange.fr/seconde/triangle.html}

Bibliography:

\begin{itemize}
\item   Géométrie au Bac - Tangente, special issue no. 8 - Exercise 11, page 11

\item   Elisabeth Busser and Gilles Cohen: 200 nouveaux problèmes du "Monde" - POLE 2007 (200 new problems of "Le Monde")

\item   Affaire de logique n° 364 - Le Monde February 17, 2004
\end{itemize}


Two statements were proposed, one by the magazine \textit{Tangente} and the other by \textit{Le Monde}.

\vspace*{2cm}
\emph{Editor of the magazine "Tangente"}: \textcolor{orange}{Two similar isosceles triangles $AXB$ and $BYC$ are constructed with main vertices $X$ and $Y$, such that $A$, $B$ and $C$ are aligned and that these triangles are "indirect". Let $\alpha$ be the angle at vertex $\widehat{AXB}$ = $\widehat{BYC}$. We then construct a third isosceles triangle $XZY$ similar to the first two, with main vertex $Z$ and "indirect".
We ask to demonstrate that point $Z$ belongs to the straight line $(AC)$.}

\vspace*{2cm}
\emph{Editor of  "Le Monde"}: \textcolor{orange}{We construct two similar isosceles triangles $AXB$ and $BYC$ with principal vertices $X$ and $Y$, such that $A$, $B$ and $C$ are aligned and that these triangles are "indirect". Let $\alpha$ be the angle at vertex $\widehat{AXB}$ = $\widehat{BYC}$. The point Z of the line segment $[AC]$ is equidistant from the two vertices $X$ and $Y$.\\
At what angle does he see these two vertices?}

\vspace*{2cm} The constructions and their associated codes are on the next two pages, but you can search before looking. The programming respects (it seems to me ...) my reasoning in both cases.

\subsection{Revised version of "Tangente"}
\begin{tkzexample}[]
\begin{tikzpicture}[scale=.8,rotate=60]
  \tkzDefPoint(6,0){X}   \tkzDefPoint(3,3){Y}
  \tkzDefShiftPoint[X](-110:6){A}    \tkzDefShiftPoint[X](-70:6){B}
  \tkzDefShiftPoint[Y](-110:4.2){A'} \tkzDefShiftPoint[Y](-70:4.2){B'}
  \tkzDefPointBy[translation= from A' to B ](Y) \tkzGetPoint{Y}
  \tkzDefPointBy[translation= from A' to B ](B') \tkzGetPoint{C}
  \tkzInterLL(A,B)(X,Y) \tkzGetPoint{O}
  \tkzDefMidPoint(X,Y) \tkzGetPoint{I}
  \tkzDefPointWith[orthogonal](I,Y)
  \tkzInterLL(I,tkzPointResult)(A,B) \tkzGetPoint{Z}
  \tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O}
  \tkzDrawCircle(O,X)
  \tkzDrawLines[add = 0 and 1.5](A,C) \tkzDrawLines[add = 0 and 3](X,Y)
  \tkzDrawSegments(A,X B,X B,Y C,Y)   \tkzDrawSegments[color=red](X,Z Y,Z)
  \tkzDrawPoints(A,B,C,X,Y,O,Z)
  \tkzLabelPoints(A,B,C,Z)   \tkzLabelPoints[above right](X,Y,O)
\end{tikzpicture}
\end{tkzexample}

\subsection{"Le Monde" version}

\begin{tkzexample}[]
\begin{tikzpicture}[scale=1.25]
  \tkzDefPoint(0,0){A}
  \tkzDefPoint(3,0){B}
  \tkzDefPoint(9,0){C}
  \tkzDefPoint(1.5,2){X}
  \tkzDefPoint(6,4){Y}
  \tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O}
  \tkzDefMidPoint(X,Y)               \tkzGetPoint{I}
  \tkzDefPointWith[orthogonal](I,Y)  \tkzGetPoint{i}
  \tkzDrawLines[add = 2 and 1,color=orange](I,i)
  \tkzInterLL(I,i)(A,B)              \tkzGetPoint{Z}
  \tkzInterLC(I,i)(O,B)              \tkzGetFirstPoint{M}
  \tkzDefPointWith[orthogonal](B,Z)  \tkzGetPoint{b}
  \tkzDrawCircle(O,B)
  \tkzDrawLines[add = 0 and 2,color=orange](B,b)
  \tkzDrawSegments(A,X B,X B,Y C,Y A,C X,Y)
  \tkzDrawSegments[color=red](X,Z Y,Z)
  \tkzDrawPoints(A,B,C,X,Y,Z,M,I)
  \tkzLabelPoints(A,B,C,Z)
  \tkzLabelPoints[above right](X,Y,M,I)
\end{tikzpicture}
\end{tkzexample}

\subsection{Triangle altitudes}

\begin{tikzpicture}
\node [mybox,title={Triangle altitudes}] (box){%
\begin{minipage}{0.90\textwidth}
  { \emph{From Wikipedia : The following is again from the excellent site \textbf{Descartes et les Mathématiques} (Descartes and the Mathematics).
\url{http://debart.pagesperso-orange.fr/geoplan/geometrie_triangle.html}.
The three altitudes of a triangle intersect at the same H-point. 
}} 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
   \tkzDefPoint(0,0){C} \tkzDefPoint(7,0){B}
   \tkzDefPoint(5,6){A}
   \tkzDefMidPoint(C,B) \tkzGetPoint{I}
   \tkzInterLC(A,C)(I,B)
   \tkzGetFirstPoint{B'}
   \tkzInterLC(A,B)(I,B)
   \tkzGetSecondPoint{C'}
   \tkzInterLL(B,B')(C,C') \tkzGetPoint{H}
   \tkzInterLL(A,H)(C,B) \tkzGetPoint{A'}
   \tkzDefCircle[circum](A,B',C') \tkzGetPoint{O}
   \tkzDrawArc(I,B)(C)
   \tkzDrawPolygon(A,B,C)
   \tkzDrawCircle[color=red](O,A)
   \tkzDrawSegments[color=orange](B,B' C,C' A,A')
   \tkzMarkRightAngles(C,B',B B,C',C C,A',A)
   \tkzDrawPoints(A,B,C,A',B',C',H)
   \tkzLabelPoints[above right](A,B',C',H)
   \tkzLabelPoints[below right](B,C,A')
\end{tikzpicture}
\end{tkzexample}

\subsection{Altitudes - other construction}

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(8,0){B} 
\tkzDefPoint(5,6){C} 
\tkzDefMidPoint(A,B)\tkzGetPoint{O} 
\tkzDefPointBy[projection=onto A--B](C) \tkzGetPoint{P}
\tkzInterLC[common=A](C,A)(O,A)
\tkzGetFirstPoint{M}
\tkzInterLC(C,B)(O,A)
\tkzGetSecondPoint{N}
\tkzInterLL(B,M)(A,N)\tkzGetPoint{I}
\tkzDefCircle[diameter](A,B)\tkzGetPoint{x}
\tkzDefCircle[diameter](I,C)\tkzGetPoint{y}
\tkzDrawCircles(x,A y,C)
\tkzDrawSegments(C,A C,B A,B B,M A,N)
\tkzMarkRightAngles[fill=brown!20](A,M,B A,N,B A,P,C)
\tkzDrawSegment[style=dashed,color=orange](C,P)
\tkzLabelPoints(O,A,B,P)
\tkzLabelPoint[left](M){$M$} 
\tkzLabelPoint[right](N){$N$} 
\tkzLabelPoint[above](C){$C$} 
\tkzLabelPoint[above right](I){$I$} 
\tkzDrawPoints[color=red](M,N,P,I) 
\tkzDrawPoints[color=brown](O,A,B,C)
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{Three circles  in an Equilateral Triangle }
\begin{tikzpicture}
\node [mybox,title={Three circles  in an Equilateral Triangle}] (box){%
\begin{minipage}{0.90\textwidth}
  { \emph{From Wikipedia : In geometry, the Malfatti circles are three circles inside a given triangle such that each circle is tangent to the other two and to two sides of the triangle. They are named after Gian Francesco Malfatti, who made early studies of the problem of constructing these circles in the mistaken belief that they would have the largest possible total area of any three disjoint circles within the triangle. Below is a study of a particular case with an equilateral triangle and three identical circles. 
}} 
\end{minipage}
};
\end{tikzpicture}% 
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.8]
  \tkzDefPoints{0/0/A,8/0/B,0/4/a,8/4/b,8/8/c}
  \tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
  \tkzDefMidPoint(A,B) \tkzGetPoint{M}
  \tkzDefMidPoint(B,C) \tkzGetPoint{N}
  \tkzDefMidPoint(A,C) \tkzGetPoint{P}
  \tkzInterLL(A,N)(M,a) \tkzGetPoint{Ia}
  \tkzDefPointBy[projection = onto A--B](Ia)
  \tkzGetPoint{ha}
  \tkzInterLL(B,P)(M,b) \tkzGetPoint{Ib}
  \tkzDefPointBy[projection = onto A--B](Ib)
  \tkzGetPoint{hb}
  \tkzInterLL(A,c)(M,C) \tkzGetPoint{Ic}
  \tkzDefPointBy[projection = onto A--C](Ic)
  \tkzGetPoint{hc}
  \tkzInterLL(A,Ia)(B,Ib) \tkzGetPoint{G}
  \tkzDefSquare(A,B) \tkzGetPoints{D}{E}
  \tkzDrawPolygon(A,B,C)
  \tkzClipBB
  \tkzDrawSemiCircles[gray,dashed](M,B A,M 
  A,B B,A G,Ia)
  \tkzDrawCircles[gray](Ia,ha Ib,hb Ic,hc)
  \tkzDrawPolySeg(A,E,D,B)
  \tkzDrawPoints(A,B,C,G,Ia,Ib,Ic)
  \tkzDrawSegments[gray,dashed](C,M A,N B,P
   M,a M,b A,a a,b b,B A,D Ia,ha)
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{Law of sines}
\begin{tikzpicture}
\node [mybox,title={Law of sines}] (box){%
\begin{minipage}{0.90\textwidth}
  {From wikipedia : \emph{In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of a triangle (any shape) to the sines of its angles.
}} 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[latex=7cm,small]
  \begin{tikzpicture}
  \tkzDefPoints{0/0/A,5/1/B,2/6/C}
  \tkzDefTriangleCenter[circum](A,B,C)
   \tkzGetPoint{O} 
  \tkzDefPointBy[symmetry= center O](B) 
   \tkzGetPoint{D} 
  \tkzDrawPolygon[color=brown](A,B,C)
  \tkzDrawCircle(O,A)
  \tkzDrawPoints(A,B,C,D,O)
  \tkzDrawSegments[dashed](B,D A,D)
  \tkzLabelPoint[left](D){$D$}
  \tkzLabelPoint[below](A){$A$}
  \tkzLabelPoint[above](C){$C$}
  \tkzLabelPoint[right](B){$B$}
  \tkzLabelPoint[below](O){$O$}
  \tkzLabelSegment(B,C){$a$}
  \tkzLabelSegment[left](A,C){$b$}
  \tkzLabelSegment(A,B){$c$}
  \end{tikzpicture}
\end{tkzexample}

In the triangle $ABC$ 

\begin{equation}
\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}
\end{equation}

\[\widehat{C} = \widehat{D}\] 
\begin{equation}
\frac{c}{2R} = \sin D = \sin C 
\end{equation}

Then \[ \frac{c}{\sin C} = 2R\]

\newpage
\subsection{Flower of Life}
\begin{tikzpicture}
\node [mybox,title={Book IV, proposition XI  \_Euclid's Elements\_}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{Sacred geometry can be described as a belief system attributing a religious or cultural value to many of the fundamental forms of space and time. According to this belief system, the basic patterns of existence are perceived as sacred because in contemplating them one is contemplating the origin of all things. By studying the nature of these forms and their relationship to each other, one may seek to gain insight into the scientific, philosophical, psychological, aesthetic and mystical laws of the universe.
The Flower of Life is considered to be a symbol of sacred geometry, said to contain ancient, religious value depicting the fundamental forms of space and time. In this sense, it is a visual expression of the connections life weaves through all mankind, believed by some to contain a type of Akashic Record of basic information of all living things.
}} 
\end{minipage}
};
\end{tikzpicture}% 

One of the beautiful arrangements of circles found at the Temple of Osiris at Abydos, Egypt (Rawles 1997). \\
Weisstein, Eric W. "Flower of Life." From MathWorld--A Wolfram Web Resource.\\ \url{http://mathworld.wolfram.com/FlowerofLife.html}
 
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=.75]
  \tkzSetUpLine[line width=2pt,color=teal!80!black]
  \tkzSetUpCompass[line width=2pt,color=teal!80!black]
   \tkzDefPoint(0,0){O}  \tkzDefPoint(2.25,0){A}
   \tkzDrawCircle(O,A)
\foreach \i in {0,...,5}{
   \tkzDefPointBy[rotation= center O angle 30+60*\i](A)\tkzGetPoint{a\i}
   \tkzDefPointBy[rotation= center {a\i} angle  120](O)\tkzGetPoint{b\i}
   \tkzDefPointBy[rotation= center {a\i} angle  180](O)\tkzGetPoint{c\i}
   \tkzDefPointBy[rotation= center {c\i} angle  120](a\i)\tkzGetPoint{d\i}
   \tkzDefPointBy[rotation= center {c\i} angle   60](d\i)\tkzGetPoint{f\i}
   \tkzDefPointBy[rotation= center {d\i} angle   60](b\i)\tkzGetPoint{e\i} 
   \tkzDefPointBy[rotation= center {f\i} angle   60](d\i)\tkzGetPoint{g\i} 
   \tkzDefPointBy[rotation= center {d\i} angle   60](e\i)\tkzGetPoint{h\i}
   \tkzDefPointBy[rotation= center {e\i} angle  180](b\i)\tkzGetPoint{k\i}   
   \tkzDrawCircle(a\i,O)
   \tkzDrawCircle(b\i,a\i)
   \tkzDrawCircle(c\i,a\i)
   \tkzDrawArc[rotate](f\i,d\i)(-120)
   \tkzDrawArc[rotate](e\i,d\i)(180)
   \tkzDrawArc[rotate](d\i,f\i)(180)
   \tkzDrawArc[rotate](g\i,f\i)(60)
   \tkzDrawArc[rotate](h\i,d\i)(60)
   \tkzDrawArc[rotate](k\i,e\i)(60) 
}
   \tkzClipCircle(O,f0)
\end{tikzpicture}
\end{tkzexample}


\newpage
\subsection{Pentagon in a circle}
\begin{tikzpicture}
\node [mybox,title={Book IV, proposition XI  \_Euclid's Elements\_}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{To inscribe an equilateral and equiangular pentagon in a given circle.
}} 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=.75]
   \tkzDefPoint(0,0){O} 
   \tkzDefPoint(5,0){A}
   \tkzDefPoint(0,5){B}
   \tkzDefPoint(-5,0){C} 
   \tkzDefPoint(0,-5){D}
   \tkzDefMidPoint(A,O)             \tkzGetPoint{I}
   \tkzInterLC(I,B)(I,A)            \tkzGetPoints{F}{E}
   \tkzInterCC(O,C)(B,E)            \tkzGetPoints{D3}{D2}
   \tkzInterCC(O,C)(B,F)            \tkzGetPoints{D4}{D1}
   \tkzDrawArc[angles](B,E)(180,360)
   \tkzDrawArc[angles](B,F)(220,340)
   \tkzDrawLine[add=.5 and .5](B,I)
   \tkzDrawCircle(O,A)
   \tkzDefCircle[diameter](O,A)     \tkzGetPoint{x}
   \tkzDrawCircle(x,A)
   \tkzDrawSegments(B,D C,A) 
   \tkzDrawPolygon[new](D,D1,D2,D3,D4)
   \tkzDrawPoints(A,...,D,O)
   \tkzDrawPoints[new](E,F,I,D1,D2,D4,D3)
   \tkzLabelPoints[below left](A,...,D,O)
   \tkzLabelPoints[new,below right](I,E,F,D1,D2,D4,D3)  
\end{tikzpicture}
\end{tkzexample}

 \newpage
 \subsection{Pentagon in a square}
 \begin{tikzpicture}
 \node [mybox,title={Pentagon in a square}] (box){%
 \begin{minipage}{0.90\textwidth}
   {: \emph{To inscribe an equilateral and equiangular pentagon in a given square.
 }} 
 \end{minipage}
 };
 \end{tikzpicture}%
    
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=.75]
  \tkzDefPoints{0/0/O,-5/-5/A,5/-5/B}
  \tkzDefSquare(A,B)   \tkzGetPoints{C}{D}
  \tkzDefMidPoint(A,B) \tkzGetPoint{F}
  \tkzDefMidPoint(C,D) \tkzGetPoint{E}
  \tkzDefMidPoint(B,C) \tkzGetPoint{G}
  \tkzDefMidPoint(A,D) \tkzGetPoint{K}
  \tkzInterLC(D,C)(E,B)                    \tkzGetSecondPoint{T}
  \tkzDefMidPoint(D,T)                     \tkzGetPoint{I}
  \tkzInterCC[with nodes](O,D,I)(E,D,I)    \tkzGetSecondPoint{H}
  \tkzInterLC(O,H)(O,E)                    \tkzGetSecondPoint{M}
  \tkzInterCC(O,E)(E,M)                    \tkzGetFirstPoint{Q}
  \tkzInterCC[with nodes](O,O,E)(Q,E,M)    \tkzGetFirstPoint{P}
  \tkzInterCC[with nodes](O,O,E)(P,E,M)    \tkzGetFirstPoint{N}
  \tkzCompasss(O,H E,H)
  \tkzDrawArc(E,B)(T)
  \tkzDrawPolygons[purple](A,B,C,D M,E,Q,P,N) 
  \tkzDrawCircle(O,E)
  \tkzDrawSegments(T,I O,H E,H E,F G,K)
  \tkzDrawPoints(T,M,Q,P,N,I)
  \tkzLabelPoints(A,B,O,N,P,Q,M,H)
  \tkzLabelPoints[above right](C,D,E,I,T)
\end{tikzpicture} 
\end{tkzexample}

\newpage
 \subsection{Hexagon Inscribed}
 \begin{tikzpicture}
 \node [mybox,title={Hexagon Inscribed}] (box){%
 \begin{minipage}{0.90\textwidth}
   {\emph{To inscribe a regular hexagon in a given equilateral triangle  perfectly inside it (no boarders).
 }} 
 \end{minipage}
 };
 \end{tikzpicture}%
 
\subsubsection{Hexagon Inscribed version 1} % (fold)
\label{ssub:hexagon_inscribed_version_1}
\begin{tkzexample}[latex=7cm,small]
  \begin{tikzpicture}[scale=.5]
   \pgfmathsetmacro{\c}{6} 
   \tkzDefPoints{0/0/A,\c/0/B}
   \tkzDefTriangle[equilateral](A,B)\tkzGetPoint{C}
   \tkzDefTriangleCenter[centroid](A,B,C) 
   \tkzGetPoint{I}
   \tkzDefPointBy[homothety=center A ratio 1./3](B) 
   \tkzGetPoint{c1}
   \tkzInterLC(B,C)(I,c1) \tkzGetPoints{a1}{a2}
   \tkzInterLC(A,C)(I,c1) \tkzGetPoints{b1}{b2}
   \tkzInterLC(A,B)(I,c1) \tkzGetPoints{c1}{c2}
   \tkzDrawPolygon(A,B,C)
   \tkzDrawCircle[thin,orange](I,c1)
   \tkzDrawPolygon[red,thick](a2,a1,b2,b1,c2,c1)
 \end{tikzpicture} 
\end{tkzexample}
% subsubsection hexagon_inscribed_version_1 (end)

\subsubsection{Hexagon Inscribed version 2} % (fold)
\label{ssub:hexagon_inscribed_version_2}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.5]
 \pgfmathsetmacro{\c}{6} 
 \tkzDefPoints{0/0/A,\c/0/B}
 \tkzDefTriangle[equilateral](A,B)\tkzGetPoint{C}
 \tkzDefTriangleCenter[centroid](A,B,C) 
 \tkzGetPoint{I}
 \tkzDefPointsBy[rotation= center I%
                 angle 60](A,B,C){a,b,c}
 \tkzDrawPolygon[fill=teal!20,opacity=.5](A,B,C)
 \tkzDrawPolygon[fill=purple!20,opacity=.5](a,b,c)
\end{tikzpicture} 
\end{tkzexample}
% subsubsection hexagon_inscribed_version_2 (end)

\newpage
\subsection{Power of a point with respect to a circle}

\begin{tikzpicture}
\node [mybox,title={Power of a point with respect to a circle}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{$\overline{MA} \times \overline{MB}={MT}^2={MO}^2-{OT}^2$} } 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
 \pgfmathsetmacro{\r}{2}%
 \pgfmathsetmacro{\xO}{6}%
 \pgfmathsetmacro{\xE}{\xO-\r}%
 \tkzDefPoints{0/0/M,\xO/0/O,\xE/0/E}
 \tkzDefCircle[diameter](M,O)
 \tkzGetPoint{I}
 \tkzInterCC(I,O)(O,E) \tkzGetPoints{T}{T'}
 \tkzDefShiftPoint[O](45:2){B}
 \tkzInterLC(M,B)(O,E) \tkzGetPoints{A}{B}
 \tkzDrawCircle(O,E)
 \tkzDrawSemiCircle[dashed](I,O)
 \tkzDrawLine(M,O)
 \tkzDrawLines(M,T O,T M,B)
 \tkzDrawPoints(A,B,T)
 \tkzLabelPoints[above](A,B,O,M,T)
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{Radical axis of two non-concentric circles}
\begin{tikzpicture}
\node [mybox,title={Radical axis of two non-concentric circles}] (box){%
\begin{minipage}{0.90\textwidth}
  {From Wikipedia : \emph{In geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal. For this reason the radical axis is also called the power line or power bisector of the two circles.  The notation radical axis was used by the French mathematician M. Chasles as axe radical.
}} 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/2/B,2/3/K}
\tkzDefCircle[R](A,1)\tkzGetPoint{a}
\tkzDefCircle[R](B,2)\tkzGetPoint{b}
\tkzDefCircle[R](K,3)\tkzGetPoint{k}
\tkzDrawCircles(A,a B,b)
\tkzDrawCircle[dashed,new](K,k)
\tkzInterCC(A,a)(K,k) \tkzGetPoints{a}{a'}
\tkzInterCC(B,b)(K,k) \tkzGetPoints{b}{b'}
\tkzDrawLines[new,add=2 and 2](a,a')
\tkzDrawLines[new,add=1 and 1](b,b')
\tkzInterLL(a,a')(b,b') \tkzGetPoint{X}
\tkzDefPointBy[projection= onto A--B](X) \tkzGetPoint{H}
\tkzDrawPoints(A,B,H,X,a,b,a',b')
\tkzDrawLine(A,B)
\tkzDrawLine[add= 1 and 2,new](X,H)
\tkzLabelPoints(A,B,H,X,a,b,a',b')
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{External homothetic center}
\begin{tikzpicture}
\node [mybox,title={External homothetic center}] (box){%
\begin{minipage}{0.90\textwidth}
  {From Wikipedia : \emph{ Given two nonconcentric circles, draw radii parallel and in the same direction. Then the line joining the extremities of the radii passes through a fixed point on the line of centers which divides that line externally in the ratio of radii. This point is called the external homothetic center, or external center of similitude (Johnson 1929, pp. 19-20 and 41).
}} 
\end{minipage}
};
\end{tikzpicture}% 

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/2/B,2/3/K}
\tkzDefCircle[R](A,1)\tkzGetPoint{a}
\tkzDefCircle[R](B,2)\tkzGetPoint{b}
\tkzDrawCircles(A,a B,b)
\tkzDrawLine(A,B)
\tkzDefShiftPoint[A](60:1){M}
\tkzDefShiftPoint[B](60:2){M'}
\tkzInterLL(A,B)(M,M') \tkzGetPoint{O}
\tkzDefLine[tangent from = O](B,M') \tkzGetPoints{X}{T'}
\tkzDefLine[tangent from = O](A,M) \tkzGetPoints{X}{T}
\tkzDrawPoints(A,B,O,T,T',M,M')
\tkzDrawLines[new](O,B O,T' O,M')
\tkzDrawSegments[new](A,M B,M')
\tkzLabelPoints(A,B,O,T,T',M,M')
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{Tangent lines to two circles}

\begin{tikzpicture}
\node [mybox,title={Tangent lines to two circles}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{For two circles, there are generally four distinct lines that are tangent to both  if the two circles are outside each other.  For two of these, the external tangent lines, the circles fall on the same side of the line; the external tangent lines intersect in the external homothetic center}}
\end{minipage}
};
\end{tikzpicture}%

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
 \pgfmathsetmacro{\r}{1}%
 \pgfmathsetmacro{\R}{2}%
 \pgfmathsetmacro{\rt}{\R-\r}%
 \tkzDefPoints{0/0/A,4/2/B,2/3/K}
 \tkzDefMidPoint(A,B) \tkzGetPoint{I}
 \tkzInterLC[R](A,B)(B,\rt) \tkzGetPoints{E}{F}
 \tkzInterCC(I,B)(B,F) \tkzGetPoints{a}{a'}
 \tkzInterLC[R](B,a)(B,\R) \tkzGetPoints{X'}{T'}
 \tkzDefLine[tangent at=T'](B) \tkzGetPoint{h}
 \tkzInterLL(T',h)(A,B) \tkzGetPoint{O}
 \tkzInterLC[R](O,T')(A,\r) \tkzGetPoints{T}{T}
 \tkzDefCircle[R](A,\r)  \tkzGetPoint{a}         
 \tkzDefCircle[R](B,\R)  \tkzGetPoint{b}
 \tkzDefCircle[R](B,\rt)  \tkzGetPoint{c}
 \tkzDrawCircles(A,a)  
 \tkzDrawCircles[orange](B,b B,c)           
 \tkzDrawCircle[orange,dashed](I,B)
 \tkzDrawPoints(O,A,B,a,a',E,F,T',T)
 \tkzDrawLines(O,B A,a B,T' A,T)
 \tkzDrawLines[add= 1 and 8](T',h)
 \tkzLabelPoints(O,A,B,a,a',E,F,T,T')
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{Tangent lines to two circles with radical axis}

\begin{tikzpicture}
\node [mybox,title={Tangent lines to two circles with radical axis}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{As soon as two circles are not concentric, we can construct their radical axis, the set of points of equal power with respect to the two circles. We know that the radical axis is a line orthogonal to the line of the centers. Note that if we specify $P$ and $Q$ as the points of contact of one of the common exterior tangents with the two circles and $D$ and $E$ as the points of the circles outside [AB], then (DP) and (EQ) intersect on the radical axis of the two circles. We will show that this property is always true and that it allows us to construct common tangents, even when the circles have the same radius. }}
\end{minipage}
};
\end{tikzpicture}%


\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,4/2/B,2/3/K}
\tkzDefCircle[R](A,1) \tkzGetPoint{a}
\tkzDefCircle[R](B,3) \tkzGetPoint{b}
\tkzInterCC[R](A,1)(K,3) \tkzGetPoints{a}{a'}
\tkzInterCC[R](B,3)(K,3) \tkzGetPoints{b}{b'}
\tkzInterLL(a,a')(b,b')  \tkzGetPoint{X}
\tkzDefPointBy[projection= onto A--B](X) \tkzGetPoint{H}
\tkzGetPoint{C}
\tkzInterLC[R](A,B)(B,3) \tkzGetPoints{b1}{E}
\tkzInterLC[R](A,B)(A,1) \tkzGetPoints{D}{a2}
\tkzDefMidPoint(D,E) \tkzGetPoint{I}
\tkzDrawCircle[orange](I,D)
\tkzInterLC(X,H)(I,D) \tkzGetPoints{M}{M'}
\tkzInterLC(M,D)(A,D) \tkzGetPoints{P}{P'}
\tkzInterLC(M,E)(B,E) \tkzGetPoints{Q'}{Q}
\tkzInterLL(P,Q)(A,B) \tkzGetPoint{O}
\tkzDrawCircles(A,a B,b)
\tkzDrawSegments[orange](A,P I,M B,Q)
\tkzDrawPoints(A,B,D,E,M,I,O,P,Q,X,H)
\tkzDrawLines(O,E M,D M,E O,Q)
\tkzDrawLine[add= 3 and 4,orange](X,H)
\tkzLabelPoints(A,B,D,E,M,I,O,P,Q,X,H)
\end{tikzpicture}
\end{tkzexample}

\newpage
\subsection{Middle of a  segment with a compass}

\begin{tikzpicture}
\node [mybox,title={Tangent lines to two circles with radical axis}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{This example involves determining the middle of a segment, using only a compass.}}
\end{minipage}
};
\end{tikzpicture}%

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefRandPointOn[circle= center A radius 4]    \tkzGetPoint{B}
\tkzDefPointBy[rotation= center A angle 180](B)  \tkzGetPoint{C}
\tkzInterCC(A,B)(B,A)                            \tkzGetPoints{I}{I'}
\tkzInterCC(A,I)(I,A)                            \tkzGetPoints{J}{B}
\tkzInterCC(B,A)(C,B)                            \tkzGetPoints{D}{E}
\tkzInterCC(D,B)(E,B)                            \tkzGetPoints{M}{M'}
\tkzSetUpArc[color=orange,style=solid,delta=10]
\tkzDrawArc(C,D)(E)
\tkzDrawArc(B,E)(D)
\tkzDrawCircle[color=teal,line width=.2pt](A,B)
\tkzDrawArc(D,B)(M) 
\tkzDrawArc(E,M)(B)
\tkzCompasss[color=orange,style=solid](B,I I,J J,C)
\tkzDrawPoints(A,B,C,D,E,M)
\tkzLabelPoints(A,B,M)
\end{tikzpicture}
\end{tkzexample}
 
\newpage

\subsection{Definition of a circle  \_Apollonius\_}

\begin{tikzpicture}
\node [mybox,title={Definition of a circle  \_Apollonius\_}] (box){%
\begin{minipage}{0.90\textwidth}
  {From Wikipedia : \emph{Apollonius showed that a circle can be defined as the set of points in a plane that have a specified ratio of distances to two fixed points, known as foci. This Apollonian circle is the basis of the Apollonius pursuit problem. ... The solutions to this problem are sometimes called the circles of Apollonius.}} 
\end{minipage}
};
\end{tikzpicture}% 

Explanation

A circle is the set of points in a plane that are equidistant from a given point O. The distance r from the center is called the radius, and the point O is called the center. It is the simplest definition but it is not the only one. Apollonius of Perga gives another definition :
The set of all points whose distances from two fixed points are in a constant ratio is a circle.

With \pkg{tkz-euclide} is easy to show you the last definition

\begin{tkzexample}[vbox, small]
\begin{tikzpicture}[scale=1.5]
    % Firstly we defined two fixed point. 
    % The figure depends of these points and the ratio K
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
    % tkz-euclide.sty knows about the apollonius's circle
    % with K=2 we search some points like  I such as IA=2 x IB
\tkzDefCircle[apollonius,K=2](A,B) \tkzGetPoints{K1}{k}
\tkzDefPointOnCircle[through=  center K1 angle 30 point k]
\tkzGetPoint{I}
\tkzDefPointOnCircle[through= center K1 angle 280  point k]
\tkzGetPoint{J}
\tkzDrawSegments[new](A,I I,B A,J J,B)  
\tkzDrawCircle[color = teal,fill=teal!20,opacity=.4](K1,k)
\tkzDrawPoints(A,B,K1,I,J)
\tkzDrawSegment(A,B)
\tkzLabelPoints[below,font=\scriptsize](A,B,K1,I,J)
\end{tikzpicture}
\end{tkzexample}

\subsection{Application of Inversion : \tkzname{Pappus chain} }\label{pappus}
\begin{tikzpicture}
\node [mybox,title={Pappus chain}] (box){%
\begin{minipage}{0.90\textwidth}
From Wikipedia  {\emph{In geometry, the Pappus chain is a ring of circles between two tangent circles investigated by Pappus of Alexandria in the 3rd century AD.}}
\end{minipage}
};
\end{tikzpicture}%

\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[ultra thin]
  \pgfmathsetmacro{\xB}{6}%
  \pgfmathsetmacro{\xC}{9}%
  \pgfmathsetmacro{\xD}{(\xC*\xC)/\xB}%
  \pgfmathsetmacro{\xJ}{(\xC+\xD)/2}%
  \pgfmathsetmacro{\r}{\xD-\xJ}%
  \pgfmathsetmacro{\nc}{16}%
  \tkzDefPoints{0/0/A,\xB/0/B,\xC/0/C,\xD/0/D}
  \tkzDefCircle[diameter](A,C) \tkzGetPoint{x}
  \tkzDrawCircle[fill=teal!30](x,C)
  \tkzDefCircle[diameter](A,B) \tkzGetPoint{y}
  \tkzDrawCircle[fill=teal!30](y,B)
  \foreach \i in {-\nc,...,0,...,\nc}
  {\tkzDefPoint(\xJ,2*\r*\i){J}
   \tkzDefPoint(\xJ,2*\r*\i-\r){H}
   \tkzDefCircleBy[inversion = center A through C](J,H)
   \tkzDrawCircle[fill=teal](tkzFirstPointResult,tkzSecondPointResult)}
\end{tikzpicture}
\end{tkzexample}

\subsection{Book of lemmas proposition 1 Archimedes}
\begin{tikzpicture}
\node [mybox,title={Book of lemmas proposition 1 Archimedes}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{If two circles touch at $A$, and if $[CD]$, $[EF]$ be parallel diameters in them, $A$, $C$ and $E$ are aligned.}}
\end{minipage}
};
\end{tikzpicture}%

\begin{tkzexample}[latex=7cm,small]
  \begin{tikzpicture}[scale=.75]
    \tkzDefPoints{0/0/O_1,0/1/O_2,0/3/A}
    \tkzDefPoint(15:3){F}
     \tkzDefPointBy[symmetry=center O_1](F) \tkzGetPoint{E}
     \tkzDefLine[parallel=through O_2](E,F) \tkzGetPoint{x}
     \tkzInterLC(x,O_2)(O_2,A) \tkzGetPoints{D}{C}
     \tkzDrawCircles(O_1,A O_2,A)
     \tkzDrawSegments[orange](O_1,A E,F C,D)
     \tkzDrawSegments[purple](A,E A,F)
     \tkzDrawPoints(A,O_1,O_2,E,F,x,C,D)
     \tkzLabelPoints(A,O_1,O_2,E,F,x,C,D)
  \end{tikzpicture}
\end{tkzexample}

$(CD) \parallel (EF)$ $(AO_1)$ is secant to these two lines so
$\widehat{A0_2C} = \widehat{A0_1E}$.

Since the triangles $AO_2C$ and $AO_1E$ are isosceles the angles at the base are equal $widehat{AC0_2} = \widehat{AE0_1} = \widehat{CA0_2} = \widehat{EA0_1}$. Thus $A$,$C$ and $E$ are aligned

\subsection{Book of lemmas proposition 6 Archimedes}
\begin{tikzpicture}
\node [mybox,title={Book of lemmas proposition 6 Archimedes}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{Let $AC$, the diameter of a semicircle, be divided at $B$ so that $AC/AB =\phi$ or in any ratio. Describe semicircles within the first semicircle and on $AB$, $BC$ as diameters, and suppose a circle drawn touching the all three semicircles. If $GH$ be the diameter of this circle, to find relation between $GH$ and $AC$.}}
\end{minipage}
};
\end{tikzpicture}%


\begin{tkzexample}[vbox,overhang,small]
\begin{tikzpicture}
\tkzDefPoints{0/0/A,12/0/C}
\tkzDefGoldenRatio(A,C)                  \tkzGetPoint{B}
\tkzDefMidPoint(A,C)                     \tkzGetPoint{O}
\tkzDefMidPoint(A,B)                     \tkzGetPoint{O_1}
\tkzDefMidPoint(B,C)                     \tkzGetPoint{O_2}
\tkzDefExtSimilitudeCenter(O_1,A)(O_2,B) \tkzGetPoint{M_0}
\tkzDefIntSimilitudeCenter(O,A)(O_1,A)   \tkzGetPoint{M_1}
\tkzDefIntSimilitudeCenter(O,C)(O_2,C)   \tkzGetPoint{M_2}
\tkzInterCC(O_1,A)(M_2,C)                \tkzGetFirstPoint{E}
\tkzInterCC(O_2,C)(M_1,A)                \tkzGetSecondPoint{F}
\tkzInterCC(O,A)(M_0,B)                  \tkzGetFirstPoint{D}
\tkzInterLL(O_1,E)(O_2,F)                \tkzGetPoint{O_3}
\tkzDefCircle[circum](E,F,B)             \tkzGetPoint{0_4}
\tkzInterLC(A,D)(O_1,A)                  \tkzGetFirstPoint{I}
\tkzInterLC(C,D)(O_2,B)                  \tkzGetSecondPoint{K}
\tkzInterLC[common=D](A,D)(O_3,D)        \tkzGetFirstPoint{G}
\tkzInterLC[common=D](C,D)(O_3,D)        \tkzGetFirstPoint{H}
\tkzInterLL(C,G)(B,K)                    \tkzGetPoint{M}
\tkzInterLL(A,H)(B,I)                    \tkzGetPoint{L}
\tkzInterLL(L,G)(A,C)                    \tkzGetPoint{N}
\tkzInterLL(M,H)(A,C)                    \tkzGetPoint{P}  
\tkzDrawCircles[red,thin](O_3,F)
\tkzDrawCircles[new,thin](0_4,B)
\tkzDrawSemiCircles[teal](O,C O_1,B O_2,C)
\tkzDrawSemiCircles[green](M_2,C)
\tkzDrawSemiCircles[green,swap](M_1,A)
\tkzDrawSegment(A,C)
\tkzDrawSegments[new](O_1,O_3 O_2,O_3)
\tkzDrawSegments[new,very thin](B,H C,G A,H G,N H,P)
\tkzDrawSegments[new,very thin](B,D A,D C,D G,H I,B K,B B,G)
\tkzDrawPoints(A,B,C,M_1,M_2,E,O_3,F,D,0_4,O_1,O_2,I,K,G,H,L,P,N,M)  
\tkzLabelPoints[font=\scriptsize](A,B,C,M_1,M_2,F,O_1,O_2,I,K,G,H,L,M,N)
\tkzLabelPoints[font=\scriptsize,right](E,O_3,D,0_4,P)
\end{tikzpicture}
\end{tkzexample}

Let $GH$ be the diameter of the circle which is parallel to $AC$, and let the circle touch the semicircles on $AC$, $AB$, $BC$ in $D$, $E$, $F$ respectively.

Then, by Prop. 1 $A$,$G$ and $D$ are aligned, ainsi que $D$, $H$ and $C$.\\
 For a like reason $A$ $E$ and $H$ are aligned, $C$ $F$ and $G$are aligned, as also are $B$ $E$ and $G$, $B$ $F$ and $H$.
 
Let $(AD)$ meet the semicircle on $[AC]$ at $I$, and let $(BD)$ meet the semicircle on $[BC]$ in $K$. Join CI, CK meeting AE, BF in L, M, and let GL, HM produced meet AB in N, P respectively.

Now, in the triangle $AGB$, the perpendiculars from $A$, $C$ on the opposite sides meet in $L$. Therefore by the properties of triangles, $(GN)$ is perpendicular to $(AC)$.
Similarly $(HP)$ is perpendicular to $(BC)$.\\
Again, since the angles at $I$, $K$, $D$ are right, $(CK)$ is parallel to $(AD)$, and $(CI)$ to $(BD)$.

 Therefore\\
\[\frac{AB}{BC} = \frac{AL}{LH}    =  \frac{AN}{NP}  \quad\text{and} \quad \frac{BC}{AB} = \frac{CM}{MG}    =  \frac{PC}{NP} \]

hence

\[ \frac{AN}{NP}    =  \frac{NP}{PC} \quad\text{so} \quad {NP}^2 = AN \times PC  \]

Now suppose that $B$ divides $[AC]$ according to the divine proportion that is :
\[\phi = \frac{AB}{BC} =  \frac{AC}{AB} \quad\text{then}  \quad AN = \phi NP \text{and}\quad  NP = \phi PC \]

We have 
\[ AC = AN + NP + PC\quad \text{either} \quad AB + BC = = AN + NP + PC \quad \text{or} \quad (\phi + 1) BC = AN + NP + PC \]

we get 

\[ (\phi + 1) BC = \phi NP + NP + PC =(\phi + 1)NP + PC = \phi(\phi + 1)PC + PC = {\phi}^2 + \phi + 1)PC \]

as 
\[ {\phi}^2 = \phi + 1 \quad \text{then} \quad (\phi + 1) BC = 2(\phi + 1) PC \quad\text{i.e.}\quad BC = 2 PC \]

That is,
$p$ is the middle of the segment $BC$.

Part of the proof from \url{https://www.cut-the-knot.org}


\subsection{ "The" Circle of APOLLONIUS}

\begin{tikzpicture}
\node [mybox,title={The Apollonius circle of a triangle  \_Apollonius\_}] (box){%
\begin{minipage}{0.90\textwidth}
  {\emph{The circle which touches all three excircles of a triangle and encompasses them is often known as "the" Apollonius circle (Kimberling 1998, p. 102)}}
\end{minipage}
};
\end{tikzpicture}%

Explanation

The purpose of the first  examples was to show the simplicity with which we could recreate these propositions. With TikZ you need to do calculations and use trigonometry while with \pkg{tkz-euclide} you only need to build simple objects

But don't forget that behind or far above \pkg{tkz-euclide} there is TikZ. I'm only creating an interface between TikZ and the user of my package.

The last example is very complex and it is to show you all that we can do with \pkg{tkz-euclide}.


\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[euler](A,B,C)        \tkzGetPoint{N} 
\tkzDefTriangleCenter[circum](A,B,C)       \tkzGetPoint{O} 
\tkzDefTriangleCenter[lemoine](A,B,C)      \tkzGetPoint{K}
\tkzDefTriangleCenter[ortho](A,B,C)        \tkzGetPoint{H}
\tkzDefSpcTriangle[excentral,name=J](A,B,C){a,b,c}
\tkzDefSpcTriangle[centroid,name=M](A,B,C){a,b,c}
\tkzDefCircle[in](Ma,Mb,Mc)                \tkzGetPoint{Sp}  % Sp Spieker center
\tkzDefProjExcenter[name=J](A,B,C)(a,b,c){Y,Z,X}
\tkzDefLine[parallel=through Za](A,B)      \tkzGetPoint{Xc}
\tkzInterLL(Za,Xc)(C,B)                    \tkzGetPoint{C'}
\tkzDefLine[parallel=through Zc](B,C)      \tkzGetPoint{Ya}
\tkzInterLL(Zc,Ya)(A,B)                    \tkzGetPoint{A'}
\tkzDefPointBy[reflection= over Ja--Jc](C')\tkzGetPoint{Ab}
\tkzDefPointBy[reflection= over Ja--Jc](A')\tkzGetPoint{Cb}
\tkzInterLL(K,O)(N,Sp)                     \tkzGetPoint{Q}
\tkzInterLC(A,B)(Q,Cb)                     \tkzGetFirstPoint{Ba}
\tkzInterLC(A,C)(Q,Cb)                     \tkzGetPoints{Ac}{Ca}
\tkzInterLC(B,C')(Q,Cb)                    \tkzGetFirstPoint{Bc}
\tkzInterLC[next to=Ja](Ja,Q)(Q,Cb)        \tkzGetFirstPoint{F'a}
\tkzInterLC[next to=Jc](Jc,Q)(Q,Cb)        \tkzGetFirstPoint{F'c}
\tkzInterLC[next to=Jb](Jb,Q)(Q,Cb)        \tkzGetFirstPoint{F'b}
\tkzInterLC[common=F'a](Sp,F'a)(Ja,F'a)    \tkzGetFirstPoint{Fa}
\tkzInterLC[common=F'b](Sp,F'b)(Jb,F'b)    \tkzGetFirstPoint{Fb}
\tkzInterLC[common=F'c](Sp,F'c)(Jc,F'c)    \tkzGetFirstPoint{Fc}
\tkzInterLC(Mc,Sp)(Q,Cb)                   \tkzGetFirstPoint{A''}
\tkzDefCircle[euler](A,B,C)                \tkzGetPoints{E}{e}
\tkzDefCircle[ex](C,A,B)                   \tkzGetPoints{Ea}{a}
\tkzDefCircle[ex](A,B,C)                   \tkzGetPoints{Eb}{b}
\tkzDefCircle[ex](B,C,A)                   \tkzGetPoints{Ec}{c}
% Calculations are done, now you can draw, mark and label
\tkzDrawCircles(Q,Cb E,e)%
\tkzDrawCircles(Eb,b Ea,a Ec,c)
\tkzDrawPolygon(A,B,C)
\tkzDrawSegments[dashed](A,A' C,C' A',Zc Za,C' B,Cb B,Ab A,Ca)
\tkzDrawSegments[dashed](C,Ac Ja,Xa Jb,Yb Jc,Zc)
\begin{scope}
   \tkzClipCircle(Q,Cb) % We limit the drawing of the lines
   \tkzDrawLine[add=5 and 12,orange](K,O)
   \tkzDrawLine[add=12 and 28,red!50!black](N,Sp)
\end{scope}
\tkzDrawPoints(A,B,C,K,Ja,Jb,Jc,Q,N,O,Sp,Mc,Xa,Xb,Yb,Yc,Za,Zc)
\tkzDrawPoints(A',C',A'',Ab,Cb,Bc,Ca,Ac,Ba,Fa,Fb,Fc,F'a,F'b,F'c)
\tkzLabelPoints(Ja,Jb,Jc,Q,Xa,Xb,Za,Zc,Ab,Cb,Bc,Ca,Ac,Ba,F'b)
\tkzLabelPoints[above](O,K,F'a,Fa,A'')
\tkzLabelPoints[below](B,F'c,Yc,N,Sp,Fc,Mc)
\tkzLabelPoints[left](A',C',Fb)
\tkzLabelPoints[right](C)
\tkzLabelPoints[below right](A)
\tkzLabelPoints[above right](Yb)
\tkzDrawSegments(Fc,F'c Fb,F'b Fa,F'a)
\tkzDrawSegments[color=green!50!black](Mc,N Mc,A'' A'',Q)
\tkzDrawSegments[color=red,dashed](Ac,Ab Ca,Cb Ba,Bc Ja,Jc A',Cb C',Ab)
\tkzDrawSegments[color=red](Cb,Ab Bc,Ac Ba,Ca A',C')
\tkzMarkSegments[color=red,mark=|](Cb,Ab Bc,Ac Ba,Ca)
\tkzMarkRightAngles(Jc,Zc,A Ja,Xa,B Jb,Yb,C)
\tkzDrawSegments[green,dashed](A,F'a B,F'b C,F'c)
\end{tikzpicture}
\end{tkzexample}

\endinput