summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/tiet-question-paper/tiet-question-paper-sample-org.org
blob: 50b55b4275a11fcca064699985459c15fdf08ebd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#+date: \today

#+latex_class: tiet-question-paper
#+latex_class_options: [11pt]
#+options: num:nil toc:nil author:nil email:nil 

#+latex_header_extra: \hypersetup{%
#+latex_header_extra:   colorlinks,%
#+latex_header_extra:   breaklinks,%
#+latex_header_extra:   urlcolor=[rgb]{0,0.35,0.65},%
#+latex_header_extra:   linkcolor=[rgb]{0,0.35,0.65}%
#+latex_header_extra: }

#+latex_header_extra: \usepackage{libertinus}

#+latex_header_extra: \instlogo{images/tiet-logo.pdf}
#+latex_header_extra: \schoolordepartment{%
#+latex_header_extra: Computer Science \& Engineering Department}
#+latex_header_extra: \examname{End Semester Examination}
#+latex_header_extra: \coursecode{UCS505}
#+latex_header_extra: \coursename{Computer Graphics}
#+latex_header_extra: \timeduration{3 hours}
#+latex_header_extra: \maxmarks{45}
#+latex_header_extra: \faculty{ANG,AMK,HPS,YDS,RGB}

#+latex: \maketitle

*Instructions:*
1. Attempt any 5 questions;
2. Attempt all the subparts of a question at one place.

#+latex: \bvrhrule\bvrskipline

1. 
   1. Given the control polygon $\textbf{b}_0,
      \textbf{b}_1, \textbf{b}_2, \textbf{b}_3$ of a
      Cubic Bezier curve; determine the vertex
      coordinates for parameter values $\forall t\in
      T$. \hfill [7 marks]
      \begin{align*}
        T \equiv
        & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\
        \begin{bmatrix}
          \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3
        \end{bmatrix} \equiv& \begin{bmatrix}
          1&2&4&3\\ 1&3&3&1
        \end{bmatrix}
      \end{align*}

   2. Explain the role of convex hull in curves.
      \hfill[2 marks]

#+latex: \bvrhrule

#+ATTR_LATEX: :options [resume]
1. 
   1. Describe the continuity conditions for
      curvilinear geometry.  \hfill[5 marks]
   2. Define formally, a B-Spline curve. \hfill [2
      marks]
   3. How is a Bezier curve different from a B-Spline
      curve? \hfill [2 marks]

#+latex: \bvrhrule

#+ATTR_LATEX: :options [resume]
1. 
   1. Given a triangle, with vertices defined by column
      vectors of $P$; find its vertices after
      reflection across XZ plane. \hfill [3 marks]
      \begin{align*}
        P\equiv
        &\begin{bmatrix}
          3&6&5 \\ 4&4&6 \\ 1&2&3
        \end{bmatrix}
      \end{align*}
   2. Given a pyramid with vertices defined by the
      column vectors of $P$, and an axis of rotation
      $A$ with direction $\textbf{v}$ and passing
      through $\textbf{p}$.  Find the coordinates of
      the vertices after rotation about $A$ by an angle
      of $\theta=\pi/4$.\hfill [6 marks]
      \begin{align*}
        P\equiv
        &\begin{bmatrix}
          0&1&0&0 \\ 0&0&1&0 \\0&0&0&1
        \end{bmatrix} \\
        \begin{bmatrix}
          \mathbf{v} & \mathbf{p}
        \end{bmatrix}\equiv
        &\begin{bmatrix}
          0&0 \\1&1\\1&0
        \end{bmatrix}
      \end{align*}
#+latex: \bvrhrule

#+ATTR_LATEX: :options [resume]
1. 
   1. Explain the two winding number rules for inside
      outside tests. \hfill [4 marks]
   2. Explain the working principle of a CRT. \hfill [5
      marks]

#+latex: \bvrhrule

#+ATTR_LATEX: :options [resume]
1. 
   1. Given a projection plane $P$ defined by normal
      $\textbf{n}$ and a reference point $\textbf{a}$;
      and the centre of projection as $\mathbf{p}_0$;
      find the perspective projection of the point
      $\textbf{x}$ on $P$. \hfill [5 marks]
      \begin{align*}
        \begin{bmatrix}
          \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x}
        \end{bmatrix}\equiv
        &
          \begin{bmatrix}
            3&-1&1&8\\4&2&1&10\\5&-1&3&6
          \end{bmatrix}
      \end{align*}
   2. Given a geometry $G$, which is a standard unit
      cube scaled uniformly by half and viewed through
      a Cavelier projection bearing $\theta=\pi/4$
      wrt. $X$ axis. \hfill [2 marks]
   3. Given a view coordinate system (VCS) with origin
      at $\textbf{p}_v$ and euler angles ZYX as
      $\boldsymbol{\theta}$ wrt. the world coordinate
      system (WCS); find the location $\mathbf{x}_v$ in
      VCS, corresponding to $\textbf{x}_w$ in
      WCS. \hfill [2 marks]
      \begin{align*}
        \begin{bmatrix}
          \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w
        \end{bmatrix}\equiv
        &\begin{bmatrix}
          5&\pi/3&10\\5&0&10\\0&0&0
        \end{bmatrix}
      \end{align*}

#+latex: \bvrhrule

#+ATTR_LATEX: :options [resume]
1. 
   1. Describe the visible surface detection problem in
      about 25 words. \hfill [1 mark]
   2. To render a scene with $N$ polygons into a
      display with height $H$; what are the space and
      time complexities respectively of a typical
      image-space method. \hfill [2 marks]
   3. Given a 3D space bounded within $[0\quad0\quad0]$
      and $[7\quad7\quad-7]$, containing two infinite
      planes each defined by 3 incident points
      $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ and
      $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$
      respectively bearing colours (RGB) as
      $\mathbf{c}_a$ and $\textbf{c}_b$ respectively.
      \begin{align*}
        \begin{bmatrix}
          \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2
          &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2
          &\mathbf{c}_a&\mathbf{c}_b
        \end{bmatrix}\equiv
        &\begin{bmatrix}
          1&6&1&6&1&6&1&0 \\
          1&3&6&6&3&1&0&0 \\
          -1&-6&-1&-1&-6&-1&0&1
        \end{bmatrix}
      \end{align*}
      Compute and/ or determine using the depth-buffer
      method, the colour at pixel $\mathbf{x}=(2,4)$ on
      a display resolved into $7\times7$ pixels. The
      projection plane is at $Z=0$, looking at
      $-Z$. \hfill [6 marks]

#+latex: \bvrhrule


# Local Variables:
# org-latex-default-packages-alist: nil
# org-latex-packages-alist: nil
# End: