summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/principia/principia.tex
blob: 8c5eb4e7bf8aa8c6b22c325075f2279d9320bb47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
\documentclass[12pt]{article}
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{principia}[2023/03/13 principia package version 2.0] %This is the principia package is for representing notations in Whitehead and Russell's ``Principia Mathematica" close to their appearance in the original.
%Version 1.0 (superseded by Version 1.1): Covers typesetting of notation through Volume I. 2020/10/24
%Version 1.1 (superseded by Version 1.2) minor updates: fixed the spacing of scope dots around parentheses; fixed spacing of theorem sign; fixed spacing around primitive proposition and definition signs. 2020/10/25
%Licensed under LaTeX Project Public License 1.3c. 
%Version 1.2 (superseded by Version 2.0) (minor updates): boldfaced (`thickened') the truth-functional connectives, existential quantifier, set and relation symbols; added numerous commands for typesetting brackets and substitutions into theorems. 2021/02/25
%Version 2.0 (major update): extends the package to cover typesetting of all notations in Volume II; removes package dependency on marvosym. 2023/03/13
%Licensed under LaTeX Project Public License 1.3c. 
%Copyright Landon D. C. Elkind, 2022.  (https://landonelkind.com/contact/).

\usepackage{fullpage}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{setspace}

%Principia package requirements
\usepackage{amssymb} %This loads the relation domain and converse domain limitation symbols.
\usepackage{amsmath} %This loads the circumflex, substitution into theorems, \text{}, \mathbf{}, \boldsymbol{}, \overleftarrow{}, \overrightarrow{}, etc.
\usepackage{pifont} %This loads the eight-pointed asterisk.
\usepackage{graphicx} %This loads commands that flip iota for definite descriptions, Lambda for the universal class, and so on. The (superseded) graphics package should also work here, but is not recommended.

%Volume I
%Mathematical logic
%The theory of deduction
%Meta-logical symbols
\newcommand{\ie}{\textit{i}.\textit{e}.\ }
\newcommand{\Ie}{\textit{I}.\textit{e}.\ }
\newcommand{\eg}{\textit{e}.\textit{g}.\ }
\newcommand{\Eg}{\textit{E}.\textit{g}.\ }
\newcommand{\pmsch}[1]{\pmast#1} %Starred chapter
\newcommand{\pmschs}[2]{\pmast#1\text{---}\pmast#2} %Starred chapter
\newcommand{\pmsns}[3]{\pmast#1\pmcdot#2\text{---}\pmcdot#3}%Starred number
\newcommand{\pmpsn}[2]{(\pmast#1\pmcdot#2)} 
\newcommand{\pmpsnn}[3]{(\pmast#1\pmcdot#2\pmcdot#3)} 
\newcommand{\pmsn}[2]{\pmast#1\pmcdot#2} 
\newcommand{\pmnsn}[1]{\text{#1}}
\newcommand{\pmsnn}[3]{\pmast#1\pmcdot#2\pmcdot#3}
\newcommand{\pmsnnn}[4]{\pmast#1\pmcdot#2\pmcdot#3\pmcdot#4}
\newcommand{\pmsnnnn}[5]{\pmast#1\pmcdot#2\pmcdot#3\pmcdot#4\pmcdot#5}
\newcommand{\pmsnnnnn}[6]{\pmast#1\pmcdot#2\pmcdot#3\pmcdot#4\pmcdot#5\pmcdot#6}
\newcommand{\pmsnb}[2]{\boldsymbol{\pmast#1\pmcdot#2}} %Starred number boldface
\newcommand{\pmsnnb}[3]{\boldsymbol{\pmast#1\pmcdot#2\pmcdot#3}}
\newcommand{\pmsnnnb}[4]{\boldsymbol{\pmast#1\pmcdot#2\pmcdot#3\pmcdot#4}}
\newcommand{\pmsnnnnb}[5]{\boldsymbol{\pmast#1\pmcdot#2\pmcdot#3\pmcdot#4\pmcdot#5}}
\newcommand{\pmsnnnnnb}[6]{\boldsymbol{\pmast#1\pmcdot#2\pmcdot#3\pmcdot#4\pmcdot#5\pmcdot#6}}
\newcommand{\pmfd}{\begin{center} \rule{5cm}{.5pt} \end{center}} %Dividing line between introductory remarks in a starred number and the formal deductions.
\newcommand{\pmdem}{\textit{Dem}.} %This notation begins a proof.
\newcommand{\pmdemi}{\indent \pmdem} %This idents the notation that begins a proof.
\newcommand{\pmhp}{\text{Hp}} %This typesets Hp (short for antecedent), which occurs at the beginning of a proof.
\newcommand{\pmprop}{\text{Prop}} %This occurs at the end of a proof.
\newcommand{\pmithm}{\pmimp\;\pmthm} %This occurs when a meta-theoretic implication is asserted.
\newcommand{\pmbr}[1]{\bigg \lbrack \normalsize #1 \bigg \rbrack} %These are larger brackets for substitution.
\newcommand{\pmsub}[2]{\bigg \lbrack \small \begin{array}{c} #1 \\ \hline #2 \end{array} \bigg \rbrack} %This is the substitution command.
\newcommand{\pmsubb}[4]{\bigg \lbrack \small \begin{array}{c c} #1, & #3 \\ \hline #2, & #4 \end{array}  \bigg \rbrack} %This is the substitution command.
\newcommand{\pmsubbb}[6]{\bigg \lbrack \small \begin{array}{c c c} #1, & #3, & #5 \\ \hline #2, & #4, & #6 \end{array}  \bigg \rbrack} %This is the substitution command.
\newcommand{\pmsubbbb}[8]{\bigg \lbrack \small \begin{array}{c c c c} #1, & #3, & #5, & #7 \\ \hline #2, & #4, & #6, & #8 \end{array}  \bigg \rbrack} %This is the substitution command.
\newcommand{\pmSub}[3]{\bigg \lbrack \normalsize #1 \text{ } \small \begin{array}{c} #2 \\ \hline #3 \end{array}  \bigg \rbrack} %This is the substitution command.
\newcommand{\pmSubb}[5]{\bigg \lbrack \normalsize #1 \text{ } \small \begin{array}{c c} #2, & #4 \\ \hline #3, & #5 \end{array}  \bigg \rbrack} %This is the substitution command.
\newcommand{\pmSubbb}[7]{\bigg \lbrack \normalsize #1 \text{ } \small \begin{array}{c c c} #2, & #4, & #6 \\ \hline #3, & #5, & #7 \end{array}  \bigg \rbrack} %This is the substitution command.
\newcommand{\pmSubbbb}[9]{\bigg \lbrack \normalsize #1 \text{ } \small \begin{array}{c c c c} #2, & #4, & #6, & #8 \\ \hline #3, & #5, & #7, & #9 \end{array} \bigg \rbrack} %This is the substitution command.
\newcommand{\pmsUb}[2]{\small \begin{array}{c} #1 \\ \hline #2 \end{array}} %This is the substitution command.
\newcommand{\pmsUbb}[4]{\small \begin{array}{c c} #1, & #3 \\ \hline #2, & #4 \end{array}} %This is the substitution command.
\newcommand{\pmsUbbb}[6]{\small \begin{array}{c c c} #1, & #3, & #5 \\ \hline #2, & #4, & #6 \end{array}} %This is the substitution command.
\newcommand{\pmsUbbbb}[8]{\small \begin{array}{c c c c} #1, & #3, & #5, & #7 \\ \hline #2, & #4, & #6, & #8 \end{array}} %This is the substitution command.
\newcommand{\pmSUb}[3]{\normalsize #1 \text{ } \small \begin{array}{c} #2 \\ \hline #3 \end{array}} %This is the substitution command.
\newcommand{\pmSUbb}[5]{\normalsize #1 \text{ } \small \begin{array}{c c} #2, & #4 \\ \hline #3, & #5 \end{array}} %This is the substitution command.
\newcommand{\pmSUbbb}[7]{\normalsize #1 \text{ } \small \begin{array}{c c c} #2, & #4, & #6 \\ \hline #3, & #5, & #7 \end{array}} %This is the substitution command.
\newcommand{\pmSUbbbb}[9]{\normalsize #1 \text{ } \small \begin{array}{c c c c} #2, & #4, & #6, & #8 \\ \hline #3, & #5, & #7, & #9 \end{array}} %This is the substitution command.
\newcommand{\pmthm}{\mathpunct{\text{\scalebox{.5}[1]{$\boldsymbol\vdash$}}}} %This is the theorem sign.
\newcommand{\pmast}{\text{\resizebox{!}{.75\height}{\ding{107}}}} %This is the sign introducing a theorem number.
\newcommand{\pmcdot}{\text{\raisebox{.05cm}{$\boldsymbol\cdot$}}} %This is a sign introducing a theorem sub-number.
\newcommand{\pmiddf}{\mathbin{=}}
\newcommand{\pmdf}{\quad \text{Df}}
\newcommand{\pmDf}{\text{Df}}
\newcommand{\pmpp}{\quad \text{Pp}}

%Square dots for scope, defined for up to six dots
\newcommand{\pmdot}{\mathrel{\hbox{\rule{.3ex}{.3ex}}}}
\newcommand{\pmdott}{\mathrel{\overset{\pmdot}{\pmdot}}}
\newcommand{\pmdottt}{\pmdott\hspace{.1em}\pmdot}
\newcommand{\pmdotttt}{\pmdott\hspace{.1em}\pmdott}
\newcommand{\pmdottttt}{\pmdott\hspace{.1em}\pmdott\hspace{.1em}\pmdot}
\newcommand{\pmdotttttt}{\pmdott\hspace{.1em}\pmdott\hspace{.1em}\pmdott}

%Logical connectives
\newcommand{\pmnot}{\mathord{\ooalign{$\boldsymbol{\sim}\mkern.5mu$\hidewidth\cr$\boldsymbol{\sim}$\cr\hidewidth$\mkern.5mu\boldsymbol{\sim}$}}}
\newcommand{\pmor}{\mathbin{\ooalign{$\boldsymbol{\vee}\mkern.5mu$\hidewidth\cr$\boldsymbol{\vee}$\cr\hidewidth$\mkern.5mu\boldsymbol{\vee}$}}}
\newcommand{\pmimp}{\mathbin{\ooalign{$\boldsymbol{\supset}\mkern.5mu$\hidewidth\cr$\boldsymbol{\supset}$\cr\hidewidth$\mkern.5mu\boldsymbol{\supset}$}}} %1.01
\newcommand{\pmand}{\mathrel{\hbox{\rule{.3ex}{.3ex}}}} %3.01
\newcommand{\pmandd}{\overset{\pmand}{\pmand}}
\newcommand{\pmanddd}{\pmandd\hspace{.1em}\pmand}
\newcommand{\pmandddd}{\pmandd\hspace{.1em}\pmandd}
\newcommand{\pmanddddd}{\pmandd\hspace{.1em}\pmandd\hspace{.1em}\pmand}
\newcommand{\pmandddddd}{\pmandd\hspace{.1em}\pmandd\hspace{.1em}\pmandd}
\newcommand{\pmprod}{\mathbin{\ooalign{$\boldsymbol{\wedge}\mkern.5mu$\hidewidth\cr$\boldsymbol{\wedge}$\cr\hidewidth$\mkern.5mu\boldsymbol{\wedge}$}}} %Not in Principia, but added here as a dual of its symbol for disjunction.
\newcommand{\pmiff}{\mathbin{\ooalign{$\boldsymbol{\equiv}\mkern.5mu$\hidewidth\cr$\boldsymbol{\equiv}$\cr\hidewidth$\mkern.5mu\boldsymbol{\equiv}$}}} %4.01
\newcommand{\pminc}{\mathbin{|}} %8.01

%The theory of apparent variables
\newcommand{\pmall}[1]{(#1)}
\newcommand{\pmsome}[1]{(\text{\raisebox{.5em}{\rotatebox{180}{\textbf{E}}}}#1)} %10.01
\newcommand{\pmSome}{\text{\raisebox{.5em}{\rotatebox{180}{\textbf{E}}}}}

%Additional defined logic signs
\newcommand{\pmhat}[1]{\boldsymbol{\hat{\text{$#1$}}}}
\newcommand{\pmbreve}[1]{\boldsymbol{\breve{\text{$#1$}}}}
\newcommand{\pmcirc}[1]{\boldsymbol{\dot{\text{$#1$}}}}
\newcommand{\pmpf}[2]{#1#2} %for propositional functions of one variable
\newcommand{\pmpff}[3]{#1(#2, #3)} %for propositional functions of two variables
\newcommand{\pmpfff}[4]{#1(#2, #3, #4)} %for propositional functions of three variables
\newcommand{\pmpffff}[5]{#1(#2, #3, #4, #5)} %for propositional functions of four variables (including ellipses)
\newcommand{\pmppf}[2]{#1\pmshr#2} %for propositional predicative functions of one variable
\newcommand{\pmppff}[3]{#1\pmshr(#2, #3)} %for propositional predicative functions of two variables
\newcommand{\pmshr}{\textbf{!}} %*12.1 and *12.11, used for predicative propositional functions
\newcommand{\pmpred}[2]{#1\pmshr#2} %for predicates (``predicative functions'') of one variable
\newcommand{\pmpredd}[3]{#1\pmshr(#2, #3)} %for predicates (``predicative functions'') of two variables
\newcommand{\pmpreddd}[4]{#1\pmshr(#2, #3, #4)} %for predicates (``predicative functions'') of three variables
\newcommand{\pmpredddd}[5]{#1\pmshr(#2, #3, #4, #5)} %for predicates (``predicative functions'') of four variables
\newcommand{\pmpreddddd}[6]{#1\pmshr(#2, #3, #4, #5, #6)} %for predicates (``predicative functions'') of five variables
\newcommand{\pmpredddddd}[7]{#1\pmshr(#2, #3, #4, #5, #6, #7)} %for predicates (``predicative functions'') of six variables
\newcommand{\pmid}{\mathbin{=}}
\newcommand{\pmnid}{\mathrel{\ooalign{$=$\cr\hidewidth\footnotesize\rotatebox[origin=c]{210}{\textbf{/}}\hidewidth\cr}}} %*13.02
\newcommand{\pmiota}{\ooalign{\rotatebox[origin=c]{180}{$\boldsymbol{\iota}$}\cr\hidewidth\raisebox{.0125em}{\rotatebox[origin=c]{180}{$\boldsymbol{\iota}$}}\cr\hidewidth\raisebox{.025em}{\rotatebox[origin=c]{180}{$\boldsymbol{\iota}$}}\cr\hidewidth\raisebox{.0375em}{\rotatebox[origin=c]{180}{$\boldsymbol{\iota}$}}\cr\hidewidth\raisebox{.05em}{\rotatebox[origin=c]{180}{$\boldsymbol{\iota}$}}}} %the rotated Greek iota used in definite descriptions
\newcommand{\pmdsc}[1]{(\pmiota#1)} %*14.01
\newcommand{\pmthe}[2]{(\pmiota#1)(#2 #1)} %*14.01
\newcommand{\pmtheb}[2]{[(\pmiota#1)(#2 #1)]} %*14.01
\newcommand{\pmDsc}{\pmiota} 
\newcommand{\pmexists}{\textbf{E}\hspace{.1em}\pmshr} %*14.02

%Classes and relations
%Class signs
\newcommand{\pmcls}[2]{\pmhat{#1}(#2)} %20.01
\newcommand{\pmcin}{\mathop{\boldsymbol{\epsilon}}} %20.02
\newcommand{\pmCls}{\text{Cls}} %20.03
\newcommand{\pmClsn}[1]{\text{Cls}^{#1}}
\newcommand{\pmcinn}{\pmnot\pmcin} %20.06
\newcommand{\pmcinc}{\mathop{\ooalign{$\boldsymbol{\subset}$\cr\hidewidth$\hspace{.1em}\boldsymbol{\subset}$\cr\hidewidth$\hspace{.15em}\boldsymbol{\subset}$\cr\hidewidth$\hspace{.2em}\boldsymbol{\subset}$}}} %22.01
\newcommand{\pmccap}{\mathop{\ooalign{\scalebox{1.3}[1.75]{$\put(3, 2){\oval(4,1)[t]}\phantom{\circ}$}\cr\hidewidth\hspace{.1em}\scalebox{1.3}[1.75]{$\put(3, 2){\oval(4,1)[t]}\phantom{\circ}$}\cr\hidewidth\hspace{.2em}\scalebox{1.3}[1.75]{$\put(3, 2){\oval(4,1)[t]}\phantom{\circ}$}\cr\hidewidth\hspace{.3em}\scalebox{1.3}[1.75]{$\put(3, 2){\oval(4,1)[t]}\phantom{\circ}$}\cr\hidewidth\hspace{.4em}\scalebox{1.3}[1.75]{$\put(3, 2){\oval(4,1)[t]}\phantom{\circ}$}\cr\hidewidth\hspace{.5em}\scalebox{1.3}[1.75]{$\put(3, 2){\oval(4,1)[t]}\phantom{\circ}$}\cr\hidewidth\hspace{.6em}\scalebox{1.3}[1.75]{$\put(3, 2){\oval(4,1)[t]}\phantom{\circ}$}}}} %22.02
\newcommand{\pmccup}{\mathop{\ooalign{\scalebox{1.3}[1.75]{$\put(3, 2.5){\oval(4,4)[b]}\phantom{\circ}$}\cr\hidewidth\hspace{.1em}\scalebox{1.3}[1.75]{$\put(3, 2.5){\oval(4,4)[b]}\phantom{\circ}$}\cr\hidewidth\hspace{.2em}\scalebox{1.3}[1.75]{$\put(3, 2.5){\oval(4,4)[b]}\phantom{\circ}$}\cr\hidewidth\hspace{.3em}\scalebox{1.3}[1.75]{$\put(3, 2.5){\oval(4,4)[b]}\phantom{\circ}$}\cr\hidewidth\hspace{.4em}\scalebox{1.3}[1.75]{$\put(3, 2.5){\oval(4,4)[b]}\phantom{\circ}$}\cr\hidewidth\hspace{.5em}\scalebox{1.3}[1.75]{$\put(3, 2.5){\oval(4,4)[b]}\phantom{\circ}$}\cr\hidewidth\hspace{.6em}\scalebox{1.3}[1.75]{$\put(3, 2.5){\oval(4,4)[b]}\phantom{\circ}$}}}} %22.03
\newcommand{\pmccmp}[1]{\boldsymbol{-}#1} %22.04
\newcommand{\pmcmin}[2]{#1\boldsymbol{-}#2} %22.05
\newcommand{\pmcuni}{\text{\rotatebox[origin=c]{180}{$\Lambda$}}} %24.01
\newcommand{\pmcnull}{\Lambda} %24.02
\newcommand{\pmcexists}{\text{\raisebox{.5em}{\rotatebox{180}{\textbf{E}}}}\hspace{-.1em}\mathop{\pmshr}} %24.03

%Relation signs
\newcommand{\pmrel}[3]{\pmhat{#1}\pmhat{#2}#3} %21.01
\newcommand{\pmrele}[5]{#1\{\pmhat{#2}\pmhat{#3}#4(#2, #3)\}#5} %21.02
\newcommand{\pmrelep}[3]{#1\{#2\}#3} %21.08, 21.081, 21.082, etc.
\newcommand{\pmrcmp}[1]{\ooalign{$\hidewidth\raisebox{.25em}{$\boldsymbol{\cdot}$}\hidewidth$\cr$\boldsymbol{\pmccmp}$}#1} %23.04
\newcommand{\pmrmin}[2]{#1\mathrel{\ooalign{$\hidewidth\raisebox{.25em}{$\boldsymbol{\cdot}$}\hidewidth$\cr$\boldsymbol{\pmccmp}$}}#2} %23.05
\newcommand{\pmruni}{\pmcirc{\text{\rotatebox[origin=c]{180}{$\Lambda$}}}} %25.01
\newcommand{\pmrnull}{\pmcirc{\Lambda}} %25.02
\newcommand{\pmrexists}{\pmcirc{\mathop{\text{\raisebox{.5em}{\rotatebox{180}{E}}}}}\mathop{\pmshr}} %25.03
\newcommand{\pmrinc}{\mathrel{\ooalign{$\hidewidth\boldsymbol{\cdot}\hidewidth$\cr$\boldsymbol{\pmcinc}$}}} %23.01
\newcommand{\pmrcap}{\mathrel{\ooalign{$\hidewidth\raisebox{.3em}{$\boldsymbol{\cdot}$}\hidewidth$\cr$\boldsymbol{\pmccap}$}}} %23.02
\newcommand{\pmrcup}{\mathrel{\ooalign{$\hidewidth\raisebox{.1em}{$\boldsymbol{\cdot}$}\hidewidth$\cr$\boldsymbol{\pmccup}$}}} %23.03

%Logic of Relations
\newcommand{\pmdscf}[2]{#1\textbf{`}#2} %30.01
\newcommand{\pmcnv}[1]{\text{Cnv}\textbf{`}#1} %31.01
\newcommand{\pmCnv}{\text{Cnv}}
\newcommand{\pmcrel}[1]{\pmbreve{#1}} %31.02
\newcommand{\pmrrf}[2]{\overset{\boldsymbol{\rightarrow}}{#1\textbf{`}}#2} %32.01
\newcommand{\pmRrf}[1]{\overset{\boldsymbol{\rightarrow}}{#1}} 
\newcommand{\pmrrl}[2]{\overset{\boldsymbol{\leftarrow}}{#1\textbf{`}}#2} %32.02
\newcommand{\pmRrl}[1]{\overset{\boldsymbol{\leftarrow}}{#1}}
\newcommand{\pmsg}[1]{\text{sg}\textbf{`}#1} %32.03
\newcommand{\pmSg}{\text{sg}}
\newcommand{\pmgs}[1]{\text{gs}\textbf{`}#1} %32.04
\newcommand{\pmGs}{\text{gs}}
\newcommand{\pmdm}[1]{\text{D}\textbf{`}#1} %33.01
\newcommand{\pmDm}{\text{D}} 
\newcommand{\pmcdm}[1]{\text{\rotatebox[origin=c]{180}{D}}\textbf{`}#1} %33.02
\newcommand{\pmCdm}{\text{\rotatebox[origin=c]{180}{D}}}
\newcommand{\pmcmp}[1]{C\textbf{`}#1} %33.03
\newcommand{\pmCmp}{C}
\newcommand{\pmfld}[1]{F\textbf{`}#1} %33.04
\newcommand{\pmFld}{F}
\newcommand{\pmrprd}[2]{{#1}\mathop{|}{#2}} %34.01
\newcommand{\pmRprd}{\mathop{|}}
\newcommand{\pmrprdn}[2]{#1^{#2}} %34.02, 34.03, etc.
\newcommand{\pmrld}[2]{#1 \boldsymbol{\upharpoonleft} #2} %35.01
\newcommand{\pmrlcd}[2]{#1 \boldsymbol{\upharpoonright} #2} %35.02
\newcommand{\pmrlf}[3]{#1 \boldsymbol{\upharpoonleft} #2 \boldsymbol{\upharpoonright} #3} %35.03
\newcommand{\pmrl}[2]{#1 \boldsymbol{\uparrow} #2} %35.04
\newcommand{\pmrlF}[2]{#1 \mathbin{\ooalign{$\upharpoonright$\cr\hidewidth\rotatebox[origin=c]{180}{\text{$\upharpoonleft$}}\hidewidth\cr}} #2} %36.01
\newcommand{\pmdscff}[2]{#1\textbf{`}\textbf{`}#2} %37.01
\newcommand{\pmdscfr}[2]{#1_{\pmcin}\textbf{`}#2} %37.02
\newcommand{\pmdscfR}[1]{#1_{\pmcin}} 
\newcommand{\pmdscfcr}[2]{\pmbreve{#1}_{\pmcin}\textbf{`}#2} %37.03
\newcommand{\pmdscfcR}[1]{\pmbreve{#1}_{\pmcin}} 
\newcommand{\pmdscfff}[2]{#1\textbf{`}\textbf{`}\textbf{`}#2} %37.04
\newcommand{\pmdscfe}[2]{\mathop{\text{E}}\mathop{\pmshr\pmshr}\pmdscff{#1}{#2}} %37.05
\newcommand{\Female}{{\usefont{U}{mvs}{m}{n}\symbol{126}}} %from the Marvosym package
\newcommand{\pmop}{\mathop{\text{\Female}}} %38.01, 38.02 
\newcommand{\pmopc}[2]{#1 \mathop{\underset{\textbf{''}}{\text{\Female}}} #2} %38.03

%Products and sums of classes of classes or relations
\newcommand{\pmccsum}[1]{p\textbf{`}#1} %40.01
\newcommand{\pmccprd}[1]{s\textbf{`}#1} %40.02
\newcommand{\pmcrsum}[1]{\pmcirc{p}\textbf{`}#1} %41.01
\newcommand{\pmcrprd}[1]{\pmcirc{s}\textbf{`}#1} %41.02
\newcommand{\pmrprdd}[2]{{#1}\mathop{||}{#2}} %43.01
\newcommand{\pmRprdd}{\mathop{||}} 

%Prolegomena to Cardinal Arithmetic
%Unit Classes and Couples
%Identity and Diversity
\newcommand{\pmrid}{I} %50.01
\newcommand{\pmrdiv}{J} %50.02
\newcommand{\pmcunit}[1]{\iota\textbf{`}#1} %51.01
\newcommand{\pmcUnit}{\iota} 
\newcommand{\pmcunits}[1]{\pmbreve{\iota}\textbf{`}#1} %52.01

%Cardinal numbers
\newcommand{\pmcn}[1]{#1} %52.01, 54.01, 54.02, etc.

%Ordinal numbers
\newcommand{\pmoc}[2]{#1 \boldsymbol{\downarrow} #2} %55.01, 55.02, etc.
\newcommand{\pmdn}[1]{\pmcirc{#1}} %56.01
\newcommand{\pmorn}[1]{#1_r} %56.02, 56.03, etc.

%Sub-classes, Sub-relations, and Relative Types
%Sub-classes
\newcommand{\pmscl}[1]{\text{Cl}\textbf{`}#1} %60.01
\newcommand{\pmsCl}{\text{Cl}}
\newcommand{\pmscle}[1]{\text{Cl ex}\textbf{`}#1} %60.02
\newcommand{\pmsCle}{\text{Cl ex}}
\newcommand{\pmscls}[1]{\text{Cls}\textbf{`}#1} %60.03
\newcommand{\pmsrl}[1]{\text{Rl}\textbf{`}#1} %61.01
\newcommand{\pmsRl}{\text{Rl}}
\newcommand{\pmsrle}[1]{\text{Rl ex}\textbf{`}#1} %61.02
\newcommand{\pmsRle}{\text{Rl ex}} 
\newcommand{\pmsrel}[1]{\text{Rel}\textbf{`}#1} %61.03
\newcommand{\pmRel}{\text{Rel}}
\newcommand{\pmReln}[1]{\text{Rel}^{#1}} %61.04
\newcommand{\pmrin}{\mathop{\boldsymbol{\epsilon}}} %62.01

%Relative type symbols
\newcommand{\pmrt}[1]{t\textbf{`}#1} %63.01
\newcommand{\pmrti}[2]{t^{#1}\textbf{`}#2} %63.011
\newcommand{\pmrtc}[2]{t_{#1}\textbf{`}#2} %63.02, 63.03, etc.
\newcommand{\pmrtri}[2]{t^{#1}\textbf{`}#2} %63.04
\newcommand{\pmrtrc}[2]{t_{#1}\textbf{`}#2} %64.02, 64.021, 64.022, etc.
\newcommand{\pmrtrci}[3]{t_{#1}^{\text{ }#2}\textbf{`}#3} %64.03, 64.031, etc.
\newcommand{\pmrtric}[3]{{}^{#1}t_{#2}\textbf{`}#3} %64.04, 64.041, etc.
\newcommand{\pmrtdi}[2]{#1_{#2}} %65.01
\newcommand{\pmrtdc}[2]{#1(#2)} %65.02
\newcommand{\pmrtdri}[2]{#1_{#2}} %65.03
\newcommand{\pmrtdrc}[2]{#1(#2)} %65.04

%One-many, Many-one, and One-one relations
%Similarity relation signs
\newcommand{\pmrdc}[2]{#1\boldsymbol{\to}#2} %70.01
\newcommand{\pmsmbar}{\mathrel{\overline{\text{sm}}}} %73.01
\newcommand{\pmsm}{\mathrel{\text{sm}}} %73.02
\newcommand{\pmSM}{\text{sm}}
\newcommand{\pmsmarr}{\overrightarrow{{\pmsm}}}
\newcommand{\pmonemany}{1\boldsymbol{\to}\pmCls}
\newcommand{\pmmanyone}{\pmCls\boldsymbol{\to}1}
\newcommand{\pmoneone}{1\boldsymbol{\to}1}

%Selections
\newcommand{\pmselp}[1]{P_{\small\Delta}\boldsymbol{`}#1} %80.01
\newcommand{\pmSelp}{P_{\Delta}}
\newcommand{\pmsele}[1]{\pmcin_{\small\Delta}\boldsymbol{`}#1} 
\newcommand{\pmSele}{\pmcin_{\Delta}}
\newcommand{\pmself}[1]{F_{\small\Delta}\boldsymbol{`}#1}
\newcommand{\pmSelf}{F_{\Delta}}
\newcommand{\pmexc}{\text{Cls}^2 \mathop{\text{excl}}} %84.01
\newcommand{\pmexcc}[1]{\text{Cl} \mathop{\text{excl}}\textbf{`}#1} %84.02
\newcommand{\pmex}{\text{Cls excl}} 
\newcommand{\pmexcn}{\text{Cls} \mathop{\text{ex}^2} \mathop{\text{excl}}} %84.03
\newcommand{\pmselc}[2]{#1 \mathrel{\ooalign{\rotatebox[origin=c]{270}{$\boldsymbol{\mapsto}$}}} #2}
\newcommand{\pmmultr}{\mathop{\text{Rel}} \mathop{\text{Mult}}} %88.01
\newcommand{\pmmultc}{\mathop{\text{Cls}^2} \mathop{\text{Mult}}} %88.02
\newcommand{\pmmultax}{\mathop{\text{Mult}} \mathop{\text{ax}}} %88.03

%Inductive relations
\newcommand{\pmanc}[1]{#1_\pmast} %90.01
\newcommand{\pmancc}[1]{\pmcrel{#1}_\pmast} %90.02
\newcommand{\pmrst}[1]{#1_\text{st}} %91.01
\newcommand{\pmrts}[1]{#1_\text{ts}} %91.02
\newcommand{\pmpot}[1]{\text{Pot}\boldsymbol{`}#1} %91.03
\newcommand{\pmpotid}[1]{\text{Potid}\boldsymbol{`}#1} %91.04
\newcommand{\pmpo}[1]{#1_\text{po}} %91.05
\newcommand{\pmB}{B} %93.01
\newcommand{\pmmin}[1]{\text{min}_{#1}} %93.02
\newcommand{\pmMin}{\text{min}} 
\newcommand{\pmmax}[1]{\text{max}_{#1}} %93.021
\newcommand{\pmMax}{\text{max}}
\newcommand{\pmgen}[1]{\text{gen}\boldsymbol{`}#1} %93.03
\newcommand{\pmGen}{\text{gen}}
\newcommand{\pmefr}[2]{#1\pmast#2} %95.05
\newcommand{\pmipr}[2]{I_{#1}\textbf{`}#2} %96.01
\newcommand{\pmjpr}[2]{J_{#1}\textbf{`}#2} %96.02
\newcommand{\pmfr}[2]{\overset{\boldsymbol{\leftrightarrow}}{#1}\textbf{`}#2} %97.01

%Volume II
%Cardinal arithmetic
%Definition and Logical Properties of Cardinal Numbers
\newcommand{\pmnc}[1]{\text{Nc}\textbf{`}#1} %100.01
\newcommand{\pmNc}{\text{Nc}} 
\newcommand{\pmNC}{\text{NC}} %100.02
\newcommand{\pmNCat}[2]{\text{NC}^{#1}({#2})} %102.01
\newcommand{\pmnoc}[1]{\text{N}_0\text{c}\textbf{`}#1} %103.01
\newcommand{\pmNoc}{\text{N}_0\text{c}}
\newcommand{\pmNoC}{\text{N}_0\text{C}} %103.02
\newcommand{\pmnca}[2]{\text{N}^{#1}\text{c}\textbf{`}#2} %104.01, 104.011, etc.
\newcommand{\pmNca}[1]{\text{N}^{#1}\text{C}} %104.02, 104.021, etc.
\newcommand{\pmch}[2]{#1^{(#2)}} %104.03, 104.031, etc.
\newcommand{\pmncd}[2]{\text{N}_{#1}\text{c}\textbf{`}#2} %105.01
\newcommand{\pmNcd}[1]{\text{N}_{#1}\text{C}} %105.02, 105.021, etc.
\newcommand{\pmcl}[2]{#1_{(#2)}} %105.03, 105.031, etc.
\newcommand{\pmncll}[3]{\text{N}_{#1#2}\text{c}\textbf{`}#3} %106.01, 106.012, etc.
\newcommand{\pmnchh}[3]{\text{N}^{#1#2}\text{c}\textbf{`}#3} %106.011
\newcommand{\pmncaa}[3]{\text{N}_{#1}{}^{#2}\text{c}\textbf{`}#3} %106.02
\newcommand{\pmncdd}[3]{{}^{#1}\text{N}_{#2}\text{c}\textbf{`}#3} %106.021
\newcommand{\pmNCll}[2]{\text{N}_{#1#2}\text{C}} %106.03
\newcommand{\pmNChh}[2]{\text{N}^{#1#2}\text{C}} 
\newcommand{\pmcll}[3]{#1_{(#2#3)}} %106.04
\newcommand{\pmchh}[3]{#1^{(#2#3)}} %106.041
\newcommand{\pmncr}[1]{\text{N}_{00}\text{c}\textbf{`}#1} %106.01

%Addition, Multiplication, Exponentiation
\newcommand{\pmarsumc}{\mathrel{+}} %110.01
\newcommand{\pmarsumnc}{\mathrel{{+}_{\text{c}}}} %110.02
\newcommand{\pmsmsmb}{\mathrel{\overline{\text{sm}}\;\overline{\text{sm}}}} %111.01
\newcommand{\pmcrp}[2]{\text{Crp}(#1)\textbf{`}#2} %111.02
\newcommand{\pmsmsm}{\mathrel{\text{sm}\;\text{sm}}} %111.03
\newcommand{\pmarsumcc}[1]{\Sigma\textbf{`}#1} %112.01
\newcommand{\pmarsumcnc}[1]{\Sigma\pmNc\textbf{`}#1} %112.02
\newcommand{\pmarprodc}{\times} %113.02
\newcommand{\pmarprodnc}{\times_\text{c}} %113.03
\newcommand{\pmarprodcnc}[1]{\Pi\pmNc\textbf{`}#1} %114.01
\newcommand{\pmarprodcc}[1]{\text{Prod}\textbf{`}#1} %115.01
\newcommand{\pmarcls}{\pmClsn{3}\text{arithm}} %115.02
\newcommand{\pmarexp}[2]{#1 \mathrel{\text{exp}} #2} %116.01
\newcommand{\pmArexp}{\text{exp}} 
\newcommand{\pmarncexp}[2]{#1^{#2}} %116.02
\newcommand{\pmarg}{\mathrel{\boldsymbol{>}}} %117.01
\newcommand{\pmarl}{\mathrel{\boldsymbol{<}}} %117.04
\newcommand{\pmargeq}{\mathrel{\ooalign{$\boldsymbol{>}$\hidewidth\cr${\hspace{-.4ex}\raise-.75ex\hbox{\rotatebox[origin=c]{-155}{$\scalebox{1.1}{$\boldsymbol{-}$}$}}}$}}} %117.05
\newcommand{\pmarleq}{\mathrel{\ooalign{$\boldsymbol{<}$\cr\hidewidth${\raise-.75ex\hbox{\rotatebox[origin=c]{155}{$\scalebox{1.1}{$\boldsymbol{-}$}$}}}\hspace{-.375ex}$}}} %117.06

%Finite and infinite
\newcommand{\pmarsubt}[2]{#1 \mathrel{{-}_\text{c}} #2} %119.01
\newcommand{\pmArsubt}{{-}_\text{c}} 
\newcommand{\pmNCinduct}{\text{NC}\,\text{induct}} %120.01
\newcommand{\pmncinduct}[1]{\text{N}_#1\text{C}\,\text{induct}} %120.011
\newcommand{\pmClsinduct}{\text{Cls}\,\text{induct}} %120.02
\newcommand{\pmclsinduct}[1]{\text{Cls}_{#1}\,\text{induct}} %120.021
\newcommand{\pmInfinax}{\text{Infin}\,\text{ax}} %120.03
\newcommand{\pminfinax}[1]{\text{Infin}\,\text{ax}(#1)} %120.04
\newcommand{\pmspec}[1]{\text{spec}\textbf{`}#1} %120.43
\newcommand{\pmintoo}[2]{P(#1\mathbin{\boldsymbol{-}}#2)} %121.01
\newcommand{\pmintoc}[2]{P({#1}\mathbin{\scalebox{1.2}[.7]{$\boldsymbol{\dashv}$}}{#2})} %121.011
\newcommand{\pmintco}[2]{P({#1}\mathbin{\scalebox{1.2}[.7]{$\boldsymbol{\vdash}$}}{#2})} %121.012
\newcommand{\pmintcc}[2]{P({#1} \mathbin{\ooalign{$\scalebox{1.2}[.7]{$\boldsymbol{\dashv}$}$\hidewidth\cr$\scalebox{1.2}[.7]{$\boldsymbol{\vdash}$}$}} {#2})} %121.013
\newcommand{\pmintnc}[1]{P_{#1}} %121.02
\newcommand{\pmfinid}[1]{\text{finid}\textbf{`}#1} %121.03
\newcommand{\pmfin}[1]{\text{fin}\textbf{`}#1} %121.031
\newcommand{\pmintt}[2]{#1_{#2}} %121.04
\newcommand{\pmprog}{\text{Prog}} %122.01
\newcommand{\pmaleph}{\boldsymbol{\aleph}} %123.01
\newcommand{\pmsucc}{\text{N}} %123.02
\newcommand{\pmclsrefl}{\text{Cls}\;\text{refl}} %124.01
\newcommand{\pmncrefl}{\text{NC}\;\text{refl}} %124.02
\newcommand{\pmncmult}{\text{NC}\;\text{mult}} %124.03
\newcommand{\pmncind}{\text{NC}\;\text{ind}} %126.01
\newcommand{\pmnocind}[1]{\text{N}_0\text{Cinduct}\textbf{`}#1}
\newcommand{\pmNocind}{\text{N}_0\text{Cinduct}}

%Relation-arithmetic
%Ordinal similarity and relation-numbers
\newcommand{\pmrnsm}[2]{{#1}{\raise.4ex\hbox{\textbf{\large;}}}{#2}} %150.01
\newcommand{\pmrnsmd}[2]{#1 \mathop{\boldsymbol{\dagger}} #2} %150.02
\newcommand{\pmrnsmdf}[1]{#1\boldsymbol{\dagger}} 
\newcommand{\pmopsc}[2]{#1 \mathrel{\ooalign{${\raise-.7ex\hbox{$\pmdot$}}$\hidewidth\cr$\text{\Female}$\hidewidth\cr${\raise-.8ex\hbox{\hspace{.15cm}\textbf{,}}}$}} #2} %150.03
\newcommand{\pmsmorb}[2]{#1 \mathrel{\overline{\text{smor}}} #2} %151.01
\newcommand{\pmSmorb}{\overline{\text{smor}}} %151.01
\newcommand{\pmsmor}[2]{#1 \mathrel{\text{smor}} #2} %151.02
\newcommand{\pmSmor}{\text{smor}} 
\newcommand{\pmnr}[1]{\text{Nr}\textbf{`}#1} %152.01
\newcommand{\pmNr}{\text{Nr}} 
\newcommand{\pmNR}{\text{NR}} %152.02
\newcommand{\pmsrrn}[1]{{#1}_{s}} %153.01
\newcommand{\pmNRat}[2]{\text{NR}^{#1}({#2})} %154.01
\newcommand{\pmnor}[1]{\text{N}_0\text{r}\textbf{`}#1} %155.01
\newcommand{\pmNor}{\text{N}_0\text{r}}
\newcommand{\pmNoR}{\text{N}_0\text{R}} %155.02

%Addition of Relations, and the Product of Two Relations
\newcommand{\pmrsum}[2]{#1\mathrel{\ooalign{${\raise-.21ex\hbox{$\boldsymbol{-}$}}$\cr\hidewidth$\boldsymbol{\uparrow}$\hidewidth\cr${\raise-.19ex\hbox{$\boldsymbol{-}$}}$}} #2} %160.01
\newcommand{\pmRsum}{\mathrel{\ooalign{${\raise-.21ex\hbox{$\boldsymbol{-}$}}$\cr\hidewidth$\boldsymbol{\uparrow}$\hidewidth\cr${\raise-.19ex\hbox{$\boldsymbol{-}$}}$}}} 
\newcommand{\pmrsume}[2]{#1 \mathrel{\rotatebox[origin=c]{90}{$\pmRsum$}} #2} %161.01
\newcommand{\pmRsume}{\rotatebox[origin=c]{90}{$\pmRsum$} }
\newcommand{\pmrsumb}[2]{#1 \mathrel{\rotatebox[origin=c]{270}{$\pmRsum$}} #2} %161.02
\newcommand{\pmRsumb}{\rotatebox[origin=c]{270}{$\pmRsum$}}
\newcommand{\pmrsumr}[1]{\Sigma\textbf{`}#1} %162.01
\newcommand{\pmRsumr}{\Sigma} 
\newcommand{\pmrsumrex}[1]{\mathrel{\text{Rel}^{#1}\text{excl}}} %163.01
\newcommand{\pmsmorsmorb}[2]{#1 \mathrel{\overline{\text{smor}}\,\overline{\text{smor}}} #2} %164.01
\newcommand{\pmSmorsmorb}{\overline{\text{smor}}\,\overline{\text{smor}}}
\newcommand{\pmsmorsmor}[2]{#1 \mathrel{\pmSmor\,\pmSmor} #2} %164.02
\newcommand{\pmSmorsmor}{\pmSmor\,\pmSmor}
\newcommand{\pmrprod}[2]{#1 \times #2} %166.01

%First differences and the multiplication and exponentiation of relations
%On the relation of first differences among the sub-classes of a given class
\newcommand{\pmrfdcl}[3]{#2 \mathrel{#1_{\text{cl}}} #3} %170.01
\newcommand{\pmRfdcl}[1]{#1_{\text{cl}}}
\newcommand{\pmrfdlc}[3]{#2 \mathrel{#1_{\text{lc}}} #3} %170.02
\newcommand{\pmRfdlc}[1]{#1_{\text{lc}}} 
\newcommand{\pmrfddf}[3]{#2 \mathrel{#1_{\text{df}}} #3} %171.01
\newcommand{\pmRfddf}[1]{#1_{\text{df}}}
\newcommand{\pmrfdfd}[3]{#2 \mathrel{#1_{\text{fd}}} #3} %171.02
\newcommand{\pmRfdfd}[1]{#1_{\text{fd}}} 
\newcommand{\pmrfprod}[1]{\Pi\textbf{`}#1} %172.01
\newcommand{\pmRfprod}[1]{\text{Prod}\textbf{`}#1} %173.01
\newcommand{\pmrarrel}[1]{\mathrel{\text{Rel}^{#1}\text{arithm}}} %174.01
\newcommand{\pmrexp}{\mathrel{\text{exp}}} %176.01
\newcommand{\pmRexp}[2]{{#1}^{#2}} %176.02
\newcommand{\pmrnsum}[2]{{#1} + {#2}} %180.01
\newcommand{\pmRnsum}{+} 
\newcommand{\pmrndsum}[2]{{#1} \mathrel{\pmcirc{+}} {#2}} %180.02
\newcommand{\pmRndsum}{\pmcirc{+}} 
\newcommand{\pmrnsumru}[2]{#1 \mathrel{\pmcirc{\pmRsumb}} #2} %181.01
\newcommand{\pmRnsumru}{\pmcirc{\pmRsumb}} 
\newcommand{\pmrnsumur}[2]{#1 \mathrel{\pmcirc{\pmRsume}} #2} %181.011
\newcommand{\pmRnsumur}{\pmcirc{\pmRsume}} 
\newcommand{\pmrn}[1]{\pmcirc{#1}} %181.02
\newcommand{\pmrsep}[1]{\ooalign{${\raise1.5ex\hbox{\rotatebox[origin=c]{180}{\scalebox{1.4}[1.4]{$\pmbreve{\phantom{.}}$}}}}$\cr\hidewidth$#1$\hidewidth}} %182.01
\newcommand{\pmrnsumf}[1]{\Sigma\pmNr\textbf{`}#1} %183.01
\newcommand{\pmrnprod}[2]{#1 \mathrel{\pmcirc{\times}} #2} %184.01
\newcommand{\pmRnprod}{\pmcirc{\times}} 
\newcommand{\pmrnprodf}[1]{\Pi\pmNr\textbf{`}#1} %185.01
\newcommand{\pmrnexp}[3]{#2 \mathrel{\pmArexp_{#1}} #3} %186.01
\newcommand{\pmRnexp}[1]{\pmArexp_{#1}}

%Series
%General theory of series
\newcommand{\pmtrans}{\text{trans}} %201.01
\newcommand{\pmconnex}{\text{connex}} %202.01
\newcommand{\pmser}{\text{Ser}} %204.01
\newcommand{\pmseq}[3]{#1 \mathrel{\text{seq}_{#1}} #2} %206.01
\newcommand{\pmSeq}[1]{\text{seq}_{#1}} 
\newcommand{\pmprec}[3]{#1 \mathrel{\text{prec}_{#1}} #2} %206.02
\newcommand{\pmPrec}[1]{\text{prec}_{#1}} 
\newcommand{\pmlt}[1]{\text{lt}_{#1}} %207.01
\newcommand{\pmtl}[1]{\text{tl}_{#1}} %207.01
\newcommand{\pmlimax}[2]{\text{limax}_{#1}\textbf{`}#2} %207.03
\newcommand{\pmLimax}[1]{\text{limax}_{#1}} 
\newcommand{\pmlimin}[2]{\text{limin}_{#1}\textbf{`}#2} %207.04
\newcommand{\pmLimin}[1]{\text{limin}_{#1}} 
\newcommand{\pmcr}[1]{\text{cr}\textbf{`}{#1}} 
\newcommand{\pmCr}{\text{cr}} 
\newcommand{\pmcror}[1]{\text{cror}\textbf{`}{#1}} %208.01
\newcommand{\pmCror}{\text{cror}} 

%On sections, segments, stretches, and derivatives
\newcommand{\pmsect}[1]{\text{sect}\textbf{`}{#1}} %211.01
\newcommand{\pmSect}{\text{sect}} 
\newcommand{\pmseg}[1]{\boldsymbol{\varsigma}\textbf{`}{#1}} %212.01
\newcommand{\pmSeg}{\boldsymbol{\varsigma}} 
\newcommand{\pmsym}[1]{\text{sym}\textbf{`}{#1}} %212.02
\newcommand{\pmSym}{\text{sym}} 
\newcommand{\pmsectr}[1]{{#1}_{\pmSeg}} %213.01
\newcommand{\pmded}{\mathrel{\text{Ded}}}  %214.01
\newcommand{\pmsded}{\mathrel{\text{semi}\;\text{Ded}}} %214.02
\newcommand{\pmstr}[1]{\text{str}\textbf{`}{#1}} %215.01
\newcommand{\pmStr}{\text{str}} 
\newcommand{\pmder}[2]{\delta_{#1}\textbf{`}#2} %216.01
\newcommand{\pmDer}[1]{\delta_{#1}} 
\newcommand{\pmdern}[3]{\delta_{#1}^{#2}\textbf{`}#3} 
\newcommand{\pmden}[1]{\text{dense}\textbf{`}{#1}} %216.02
\newcommand{\pmDen}{\text{dense}} 
\newcommand{\pmclsd}[1]{\text{closed}\textbf{`}{#1}} %216.03
\newcommand{\pmClsd}{\text{closed}} 
\newcommand{\pmperf}[1]{\text{perf}\textbf{`}{#1}} %216.04
\newcommand{\pmPerf}{\text{perf}} 
\newcommand{\pmders}[1]{\rotatebox[origin=c]{180}{$\Delta$}\textbf{`}#1} %216.05
\newcommand{\pmDers}{\rotatebox[origin=c]{180}{$\Delta$}} 

%On convergence, and the limits of functions
\newcommand{\pmconv}[3]{#1\bar{#2}_{\text{cn}}#3} %230.01
\newcommand{\pmConv}[1]{{#1}_{\text{cn}}} %230.02
\newcommand{\pmconvg}[3]{#1\bar{#2}_{\text{cng}}#3} 
\newcommand{\pmConvg}[1]{{#1}_{\text{cng}}} 
\newcommand{\pmlsc}[3]{#1\bar{#2}_{\text{sc}}#3} %231.01
\newcommand{\pmosc}[3]{#1\bar{#2}_{\text{os}}#3} %231.02
\newcommand{\pmlscl}[4]{(#1\bar{#2}#3)_{\text{sc}}\textbf{`}#4} %232.01
\newcommand{\pmoscl}[4]{(#1\bar{#2}#3)_{\text{os}}\textbf{`}#4} %232.02
\newcommand{\pmlmx}[4]{(#1\bar{#2}#3)_{\text{lmx}}\textbf{`}#4} %233.01
\newcommand{\pmLmx}[3]{(#1\bar{#2}#3)_{\text{lmx}}}
\newcommand{\pmlimf}[4]{#1(#2#3)\textbf{`}#4} %233.02
\newcommand{\pmLimf}[3]{#1(#2#3)} 
\newcommand{\pmscf}[3]{\text{sc}(#1, #2)\boldsymbol{`}#3} %234.01
\newcommand{\pmosf}[3]{\text{os}(#1, #2)\boldsymbol{`}#3} %234.02
\newcommand{\pmctf}[3]{\text{ct}(#1#2)\boldsymbol{`}#3} %234.03
\newcommand{\pmcontinf}[3]{\text{contin}(#1#2)\boldsymbol{`}#3} %234.04
\newcommand{\pmcontin}[2]{#1 \mathrel{\text{contin}} #2} %234.05
\newcommand{\pmContin}{\text{contin}} 

%Volume III
%Well-Ordered Series
\newcommand{\pmbord}{\text{Bord}} %250.01
\newcommand{\pmword}{\Omega} %250.02
\newcommand{\pmordn}{\text{NO}} %251.01
\newcommand{\pmless}{\mathrel{\text{less}}} %254.01
\newcommand{\pmLess}{\text{less}}
\newcommand{\pmpsc}[2]{#1 \mathrel{P_{\text{sm}}} #2} %254.02
\newcommand{\pmPsc}{P_{\text{sm}}} 
\newcommand{\pmorle}{\mathrel{\ooalign{$\boldsymbol{<}$\cr\hidewidth$\boldsymbol{\cdot}$}}} %255.01
\newcommand{\pmorgr}{\mathrel{\ooalign{$\boldsymbol{>}$\hidewidth\cr$\boldsymbol{\cdot}$\hidewidth}}} %255.02
\newcommand{\pmnoo}{\text{N}_0\text{O}} %255.03
\newcommand{\pmorleq}{\mathrel{\ooalign{$\boldsymbol{<}$\cr\hidewidth$\boldsymbol{\cdot}$\cr\hidewidth${\raise-.75ex\hbox{\rotatebox[origin=c]{155}{$\scalebox{1.1}{$\boldsymbol{-}$}$}}}\hspace{-.375ex}$}}} %255.04
\newcommand{\pmorgrq}{\mathrel{\ooalign{$\boldsymbol{>}$\hidewidth\cr$\boldsymbol{\cdot}$\hidewidth\cr${\hspace{-.4ex}\raise-.75ex\hbox{\rotatebox[origin=c]{-155}{$\scalebox{1.1}{$\boldsymbol{-}$}$}}}$\hidewidth}}} %255.05
\newcommand{\pmm}{\emph{M}} %256.01
\newcommand{\pmn}{\emph{N}} %256.02, 263.02
\newcommand{\pmtranc}[3]{(#1\pmast#2)\textbf{`}#3} %257.01
\newcommand{\pmTranc}[2]{(#1\pmast#2)} %257.01
\newcommand{\pmtrpot}[3]{#1_{#2#3}} %257.02
\newcommand{\pma}{\emph{A}} %259.01
\newcommand{\pmaw}{\emph{A}_{\emph{W}}} %259.02
\newcommand{\pmwa}{\emph{W}_{\emph{A}}} %259.03

%Finite and Infinite Series and Ordinals
\newcommand{\pmintf}{P_{\text{fn}}} %260.01
\newcommand{\pmserinf}{\text{Ser infin}} %261.01
\newcommand{\pmwordinf}{\pmword\text{ infin}} %261.02
\newcommand{\pmserfin}{\text{Ser fin}} %261.03
\newcommand{\pmwordfin}{\pmword\text{ fin}} %261.04
\newcommand{\pmwordind}{\pmword\text{ induct}} %261.04
\newcommand{\pmordnfin}{\text{NO fin}} %262.01
\newcommand{\pmordninf}{\text{NO infin}} %262.02
\newcommand{\pmfinord}[1]{#1_r} %262.03
\newcommand{\pmom}{\boldsymbol{\omega}} %263.01
\newcommand{\pmpr}[1]{#1_{\text{pr}}} %264.01
\newcommand{\pmomn}[1]{\pmom_{#1}} %265.01, 265.03, etc.
\newcommand{\pmalephn}[1]{\pmaleph_{#1}} %265.02, 265.04, etc.

%Compact series, rational series, and continuous series
\newcommand{\pmcomp}{\mathrel{\text{comp}}} %270.01
\newcommand{\pmComp}{\text{Comp}} 
\newcommand{\pmmed}{\mathrel{\text{med}}} %271.01
\newcommand{\pmMed}{\text{med}} 
\newcommand{\pmsimp}[3]{\mathrel{#1_{#2#3}}} %272.01
\newcommand{\pmsimps}[3]{{#1}_{#2}\textbf{`}{#3}} %273.02
\newcommand{\pmSimp}[3]{({#1}{#2})_{#3}} %273.03
\newcommand{\pmSimps}[2]{{#1}_{#2}} %273.04
\newcommand{\pmrats}{\eta} %273.01
\newcommand{\pmsfcls}[1]{#1_\pmrats} %274.01
\newcommand{\pmsfclsm}[2]{#1_m\textbf{`}#2} %274.02
\newcommand{\pmsfclsp}[2]{\pmbreve{#1}_P\textbf{`}{#2}} %274.03
\newcommand{\pmsfclsmp}[1]{M_P\textbf{`}{#1}} %274.04
\newcommand{\pmcser}{\theta} %275.01
\newcommand{\pmcsercl}[1]{#1_\pmcser} %276.01
\newcommand{\pmcsercls}[2]{{#1}_{#2}} %276.04
\newcommand{\pmCsercls}[2]{{#1}_{\text{tl}}\textbf{`}{#2}} %264.05
%Skipped some temprary definitions as repetitious

%Quantity 
%Generalization of Number
\newcommand{\pmu}{\textit{U}} %300.01
\newcommand{\pmrnum}{\text{Rel num}} %300.02
\newcommand{\pmrnumid}{\text{Rel num id}} %300.03
\newcommand{\pmrpwr}[2]{#1^#2} %301.03
\newcommand{\pmPrm}{\text{Prm}} %302.01
\newcommand{\pmrprm}[4]{(#1,#2)\mathbin{\pmPrm_\tau}(#3,#4)} %302.02
\newcommand{\pmprm}[4]{(#1,#2)\mathbin{\pmPrm}(#3,#4)} %302.03
\newcommand{\pmhcf}[2]{\text{hcf}(#1,#2)} %302.04
\newcommand{\pmHcf}{\text{hcf}}
\newcommand{\pmlcm}[2]{\text{lcm}(#1,#2)} %302.05
\newcommand{\pmLcm}{\text{lcm}} 
\newcommand{\pmrat}[2]{#1 \rotatebox[origin=c]{10}{$\boldsymbol{/}$} #2} %303.01 
\newcommand{\pmqn}[1]{#1_q} %303.02
\newcommand{\pmqnil}{\infty_q} %303.03
\newcommand{\pmRat}{\text{Rat}} %303.04
\newcommand{\pmRatdef}{\text{Rat def}} %303.05
\newcommand{\pmqnle}[2]{#1 \mathrel{\boldsymbol{<}_r} #2} %304.01
\newcommand{\pmQnle}{\boldsymbol{<}_r} 
\newcommand{\pmqnLe}{H} %304.02
\newcommand{\pmqnlez}{H'} %304.03
\newcommand{\pmprodsr}[2]{#1 \times_s #2} %305.01
\newcommand{\pmProdsr}{\times_s} 
\newcommand{\pmsumsr}[2]{#1 +_s #2} %306.01
\newcommand{\pmSumsr}{+_s} 
\newcommand{\pmratn}{\text{Rat}_n} %307.01
\newcommand{\pmratg}{\text{Rat}_g} %307.011
\newcommand{\pmratnle}[2]{#1 \mathrel{\boldsymbol{<}_n} #2} %307.02
\newcommand{\pmRatnle}{\boldsymbol{<}_n} 
\newcommand{\pmatngr}[2]{#1 \mathrel{\boldsymbol{>}_n} #2} %307.021
\newcommand{\pmRatngr}{\boldsymbol{>}_n} 
\newcommand{\pmratgle}[2]{#1 \mathrel{\boldsymbol{<}_g} #2} %307.03
\newcommand{\pmRatgle}{\boldsymbol{<}_g} 
\newcommand{\pmratggr}[2]{#1 \mathrel{\boldsymbol{>}_g} #2} %307.031
\newcommand{\pmRatggr}{\boldsymbol{>}_g} 
\newcommand{\pmratnLe}{H_n} %307.04
\newcommand{\pmratgLe}{H_g} %307.05
\newcommand{\pmratssub}[2]{#1 \boldsymbol{-}_s #2} %308.01
\newcommand{\pmsumgr}[2]{#1 +_g #2} %308.02
\newcommand{\pmprodgr}[2]{#1 \times_g #2} %309.01
\newcommand{\pmrenp}{\Theta} %310.01
\newcommand{\pmrenpz}{\Theta'} %310.011
\newcommand{\pmrenn}{\Theta_n} %310.02
\newcommand{\pmrennz}{\Theta_n'} %310.021
\newcommand{\pmreng}{\Theta_g} %310.03
\newcommand{\pmconc}[1]{\text{concord}(#1)} %311.01
\newcommand{\pmConc}{\text{concord}} 
\newcommand{\pmrensumc}[2]{#1 +_p #2} %311.02
\newcommand{\pmrensub}[2]{#1 -_p #2} %312.01
\newcommand{\pmrensuma}[2]{#1 +_a #2} %312.02
\newcommand{\pmrenproda}[2]{#1 \times_a #2} %313.01
\newcommand{\pmrenrsum}[2]{#1 +_r #2} %314.01
\newcommand{\pmrenrprod}[2]{#1 \times_r #2} %314.02
\newcommand{\Male}{{\usefont{U}{mvs}{m}{n}\symbol{124}}} %from the Marvosym package
\newcommand{\pmrenr}{\mathop{\text{\Male}}} %314.03
\newcommand{\pmrenrssum}[2]{#1 +_\sigma #2} %314.04
\newcommand{\pmrenrsprod}[2]{#1 \times_\sigma #2} %313.05

%Vector Families
\newcommand{\pmcorr}[1]{\text{cr}\textbf{`}#1} %330.01
\newcommand{\pmabel}{\text{Abel}} %330.02
\newcommand{\pmvfm}[1]{\text{fm}\textbf{`}#1} %330.03
\newcommand{\pmVfm}{\text{fm}} 
\newcommand{\pmvfmcl}{\textit{FM}} %330.04
\newcommand{\pmvffb}[1]{#1_\iota} %330.05
\newcommand{\pmconx}[1]{\text{conx}\textbf{`}#1} %331.01
\newcommand{\pmconxfm}{\textit{FM}\text{ conx}} %331.02
\newcommand{\pmfrep}[2]{\text{rep}_#1\textbf{`}#2} %332.01
\newcommand{\pmfopen}[1]{#1_\partial} %333.01 
\newcommand{\pmfopennid}[1]{#1_{\iota\partial}} %333.011
\newcommand{\pmfmap}{\textit{FM}\text{ ap}} %333.02
\newcommand{\pmfmapconx}{\textit{FM}\text{ ap conx}} %333.03
\newcommand{\pmtrsp}[1]{\text{trs}\textbf{`}#1} %334.01
\newcommand{\pmfmtrs}{\textit{FM}\text{ trs}} %334.02
\newcommand{\pmfmconnex}{\textit{FM}\text{ connex}} %334.03
\newcommand{\pmfmsr}{\textit{FM}\text{ sr}} %334.02
\newcommand{\pmfmasym}{\textit{FM}\text{ asym}} %334.05
\newcommand{\pminit}[1]{\text{init}\textbf{`}#1} %335.01
\newcommand{\pmfminit}{\textit{FM}\text{ init}} %335.02
\newcommand{\pmvr}[1]{\textit{V}_#1} %336.01
\newcommand{\pmvrnid}[1]{\textit{U}_#1} %336.011
\newcommand{\pmarvs}[1]{A_{#1}} %336.02

%Measurement
\newcommand{\pmfmsubm}{\textit{FM}\text{ subm}} %351.01
\newcommand{\pmvrm}[2]{#1_#2} %352.01
\newcommand{\pmvrmg}[2]{#1_{#2\iota}} %352.02
\newcommand{\pmfmrt}{\textit{FM}\text{ rt}} %353.01
\newcommand{\pmfmcx}{\textit{FM}\text{ cx}} %353.02
\newcommand{\pmfmrtcx}{\textit{FM}\text{ rt cx}} %353.03
\newcommand{\pmfmg}[1]{#1_g} %354.01
\newcommand{\pmrtnet}[2]{\text{cx}_#1\textbf{`}#2} %354.02
\newcommand{\pmfmgrp}{\textit{FM}\text{ grp}} %354.03
\newcommand{\pmrems}[2]{#1_#2} %356.01

%Cyclic Families
\newcommand{\pmfmcycl}{\textit{FM}\text{ cycl}} %370.01
\newcommand{\pmcycl}[2]{#1_#2} %370.02
\newcommand{\pmcycli}[2]{#1_#2} %370.03
\newcommand{\pmvser}[2]{#1_#2} %371.01
\newcommand{\pmintsecvser}[2]{#1_#2} %372.01
\newcommand{\pmprime}{\text{Prime}} %373.01
\newcommand{\pmsfmid}[3]{#1_{#2#3}} %373.02
\newcommand{\pmsmltid}[2]{(#1, #2)} %373.03
\newcommand{\pmprrt}[3]{(#1 \rotatebox[origin=c]{10}{$\boldsymbol{/}$} #2)_{#3}} %375.01

\title{\texttt{principia.sty}\\ A \LaTeXe \space Package for Typesetting Whitehead and Russell's \textit{Principia Mathematica} (Version 2.0)}
\author{Landon D. C. Elkind \texttt{landon.elkind@wku.edu}}
\date{\today}

\begin{document}
\maketitle
\onehalfspacing
The \texttt{principia} package is designed for typesetting the Peanese notation of \textit{Principia Mathematica}. ``Peanese'' is something of a misnomer: Whitehead and Russell invented much of the notations used in \textit{Principia Mathematica} even while borrowing from many others.

\texttt{principia}'s style has antecedents in Kevin C. Klement's excellent \textit{Tractatus} typesetting, to which we owe the device of adding `d's and `t's to typeset further square dots. The device of beginning all \texttt{principia} commands with `\texttt{$\backslash$pm}' is owed to the \texttt{begriff} package, a style that was mimicked in both the \texttt{frege} package and the \texttt{Grundgesetze} package. 

In \textit{Principia Mathematica} some symbols occur with an argument and sometimes that same symbol occurs without an argument. For example, `$\pmsome{x}$' occurs in some formulas, but sometimes `$\pmSome$' occurs in the text when they talk about the symbol itself. \texttt{principia} is designed to accommodate these different occurrences of symbols. When a symbol is to occur without an argument, capitalize the first letter following the `\texttt{$\backslash$pm}' part of the command. E.g. \verb|\pmsome{x}| produces $\pmsome{x}$ and \verb|\pmSome| produces `$\pmSome$'. Note the former command requires an argument and the latter command does not. Not all commands in the \texttt{principia} package admit of such dual use because some symbols in \textit{Principia Mathematica} never occur without an argument or do not take an argument in the usual sense. For example, the propositional connectives do not take an `argument' in the way singular or plural descriptions do.

Version 2.0 of \texttt{principia} is adequate to typeset all notations throughout Volumes I-III of \textit{Principia} and includes some minor fixes. Below are commands for Volume I.

\texttt{principia}'s dependencies are \texttt{amsmath}, \texttt{amssymb}, \texttt{pifont}, and \texttt{graphicx}. Make sure to load these package by typing \texttt{$\backslash$usepackage\{graphicx\}}, etc., into the document preamble. 

To load \texttt{principia}, type \texttt{$\backslash$usepackage\{principia\}} in the document's preamble.

\noindent \begin{tabular}{@{}p{3cm} | p{5cm} | p{8.25cm}}
	\textbf{Symbol} & \textbf{\LaTeX command} & \textbf{Notes} \\ \hline
	$\pmthm$ & \verb|\pmthm| & Theorem. \\
	$\pmast$ & \verb|\pmast| & As in $\pmast1$.  \\ 
	$\pmcdot$ & \verb|\pmcdot| & As in, $\pmast1\pmcdot1$. \\
	$\pmpp$ & \verb|\pmpp| & Primitive proposition. Note the indentation. \\
	$\pmiddf$ & \verb|\pmiddf| & Identity for definitions (`$=$' differs in spacing).  \\
	$\pmdf$ & \verb|\pmdf| & Definition. Note the indentation.  \\
	$\pmdem$ & \verb|\pmdem| & This symbol begins a proof. \\  
	$\pmsub{p}{q}$, $\pmsubb{p}{q}{r}{s}$, $\pmsubbb{p}{q}{r}{s}{t}{u}$, ... $\pmSub{\text{Add}}{p}{q}$, ... & \verb|\pmsub{p}{q}|, \verb|\pmsubb{p}{q}{r}{s}|, \verb|\pmsubbb{p}{q}| \par \hfill \verb|{r}{s}{t}{u}|, ... \verb|\pmSub{\text{Add}}{p}{q}| & Substitution into theorems. Add `b's to the end of \verb|\pmsub| to increase the number of substitutions (up to four `b's). Each extra `b' adds two arguments. To substitute and specify the theorem as well, capitalize the `s' in \verb|\pmsub|. \\
	$\pmdot$, $\pmdott$, $\pmdottt$, $\pmdotttt$, $\pmdottttt$, $\pmdotttttt$ & \verb|\pmdot|, \verb|\pmdott|, \verb|\pmdottt|, ... & Add `t's to the end of \verb|\pmdot| to increase the number of dots (up to six `t's). \\ 
	$\pmand$, $\pmandd$, $\pmanddd$, $\pmandddd$, $\pmanddddd$, $\pmandddddd$ & \verb|\pmand|, \verb|\pmandd|, \verb|\pmanddd|, ...& Add `d's to the end of \verb|\pmand| command to increase the number of dots (up to six `d's). \\ 
	$\pmor$ & \verb|\pmor| & Disjunction. \\
	$\pmnot$ & \verb|\pmnot| & Negation. Note its spacing differs from \verb|\sim|. \\
	$\pmimp$ & \verb|\pmimp| & Material implication. \\
	$\pmiff$ & \verb|\pmiff| & Material biconditional. \\
	$\pmimp_x, \pmimp_{x,y}$ & \verb|\pmimp_x|, \verb|\pmimp_{x,y}| & And so on for more subscripts. \\
	$\pmiff_x, \pmiff_{x,y}$ & \verb|\pmiff_x|, \verb|\pmiff_{x,y}| & And so on for more subscripts. \\
	$\pmhat{x}$ & \verb|\pmhat{x}| & This command requires one argument. It can be embedded in other commands. E.g., \verb|\pmpf{\phi}{\pmhat{x}}| renders `$\pmpf{\phi}{\pmhat{x}}$'. \\
	$\pmpf{\phi}{x}$ & \verb|\pmpf{\phi}{x}| & This command requires two arguments. \\
	$\pmpff{\phi}{x}{y}$ & \verb|\pmpff{\phi}{x}{y}| & This command requires three arguments. \\
	$\pmpfff{\phi}{x}{y}{z}$ & \verb|\pmpfff{\phi}{x}{y}{z}| & This command requires four arguments. \\
	$\pmall{x}$ &\verb|\pmall{x}| & Universal quantifier. \\
	$\pmsome{x}$, $\pmSome$ & \verb|\pmsome{x}|, \verb|\pmSome| & Existential quantifier. \\
	$\pmshr$ & \verb|\pmshr| & The predicative propositional functions. \\
	$\pmpred{\phi}{x}$ & \verb|\pmpred{\phi}{x}| & This command requires two arguments. \\
	$\pmpredd{\phi}{x}{y}$ & \verb|\pmpredd{\phi}{x}{y}| & This command requires three arguments. \\
	$\pmpreddd{\phi}{x}{y}{z}$ & \verb|\pmpreddd{\phi}{x}{y}{z}| & This command requires four arguments.
\end{tabular}

\noindent \begin{tabular}{@{}p{3cm} | p{5cm} | p{8.25cm}}
	$=$, $\pmnid$ & \verb|=|, \verb|\pmnid| & Identity and its negation. \\
	$\pmdsc{x}$ & \verb|\pmdsc{x}| & Definite description. \\
	$\pmexists$ & \verb|\pmexists| & Existence. \\
	$\pmcls{z}{\psi z}$ & \verb|\pmcls{z}{\psi z}| & The class of $z$s satisfying $\psi$. \\
	$\pmcin$ & \verb|\pmcin| & The class membership symbol. \\
	$\pmClsn{n}$, $\pmCls$ &  \verb|\pmClsn{n}|, \verb|\pmCls| & The class of classes of individuals. \\
	 $\pmscl{\alpha}$, $\pmsCl$ & \verb|\pmscl{\alpha}|, \verb|\pmsCl| & The subclasses of a class $\alpha$. \\
	 $\pmsrl{R}$, $\pmsRl$ & \verb|\pmsrl{R}|, \verb|\pmsRl| & The sub-relations of a relation $R$. \\
	$\pmcuni$ & \verb|\pmcuni| & The universal class. \\
	$\pmcnull$ & \verb|\pmcnull| & The null class. \\
	$\pmcexists$ & \verb|\pmcexists| & The existence of a class. \\
	$\pmccmp{\alpha}$ & \verb|\pmccmp{\alpha}| & This command requires one argument. \\
	$\pmcmin{\alpha}{\beta}$ & \verb|\pmcmin{\alpha}{\beta}| & This command requires two arguments. \\
	$\pmccup$ & \verb|\pmccup| & Class union. \\
	$\pmccap$ & \verb|\pmccap| & Class intersection. \\
	$\pmcinc$ & \verb|\pmcinc| & Class inclusion. \\
	$\pmrel{x}{y}{\phi(x,y)}$ & \verb|\pmrel{x}{y}{\phi(x,y)}| & The relation in extension given by $\phi$. \\
	$\pmrele{a}{x}{y}{R}{b}$ & \verb|\pmrele{a}{x}{y}{R}{b}| & This command requires five arguments. \\
	$\pmrelep{a}{R}{b}$ & \verb|\pmrelep{a}{R}{b}| & This command requires three arguments. \\
	$\pmrin$ & \verb|\pmrin| & The relation membership symbol. \\
	$\pmReln{n}$, $\pmRel$ & \verb|\pmReln{n}|, \verb|\pmRel| & The class of relations ($n$-many `of relations'). \\
	$\pmruni$ & \verb|\pmruni| & The universal relation. \\
	$\pmrnull$ & \verb|\pmrnull| & The null relation. \\
	$\pmrexists$ & \verb|\pmrexists| & This symbol prefixes relations. \\
	$\pmrcmp{R}$ & \verb|\pmrcmp{\alpha}| & This command requires one argument. \\
	$\pmrmin{R}{S}$ & \verb|\pmcmin{R}{S}| & This command requires two arguments. \\
	$\pmrcup$ & \verb|\pmrcup| & Relation union. \\
	$\pmrcap$ & \verb|\pmrcap| & Relation intersection. \\
	$\pmrinc$ & \verb|\pmrinc| & Relation inclusion. \\
	$\pmcrel{R}$ & \verb|\pmcrel{R}| & The converse of a relation. \\
	$\pmCnv$ & \verb|\pmCnv| & The command for `Cnv'. \\
	$\pmdscf{R}{x}$ & \verb|\pmdscf{R}{x}| & A singular descriptive function. \\
	$\pmdscff{R}{\beta}$ & \verb|\pmdscff{R}{\beta}| & A plural descriptive function. \\
	$\pmdscfff{R}{\kappa}$ & \verb|\pmdscfff{R}{\kappa}| & A plural descriptive function.   \\
	$\pmdscfe{R}{\beta}$ & \verb|\pmdscfe{R}{\beta}| & The existence of a plural descriptive function.
\end{tabular}

\noindent \begin{tabular}{@{}p{3cm} | p{5cm} | p{8.25cm}}
	$\pmdscfr{R}{x}$, `$\pmdscfR{R}$'& \verb|\pmdscfr{R}{x}|, \verb|\pmdscfR{R}| & The relation of $\pmdscfr{R}{\beta}$ to $\beta$. \\
	$\pmdm{R}$, $\pmDm$ & \verb|\pmdm{R}|, \verb|\pmDm| & The domain of a relation $R$.  \\
	$\pmcdm{R}$, $\pmCdm$ & \verb|\pmcdm{R}|, \verb|\pmCdm| & The converse domain of a relation $R$. \\
	$\pmcmp{R}$, $\pmCmp$ & \verb|\pmcmp{R}|, \verb|\pmCmp| & The campus of a relation $R$.  \\
	$\pmfld{R}$, $\pmFld$ & \verb|\pmfld{R}|, \verb|\pmFld| & The field of a relation $R$. \\
	$\pmrrf{R}{x}$, $\pmRrf{R}$ & \verb|\pmrrf{R}{x}|, \verb|\pmRrf{R}| & The referents of a given relation. \\
	$\pmrrl{R}{x}$, $\pmRrl{R}$ & \verb|\pmrrl{R}{x}|, \verb|\pmRrl{R}| & The relata of a given relation. \\
	$\pmsg{R}$, $\pmSg$ & \verb|\pmsg{R}|, \verb|\pmSg| &  \\
	$\pmgs{R}$, $\pmGs$ & \verb|\pmgs{R}|, \verb|\pmGs| &  \\
	$\pmrprd{R}{S}$, $\pmRprd$ & \verb|\pmrprd{R}{S}|, \verb|\pmrprd| &  The relative product of $R$ and $S$. \\
	$\pmrprdn{R}{n}$ & \verb|\pmrprdn{R}{n}| & The $n$th relative product of $R$. \\
	$\pmrprdd{R}{S}$, $\pmRprdd$ & \verb|\pmrprdd{R}{S}|, \verb|\pmrprdd| &  The double relative product of $R$ and $S$. \\
	$\pmrlcd{\alpha}{R}$ & \verb|\pmrld{\alpha}{R}| & The limitation of $R$'s domain to $\alpha$. \\
	$\pmrlcd{R}{\beta}$ & \verb|\pmrld{R}{\beta}| & The limitation of $R$'s converse domain to $\beta$. \\
	$\pmrlf{\alpha}{R}{\beta}$ & \verb|\pmrlf{\alpha}{R}{\beta}| & The limitation of $R$'s field to $\alpha$ and $\beta$, resp. \\ 
	$\pmrlF{P}{\alpha}$ & \verb|\pmrlF{\alpha}{R}{\beta}| & The limitation of $P$'s field to $\alpha$. \\ 
	$\pmrl{\alpha}{\beta}$ & \verb|\pmrl{\alpha}{\beta}| & The relation made of all $x$s in $\alpha$ and $y$s in $\beta$. \\
	$\pmop$ & \verb|\pmop| & The operation symbol. \\
	$\pmopc{\alpha}{y}$ & \verb|\pmopc{\alpha}{y}| & The relation of $x$s in $\alpha$ taken to $y$ by $\pmop$. \\
	$\pmccsum{\alpha}$ & \verb|\pmccsum{\alpha}| & The sum of a class of classes. \\
	$\pmccprd{\alpha}$ & \verb|\pmccprd{\alpha}| & The product of a class of classes. \\
	$\pmcrsum{\alpha}$ & \verb|\pmcrsum{\alpha}| & The sum of a class of relations. \\
	$\pmcrprd{\alpha}$ & \verb|\pmcrprd{\alpha}| & The product of a class of relations. \\
	$\pmrid$, $\pmrdiv$ & \verb|\pmrid|, \verb|\pmrdiv| & The relations of identity and diversity. \\
	$\pmcunit{x}$, $\pmcUnit$ & \verb|\pmcunit{x}|, \verb|\pmcUnit| & The unit class. \\
	$\pmcunits{\alpha}$ & \verb|\pmcunits{\alpha}| & The sum of unit classes of $\alpha$'s elements. \\
	$\pmrn{n}$ & \verb|\pmrn{n}| & The ordinal number $n$. \\
	$\pmdn{n}$ & \verb|\pmdn{n}| & The class of relations equal to an $n$-tuple. \\
	$\pmoc{x}{y}$ & \verb|\pmoc{x}{y}| & The ordinal number restricted to $R=(x,y)$. \\
	$\pmrt{x}$, $\pmrti{n}{x}$ & \verb|\pmrt{x}|, \verb|\pmrti{n}{x}| & The relative type of $x$ ($n$-many `type of's). \\
	$\pmrtc{n}{\alpha}$ & \verb|\pmrtc{n}{\alpha}| & The relative type of $\alpha$ ($n$-many `type of's). \\
	$\pmrtri{n}{R}$, $\pmrtrc{n}{R}$ & \verb|\pmrtri{n}{R}|,  \verb|\pmrtrc{n}{R}| & The relative type of (with $n$-many `type of's) $R$ from individuals to individuals, or from classes to classes. `$nm$' can replace `$n$'. 
\end{tabular}

\noindent \begin{tabular}{@{}p{3cm} | p{5cm} | p{8.25cm}}
	$\pmrtric{n}{m}{R}$, $\pmrtrci{n}{m}{R}$ & \verb|\pmrtric{n}{R}|,  \verb|\pmrtrci{n}{R}| & The relative type of $R$ from individuals to classes, or from classes to individuals. \\
	$\pmrtdi{\alpha}{x}$, $\pmrtdri{R}{(x,y)}$ & \verb|\pmrtdi{\alpha}{x}|, \verb|\pmrtdri{R}{(x,y)}| & The result of determining that the members of $\alpha$ ($R$) belong to the relative type of $x$ (in the domain, and of $y$ in the converse domain). \\
	$\pmrtdc{\alpha}{x}$, $\pmrtdrc{R}{x,y}$ & \verb|\pmrtdc{\alpha}{x}|, \verb|\pmrtdrc{R}{x,y}| & The result of determining that the members of $\alpha$ ($R$) belong to the relative type of $\pmrt{x}$ (in the domain, and of $\pmrt{y}$ in the converse domain). \\
	$\pmrdc{\alpha}{\beta}$ & \verb|\pmrdc{\alpha}{\beta}| & The class of relations $R$ with domain contained in $\alpha$ and converse domain in $\beta$.  \\
	$\pmoneone$, $\pmonemany$, $\pmmanyone$ &  \verb|\pmoneone|, \verb|\pmonemany|, \verb|\pmmanyone| & The class of one-one, or one-many, or many-one, relations. Note \verb|\pmrdc| can be used here. \\
	$\pmsm$, $\pmsmbar$ & \verb|\pmsm|, \verb|\pmsmbar| & The similarity relation. \\
	$\pmselp{\kappa}$, $\pmSelp$ & \verb|\pmselp{\kappa}|, \verb|\pmSelp| &  The $P$-selections from $\kappa$ \\
	$\pmsele{\kappa}$, $\pmSele$ & \verb|\pmsele{\kappa}|, \verb|\pmSele| &  The $\pmcin$-selections from $\kappa$ \\
	$\pmself{\kappa}$, $\pmSelf$ & \verb|\pmself{\kappa}|, \verb|\pmSelf| &  The $F$-selections from $\kappa$ \\
	$\pmexc$ & \verb|\pmexc| & The class of pairwise-disjoint classes. \\
	$\pmexcn$ & \verb|\pmexcn| & The class of pairwise-disjoint non-null classes. \\
	$\pmexcc{\gamma}$ & \verb|\pmexcc{\gamma}| & A class of mutually exclusive classes in $\gamma$. \\
	$\pmselc{P}{y}$ & \verb|\pmselc{P}{y}| & The class of couples $(y, \pmdscf{P}{y})$. \\
	$\pmmultc$ & \verb|\pmmultc| & The class of multipliable classes. \\
	$\pmmultr$ & \verb|\pmmultr| & The class of multipliable relations. \\
	$\pmmultax$ & \verb|\pmmultax| & The multiplicative axiom. \\
	$\pmanc{R}$, $\pmancc{R}$ & \verb|\pmanc{R}|, \verb|\pmancc{R}| & The ancestral and its converse. \\
	$\pmrst{R}$, $\pmrts{R}$ & \verb|\pmrst{R}|, \verb|\pmrts{R}| & The powers of the ancestral and its converse. \\
	$\pmmin{P}$, $\pmmax{P}$ & \verb|\pmmin{P}|, \verb|\pmmax{P}| & The minimum and maximum under $P$. \\
	$\pmpot{R}$, $\pmpotid{R}$ & \verb|\pmpot{R}|, \verb|\pmpotid{R}| & The products (strict and not) of an ancestral. \\
	 $\pmpo{R}$ & \verb|\pmpo{R}| & The product of a class of ancestrals $R$. \\
	 $\pmB$ & \verb|\pmB| & The relation of beginning under $P$. \\
	$\pmgen{P}$ & \verb|\pmgen{P}| & The generation of $P$. \\
	$\pmefr{P}{Q}$ & \verb|\pmefr{P}{Q}| & The equi-factor relation. \\
	$\pmipr{R}{x}$ & \verb|\pmipr{R}{x}| &  The non-distinct posterity of $x$ under $R$. \\
	$\pmjpr{R}{x}$ & \verb|\pmjpr{R}{x}| &  The distinct posterity of $x$ under $R$. \\
	$\pmfr{R}{x}$ & \verb|\pmfr{R}{x}| & The ancestry and posterity of $x$ under $R$. \\
	$\pmnc{\kappa}$, $\pmNc$ & \verb|\pmnc{\kappa}|, \verb|\pmNc| & The cardinal number of $\kappa$.
\end{tabular}

\end{document}