summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/pgfplots/pgfplots.reference.markers-meta.tex
blob: a2cf31dec0e7bf902542fbe02a527946f13186bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

\subsection{Markers, Linestyles, (Background-) Colors and Colormaps}
\label{sec:markers}%
The following options of \Tikz\ are available to plots.

\subsubsection{Markers}
This list is copied from~\cite[section~29]{tikz}:
\pgfmanualpdflabel{/tikz/mark}{}%
\begingroup
\newenvironment{longdescription}[0]{%
	\begin{list}{}{%
		\leftmargin=4.7cm
		\setlength{\labelwidth}{4.7cm}%
		\renewcommand{\makelabel}[1]{\hfill\textbf{\texttt{##1}}}%
	}%
}{%
	\end{list}%
}%
\def\showit#1{%
	\tikz\draw[%
		gray,
		thin,
		mark options={fill=yellow!80!black,draw=black,scale=2},
		x=0.8cm,y=0.3cm,
		#1]
	plot coordinates {(0,0) (1,1) (2,0) (3,1)};%
}%
\def\showitpgfplots#1{%
\begin{tikzpicture}[baseline]
	\begin{axis}[anchor=north,xticklabels=,yticklabels=,zticklabels=,width=5cm]
	\addplot3[gray, thin, mark options={scale=2,fill=yellow!80!black,draw=black},#1]
		plot coordinates {(0,0,0) (0.3,0.6,0.3) (2,0,0.1) (2.3,1,0.2)};
	\end{axis}
\end{tikzpicture}%
}%
\begin{longdescription}
	\item[mark=*] \showit{mark=*}
	\item[mark=x] \showit{mark=x}
	\item[mark=+] \showit{mark=+}
%	\item[mark=ball] \showit{mark=ball}
\end{longdescription}
And with |\usetikzlibrary{plotmarks}|:
\begin{longdescription}
	\item[mark=$-$] \showit{mark=-}
	\item[mark=$\vert$] \showit{mark=|}
	\item[mark=o] \showit{mark=o}
	\item[mark=asterisk] \showit{mark=asterisk}
	\item[mark=star] \showit{mark=star}
	\item[mark=10-pointed star] \showit{mark=10-pointed star}
	\item[mark=oplus] \showit{mark=oplus}
	\item[mark=oplus*] \showit{mark=oplus*}
	\item[mark=otimes] \showit{mark=otimes}
	\item[mark=otimes*] \showit{mark=otimes*}
	\item[mark=square] \showit{mark=square}
	\item[mark=square*] \showit{mark=square*}
	\item[mark=triangle] \showit{mark=triangle}
	\item[mark=triangle*] \showit{mark=triangle*}
	\item[mark=diamond] \showit{mark=diamond}
	\item[mark=diamond*] \showit{mark=diamond*}
	\item[mark=halfdiamond*] \showit{mark=halfdiamond*}
	\item[mark=halfsquare*] \showit{mark=halfsquare*}
	\item[mark=halfsquare right*] \showit{mark=halfsquare right*}
	\item[mark=halfsquare left*] \showit{mark=halfsquare left*}
	\item[mark=Mercedes star] \showit{mark=Mercedes star}
	\item[mark=Mercedes star flipped] \showit{mark=Mercedes star flipped}
	\item[mark=halfcircle] \showit{mark=halfcircle} 

	One half is filled with white (more precisely, with |mark color|).
	\item[mark=halfcircle*] \showit{mark=halfcircle*}

	One half is filled with white (more precisely, with |mark color|) and the other half is filled with the actual |fill| color.
	\item[mark=pentagon] \showit{mark=pentagon}
	\item[mark=pentagon*] \showit{mark=pentagon*}
	\item[mark=text] \showit{mark=text,every mark/.append style={scale=0.5}} 

	This marker is special as it can be configured freely. The character (or even text) used is configured by a set of variables, see below.
	\item[mark=cube] \showitpgfplots{mark=cube}
	
	This marker is only available inside of a \PGFPlots\ axis, it draws a cube with axis parallel faces. Its dimensions can be configured separately, see below.
	\item[mark=cube*] \showitpgfplots{mark=cube*}

	\item[User defined] It is possible to define new markers with |\pgfdeclareplotmark|, see below.
\end{longdescription}
All these options have been drawn with the additional options
\begin{codeexample}[code only]
\draw[
	gray,
	thin,
	mark options={%
		scale=2,fill=yellow!80!black,draw=black
	}
]
\end{codeexample}
Please see Section~\ref{sec:colors} for how to change |draw| and |fill| colors.
Note that each of the provided marks can be rotated freely by means of |mark options={rotate=90}| or |every mark/.append style={rotate=90}|.

\begin{key}{/tikz/mark size=\marg{dimension}}
	This \Tikz\ option allows to set marker sizes to \meta{dimension}. For circular markers, \meta{dimension} is the radius, for other plot marks it is about half the width and height.
\end{key}

\begin{pgfplotsxykey}{cube/size \x=\marg{dimension} (initially |\textbackslash pgfplotmarksize|)}
	Sets the size for |mark=cube| separately for every axis.
\end{pgfplotsxykey}
\begin{key}{/tikz/every mark}
	This \Tikz\ style can be reconfigured to set marker appearance options like colors or transformations like scaling or rotation. \PGFPlots\ appends its |cycle list| options to this style.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\tikzset{every mark/.append style={scale=2}}
\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[y=2cm]
  \addplot+[
	mark=halfcircle*,
	every mark/.append style={rotate=90}]
  coordinates 
	{(-2,0) (-1,1) (0,0) (1,1) (2,0)};

  \addplot+[
	mark=halfcircle*,
	every mark/.append style={rotate=180}]
  coordinates 
	{(-2,-0.1) (-1,0.9) (0,-0.1) (1,0.9) (2,-0.1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{key}

\begin{stylekey}{/pgfplots/no markers}
	Disables plot marks.

	If this style is provided as argument to a complete axis, it is appended to |every axis plot post| such that it disables markers even for |cycle list|s which contain markers.
\end{stylekey}

\begin{key}{/tikz/mark repeat=\marg{integer} (initially empty)}
	Allows to draw only each $n$th |mark| where $n$ is provided as \meta{integer}.
\end{key}
\begin{key}{/pgf/mark color=\marg{color} (initially empty)}
	Defines the \emph{additional} fill color for the |halfcircle|, |halfcircle*|, |halfdiamond*| and |halfsquare*| markers. An empty value uses |white| (which is the initial configuration). The value |none| disables filling for this part.

	These markers have two distinct fill colors, one is determined by |fill| as for any other marker and the other one is |mark color|.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[y=2cm]
  \addplot[
	blue,mark color=blue!50!white,
	mark=halfcircle*]
  coordinates 
	{(-2,0) (-1,1) (0,0) (1,1) (2,0)};

  \addplot[
	red,mark color=red!50!white,
	mark=halfsquare*]
  coordinates 
	{(-2,-0.1) (-1,0.9) (0,-0.1) (1,0.9) (2,-0.1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	Note that this key requires \PGF\ 2.10 or later.
\end{key}


\begin{key}{/tikz/mark options=\marg{options}}
	Resets |every mark| to \marg{options}.
\end{key}


\begin{key}{/pgf/text mark=\marg{text} (initially p)}
	Changes the text shown by |mark=text|.

	With |/pgf/text mark=m|: \pgfkeys{/pgf/text mark=m}\showit{mark=text,every mark/.append style={scale=0.5}}

	With |/pgf/text mark=A|: \pgfkeys{/pgf/text mark=A}\showit{mark=text,every mark/.append style={scale=0.5}}

	There is no limitation about the number of characters or whatever. In fact, any \TeX\ material can be inserted as \meta{text}, including images.
\end{key}
\begin{key}{/pgf/text mark style=\marg{options for \texttt{mark=text}}}
	Defines a set of options which control the appearance of |mark=text|.

	If |/pgf/text mark as node=false| (the default), \meta{options} is provided as argument to |\pgftext| -- which provides only some basic keys like |left|, |right|, |top|, |bottom|, |base| and |rotate|.

	If |/pgf/text mark as node=true|, \meta{options} is provided as argument to |\node|. This means you can provide a very powerful set of options including |anchor|, |scale|, |fill|, |draw|, |rounded corners| etc. 
\end{key}
\begin{key}{/pgf/text mark as node=\mchoice{true,false} (initially false)}
	Configures how |mark=text| will be drawn: either as |\node| or as |\pgftext|.

	The first choice is highly flexible and possibly slow, the second is very fast and usually enough.
\end{key}

\begin{command}{\pgfdeclareplotmark\marg{plot mark name}\marg{code}}
	Defines a new marker named \meta{plot mark name}. Whenever it is used, \meta{code} will be invoked. It is supposed to contain (preferrable \PGF\ basic level) drawing commands. During \meta{code}, the coordinate system's origin denotes the coordinate where the marker shall be placed.

	Please refer to~\cite{tikz} section ``Mark Plot Handler'' for more detailed information.
\end{command}



\begin{stylekey}{/pgfplots/every axis plot post (initially {})}
The |every axis plot post| style can be used to overwrite parts (or all) of the drawing styles which are assigned for plots.
\begin{codeexample}[]
% Overwrite any cycle list:
\pgfplotsset{
  every axis plot post/.append style={
   mark=triangle,
   every mark/.append style={rotate=90}}}
\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{stylekey}

Markers paths are not subjected to clipping as other parts of the figure. Markers are either drawn completely or not at all.

\Tikz\ offers more options for marker fine tuning, please refer to~\cite{tikz} for details.

\subsubsection{Line Styles}
\def\showit#1{%
	\tikz\draw[%
		black,
		x=0.8cm,y=0.3cm,
		#1]
	plot coordinates {(0,0) (1,1) (2,0) (3,1)};%
}%
The following line styles are predefined in \Tikz.
\begin{stylekey}{/tikz/solid}
	 \showit{style=solid}
\end{stylekey}

\begin{stylekey}{/tikz/dotted}
	 \showit{style=dotted}
\end{stylekey}

\begin{stylekey}{/tikz/densely dotted}
	 \showit{style=densely dotted}
\end{stylekey}

\begin{stylekey}{/tikz/loosely dotted}
	 \showit{style=loosely dotted}
\end{stylekey}

\begin{stylekey}{/tikz/dashed}
	 \showit{style=dashed}
\end{stylekey}

\begin{stylekey}{/tikz/densely dashed}
	 \showit{style=densely dashed}
\end{stylekey}

\begin{stylekey}{/tikz/loosely dashed}
	 \showit{style=loosely dashed}
\end{stylekey}


\begin{stylekey}{/tikz/dashdotted}
	 \showit{style=dashdotted}
\end{stylekey}

\begin{stylekey}{/tikz/densely dashdotted}
	 \showit{style=densely dashdotted}
\end{stylekey}

\begin{stylekey}{/tikz/loosely dashdotted}
	 \showit{style=loosely dashdotted}
\end{stylekey}


\begin{stylekey}{/tikz/dashdotdotted}
	 \showit{style=dashdotdotted}
\end{stylekey}

\begin{stylekey}{/tikz/densely dashdotdotted}
	 \showit{style=densely dashdotdotted}
\end{stylekey}

\begin{stylekey}{/tikz/loosely dashdotdotted}
	 \showit{style=loosely dashdotdotted}
\end{stylekey}
\noindent since these styles apply to markers as well, you may want to consider using 
\begin{codeexample}[code only]
\pgfplotsset{
	every mark/.append style={solid}
}
\end{codeexample}
\noindent in marker styles.

Besides linestyles, \PGF\ also offers (a lot of) arrow heads. Please refer to~\cite{tikz} for details.
\endgroup

\subsubsection{Edges and Their Parameters}
When \PGFPlots\ connects points, it relies on \PGF\ drawing parameters to create proper edges (and it only changes them in the |every patch| style).

It might occasionally be necessary to change these parameters:

\begin{keylist}{%
	/tikz/line cap=\mchoice{round,rect,butt} (initially butt),%
	/tikz/line join=\mchoice{round,bevel,miter} (initially miter),%
	/tikz/miter limit=\meta{factor} (initially 10)}%
	
	These keys control how lines are joined at edges. Their description is beyond the scope of this manual, so interested readers should consult~\cite{tikz}.

	Here is just an example illustrating why it might be of interest to study these parameters:
% \usetikzlibrary{spy}
\begin{codeexample}[]
% requires \usetikzlibrary{spy}
\begin{tikzpicture}[spy using outlines=
	{circle, magnification=6, connect spies}]
\begin{axis}[no markers,grid=major,
	every axis plot post/.append style={thick}]
\addplot  coordinates
 {(0, 0.0) (0, 0.9) (1, 0.9) (2, 1) (3, 0.9) (80, 0)};
\addplot +[line join=round] coordinates
 {(0, 0.0) (0, 0.9) (2, 0.9) (3, 1) (4, 0.9) (80, 0)};
\addplot +[line join=bevel] coordinates
 {(0, 0.0) (0, 0.9) (3, 0.9) (4, 1) (5, 0.9) (80, 0)};
\addplot +[miter limit=5] coordinates
 {(0, 0.0) (0, 0.9) (4, 0.9) (5, 1) (6, 0.9) (80, 0)};

  \coordinate (spypoint) at (axis cs:3,1);
  \coordinate (magnifyglass) at (axis cs:60,0.7);
\end{axis}

\spy [blue, size=2.5cm] on (spypoint)
   in node[fill=white] at (magnifyglass);
\end{tikzpicture}
\end{codeexample}
\end{keylist}


\subsubsection{Font Size and Line Width}
Often, one wants to change line width and font sizes for plots. This can be done using the following options of \Tikz.

\begin{key}{/tikz/font=\marg{font name} (initially \textbackslash normalfont)}
	Sets the font which is to be used for text in nodes (like tick labels, legends or descriptions).

	A font can be any \LaTeX\ argument like |\footnotesize| or |\small\bfseries|\footnote{Con\TeX t and plain \TeX\ users need to provide other statements, of course.}.

	It may be useful to change fonts only for specific axis descriptions, for example using
\begin{codeexample}[code only]
\pgfplotsset{
	tick label style={font=\small},
	label style={font=\small},
	legend style={font=\footnotesize}
}
\end{codeexample}

	See also the predefined styles |normalsize|, |small| and |footnotesize| in Section~\ref{sec:scaling:styles}.
\end{key}

\begin{key}{/tikz/line width=\marg{dimension} (initially 0.4pt)}
	Sets the line width. Please note that line widths for tick lines and grid lines are predefined, so it may be necessary to override the styles |every tick| and |every axis grid|.

	The |line width| key is changed quite often in \Tikz. You should use
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={line width=1pt}}
\end{codeexample}
	or
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={thick}}
\end{codeexample}
	to change the overall line width. To also adjust ticks and grid lines, one can use
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={
	line width=1pt,
	tick style={line width=0.6pt}}}
\end{codeexample}
	or styles like
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={
	thick,
	tick style={semithick}}}
\end{codeexample}
	The `|every axis plot|' style can be used to change line widths for plots only.
\end{key}

\begin{keylist}[/tikz]{thin,ultra thin,very thin,semithick,thick,very thick,ultra thick}
	These \Tikz\ styles provide different predefined line widths.
\end{keylist}

This example shows the same plots as on page~\pageref{page:plotcoords:src} (using |\plotcoords| as place holder for the commands on page~\pageref{page:plotcoords:src}), with different line widths and font sizes.
\begin{codeexample}[]
\pgfplotsset{every axis/.append style={
	font=\large,
	line width=1pt,
	tick style={line width=0.8pt}}}
\begin{tikzpicture}
	\begin{loglogaxis}[
		legend style={at={(0.03,0.03)},
			anchor=south west},
		xlabel=\textsc{Dof},
		ylabel=$L_2$ Error
	]
	% see above for this macro:
	\plotcoords
	\legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$}
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\pgfplotsset{every axis/.append style={
	font=\footnotesize,
	thin,
	tick style={ultra thin}}}
\begin{tikzpicture}
	\begin{loglogaxis}[
		xlabel=\textsc{Dof},
		ylabel=$L_2$ Error
	]
	% see above for this macro:
	\plotcoords
	\legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$}
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}


\subsubsection{Colors}
\label{sec:colors}
{%
\def\showcolorandname#1{%
	\showcolor{#1}~\texttt{\pgfmanualpdflabel{#1}{#1}}%
}%
\def\showcolor#1{%
	\tikz \draw[black,fill={#1}] (0,0) rectangle (1em,0.6em);%
}%
\PGF\ uses the color support of |xcolor|. Therefore, the main reference for how to specify colors is the |xcolor| manual~\cite{xcolor}. The \PGF\ manual~\cite{tikz} is the reference for how to select colors for specific purposes like drawing, filling, shading, patterns etc.\ This section contains a short overview over the specification of colors in~\cite{xcolor} (which is not limited to \PGFPlots).

The package |xcolor| defines a set of predefined colors, namely 
\showcolorandname{red},
\showcolorandname{green},
\showcolorandname{blue},
\showcolorandname{cyan},
\showcolorandname{magenta},
\showcolorandname{yellow},
\showcolorandname{black},
\showcolorandname{gray},
\showcolorandname{white},
\showcolorandname{darkgray},
\showcolorandname{lightgray},
\showcolorandname{brown},
\showcolorandname{lime},
\showcolorandname{olive},
\showcolorandname{orange},
\showcolorandname{pink},
\showcolorandname{purple},
\showcolorandname{teal},
\showcolorandname{violet}.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[enlarge x limits=false]
	\addplot[red,samples=500] {sin(deg(x))};

	\addplot[orange,samples=7] {sin(deg(x))};

	\addplot[teal,const plot,
		samples=14] {sin(deg(x))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

Besides predefined colors, it is possible to \emph{mix} two (or more) colors. For example, \showcolorandname{red!30!white} contains $30\%$ of \showcolorandname{red} and $70\%$ of \showcolorandname{white}. Consequently, one can build \showcolorandname{red!70!white} to get $70\%$ red and $30\%$ white or \showcolorandname{red!10!white} for $10\%$ red and $90\%$ white. This mixing can be done with any color, for example \showcolorandname{red!50!green}, \showcolorandname{blue!50!yellow} or \showcolorandname{green!60!black}.

A different type of color mixing is supported, which allows to take $100\%$ of \emph{each} component. For example, \showcolorandname{rgb,2:red,1;green,1} will add $1/2$ part \showcolorandname{red} and $1/2$ part \showcolorandname{green} and we reproduced the example from above. Using the denominator~$1$ instead of~$2$ leads to \showcolorandname{rgb,1:red,1;green,1} which uses $1$ part \showcolorandname{red} and $1$ part \showcolorandname{green}. Many programs allow to select pieces between $0,\dotsc,255$, so a denominator of $255$ is useful. Consequently, \showcolorandname{rgb,255:red,231;green,84;blue,121} uses $231/255$ red, $84/255$ green and $121/255$. This corresponds to the standard RGB color $(231,84,121)$. Other examples are \showcolorandname{rgb,255:red,32;green,127;blue,43}, \showcolorandname{rgb,255:red,178;green,127;blue,43}, \showcolorandname{rgb,255:red,169;green,178;blue,43}.

It is also possible to use RGB values, the HSV color model, the CMY (or CMYK) models, or the HTML color syntax directly. However, this requires some more programming. I suppose this is the fastest (and probably the most uncomfortable) method to use colors. For example, 
\begin{codeexample}[]
\definecolor{color1}{rgb}{1,1,0}
\tikz \fill[color1] 
	(0,0) rectangle (1em,0.6em);
\end{codeexample}
\noindent creates the color with $100\%$ \showcolorandname{red}, $100\%$ \showcolorandname{green} and $0\%$ \showcolorandname{blue};
\begin{codeexample}[]
\definecolor{color1}{cmyk}{0.6,0.9,0.5,0.1}
\tikz \fill[color1] 
	(0,0) rectangle (1em,0.6em);
\end{codeexample}
\noindent creates the color with $60\%$ \showcolorandname{cyan}, $90\%$ \showcolorandname{magenta}, $50\%$ \showcolorandname{yellow} and $10\%$ \showcolorandname{black};

\begin{codeexample}[]
\definecolor{color1}{HTML}{D0B22B}
\tikz \fill[color1] 
	(0,0) rectangle (1em,0.6em);
\end{codeexample}
\noindent creates the color with $208/255$ pieces red, $178/255$ pieces green and $43$ pieces blue, specified in standard HTML notation. Please refer to the |xcolor| manual~\cite{xcolor} for more details and color models.

The |xcolor| package provides even more methods to combine colors, among them the prefix `|-|' (minus) which changes the color into its complementary color (\showcolorandname{-black}, \showcolorandname{-white}, \showcolorandname{-red}) or color wheel calculations. Please refer to the |xcolor| manual~\cite{xcolor}.
}%

\begin{keylist}{
	/tikz/color=\marg{a color},
	/tikz/draw=\marg{stroke color},
	/tikz/fill=\marg{fill color}}
	These keys are (generally) used to set colors. Use |color| to set the color for both drawing and filling. Instead of |color=|\marg{color name} you can simply write \meta{color name}. The |draw| and |fill| keys only set colors for stroking and filling, respectively.

	Use |draw=none| to disable drawing and |fill=none| to disable filling\footnote{Up to now, plot marks always have a stroke color (some also have a fill color). This restriction may be lifted in upcoming versions.}.% This does also work for markers.
%--------------------------------------------------
% \ begin{codeexample}[]
% \begin{tikzpicture}
% 	\begin{axis}
% 	\addplot+[only marks,mark=square*,
% 		mark options={fill=red!50!white,draw=none}]
% 		{4*x^2 - 2*x +4 };
% 	\end{axis}
% \end{tikzpicture}
% \end{codeexample}
%-------------------------------------------------- 

	Since these keys belong to \Tikz, the complete documentation can be found in the \Tikz\ manual~\cite[Section ``Specifying a Color'']{tikz}.
\end{keylist}

\subsubsection{Color Maps}
\label{pgfplots:colormap}
\begin{pgfplotskey}{colormap name=\marg{color map name} (initially hot)}
	Changes the current color map to the already defined map named \meta{color map name}. The predefined color map is

	\begin{tabular}{>{\ttfamily}ll}
	hot & \pgfplotsshowcolormap{hot}\\
	\end{tabular}

	The definition can be found in the documentation for |colormap/hot|. This, and further color maps, are described below.

	Colormaps can be used, for example, in scatter plots (see Section~\ref{pgfplots:scatter}).

	You can use |colormap| to create new color maps (see below).
\end{pgfplotskey}

\begin{pgfplotskey}{colormap=\marg{name}\marg{color specification}}
	Defines a new colormap named \meta{name} according to \meta{color specification} and activates it using |colormap name=|\marg{name}.
	
	The \meta{color specification} is a sequence of positions and associated colors where linear interpolation is applied in-between. The syntax is very similar as the one used for \PGF\ shadings described in~\cite[VIII -- Shadings]{tikz}: it is a semicolon--separated series of 
	
	\meta{color type}|(|\meta{offset}|)=(|\meta{color value}|); |:
	
\begin{codeexample}[code only]
% possibility 1: like PGF shadings:
rgb(0cm)=(1,0,0); rgb(1cm)=(0,1,0); rgb255(2cm)=(0,0,255); gray(3cm)=(0.3);  color(4cm)=(green)
\end{codeexample}
\pgfplotsshowcolormapexample{rgb(0cm)=(1,0,0); rgb(1cm)=(0,1,0); rgb255(2cm)=(0,0,255); gray(3cm)=(0.3);  color(4cm)=(green)}

	If the distance between successive colors is the same, the  \meta{offset} can be omitted. The `|;|' separators are not necessary either:

\begin{codeexample}[code only]
% (simplified) possibility 2: skip `;' and length arguments:
rgb=(1,0,0) rgb=(0,1,0) rgb255=(0,0,255) gray=(0.3) color=(green)
\end{codeexample}
\pgfplotsshowcolormapexample{rgb=(1,0,0) rgb=(0,1,0) rgb255=(0,0,255) gray=(0.3) color=(green)}

	It is also possible to provide non-uniform distances between the different colors -- if all single positions can be projected onto a uniform grid. \PGFPlots\ will perform this interpolation automatically:

\begin{codeexample}[code only]
% non uniform spacing example: the mesh width is provided as first
% part of the specification.
\pgfplotsset{colormap={violetnew}
	{[1cm] rgb255(0cm)=(25,25,122) color(1cm)=(white) rgb255(5cm)=(238,140,238)}}
\end{codeexample}
\pgfplotsshowcolormapexample{[1cm] rgb255(0cm)=(25,25,122) color(1cm)=(white) rgb255(5cm)=(238,140,238)}

\noindent In this last example, the mesh width has been provided explicitly and \PGFPlots\ interpolates the missing grid points on its own. It is an error if the provided positions are no multiple of the mesh width. The |\pgfplotsset| employs the public user interface to create a new color map named `|violetnew|'.

\noindent The single colors can be separated by semicolons `|;|'. The (optional) length describes how much of the bar is occupied by the interval, it is interpreted relative to the complete length. If the length argument is missing, it is taken to be the last specified length plus the last length difference (the first color defaults to |1cm| in this case). 

\paragraph{Summary of the expected input format:}
Each entry in \meta{color specification} has the form \meta{color model}|(|\meta{length}|)=(|\meta{arguments}|)|. Here, the \meta{length} argument is optional as discussed above. The entries can be separated by semicolons `|;|' or by white spaces. The leftmost entry \emph{must} have \meta{length}|=0pt|. As discussed, all entries will be placed on a uniform grid, i.e.\ the distance between adjacent \meta{length} arguments has to be the same (see the previous paragraph for automatic generation of intermediate points). 
The complete length of a color map is irrelevant: it will be mapped linearly to an internal range anyway (for efficient interpolation). The only requirement is that the left end must be at |0|.

Available choices for \meta{color model} are
\begin{description}
\item[rgb] which expects \meta{arguments} of the form |(|\meta{red}|,|\meta{green}|,|\meta{blue}|)| where each component is in the interval $[0,1]$,
\item[rgb255] which is similar to |rgb| except that each component is expected in the interval |[0,255]|,
\item[gray] in which case \meta{arguments} is a single number in the interval $[0,1]$,
\item[color] in which case \meta{arguments} contains a predefined (named) color like `|red|' or a color expression like `|red!50|',
\item[cmyk] which expects \meta{arguments} of the form |(|\meta{cyan}|,|\meta{magenta}|,|\meta{yellow}|,|\meta{black}|)| where each component is in the interval $[0,1]$, and
\item[cmyk255] which is the same as |cmyk| but expects components in the interval $[0,255]$.
\end{description}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		colormap={bw}{gray(0cm)=(0); gray(1cm)=(1)}]
	\addplot+[scatter,only marks,
		 domain=0:8,samples=100]
		{exp(x)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\paragraph{The color space of a colormap.} There are two supported color spaces for a |colormap|: the RGB color space and the CMYK color space. Each access into a |colormap| requires linear interpolation which is performed in its color space. Color spaces make a difference: colors in different color spaces may be represented differently, depending on the output device. Many printers use CMYK for color printing, so providing CMYK colors might improve the printing quality on a color printer. The RGB color space is often used for display devices. The predefined |colormap|s in \PGFPlots\ all use RGB.

Whenever a new |colormap| is created, \PGFPlots\ determines an associated color space. Then, each color in this specific |colormap| will be represented in its associated color space (converting colors automatically if necessary). Furthermore, every access into the |colormap| will be performed in its associated color space and every returned |mapped color| will be represented with respect to this color space. Furthermore, every shading generated by |shader=interp| will be represented with respect to the |colormap|'s associated color space. 

The color space is chosen as follows: in case |colormap default colorspace=auto| (the initial configuration), the color space depends on the \emph{first} encountered color in \meta{color specification}. For |rgb| or |gray| or |color|, the associated color space will be RGB (as it was in all earlier versions of \PGFPlots). For |cmyk|, the associated color space will be CMYK. If |colormap default colorspace| is either |rgb| or |cmyk|, this specific color space is used and every color is converted automatically.
\begin{pgfplotskey}{colormap default colorspace=\mchoice{auto,rgb,cmyk} (initially auto)}
	Allows to set the color space of every \emph{newly created} |colormap|. The choices are explained in the previous paragraph.

	It is (not yet) possible to change the color space of an existing |colormap|; re-create it if conversion is required.

	The macro \declareandlabel{\pgfplotscolormapgetcolorspace}\marg{name} defines |\pgfplotsretval| to contain the color space of an existing |colormap name|, if you are in doubt.
\end{pgfplotskey}

Available color maps are shown below.

\end{pgfplotskey}

\begin{stylekey}{/pgfplots/colormap/hot}
	A style which installs the colormap
\begin{codeexample}[code only]
\pgfplotsset{
	colormap={hot}{color(0cm)=(blue); color(1cm)=(yellow); color(2cm)=(orange); color(3cm)=(red)}
}
\end{codeexample}

	\pgfplotsshowcolormap{hot}

	This is the preconfigured color map.
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/hot2}
	A style which is equivalent to 
\begin{codeexample}[code only]
\pgfplotsset{
	/pgfplots/colormap={hot2}{[1cm]rgb255(0cm)=(0,0,0) rgb255(3cm)=(255,0,0) 
		rgb255(6cm)=(255,255,0) rgb255(8cm)=(255,255,255)}
}
\end{codeexample}

	\pgfplotsshowcolormap{hot2}

	Note that this particular choice ships directly with \PGFPlots, you do not need to load the |colormaps| library for this value.

	\matlabcolormaptext
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/jet}
	A style which is equivalent to 
\begin{codeexample}[code only]
\pgfplotsset{
    /pgfplots/colormap={jet}{rgb255(0cm)=(0,0,128) rgb255(1cm)=(0,0,255) 
		rgb255(3cm)=(0,255,255) rgb255(5cm)=(255,255,0) rgb255(7cm)=(255,0,0) rgb255(8cm)=(128,0,0)}
}
\end{codeexample}

	\pgfplotsshowcolormap{jet}

	\matlabcolormaptext
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/blackwhite}
	A style which is equivalent to
\begin{codeexample}[code only]
\pgfplotsset{
	colormap={blackwhite}{gray(0cm)=(0); gray(1cm)=(1)}
}
\end{codeexample}

	\pgfplotsshowcolormap{blackwhite}
\end{stylekey}


\begin{stylekey}{/pgfplots/colormap/bluered}
	A style which is equivalent to
\begin{codeexample}[code only]
\pgfplotsset{
	colormap={bluered}{
		rgb255(0cm)=(0,0,180); rgb255(1cm)=(0,255,255); rgb255(2cm)=(100,255,0); 
		rgb255(3cm)=(255,255,0); rgb255(4cm)=(255,0,0); rgb255(5cm)=(128,0,0)}
}
\end{codeexample}

	\pgfplotsshowcolormap{bluered}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[colormap/bluered]
	\addplot+[scatter,
		 scatter src=x,samples=50]
		{sin(deg(x))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	\paragraph{Remark:} 
	The style |bluered| (re-)defines the color map and activates it. \TeX\ will be slightly faster if you call |\pgfplotsset{colormap/bluered}| in the preamble (to create the color map once) and use |colormap name=bluered| whenever you need it. This remark holds for every color map style which follows. But you can simply ignore this remark.
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/cool}
	A style which is equivalent to
\begin{codeexample}[code only]
\pgfplotsset{
	colormap={cool}{rgb255(0cm)=(255,255,255); rgb255(1cm)=(0,128,255); rgb255(2cm)=(255,0,255)}
}
\end{codeexample}

	\pgfplotsshowcolormap{cool}
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/greenyellow}
	A style which is equivalent to
\begin{codeexample}[code only]
\pgfplotsset{
	colormap={greenyellow}{rgb255(0cm)=(0,128,0); rgb255(1cm)=(255,255,0)}
}
\end{codeexample}

	\pgfplotsshowcolormap{greenyellow}
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/redyellow}
	A style which is equivalent to
\begin{codeexample}[code only]
\pgfplotsset{
	colormap={redyellow}{rgb255(0cm)=(255,0,0); rgb255(1cm)=(255,255,0)}
}
\end{codeexample}

	\pgfplotsshowcolormap{redyellow}
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/violet}
	A style which is equivalent to
\begin{codeexample}[code only]
\pgfplotsset{
	colormap={violet}{rgb255=(25,25,122) color=(white) rgb255=(238,140,238)}
}
\end{codeexample}

	\pgfplotsshowcolormap{violet}
\end{stylekey}

\begin{command}{\pgfplotscolormaptoshadingspec\marg{colormap name}\marg{right end size}\marg{\textbackslash macro}}
	A command which converts a colormap into a \PGF\ shading's color specification. It can be used in commands like |\pgfdeclare*shading| (see the \PGF\ manual~\cite{tikz} for details).

	The first argument is the name of a (defined) colormap, the second the rightmost dimension of the specification. The result will be stored in \meta{\textbackslash macro}.
\begin{codeexample}[]
	% convert `hot' -> \result
	\pgfplotscolormaptoshadingspec{hot}{8cm}\result
	% define and use a shading in pgf:
	\def\tempb{\pgfdeclarehorizontalshading{tempshading}{1cm}}%
	% where `\result' is inserted as last argument:
	\expandafter\tempb\expandafter{\result}%
	\pgfuseshading{tempshading}%
\end{codeexample}
The usage of the result \meta{\textbackslash macro} is a little bit low--level.

	\paragraph{Attention:} \PGF\ shadings are always represented with respect to the RGB color space. Consequently, even CMYK \meta{colormap name}s will result in an RGB shading specification when using this method\footnote{In case \PGF\ should someday support CMYK shadings and you still see this remark, you can define \texttt{\textbackslash def\textbackslash pgfplotscolormaptoshadingspectorgb\{0\}}.}.
\end{command}


Note that there \emph{more available choices} in the |colormaps| library which needs to be loaded by means of |\usepgfplotslibrary{colormaps}|.

\subsubsection{Cycle Lists -- Options Controlling Line Styles}

\label{sec:cycle:list}%
\begin{pgfplotskeylist}{cycle list=\marg{list},cycle list name=\marg{\textbackslash macro}}
Allows to specify a list of plot specifications which will be used for each \hbox{|\addplot|} command without explicit plot specification. Thus, the currently active |cycle list| will be used if you write either |\addplot+|\oarg{keys}| ...;| or if you \emph{don't} use square brackets as in |\addplot|\oarg{explicit plot specification}| ...;|. 

The list element with index~$i$ will be chosen where~$i$ is the index of the current |\addplot| command (see also the |cycle list shift| key which allows to use $i+n$ instead). This indexing does also include plot commands which don't use the |cycle list|.

There are several possibilities to change the currently active |cycle list|:
\begin{enumerate}
	\item Use one of the predefined lists\footnote{In an early version, these lists were called \texttt{\textbackslash coloredplotspeclist} and \texttt{\textbackslash blackwhiteplotspeclist} which appeared to be unnecessarily long, so they have been renamed. The old names are still accepted, however.},
		\begin{itemize}
			\item \declareandlabel{color} (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=color]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

			\item \declareandlabel{exotic} (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=exotic]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	\item \declareandlabel{black white} (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=black white]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	\item \declareandlabel{mark list} (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=mark list]
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	The |mark list| always employs the current color, but it doesn't define one (the \verbpdfref{\addplot+} statement explicitly sets the current color to |blue|).

	The |mark list| is especially useful in conjunction with |cycle multi list| which allows to combine it with other lists (for example |linestyles| or a list of colors).
	\item \declareandlabel{mark list*} A list containing only markers. In contrast to |mark list|, all these markers are filled. They are defined as (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=mark list*]
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	Similar to |mark list|, the |mark list*| always employs the current color, but it doesn't define one (see above for the \verbpdfref{\addplot+}).

	\item \declareandlabel{color list} (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=color list]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	The |cycle list name=color| choice also employs markers whereas |color list| uses \emph{only} colors.

	\item \declareandlabel{linestyles} (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=linestyles]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	\item \declareandlabel{linestyles*} contains more dotted line styles than |linestyles| (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=linestyles*]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	\item \declareandlabel{auto} The |cycle list name=auto| always denotes the most recently used cycle list activated by |cycle list| or |cycle list name|.
		\end{itemize}

The definitions of all predefined cycle lists follow (see the end of this paragraph for a syntax description).
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{color}{%
	blue,every mark/.append style={fill=blue!80!black},mark=*\\%
	red,every mark/.append style={fill=red!80!black},mark=square*\\%
	brown!60!black,every mark/.append style={fill=brown!80!black},mark=otimes*\\%
	black,mark=star\\%
	blue,every mark/.append style={fill=blue!80!black},mark=diamond*\\%
	red,densely dashed,every mark/.append style={solid,fill=red!80!black},mark=*\\%
	brown!60!black,densely dashed,every mark/.append style={
		solid,fill=brown!80!black},mark=square*\\%
	black,densely dashed,every mark/.append style={solid,fill=gray},mark=otimes*\\%
	blue,densely dashed,mark=star,every mark/.append style=solid\\%
	red,densely dashed,every mark/.append style={solid,fill=red!80!black},mark=diamond*\\%
}
\end{codeexample}
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{black white}{%
	every mark/.append style={fill=gray},mark=*\\%
	every mark/.append style={fill=gray},mark=square*\\%
	every mark/.append style={fill=gray},mark=otimes*\\%
	mark=star\\%
	every mark/.append style={fill=gray},mark=diamond*\\%
	densely dashed,every mark/.append style={solid,fill=gray},mark=*\\%
	densely dashed,every mark/.append style={solid,fill=gray},mark=square*\\%
	densely dashed,every mark/.append style={solid,fill=gray},mark=otimes*\\%
	densely dashed,every mark/.append style={solid},mark=star\\%
	densely dashed,every mark/.append style={solid,fill=gray},mark=diamond*\\%
}
\end{codeexample}
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{exotic}{%
	teal,every mark/.append style={fill=teal!80!black},mark=*\\%
	orange,every mark/.append style={fill=orange!80!black},mark=square*\\%
	cyan!60!black,every mark/.append style={fill=cyan!80!black},mark=otimes*\\%
	red!70!white,mark=star\\%
	lime!80!black,every mark/.append style={fill=lime},mark=diamond*\\%
	red,densely dashed,every mark/.append style={solid,fill=red!80!black},mark=*\\%
	yellow!60!black,densely dashed,
		every mark/.append style={solid,fill=yellow!80!black},mark=square*\\%
	black,every mark/.append style={solid,fill=gray},mark=otimes*\\%
	blue,densely dashed,mark=star,every mark/.append style=solid\\%
	red,densely dashed,every mark/.append style={solid,fill=red!80!black},mark=diamond*\\%
}
\end{codeexample}
\begin{codeexample}[code only]
% note that "." is the currently defined Tikz color.
\pgfplotscreateplotcyclelist{mark list}{%
	every mark/.append style={solid,fill=.!80!black},mark=*\\%
	every mark/.append style={solid,fill=.!80!black},mark=square*\\%
	every mark/.append style={solid,fill=.!80!black},mark=triangle*\\%
	every mark/.append style={solid},mark=star\\%
	every mark/.append style={solid,fill=.!80!black},mark=diamond*\\%
	every mark/.append style={solid,fill=.!80!black!40},mark=otimes*\\%
	every mark/.append style={solid},mark=|\\%
	every mark/.append style={solid,fill=.!80!black},mark=pentagon*\\%
	every mark/.append style={solid},mark=text,text mark=p\\%
	every mark/.append style={solid},mark=text,text mark=a\\%
}
\end{codeexample}
\noindent This is not the complete truth: the actual implementation of |mark list| allows to customize the |fill| value:
\begin{pgfplotskey}{mark list fill=\marg{color} (initially .!80!black)}
	Allows to customize the fill color for the |mark list| and |mark list*|. 
	
	For example, if you have |black| as color, the alternative choice |mark list fill=.!50!white| will produce much better results.
\end{pgfplotskey}
\begin{codeexample}[code only]
% note that "." is the currently defined Tikz color.
\pgfplotscreateplotcyclelist{mark list*}{%
	every mark/.append style={solid,fill=.!80!black},mark=*\\%
	every mark/.append style={solid,fill=.!80!black},mark=square*\\%
	every mark/.append style={solid,fill=.!80!black},mark=triangle*\\%
	every mark/.append style={solid,fill=.!80!black},mark=halfsquare*\\%
	every mark/.append style={solid,fill=.!80!black},mark=pentagon*\\%
	every mark/.append style={solid,fill=.!80!black},mark=halfcircle*\\%
	every mark/.append style={solid,fill=.!80!black,rotate=180},mark=halfdiamond*\\%
	every mark/.append style={solid,fill=.!80!black!40},mark=otimes*\\%
	every mark/.append style={solid,fill=.!80!black},mark=diamond*\\%
	every mark/.append style={solid,fill=.!80!black},mark=halfsquare right*\\%
	every mark/.append style={solid,fill=.!80!black},mark=halfsquare left*\\%
}
\end{codeexample}
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{color list}{%
	red,blue,black,yellow,brown,teal,orange,violet,cyan,green!70!black,magenta,gray}
\end{codeexample}
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{linestyles}{solid,dashed,dotted}
\pgfplotscreateplotcyclelist{linestyles*}{solid,dashed,dotted,dashdotted,dashdotdotted}
\end{codeexample}

	\item The second choice for cycle lists is to provide each entry directly as argument to |cycle list|,
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[cycle list={%
	{blue,mark=*},
	{red,mark=square},
	{dashed,mark=o},
	{loosely dotted,mark=+},
	{brown!60!black,
		mark options={fill=brown!40},
		mark=otimes*}}
]
\plotcoords
\legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$}
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
	(This example list requires |\usetikzlibrary{plotmarks}|).

	The input format is described below in more detail.

	\item The last method is to combine 1. and 2.:  Define named cycle lists in the preamble and use them with `|cycle list name|':
\begin{command}{\pgfplotscreateplotcyclelist\marg{name}\marg{list}}%
\end{command}
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{mylist}{%
	{blue,mark=*},
	{red,mark=square},
	{dashed,mark=o},
	{loosely dotted,mark=+},
	{brown!60!black,mark options={fill=brown!40},mark=otimes*}}
...
\begin{axis}[cycle list name=mylist]
	...
\end{axis}
\end{codeexample}
\end{enumerate}

\paragraph{The format of \meta{list}:} The argument \meta{list} is usually a comma separated list of lists of style keys like colors, line styles, marker types and marker styles. This ``comma list of comma lists'' structure requires to encapsulate the inner list using curly braces:
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{mylist}{%
	{blue,mark=*},
	{red,mark=square},
	{dashed,mark=o},
	{loosely dotted,mark=+},
	{brown!60!black,mark options={fill=brown!40},mark=otimes*}}
\end{codeexample}
Alternatively, one can terminate the inner lists (i.e.\ those for one single plot) with `|\\|':
\begin{codeexample}[code only]
\begin{axis}[cycle list={%
	blue,mark=*\\%
	red,mark=square\\%
	dashed,mark=o\\%
	loosely dotted,mark=+\\%
	brown!60!black,mark options={fill=brown!40},mark=otimes*\\%
}
]
...
\end{axis}
\end{codeexample}
In this case, the \emph{last} entry also needs a terminating `|\\|', but one can omit braces around the single entries.

\paragraph{Remark:} It is possible to call |\pgfplotsset{cycle list=|\marg{a list}|}| or |cycle list name| \emph{between} plots. Such a setting remains effective until the end of the current \TeX\ group (that means curly braces). Every |\addplot| command queries the |cycle list| using the plot index; it doesn't hurt if |cycle list|s have changed in the meantime.
\end{pgfplotskeylist}

\begin{pgfplotskey}{cycle multi list=\meta{list 1}\texttt{\textbackslash nextlist}\meta{list 2}\texttt{\textbackslash nextlist}$\dotsb$}
	Allows to supply more than one |cycle list| in a way such that each one contributes to the plot style. This is probably best explained using an example:
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	cycle multi list={
	  red,blue\nextlist
	  solid,{dotted,mark options={solid}}\nextlist
	  mark=*,mark=x,mark=o
	},
	samples=3,
	legend entries={0,...,20},
	legend pos=outer north east
]
	\addplot {x};
	\addplot {x-1};
	\addplot {x-2};
	\addplot {x-3};
	\addplot {x-4};
	\addplot {x-5};
	\addplot {x-6};
	\addplot {x-7};
	\addplot {x-8};
	\addplot {x-9};
	\addplot {x-10};
	\addplot {x-11};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	\noindent The provided |cycle multi list| consists of three lists. The style for a single plot is made up using elements of each of the three lists: the first plot has style |red,solid,mark=*|, the second has |red,solid,mark=x|, the third has |red,solid,mark=o|. The fourth plot restarts the third list and uses the next one of list $2$: it has |red,dotted,mark options={solid},mark=*| and so on.

	The last list will always be advanced for a new plot. The list before the last (in our case the second list) will be advanced after the last one has been reset. In other words: |cycle multi list| allows a composition of different |cycle list| in a lexicographical way\footnote{For those who prefer formulas: The plot with index $0 \le i < N$ will use cycle list offsets $i_0,i_1,\dotsc,i_k$, $0 \le i_m < N_m$ where $k$ is the number of arguments provided to \texttt{cycle multi list} and $N_m$ is the number of elements in the $m$th cycle list. The offsets $i_m$ are computed in a loop {\ttfamily \{ int tmp=i;  for( int m=k-1; m>=0; m=m-1 ) \{ i\_m = tmp\%N\_m; tmp = tmp/N\_m; \}\}}.}.

	The argument for |cycle multi list| is a sequence of arguments as they would have been provided for |cycle list|, separated by \declareandlabel{\nextlist}. In addition to providing a new cycle list, the \meta{list $i$} elements can also denote |cycle list name| values (including the special |auto| cycle list which is the most recently assigned |cycle list| or |cycle list name|). The final |\nextlist| is optional.

	The list in our example above could have been written as
\begin{codeexample}[code only]
\begin{axis}[
	cycle multi list={
		red\\blue\\\nextlist
		solid\\dotted,mark options={solid}\\\nextlist
		mark=*\\mark=x\\mark=o\\
	}]
\end{codeexample}
\noindent as well (note the terminating |\\| commands!).

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	title={Cycle color between successive plots, then marks},
	cycle multi list={
		mark list\nextlist
		blue,red%
	},
	samples=3,
	legend entries={0,...,20},
	legend pos=outer north east
]
	\addplot {x};
	\addplot {x-1};
	\addplot {x-2};
	\addplot {x-3};
	\addplot {x-4};
	\addplot {x-5};
	\addplot {x-6};
	\addplot {x-7};
	\addplot {x-8};
	\addplot {x-9};
	\addplot {x-10};
	\addplot {x-11};
\end{axis}
\end{tikzpicture}
\end{codeexample}


	\paragraph{Using Sub--Lists} The \meta{list $i$} entry can also contain just the first $n$ elements of an already known cycle list name using the syntax |[|\meta{number}| of]|\meta{cycle list name}. For example |[2 of]mark list| will use the first $2$ elements of |mark list|:
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	title={Cycle 2 marks between successive plots, then colors},
	cycle multi list={%
		color list\nextlist
		[2 of]mark list
	},
	samples=3,
	legend entries={0,...,20},
	legend pos=outer north east
]
	\addplot {x};
	\addplot {x-1};
	\addplot {x-2};
	\addplot {x-3};
	\addplot {x-4};
	\addplot {x-5};
	\addplot {x-6};
	\addplot {x-7};
	\addplot {x-8};
	\addplot {x-9};
	\addplot {x-10};
	\addplot {x-11};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotskey}

\begin{pgfplotskey}{cycle list shift=\marg{integer} (initially empty)}
	Allows to \emph{shift} the index into the |cycle list|. If \meta{integer} is $n$, the list element $i+n$ will be taken instead of the $i$th one. Remember that $i$ is the index of the current |\addplot| command (starting with~$0$).

	Since a |cycle list| is queried \emph{immediately} when |\addplot| (or |\addplot+|) is called, you can adjust the |cycle list shift| for selected plots:
\begin{codeexample}[code only]
\pgfplotsset{cycle list shift=3}
\addplot ....

\pgfplotsset{cycle list shift=-1}
\addplot ....
\end{codeexample}
	\paragraph{Special case:} If the result is negative, $i+n <0$, the list index $-(i+n)$ will be taken. For example, |cycle list shift=-10| and $i<10$ will result in list index $10-i$. Note that you can use |reverse legend| to reverse legends, so this feature is probably never needed.
\end{pgfplotskey}

\subsubsection{Axis Background}
\begin{pgfplotskey}{axis background (initially empty)}
	This is a style to configure the appearance of the axis as such. It can be defined and/or changed using the |axis background/.style=|\marg{options} method. A background path will be generated with \meta{options}, which may contain fill colors or shadings.

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		axis background/.style={fill=blue!10}]

	\addplot3[surf,y domain=0:1] 
		{sin(deg(x)) * y*(1-y)};
		
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	Please note that legends are filled with white in the default configuration.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{semilogyaxis}[
		axis background/.style={
			shade,top color=gray,bottom color=white},
		legend style={fill=white}]

	\addplot {exp(-x)};
	\addplot {exp(-4*x)};
	\legend{$e^{-x}$,$e^{-4x}$}
	\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
	Details about |fill| and |shade| can be found in the \Tikz\ manual, \cite{tikz}.
\end{pgfplotskey}


\subsection{Providing Color Data - Point Meta}
\label{pgfplots:point:meta}
\PGFPlots\ provides features which modify plots depending on a special coordinate, the ``point meta data''. For example, scatter plots may vary marker colors, size or appearance depending on this special data. Surface and mesh plots are another example: here, the color of a surface patch (or mesh part) depends on ``point meta''.

The common idea idea is to tell \PGFPlots\ how to get this data. It is not necessary to provide data explicitly -- in many cases, the data which is used to color surface patches or marker colors is the plot's $y$ or $z$ coordinate. The method used to tell \PGFPlots\ where to find ``point meta data'' is the |point meta| key. 

A further common idea is the use of color maps: if the point meta data is in the interval $[m_{\text{min}},m_{\text{max}}]$, the point meta coordinate $m = m_{\text{min}}$ will get the lowest color provided by the color map while $m=m_{\text{max}}$ will get the highest color provided by the color map. Any coordinate between this values will be mapped linearly: for example, the mean $m = 1/2 (m_{\text{max}} + m_{\text{min}})$ will get the middle color of the color map. This is why ``point meta'' is sometimes called ``color data''.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[colorbar]
		\addplot[mesh,point meta=y,thick] {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{pgfplotskey}{point meta=\mchoice{none,\meta{expression},x,y,z,f(x),explicit,explicit symbolic} (initially none)}
	\label{pgfplots:pointmeta}
	The |point meta| key tells \PGFPlots\ where to get the special point meta data. Please note that |point meta| and |scatter src| is actually the same -- |scatter src| is an alias for |point meta|. Thus, the summary provided for |scatter src| on page~\pageref{pgfplots:scatter:src} covers the same topics. However, the main reference for |point meta| is here.
	
	\begin{description}
		\item[\declaretext{none}] The initial choice |none| disables point meta data, resulting in no computational work. Any other choice will activate the computation of upper and lower ranges for point meta data, i.e.\ the computation of $[m_{\text{min}},m_{\text{max}}]$. 

		\item[\declaretext{x}] The choice |x| uses the already available $x$ coordinates as point meta data. This does always refer to the \emph{final} $x$ coordinates after any user transformations, logarithms, stacked plot computations etc.\ have been applied. Consider using |rawx| if you need the unprocessed coordinate value here.

		\item[\declaretext{y}]
		\item[\declaretext{z}]
			 The choices |y| and |z| are similar: they use the $y$ or $z$ coordinates respectively as point meta data. Consequently, these three choices do \emph{not} need any extra data. As for |x|, there are math constants |rawy| and |rawz| which yield the unprocessed $y$ and $z$ value, respectively.

		\item[\declaretext{f(x)}] This will use the last available coordinate, in other words: it is the same as |y| for two dimensional plots and |z| for three dimensional ones.

		\item[\declaretext{explicit}] This choice tells \PGFPlots\ to expect \emph{numerical} point meta data which is provided explicitly in the coordinate input streams. This data will be transformed linearly into the current color map as it has been motivated above.
		
		How point meta data is provided for |plot coordinates|, |plot table| and the other input methods is described in all detail in Section~\ref{pgfplots:providing:input} -- but we provide small examples here to summarize the possibilities:
\begin{codeexample}[code only]
% for 'coordinates':
% provide color data explicitly using [<data>]
% behind coordinates:
\addplot+[point meta=explicit]
	coordinates {
		(0,0) [1.0e10]
		(1,2) [1.1e10]
		(2,3) [1.2e10]
		(3,4) [1.3e10]
		% ...
	};
\end{codeexample}

\begin{codeexample}[code only]
% for 'table':
% Assumes a datafile.dat like
% xcolname  ycolname    colordata
% 0         0           0.001
% 1         2           0.3
% 2         2.1         0.4
% 3         3           0.5
% ...
% the file may have more columns.
\addplot+[point meta=explicit]
	table[x=xcolname,y=ycolname,meta=colordata] 
		{datafile.dat};
% or, equivalently (perhaps a little bit slower):
\addplot+[point meta=\thisrow{colordata}]
	table[x=xcolname,y=ycolname] 
		{datafile.dat};
\end{codeexample}

\begin{codeexample}[code only]
% for 'file':
% Assumes a datafile.dat like
% 0         0           0.001
% 1         2           0.3
% 2         2.1         0.4
% 3         3           0.5
% ...
% the first three columns will be used here as x,y and meta,
% resp.
\addplot+[point meta=explicit]
	file {datafile.dat};
\end{codeexample}

\begin{codeexample}[code only]
% 'table' using expressions which may depend on all
% columns:
% Assumes a datafile.dat like
% xcolname  ycolname    anything    othercol
% 0         0           4           15
% 1         2           5           20
% 2         2.1         8           30
% 3         3           42          40
% ...
% the file may have more columns.
\addplot+[point meta={0.5*(\thisrow{anything} + sqrt(\thisrow{othercol}))}]
	table[x=xcolname,y=ycolname]
		{datafile.dat};
\end{codeexample}
		Thus, there are several methods to provide point meta (color data). The key for the choice |explicit| is that some data is provided explicitly -- although |point meta| doesn't know how. The data is expected to be of numerical type and is mapped linearly into the range $[0,1000]$ (maybe for use in the current color map).

		\item[\declaretext{explicit symbolic}] The choice |explicit symbolic| is very similar to |explicit| in that it expects extra data by the coordinate input routines. However, |explicit symbolic| does not necessarily expect numerical data: you can provide any sort of symbols. One might provide a set of styles, one for each class in a scatter plot. This is realised using |scatter/classes|, see page~\pageref{pgfplots:scatterclasses}. Input data is provided in the same fashion as mentioned above for the choice |explicit|. 
		
		Currently, this choice can only be used for scatter plots.

		\item[\normalfont\declare{\meta{expression}}] This choice allows to compute point meta data using a mathematical expression. The \meta{expression} may depend on |x|, |y|, |z| which yield the current $x$, $y$ or $z$ coordinate, respectively. The coordinates are completely processed (transformations, logs) as mentioned above for the choice |x|. Furthermore, the \meta{expression} may depend on commands which are valid during |\addplot| like |\plotnum| or |\coordindex| (see Section~\ref{pgfplots:misc} for details). Computations are performed using the floating point unit of \PGF, and all supported arithmetical operations can be used. 
		
		In essence, the \meta{expression} may depend on everything which is known to all |\addplot| commands: the $x$, $y$ and (if any) $z$ coordinates. In addition, it may depend upon |rawx|, |rawy| or |rawz|. These three expressions yield the unprocessed $x$, $y$ or $z$ value as it has been found in the input stream (no logs, no user transformations)%
		\footnote{%
		 In rare circumstances, it might be interesting to apply a math expression to another source of point meta (one of the other choices. To this end, the \meta{expression} is checked after the other possible choices have already been evaluated. In other words, the statement \texttt{point meta=explicit, point meta=meta*meta+3} will evaluate the expression with |meta| set to whatever data has been provided explicitly.}.
		If used together with |plot table|, you may also access other table columns (for example with |\thisrow|\marg{colname}).

		\item[\normalfont\declaretext{TeX code}\texttt{=}\meta{code}] A rather low level choice which allows to provide \TeX\ \meta{code} to compute a numerical value. The \meta{code} should define the macro |\pgfplotspointmeta|. It is evaluated in a locally scoped environment (it's local variables are freed afterwards). It may depend on the same values as described for \meta{expression} above, especially on |\thisrow|\marg{colname} for table input.

		Note that the math parser will be configured to use the |fpu| at this time, so |\pgfmathparse| yields floats. 

		\item[\normalfont\declaretext{TeX code symbolic}\texttt{=}\meta{code}] Just as |TeX code|, you can provide \meta{code} which defines the macro |\pgfplotspointmeta|, but the result is not interpreted as a number. It is like the |explicit symbolic| choice.
		
	\end{description}

	As already mentioned, a main application of point meta data is to determine (marker/face/edge) colors using a linear map into the range $[0,1000]$ (maybe for use in the current color map). This map works as follows: it is a function
	\[ \phi\colon [m_{\text{min}},m_{\text{max}}] \to [0,1000] \]
	with
	\[ \phi(m) = \frac{m - m_{\text{min}}} {1000} \]
	such that $\phi(m_{\text{min}}) = 0$ and $\phi(m_{\text{max}})=1000$. The value $1000$ is -- per convention -- the upper limit of all color maps. Now, if a coordinate (or edge/face) has the point meta data $m$, its color will be determined using $\phi(m)$: it is the color at $\phi(m)$\textperthousand\ of the current color map.

	This transformation depends on the interval $[m_{\text{min}},m_{\text{max}}]$ which, in turn, can be modified using the keys |point meta rel|, |point meta min| and |point meta max| described below.

	The untransformed point meta data is available in the macro \declareandlabel{\pgfplotspointmeta} (only in the correct context, for example the scatter plot styles or the |scatter/@pre marker code| interface). This macro contains a low level floating point number (unless it is non-parsed string data). The transformed data will be available in the macro \declareandlabel{\pgfplotspointmetatransformed} and is in fixed point representation. It is expected to be in the range $[0,1000]$.

\end{pgfplotskey}

\begin{pgfplotskey}{set point meta if empty=\marg{point meta source}}
	Sets |point meta=|\meta{point meta source}, but only if |point meta=none| currently. This is used for |scatter|, |mesh| and |surf| with |set point meta if empty=f(x)|.
\end{pgfplotskey}

\begin{pgfplotskey}{point meta rel=\mchoice{axis wide,per plot} (initially axis wide)}
	As already explained in the documentation for |point meta|, one application for point meta data is to determine colors using the current color map and a linear map from point meta data into the current color map. The question is how this linear map is computed. 

	The key |point meta rel| configures whether the interval of all point meta coordinates, $[m_{\text{min}},m_{\text{max}}]$ is computed as maximum over all plots in the complete axis (the choice \declaretext{axis wide}) or only for one particular plot (the choice \declaretext{per plot}).

\message{Overfull hbox is ok.}%
\begin{codeexample}[]
\begin{tikzpicture}
   \begin{axis}[
      title=Axis wide color mapping,
      colorbar,
      samples=50,point meta rel=axis wide,
	  point meta=y]

      \addplot[mesh,thick] {sin(deg(x))};
      \addplot[mesh,thick] {3*tanh(x)};
   \end{axis}
\end{tikzpicture}
~
\begin{tikzpicture}
   \begin{axis}[
      title=Per Plot color mapping,
      colorbar,
      samples=50,
	  point meta rel=per plot,
	  point meta=y]

      \addplot[mesh,thick] {sin(deg(x))};
      \addplot[mesh,thick] {3*tanh(x)};
   \end{axis}
\end{tikzpicture}
\end{codeexample}

	Note that a |colorbar| will still use the |axis wide| point meta limits. Consider the |colorbar source| key if you want the color data limits of a \emph{particular} plot for your color bar. The |point meta rel| key configures how point meta maps to colors in the |colormap|.
\end{pgfplotskey}

\begin{pgfplotskeylist}{point meta min=\marg{number},point meta max=\marg{number}}
	These keys allow to define the range required for the linear map of point meta data into the range $[0,1000]$ (for example, for current maps) explicitly. This is necessary if the same mapping shall be used for more than one axis.

	\paragraph{Remarks about special cases:}
	\begin{itemize}
		\item It is possible to provide limits partially; in this case, only the missing limit will be computed.
		\item If point meta data falls outside of these limits, the linear transformation is still well defined which is acceptable (unless the interval is of zero length). However, color data can't be outside of these limits, so color bars perform a truncation.
		\item This key can be provided for single plots as well as for the complete axis (or for both).
		\item If meta limits are provided for a single plot, these limits may also contribute to the axis wide meta interval.
	\end{itemize}
\end{pgfplotskeylist}

\begin{pgfplotskey}{colormap access=\mchoice{map,direct} (initially map)}
	This key configures how point meta data is used to determine colors from a color map. The initial configuration |map| performs the linear mapping operation explained above. The choice |direct| does not perform any transformation; it takes the point meta as integer indices into the current color map. 

	Consequently, there is no interpolation between colors in the color map, there will only be as many colors as the color map contains explicitly.

	\paragraph{Some more details:}
	\begin{itemize}
		\item If there are $m$ colors in the color map and the color data falls outside of $[0,m-1]$, it will be pruned to either the first or the last color.
		\item If color data is a real number, it will be truncated to the next smaller integer.
		\item 
	This key does not work for |shader=interp| (note that this shader will always interpolate in the color map).
	\end{itemize}
	\paragraph{Attention:} This feature is experimental, I did not have time to test it. 
\end{pgfplotskey}