1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
|
\documentclass[a4paper]{article}
\usepackage{remreset}
\usepackage[short]{optidef}
\usepackage{listings}
\usepackage{enumitem}
\usepackage[hidelinks]{hyperref}
\lstset{basicstyle=\ttfamily,breaklines=true}
% Title Page
\title{\textit{\textbf{Optidef}} \\ A Latex library for optimization problems\\ \textnormal{Version - 3.0}}
\author{Jesus Lago}
\makeatletter
\renewcommand \thesection {\@arabic\c@section}
\@removefromreset{section}{chapter}
\makeatother
\begin{document}
\maketitle
\newpage
\tableofcontents
\newpage
\section{Introduction and features}
This Latex library provides a standard set of environments for writing optimization problems. The most important features are:
\begin{enumerate}
\item It references optimization problem using three different policies: no equation is referenced, the problem is referenced with a single label, each equation has an individual reference. For more details refer to Sections \ref{sec:syntax} and \ref{sec:environments}.
\item It defines two problem size formats: a long format and a short format. For more details refer to Sections \ref{sec:syntax} and \ref{sec:longshort}.
\item It allows four different outputs for the location of the constraints. For more details refer to Sections \ref{sec:syntax} and \ref{sec:format}.
\item It allows the definition of a limitless number of constraints. For more details refer to Section \ref{subsec:syntax}.
\item Four different type of problems: \textit{minimize}, \textit{maximize}, \textit{arg min} and \textit{arg max}. For more details refer to Sections \ref{sec:syntax} and \ref{sec:environments}.
\item The optimization problem can be broken in several pages without compromising the alignment or the structure of the problem. For more details refer to Section \ref{sec:breakpages}.
\item The objective function can be broken in several lines without compromising the alignment or the structure of the problem. For more details refer to Section \ref{sec:breakObj}.
\end{enumerate}
\section{Using the package}
The package can be imported by directly adding
\begin{lstlisting}
\usepackage{optidef}
\end{lstlisting}
to the document preamble. When importing the packages three options can be used, \verb|short|, \verb|nocomma|, and either \verb|c1|, \verb|c2|, or \verb|c3|:
\begin{lstlisting}
\usepackage[short,c1|c2|c3,nocomma]{optidef}
\end{lstlisting}
The first option changes the default long format of the optimization problems to a shorter format; for a better explanation (including examples) of the \verb|short| option check Section \ref{sec:longshort}.
The options \verb|c1|, \verb|c2|, and \verb|c3| change the default format of the constraints; the default format is format 0 (as defined in Section \ref{sec:format}); \verb|c1|, \verb|c2|, and \verb|c3| respectively change the default constraint arrangement to format 1, 2, and 3. For a better explanation of the four formats including examples, we refer to Section \ref{sec:format}.
For the \verb|nocomma| option check Section \ref{sec:comma}. For a detailed description of how to use the package keep reading the next section.
\section{Environment Syntax Definition}
\label{sec:syntax}
Considering that \verb|Const.i| stands for constraint $i$, \verb|LHS.i| stands for the left-hand-side of constraint $i$, and \verb|RHS.i| for the right-hand-side counterpart, the basic structure to define a general optimization problem with $N$ constraints is:
\begin{verbatim}
\begin{mini#}|sizeFormat|[constraintFormat]<break>
{optimizationVariable}
{objectiveFunction\label{objective}}
{\label{optimizationProblem}}
{optimizationResult}
\addConstraint{LHS.1}{RHS.1\label{Const1}}{extraConst1}
\addConstraint{LHS.2}{RHS.2\label{Const2}}{extraConst2}
.
.
\addConstraint{LHS.N}{RHS.N\label{ConstN}}{extraConstN}
\end{mini#}
\end{verbatim}
\subsection{Definition of Problem parameters}
\begin{enumerate}[label=(\roman*)]
\item \verb|mini#|: defines the type of environment and reference used. There are four environments: \verb|mini|, \verb|maxi|, \verb|argmini|, and \verb|argmaxi|. There are three types of referencing: \verb|mini|, \verb|mini*| and \verb|mini!|. Consult Section \ref{sec:environments} for more details.
\item (Optional) \verb|sizeFormat|: optional parameter to define the size format of the problem. The possible values are:
\begin{itemize}
\item l: for the long format as defined in Section \ref{sec:longshort}.
\item s: for the short format as defined in Section \ref{sec:longshort}.
\end{itemize}
\item (Optional) \verb|constraintFormat|: optional parameter to change the format of the constraints. The parameter \verb|constraintFormat| can take the following values:
\begin{itemize}
\item 0: for the Standard definition in Section \ref{sec:format}.
\item 1: for Alternative 1 in Section \ref{sec:format}.
\item 2: for Alternative 2 in Section \ref{sec:format}
\item 3: for Alternative 3 in Section \ref{sec:format}
\end{itemize}
\item (Optional) \verb|break|: optional parameter to allow the optimization problem to break across multiple pages. For details on this feature, check Section \ref{sec:breakpages}.
\item \verb|optimizationVariable|: variable to be optimizated in the problem, e.g. $w \in \Re^N$.
\item \verb|objectiveFunction\label{objective}|: function to be minimized/maximized as a function of the optimization variable, e.g. $\|w\|_2$. If required, the objective function label should also be included withing this term
\item \verb|\label{optimizationProblem}|: it defines the main and general reference for the optimization problem. It is used for the \verb|mini| and \verb|mini!| enviroments. In the \verb|mini*| environment should be left blank, i.e. \{\}, \textbf{not to be ommited}.
\item \verb|optimizationResult|: a term expressing the result of the optimization problem, e.g. $J(w^*)~=$. If not needed leave it blank, \textbf{not to be ommited}.
\end{enumerate}
The last two defined problem parameters, \verb|\label{optimizationProblem}| and \verb|optimizationResult|, could be made optional. However, in order to improve the problem readibility, line breaking between the 7 parametes was implemented; unfortunately, linea breaking and optional parameters are not compatible and these two parameters had to be made mandatory.
\subsection{Adding Constraints}
\label{subsec:syntax}
After the definition of the problem parameters, the environment accepts the definition of an infinite number of constraints. For this definitions the following command is used:
~\\
\verb|\addConstraint{LHS.k}{RHS.k\label{Const.k}}{extraConst.k}|
~\\
The command accepts three different parameters
\begin{enumerate}
\item \verb|LHS.k|: the left-hand side of the the constraint $k$, e.g. $3w^\top w$.
\item (Optional) \verb|RHS.k\label{Const.k}|: the right-hand side of the constraint k if the equations should be aligned in the equality or inequality signs, e.g. $\leq \|w\|_\infty$. If required, the constraint label should also be included in this term.
\item (Optional) \verb|extraConst.k|: optional parameter to add extra alignment point for additional constraint information. An example would be the constraint names. Look Example \ref{ex:extra} or the Section \ref{sec:extraAlign}.
\end{enumerate}
\subsubsection{Constraints referencing}
Notice that the label for the constraints is always included in the right hand side expression and it only makes sense for the case of using the \verb|mini!| enviroment. The label of the objective function can also be included in a similar way.
\section{Environment Types}
\label{sec:environments}
There are four basic environments depending on the type of referencing that should be used.
\begin{enumerate}
\item The \textbf{mini} environment for defining problems with a single reference label:
\begin{mini}
{w}{f(w)+R(w+6x)}
{\label{eq:Ex1}}{}
\breakObjective{+L(x)}
\addConstraint{g(w)}{=0}
\end{mini}
\item The \textbf{mini*} environment if the problem does not have to be referenced:
\begin{mini*}
{w}{f(w)+ R(w+6x)}
{}{}
\addConstraint{g(w)}{=0}
\end{mini*}
\item The \textbf{mini!} environment if each equation should be referenced:
\begin{mini!}
{w}{f(w)+ R(w+6x)\label{eq:Ex2}}
{\label{eq:Ex1}}{}
\addConstraint{g(w)}{=0}
\end{mini!}
\item The \textbf{minie} environment: same functionality as the \textbf{mini!} environment and it replaces \textbf{mini!} when using the \texttt{optidef} library with some languages in the babel package. For further details we refer to Section \ref{sec:babel}.
%in older versions of the package it was the same as the current \textbf{minie} environment. \textbf{mini?} has been re-branded to \textbf{minie} for compatibility issues with some languages in the babel package. While its use is deprecated, it is kept in the package to ensure back-compatibility with old documents.
\end{enumerate}
\noindent Additionally, there are four basic definitions of optimization problems:
\begin{enumerate}
\item The \textbf{mini} environment:
\begin{mini}
{w}{f(w)+ R(w+6x)}
{}{}
\addConstraint{g(w)}{=0}
\end{mini}
\item The \textbf{maxi} environment:
\begin{maxi}
{w}{f(w)+ R(w+6x)}
{}{}
\addConstraint{g(w)}{=0}
\end{maxi}
\item The \textbf{argmini} environment:
\begin{argmini}
{w}{f(w)+ R(w+6x)}
{}{}
\addConstraint{g(w)}{=0}
\end{argmini}
\item The \textbf{argmaxi} environment:
\begin{argmaxi}
{w}{f(w)+ R(w+6x)}
{}{}
\addConstraint{g(w)}{=0}
\end{argmaxi}
\end{enumerate}
\section{Long and Short Output Formats}
\label{sec:longshort}
The library permits the definition of two different problem size: a long format and a short format.
\subsection{Long Format}
Selected by \verb|sizeFormat|=l. It makes use of \textit{subject to} and \textit{minimize/maximize}
\begin{mini*}|l|
{w}{f(w)+ R(w+6x)}{}{}
\addConstraint{g(w)}{=0}
\end{mini*}
\subsection{Short Format}
Selected by \verb|sizeFormat|=s. It uses instead the shorter \textit{s.t.} and \textit{min/max}
\begin{mini*}|s|
{w}{f(w)+ R(w+6x)}{}{}
\addConstraint{g(w)}{=0}
\end{mini*}
\noindent By the default the long format is used. To change the default to the short format the package must be imported with the \verb|short| option:
\begin{lstlisting}
\usepackage[short]{optidef}
\end{lstlisting}
%\section{Alignment of Equations}
%\label{sec:alignment}
%
%\begin{enumerate}
%\item Alignment at the beginning of the words \textit{minimize} and \textit{subject to}:
%\begin{mini}
%{w}{f(w)+ R(w+6x)}{}{}
%\addConstraint{g(w)}{=0}
%\end{mini}
%\item (Optional) Alignment at the $=,~>,~<$ signs of the constraints.
%\begin{mini*}[1]
%{w}{f(w)+ R(w+6x)}{}{}
%\addConstraint{g(w)+h(w)}{=0}
%\addConstraint{l(w)}{=5w.}
%\end{mini*}
%\item (Optional) Alignment of the longest constraint and the objective function:
%\begin{mini*}
% {w}{f(w)+ R(w+6x)}{}{}
% \addConstraint{g(w)+h(w)}{=0}
% \addConstraint{l(w)}{=5w.}
%\end{mini*}
%\item (Optional) Third alignment point on the constraints to set some constraint features. A clear example could be the constraints names:
%\begin{mini*}
%{w}{f(w)+ R(w+6x)}{}{}
%\addConstraint{g(w)+h(w)}{=0,}{\text{(Topological Constraint)}}
%\addConstraint{l(w)}{=5w,\quad}{\text{(Boundary Constraint)}}
%\end{mini*}
%or the index of the constraints:
%\begin{mini*}
%{w,u}{f(w)+ R(w+6x)}{}{}
%\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1}
%\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
%\end{mini*}
%\end{enumerate}
\section{Output Formats for the Constraints}
\label{sec:format}
There are four basic output formats for the location of the constraints. They are controlled by the environment parameter \verb|constraintFormat|.
\subsection{Alternative 0}
In this format option, the constraints are located to the right of \textit{subject to} and aligned with the objective function. It also has a second alignment point at the $=,~\leq,~\geq$ signs:
\begin{mini}
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{}
\addConstraint{g(w)+h(w)}{=0}
\addConstraint{t(w)}{=0.}
\end{mini}
\noindent It is the default format if no format option is provided. Alternatively, it can also be set by selecting \verb|constraintFormat|=0.
\subsection{Alternative 1}
Selected by \verb|constraintFormat|=1. It locates the constraints below \textit{subject to} and keeps them aligned at the inequality/equality signs:
\begin{mini}[1]
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{}
\addConstraint{g(w)+h(w)}{=0}
\addConstraint{t(w)}{=0.}
\end{mini}
\subsection{Alternative 2}
Selected by \verb|constraintFormat|=2. It aligns all the constraints with the objective function.
\begin{mini}[2]
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{}
\addConstraint{g(w)+h(w)}{=0}
\addConstraint{t(w)}{=0.}
\end{mini}
\subsection{Alternative 3}
Selected by \verb|constraintFormat|=3. It aligns all the constraints below \textit{subject to}:
\begin{mini}[3]
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{}
\addConstraint{g(w)+h(w)}{=0}
\addConstraint{t(w)}{=0.}
\end{mini}
\begin{lstlisting}
\usepackage[c1|c2|c3]{optidef}
\end{lstlisting}
\subsection{Extra alignment alternative}
\label{sec:extraAlign}
By default, the constraints have 2 aligned elements. However, a third alignment point can be used to set some constraint features. A clear example could be the constraints names:
\begin{mini*}
{w}{f(w)+ R(w+6x)}{}{}
\addConstraint{g(w)+h(w)}{=0,}{\text{(Topological Constraint)}}
\addConstraint{l(w)}{=5w,\quad}{\text{(Boundary Constraint)}}
\end{mini*}
or the index of the constraints:
\begin{mini*}
{w,u}{f(w)+ R(w+6x)}{}{}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1}
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini*}
This extra alignment point can be added using a third input parameter on the \verb|\addConstraint| parameter. An example using the last constraint of the previous example would be:
\begin{lstlisting}
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{lstlisting}
\subsection{Default format}
The default format is alternative 0. To change the default format across the whole document, the package can be imported using one of the three options: \verb|c1|, \verb|c2|, \verb|c3|, i.e.:
\section{Breaking the optimization problem across multiple pages}
\label{sec:breakpages}
In several cases, people encounter the problem of having an optimization problem that is too long to fit in a single page. In those cases, optidef can automatically break the problem across multiple pages by simply using the optional argument \verb|<b>|. For example:
\begin{lstlisting}
\begin{mini*}<b>
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1}
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini*}
\end{lstlisting}
For the \verb|mini|, \verb|maxi|, \verb|argmini|, and \verb|argmaxi| environments, when the option \verb|<b>| is provided, the environment does not automatically set the numbering nor the label of the environment. To create the number/label, the command \verb|\labelOP{label}| should be used. In particular, in the equation/constraint of the optimization problem where the label/number should be located, simply add \verb|\labelOP{label}|. For example, the following code:
\begin{lstlisting}
\begin{mini}<b>
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1 \labelOP{eq:label}}
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini}
\end{lstlisting}
\noindent would display this:
\begin{mini}<b>
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1 \labelOP{eq:label}}
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini}
In addition to automatic breaking equations, manual breaks at selected locations can also be done using the \verb|\displaybreak| command. Just add \verb|\displaybreak| between the two constraints that need to be broken, e.g.:
\begin{lstlisting}
\begin{mini}<b>
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1 \labelOP{eq:label}}
\displaybreak
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini}
\end{lstlisting}
\noindent would display:
\begin{mini}<b>
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1 \labelOP{eq:label}}
\displaybreak
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini}
\section{Breaking the objective across several lines}
\label{sec:breakObj}
In several cases, people encounter the problem of having an optimization problem which objective function is too long to be set in a single line. In such cases, a line breaking that respects the rest of the problem syntax would be desirable. To account for that, the command \verb|\breakObjective| can be used. The idea is that, if the objective function shall be split in $n$ different functions, e.g.~$f_1,\ldots,f_n$, the default objective parameter would include just $f_1$ and then, we would include $n-1$ statements \verb|\breakObjective|($f_k$), $\forall k=2,\ldots,n$ right before defining the \verb|\addConstraint| commands.
Let's illustrate this with an example. We could consider the example from before:
\begin{mini}
{w,u}{f(w)+ R(w+6x)}{}{}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1}
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini}
If now the cost function were too long, i.e:
\[
f(w)+ R(w+6x)+ H(100w-x*w/500)-g(w^3-x^2*200+10000*w^5)
\]
We could split it as:
\begin{mini}
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1}
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini}
by simpling using the following command:
\begin{lstlisting}
\begin{mini*}
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0,}{k=0,\ldots,N-1}
\addConstraint{l(w_k)}{=5u,\quad}{k=0,\ldots,N-1}
\end{mini*}
\end{lstlisting}
It is important to notice the specific location of the \verb|\breakObjective| command. In order to work properly, it has to be defined right before \verb|\addConstraint| and right after the definition of the environment parameters; i.e.~in any case the command should be used right after defining the first part of the objective function and not finishing the definition of the mandatory environment parameters.
\section{Default comma at the end of the constraint}
\label{sec:comma}
By default, the algorithms adds a comma at the end of any constraint that is not the last one. This feature was implemented due to correctness of mathematical notation. However, this behavior can be removed by adding the option \verb|nocomma| when importing the package:
\begin{lstlisting}
\usepackage[nocomma]{optidef}
\end{lstlisting}
\section{Long Optimization Variables}
The standard appearance for long optimization variables is as follows:
\begin{mini!}
{x_0,u_0,x_1,\hdots,u_{N-1},x_N}
{\sum_{k=0}^{N-1} L(x_k,u_k)\!\!+\!\!E(x_N)\label{OCPobj}}
{\label{eq:OCP}}{}
\addConstraint{x_{k+1}-f(x_k,u_k)}{= 0, \label{dOCP:modelc}\quad k=0,\dots,N-1}
\addConstraint{h(x_k,u_k)}{\leq 0, \quad k=0,\dots,N-1}
\addConstraint{r(x_0,x_N)}{= 0. \label{dOCP:boundary}}
\end{mini!}
\noindent A possible way to reduce the large variable spacing is to stack them with the command: \begin{verbatim}
\substack{x_0,u_0,x_1,\hdots,\\u_{N-1},x_N}
\end{verbatim}
\begin{mini!}
{\substack{x_0,u_0,x_1,\hdots,\\ u_{N-1},x_N}}
{\sum_{k=0}^{N-1} L(x_k,u_k)\!\!+\!\!E(x_N)\label{OCPobj}}
{\label{eq:OCP}}{}
\addConstraint{x_{k+1}-f(x_k,u_k)}{= 0, \label{dOCP:modelc}\quad k=0,\dots,N-1}
\addConstraint{h(x_k,u_k)}{\leq 0, \quad k=0,\dots,N-1}
\addConstraint{r(x_0,x_N)}{= 0. \label{dOCP:boundary}}
\end{mini!}
\section{Compatibility issues with other packages}
Issues with three different packages have been reported: cleveref, babel, and mathabx.
\subsection{Cleveref}
When using the cleveref package in couple with the optidef package two measures have to taken for the packages to work properly:
\begin{enumerate}
\item As also indicated in the cleveref documentation, the optidef package has to be loaded before the cleveref package.
\item To avoid crashes, the \verb|\label| commands in the optidef environments have to be replaced by the protected counterparts \verb|\protect\label|. This is required because of the standard Latex issue of moving arguments and fragile commands\footnote{\url{goo.gl/wmKbNU}}.
\end{enumerate}
\noindent A code example taking into account both measures is the following:
\begin{verbatim}
\documentclass{article}
\usepackage{optidef}
\usepackage{cleveref}
\begin{document}
\begin{mini!}
{w}{f(w)+ R(w+6x) \protect\label{eq:ObjectiveExample1}}
{\label{eq:Example1}}{}
\addConstraint{g(w)}{=0 \protect\label{eq:C1Example3}}
\addConstraint{n(w)}{= 6 \protect\label{eq:C2Example1}}
\addConstraint{L(w)+r(x)}{=Kw+p \protect\label{eq:C3Example1}}
\end{mini!}
Example labels: \cref{eq:Example1} and \cref{eq:ObjectiveExample1}.
\end{document}
\end{verbatim}
As an alternative to the second step, i.e.~protecting the \verb|\label| command, the command can be robustify in the document preamble and then \verb|\protect| is not longer needed. To robustify the \verb|\label| command, the following has to be added to the preamble:
\begin{verbatim}
\usepackage{etoolbox}
\robustify{\label}
\end{verbatim}
\subsection{Babel}
\label{sec:babel}
When importing the package babel with some specific languages, e.g.~French, the \verb|mini!| environment clashes because of the exclamation mark.
This issue has been resolved starting from Optidef 2.7, where a working alternative to the \verb|mini!| environment is included: the \verb|minie| enviroment. Both environemnts have the same functionality, but when using the babel package it is recommended to use the \verb|minie| environment to avoid issues.
\subsection{Mathabx}
When using the mathabx package in couple with the optidef package, the optidef package must be loaded first in order to avoid malfunction of the mathabx package. In addition, the amsmath package should also be loaded before both of them. The preamble should look like:
\begin{verbatim}
\usepackage{amsmath}
\usepackage{mathabx}
\usepackage{optidef}
\end{verbatim}
\section{Examples}
\subsection{Example 1 - mini environment}
The code:
\begin{verbatim}
\begin{mini}
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\end{verbatim}
\noindent outputs:
\begin{mini}
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex11}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\subsection{Example 2 - mini* environment}
On the other hand:
\begin{verbatim}
\begin{mini*}
{w}{f(w)+ R(w+6x)}
{}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6,}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini*}
\end{verbatim}
\noindent it is almost the same but removing the reference:
\begin{mini*}
{w}{f(w)+ R(w+6x)}
{}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini*}
\subsection{Example 3 - mini! environment}
\noindent Finally, the multireferencing environment outputs:
\begin{verbatim}
\begin{mini!}
{w}{f(w)+ R(w+6x) \label{eq:ObjectiveExample1}}
{\label{eq:Example1}}{}
\addConstraint{g(w)}{=0 \label{eq:C1Example3}}
\addConstraint{n(w)}{= 6 \label{eq:C2Example1}}
\addConstraint{L(w)+r(x)}{=Kw+p \label{eq:C3Example1}}
\addConstraint{h(x)}{=0. \label{eq:C4Example1}}
\end{mini!}
\end{verbatim}
\begin{mini!}
{w}{f(w)+ R(w+6x)\label{eq:ObjectiveExample3}}
{\label{eq:Example3}}
{}
\addConstraint{g(w)}{=0 \label{eq:C1Example3}}
\addConstraint{n(w)}{= 6 \label{eq:C2Example3}}
\addConstraint{L(w)+r(x)}{=Kw+p \label{eq:C3Example3}}
\addConstraint{h(x)}{=0.\label{eq:C4Example3}}
\end{mini!}
\subsection{Example 4 - Problem Result}
\noindent Adding the problem result:
\begin{verbatim}
\begin{mini}
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}
{J(w^*)=}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\end{verbatim}
\noindent outputs:
\begin{mini}
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{J(w^*)~=~}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\subsection{Example 5 - Short Format}
\noindent Adding the short format parameter:
\begin{verbatim}
\begin{mini}|s|
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}
{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\end{verbatim}
\noindent outputs:
\begin{mini}|s|
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\subsection{Example 6 - Alternative 1 for Constraints}
\noindent If including a 1 as optional parameter, the first constraint will appear aligned to the left right below \textit{subject to}.
\begin{verbatim}
\begin{mini}[1]
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}
{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\end{verbatim}
\noindent outputs:
\begin{mini}[1]
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\subsection{Example 7 - Alternative 2 for Constraints}
\noindent If including a 2 as optional parameter, the constraint will appear to the right of \textit{subject to} but a single alignment point.
\begin{verbatim}
\begin{mini}[2]
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}
{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\end{verbatim}
\noindent outputs:
\begin{mini}[2]
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\subsection{Example 8 - Alternative 3 for Constraints}
\noindent If including a 3 as optional parameter, the first constraint will appear aligned to the left right below \textit{subject to} and with a single alignment point.
\begin{verbatim}
\begin{mini}[3]
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}
{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\end{verbatim}
\noindent outputs:
\begin{mini}[3]
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\subsection{Example 9 - Breaking a long objective}
\begin{lstlisting}
\begin{mini*}
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0,}
\addConstraint{l(w_k)}{=5u,\quad}
\end{mini*}
\end{lstlisting}
outputs:
\begin{mini}
{w,u}{f(w)+ R(w+6x)+ H(100w-x*w/500)}{}{}
\breakObjective{-g(w^3-x^2*200+10000*w^5)}
\addConstraint{g(w_k)+h(w_k)}{=0}
\addConstraint{l(w_k)}{=5u.}
\end{mini}
\subsection{Example 10 - Extra Alignment in the Constraints}
\label{ex:extra}
Adding optional alignment to add constraint names:
\begin{verbatim}
\begin{mini*}
{w}{f(w)+ R(w+6x)}
{}{}
\addConstraint{g(w)}{=0,}{ \quad \text{(Dynamic constraint)}}
\addConstraint{n(w)}{= 6,}{ \quad \text{(Boundary constraint)}}
\addConstraint{L(w)+r(x)}{=Kw+p,}{ \quad \text{(Random constraint)}}
\addConstraint{h(x)}{=0,}{ \quad \text{(Path constraint).}}
\end{mini*}
\end{verbatim}
\subsection{Example 11 - The \textit{argmini} Environment}
Similar to the \verb|mini|, \verb|mini*| and \verb|mini!| environments, the environments \verb|argmini|, \verb|argmini*| and \verb|argmini!| are very similar environments that use the same syntax but the output is slightly different:
\begin{verbatim}
\begin{argmini}
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}{w^*=}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{argmini}
\end{verbatim}
\noindent outputs:
\begin{argmini}
{w}{f(w)+ R(w+6x)}
{\label{eq:Ex1}}{w^*~=~}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{argmini}
\subsection{Example 12 - The \textit{maxi} and \textit{argmaxi} Environments}
Exactly the same syntax and definition as the previous environments, but now for defining maximization environments. The following code serves for illustration:
\begin{verbatim}
\begin{maxi}
{w}{f(w)+ R(w+6x)}
{g(w)}{=0}
{\label{eq:Example1}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{maxi}
\end{verbatim}
\noindent outputs:
\begin{maxi}
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{maxi}
\subsection{Example 13 - Breaking optimization problem}
\begin{lstlisting}
\begin{mini}<b>
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}{}
\addConstraint{g(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\end{lstlisting}
outputs:
\begin{mini}<b>
{w}{f(w)+ R(w+6x)}
{\label{eq:Example1}}{}
\addConstraint{g(w)}{=0}
%\addConstraint{p(w)}{=0}
%\addConstraint{q(w)}{=0}
%\addConstraint{r(w)}{=0}
%\addConstraint{s(w)}{=0}
%\addConstraint{t(w)}{=0}
%\addConstraint{v(w)}{=0}
%\addConstraint{z(w)}{=0}
\addConstraint{n(w)}{= 6}
\addConstraint{L(w)+r(x)}{=Kw+p}
\addConstraint{h(x)}{=0.}
\end{mini}
\subsection{Example 14 - All Possible Parameters}
\begin{verbatim}
\begin{mini!}|s|[1]<b>
{w}{f(w)+ R(w+6x)}
{}{w^*=}
\addConstraint{g(w)}{=0,}{ \quad \text{(Dynamic constraint)}}
\addConstraint{n(w)}{= 6,}{ \quad \text{(Boundary constraint)}}
\addConstraint{L(w)+r(x)}{=Kw+p,}{ \quad \text{(Random constraint)}}
\addConstraint{h(x)}{=0,}{ \quad \text{(Path constraint).}}
\end{mini!}
\end{verbatim}
\begin{mini!}|s|[2]<b>
{w}{f(w)+ R(w+6x)\label{eq:ObjectiveExample3}}
{\label{eq:Example3}}
{w^*=}
\addConstraint{g(w)}{=0 \label{eq:C1Example3}}
\addConstraint{n(w)}{= 6 \label{eq:C2Example3}}
\addConstraint{L(w)+r(x)}{=Kw+p \label{eq:C3Example3}}
\addConstraint{h(x)}{=0.\label{eq:C4Example3}}
\end{mini!}
\section{Reporting bugs and feature requests}
To report any bug or request some feature please use the issue section in the github repository: \url{https://github.com/jeslago/optidef/issues}.
%\section{Code definition}
%\begin{lstlisting}
%\end{lstlisting}
\end{document}
|