1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
\documentclass[11pt]{article}
\usepackage{oz}
\def\Out#1{#1 \!\!\rightarrow}
\def\In#1{\rightarrow\!\! #1}
\begin{document}
Multi-letter identifiers have been changed to look
better than they do with vanilla \LaTeX: instead of
$\mathit{specifications}$, you get $specifications$.
The letters haven't been spread apart, and the
ligature $fi$ has been used.
{\tt This is in typewriter font}
\begin{schema}{BirthdayBook}
known: \pset NAME \\
birthday: NAME \pfun DATE
\ST
known = \dom birthday
\end{schema}
\begin{axdef}
limit : \nat
\ST
limit \leq 65536
\end{axdef}
\begin{class}{Shape}
\also
colour : Colour \\
\end{class}
\begin{axdef}
perim : \real
\ST
perim > 0
\end{axdef}
\begin{axdef}
ini:State \cross Occ \cross T \fun Bool
\where
\forall S:State, i: Occ, t:T \dot ini(S,i,t) \iff \\
\t1 \theta(\Out{S}, 1,0)\land\\
\t2 \exi t_{1}:T \dot \theta(\In{S},i,t_{1}) \land
t_{1}\leq t \land \forall t_{2}:T \dot t_{2} < t \imp \neg \theta(\Out{S},i+1,t_{2}
)\\
\t1 \lor \theta(\In{S}, 1,0)\land\\
\t2 \exi t_{1}:T \dot \theta(\In{S},i,t_{1}) \land
t_{1}\leq t \land \forall t_{2}:T \dot t_{2} < t \imp \neg
\theta(\Out{S},i,t_{2})
\end{axdef}
Let us see if \verb|zbreak| works:
\typeout{*************************************}
\typeout{If you get large overfull vboxes now, Oz is not working}
\typeout{*************************************}
\def \comm{\comment}
\begin{schema}{MakePlan}
c? : Company \comm{The company that is making the plan}\\
t? : Month \comm{Time period} \\
\Xi NFMM \\
\Xi AttrOfMarkets \comm{OpenMarkets} \\
\Xi Cost \\
\Xi AttrOfEconomy \comm{Buying and selling price of quota }\\
\Xi AttrOfQuota \\
\Xi AttrOfProduction \\
\Xi FishingLimitations \\
Plans! : Company \fun Plan \comm{The output is the plan for
the company} \\
\zbreak
\where
\forall v: Vessel; f: Fishery; s: QuotaStock; p: Product; \\
\t0 l: Landing; t: Month; i: Input @ \\
\t0 \exists plan: Plan; Months: \power Month; \\
\t0 vs : \power Vessel; fs: \power Fishery ; qs: \power QuotaStock; ls: \power Landing; \\
\t0 ps : \power Product; \\
\t0 catch: Vessel \cross Fishery \cross QuotaStock \pfun Tons; \\
\t0 MAXnet\_profit:Kronur; fishing\_cost:Kronur; \\
\t1 production\_earnings:Kronur; \\
\t1 production\_cost:Kronur; quota\_trading\_profit:Kronur; \\
\t0 fishing\_days: Vessel \cross Fishery \cross Month \pfun \nat; \\
\t0 value\_landing: Vessel \fun Kronur; \\
\t0 export: Vessel \cross Landing \cross Month \pfun Tons; \\
\t1 trade\_in, trade\_out: Landing \cross Month \pfun Tons; \\
\t1 prod: Product \cross Month \fun Tons; \\
\t0 quota\_rent\_in, quota\_rent\_out, quota\_next\_to, \\
\t1 quota\_next\_from, quota\_exch\_to, quota\_exch\_from,\\
\t1 quota\_trans\_from, quota\_trans\_to: Vessel \cross QuotaStock \pfun Tons; \\
\t0 ExchangeCharge: \num; \comm{charge for changing one species into another} \\
\t0 quota\_used: Vessel \cross QuotaStock \pfun Tons @ \\
\zbreak
\t0 Plans! = Plans! \oplus \{c? \mapsto plan \} \land \\
\t0 Months = t? \upto 12 \land \\
\t0 i \in Inputs \land \\
\t0 vs = Vessels ~ c? \land v \in vs \land\\
\t0 fs = \{f: Fishery | f \in \\
\t1 (\bigcup \{ v: Vessel | v \in vs @ Fisheries(v) \}) @ f \} \land f \in fs \land \\
\t0 qs = \{s: QuotaStock; f: Fishery | \\
\t1 f \in fs \land s \in QuotaStocks (f) @ s \} \land s \in qs \land \\
\t0 ls = \{s: QuotaStock; f: Fishery | f \in fs \land s \in qs @ \\
\t1 Landings~(f,s) \} \land l \in ls \land \\
\t0 ps = \{p: Product | \\
\t1 p \in \bigcup \{ fa: Factory | fa \in Factories~c? @ Products(fa) \} @ p \} \land \\
\t0 p \in ps \land \\
\comm{The overall goal is to maximize net profits} \\
\t0 MAXnet\_profit = -fishing\_cost+production\_earnings + \\
\t1 -production\_cost + quota\_trading\_profit \land \comm{A.1}\\
\t0 catch ~(v,f,s) = ExpCatch~(v,f,s)* \comm{A.4}\\
\t1 \sum_{t: Month | t \in Months} fishing\_days~(v,f,t) \land \\
\comm{One of the prices LandingPrice or ExportPrice is always zero for any l} \\
\t0 (\forall l | l \in ls @ LandingPrice (l) = 0 \lor ExportPrice(l) = 0 \land \\
\t1 LandingPrice(l) \neq ExportPrice(l) ) \land \\
\t0 value\_landing= \comm{A.3} \\
\t1 \{v: Vessel | v \in vs @ v \mapsto \\
\t1 \sum_{ l: Landing | l \in ls} LandingPrice (l)* ExportPriceConst(l) * \\
\t1 \sum_{f: Fishery | f \in fs} \sum_{s: QuotaStock | s \in qs} (SpeciesToLandings~(s,f,l) *(catch~(v,f,s)) \}\land \\
\t0 fishing\_cost = \sum_{v: Vessel | v \in vs} Share (v)*value\_landing(v) + \comm{A.2}\\
\t1 \sum_{ f: Fishery | f \in fs} CostFishDay ~ (v, f) * \\
\t1 \sum_{t: Month | t \in Months} fishing\_days~(v,f,t) \land \\
\zbreak
\t0 production\_earnings = \comm{A.5}\\
\t1 \sum_{l: Landing | l \in ls} \sum_{ t: Month | t \in Months} \\
\t3 (ExportPrice~(l,t))*(1-0.002)*t)* \\
\t3 \sum_{v: Vessel | v \in vs} export~(v,l,t) \\
\t1 -WetfishBuyingPrice(l) * (1-0.002)*t)*trade\_in~(l,t) \\
\t1 +WetfishSellingPrice(l) * (1-0.002)*t)*trade\_out~(l,t) \\
\t1 +\sum_{p: Product | p \in ps} ProductPrice~(p,t) *(1-0.002)*t)* \\
\t1 \sum_{t:Month | t \in Months} prod~ (p,t) \land \\
\t0 production\_cost = \sum_{i: Input | i \in Inputs} InputCost(i)* \comm{A.6}\\
\t1 \sum_{p: Product | p \in ps} InputForProduct(p,i) * \\
\t1 \sum_{ t: Month | t \in Months} prod(p,t) \land \\
\t0 ExchangeCharge = 0.005*NextPrice(s) \land \\
\t0 quota\_trading\_profit = -(\sum_{s: QuotaStock | s \in qs } QuotaRentInPrice(s) * \\
\t1 \sum_{v: Vessel | v \in vs } quota\_rent\_in~(v,s) ) \comm{A.7}\\
\t1 + \sum_{s: QuotaStock | s \in qs } QuotaRentOutPrice(s)* \\
\t1 \sum_{v: Vessel | v \in vs } quota\_rent\_out~(v,s) \\
\t1 + \sum_{s: QuotaStock | s \in qs } NextCharge *NextPrice(s)*(1-InterestRate)* \\
\t1 \sum_{v: Vessel | v \in vs } quota\_next\_to~(v,s) \\
\t1 + \sum_{s: QuotaStock | s \in qs } NextPrice(s)*(1-InterestRate) * \\
\t1 \sum_{v: Vessel | v \in vs } quota\_next\_from~(v,s) \\
\t1 -ExchangeCharge*\sum_{v: Vessel | v \in vs }\sum_{s: QuotaStock | s \in qs } quota\_exch\_to(v,s) \\
\t1 -TransferCharge*\sum_{v: Vessel | v \in vs }\sum_{s: QuotaStock | s \in qs } quota\_trans\_to~(v,s) \land \\
\t0 \sum_{ f: Fishery | f \in fs } fishing\_days~(v,f,t) \leq MaxTotFishingDays ~(v,t) \land \comm{A.9}\\
\comm{A.6.1 Constraints on fishing time } \\
\t0 l \in ExportLandings \implies \\
\t1 \sum_{f: Fishery | f \in fs } \sum_{s: QuotaStock | s \in qs } \comm{A.10} \\
\t2 SpeciesToLandings~(s,f,l) * ExpCatch (v,f,s)*fishing\_days(v,f,t) = \\
\t3 export~(v,l,t) \land \\
\comm{A.6.2 Processing and selling the catch } \\
\t0 l \notin ExportLandings \implies \\
\t1 \sum_{v: Vessel | v \in vs } \sum_{f: Fishery | f \in fs } \sum_{s: QuotaStock | s \in qs } \\
\t2 SpeciesToLandings~(s,f,l)*ExpCatch~(v,f,s)*fishing\_days~(v,f,t) \\
\t1 = (1 / LandingsToProducts~(p,l)) * prod~(p,t) - trade\_in~(l,t) + trade\_out(l,t) \land \comm{A.11}\\
\zbreak
\t0 \sum_{t: Month | t \in Months } \sum_{p:Product | p \in ps }InputForProduct(p,i)*prod(p,t) \\
\t1 \leq \sum_{i : Input | i \in Inputs } MaxInput~(i,t) \land \comm{A.13}\\
\t0 \sum_{t: Month | t \in Months } \sum_{p: Product | p \in ps } InputForProduct(p,i)*prod~(p,t) \\
\t1 \geq \sum_{i: Input | i \in Inputs } MinInput~(i,t) \land \comm{A.14}\\
\t0 \sum_{t: Month | t \in Months } export~(v,l,t) \leq MaxExport~(v,l) \land \comm{A.15}\\
\comm{A.6.3 Constraints because of quota restrictions } \\
\t0 quota\_used = \comm{A.17} \\
\t1 \{ v:Vessel; s: QuotaStock | v \in vs \land s \in qs @ \\
\t2 (v,s) \mapsto \sum_{f: Fishery | f \in fs } (1+QuotaSurcharge~(s,f))* \\
\t2 catch~(v,f,s) \} \land \\
\t0 \sum_{v: Vessel | v \in vs } quota\_trans\_to(v,s)- quota\_trans\_from(v,s) =0 \land \comm{A.18} \\
\t0 quota\_used(v,s) - quota\_rent\_in(v,s) + quota\_rent\_out(v,s) - \comm{A.16} \\
\t1 quota\_exch\_to(v,s) + quota\_exch\_from(v,s) - \\
\t1 quota\_trans\_to(v,s) + quota\_trans\_from(v,s) - \\
\t1 quota\_next\_to~(v,s) + quota\_next\_from~(v,s) \leq QuotaLeft~(v,s) \land \\
\t0 s = Cod \implies MaxQuotaInto(v,s) = 0 \land \comm{A.19}\\
\t0 s \neq Cod \implies MaxQuotaInto(v,s) = 0.05*QuotaAllocated(v,s) \land \\
\t1 QuotaValueInto(s)*quota\_exch\_to(v,s) \leq \\
\t2 \sum_{s: QuotaStock | s \in qs } MaxQuotaInto~(v,s) \land \\
\t0 \sum_{s: QuotaStock | s \in qs } QuotaValueInto (s)*quota\_exch\_to~(v,s) - \comm{A.20}\\
\t1 \sum_{s: QuotaStock | s \in qs } QuotaValueFrom(s)* quota\_exch\_from~(v,s) = 0 \land \\
\t0 quota\_next\_from(v,s) \leq (QuotaOver(v,s) / 100)*QuotaAllocated(v,s) \land \comm{A.21}\\
\t0 quota\_next\_to~(v,s) \leq (QuotaUnder(v,s) / 100)*QuotaAllocated(v,s) \land \comm{A.22} \\
\zbreak
\comm{Bounds} \\
\t0 fishing\_days~(v,f,t) \leq MaxFishingDays~(f,t) \land \comm{A.23}\\
\t0 QuotaAllocated~(v,s) = 0 \implies \\
\t1 (quota\_exch\_to~(v,s) = 0 \land \comm{A.24}\\
\t1 quota\_rent\_in~(v,s) = 0 \land \comm{A.25}\\
\t1 quota\_trans\_to~(v,s) = 0) \land \comm{A.26} \\
\t0 QuotaValueInto~s = 0 \implies quota\_exch\_to~(v,s) = 0 \land \comm{A.27}\\
\t0 QuotaValueFrom~s = 0 \implies quota\_exch\_from~(v,s) = 0 \comm{A.28}\\
\zbreak
\t0 plan.c = c? \
\t0 plan.fishing\_days = fishing\_days \land
\t0 plan.quota\_rent\_out = quota\_rent\_out \land \\
\t0 plan.quota\_rent\_in = quota\_rent\_in \land \\
\t0 plan.quota\_trans\_from = quota\_trans\_from \land \\
\t0 plan.quota\_trans\_to = quota\_trans\_to \land \\
\t0 plan.quota\_next\_from = quota\_next\_from \land \\
\t0 plan.quota\_next\_to = quota\_next\_to \land \\
\t0 plan.quota\_exch\_from = quota\_exch\_from \land \\
\t0 plan.quota\_exch\_to = quota\_exch\_to \land \\
\t0 plan.trade\_out = trade\_out \land \\
\t0 plan.trade\_in = trade\_in \land \\
\t0 plan.prod = prod \land \\
\t0 plan.export = export \\
\end{schema}
\end{document}
|