summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/mil3/intrarti.tex
blob: ae5bc3570065675405e3e4970e221fc2e873ac81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
% Introductory sample article with index entries: intrarti.tex
% Typeset with LaTeX format

\documentclass{article}
\usepackage{latexsym}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}

\newtheorem{notation}{Notation}
\usepackage{makeidx}
\makeindex

\begin{document}
\title{A construction of complete-simple\\  
       distributive lattices}
\author{George~A. Menuhin\thanks{Research supported 
   by the NSF under grant number 23466.}\\
   Computer Science Department\\
   Winnebago, MN 23714\\
   menuhin@cc.uwinnebago.edu} 
\date{March 15, 1999}
\maketitle

\begin{abstract}
   In this note, we prove that there exist \emph{complete-simple
   distributive lattices,} that is, complete distributive 
   lattices in which there are only two complete congruences. 
\end{abstract}

\section{Introduction}\label{S:intro}
In this note we prove the following result:

\begin{theorem}\index{Main Theorem}
   There exists an infinite complete distributive lattice~$K$
   with only the two trivial complete congruence relations.
\end{theorem}

\section{The $\Pi^{*}$ construction}\label{S:P*} 
\index{pistar@$\Pi^{*}$ construction}
\index{Main Theorem!exposition|(}
The following construction is crucial in our proof of our Theorem:

\begin{definition}\label{D:P*} 
   Let $D_{i}$, $i \in I$, be complete distributive 
   lattices satisfying condition~\textup{(J)}.  Their 
   $\Pi^{*}$ product is defined as follows:
   \[
      \Pi^{*} ( D_{i} \mid i \in I ) = 
       \Pi ( D_{i}^{-} \mid i \in I ) + 1;
   \]
   that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is 
   $\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element. 
\end{definition}

\begin{notation}  
\index{<@$\langle \dots, 0, \dots, d, \dots, 0, 
       \dots \rangle$|textbf}
   If $i \in I$ and $d \in D_{i}^{-}$, then
   \[
      \langle \ldots, 0, \ldots, d, \ldots, 0, \ldots \rangle
   \]
   is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose 
   $i$-th component is $d$ and all the other components 
   are $0$.
\end{notation}

See also Ernest~T. 
\index{Moynahan, Ernest~T.}%
Moynahan~\cite{eM57a}.

Next we verify the following result:
\index{lattice}%
\index{lattice!distributive}%
\index{lattice!distributive!complete}%
\begin{theorem}\label{T:P*} 
   Let $D_{i}$, $i \in I$, be complete distributive 
   lattices satisfying condition~\textup{(J)}.  Let $\Theta$
   be a complete congruence relation on 
   $\Pi^{*} ( D_{i} \mid i \in I )$. 
   If there exist $i \in I$ and $d \in D_{i}$ with 
   $d < 1_{i}$ such that for all $d \leq c < 1_{i}$, 
\begin{equation}\label{E:cong}
    \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
    \bigvee ( \langle \ldots, c, \ldots, 0, \ldots \rangle 
    \mid d \leq c < 1 ) \pmod{\Theta}. 
\end{equation}
   then $\Theta = \iota$.
\end{theorem}

\emph{Proof.} Since 
\begin{equation}\label{E:cong2}
   \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv 
   \langle \ldots, c, \ldots, 0, \ldots \rangle \pmod{\Theta}, 
\end{equation}
and $\Theta$ is a complete congruence relation, it follows 
from condition~(J) that
\begin{equation}\label{E:cong}
    \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
    \bigvee ( \langle \ldots, c, \ldots, 0, \ldots \rangle 
    \mid d \leq c < 1 ) \pmod{\Theta}. 
\end{equation}

Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$. 
Meeting both sides of the congruence (\ref{E:cong2}) with 
$\langle \ldots, a, \ldots, 0, \ldots \rangle$, we obtain that
\begin{equation}\label{E:comp}
   0 = \langle \ldots, a, \ldots, 0, \ldots \rangle \pmod{\Theta}, 
\end{equation}
Using the completeness of $\Theta$ and (\ref{E:comp}), 
we get:
\index{<@$\langle \dots, 0, \dots, d, \dots, 0, 
       \dots \rangle$}%
\[
   0 \equiv \bigvee ( \langle \ldots, a, \ldots, 0, \ldots \rangle 
   \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta}, 
\]
hence $\Theta = \iota$.
\index{Main Theorem!exposition|)}

\begin{thebibliography}{9}
   \bibitem{sF90}\index{Foo, Soo-Key}%
      Soo-Key Foo, 
      \emph{Lattice Constructions}, 
      Ph.D. thesis, 
      University of Winnebago, Winnebago, MN, December, 1990.
   \bibitem{gM68}\index{Menuhin, George~A.}%
      George~A. Menuhin, 
      \emph{Universal Algebra}, 
      D.~van Nostrand, Princeton, 1968.
   \bibitem{eM57}\index{Moynahan, Ernest~T.}%
      Ernest~T. Moynahan, 
      \emph{On a problem of M. Stone},
      Acta Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
   \bibitem{eM57a}\index{Moynahan, Ernest~T.}%
      Ernest~T. Moynahan, 
      \emph{Ideals and congruence relations in lattices.} II,
      Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9} 
      (1957), 417--434.
\end{thebibliography}
\printindex
\end{document}