1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 中文~4.20~翻译:
% 5.2.5-5.2.11 gprsnl@bbs.ctex
% 其他章节 zpxing@bbs.ctex email: zpxing at gmail dot com
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setcounter{chapter}{4}
\newcommand{\graphicscompanion}{\emph{The \LaTeX{} Graphics Companion}~\cite{graphicscompanion}}
\newcommand{\hobby}{\emph{A User's Manual for MetaPost}~\cite{metapost}}
\newcommand{\hoenig}{\emph{\TeX{} Unbound}~\cite{unbound}}
\newcommand{\graphicsinlatex}{\emph{Graphics in \LaTeXe{}}~\cite{ursoswald}}
%\chapter{Producing Mathematical Graphics}
%\label{chap:graphics}
\chapter{数学图形}
\label{chap:graphics}
%\begin{intro}
%Most people use \LaTeX\ for typesetting their text. But as the non content and
%structure oriented approach to authoring is so convenient, \LaTeX\ also offers a,
%if somewhat restricted, possibility for producing graphical output from textual
%descriptions. Furthermore, quite a number of \LaTeX\ extensions have been created
%in order to overcome these restrictions. In this section, you will learn about a
%few of them.
%\end{intro}
\begin{intro}
大部分人使用 \LaTeX 来排版文本内容。 因其不面向内容和结构的特点给写作提供了巨大的方便,
我们还可以有办法从文本描述生成图形输出。此外,大量的 \LaTeX 扩展
被开发出来以克服种种限制。 在本节中,我们将学习其中的一些。
\end{intro}
%\section{Overview}
\section{概述}
%The \ei{picture} environment allows programming pictures directly in
%\LaTeX. A detailed
%description can be found in the \manual. On the one hand, there are rather
%severe constraints, as the slopes of line segments as well as the radii of
%circles are restricted to a narrow choice of values. On the other hand, the
%\ei{picture} environment of \LaTeXe\ brings with it the \ci{qbezier}
%command, ``\texttt{q}'' meaning ``quadratic''. Many frequently used curves
%such as circles, ellipses, or catenaries can be satisfactorily approximated
%by quadratic B\'ezier curves, although this may require some mathematical
%toil. If, in addition, a programming language like Java is used to generate
%\ci{qbezier} blocks of \LaTeX\ input files, the \ei{picture} environment
%becomes quite powerful.
\ei{picture} 环境可以在 \LaTeX{} 里直接设计图形。详细的介绍请参考 \manual。
一方面,这种方法有严重的局限性,比如线段的斜率和圆的半径只能在一个很小的范围内取值。
另一方面, \LaTeXe 的 \ei{picture} 环境提供了 \ci{qbezier} 命令,
``\texttt{q}'' 表示 ``quadratic''。许多常用的曲线如圆、椭圆、或者悬链线都
可以用二次 B\'ezier 曲线得到令人满意的近似,虽然这可能需要一些辛苦的数学准备。
另外,如果有一种编程语言如 Java 能用来生成 \LaTeX 源文档的 \ci{qbezier} 模块,
\ei{picture} 环境会更强大。
%Although programming pictures directly in \LaTeX\ is severely
%restricted, and often rather tiresome, there are still reasons for
%doing so. The documents thus produced are ``small'' with respect to
%bytes, and there are no additional graphics files to be dragged
%along.
%
%Packages like \pai{epic} and \pai{eepic} (described, for instance,
%in \companion), or \pai{pstricks} help to eliminate the restrictions
%hampering the original \ei{picture} environment, and greatly
%strengthen the graphical power of \LaTeX.
%
%While the former two packages just enhance the \ei{picture}
%environment, the \pai{pstricks} package has its own drawing
%environment, \ei{pspicture}. The power of \pai{pstricks} stems from
%the fact that this package makes extensive use of \PSi{}
%possibilities. In addition, numerous packages have been written for
%specific purposes. One of them is \texorpdfstring{\Xy}{Xy}-pic,
%described at the end of this chapter. A wide variety of these
%packages is described in detail in \graphicscompanion{} (not to be
%confused with \companion).
虽然直接在 \LaTeX 里设计图形的方法有严重的局限性而且通常比较繁琐,
但它还是很有用的。这份文档就是用它才变得体积很小,不需要插入额外的图片。
一些宏包,如 \pai{epic} 和 \pai{eepic}(\companion 里有介绍),或者
\pai{pstricks} 可以排除 \ei{picture} 环境的局限,并大大地增强了 \LaTeX 的图形功能。
跟前两个宏包只是加强了 \ei{picture} 环境不同,\pai{pstricks} 宏包有自己的绘图环境,
\ei{pspicture}。 \pai{pstricks} 的强大之处在于它广泛应用了 \PSi{}。
另外,许多宏包可以用来处理专门的问题。其一是 \texorpdfstring{\Xy}{Xy}-pic,
本章最后会讲到它。
\graphicscompanion{} (勿与 \companion 混淆)里详细介绍了大量的宏包.
%
%Perhaps the most powerful graphical tool related with \LaTeX\ is \texttt{MetaPost}, the twin of
%Donald E. Knuth's \texttt{METAFONT}. \texttt{MetaPost} has the very powerful and
%mathematically sophisticated programming language of \texttt{METAFONT}. Contrary to \texttt{METAFONT},
%which generates bitmaps, \texttt{MetaPost} generates encapsulated \PSi{} files,
%which can be imported in \LaTeX. For an introduction, see \hobby, or the tutorial on \cite{ursoswald}.
\LaTeX 最强大的图形工具可能是 \texttt{MetaPost}, Donald E.
Knuth 编写的 \texttt{METAFONT} 的孪生兄弟。
\texttt{MetaPost} 使用非常强大的数学编程语言: \texttt{METAFONT}。
与 \texttt{METAFONT} 生成点阵图片不同,\texttt{MetaPost} 生成的是封装的 \PSi{} 文件,
可以导入 \LaTeX 中。其介绍可以看 \hobby,或者 \cite{ursoswald}。
%
%A very thorough discussion of \LaTeX{} and \TeX{} strategies for graphics (and fonts) can
%be found in \hoenig.
关于 \LaTeX{} 和 \TeX{} 图形(以及字体)支持方法的详细讨论请参考 \hoenig。
%\section{The \texttt{picture} Environment}
%\secby{Urs Oswald}{osurs@bluewin.ch}
\section{\texttt{picture} 环境}
\secby{Urs Oswald}{osurs@bluewin.ch}
%\subsection{Basic Commands}
\subsection{基本命令}
%A \ei{picture} environment\footnote{Believe it or not, the picture environment works out of the
%box, with standard \LaTeXe{} no package loading necessary.} is created with one of the two commands
一个 \ei{picture} 环境\footnote{信不信由你,picture 环境仅需标准的 \LaTeXe{},“开箱即用”,无需载入宏包。}可以用下面两个命令中的一个来创建
\begin{lscommand}
\ci{begin}\verb|{picture}(|$x,y$\verb|)|\ldots\ci{end}\verb|{picture}|
\end{lscommand}
\noindent 或者
\begin{lscommand}
\ci{begin}\verb|{picture}(|$x,y$\verb|)(|$x_0,y_0$\verb|)|\ldots\ci{end}\verb|{picture}|
\end{lscommand}
%The numbers $x,\,y,\,x_0,\,y_0$ refer to \ci{unitlength}, which can be reset any time
%(but not within a \ei{picture} environment) with a command such as
数字 $x,\,y,\,x_0,\,y_0$ 是相对于 \ci{unitlength} 而言的,任何时候(除了在 \ei{picture} 环境之内以外),都可以
使用命令如
\begin{lscommand}
\ci{setlength}\verb|{|\ci{unitlength}\verb|}{1.2cm}|
\end{lscommand}
%The default value of \ci{unitlength} is \texttt{1pt}. The first
%pair, $(x,y)$, effects the reservation, within the document, of
%rectangular space for the picture. The optional second pair,
%$(x_0,y_0)$, assigns arbitrary coordinates to the bottom left corner
%of the reserved rectangle.
\noindent
来改变。\ci{unitlength} 的默认值是 \texttt{1 pt}。第一个数对,
$(x,y)$, 在文档中为图形保留一个矩形的区域。可选的第二个数对,
$(x_0,y_0)$,为矩形左下角指派任意的坐标。
%Most drawing commands have one of the two forms
大多数的绘图命令是下面两种格式之一
\begin{lscommand}
\ci{put}\verb|(|$x,y$\verb|){|\emph{object}\verb|}|
\end{lscommand}
\noindent 或者
\begin{lscommand}
\ci{multiput}\verb|(|$x,y$\verb|)(|$\Delta x,\Delta
y$\verb|){|$n$\verb|}{|\emph{object}\verb|}|\end{lscommand}
%B\'ezier curves are an exception. They are drawn with the command
B\'ezier 曲线是一个例外。 它们需要用命令
\begin{lscommand}
\ci{qbezier}\verb|(|$x_1,y_1$\verb|)(|$x_2,y_2$\verb|)(|$x_3,y_3$\verb|)|
\end{lscommand}
\noindent 来画。
\newpage
%\subsection{Line Segments}
\subsection{线段}
\begin{example}
\setlength{\unitlength}{5cm}
\begin{picture}(1,1)
\put(0,0){\line(0,1){1}}
\put(0,0){\line(1,0){1}}
\put(0,0){\line(1,1){1}}
\put(0,0){\line(1,2){.5}}
\put(0,0){\line(1,3){.3333}}
\put(0,0){\line(1,4){.25}}
\put(0,0){\line(1,5){.2}}
\put(0,0){\line(1,6){.1667}}
\put(0,0){\line(2,1){1}}
\put(0,0){\line(2,3){.6667}}
\put(0,0){\line(2,5){.4}}
\put(0,0){\line(3,1){1}}
\put(0,0){\line(3,2){1}}
\put(0,0){\line(3,4){.75}}
\put(0,0){\line(3,5){.6}}
\put(0,0){\line(4,1){1}}
\put(0,0){\line(4,3){1}}
\put(0,0){\line(4,5){.8}}
\put(0,0){\line(5,1){1}}
\put(0,0){\line(5,2){1}}
\put(0,0){\line(5,3){1}}
\put(0,0){\line(5,4){1}}
\put(0,0){\line(5,6){.8333}}
\put(0,0){\line(6,1){1}}
\put(0,0){\line(6,5){1}}
\end{picture}
\end{example}
%Line segments are drawn with the command
线段用命令
\begin{lscommand}
\ci{put}\verb|(|$x,y$\verb|){|\ci{line}\verb|(|$x_1,y_1$\verb|){|$length$\verb|}}|
\end{lscommand}
%Line segments are drawn with the command
\noindent 来画。 命令 \ci{line} 有两个参量:
%\begin{enumerate}
% \item a direction vector,
% \item a length.
%\end{enumerate}
\begin{enumerate}
\item 一个方向向量,
\item 一个长度。
\end{enumerate}
%The components of the direction vector are restricted to the integers
方向向量需由以下整数构成
\[
-6,\,-5,\,\ldots,\,5,\,6,
\]
%and they have to be coprime (no common divisor except 1). The figure illustrates all
%25 possible slope values in the first quadrant. The length is relative to \ci{unitlength}.
%The length argument is the vertical coordinate in the case of a vertical line segment, the
%horizontal coordinate in all other cases.
而且它们需要互质(除 1 以外,没有公约数),图形显示了第一象限中所有 25 个可能的斜率值。
长度是相对于 \ci{unitlength} 来说的。长度的参量当一个垂直线段时是垂直坐标,其他情况都是水平坐标。
%\subsection{Arrows}
\subsection{箭头}
\begin{example}
\setlength{\unitlength}{0.75mm}
\begin{picture}(60,40)
\put(30,20){\vector(1,0){30}}
\put(30,20){\vector(4,1){20}}
\put(30,20){\vector(3,1){25}}
\put(30,20){\vector(2,1){30}}
\put(30,20){\vector(1,2){10}}
\thicklines
\put(30,20){\vector(-4,1){30}}
\put(30,20){\vector(-1,4){5}}
\thinlines
\put(30,20){\vector(-1,-1){5}}
\put(30,20){\vector(-1,-4){5}}
\end{picture}
\end{example}
%Arrows are drawn with the command
画箭头要用命令
\begin{lscommand}
\ci{put}\verb|(|$x,y$\verb|){|\ci{vector}\verb|(|$x_1,y_1$\verb|){|$length$\verb|}}|
\end{lscommand}
%For arrows, the components of the direction vector are even more narrowly restricted than
%for line segments, namely to the integers
箭头的方向向量元素比线段的限制更严格,需由以下整数构成
\[
-4,\,-3,\,\ldots,\,3,\,4.
\]
%Components also have to be coprime (no common divisor except 1). Notice the effect of the
%\ci{thicklines} command on the two arrows pointing to the upper left.
而且需要互质(除 1 以外,没有公约数)。注意命令 \ci{thicklines} 对指向左上方的两个箭头产生的效果。
%\subsection{Circles}
\subsection{圆}
\begin{example}
\setlength{\unitlength}{1mm}
\begin{picture}(60, 40)
\put(20,30){\circle{1}}
\put(20,30){\circle{2}}
\put(20,30){\circle{4}}
\put(20,30){\circle{8}}
\put(20,30){\circle{16}}
\put(20,30){\circle{32}}
\put(40,30){\circle{1}}
\put(40,30){\circle{2}}
\put(40,30){\circle{3}}
\put(40,30){\circle{4}}
\put(40,30){\circle{5}}
\put(40,30){\circle{6}}
\put(40,30){\circle{7}}
\put(40,30){\circle{8}}
\put(40,30){\circle{9}}
\put(40,30){\circle{10}}
\put(40,30){\circle{11}}
\put(40,30){\circle{12}}
\put(40,30){\circle{13}}
\put(40,30){\circle{14}}
\put(15,10){\circle*{1}}
\put(20,10){\circle*{2}}
\put(25,10){\circle*{3}}
\put(30,10){\circle*{4}}
\put(35,10){\circle*{5}}
\end{picture}
\end{example}
%The command
命令
\begin{lscommand}
\ci{put}\verb|(|$x,y$\verb|){|\ci{circle}\verb|{|\emph{diameter}\verb|}}|
\end{lscommand}
%\noindent draws a circle with center $(x,y)$ and diameter (not radius) \emph{diameter}.
%The \ei{picture} environment only admits diameters up to approximately 14\,mm,
%and even below this limit, not all diameters are possible. The \ci{circle*}
%command produces disks (filled circles).
\noindent
画了一个圆心在 $(x,y)$ 直径(不是半径)为 \emph{diameter} 的圆。
\ei{picture} 环境只允许直径最大是 14\,mm, 而且即使在这个限制之下,
也不是所有的直径都可获得。命令 \ci{circle*} 生成圆盘 (填充的圆形)。
%As in the case of line segments, one may have to resort to additional packages,
%such as \pai{eepic} or \pai{pstricks}.
%For a thorough description of these packages, see \graphicscompanion.
跟线段的情况一样,你可能需要其他宏包的帮助,比如 \pai{eepic} 或者 \pai{pstricks}。
这些宏包的详细说明请参考 \graphicscompanion。
%There is also a possibility within the
%\ei{picture} environment. If one is not afraid of doing the necessary calculations
%(or leaving them to a program), arbitrary circles and ellipses can be patched
%together from quadratic B\'ezier curves.
%See \graphicsinlatex\ for examples and Java source files.
\ei{picture} 环境还有另外一个可能。如果你不怕麻烦的必要的计算(或者交给一个程序来处理),
任意的圆和矩形都可以由二次 B\'ezier 曲线拼成。请看例子 \graphicsinlatex 以及 Java 源文件。
% \subsection{Text and Formulas}
\subsection{文本与公式}
\begin{example}
\setlength{\unitlength}{0.8cm}
\begin{picture}(6,5)
\thicklines
\put(1,0.5){\line(2,1){3}}
\put(4,2){\line(-2,1){2}}
\put(2,3){\line(-2,-5){1}}
\put(0.7,0.3){$A$}
\put(4.05,1.9){$B$}
\put(1.7,2.95){$C$}
\put(3.1,2.5){$a$}
\put(1.3,1.7){$b$}
\put(2.5,1.05){$c$}
\put(0.3,4){$F=
\sqrt{s(s-a)(s-b)(s-c)}$}
\put(3.5,0.4){$\displaystyle
s:=\frac{a+b+c}{2}$}
\end{picture}
\end{example}
% As this example shows, text and formulas can be written into a \ei{picture} environment with
% the \ci{put} command in the usual way.
如本例所示,文本与公式可以使用 \ci{put} 命令按照正常方式在 \ei{picture} 环境中使
用。
% \subsection{\ci{multiput} and \ci{linethickness}}
\subsection{\ci{multiput}~与~\ci{linethickness}}
\begin{example}
\setlength{\unitlength}{2mm}
\begin{picture}(30,20)
\linethickness{0.075mm}
\multiput(0,0)(1,0){26}%
{\line(0,1){20}}
\multiput(0,0)(0,1){21}%
{\line(1,0){25}}
\linethickness{0.15mm}
\multiput(0,0)(5,0){6}%
{\line(0,1){20}}
\multiput(0,0)(0,5){5}%
{\line(1,0){25}}
\linethickness{0.3mm}
\multiput(5,0)(10,0){2}%
{\line(0,1){20}}
\multiput(0,5)(0,10){2}%
{\line(1,0){25}}
\end{picture}
\end{example}
% The command
% \begin{lscommand}
% \ci{multiput}\verb|(|$x,y$\verb|)(|$\Delta x,\Delta y$\verb|){|$n$\verb|}{|\emph{object}\verb|}|
% \end{lscommand}
% \noindent has 4 arguments: the starting point, the translation vector from one object to the next,
% the number of objects, and the object to be drawn. The \ci{linethickness} command applies to
% horizontal and vertical line segments, but neither to oblique line segments, nor to circles.
% It does, however, apply to quadratic B\'ezier curves!
命令
\begin{lscommand}
\ci{multiput}\verb|(|$x,y$\verb|)(|$\Delta x,\Delta y$\verb|){|$n$\verb|}{|\emph{object}\verb|}|
\end{lscommand}
\noindent
有 4 个参量:初始点,从一个对象到下一个的平移向量,对象的数目和要绘制
的对象。命令 \ci{linethickness} 可作用于水平和垂直方向的线段,但不能作用于倾斜的
线段和圆。然而,该命令可作用于二次 B\'ezier 曲线。
% \subsection{Ovals}
\subsection{椭圆}
\begin{example}
\setlength{\unitlength}{0.75cm}
\begin{picture}(6,4)
\linethickness{0.075mm}
\multiput(0,0)(1,0){7}%
{\line(0,1){4}}
\multiput(0,0)(0,1){5}%
{\line(1,0){6}}
\thicklines
\put(2,3){\oval(3,1.8)}
\thinlines
\put(3,2){\oval(3,1.8)}
\thicklines
\put(2,1){\oval(3,1.8)[tl]}
\put(4,1){\oval(3,1.8)[b]}
\put(4,3){\oval(3,1.8)[r]}
\put(3,1.5){\oval(1.8,0.4)}
\end{picture}
\end{example}
% The command
% \begin{lscommand}
% \ci{put}\verb|(|$x,y$\verb|){|\ci{oval}\verb|(|$w,h$\verb|)}|
% \end{lscommand}
% \noindent or
% \begin{lscommand}
% \ci{put}\verb|(|$x,y$\verb|){|\ci{oval}\verb|(|$w,h$\verb|)[|\emph{position}\verb|]}|
% \end{lscommand}
% \noindent produces an oval centered at $(x,y)$ and having width $w$ and height $h$. The optional
% \emph{position} arguments \texttt{b}, \texttt{t}, \texttt{l}, \texttt{r} refer to
% ``top'', ``bottom'', ``left'', ``right'', and can be combined, as the example illustrates.
命令
\begin{lscommand}
\ci{put}\verb|(|$x,y$\verb|){|\ci{oval}\verb|(|$w,h$\verb|)}|
\end{lscommand}
\noindent 或
\begin{lscommand}
\ci{put}\verb|(|$x,y$\verb|){|\ci{oval}\verb|(|$w,h$\verb|)[|\emph{position}\verb|]}|
\end{lscommand}
\noindent
可以产生一个中心在 $(x,y)$ 处、宽为 $w$ 高为 $h$ 的椭圆。如本例所示,可选
参量 \emph{position} 可以是 \texttt{b}, \texttt{t}, \texttt{l},
\texttt{r}, 分别
表示仅绘制椭圆的“下部”、“上部”、“左部”和“右部”,如例所示,这些参数可以进行组合。
% Line thickness can be controlled by two kinds of commands: \\
% \ci{linethickness}\verb|{|\emph{length}\verb|}|
% on the one hand, \ci{thinlines} and \ci{thicklines} on the other. While \ci{linethickness}\verb|{|\emph{length}\verb|}|
% applies only to horizontal and vertical lines (and quadratic B\'ezier curves), \ci{thinlines} and \ci{thicklines}
% apply to oblique line segments as well as to circles and ovals.
以下两类命令可以控制线宽:一类
为 \ci{linethickness}\verb|{|\emph{length}\verb|}|,另一类
为 \ci{thinlines} 与 \ci{thicklines}。命
令 \ci{linethickness}\verb|{|\emph{length}\verb|}| 仅对水平和垂直直线(及二次 B\'ezier 曲线)有作用,
\ci{thinlines} 与 \ci{thicklines} 则可以作用于倾斜的线段、圆和椭圆。
% \subsection{Multiple Use of Predefined Picture Boxes}
\subsection{重复使用预定义的图形盒子}
\begin{example}
\setlength{\unitlength}{0.5mm}
\begin{picture}(120,168)
\newsavebox{\foldera}
\savebox{\foldera}
(40,32)[bl]{% definition
\multiput(0,0)(0,28){2}
{\line(1,0){40}}
\multiput(0,0)(40,0){2}
{\line(0,1){28}}
\put(1,28){\oval(2,2)[tl]}
\put(1,29){\line(1,0){5}}
\put(9,29){\oval(6,6)[tl]}
\put(9,32){\line(1,0){8}}
\put(17,29){\oval(6,6)[tr]}
\put(20,29){\line(1,0){19}}
\put(39,28){\oval(2,2)[tr]}
}
\newsavebox{\folderb}
\savebox{\folderb}
(40,32)[l]{% definition
\put(0,14){\line(1,0){8}}
\put(8,0){\usebox{\foldera}}
}
\put(34,26){\line(0,1){102}}
\put(14,128){\usebox{\foldera}}
\multiput(34,86)(0,-37){3}
{\usebox{\folderb}}
\end{picture}
\end{example}
% A picture box can be \emph{declared} by the command
% \begin{lscommand}
% \ci{newsavebox}\verb|{|\emph{name}\verb|}|
% \end{lscommand}
% \noindent then \emph{defined} by
% \begin{lscommand}
% \ci{savebox}\verb|{|\emph{name}\verb|}(|\emph{width,height}\verb|)[|\emph{position}\verb|]{|\emph{content}\verb|}|
% \end{lscommand}
% \noindent and finally arbitrarily often be \emph{drawn} by
% \begin{lscommand}
% \ci{put}\verb|(|$x,y$\verb|)|\ci{usebox}\verb|{|\emph{name}\verb|}|
% \end{lscommand}
一个图形盒子可以使用命令
\begin{lscommand}
\ci{newsavebox}\verb|{|\emph{name}\verb|}|
\end{lscommand}
\noindent 进行\textbf{声明},然后使用命令
\begin{lscommand}
\ci{savebox}\verb|{|\emph{name}\verb|}(|\emph{width,height}\verb|)[|\emph{position}\verb|]{|\emph{content}\verb|}|
\end{lscommand}
\noindent 进行\textbf{定义},最后使用命令
\begin{lscommand}
\ci{put}\verb|(|$x,y$\verb|)|\ci{usebox}\verb|{|\emph{name}\verb|}|
\end{lscommand}
\noindent 进行任意次数的重复\textbf{绘制}。
% The optional \emph{position} parameter has the effect of defining the
% `anchor point' of the savebox. In the example it is set to \texttt{bl} which
% puts the anchor point into the bottom left corner of the savebox. The other
% position specifiers are \texttt{t}op and \texttt{r}ight.
可选参数 \emph{position} 的作用是定义图形存放盒子的“锚点”。在本例中该参数被设置
为 \texttt{bl},从而将锚点设置为图形存放盒子的左下角。其他的位置描述
有 \texttt{t} 和 \texttt{r},分别表示“上”和“右”。
% The \emph{name} argument refers to a \LaTeX{} storage bin and therefore is
% of a command nature (which accounts for the backslashes in the current
% example). Boxed pictures can be nested: In this example, \ci{foldera} is
% used within the definition of \ci{folderb}.
参量 \emph{name} 指明了 \LaTeX{} 存储槽,揭示了其命令本质(在本例中指反斜线)。图
形盒子可以嵌套:在本例中,\ci{foldera} 被用在了 \ci{folderb} 的定义中。
% The \ci{oval} command had to be used as the \ci{line} command does not work if
% the segment length is less than about 3\,mm.
由于命令 \ci{line} 在线段长度小于大约 3\,mm 的时候不能正常工作,所以必须使用命令 \ci{oval}。
% \subsection{Quadratic B\'ezier Curves}
\subsection{二次~B\'ezier~曲线}
\begin{example}
\setlength{\unitlength}{0.8cm}
\begin{picture}(6,4)
\linethickness{0.075mm}
\multiput(0,0)(1,0){7}
{\line(0,1){4}}
\multiput(0,0)(0,1){5}
{\line(1,0){6}}
\thicklines
\put(0.5,0.5){\line(1,5){0.5}}
\put(1,3){\line(4,1){2}}
\qbezier(0.5,0.5)(1,3)(3,3.5)
\thinlines
\put(2.5,2){\line(2,-1){3}}
\put(5.5,0.5){\line(-1,5){0.5}}
\linethickness{1mm}
\qbezier(2.5,2)(5.5,0.5)(5,3)
\thinlines
\qbezier(4,2)(4,3)(3,3)
\qbezier(3,3)(2,3)(2,2)
\qbezier(2,2)(2,1)(3,1)
\qbezier(3,1)(4,1)(4,2)
\end{picture}
\end{example}
% As this example illustrates, splitting up a circle into 4 quadratic B\'ezier curves
% is not satisfactory. At least 8 are needed. The figure again shows the effect of
% the \ci{linethickness} command on horizontal or vertical lines, and of the
% \ci{thinlines} and the \ci{thicklines} commands on oblique line segments. It also
% shows that both kinds of commands affect quadratic B\'ezier curves, each command
% overriding all previous ones.
如本例所示,将圆分割为 4 条二次 B\'ezier 曲线的效果不能令人满意,至少需要 8 条。该图
再一次展示了命令 \ci{linethickness} 对水平或垂直直线以及命
令 \ci{thinlines} 和 \ci{thicklines} 对倾斜线段的影响。该例同时显示:这两类命令都
会影响二次 B\'ezier 曲线,每一条命令都会覆盖以前所有命令。
% Let $P_1=(x_1,\,y_1),\,P_2=(x_2,\,y_2)$ denote the end points, and $m_1,\,m_2$ the
% respective slopes, of a quadratic B\'ezier curve. The intermediate control point
% $S=(x,\,y)$ is then given by the equations
令 $P_1=(x_1,\,y_1),\,P_2=(x_2,\,y_2)$ 和 $m_1,\,m_2$ 分别表示一条二次 B\'ezier 曲线
的两个端点及其对应斜率。中间控制点 $S=(x,\,y)$ 则由下述方程给出
\begin{equation} \label{zwischenpunkt}
\left\{
\begin{array}{rcl}
x & = & \displaystyle \frac{m_2 x_2-m_1x_1-(y_2-y_1)}{m_2-m_1}, \\
y & = & y_i+m_i(x-x_i)\qquad (i=1,\,2).
\end{array}
\right.
\end{equation}
% \noindent See \graphicsinlatex\ for a Java program which generates
% the necessary \ci{qbezier} command line.
\noindent
关于生成必要的 \ci{qbezier} 命令的 Java 程序参见 \graphicsinlatex。
% \subsection{Catenary}
\subsection{悬链线}
\begin{example}
\setlength{\unitlength}{1cm}
\begin{picture}(4.3,3.6)(-2.5,-0.25)
\put(-2,0){\vector(1,0){4.4}}
\put(2.45,-.05){$x$}
\put(0,0){\vector(0,1){3.2}}
\put(0,3.35){\makebox(0,0){$y$}}
\qbezier(0.0,0.0)(1.2384,0.0)
(2.0,2.7622)
\qbezier(0.0,0.0)(-1.2384,0.0)
(-2.0,2.7622)
\linethickness{.075mm}
\multiput(-2,0)(1,0){5}
{\line(0,1){3}}
\multiput(-2,0)(0,1){4}
{\line(1,0){4}}
\linethickness{.2mm}
\put( .3,.12763){\line(1,0){.4}}
\put(.5,-.07237){\line(0,1){.4}}
\put(-.7,.12763){\line(1,0){.4}}
\put(-.5,-.07237){\line(0,1){.4}}
\put(.8,.54308){\line(1,0){.4}}
\put(1,.34308){\line(0,1){.4}}
\put(-1.2,.54308){\line(1,0){.4}}
\put(-1,.34308){\line(0,1){.4}}
\put(1.3,1.35241){\line(1,0){.4}}
\put(1.5,1.15241){\line(0,1){.4}}
\put(-1.7,1.35241){\line(1,0){.4}}
\put(-1.5,1.15241){\line(0,1){.4}}
\put(-2.5,-0.25){\circle*{0.2}}
\end{picture}
\end{example}
% In this figure, each symmetric half of the catenary $y=\cosh x -1$ is approximated by a quadratic
% B\'ezier curve. The right half of the curve ends in the point \((2,\,2.7622)\), the slope there having the value
% \(m=3.6269\). Using again equation (\ref{zwischenpunkt}), we can
% calculate the intermediate control points. They turn out to be $(1.2384,\,0)$ and $(-1.2384,\,0)$.
% The crosses indicate points of the \emph{real} catenary. The error is barely noticeable, being less
% than one percent.
在本图中,悬链线 $y=\cosh x
-1$ 对称的两半由二次 B\'ezier 曲线分别近似地绘成。曲线的右
半部分终止于点 \((2,\,2.7622)\),对应的斜率为 \(m=3.6269\)。再次使用公
式 (\ref{zwischenpunkt}),我们可以计算中间控制点。计算结果
为 $(1.2384,\,0)$ 和 $(-1.2384,\,0)$。图中的十字为{\textbf
真正}的悬链线上的点。误差 小于百分之一,很难被发现。
% This example points out the use of the optional argument of the \\
% \verb|\begin{picture}| command.
% The picture is defined in convenient ``mathematical'' coordinates, whereas by the command
% \begin{lscommand}
% \ci{begin}\verb|{picture}(4.3,3.6)(-2.5,-0.25)|
% \end{lscommand}
% \noindent its lower left corner (marked by the black disk) is assigned the
% coordinates $(-2.5,-0.25)$.
该例指出了命令 \verb|\begin{picture}| 的可选参数的用法。该图通过使用命令
\begin{lscommand}
\ci{begin}\verb|{picture}(4.3,3.6)(-2.5,-0.25)|
\end{lscommand}
\noindent 定义了方便的“数学”坐标:左下角(由黑色圆点标出)坐标是
$(-2.5,-0.25)$。
% \subsection{Rapidity in the Special Theory of Relativity}
\subsection{坐标的相对性}
\begin{example}
\setlength{\unitlength}{0.8cm}
\begin{picture}(6,4)(-3,-2)
\put(-2.5,0){\vector(1,0){5}}
\put(2.7,-0.1){$\chi$}
\put(0,-1.5){\vector(0,1){3}}
\multiput(-2.5,1)(0.4,0){13}
{\line(1,0){0.2}}
\multiput(-2.5,-1)(0.4,0){13}
{\line(1,0){0.2}}
\put(0.2,1.4)
{$\beta=v/c=\tanh\chi$}
\qbezier(0,0)(0.8853,0.8853)
(2,0.9640)
\qbezier(0,0)(-0.8853,-0.8853)
(-2,-0.9640)
\put(-3,-2){\circle*{0.2}}
\end{picture}
\end{example}
% The control points of the two B\'ezier curves were calculated with formulas (\ref{zwischenpunkt}).
% The positive branch is determined by $P_1=(0,\,0),\,m_1=1$ and $P_2=(2,\,\tanh 2),\,m_2=1/\cosh^2 2$.
% Again, the picture is defined in mathematically convenient coordinates, and the lower left corner
% is assigned the mathematical coordinates $(-3,-2)$ (black disk).
公式 (\ref{zwischenpunkt}) 给出了两条 B\'ezier 曲线的控制点。正向分支
由 $P_1=(0,\,0),\,m_1=1$ 和 $P_2=(2,\,\tanh 2),\,m_2=1/\cosh^2 2$ 确定。与前例相
同,本图也定义了在数学上方便的坐标,左下角的坐标是 $(-3,-2)$ (黑点)。
%\section{\texorpdfstring{\Xy}{Xy}-pic}
%\secby{Alberto Manuel Brand\~ao Sim\~oes}{albie@alfarrabio.di.uminho.pt}
\section{\texorpdfstring{\Xy}{Xy}-pic}
\secby{Alberto Manuel Brand\~ao Sim\~oes}{albie@alfarrabio.di.uminho.pt}
%\pai{xy} is a special package for drawing diagrams. To use it,
%simply add the following line to the preamble of your document:
%\begin{lscommand}
%\verb|\usepackage[|\emph{options}\verb|]{xy}|
%\end{lscommand}
%\emph{options} is a list of functions from \Xy-pic you want to
%load. These options are primarily useful when debugging the package. I recommend
%you pass the \verb!all! option, making \LaTeX{} load all the \Xy{} commands.
\pai{xy} 是绘制流程图的专用宏包。要想使用它,只需在导言区加上:
\begin{lscommand}
\verb|\usepackage[|\emph{options}\verb|]{xy}|
\end{lscommand}
\emph{options} 列出你需要载入的 \Xy-pic 的选项。这些选项基本上被用于调试这个宏包的使用。
建议你使用 \verb!all!,可以让 \LaTeX{} 载入 \Xy{} 的所有命令。
%\Xy-pic diagrams are drawn over a matrix-oriented canvas, where
%each diagram element is placed in a matrix slot:
\Xy-pic 流程图被绘制在一幅以矩阵定位的画布上,每一个流程图元素被放在矩阵的一个单元中:
\begin{example}
\begin{displaymath}
\xymatrix{A & B \\
C & D }
\end{displaymath}
\end{example}
%The \ci{xymatrix} command must be used in math mode. Here, we
%specified two lines and two columns. To make this matrix a diagram we
%just add directed arrows using the \ci{ar} command.
命令 \ci{xymatrix} 必须置于数学模式中。这里,我们设定了一个两行两列的矩阵。
为了画出流程,我们只需要使用命令 \ci{ar} 增加带方向的箭头即可。
\begin{example}
\begin{displaymath}
\xymatrix{ A \ar[r] & B \ar[d] \\
D \ar[u] & C \ar[l] }
\end{displaymath}
\end{example}
%The arrow command is placed on the origin cell for the arrow. The
%arguments are the direction the arrow should point to (\texttt{u}p,
%\texttt{d}own, \texttt{r}ight and \texttt{l}eft).
箭头命令要放在其出发的那个单元里。参量是箭头的方向 (\texttt{u}:上,
\texttt{d}:下, \texttt{r}:右以及 \texttt{l}:左).
\begin{example}
\begin{displaymath}
\xymatrix{
A \ar[d] \ar[dr] \ar[r] & B \\
D & C }
\end{displaymath}
\end{example}
%To make diagonals, just use more than one direction. In
%fact, you can repeat directions to make bigger arrows.
要画对角线,可以指定不只一个方向参量。实际上,你还可以重复同一个方向来得到更大的箭头。
\begin{example}
\begin{displaymath}
\xymatrix{
A \ar[d] \ar[dr] \ar[drr] &&\\
B & C & D }
\end{displaymath}
\end{example}
%We can draw even more interesting diagrams by adding
%labels to the arrows. To do this, we use the common superscript and
%subscript operators.
我们还可以绘制一些更有趣的流程图,给箭头加上标签,只需要使用普通的上标和下标。
\begin{example}
\begin{displaymath}
\xymatrix{
A \ar[r]^f \ar[d]_g &
B \ar[d]^{g'} \\
D \ar[r]_{f'} & C }
\end{displaymath}
\end{example}
%As shown, you use these operators as in math mode. The only
%difference is that that superscript means ``on top of the arrow,''
%and subscript means ``under the arrow.'' There is a third operator, the vertical bar: \verb+|+
%It causes text to be placed \emph{in} the arrow.
如图所示,就像数学模式里一样使用上下标。唯一的区别在于:上标表示放在 “箭头的上方”,
下标表示放在“箭头的下方”。 把文本放到箭头上可以用 \verb+|+。
\begin{example}
\begin{displaymath}
\xymatrix{
A \ar[r]|f \ar[d]|g &
B \ar[d]|{g'} \\
D \ar[r]|{f'} & C }
\end{displaymath}
\end{example}
%To draw an arrow with a hole in it, use \verb!\ar[...]|\hole!.
绘制空心箭头的命令是 \verb!\ar[...]|\hole!。
%In some situations, it is important to distinguish between different types of
%arrows. This can be done by putting labels on them, or changing their appearance:
某些情况下,需要区分不同类型的箭头。可以给它们标上标签,或者使用不同的外观来实现:
\begin{example}
\shorthandoff{"}
\begin{displaymath}
\xymatrix{
\bullet\ar@{->}[rr] && \bullet\\
\bullet\ar@{.<}[rr] && \bullet\\
\bullet\ar@{~)}[rr] && \bullet\\
\bullet\ar@{=(}[rr] && \bullet\\
\bullet\ar@{~/}[rr] && \bullet\\
\bullet\ar@{^{(}->}[rr] &&
\bullet\\
\bullet\ar@2{->}[rr] && \bullet\\
\bullet\ar@3{->}[rr] && \bullet\\
\bullet\ar@{=+}[rr] && \bullet
}
\end{displaymath}
\shorthandon{"}
\end{example}
%Notice the difference between the following two diagrams:
注意下面两幅流程图的区别:
\begin{example}
\begin{displaymath}
\xymatrix{
\bullet \ar[r]
\ar@{.>}[r] &
\bullet
}
\end{displaymath}
\end{example}
\begin{example}
\begin{displaymath}
\xymatrix{
\bullet \ar@/^/[r]
\ar@/_/@{.>}[r] &
\bullet
}
\end{displaymath}
\end{example}
%The modifiers between the slashes define how the curves are drawn.
%\Xy-pic offers many ways to influence the drawing of curves;
%for more information, check \Xy-pic documentation.
两条斜线间的修饰元素决定了曲线应该如何被画出。
\Xy-pi 提供了很多办法来改变曲线的形状;更详细的内容请参考 \Xy-pic 的文档。
% \begin{example}
% \begin{lscommand}
% \ci{dum}
% \end{lscommand}
% \end{example}
|