summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/latex-web-companion/ch4/latexexa.html
blob: 7461e32259f8694b5b0fe33b8b691fbd1579b22a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

    
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<html  
><head><!--latexexa.html from latexexa.tex (TeX4ht, 1999-03-31 09:15:00)--> 
<title>Simulation of Energy Loss Straggling</title><link 
rel="stylesheet" type="text/css" href="latexexa.css"></head><body 
>       <div align="center" class="maketitle">
<h2 class="titleHead">Simulation of Energy Loss Straggling</h2>
<div class="author" align="center"><span 
class="emr-12">Maria Physicist</span></div>
<br>
<div class="date" align="center"><span 
class="emr-12">March 31, 1999</span></div>
   <span class="thanks"></span></div>
   <h2 class="sectionHead">1 <a 
   name="1-10001"></a><a 
   name="QQ1-1-1"></a>Introduction</h2>
<!--16--><p class="noindent">Due to the statistical nature of ionisation energy loss, large fluctuations can occur in
the amount of energy deposited by a particle traversing an absorber element.
Continuous processes such as multiple scattering and energy loss play a
relevant role in the longitudinal and lateral development of electromagnetic and
hadronic showers, and in the case of sampling calorimeters the measured
resolution can be significantly affected by such fluctuations in their active
layers. The description of ionisation fluctuations is characterised by the
significance parameter <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"></span>, which is proportional to the ratio of mean energy loss to
the maximum allowed energy transfer in a single collision with an atomic
electron
   <center>
<img 
src="latexexa0x.gif"alt="     q
k = E----
     max"class="mathdisplay"></center> <span 
class="emmi-10">E</span><span 
class="emr-7">max</span>
is the maximum transferable energy in a single collision with an atomic
electron.
   <center>
<img 
src="latexexa1x.gif"alt="               2m b2g2
Emax = ----------e----------2-,
       1 +2gme/mx  + (me/mx)"class="mathdisplay"></center> where
<span 
class="emmi-10"><img 
src="emmi10-d.gif"alt="g"class="10--d"> </span>= <span 
class="emmi-10">E/m</span><sub ><span 
class="emmi-7">x</span></sub> , <span 
class="emmi-10">E </span>is energy and <span 
class="emmi-10">m</span><sub ><span 
class="emmi-7">x</span></sub> the mass of the incident particle, <span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span 
class="emr-7">2</span></sup> = 1 <span 
class="cmsy-10">- </span>1<span 
class="emmi-10">/<img 
src="emmi10-d.gif"alt="g"class="10--d"></span><sup ><span 
class="emr-7">2</span></sup> and
<span 
class="emmi-10">m</span><sub ><span 
class="emmi-7">e</span></sub> is the electron mass. <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"> </span>comes from the Rutherford scattering cross section and is
defined as: <div align="center" class="eqnarray"><a 
   name="1-1001r1"></a>
<table 
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"> </span>= 2<span 
class="emmi-10"><img 
src="emmi10-19.gif"alt="p"class="10--19">z</span><sup ><span 
class="emr-7">2</span></sup><span 
class="emmi-10">e</span><sup ><span 
class="emr-7">4</span></sup><span 
class="emmi-10">N</span><sub ><span 
class="emmi-7">Av</span></sub><span 
class="emmi-10">Z<img 
src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle"><img 
src="emmi10-e.gif"alt="d"class="10--e">x</span> 
     <span 
class="emmi-10">m</span><sub ><span 
class="emmi-7">e</span></sub><span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span 
class="emr-7">2</span></sup><span 
class="emmi-10">c</span><sup ><span 
class="emr-7">2</span></sup><span 
class="emmi-10">A</span>      = 153<span 
class="emmi-10">.</span>4 <span 
class="emmi-10">z</span><sup ><span 
class="emr-7">2</span></sup>
<span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span 
class="emr-7">2</span></sup> <span 
class="emmi-10">Z</span> 
<span 
class="emmi-10">A</span><span 
class="emmi-10"><img 
src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle"><img 
src="emmi10-e.gif"alt="d"class="10--e">x</span>   keV<span 
class="emmi-10">,</span></td><td 
align="center"nowrap 
class="eqnarray2"></td><td 
align="left"nowrap 
class="eqnarray3"></td></tr></table>
</div>where
   <div align="center"><table class="tabular" 
cellspacing="0pt" cellpadding="0"  
frame="void" ><colgroup><col 
id="TBL-2-1"><col 
id="TBL-2-2"></colgroup><tr  
valign="baseline" id="TBL-2-1-"><td  align="left"nowrap id="TBL-2-1-1"  
><div class="td11"><span 
class="emmi-10">z     </span></div></td><td  align="left"nowrap id="TBL-2-1-2"  
><div class="td11">charge of the incident particle </div></td>
</tr><tr  
valign="baseline" id="TBL-2-2-"><td  align="left"nowrap id="TBL-2-2-1"  
><div class="td11"><span 
class="emmi-10">N</span><sub ><span 
class="emmi-7">Av</span></sub></div></td><td  align="left"nowrap id="TBL-2-2-2"  
><div class="td11">Avogadro's number               </div></td>
</tr><tr  
valign="baseline" id="TBL-2-3-"><td  align="left"nowrap id="TBL-2-3-1"  
><div class="td11"><span 
class="emmi-10">Z    </span></div></td><td  align="left"nowrap id="TBL-2-3-2"  
><div class="td11">atomic number of the material</div></td>
</tr><tr  
valign="baseline" id="TBL-2-4-"><td  align="left"nowrap id="TBL-2-4-1"  
><div class="td11"><span 
class="emmi-10">A    </span></div></td><td  align="left"nowrap id="TBL-2-4-2"  
><div class="td11">atomic weight of the material </div></td>
</tr><tr  
valign="baseline" id="TBL-2-5-"><td  align="left"nowrap id="TBL-2-5-1"  
><div class="td11"><span 
class="emmi-10"><img 
src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle">    </span></div></td><td  align="left"nowrap id="TBL-2-5-2"  
><div class="td11">density                               </div></td>
</tr><tr  
valign="baseline" id="TBL-2-6-"><td  align="left"nowrap id="TBL-2-6-1"  
><div class="td11"><span 
class="emmi-10"><img 
src="emmi10-e.gif"alt="d"class="10--e">x   </span></div></td><td  align="left"nowrap id="TBL-2-6-2"  
><div class="td11">thickness of the material        </div></td>
</tr><tr  
valign="baseline" id="TBL-2-7-"><td  align="left"nowrap id="TBL-2-7-1"  
><div class="td11">      </div></td> </tr></table>
</div>
<!--57--><p class="indent">   <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span>measures the contribution of the collisions with energy transfer close to <span 
class="emmi-10">E</span><span 
class="emr-7">max</span>.
For a given absorber, <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span>tends towards large values if <span 
class="emmi-10"><img 
src="emmi10-e.gif"alt="d"class="10--e">x </span>is large and/or if <span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"> </span>is
small. Likewise, <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span>tends towards zero if <span 
class="emmi-10"><img 
src="emmi10-e.gif"alt="d"class="10--e">x </span>is small and/or if <span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"> </span>approaches
1.
<!--63--><p class="indent">   The value of <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span>distinguishes two regimes which occur in the description of
ionisation fluctuations :
     <ol type="1"class="enumerate1" 
>
     <li class="enumerate"><a 
   name="1-1003x1"></a>A large number of collisions involving the loss of all or most of the incident
     particle energy during the traversal of an absorber.
     <!--70--><p class="noindent">As the total energy transfer is composed of a multitude of small energy
     losses, we can apply the central limit theorem and describe the fluctuations
     by  a  Gaussian  distribution.  This  case  is  applicable  to  non-relativistic
     particles and is described by the inequality <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> &gt; </span>10 (i.e. when the mean
     energy loss in the absorber is greater than the maximum energy transfer
     in a single collision).
     </li>
     <li class="enumerate"><a 
   name="1-1005x2"></a>Particles  traversing  thin  counters  and  incident  electrons  under  any
     conditions.
     <!--81--><p class="noindent">The relevant inequalities and distributions are 0<span 
class="emmi-10">.</span>01 <span 
class="emmi-10">&lt; <img 
src="emmi10-14.gif"alt="k"class="10--14"> &lt; </span>10, Vavilov
     distribution, and <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> &lt; </span>0<span 
class="emmi-10">.</span>01, Landau distribution.</li></ol>
<!--83--><p class="noindent">
<!--85--><p class="indent">   An additional regime is defined by the contribution of the collisions with low
energy transfer which can be estimated with the relation <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span 
class="emr-7">0</span></sub>, where <span 
class="emmi-10">I</span><sub ><span 
class="emr-7">0</span></sub> is the mean
ionisation potential of the atom. Landau theory assumes that the number of these
collisions is high, and consequently, it has a restriction <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span 
class="emr-7">0</span></sub> <span 
class="cmsy-10">» </span>1. In <span 
class="emtt-10">GEANT </span>(see URL
<span 
class="emtt-10">http://wwwinfo.cern.ch/asdoc/geant/geantall.html</span>), the limit of Landau
theory has been set at <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span 
class="emr-7">0</span></sub> = 50. Below this limit special models taking into account
the atomic structure of the material are used. This is important in thin layers and
gaseous materials. Figure <a 
 href="#1-10061">1</a> shows the behaviour of <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span 
class="emr-7">0</span></sub> as a function of the layer
thickness for an electron of 100 keV and 1 GeV of kinetic energy in Argon, Silicon
and Uranium.
<a 
   name="1-10061"></a>
   <hr class="float"><div align="center" class="float" 
><table class="float"><tr class="float"><td class="float" 
>
<img 
src="latexexa2x.gif"alt="PIC">
<br><div align="center"class="caption"><table class="caption" 
><tr valign="baseline" class="caption"><td class="id">Figure 1</td><td  
class="content">The variable <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span 
class="emr-7">0</span></sub>  can be used to measure the validity range of the
Landau theory. It depends on the type and energy of the particle, <span 
class="emmi-10">Z </span>, <span 
class="emmi-10">A </span>and the
ionisation potential of the material and the layer thickness. </td></tr></table></div>
   </td></tr></table></div><hr class="endfloat">
<!--110--><p class="indent">   In the following sections, the different theories and models for the energy loss
fluctuation are described. First, the Landau theory and its limitations are discussed,
and then, the Vavilov and Gaussian straggling functions and the methods in the thin
layers and gaseous materials are presented.
   <h2 class="sectionHead">2 <a 
   name="1-20002"></a><a 
   name="QQ1-1-3"></a>Landau theory</h2>
<!--119--><p class="noindent">For a particle of mass <span 
class="emmi-10">m</span><sub ><span 
class="emmi-7">x</span></sub> traversing a thickness of material <span 
class="emmi-10"><img 
src="emmi10-e.gif"alt="d"class="10--e">x</span>, the Landau
probability distribution may be written in terms of the universal Landau function
<span 
class="emmi-10"><img 
src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span>) as[<a 
 href="#Xbib-LAND">1</a>]: <div align="center" class="eqnarray"><a 
   name="1-2001r1"></a>
<table 
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10">f</span>(<span 
class="emmi-10"><img 
src="emmi10-f.gif"alt="e"class="10--f">, <img 
src="emmi10-e.gif"alt="d"class="10--e">x</span>)</td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">1
        <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> <span 
class="emmi-10"><img 
src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span>)</td></tr></table>
</div>where <div align="center" class="eqnarray"><a 
   name="1-2002r1"></a>
<table 
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span>)</td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"> 1_
2<span 
class="emmi-10"><img 
src="emmi10-19.gif"alt="p"class="10--19">i</span> <span 
class="cmex-10"><img 
src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span>
     <sub> <span 
class="emmi-10">c </span><span 
class="cmsy-10">- </span><span 
class="emmi-10">i</span><span 
class="cmsy-10"><img 
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sub><sup><span 
class="emmi-10">c </span>+ <span 
class="emmi-10">i</span><span 
class="cmsy-10"><img 
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup> exp <img 
src="latexexa3x.gif"alt="(u ln u+ cu)"class="left" align="middle"> <span 
class="emmi-10">du</span><span 
class="emmi-10"> </span><span 
class="emmi-10"> </span><span 
class="emmi-10"> </span><span 
class="emmi-10"> </span><span 
class="emmi-10"> </span>                 <span 
class="emmi-10">c </span><span 
class="cmsy-10"><span 
class="underline">&gt;</span> </span>0</td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span></td>   <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10"><img 
src="emmi10-f.gif"alt="e"class="10--f"> </span><span 
class="cmsy-10">-</span> <img 
src="latexexa4x.gif"alt="e"class="bar" >
       <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span>  <span 
class="cmsy-10">- </span><span 
class="emmi-10"><img 
src="emmi10-d.gif"alt="g"class="10--d"></span><span 
class="cmsy-7">'</span> <span 
class="cmsy-10">- </span><span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span 
class="emr-7">2</span></sup> <span 
class="cmsy-10">-</span> ln    <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> ___
<span 
class="emmi-10">E</span><span 
class="emr-7">max</span> </td>                                 </tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-d.gif"alt="g"class="10--d"></span><span 
class="cmsy-7">'</span></td>  <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">0<span 
class="emmi-10">.</span>422784 <span 
class="emmi-10">. . .</span> = 1 <span 
class="cmsy-10">- </span><span 
class="emmi-10"><img 
src="emmi10-d.gif"alt="g"class="10--d"></span></td>                                      </tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-d.gif"alt="g"class="10--d"></span></td>   <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">0<span 
class="emmi-10">.</span>577215 <span 
class="emmi-10">. . .</span> (Euler's constant)</td>                             </tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><img 
src="latexexa5x.gif"alt="e"class="bar" ></td>   <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">average energy loss</td>                                      </tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-f.gif"alt="e"class="10--f"></span></td>   <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">actual energy loss</td>                                        </tr></table>
</div>
   <h3 class="subsectionHead">2.1 <a 
   name="1-30002.1"></a><a 
   name="QQ1-1-4"></a>Restrictions</h3>
<!--140--><p class="noindent">The Landau formalism makes two restrictive assumptions :
     <ol type="1"class="enumerate1" 
>
     <li class="enumerate"><a 
   name="1-3002x1"></a>The typical energy loss is small compared to the maximum energy loss in
     a single collision. This restriction is removed in the Vavilov theory (see
     section <a 
 href="#1-40003">3</a>).
     </li>
     <li class="enumerate"><a 
   name="1-3004x2"></a>The typical energy loss in the absorber should be large compared to the
     binding energy of the most tightly bound electron. For gaseous detectors,
     typical energy losses are a few keV which is comparable to the binding
     energies of the inner electrons. In such cases a more sophisticated approach
     which  accounts  for  atomic  energy  levels[<a 
 href="#Xbib-TALM">4</a>]  is  necessary  to  accurately
     simulate data distributions. In <span 
class="emtt-10">GEANT</span>, a parameterised model by L. Urb&aacute;n
     is used (see section <a 
 href="#1-60005">5</a>).</li></ol>
<!--153--><p class="noindent">
<!--155--><p class="indent">   In addition, the average value of the Landau distribution is infinite. Summing the
Landau fluctuation obtained to the average energy from the <span 
class="emmi-10">dE/dx </span>tables, we
obtain a value which is larger than the one coming from the table. The
probability to sample a large value is small, so it takes a large number of steps
(extractions) for the average fluctuation to be significantly larger than zero. This
introduces a dependence of the energy loss on the step size which can affect
calculations.
<!--164--><p class="indent">   A solution to this has been to introduce a limit on the value of the variable
sampled by the Landau distribution in order to keep the average fluctuation to 0.
The value obtained from the <span 
class="emtt-10">GLANDO </span>routine is:
   <center>
<img 
src="latexexa6x.gif"alt="ddE/dx = e- e = q(c -g'+ b2 + ln--q-)
                               Emax"class="mathdisplay"></center> In
order for this to have average 0, we must impose that:
   <center>
<img 
src="latexexa7x.gif"alt="c = -g'- b2 -ln -q---
                Emax"class="mathdisplay"></center>
<!--177--><p class="indent">   This is realised introducing a <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emr-7">max</span></sub>(<img 
src="latexexa8x.gif"alt="c"class="bar" >) such that if only values of <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"> </span><span 
class="cmsy-10"><span 
class="underline">&lt;</span> </span><span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emr-7">max</span></sub> are
accepted, the average value of the distribution is <img 
src="latexexa9x.gif"alt="c"class="bar" >.
<!--181--><p class="indent">   A parametric fit to the universal Landau distribution has been performed, with
following result:
   <center>
<img 
src="latexexa10x.gif"alt="cmax = 0.60715+ 1.1934c + (0.67794+ 0.052382c)exp(0.94753 +0.74442c)"class="mathdisplay"></center>
only values smaller than <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emr-7">max</span></sub> are accepted, otherwise the distribution is
resampled.
   <h2 class="sectionHead">3 <a 
   name="1-40003"></a><a 
   name="QQ1-1-5"></a>Vavilov theory</h2>
<!--197--><p class="noindent">Vavilov[<a 
 href="#Xbib-VAVI">5</a>] derived a more accurate straggling distribution by introducing the
kinematic limit on the maximum transferable energy in a single collision, rather than
using <span 
class="emmi-10">E</span><span 
class="emr-7">max</span> = <span 
class="cmsy-10"><img 
src="cmsy10-31.gif"alt=" oo "class="10--31"></span>. Now we can write[<a 
 href="#Xbib-SCH1">2</a>]: <div align="center" class="eqnarray"><a 
   name="1-4001r1"></a>
<table 
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10">f</span><img 
src="latexexa11x.gif"alt="(e,ds)"class="left" align="middle"></td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">1
        <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> <span 
class="emmi-10"><img 
src="emmi10-1e.gif"alt="f"class="10--1e"></span><sub ><span 
class="emmi-7">v</span></sub><img 
src="latexexa12x.gif"alt="(       )
 cv,k,b2"class="left" align="middle"></td></tr></table>
</div>where <div align="center" class="eqnarray"><a 
   name="1-4002r1"></a>
<table 
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-1e.gif"alt="f"class="10--1e"></span><sub ><span 
class="emmi-7">v</span></sub><img 
src="latexexa13x.gif"alt="(cv,k,b2)"class="left" align="middle"></td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"> 1_
2<span 
class="emmi-10"><img 
src="emmi10-19.gif"alt="p"class="10--19">i</span> <span 
class="cmex-10"><img 
src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span>
     <sub> <span 
class="emmi-10">c </span><span 
class="cmsy-10">- </span><span 
class="emmi-10">i</span><span 
class="cmsy-10"><img 
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sub><sup><span 
class="emmi-10">c </span>+ <span 
class="emmi-10">i</span><span 
class="cmsy-10"><img 
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup><span 
class="emmi-10"><img 
src="emmi10-1e.gif"alt="f"class="10--1e"></span><img 
src="latexexa14x.gif"alt="(s)"class="left" align="middle"> <span 
class="emmi-10">e</span><sup ><span 
class="emmi-7"><img 
src="emmi7-15.gif"alt="c"class="7--15">s</span></sup><span 
class="emmi-10">ds</span><span 
class="emmi-10"> </span><span 
class="emmi-10"> </span><span 
class="emmi-10"> </span><span 
class="emmi-10"> </span><span 
class="emmi-10"> </span>                 <span 
class="emmi-10">c </span><span 
class="cmsy-10"><span 
class="underline">&gt;</span> </span>0</td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-1e.gif"alt="f"class="10--1e"></span><img 
src="latexexa15x.gif"alt="(s)"class="left" align="middle"></td>       <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">exp <img 
src="latexexa16x.gif"alt="[      2  ]
 k(1+ b g)"class="left" align="middle"> <span 
class="emmi-10"> </span> exp <img 
src="latexexa17x.gif"alt="[y(s)]"class="left" align="middle"> <span 
class="emmi-10">,</span> </td>                     </tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-20.gif"alt="y"class="10--20"></span><img 
src="latexexa18x.gif"alt="(s)"class="left" align="middle"></td>       <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10">s</span> ln <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span>+ (<span 
class="emmi-10">s </span>+ <span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span 
class="emr-7">2</span></sup><span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"></span>)<img 
src="latexexa19x.gif"alt="[ln(s/k)+ E1(s/k)]"class="left" align="middle"> <span 
class="cmsy-10">- </span><span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14">e</span><sup ><span 
class="cmsy-7">-</span><span 
class="emmi-7">s/<img 
src="emmi7-14.gif"alt="k"class="7--14"></span></sup><span 
class="emmi-10">,</span></td>       </tr></table>
</div>and <div align="center" class="eqnarray"><a 
   name="1-4003r1"></a>
<table 
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10">E</span><sub ><span 
class="emr-7">1</span></sub>(<span 
class="emmi-10">z</span>)</td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="cmex-10"><img 
src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span>
  <sub> <span 
class="emmi-10">z</span></sub><sup><span 
class="cmsy-10"><img 
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup><span 
class="emmi-10">t</span><sup ><span 
class="cmsy-7">-</span><span 
class="emr-7">1</span></sup><span 
class="emmi-10">e</span><sup ><span 
class="cmsy-7">-</span><span 
class="emmi-7">t</span></sup><span 
class="emmi-10">dt</span>            (the exponential integral)</td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emmi-7">v</span></sub></td>   <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"></span><img 
src="latexexa20x.gif"alt="[             ]
 e--e - g'- b2
   q"class="left" align="middle"></td>                          </tr></table>
</div>
<!--224--><p class="indent">   The Vavilov parameters are simply related to the Landau parameter by
<span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emmi-7">L</span></sub> = <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emmi-7">v</span></sub><span 
class="emmi-10">/<img 
src="emmi10-14.gif"alt="k"class="10--14"> </span><span 
class="cmsy-10">-</span> ln <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"></span>. It can be shown that as <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span><span 
class="cmsy-10"><img 
src="cmsy10-21.gif"alt="--&gt;"class="10--21"> </span>0, the distribution of the variable <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emmi-7">L</span></sub>
approaches that of Landau. For <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span><span 
class="cmsy-10"><span 
class="underline">&lt;</span> </span>0<span 
class="emmi-10">.</span>01 the two distributions are already practically
identical. Contrary to what many textbooks report, the Vavilov distribution <span 
class="emti-10">does not</span>
approximate the Landau distribution for small <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"></span>, but rather the distribution of <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emmi-7">L</span></sub>
defined above tends to the distribution of the true <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"> </span>from the Landau density
function. Thus the routine <span 
class="emtt-10">GVAVIV </span>samples the variable <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emmi-7">L</span></sub> rather than <span 
class="emmi-10"><img 
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span 
class="emmi-7">v</span></sub>. For
<span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span><span 
class="cmsy-10"><span 
class="underline">&gt;</span> </span>10 the Vavilov distribution tends to a Gaussian distribution (see next
section).
   <h2 class="sectionHead">4 <a 
   name="1-50004"></a><a 
   name="QQ1-1-6"></a>Gaussian Theory</h2>
<!--239--><p class="noindent">Various conflicting forms have been proposed for Gaussian straggling functions, but
most of these appear to have little theoretical or experimental basis. However, it has
been shown[<a 
 href="#Xbib-SELT">3</a>] that for <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"> </span><span 
class="cmsy-10"><span 
class="underline">&gt;</span> </span>10 the Vavilov distribution can be replaced by a Gaussian
of the form : <div align="center" class="eqnarray"><a 
   name="1-5001r1"></a>
<table 
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10">f</span>(<span 
class="emmi-10"><img 
src="emmi10-f.gif"alt="e"class="10--f">, <img 
src="emmi10-e.gif"alt="d"class="10--e">s</span>) <span 
class="cmsy-10"><img 
src="cmsy10-19.gif"alt=" ~~ "class="10--19"></span>            1 __________
<span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span><img 
src="latexexa21x.gif"alt=" V~ ------------
  2pk (1- b2/2)"class="sqrtsign" > exp <img 
src="latexexa22x.gif"alt="[(e- e)2     k     ]
 --------2-----2---
    2   q (1- b /2)"class="left" align="middle"></td><td 
align="center"nowrap 
class="eqnarray2"></td><td 
align="left"nowrap 
class="eqnarray3"></td></tr></table>
</div>thus implying <div align="center" class="eqnarray"><a 
   name="1-5002r1"></a>
<table 
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1">mean</td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><img 
src="latexexa23x.gif"alt="e"class="bar" ></td>                          </tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sup ><span 
class="emr-7">2</span></sup></td>  <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span><sup ><span 
class="emr-7">2</span></sup>
       <span 
class="emmi-10"><img 
src="emmi10-14.gif"alt="k"class="10--14"></span> (1 <span 
class="cmsy-10">- </span><span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span 
class="emr-7">2</span></sup><span 
class="emmi-10">/</span>2) = <span 
class="emmi-10"><img 
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">E</span>
<span 
class="emr-7">max</span>(1 <span 
class="cmsy-10">- </span><span 
class="emmi-10"><img 
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span 
class="emr-7">2</span></sup><span 
class="emmi-10">/</span>2)</td></tr></table>
</div>
   <h2 class="sectionHead">5 <a 
   name="1-60005"></a><a 
   name="QQ1-1-7"></a>Urb&aacute;n model</h2>
<!--260--><p class="noindent">The method for computing restricted energy losses with <span 
class="emmi-10"><img 
src="emmi10-e.gif"alt="d"class="10--e"></span>-ray production
above given threshold energy in <span 
class="emtt-10">GEANT </span>is a Monte Carlo method that can
be used for thin layers. It is fast and it can be used for any thickness of
a medium. Approaching the limit of the validity of Landau's theory, the
loss distribution approaches smoothly the Landau form as shown in Figure
<a 
 href="#1-60012">2</a>.
<a 
   name="1-60012"></a>
   <hr class="float"><div align="center" class="float" 
><table class="float"><tr class="float"><td class="float" 
>
<img 
src="latexexa24x.gif"alt="PIC">
<br><div align="center"class="caption"><table class="caption" 
><tr valign="baseline" class="caption"><td class="id">Figure 2</td><td  
class="content">Energy loss distribution for a 3 GeV electron in Argon as given by
standard <span 
class="emtt-10">GEANT</span>. The width of the layers is given in centimeters.</td></tr></table></div>
   </td></tr></table></div><hr class="endfloat">
<!--275--><p class="indent">   It is assumed that the atoms have only two energy levels with binding energy <span 
class="emmi-10">E</span><sub ><span 
class="emr-7">1</span></sub>
and <span 
class="emmi-10">E</span><sub ><span 
class="emr-7">2</span></sub>. The particle--atom interaction will then be an excitation with energy loss <span 
class="emmi-10">E</span><sub ><span 
class="emr-7">1</span></sub>
or <span 
class="emmi-10">E</span><sub ><span 
class="emr-7">2</span></sub>, or an ionisation with an energy loss distributed according to a function
<span 
class="emmi-10">g</span>(<span 
class="emmi-10">E</span>) <span 
class="cmsy-10">~ </span>1<span 
class="emmi-10">/E</span><sup ><span 
class="emr-7">2</span></sup>: <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa25x.gif"alt="       (Emax +-I)I-1
g(E) =    Emax   E2"class="mathdisplay"><a 
   name="1-6002r1"></a></center></td><td width="5%">(1)</td></tr></table>
<!--283--><p class="indent">   The macroscopic cross-section for excitations (<span 
class="emmi-10">i </span>= 1<span 
class="emmi-10">, </span>2) is <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa26x.gif"alt="     f ln(2mb2g2/E  )- b2
i = C-i-------2-2-i----2 (1- r)
     Ei ln(2mb  g/I) - b"class="mathdisplay"><a 
   name="1-6003r2"></a></center></td><td width="5%">(2)</td></tr></table>
and the macroscopic cross-section for ionisation is <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa27x.gif"alt="3 = C-------Emax---------r
     I(Emax + I)ln(EmaIx+I)"class="mathdisplay"><a 
   name="1-6004r3"></a></center></td><td width="5%">(3)</td></tr></table>
<span 
class="emmi-10">E</span><span 
class="emr-7">max</span> is the <span 
class="emtt-10">GEANT </span>cut for <span 
class="emmi-10"><img 
src="emmi10-e.gif"alt="d"class="10--e"></span>-production, or the maximum energy transfer minus mean
ionisation energy, if it is smaller than this cut-off value. The following notation is
used:
   <div align="center"><table class="tabular" 
cellspacing="0pt" cellpadding="0"  
frame="void" ><colgroup><col 
id="TBL-3-1"><col 
id="TBL-3-2"></colgroup><tr  
valign="baseline" id="TBL-3-1-"><td  align="left"nowrap id="TBL-3-1-1"  
><div class="td11"><span 
class="emmi-10">r, C</span></div></td><td  align="left"nowrap id="TBL-3-1-2"  
><div class="td11">parameters of the model</div></td>
</tr><tr  
valign="baseline" id="TBL-3-2-"><td  align="left"nowrap id="TBL-3-2-1"  
><div class="td11"><span 
class="emmi-10">E</span><sub ><span 
class="emmi-7">i</span></sub>  </div></td><td  align="left"nowrap id="TBL-3-2-2"  
><div class="td11">atomic energy levels      </div></td>
</tr><tr  
valign="baseline" id="TBL-3-3-"><td  align="left"nowrap id="TBL-3-3-1"  
><div class="td11"><span 
class="emmi-10">I    </span></div></td><td  align="left"nowrap id="TBL-3-3-2"  
><div class="td11">mean ionisation energy  </div></td>
</tr><tr  
valign="baseline" id="TBL-3-4-"><td  align="left"nowrap id="TBL-3-4-1"  
><div class="td11"><span 
class="emmi-10">f</span><sub ><span 
class="emmi-7">i</span></sub>   </div></td><td  align="left"nowrap id="TBL-3-4-2"  
><div class="td11">oscillator strengths       </div></td> </tr></table>
</div>
<!--306--><p class="indent">   The model has the parameters <span 
class="emmi-10">f</span><sub ><span 
class="emmi-7">i</span></sub> , <span 
class="emmi-10">E</span><sub ><span 
class="emmi-7">i</span></sub> , <span 
class="emmi-10">C </span>and <span 
class="emmi-10">r</span><span 
class="emmi-10"> </span>(0 <span 
class="cmsy-10"><span 
class="underline">&lt;</span> </span><span 
class="emmi-10">r </span><span 
class="cmsy-10"><span 
class="underline">&lt;</span> </span>1). The oscillator
strengths <span 
class="emmi-10">f</span><sub ><span 
class="emmi-7">i</span></sub>  and the atomic level energies <span 
class="emmi-10">E</span><sub ><span 
class="emmi-7">i</span></sub>  should satisfy the constraints
<div align="center" class="eqnarray"><a 
   name="1-6005r4"></a>
<table 
class="eqnarray"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10">f</span><sub ><span 
class="emr-7">1</span></sub> + <span 
class="emmi-10">f</span><sub ><span 
class="emr-7">2</span></sub></td>         <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">1</td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(4)<a 
   name="1-6005r5"></a></td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10">f</span><sub ><span 
class="emr-7">1</span></sub> ln <span 
class="emmi-10">E</span><sub ><span 
class="emr-7">1</span></sub> + <span 
class="emmi-10">f</span><sub ><span 
class="emr-7">2</span></sub> ln <span 
class="emmi-10">E</span><sub ><span 
class="emr-7">2</span></sub></td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">ln <span 
class="emmi-10">I</span></td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(5)<a 
   name="1-6005r6"></a></td></tr></table>
</div>The parameter <span 
class="emmi-10">C </span>can be defined with the help of the mean energy loss <span 
class="emmi-10">dE/dx </span>in the
following way: The numbers of collisions (<span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">i</span></sub> , i = 1,2 for the excitation and 3 for the
ionisation) follow the Poisson distribution with a mean number <span 
class="cmsy-10">&lt;</span><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">i</span></sub><span 
class="cmsy-10">&gt;</span>. In a step <span 
class="emmi-10">x</span>
the mean number of collisions is <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa28x.gif"alt="&lt;n&gt; =    x
  i    i"class="mathdisplay"><a 
   name="1-6006r6"></a></center></td><td width="5%">(6)</td></tr></table>
The mean energy loss <span 
class="emmi-10">dE/dx </span>in a step is the sum of the excitation and ionisation
contributions <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa29x.gif"alt="        [                                 ]
dE                        integral  Emax+I
dx- x =   1E1 +  2E2 +  3        E g(E) dE   x
                          I"class="mathdisplay"><a 
   name="1-6007r7"></a></center></td><td width="5%">(7)</td></tr></table>
From this, using the equations (<a 
 href="#1-6003r2">2</a>), (<a 
 href="#1-6004r3">3</a>), (<a 
 href="#1-6005r4">4</a>) and (<a 
 href="#1-6005r5">5</a>), one can define the parameter <span 
class="emmi-10">C</span>
<table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa30x.gif"alt="C = dE-
    dx"class="mathdisplay"><a 
   name="1-6008r8"></a></center></td><td width="5%">(8)</td></tr></table>
<!--335--><p class="indent">   The following values have been chosen in <span 
class="emtt-10">GEANT </span>for the other parameters:
   <center>
<img 
src="latexexa31x.gif"alt="    {
       0    ifZ &lt; 2
f2 =   2/Z  ifZ &gt; 2   ==&gt;  f1 = 1- f2
                              (    )f11
E2 = 10Z2eV           ==&gt;  E1 =   EIf2
r = 0.4                           2"class="mathdisplay"></center> With
these values the atomic level <span 
class="emmi-10">E</span><sub ><span 
class="emr-7">2</span></sub> corresponds approximately the K-shell energy of the
atoms and <span 
class="emmi-10">Zf</span><sub ><span 
class="emr-7">2</span></sub> the number of K-shell electrons. <span 
class="emmi-10">r </span>is the only variable which can be
tuned freely. It determines the relative contribution of ionisation and excitation to
the energy loss.
<!--354--><p class="indent">   The energy loss is computed with the assumption that the step length (or the
relative energy loss) is small, and---in consequence---the cross-section can be
considered constant along the path length. The energy loss due to the excitation is
<table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa32x.gif"alt="Ee = n1E1 +n2E2"class="mathdisplay"><a 
   name="1-6009r9"></a></center></td><td width="5%">(9)</td></tr></table>
where <span 
class="emmi-10">n</span><sub ><span 
class="emr-7">1</span></sub> and <span 
class="emmi-10">n</span><sub ><span 
class="emr-7">2</span></sub> are sampled from Poisson distribution as discussed above. The loss
due to the ionisation can be generated from the distribution <span 
class="emmi-10">g</span>(<span 
class="emmi-10">E</span>) by the inverse
transformation method: <div align="center" class="eqnarray"><a 
   name="1-6010r10"></a>
<table 
class="eqnarray"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10">u </span>= <span 
class="emmi-10">F</span>(<span 
class="emmi-10">E</span>)</td>  <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="cmex-10"><img 
src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span>
  <sub> <span 
class="emmi-10">I</span></sub><sup><span 
class="emmi-10">E</span></sup><span 
class="emmi-10">g</span>(<span 
class="emmi-10">x</span>)<span 
class="emmi-10">dx</span></td> <td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4"></td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10">E </span>= <span 
class="emmi-10">F</span><sup ><span 
class="cmsy-7">-</span><span 
class="emr-7">1</span></sup>(<span 
class="emmi-10">u</span>)</td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3">     <span 
class="emmi-10">I</span>_____
1 <span 
class="cmsy-10">- </span><span 
class="emmi-10">u</span>  <span 
class="emmi-7">E</span><span 
class="emr-5">max</span>__
<span 
class="emmi-7">E</span><span 
class="emr-5">max</span><span 
class="emr-7">+</span><span 
class="emmi-7">I</span> </td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(10)<a 
   name="1-6010r11"></a></td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"></td>          <td 
align="center"nowrap 
class="eqnarray2"></td> <td 
align="left"nowrap 
class="eqnarray3"></td>       <td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(11)<a 
   name="1-6010r12"></a></td></tr></table>
</div>where <span 
class="emmi-10">u </span>is a uniform random number between <span 
class="emmi-10">F</span>(<span 
class="emmi-10">I</span>) = 0 and <span 
class="emmi-10">F</span>(<span 
class="emmi-10">E</span><span 
class="emr-7">max</span> + <span 
class="emmi-10">I</span>) = 1. The
contribution from the ionisations will be <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa33x.gif"alt="     n sum 3 -----I------
Ei =    1 -uj -Emax--
     j=1      Emax+I"class="mathdisplay"><a 
   name="1-6011r12"></a></center></td><td width="5%">(12)</td></tr></table>
where <span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub> is the number of ionisation (sampled from Poisson distribution). The
energy loss in a step will then be <span 
class="emmi-10">E </span>= <span 
class="emmi-10">E</span><sub ><span 
class="emmi-7">e</span></sub> + <span 
class="emmi-10">E</span><sub ><span 
class="emmi-7">i</span></sub>.
   <h3 class="subsectionHead">5.1 <a 
   name="1-70005.1"></a><a 
   name="QQ1-1-9"></a>Fast simulation for <span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub> <span 
class="cmsy-10"><span 
class="underline">&gt;</span> </span>16</h3>
<!--380--><p class="noindent">If the number of ionisation <span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub> is bigger than 16, a faster sampling method can be
used. The possible energy loss interval is divided in two parts: one in which the
number of collisions is large and the sampling can be done from a Gaussian
distribution and the other in which the energy loss is sampled for each collision. Let
us call the former interval [<span 
class="emmi-10">I, <img 
src="emmi10-b.gif"alt="a"class="10--b">I</span>] the interval A, and the latter [<span 
class="emmi-10"><img 
src="emmi10-b.gif"alt="a"class="10--b">I, E</span><span 
class="emr-7">max</span>] the interval
B. <span 
class="emmi-10"><img 
src="emmi10-b.gif"alt="a"class="10--b"> </span>lies between 1 and <span 
class="emmi-10">E</span><span 
class="emr-7">max</span><span 
class="emmi-10">/I</span>. A collision with a loss in the interval A happens
with the probability <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa34x.gif"alt="       integral  aI
P(a) =    g(E)dE = (Emax-+-I)(a---1)
       I                Emaxa"class="mathdisplay"><a 
   name="1-7001r13"></a></center></td><td width="5%">(13)</td></tr></table>
The mean energy loss and the standard deviation for this type of collision are
<table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa35x.gif"alt="          --1--  integral  aI          Ia-lna-
&lt;  E(a)&gt; = P (a) I E g(E) dE =  a- 1"class="mathdisplay"><a 
   name="1-7002r14"></a></center></td><td width="5%">(14)</td></tr></table>
and <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa36x.gif"alt="              integral  aI              (        2  )
s2(a) =--1--    E2 g(E) dE = I2a  1 - -aln-a2
       P (a) I                      (a- 1)"class="mathdisplay"><a 
   name="1-7003r15"></a></center></td><td width="5%">(15)</td></tr></table>
If the collision number is high , we assume that the number of the type A collisions
can be calculated from a Gaussian distribution with the following mean value and
standard deviation: <div align="center" class="eqnarray"><a 
   name="1-7004r16"></a>
<table 
class="eqnarray"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="cmsy-10">&lt;</span><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">A</span></sub><span 
class="cmsy-10">&gt;</span></td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub><span 
class="emmi-10">P</span>(<span 
class="emmi-10"><img 
src="emmi10-b.gif"alt="a"class="10--b"></span>)</td>      <td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(16)<a 
   name="1-7004r17"></a></td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub><span 
class="emmi-10">A</span></sub><sup>2</sup></td> <td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub><span 
class="emmi-10">P</span>(<span 
class="emmi-10"><img 
src="emmi10-b.gif"alt="a"class="10--b"></span>)(1 <span 
class="cmsy-10">- </span><span 
class="emmi-10">P</span>(<span 
class="emmi-10"><img 
src="emmi10-b.gif"alt="a"class="10--b"></span>))</td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(17)<a 
   name="1-7004r18"></a></td></tr></table>
</div>It is further assumed that the energy loss in these collisions has a Gaussian
distribution with <div align="center" class="eqnarray"><a 
   name="1-7005r18"></a>
<table 
class="eqnarray"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="cmsy-10">&lt;</span><span 
class="emmi-10">E</span><sub ><span 
class="emmi-7">A</span></sub><span 
class="cmsy-10">&gt;</span></td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">A</span></sub><span 
class="cmsy-10">&lt;</span><span 
class="emmi-10">E</span>(<span 
class="emmi-10"><img 
src="emmi10-b.gif"alt="a"class="10--b"></span>)<span 
class="cmsy-10">&gt;</span></td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(18)<a 
   name="1-7005r19"></a></td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="emmi-10"><img 
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub><span 
class="emmi-10">E, A</span></sub><sup>2</sup></td><td 
align="center"nowrap 
class="eqnarray2">=</td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">A</span></sub><span 
class="emmi-10"><img 
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sup ><span 
class="emr-7">2</span></sup>(<span 
class="emmi-10"><img 
src="emmi10-b.gif"alt="a"class="10--b"></span>)</td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(19)<a 
   name="1-7005r20"></a></td></tr></table>
</div>The energy loss of these collision can then be sampled from the Gaussian
distribution.
<!--427--><p class="indent">   The collisions where the energy loss is in the interval B are sampled directly from
<table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa37x.gif"alt="      n3- sum  nA      aI
EB  =      1--u-Emax+I-aI
       i=1       i Emax+I"class="mathdisplay"><a 
   name="1-7006r20"></a></center></td><td width="5%">(20)</td></tr></table>
The total energy loss is the sum of these two types of collisions: <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa38x.gif"alt="E =   EA +   EB"class="mathdisplay"><a 
   name="1-7007r21"></a></center></td><td width="5%">(21)</td></tr></table>
<!--438--><p class="indent">   The approximation of equations ((<a 
 href="#1-7004r16">16</a>), (<a 
 href="#1-7004r17">17</a>), (<a 
 href="#1-7005r18">18</a>) and (<a 
 href="#1-7005r19">19</a>) can be used under the
following conditions: <div align="center" class="eqnarray"><a 
   name="1-7008r22"></a>
<table 
class="eqnarray"><tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="cmsy-10">&lt;</span><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">A</span></sub><span 
class="cmsy-10">&gt; - </span><span 
class="emmi-10">c <img 
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span 
class="emmi-7">A</span></sub></td>    <td 
align="center"nowrap 
class="eqnarray2"><span 
class="cmsy-10"><span 
class="underline">&gt;</span></span></td><td 
align="left"nowrap 
class="eqnarray3">0</td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(22)<a 
   name="1-7008r23"></a></td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="cmsy-10">&lt;</span><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">A</span></sub><span 
class="cmsy-10">&gt; </span>+ <span 
class="emmi-10">c <img 
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span 
class="emmi-7">A</span></sub></td>    <td 
align="center"nowrap 
class="eqnarray2"><span 
class="cmsy-10"><span 
class="underline">&lt;</span></span></td><td 
align="left"nowrap 
class="eqnarray3"><span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub></td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(23)<a 
   name="1-7008r24"></a></td></tr>
<tr valign="middle" class="eqnarray"><td 
align="right"nowrap 
class="eqnarray1"><span 
class="cmsy-10">&lt;</span><span 
class="emmi-10">E</span><sub ><span 
class="emmi-7">A</span></sub><span 
class="cmsy-10">&gt; - </span><span 
class="emmi-10">c <img 
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span 
class="emmi-7">E,A</span></sub></td><td 
align="center"nowrap 
class="eqnarray2"><span 
class="cmsy-10"><span 
class="underline">&gt;</span></span></td><td 
align="left"nowrap 
class="eqnarray3">0</td><td 
width="10" class="eqnarray4"></td><td 
align="right"nowrap 
class="eqnarray4">(24)<a 
   name="1-7008r25"></a></td></tr></table>
</div>where <span 
class="emmi-10">c </span><span 
class="cmsy-10"><span 
class="underline">&gt;</span> </span>4. From the equations (<a 
 href="#1-7001r13">13</a>), (<a 
 href="#1-7004r16">16</a>) and (<a 
 href="#1-7005r18">18</a>) and from the conditions (<a 
 href="#1-7008r22">22</a>)
and (<a 
 href="#1-7008r23">23</a>) the following limits can be derived: <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa39x.gif"alt="      (n3 + c2)(Emax + I)              (n3 + c2)(Emax +I)
amin =---------------2- &lt; a  &lt; amax = -2---------------
       n3(Emax + I)+ c I               c(Emax + I)+ n3I"class="mathdisplay"><a 
   name="1-7009r25"></a></center></td><td width="5%">(25)</td></tr></table>
This conditions gives a lower limit to number of the ionisations <span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub> for which the fast
sampling can be done: <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa40x.gif"alt="n3  &gt; c2"class="mathdisplay"><a 
   name="1-7010r26"></a></center></td><td width="5%">(26)</td></tr></table>
As in the conditions (<a 
 href="#1-7008r22">22</a>), (<a 
 href="#1-7008r23">23</a>) and (<a 
 href="#1-7008r24">24</a>) the value of <span 
class="emmi-10">c </span>is as minimum 4, one gets
<span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub>  <span 
class="cmsy-10"><span 
class="underline">&gt;</span> </span>16. In order to speed the simulation, the maximum value is used for
<span 
class="emmi-10"><img 
src="emmi10-b.gif"alt="a"class="10--b"></span>.
<!--469--><p class="indent">   The number of collisions with energy loss in the interval B (the number of
interactions which has to be simulated directly) increases slowly with the total
number of collisions <span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub>. The maximum number of these collisions can be estimated
as <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa41x.gif"alt="nB,max = n3 -nA,min  ~~  n3(&lt;nA&gt; - sA)"class="mathdisplay"><a 
   name="1-7011r27"></a></center></td><td width="5%">(27)</td></tr></table>
From the previous expressions for <span 
class="cmsy-10">&lt;</span><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">A</span></sub><span 
class="cmsy-10">&gt; </span>and <span 
class="emmi-10"><img 
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span 
class="emmi-7">A</span></sub> one can derive the condition
<table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa42x.gif"alt="              -2n3c2-
nB &lt;  nB,max = n3 + c2"class="mathdisplay"><a 
   name="1-7012r28"></a></center></td><td width="5%">(28)</td></tr></table>
The following values are obtained with <span 
class="emmi-10">c </span>= 4:
   <div align="center"><table class="tabular" 
cellspacing="0pt" cellpadding="0"  
frame="void" ><colgroup><col 
id="TBL-6-1"><col 
id="TBL-6-2"><col 
id="TBL-6-3"><col 
id="TBL-6-4"><col 
id="TBL-6-5"></colgroup><tr  
valign="baseline" id="TBL-6-1-"><td  align="left"nowrap id="TBL-6-1-1"  
><div class="td11"><span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub>  </div></td><td  align="left"nowrap id="TBL-6-1-2"  
><div class="td11"><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">B,max</span></sub></div></td><td  align="center"nowrap id="TBL-6-1-3"  
><div class="td11"></div></td><td  align="right"nowrap id="TBL-6-1-4"  
><div class="td11">   <span 
class="emmi-10">n</span><sub ><span 
class="emr-7">3</span></sub></div></td><td  align="right"nowrap id="TBL-6-1-5"  
><div class="td11"><span 
class="emmi-10">n</span><sub ><span 
class="emmi-7">B,max</span></sub></div></td>
</tr><tr 
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr  
valign="baseline" id="TBL-6-2-"><td  align="left"nowrap id="TBL-6-2-1"  
><div class="td11">16  </div></td><td  align="left"nowrap id="TBL-6-2-2"  
><div class="td11">16      </div></td><td  align="center"nowrap id="TBL-6-2-3"  
><div class="td11"></div></td><td  align="right"nowrap id="TBL-6-2-4"  
><div class="td11">  200</div></td><td  align="right"nowrap id="TBL-6-2-5"  
><div class="td11">   29.63</div></td>
</tr><tr  
valign="baseline" id="TBL-6-3-"><td  align="left"nowrap id="TBL-6-3-1"  
><div class="td11">20  </div></td><td  align="left"nowrap id="TBL-6-3-2"  
><div class="td11">17.78   </div></td><td  align="center"nowrap id="TBL-6-3-3"  
><div class="td11"></div></td><td  align="right"nowrap id="TBL-6-3-4"  
><div class="td11">  500</div></td><td  align="right"nowrap id="TBL-6-3-5"  
><div class="td11">   31.01</div></td>
</tr><tr  
valign="baseline" id="TBL-6-4-"><td  align="left"nowrap id="TBL-6-4-1"  
><div class="td11">50  </div></td><td  align="left"nowrap id="TBL-6-4-2"  
><div class="td11">24.24   </div></td><td  align="center"nowrap id="TBL-6-4-3"  
><div class="td11"></div></td><td  align="right"nowrap id="TBL-6-4-4"  
><div class="td11">1000</div></td><td  align="right"nowrap id="TBL-6-4-5"  
><div class="td11">   31.50</div></td>
</tr><tr  
valign="baseline" id="TBL-6-5-"><td  align="left"nowrap id="TBL-6-5-1"  
><div class="td11">100</div></td><td  align="left"nowrap id="TBL-6-5-2"  
><div class="td11">27.59   </div></td><td  align="center"nowrap id="TBL-6-5-3"  
><div class="td11"></div></td><td  align="right"nowrap id="TBL-6-5-4"  
><div class="td11">   <span 
class="cmsy-10"><img 
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></div></td><td  align="right"nowrap id="TBL-6-5-5"  
><div class="td11">   32.00</div></td> </tr></table>
</div>
   <h3 class="subsectionHead">5.2 <a 
   name="1-80005.2"></a><a 
   name="QQ1-1-10"></a>Special sampling for lower part of the spectrum</h3>
<!--494--><p class="noindent">If the step length is very small (<span 
class="cmsy-10"><span 
class="underline">&lt;</span> </span>5 mm in gases, <span 
class="cmsy-10"><span 
class="underline">&lt;</span> </span>2-3 <span 
class="emmi-10"><img 
src="emmi10-16.gif"alt="m"class="emmi-10--16"align="middle"></span>m in solids) the model gives
0 energy loss for some events. To avoid this, the probability of 0 energy loss is
computed <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa43x.gif"alt="             -(&lt;n &gt;+&lt;n &gt;+&lt;n &gt;)
P(  E = 0) = e  1   2   3"class="mathdisplay"><a 
   name="1-8001r29"></a></center></td><td width="5%">(29)</td></tr></table>
If the probability is bigger than 0.01 a special sampling is done, taking into
account the fact that in these cases the projectile interacts only with the outer
electrons of the atom. An energy level <span 
class="emmi-10">E</span><sub ><span 
class="emr-7">0</span></sub> = 10 eV is chosen to correspond to
the outer electrons. The mean number of collisions can be calculated from
<table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa44x.gif"alt="      1 dE
&lt;n&gt; = -----  x
      E0 dx"class="mathdisplay"><a 
   name="1-8002r30"></a></center></td><td width="5%">(30)</td></tr></table>
The number of collisions <span 
class="emmi-10">n </span>is sampled from Poisson distribution. In the case of the
thin layers, all the collisions are considered as ionisations and the energy loss is
computed as <table width="100%" 
class="equation"><tr><td>
   <center>
<img 
src="latexexa45x.gif"alt="     n
     sum  -----E0------
E =    1 - EEmax+E-ui
    i=1     max  0"class="mathdisplay"><a 
   name="1-8003r31"></a></center></td><td width="5%">(31)</td></tr></table>
   <h2 class="likesectionHead"><a 
   name="1-9000"></a><a 
   name="QQ1-1-11"></a>References</h2>
   <div class="thebibliography"><p class="bibitem">
 [1]   <a 
   name="Xbib-LAND"></a>L.Landau. On the Energy Loss of Fast Particles by Ionisation. Originally
   published  in  <span 
class="emti-10">J.  Phys.</span>,  8:201,  1944.    Reprinted  in  D.ter  Haar,  Editor,
   <span 
class="emti-10">L.D.Landau, Collected papers </span>, page 417. Pergamon Press, Oxford, 1965.
   </p><p class="bibitem">
 [2]   <a 
   name="Xbib-SCH1"></a>B.Schorr.  Programs for the Landau and the Vavilov distributions and
   the corresponding random numbers. <span 
class="emti-10">Comp. Phys. Comm.</span>, 7:216, 1974.
   </p><p class="bibitem">
 [3]   <a 
   name="Xbib-SELT"></a>S.M.Seltzer  and  M.J.Berger.   Energy  loss  straggling  of  protons  and
   mesons. In <span 
class="emti-10">Studies in Penetration of Charged Particles in Matter </span>, Nuclear
   Science Series 39, Nat. Academy of Sciences, Washington DC, 1964.
   </p><p class="bibitem">
 [4]   <a 
   name="Xbib-TALM"></a>R.Talman.  On the statistics of particle identification using ionization.
   <span 
class="emti-10">Nucl. Inst. Meth.</span>, 159:189, 1979.
   </p><p class="bibitem">
 [5]   <a 
   name="Xbib-VAVI"></a>P.V.Vavilov.  Ionisation losses of high energy heavy particles.  <span 
class="emti-10">Soviet</span>
   <span 
class="emti-10">Physics JETP </span>, 5:749, 1957.</p></div>
    
</body> 
</html>