summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/halloweenmath/halloweenexample.tex
blob: d6e300508225da61a45fe2d024a74da743c37087 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
\documentclass[12pt,a4paper]{article}
\usepackage[T1]{fontenc} % not necessary, but recommended
\usepackage{halloweenmath}
\usepackage{hyperref} % just for "\hypersetup"

\title{Sample Halloween Math}
\author{A.~U.~Thor}
\date{January~6, 2017}

\hypersetup{
  pdftitle        = {Sample Halloween Math},
  pdfauthor       = {A. U. Thor},
  pdfsubject      = {Sample source file for the halloweenmath package},
  pdfkeywords     = {Halloween, math, scary mathematical symbols},
  pdfcreationdate = {D:20170106000000},
  pdfmoddate      = {D:20170106000000}
}



\begin{document}

\maketitle

A reduction my students are likely to make:
\[\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\]
The same reduction as an in-line formula:
\(\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\).

Now with limits:
\[
    \mathwitch_{i=1}^{n} \frac
        {\text{$i$-th magic term}}
        {\text{$2^{i}$-th wizardry}}
\]
And repeated in-line: \( \mathwitch_{i=1}^{n} x_{i}y_{i} \).
    
The \texttt{bold} math version is honored:\mathversion{bold}
\[
    \mathwitch*
        \genfrac{<}{>}{0pt}{}
            {\textbf{something terribly}}{\textbf{complicated}}
    = 0
\]
Compare it with \texttt{normal} math\mathversion{normal}:
\[
    \mathwitch*
        \genfrac{<}{>}{0pt}{}
            {\text{something terribly}}{\text{complicated}}
    = 0
\]
In-line math comparison:
{\boldmath $\mathwitch* f(x)$} versus $\mathwitch* f(x)$.

There is also a left-facing witch:
\[\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\]
And here is the in-line version:
\(\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\).

Test for \verb|\dots|:
\[
    \mathwitch_{i_{1}=1}^{n_{1}} \dots \mathwitch_{i_{p}=1}^{n_{p}}
    \frac
        {\text{$i_{1}$-th magic factor}}
        {\text{$2^{i_{1}}$-th wizardry}}
    \pumpkin\dots\pumpkin
    \frac
        {\text{$i_{p}$-th magic factor}}
        {\text{$2^{i_{p}}$-th wizardry}}
\]
And repeated in-line: \( \mathwitch\dots\mathwitch_{i=1}^{n} x_{i}y_{i} \).

\bigbreak

Now the pumpkins.  First the \texttt{bold} math version:\mathversion{bold}:
\[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \]
Then the \texttt{normal} one\mathversion{normal}:
\[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \]
In-line math comparison:
{\boldmath \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \)}
versus \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \).

Close test: {\boldmath $\bigoplus$}$\bigoplus$.
And against the pumpkins:
{\boldmath $\bigpumpkin$}$\bigpumpkin\bigoplus${\boldmath $\bigoplus$}.

In-line, but with \verb|\limits|:
\( \bigoplus\limits_{h=1}^{m}\bigpumpkin\limits_{k=1}^{n} P_{h,k} \).

Binary: \( x\pumpkin y \neq x\oplus y \).  And in display:
\[ a\pumpkin\frac{x\pumpkin y}{x\oplus y}\otimes b \]
Close test: {\boldmath $\oplus$}$\oplus$.
And with the pumpkins too:
{\boldmath $\pumpkin$}$\pumpkin\oplus${\boldmath $\oplus$}.

In general,
\[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \]

\begingroup

\bfseries\boldmath

The same in bold:
\[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \]

\endgroup

Other styles: \( \frac{x\pumpkin y}{2} \), exponent~$Z^{\pumpkin}$, 
subscript~$W_{\!x\pumpkin y}$, double script \( 2^{t_{x\pumpkin y}} \).

\bigbreak

Clouds.  A hypothetical identity:
\( \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \).
Now the same identity set in display:
\[ \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \]
Now in smaller size: \( \frac{\sin x+\cos x}{\mathcloud} = 1 \).

Specular clouds, \texttt{bold}\ldots\mathversion{bold}
\[ \reversemathcloud \longleftrightarrow \mathcloud \]
\ldots and in \texttt{normal} math.\mathversion{normal}
\[ \reversemathcloud \longleftrightarrow \mathcloud \]
In-line math comparison:
{\boldmath \( \reversemathcloud \leftrightarrow \mathcloud \)}
versus \( \reversemathcloud \leftrightarrow \mathcloud \).
Abutting: {\boldmath $\mathcloud$}$\mathcloud$.

\bigbreak

Ghosts: \( \mathleftghost \mathghost \mathrightghost \mathghost \mathleftghost
\mathghost \mathrightghost \).  Now with letters: \( H \mathghost H \mathghost h
\mathghost ab \mathghost f \mathghost wxy \mathghost \), and also \(
2\mathghost^{3} + 5\mathleftghost^{\!2}-3\mathrightghost_{i} =
12\mathrightghost_{j}^{4} \).  Then, what about~$x^{2\mathghost}$ and \(
z_{\!\mathrightghost+1} = z_{\!\mathrightghost}^{2} + z_{\mathghost} \)?

In subscripts:
\begin{align*}
    F_{\mathghost+2} &= F_{\mathghost+1} + F_{\mathghost} \\
    F_{\!\mathrightghost+2} &= F_{\!\mathrightghost+1} + F_{\!\mathrightghost}
\end{align*}
Another test: \( \mathghost | \mathrightghost | \mathghost | \mathleftghost |
\mathghost | \mathrightghost | \mathghost | \mathleftghost | \mathghost \).  We
should also try this: \( \mathrightghost \mathleftghost \mathrightghost
\mathleftghost \).

Extensible arrows:
\begin{gather*}
    A \xrightwitchonbroom[a\star f(t)]{x_{1}+\dots+x_{n}} B
        \xrightwitchonbroom{x+z} C \xrightwitchonbroom{} D  \\
    A \xrightwitchonbroom*[a\star f(t)]{x_{1}+\dots+x_{n}} B
        \xrightwitchonbroom*{x+z} C \xrightwitchonbroom*{} D  \\
    A \xleftwitchonbroom*[a\star f(t)]{x_{1}+\dots+x_{n}} B
        \xleftwitchonbroom*{x+z} C \xleftwitchonbroom*{} D  \\
    A \xleftwitchonbroom[a\star f(t)]{x_{1}+\dots+x_{n}} B
        \xleftwitchonbroom{x+z} C \xleftwitchonbroom{} D
\end{gather*}
And \( \overrightwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) versus \(
\overrightwitchonbroom{x_{1}+\dots+x_{n}}=0 \); or \(
\overleftwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) versus \(
\overleftwitchonbroom{x_{1}+\dots+x_{n}}=0 \).

Hovering ghosts: \( \overrightswishingghost{x_{1}+\dots+x_{n}}=0 \).  You might
wonder whether there is enough space left for the swishing ghost; let's try
again: \( \overrightswishingghost{(x_{1}+\dots+x_{n})y}=0 \).  As you can see,
there is enough room.  Lorem ipsum dolor sit amet consectetur adipisci elit.
And \( \overrightswishingghost{\mathstrut} \) too.
\begin{gather*}
    A \xrightswishingghost[a\star f(t)]{x_{1}+\dots+x_{n}} B
        \xrightswishingghost{x+z} C \xrightswishingghost{} D  \\
    A \xleftswishingghost[a\star f(t)]{x_{1}+\dots+x_{n}} B
        \xleftswishingghost{x+z} C \xleftswishingghost{} D
\end{gather*}
Another hovering ghost: \( \overleftswishingghost{x_{1}+\dots+x_{n}}=0 \)..
Lorem ipsum dolor sit amet consectetur adipisci elit.  Ulla rutrum, vel sivi sit
anismus oret, rubi sitiunt silvae.  Let's see how it looks like when the ghost
hovers on a taller formula, as in \(
\overrightswishingghost{H_{1}\oplus\dots\oplus H_{k}} \).  Mmmh, it's
suboptimal, to say the least.\footnote{We'd better try \(
\underleftswishingghost{y_{1}+\dots+y_{n}} \), too; well, this one looks good!}

Under ``arrow-like'' symbols: \( \underleftswishingghost{x_{1}+\dots+x_{n}}=0 \)
and \( \underrightswishingghost{x+y+z} \).  There are \(
\underleftwitchonbroom*{x_{1}+\dots+x_{n}}=0 \) and \(
\underrightwitchonbroom*{x+y+z} \) as well.

\bigbreak

A comparison between the ``standard'' and the ``script-style'' over\slash under
extensible arrows:
\begin{align*}
    \overrightarrow{f_{1}+\dots+f_{n}}
        &\neq\overscriptrightarrow{f_{1}+\dots+f_{n}}  \\
    \overleftarrow{f_{1}+\dots+f_{n}}
        &\neq\overscriptleftarrow{f_{1}+\dots+f_{n}}  \\
    \overleftrightarrow{f_{1}+\dots+f_{n}}
        &\neq\overscriptleftrightarrow{f_{1}+\dots+f_{n}}  \\
    \underrightarrow{f_{1}+\dots+f_{n}}
        &\neq\underscriptrightarrow{f_{1}+\dots+f_{n}}  \\
    \underleftarrow{f_{1}+\dots+f_{n}}
        &\neq\underscriptleftarrow{f_{1}+\dots+f_{n}}  \\
    \underleftrightarrow{f_{1}+\dots+f_{n}}
        &\neq\underscriptleftrightarrow{f_{1}+\dots+f_{n}}
\end{align*}

\end{document}