summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/expkv-bundle/pkg-def.tex
blob: 5a682b73bc480c3c8a68f2c666b42ea33d692072 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
\genericekv\expkvd{-def}

Since the trend for the last couple of years goes to defining keys for a \kv\
interface using a \kv\ interface, I thought that maybe providing such an
interface for \expkv\ will make it more attractive for actual use. But at the
same time I didn't want to broaden \expkv's initial scope. So here is \expkvd,
go define \kv\ interfaces with \kv\ interfaces.

Unlike many of the other established \kv\ interfaces to define keys, \expkvd\
works using prefixes instead of suffixes (\emph{e.g.}, |.tl_set:N| of
\pkg{l3keys}) or directory like handlers (\emph{e.g.}, |/.store in| of
\pkg{pgfkeys}). This was decided as a personal preference, more over in \TeX\
parsing for the first spaces is way easier than parsing for the last one, so
this should also turn out to be faster. \expkvd's prefixes are sorted into two
categories: \prefixes, which are equivalent to \TeX's prefixes like |\long| and
of which a \key\ can have multiple, and \types\ defining the basic behaviour of
the \key\ and of which a \key\ must have one. For a description of the available
\prefixes\ take a look at \autoref{sec:d:prefixes}, the \types\ are described in
\autoref{sec:d:types}.


\subsection{Macros\label{sec:d:macros}}

The number of user-facing macros is quite manageable:

\begin{function}{\ekvdefinekeys}
  \begin{syntax}
    \cs{ekvdefinekeys}\marg{set}\kvarg
  \end{syntax}
  In \meta{set}, define \key\ to have definition \val. The general syntax for
  \key\ should be
  \begin{quote}
    \ttfamily
    \meta{prefix} \meta{name}
  \end{quote}
  where \meta{prefix} is a space separated list of optional \prefixes\ followed
  by one \type. The syntax of \val\ is dependent on the used \type.
\end{function}

\begin{function}{\ekvdDate,\ekvdVersion}
  These two macros store the version and date of the package.
\end{function}


\subsection{Prefixes}

As already said, prefixes are separated into two groups, \prefixes\ and \types.
Not every \prefix\ is allowed for all \types.


\subsubsection{\textit{Prefixes}\label{sec:d:prefixes}}

\begin{function}[module=expkv-def prefix]{new}
  The following \key\ must be new (so previously undefined). An error is thrown
  if it is already defined and the new definition is ignored. |new| only asserts
  that there are no conflicts between \Nkey{}s and other \Nkey{}s or \Vkey{}s
  and other \Vkey{}s.
\end{function}
\begin{example}{The effects of the \texttt{new} \prefix}
  You can test the following (lines throwing an error are marked by a comment,
  error messages are printed in red for this example):
  \expkvdocPrintErrors[\par]%
  \begin{enverb}[below]
    \ekvdefinekeys{new-example}
      {
         new code  key = \domystuffwitharg{#1}
        ,new noval KEY = \domystuffwithoutarg
        ,new bool  key = \mybool % Error!
        ,new bool  KEY = \mybool % Error!
        ,new meta  key = {KEY}   % Error!
        ,new nmeta KEY = {key}   % Error!
      }
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def prefix]{also}
  The following key \type\ will be \emph{added} to an existing \key's
  definition. You can't add a \type\ taking an argument at use time to an
  existing \key\ which doesn't take an argument and vice versa. Also you'll get
  an error if you try to add an action which isn't allowed to be either |\long|
  or |\protected| to a \key\ which already is |\long| or |\protected| (the
  opposite order would be suboptimal as well, but can't be really captured with
  the current code).

  A \key\ already defined as |\long| or |\protected| will stay that way, but you
  can add |\long| or |\protected| to a \key\ which isn't by using |also|.
\end{function}
\begin{example}
    {Overload a key \type\ with another with the \texttt{also} \prefix}
  Suppose you want to create a boolean \key, but additionally to setting a
  boolean value you want to execute some more code as well. For this you can use
  the following:
  \begin{enverb}[no-tcb]
    \ekvdefinekeys{also-example}
      {
         bool key      = \ifmybool
        ,also code key = \domystuff{#1}
      }
  \end{enverb}
\end{example}

If you use |also| on a |choice|, |bool|, |invbool|, or |boolpair| \key\ it is
tried to determine if the key already is of one of those types. If this test is
true the declared choices will be added to the possible choices but the key's
definition will not be changed other than that. If that wouldn't have been done,
the callbacks of the different choices could get called multiple times.

\begin{function}[module=expkv-def prefix]{protected,protect}
  The following \key\ will be defined |\protected|. Note that \types\ which
  can't be defined expandable will always use |\protected|. This only affects
  the key at use time not the \key\ definition.
\end{function}

\begin{function}[module=expkv-def prefix]{long}
  The following \key\ will be defined |\long| (so can take an explicit |\par|
  token in its \val). Please note that this only changes the \key\ at use time.
  |long| being present or not doesn't limit you to use |\par| inside of the
  \key's definition (if the \type\ allows this).
\end{function}


\subsubsection{\textit{Types}\label{sec:d:types}}

Since the \prefixes\ apply to some of the \types\ automatically but sometimes
one might be disallowed we need some way to highlight this behaviour. In the
following an enforced \prefix\ will be printed black
(\texttt{\enfprefix{protected}}), allowed \prefixes\ will be grey
(\texttt{\allprefix{protected}}), and disallowed \prefixes\ will be red
(\texttt{\notprefix{protected}}). This will be put flush-right in the syntax
showing line.

\begin{function}[module=expkv-def type]{code,ecode}
  \begin{syntax}
    code \key\ = \marg{definition} \prefixes2222
  \end{syntax}
  Define \key\ to be a \Vkey\ expanding to \meta{definition}. You can use |#1|
  inside \meta{definition} to access the \key's \val. The |ecode| variant will
  fully expand \meta{definition} inside an |\edef|.
\end{function}
\ekvset{enverb}{no-tcb,store}% affect all the next examples.
\begin{example}
    {Defining a \Vkey\ with arbitrary effect with the \texttt{code} \type}
  The following defines the key |foo|, that'll count the number of tokens passed
  to it (we'll borrow a function from \pkg{expl3} for this). It'll accept
  explicit |\par| tokens. Also it'll flip the \TeX-if \cs[no-index]{iffoo} to
  true. The result of the counting will be stored in a count register. (Don't
  get confused, all the next examples are part of this |\ekvdefinekeys| call, so
  there is no closing brace here.)
  \begin{enverb}
    \ExplSyntaxOn
      \cs_new_eq:NN \exampleCount \tl_count_tokens:n
    \ExplSyntaxOff
    \newcount\examplefoocount
    \newif\iffoo
    \ekvdefinekeys{example}
      {
         protected long code foo =
          \footrue
          \examplefoocount=\exampleCount{#1}\relax
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{noval,enoval}
  \begin{syntax}
    noval \key\ = \marg{definition} \prefixes2223
  \end{syntax}
  The |noval| \type\ defines \key\ as a \Nkey\ expanding to \meta{definition}.
  |enoval| fully expands \meta{definition} inside an |\edef|.
\end{function}
\begin{example}{An arbitrary \Nkey\ action with the \texttt{noval} \type}
  The following defines the \Nkey\ |foo| to toggle the \TeX-if
  \cs[no-index]{iffoo} to false and set |\examplecount| to |0|. It'll be
  |\protected| and mustn't override any existing key.
  \begin{enverb}
        ,new protected noval foo = \foofalse\examplefoocount=0\relax
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{default,odefault,fdefault,edefault}
  \begin{syntax}
    default \key\ = \marg{definition} \prefixes2223
  \end{syntax}
  This serves to place a default \val\ for a \Vkey. Afterwards if you use \key\
  as a \Nkey\ it will be the same as if \key\ got passed \meta{definition} as
  its \val. The |odefault| variant will expand the key-macro once, so will be
  slightly quicker, but not change if you redefine the \Vkey\ afterwards. The
  |fdefault| version will expand the key-code until a non-expandable token or a
  space is found, a space would be gobbled.\footnotemark{}
  The |edefault| on the other hand fully expands the key-code with
  \meta{definition} as its argument in |\expanded|. The \prefix\ |new|
  means that there should be no \Nkey\ of that name yet.
\end{function}%
\footnotetext{For those familiar with \TeX-coding: This uses a
\cs[no-index]{romannumeral}-expansion}
\begin{example}
    {Setting a default value for a \Vkey\ with the \texttt{default} \type}
  We later decide that the above behaviour isn't what we need any more and
  instead redefine the \Nkey\ |foo| to pass some default value to the \Vkey\
  |foo|.
  \begin{enverb}
        ,default foo = {Some creative default text}
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{initial,oinitial,finitial,einitial}
  \begin{syntax}
    initial \key\ = \marg{value} \prefixes3333
    initial \key
  \end{syntax}
  With |initial| you can set an initial \val\ for an already defined \key. It'll
  just call the \key\ and pass it \val. The |einitial| variant will expand \val\
  using |\expanded| prior to passing it to the \key\ and the |oinitial|
  variant will expand the first token in \val\ once. |finitial| will expand
  \val\ until a non-expandable token or a space is found, a space would be
  gobbled.\footnotemark

  If you don't provide a \val\ (and no equals sign) the \Nkey\ of the same name
  is called once (or, if you specified a |default| for a \Vkey\ that would be
  used).
\end{function}%
\footnotetext{Again using \cs[no-index]{romannumeral}}
\begin{example}{Specifying initial values with the \texttt{initial} \type}
  We want to get a defined initial behaviour for our |foo|. So we count
  0~tokens.
  \begin{enverb}
        ,initial foo = {}
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{bool,gbool,boolTF,gboolTF}
  \begin{syntax}
    bool \key\ = \meta{cs} \prefixes2223
  \end{syntax}
  \singlecs{iffoo}
  This will define \key\ to be a boolean key, which only takes the values |true|
  or |false| and will throw an error for other values. If the \key\ is used as
  a \Nkey\ it'll have the same effect as if you use |true|. |bool| and |gbool|
  will behave like \TeX-ifs, so either be \cs[no-index]{iftrue} or
  \cs[no-index]{iffalse}. The \meta{cs} in the |boolTF| and |gboolTF| variants
  will take two arguments and if true the first will be used else the second, so
  they are always either |\@firstoftwo| or |\@secondoftwo|. The variants with a
  leading |g| will set the \meta{cs} globally, the other locally. If \meta{cs}
  is not yet defined it'll be initialised as the |false| version. Note that the
  initialisation is \emph{not} done with |\newif|, so you will not be able to do
  |\footrue| outside of the \kv\ interface, but you could use |\newif| yourself.
  Even if the \key\ will not be |\protected| the commands which execute the
  |true| or |false| choice will be, so the usage should be safe in an expansion
  context (\emph{e.g.}, you can use \texttt{edefault \key\ = false} without an
  issue to change the default behaviour to execute the |false| choice).
  Internally a |bool| is the same as a |choice| \type\ which is set up to handle
  |true| and |false| as choices. |new| will assert that neither the \Vkey\ nor
  the \Nkey\ are already defined.
\end{function}
\begin{example}{Defining Boolean keys with the \texttt{bool} \type}
  Also we want to have a direct way to set our \cs[no-index]{iffoo}, now that
  the \Nkey\ doesn't toggle it any longer.
  \begin{enverb}
        ,bool dofoo = \iffoo
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{invbool,ginvbool,invboolTF,ginvboolTF}
  \begin{syntax}
    invbool \key\ = \meta{cs} \prefixes2223
  \end{syntax}
  These are inverse boolean keys, they behave like |bool| and friends but set
  the opposite meaning to the macro \meta{cs} in each case. So if |key=true| is
  used |invbool| will set \meta{cs} to \cs[no-index]{iffalse} and vice versa.
\end{function}
\begin{example}
    {Inversing the logic of a Boolean with the \texttt{invbool} \type}
  And since traditional interfaces lacked \kv\ support for packages, often a
  negated boolean key was used as well.
  \begin{enverb}
        ,invbool nofoo = \iffoo
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{boolpair,gboolpair,boolpairTF,gboolpairTF}
  \begin{syntax}
    boolpair \key\ = \meta{cs_1}\meta{cs_2} \prefixes2223
  \end{syntax}
  The |boolpair| \type\ behaves like both |bool| and |invbool|, the \meta{cs_1}
  will be set to the meaning according to the rules of |bool|, and \meta{cs_2}
  will be set to the opposite.
\end{function}

\begin{function}[module=expkv-def type]{store,estore,gstore,xstore}
  \begin{syntax}
    store \key\ = \meta{cs} \prefixes2212
  \end{syntax}
  \singlecs{foo}
  This will define a \Vkey\ to store \val\ inside of the control sequence. If
  \meta{cs} isn't yet defined it will be initialised as empty. The variants
  behave similarly to their |\def|, |\edef|, |\gdef|, and |\xdef| counterparts,
  but will allow you to store macro parameters inside them without needing to
  double them. So |estore foo = \foo, initial foo = #1| will not result in a low
  level \TeX\ error.
\end{function}
\begin{example}
    {Also store the \val\ of an existing \key\ in a macro using the
    \texttt{also} \prefix\ and the \texttt{store} \type}
  Not only do we want to count the tokens handed to |foo|, but we want to also
  store them inside of a macro (and we don't need to specify |long| here, since
  |foo| is already |\long| from our |code| definition above).
  \begin{enverb}
        ,also store foo = \examplefoostore
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{data,edata,gdata,xdata}
  \begin{syntax}
    data \key\ = \meta{cs} \prefixes2212
  \end{syntax}
  \singlecs{foo}
  This will define a \Vkey\ to store \val\ inside of the control sequence. But
  unlike the |store| \type\ the macro \meta{cs} will be a switch at the same
  time, it'll take two arguments and if \meta{key} was used expands to the first
  argument followed by \val\ in braces, if \key\ was not used \meta{cs} will
  expand to the second argument (so behave like |\@secondoftwo|). The idea is
  that with this type you can define a key which should be typeset formatted.
  The |edata| and |xdata| variants will fully expand \val, the |gdata| and
  |xdata| variants will store \val\ inside \meta{cs} globally. Just like with
  |store| you can use macro parameters without having to double them. The
  \prefixes\ only affect the key-macro, \meta{cs} will always be expandable and
  |\long|.
\end{function}
\begin{example}{Define a key using the \texttt{data} \type}
  Next we start to define other keys, now that our |foo| is pretty much
  exhausted. The following defines a key |bar| to be a |data| key.
  \begin{enverb}
        ,data bar = \examplebar
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{dataT,edataT,gdataT,xdataT}
  \begin{syntax}
    dataT \key\ = \meta{cs} \prefixes2212
  \end{syntax}
  Just like |data|, but instead of \meta{cs} grabbing two arguments it'll only
  grab one, so by default it'll behave like |\@gobble|, and if \val\ was given
  to \key\ the \meta{cs} will behave like |\@firstofone| appended by
  \marg{value}.
\end{function}
\begin{example}{Define a key using the \texttt{dataT} \type}
  Another key we want to use is |baz|.
  \begin{enverb}
        ,dataT baz = \examplebaz
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{int,eint,gint,xint}
  \begin{syntax}
    int \key\ = \meta{cs} \prefixes2212
  \end{syntax}
  \singlecs{foo}
  An |int| key will be a \Vkey\ setting a \TeX\ count register. If \meta{cs}
  isn't defined yet, |\newcount| will be used to initialise it. The |eint| and
  |xint| variants will use |\numexpr| to allow basic computations in their \val.
  The |gint| and |xint| variants set the register globally.
\end{function}

\begin{function}[module=expkv-def type]{dimen,edimen,gdimen,xdimen}
  \begin{syntax}
    dimen \key\ = \meta{cs} \prefixes2212
  \end{syntax}
  \singlecs{foo}
  This is just like |int| but uses a dimen register, |\newdimen|, and |\dimexpr|
  instead.
\end{function}

\begin{function}[module=expkv-def type]{skip,eskip,gskip,xskip}
  \begin{syntax}
    skip \key\ = \meta{cs} \prefixes2212
  \end{syntax}
  \singlecs{foo}
  This is just like |int| but uses a skip register, |\newskip|, and |\glueexpr|
  instead.
\end{function}
\begin{example}
    {Define keys that use \TeX\ registers, here a skip with the \texttt{eskip}
    \type}
  Exemplary for the different register keys, the following defines |distance| so
  that we can store some distance.
  \begin{enverb}
        ,eskip distance = \exampledistance
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{toks,gtoks,apptoks,gapptoks,pretoks,gpretoks}
  \begin{syntax}
    toks \key\ = \meta{cs} \prefixes2212
  \end{syntax}
  \singlecs{foo}
  Store \val\ inside of a toks-register. The |g| variants use |\global|, the
  |app| variants append \val\ to the contents of that register, the |pre|
  variants will prepend \val. If \meta{cs} is not yet defined it will be
  initialised with |\newtoks|.
\end{function}

\begin{function}[module=expkv-def type]{box,gbox}
  \begin{syntax}
    box \key\ = \meta{cs} \prefixes2212
  \end{syntax}
  \singlecs{foo}
  Typesets \val\ into a |\hbox| and stores the result in a box register. The
  boxes are colour safe. \expkvd\ currently doesn't provide a |vbox| type.
\end{function}

\begin{function}[module=expkv-def type]{meta}
  \begin{syntax}
    meta \key\ = \kvarg \prefixes2222
  \end{syntax}
  This key \type\ can set other keys, you can access the \val\ given to the
  created \Vkey\ inside the \kv\ list using |#1|. This works by injecting the
  \kv\ list into the currently parsed list, so behaves just as if the \kv\ list
  was directly used instead of \key.
\end{function}
\begin{example}
    {Define a \Vkey\ as a shortcut to set multiple other keys with the
    \texttt{meta} \type}
  And we want to set a full set of keys with just this single one called |all|.
  \begin{enverb}
        ,meta all =
          {distance=5pt,baz=cheese cake,bar=cocktail bar,foo={#1}}
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{nmeta}
  \begin{syntax}
    nmeta \key\ = \kvarg \prefixes2223
  \end{syntax}
  This \type\ sets other keys, but unlike |meta| this defines a \Nkey, so the
  \kv\ list is static.
\end{function}
\begin{example}
    {Set multiple other keys from a \Nkey\ with the \texttt{nmeta} \type}
  and if |all| is set without a value we want to do something about it as well.
  \begin{enverb}
        ,nmeta all =
          {distance=10pt,baz=nothing,bar=Waikiki bar,foo}
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{smeta}
  \begin{syntax}
    smeta \key\ = \marg{set}\kvarg \prefixes2222
  \end{syntax}
  Yet another |meta| variant. |smeta| will define a \Vkey, you can access the
  given \val\ in the provided \kv\ list using |#1|. Unlike |meta| this will
  process that \kv\ list inside of \meta{set} using a nested |\ekvset| call, so
  this is equal to \texttt{\cs[no-index]{ekvset}\marg{set}\kvarg}. As a
  result you can't use |\ekvsneak| using keys or similar macros in the way you
  normally could.
\end{function}

\begin{function}[module=expkv-def type]{snmeta}
  \begin{syntax}
    snmeta \key\ = \marg{set}\kvarg \prefixes2223
  \end{syntax}
  And the last |meta| variant. |snmeta| combines |smeta| and |nmeta|, so parses
  the \kv\ list inside of \meta{set} and defines a \Nkey\ with a static list.
\end{function}

\begin{function}[module=expkv-def type]{alias}
  \begin{syntax}
    alias \key\ = \meta{key_2} \prefixes2333
  \end{syntax}
  Copy the definition of \meta{key_2} to \key. \key\ will inherit being |long|
  or |protected| from \meta{key_2} as well. If a \Vkey\ named \meta{key_2}
  exists its definition is copied, and if an accordingly named \Nkey\ exists its
  definition is copied to the new name as well. At least one of the two keys
  must exist or else this throws an error. If \meta{key_2} is later redefined
  the definition of \key\ will stay the same.
\end{function}

\begin{function}[module=expkv-def type]{set}
  \begin{syntax}
    set \key\ = \marg{set} \prefixes2233
    set \key
  \end{syntax}
  This will define a \Nkey\ that will change the current set to \meta{set}. If
  you give no value to this definition (omit |= |\marg{set}) the set name will
  be the same as \key\ so
  |set |\key\
  is equivalent to
  |set |\key| = |\marg{key}.
  Note that just like in \expkv\ it'll not be checked whether \meta{set} is
  defined and you'll get a low-level \TeX\ error if you use an undefined
  \meta{set}.
\end{function}

\begin{function}[module=expkv-def type]{choice}
  \begin{syntax}
    choice \key\ = \{\val=\meta{definition}, \ldots\} \prefixes2223
  \end{syntax}
  |choice| defines a \Vkey\ that will only accept a limited set of values. You
  should define each possible \meta{value} inside of the \val=\meta{definition}
  list. If a defined \meta{value} is passed to \meta{key} the \meta{definition}
  will be left in the input stream. You can make individual values |protected|
  inside the \val=\meta{definition} list by using that \prefix. To also allow
  choices that shouldn't be |\protected| but which start with the word
  |protected| you can also use |unprotected| as a special \prefix. By default a
  |choice| key and all its choices are expandable, an undefined \meta{value}
  will throw an error in an expandable way. You can add additional choices after
  the \meta{key} was created by using |choice| again for the same \key,
  redefining choices is possible the same way, but there is no interface to
  remove certain choices. To change the behaviour of unknown choices see also
  the |unknown-choice| \type.
\end{function}
\begin{example}
    {Define a choice with arbitrary code using the \texttt{choice} \type}
  We give the users a few choices.
  \begin{enverb}
        ,choice choose =
          {
             protected lemonade = \def\exampledrink{something sour}
            ,protected water = \def\exampledrink{something boring}
          }
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{choice-store}
  \begin{syntax}
    choice-store \key\ = \meta{cs}\{\val=\meta{definition}, \ldots\} \prefixes2223
  \end{syntax}
  \singlecs{foo}
  This is a special \type\ of the |choice| \type\ that'll store the given choice
  inside the macro \meta{cs}. Since storing inside a macro can't be done
  expandably every choice-code is |\protected|, and you might define the
  |choice-store| key itself as |\protected| as well if you want. Inside the
  \val|=|\meta{definition} list the |=|\meta{definition} part is optional, if
  you omit it the \val\ will be stored as given during define-time inside of
  \meta{cs} (during use-time the \val\ needs to be matched |\detokenize|d), and
  if you specify |=|\meta{definition} that \meta{definition} will be stored
  inside of \meta{cs} instead. If \meta{cs} doesn't yet exist it's initialised
  as empty.
\end{function}
\begin{example}
    {Show the equivalent setup for a \texttt{choice} \type\ to mimic a
    \texttt{choice-store} \type}
  The following keys |key1| and |key2| are equivalent at use time (this doesn't
  continue the |\ekvdefinekeys|-call for the set |example| above):
  \begin{enverb}[no-store,no-tcb]
    \newcommand*\mya{}% initialise \mya
    \ekvdefinekeys{choice-store-example}
      {
         choice key1 =
          {
             protected a = \def\mya{a}
            ,protected b = \def\mya{b}
            ,protected c = \def\mya{c}
            ,protected d = \def\mya{FOO}
          }
        ,choice-store key2 = \myb{a,b,c,d=FOO}
      }
  \end{enverb}
\end{example}
\begin{example}
    {Store the user's choices in a macro with the \texttt{choice-store} \type}
  (this continues the |\ekvdefinekeys|-call for the set |example| from above)
  After the above drinks we define a few more choices which are directly stored.
  \begin{enverb}
        ,choice-store choose = \exampledrink{beer,wine}
  \end{enverb}
  One might notice that the entire setup of the |choose| key could've been done
  using only |choice-store|.
\end{example}

\begin{function}[module=expkv-def type]{choice-enum}
  \begin{syntax}
    choice-enum \key\ = \meta{cs}\{\val, \ldots\} \prefixes2223
  \end{syntax}
  \singlecs{foo}
  This is similar to |choice-store|, the differences are: \meta{cs} should be a
  count register or is initialised as such using |\newcount|; instead of the
  \val\ itself being stored its position in the list of choices is stored
  (zero-based). It is not possible to specify a \meta{definition} to store
  something else than the numerical position inside the list.
\end{function}
\begin{example}
    {Show the equivalent setup for a \texttt{choice} \type\ to mimic a
    \texttt{choice-enum} \type}
  The following keys |key1| and |key2| are equivalent at use time (another
  example not using the |example| set of above's |\ekvdefinekeys|):
  \begin{enverb}[no-store,no-tcb]
    \newcount\myc
    \ekvdefinekeys{choice-enum-example}
      {
         choice key1 =
          {
             protected a={\myc=0 }
            ,protected b={\myc=1 }
            ,protected c={\myc=2 }
          }
        ,choice-enum key2 = \myd{a,b,c}
      }
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{unknown-choice}
  \begin{syntax}
    unknown-choice \key\ = \marg{definition} \prefixes2323
  \end{syntax}
  By default an unknown \val\ passed to a |choice| or |bool| \type\ (and all
  their variants) will throw an error. However, with this prefix you can define
  an alternative action which should be executed if \key\ received an unknown
  choice. In \meta{definition} you can refer to the given invalid choice with
  |#1|.
\end{function}
\begin{example}
    {Handle unknown choices without throwing an error with the
    \texttt{unknown-choice} \type}
  If a drink was chosen with |choose| that's not defined we don't want to throw
  an error, but store something else instead.
  \begin{enverb}
        ,protected unknown-choice choose =
          \def\exampledrink{something unavailable}
      }% closing brace for \ekvdefinekeys
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{choice-aliases}
  \begin{syntax}
    choice-aliases \key\ = \{\meta{new}=\meta{old}, \ldots\} \prefixes2333
  \end{syntax}
  Copy the definition of the choice \meta{old} of \key\ to a \meta{new} choice
  for the same \key. The \key\ must be an existing |choice| key. Inside the
  \meta{new}=\meta{old} list all elements must get a value. If used the
  |new|-prefix will apply to each individual \meta{new} choice name (so if any
  already exists it'll throw an error, and the current element will be ignored).
  The \meta{new} choice will inherit being |protected| from the \meta{old} one.
  The \meta{old} choice must be defined obviously.

  This works for a |choice| or |bool| \type\ as well as all their variants. If
  something redefines some of the choices later on the aliases will keep the
  original definition.
\end{function}
\begin{example}
    {Create shortcuts for choices using the \texttt{choice-aliases} \type}
  With the following we create a key that accepts some choices, and since our
  keyboard is only designed to handle a finite number of keystrokes we also
  allow for shorter names of those choices. (This is not part of the ongoing
  example using the |example| set above.)
  \begin{enverb}[no-store,no-tcb]
    \ekvdefinekeys{choice-alias-example}
      {
         choice-store   key = { long-name, short-name }
        ,choice-aliases key = { ln = long-name, sn = short-name }
      }
  \end{enverb}
\end{example}

\begin{function}[module=expkv-def type]{unknown code}
  \begin{syntax}
    unknown code = \marg{definition} \prefixes2322
  \end{syntax}
  By default \expkv\ throws errors when it encounters unknown keys in a set.
  With the |unknown| \type\ you can define handlers that deal with undefined
  keys, instead of a \key\ name you have to specify a subtype for this, here the
  subtype is |code|.

  With |unknown code| the \meta{definition} is used for unknown keys which were
  provided a value (so corresponds to |\ekvdefunknown|), you can access the
  unknown \key\ name with |#1| (|\detokenize|d), the given \val\ with |#2|, and
  the unprocessed \key\ name with |#3| (in case you want to further expand
  it).\footnotemark
\end{function}%
\footnotetext{There is some trickery involved to get this more intuitive
argument order without any performance hit if you compare this to
\cs[no-index]{ekvdefunknown} directly}

\begin{function}[module=expkv-def type]{unknown noval}
  \begin{syntax}
    unknown noval = \marg{definition} \prefixes2323
  \end{syntax}
  This is like |unknown code| but uses \meta{definition} for unknown keys to
  which no value was passed (so corresponds to |\ekvdefunknownNoVal|). You can
  access the |\detokenize|d \key\ name with |#1| and the unprocessed one with
  |#2|.
\end{function}

\begin{function}[module=expkv-def type]{unknown redirect-code}
  \begin{syntax}
    unknown redirect-code = \marg{set-list} \prefixes2331
  \end{syntax}
  This uses a predefined action for |unknown code|. Instead of throwing an
  error, it is tried to find the \meta{key} in each \meta{set} in the comma
  separated \meta{set-list}. The first found match will be used and the
  remaining options from the list discarded. If the \meta{key} isn't found in
  any \meta{set} an expandable error will be thrown eventually. Internally
  \expkv's |\ekvredirectunknown| will be used.
\end{function}

\begin{function}[module=expkv-def type]{unknown redirect-noval}
  \begin{syntax}
    unknown redirect-noval = \marg{set-list} \prefixes2333
  \end{syntax}
  This behaves just like |unknown redirect-code| but will set up means to
  forward keys for |unknown noval|. Internally \expkv's
  |\ekvredirectunknownNoVal| will be used.
\end{function}

\begin{function}[module=expkv-def type]{unknown redirect}
  \begin{syntax}
    unknown redirect = \marg{set-list} \prefixes2333
  \end{syntax}
  This is a short cut to apply both, |unknown redirect-code| and
  |unknown redirect-noval|, as a result you might get doubled error messages,
  one from each.
\end{function}

\bigskip
Time to use all those keys defined in the different examples as part of the
|example| set!
% undo the global no-tcb setting
\ekvset{enverb}{no-store,undo-no-tcb}%
\begin{enverb}[restore,below,inter=Which results in three paragraphs of text:]
  \newcommand\defexample[1][]
    {%
      \begingroup % keep the values set local to this call
        \ekvset{example}{#1}%
        After walking \the\exampledistance\space we finally reached
        \examplebar{\emph}{no particular place}.
        There I ordered
        \iffoo
          a drink called \examplefoostore\space (that has
          \the\examplefoocount\space tokens in it)%
        \else
          nothing of particular interest%
        \fi
        \examplebaz{ and ate \emph}.
        Then a friend of mine also chose \exampledrink.
        \par
      \endgroup
    }
  \defexample[nofoo]
  \defexample[all,choose=lemonade]
  \defexample
    [all=wheat beer,bar=Biergarten,baz=pretzel,choose=champagne]
\end{enverb}

\subsection{Another Example}

This picks up the standard use case from \autoref{sec:expkv:standard}, but
defines the keys using |\ekvdefinekeys|.

\begin{enverb}
  \makeatletter
  \ekvdefinekeys{myrule}
    {
       store   ht    = \myrule@ht
      ,initial ht    = 1ex
      ,store   wd    = \myrule@wd
      ,initial wd    = 0.1em
      ,store   raise = \myrule@raise
      ,initial raise = \z@
      ,meta    lower = {raise={-#1}}
    }
  \ekvsetdef\myruleset{myrule}
  \newcommand*\myrule[1][]
    {%
      \begingroup
        \myruleset{#1}%
        \rule[\myrule@raise]{\myrule@wd}{\myrule@ht}%
      \endgroup
    }
  \makeatother
  a\myrule\par
  a\myrule[ht=2ex,lower=.5ex]\par
  \myruleset{wd=5pt}
  a\myrule
\end{enverb}