blob: abc51017eadb0da8f839bf024cf821116f053772 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
\documentclass[compose]{exam-n}
\begin{document}
\begin{question}{30} \comment{by Declan Diver}
For a system of $N$ objects, each having mass $m_i$ and position
vector $\mathbf{R}_i$ with respect to a fixed co-ordinate system,
use the moment of inertia
\[
I=\sum_{i=1}^N m_i R_i^2
\]
to deduce the virial theorem in the forms
\[
\ddot{I}=4E_k+2E_G=2E_k+2E
\]
where $E_k$ and $E_G$ are respectively the total kinetic and
gravitational potential energy, and $E$ is the total energy of
the system.
\partmarks{8}
Given the inequality
\ifbigfont
\begin{multline*}
\left(\sum_{i=1}^N
a_i^2\right) \left(\sum_{i=1}^N b_i^2\right) \\
\ge \left(\sum_{i=1}^N \mathbf{a}_i\cdot\mathbf{b}_i\right)^2 \\
+ \left(\sum_{i=1}^N \mathbf{a}_i\times\mathbf{b}_i\right)^2
\end{multline*}
\else
\begin{equation*}
\left(\sum_{i=1}^N
a_i^2\right) \left(\sum_{i=1}^N b_i^2\right) \ge \left(\sum_{i=1}^N
\mathbf{a}_i\cdot\mathbf{b}_i\right)^2 + \left(\sum_{i=1}^N
\mathbf{a}_i\times\mathbf{b}_i\right)^2
\end{equation*}
\fi
for arbitrary vectors $\mathbf{a}_i$, $\mathbf{b}_i$,
$i=1,\ldots,N$, deduce the following relationship for the $N$-body
system
\begin{equation*}
\frac{1}{4}\dot{I}^2+J^2\le 2IE_k,
\end{equation*}
where $\mathbf{J}$ is the total angular momentum of the system.
\partmarks{8}
Assuming the system is isolated, use the virial theorem to deduce
further the generalised Sundman inequality
\begin{equation*}
\frac{\dot{\sigma}}{\dot{\rho}}\ge 0,
\end{equation*}
in which $\rho^2=I$ and
$\displaystyle\sigma=\rho\dot{\rho}^2+\frac{J^2}{\rho}-2\rho E $.
\partmarks{8}
Why does this inequality preclude the possibility of an
$N$-fold collision for a system with finite angular momentum?
\partmarks{6}
\end{question}
\end{document}
|