1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
|
% % Konfiguration für Texstudio (Version > 2.9)
% !TeX program = xelatex
% !TeX TXS-program:compile = txs:///xelatex/[-8bit]
% !BIB program = biber
% !TeX spellcheck = en_US
% !TeX encoding = utf8
% Copyright 2018-2024 by Romano Giannetti
% Copyright 2015-2024 by Stefan Lindner
% Copyright 2013-2024 by Stefan Erhardt
% Copyright 2007-2024 by Massimo Redaelli
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the files gpl-3.0_license.txt and lppl-1-3c_license.txt for more details.
%
\documentclass[a4paper, titlepage]{article}
\def\modern{
\usepackage{fontspec}
\defaultfontfeatures{
Ligatures=TeX,
Numbers=OldStyle,
Mapping=tex-text,
SmallCapsFeatures={LetterSpace=8, Numbers=OldStyle}
}
% \setmainfont{Gentium Book Basic}
}
% to check thanks to Max Chernoff https://tex.stackexchange.com/a/705682/38080
% \usepackage[version=latest]{pgf}
% do not split this line in more lines, otherwise "make git-manual" will show the wrong version
\usepackage[siunitx, RPvoltages]{circuitikz}
% Let this be the same as the chosen voltage direction for coherence
\def\chosenvoltoption{RPvoltages}
%
\usepackage{ifxetex,ifluatex}
\ifxetex
\modern
\else
\ifluatex
\modern
\else
% pdflatex
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{lmodern}
% \usepackage{babel}
\fi
\fi
\def\tightlist{} % needed for latest pandoc-versions(pandoc used for including changelog)
\usepackage{microtype}
\usepackage{imakeidx}
\makeindex[title=Index of the components, intoc=true]
% Local utilities packages
\usepackage{ctikzmanutils}
%
\begin{document}
% change numbering to roman to avoid a duplicate hyperref target on page 1
% Thanks to Ulrike Fischer for helping here
\pagenumbering{roman}
\title{\Circuitikz \\{\large version \pgfcircversion{} (\pgfcircversiondate)}}
\author{Massimo A. Redaelli (\email{m.redaelli@gmail.com})\\
Stefan Lindner (\email{stefan.lindner@fau.de})\\
Stefan Erhardt (\email{stefan.erhardt@fau.de})\\
Romano Giannetti (\email{romano.giannetti@gmail.com})}
\date{\today}
\pretitle{\begin{center}%
\begin{circuitikz}
\draw (0,0) node[dipchip, rotate=90, num pins=40, fill=cyan!20!white](C){%
\rotatebox{-90}{\LARGE\Circuitikz}%
};
\draw (C.pin 20) -- ++(0,-8) node[ground](GND){};
\draw (C.pin 7) to[D, fill=blue] ++(0,-1) -- ++(0.5,0) to[R] ++(2,0)
coordinate(a1) to[short, -*]
node[above left, blue, pos=1]{Massimo A. Redaelli}
node[below left, pos=1]{\email{m.redaelli@gmail.com}}
(a1-|GND);
\draw (C.pin 5) to[D, fill=red] ++(0,-3)-- ++(0.5,0) to[R] ++(2,0)
coordinate(a2) to[short, -*]
node[above left, blue, pos=1]{Stefan Lindner}
node[below left, pos=1]{\email{stefan.lindner@fau.de}}
(a2-|GND);
\draw (C.pin 3) to[D, fill=green] ++(0,-5)-- ++(0.5,0) to[R] ++(2,0)
coordinate(a3) to[short, -*]
node[above left, blue, pos=1]{Stefan Erhardt}
node[below left, pos=1]{\email{stefan.erhardt@fau.de}}
(a3-|GND);
\draw (C.pin 1) to[D, fill=yellow] ++(0,-7)-- ++(0.5,0) to[R] ++(2,0)
coordinate(a4) to[short, -*]
node[above left, blue, pos=1]{Romano Giannetti}
node[below left, pos=1]{\email{romano.giannetti@gmail.com}}
(a4-|GND);
\end{circuitikz}
\par\bigskip\vfill}
\posttitle{\end{center}}
\maketitle
% go back to arabic numbering after the titlepage
\pagenumbering{arabic}
\tableofcontents
\section{Introduction}
\hfill\begin{minipage}[t]{0.5\textwidth}
\small\slshape\raggedleft
Lorenzo and Mirella, 57 years ago, started a trip that eventually lead to a lot of things --- among them, \Circuitikz{} \texttt{v1.0}.
In loving memory
--- R.\,G., 2020-02-04
\end{minipage}
\subsection{About}
\Circuitikz{} was initiated by Massimo Redaelli in 2007, who was working as a research assistant at the Polytechnic University of Milan, Italy, and needed a tool for creating exercises and exams.
After he left University in 2010 the development of \Circuitikz\ slowed down, since \LaTeX\ is mainly established in the academic world. In 2015 Stefan Lindner and Stefan Erhardt, both working as research assistants at the University of Erlangen-Nürnberg, Germany, joined the team and now maintain the project together with the initial author. In 2018 Romano Giannetti, full professor of Electronics at Comillas Pontifical University of Madrid, joined the team.
The use of \Circuitikz\ is, of course, not limited to academic teaching. The package gets widely used by engineers for typesetting electronic circuits for articles and publications all over the world.
\subsection{License}
Copyright \copyright{}
2007--2024 by Massimo Redaelli,
2013--2024 by Stefan Erhardt,
2015--2024 by Stefan Lindner,
and 2018--2024 by Romano Giannetti.
This package is author-maintained. Permission is granted to copy, distribute and/or modify this software under the terms of the \LaTeX\ Project Public License, version 1.3.1, or the GNU Public License. This software is provided ‘as is’, without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
\subsection{Loading the package}
\begin{table}[h]
\centering
\begin{tabular}{ll}\toprule
\LaTeX & \ConTeXt\footnotemark \\ \midrule
\verb!\usepackage{circuitikz}! & \verb!\usemodule[circuitikz]!\\
\bottomrule
\end{tabular}
\end{table}
\footnotetext{\ConTeXt\ support was added mostly thanks to Mojca Miklavec and Aditya Mahajan.\textbf{Please notice} that since \ConTeXt{} switched to the new \texttt{lmtx} engine (March 2023), there can be problems to compile \TikZ{} which some version; in May 2023 the problem has been fixed. Please check \href{https://github.com/circuitikz/circuitikz/issues/706}{this issue} for details.}
\noindent \TikZ\ will be automatically loaded; additionally, the \TikZ{} libraries \texttt{calc}, \texttt{arrows.meta}, \texttt{bending}, and \texttt{fpu} are loaded (the last one is used only on demand).
\noindent Circui\TikZ\ commands are just \TikZ\ commands, so a minimum usage example would be:
\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[R=$R_1$] (2,0);
\end{LTXexample}
There is really no support for Plain TeX --- the maintainers are willing to consider patches if somebody is interested.
\subsection{Installing a new version of the package.}
The stable version of the package should come with your \LaTeX\ distribution. Downloading the files from CTAN and installing them locally is, unfortunately, a distribution-dependent task and sometimes not so trivial. If you search for \texttt{local texmf tree} and the name of your distribution on \url{https://tex.stackexchange.com/} you will find a lot of hints.
Anyway, the easiest way of using whichever version of \Circuitikz\ is to point to the GitHub page \url{https://circuitikz.github.io/circuitikz/} of the project, and download the version you want. You will download a simple (biggish) file, called \texttt{circuitikzgit.sty}.
Now you can just put this file in your local \texttt{texmf} tree, if you have one, or simply adding it into the same directory where your main file resides, and then use
\begin{verbatim}
\usepackage[...options...]{circuitikzgit}
\end{verbatim}
instead of \texttt{circuitikz}. This is also advantageous for ``future resilience''; the authors try hard not to break backward compatibility with new versions, but sometimes, things happen.
\subsection{Requirements}
\begin{itemize}
\item \texttt{tikz}, version ${}\ge{}$\texttt{3.1.5b} (it \emph{should} work with any version from 3.0 and up, but better use a newer one);
\item \texttt{xstring}, not older than 2009/03/13;
\item \texttt{siunitx}, if using \texttt{siunitx} option (better \texttt{v2} or newer).
\end{itemize}
A similar approach for \ConTeXt\ is available, with the file \texttt{t-circuitikzgit.tex}; the compatibility in this case is not guaranteed, but provided on a \emph{best effort} base.
This manual has been typeset with \Circuitikz{} \pgfcircversion{} (\pgfcircversiondate) on \TikZ{} \pgfversion{} (\pgfversiondate).
\subsection{Incompatible packages}\label{sec:incompatible-packages}
\TikZ's own \texttt{circuit} library, which was based on \Circuitikz, (re?)defines several styles used by this library. In order to have them work together you can use the \texttt{compatibility} package option, which basically prefixes the names of all \Circuitikz\ \texttt{to[]} styles with an asterisk.
So, if loaded with said option, one must write \verb!(0,0) to[*R] (2,0)! and, for transistors on a path, \verb!(0,0) to[*Tnmos] (2,0)!, and so on (but \verb!(0,0) node[nmos] {}!). See example at page~\pageref{ex:compatibility}.
Anyway, the compatibility code is a \emph{best effort} task and only very lightly tested --- the authors advice is to choose one or the other, without mixing them.
Another thing to take into account is that any \TikZ{} figure (and \Circuitikz{} ones qualify) \textbf{will} have problems if you use the \texttt{babel} package with a language that changes active characters (most of them). The solution is normally to add the line \verb|\usetikzlibrary{babel}| in your preamble, after loading \TikZ{} or \Circuitikz. This will normally solve the problem; some languages also require using \verb|\deactivatequoting| or the option \texttt{shorthands=off} for \texttt{babel}. Please check the documentation of \TikZ{} or this question \href{https://tex.stackexchange.com/questions/166772/problem-with-babel-and-tikz-using-draw}{on \TeX{} stackexchange site}.
Finally, the \TikZ{} library \texttt{bending} is loaded by the package, and its effects (the bending of the arrows on curved paths) will also affect the rest of your drawings.
\subsection{Related and extension packages}
\subsubsection{Related packages}
At the Friedrich-Alexander-Universität, a group of developers are implementing a graphical interface to draw circuits with \Circuitikz{}.
You can find more information \href{https://github.com/circuitikz/circuitikz/issues/782}{in this GitHub issue} or, better, in their \href{https://ussi.e-technik.uni-erlangen.de/}{main site}.
\subsubsection{Extension packages}
\Circuitikz{} is meant to be, as much as possible, format-agnostic (which means that it can be used from \LaTeX{}, plain \TeX{} and~\ConTeXt). It is growing in functionality and components, but not everything can be added to the package. In this section, there is a list of packages, available at CTAN, that extend or enhance \Circuitikz{} but are distributed separately.\footnote{If you have a package or know a package that should be listed here, please contact the \Circuitikz{} authors, or, better, send a pull request to the project and it will be added.}
\begin{description}
\item [\href{https://ctan.org/pkg/tikzquads}{tikzquads}] is a package for easily drawing the equivalent electrical circuits for quadrupoles and similar blocks. \LaTeX{} only.
\item [\href{https://ctan.org/pkg/tikzdotncross}{tikzdotncross}] offers a few alternative ways for declaring and marking coordinates and drawing a line with "jumps" over an already existent path\footnote{\dots read the introduction: try not to overuse the jumping symbol; it's not a standard for the last 25 years. Nevertheless, sometimes is very useful, especially for didactic reasons (Romano's personal opinion in this comment).}. \LaTeX{} only.
\end{description}
\subsection{Known bugs and limitation}\label{sec:bugs}
\Circuitikz{} will \textbf{not work} correctly with global (in the main \texttt{circuitikz} environment, or in \texttt{scope} environments) \emph{negative} scale parameters (\texttt{scale}, \texttt{xscale} or \texttt{yscale}), unless \texttt{transform shape} is also used, and even in this cases the behavior is not guaranteed.
Neither will it work with angle-changing scaling (when \texttt{xscale} is different form \texttt{yscale}) and with the global \texttt{rotate} parameter.
Correcting this will need a big rewrite of the path routines, and although the authors are thinking about solving it, don't hold your breath; it will need changing a lot of interwoven code (labels, voltages, currents and so on). Contributions and help would be highly appreciated.
This same issue creates a lot of problems with compatibility between \Circuitikz{} and the new \texttt{pic} \TikZ\ feature, so basically don't put components into \texttt{pic}s.
Also, notice that several components will interact in a funny way with global path options. Depending on the specific component, some parameters are inherited by the internal shape, and some others are reset. This is not easy to fix in general. We want some options to go through --- fill color, dashed pattern for example --- and some others to stay only in the outer path; and if the background shape needs some option for drawing the internal shape, like for example a rounded corner, it \emph{must} reset the external option. So there is no perfect solution, although since \texttt{v1.5.0} the shapes have been ``robustified'', so that by default arced corners and arrows parameters will \emph{not} be propagated into the shape.
Arrows with \texttt{to[]} components don't work, anyway, so basically avoid this situation.
In some cases, also the engine you are using (as \texttt{pdflatex}, \texttt{xelatex}, and so on) can impact coloring in corner cases (or even not so in the corner, like in \href{https://tex.stackexchange.com/q/709273/38080}{american-style voltage source signs}).
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[]
\draw (0,3) to[R] ++(3,0) node[npn, anchor=B]{};
% arrows will not work and give strange results
% so basically do not use them!
\draw[<->] (0,1.5) to[R] ++(3,0) node[npn, anchor=B]{};
\draw[shorten <=10pt] (0,0) to[R] ++(3,0)
node[npn, anchor=B]{};
\end{circuitikz}
\end{LTXexample}
Lastly, voltage styles interacts in strange ways with general (such as \texttt{american}, \texttt{european} style), in the sense that sometimes the order in which you enact them is important. That should be arguably fixed, but it will change (read break) a lot of existing code, so it'll stay; more information and workarounds in section~\ref{sec:mixing-voltage-styles}.
As a final notice, if you want to use the \texttt{externalize} library, do not use the \texttt{circuitikz} environment: use \texttt{tikzpicture} (which is really the same thing, see the FAQ~\ref{faqs:externalize}).
\subsection{Scale factor inaccuracies}\label{sec:usefpu}
Sometimes, when using fractional scaling factors and big values for the coordinates, the basic layer inaccuracies from \TeX{} can bite you, producing results like the following one:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=1.2, transform shape,
]
\draw (60,1) to [battery2, v_=$V_{cc}$, name=B] ++(0,2);
\node[draw,red,circle,inner sep=4pt] at(B.left) {};
\node[draw,red,circle,inner sep=4pt] at(B.right) {};
\end{circuitikz}
\end{LTXexample}
A general solution for this problem is difficult to find; probably the best approach is to use a \verb|scalebox| command to scale the circuit instead of relying on internal scaling.
Nevertheless, \href{https://tex.stackexchange.com/a/529159/38080}{Schrödinger's cat} found a solution which has been ported to \Circuitikz: you can use the key \texttt{use fpu reciprocal} which will patch a standard low-level math routine with a more precise one.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=1.2, transform shape,
use fpu reciprocal,
]
\draw (60,1) to [battery2, v_=$V_{cc}$] ++(0,2);
\end{circuitikz}
\end{LTXexample}
The \texttt{use fpu reciprocal} key seems to have no side effects, but given that it is patching an internal interface of \TikZ{} it can break any time, so it is advisable to use it only if and when needed.
\subsection{Incompabilities between versions}\label{sec:incompatible-changes}
Here, we will provide a list of incompatibilities between different versions of \Circuitikz. We will try to hold this list short, but sometimes it is easier to break with old syntax than include a lot of switches and compatibility layers. In general, changes that would invalidate a circuit (changes of polarity of components and so on) are almost always protected by a flag; the same is not true for purely aesthetic changes.
If unsure, you can check the version in your local installation by using the macro \verb!\pgfcircversion{}!.
\begin{itemize}
\item Since version \texttt{1.6.3} the default symbol for the minus sign changed from the simple \verb|$-$| to \verb|$\vphantom{+}-$|. The reason is that in some (most?) font, the minus sign is enclosed in a smaller bounding box than the plus sign and that leads to poorly aligned minus symbols in \texttt{american} and \texttt{raised} voltages. This was not noticed before because the two symbols share the same bounding box in the default Computer Modern font. You can look at \href{https://github.com/circuitikz/circuitikz/issues/721}{this issue on GitHub} for more details; if you want to go back to the previous definitions you can write
\begin{lstlisting}
\ctikzset{amplifiers/minus=$-$}
\ctikzset{bipoles/cvsourceam/inner minus=$-$}
\ctikzset{bipoles/vsourceam/inner minus=$-$}
\ctikzset{voltage/american minus=$-$}
\end{lstlisting}
\item Since version \texttt{1.6.3} the size of the solder dot and the connection dot of the body diodes for transistors has changed (now they are the same and are configurable). The new default scale of~\texttt{0.7} makes the dots \emph{area} more or less one half the one of the external connections. You can go back to the previous values with
\begin{lstlisting}
\ctikzset{transistor bodydiode/dot scale=0.5,
transistor solderdot scale=1.0}
\end{lstlisting}
\item Since version \texttt{1.6.2} \texttt{siunitx} will \textbf{not} work anymore with \ConTeXt{} (it was a very poor simulation layer, anyway); it has been disabled in upstream \ConTeXt, in favor of \href{https://www.pragma-ade.nl/general/manuals/units-mkiv.pdf}{its own \texttt{units} module}.
\item Version \texttt{1.6.0} has a big rewrite of the block's code. In principle the changes are backward-compatible, but there were several bugs (wrong anchors, errors with rotations, and so on) that have been fixed in the process.
\item Since \texttt{v1.5.1}\footnote{Do not use \texttt{v1.5.0}, it's buggy.} color management (see section~\ref{sec:colors}) and the details of how the shapes are drawn and protected by the external drawing options has changed. There should be no substantial changes to the circuits, though.
\item The \TikZ{} fix for \texttt{to[...] +(x,y)} behavior (see~\ref{sec:path-relative-coordinates}) uncovered a bug in the positioning of the labels in \Circuitikz{} that had been present since \texttt{v0.8}. So you \textbf{must} upgrade to \texttt{v1.4.1} or better if you have \TikZ{} newer than \texttt{3.1.8} (and you want/need to use the \texttt{+(x,y)} syntax).
\item There have been changes in (internal) parameters for capacitors in \texttt{v1.4.1}; now to change them you should use the style interface (see~\ref{sec:capacitors-styling}).
\item \Circuitikz{} \texttt{v1.4.0} introduced the rollback system for the package when using LaTeX; that (at least in principle) should be completely backward-compatible.
\item The path construction in \texttt{v1.4.0} has been changed a bit (again). The change shouldn't break any circuit and will correct a behavior that should have been fixed with the \texttt{v1.2.1} change (see below).
\item Version 1.3.6 fixes several problems with the stacked labels; the most important change is that now the bracing of arguments is respected as in version 1.3.0 for the other labels. The special treatment in stacked labels (and only in stacked labels!) for the (still experimental\footnote{and, really, not advised\dots}) \texttt{siunitx} compact syntax \texttt{<...>} has been removed: it was completely buggy before, and silently ignored, now will throw an error.
\item Version 1.3.3 fixes the direction of the arrows in tunable elements; before this version, they were more or less random, now the arrow goes from bottom left to top right. You have the option to go back to the old behavior with \texttt{\textbackslash ctikzset\{bipoles/fix tunable direction=false\}}. As a compensation for the fuss, now the arrows are configurable. To learn more, see the FAQ:~\ref{faq:tunable-arrow}.
\item Version 1.3.1 removes the warning if you do not specify a voltage direction.
\item Version 1.3.0 fixes the buggy stripping of braces from labels and annotations (see~\ref{sec:bracing-of-labels}).
\item After 1.2.7 a big code reorganization (which had the collateral effect of fixing some bugs) has been made; no changes should be visible, but a fallback point at 1.2.7 has been added.
\item You \textbf{must} upgrade to v1.2.7 or newer if you use a \TikZ{} 3.1.8 or 3.1.8a (but better upgrade both packages to the current version). You can check the \TikZ{} version installed using the macro \verb|\pgfversion|.
\item After v1.2.1: \textbf{Important:} the routine that implements the \texttt{to[...]} component positioning has been rewritten. That should enhance the line joins in paths, and it's safer, but it can potentially change some old behavior.
One of the changes is that the previous routine did the wrong thing if you used \texttt{(node) to[...]} (you should use an anchor or a coordinate, not a node there --- like \texttt{(node.anchor) to[...]}).
The other one was that in the structure \texttt{... to[...] node[pos=\emph{something}] (coord)} the value of \texttt{pos} was completely wrong (even if you don't use \texttt{pos} explicitly, remember it's \texttt{pos=0.5} by default).
Additionally, the old code disrupted the \TikZ{} path-fill mechanism, so that you could get away with using the \texttt{fill} option on paths and having just the components filled, not the path. That was incorrect, although sometime it was handy (sorry).
See the FAQ at section~\ref{faqs:nodes} for more information.
\item After v1.2.0: voltage arrows, symbols and label positions are calculated with a rewritten routine. There should be little change, \emph{unless} you touched internal values\dots
\item After v1.1.3: from version 1.1.0 to version 1.1.2, the inverted Schmitt buffer in IEEE style ports was called \texttt{inv schmitt} (with an additional space). The correct name is \texttt{invschmitt port} (the same as the legacy american port).
\item After v1.1.2: the position of \texttt{american} voltages for the \texttt{open} bipoles changed (you can revert to the old behavior, see section~\ref{sec:sub-voltage-position}).
\item After v0.9.7: the position of the text of transistor nodes has changed; see section~\ref{sec:transistors-labels}.
\item After v0.9.4: added the concept of styling of circuits. It should be backward compatible, but it's a big change, so be ready to use the \texttt{0.9.3} snapshot (see below for details).
\item After v0.9.0: the parameters \texttt{tripoles/american or port/aaa}, \texttt{...bbb}, \texttt{...ccc} and \texttt{...ddd} are no longer used and are silently ignored; the same stands for the similarly named parameters in \texttt{nor}, \texttt{xor}, and \texttt{xnor} ports.
\item After v0.9.0: voltage and current directions/signs (plus and minus signs in case of \texttt{american voltages} and arrows in case of \texttt{european voltages}) have been rationalized with a couple of new options (see details in section~\ref{curr-and-volt}). The default case is still the same as v0.8.3, to avoid potentially wrong circuits, but you would be better off with one of the new voltage directions (\texttt{EFvoltages} or \texttt{RPvoltages}) for newer circuits.
\item Since v0.8.2: voltage and current label directions (\texttt{v<=} / \texttt{i<=}) do NOT change the orientation of the drawn source shape anymore. Use the \texttt{invert} option to rotate the shape of the source. Furthermore, from this version on, the current label (\texttt{i=}) at current sources can be used independent of the regular label (\texttt{l=}).
\item Since v0.7: The label behavior at mirrored bipoles has changed, this fixes the voltage drawing, but perhaps you will have to adjust your label positions.
\item Since v0.5.1: The parts \texttt{pfet}, \texttt{pigfete}, \texttt{pigfetebulk}, and \texttt{pigfetd} are now mirrored by default. Please adjust your yscale-option to correct this.
\item Since v0.5: New voltage counting direction, there exists an option to use the old behavior.
\end{itemize}
If you have older projects that show compatibility problems, you have two options:
\begin{itemize}
\item you can use an older version locally using the git-version and picking the correct commit from the repository (branch gh-pages) or the main GitHub site directly;
\item if you are using \LaTeX, the distribution has embedded several important old versions: \texttt{0.4}, \texttt{0.6}, \texttt{0.7}, \texttt{0.8.3}, \texttt{0.9.3}, \texttt{0.9.6}, \texttt{1.0}, \texttt{1.1.2}, \texttt{1.2.7}, and \texttt{1.4.6}.
To switch to use them, since \texttt{v1.4.0} you simply use the \href{https://www.latex-project.org/publications/2018-FMi-TUB-tb122mitt-version-rollback.pdf}{new LaTeX kernel rollback system}, changing your \verb|\usepackage| invocation to something like:
\begin{lstlisting}[numbers=none]
\usepackage[]{circuitikz}[=v0.8.3] % or v0.4, v0.6, ...
\end{lstlisting}
You can also specify a date instead of a version number: if you write
\begin{lstlisting}[numbers=none]
\usepackage[]{circuitikz}[=2020/02/05]
\end{lstlisting}
the rollback system will load the version that was current on February 5th,~2020 (in this case it will be \texttt{v1.0} which was released the day before).
If for whatever reasons your kernel is older, you can still use the old method of loading the \emph{package-version} package; for example:
\begin{lstlisting}[numbers=none]
\usepackage[]{circuitikz-0.8.3} % or circuitikz-0.4, 0.6...
\end{lstlisting}
which is an inferior solution because it can fool any package you use that depend on \texttt{circuitikz}.
Either way, you have to take care of the options that may have changed between versions (and sometime styles, if you use them).
\item if you are using \ConTeXt, only versions \texttt{0.8.3}, \texttt{0.9.3}, \texttt{0.9.6}, \texttt{1.0}, \texttt{1.1.2}, \texttt{1.2.7}, and \texttt{1.4.6} are packaged; you can use it with
\begin{lstlisting}[numbers=none]
\usemodule[circuitikz-0.8.3]
\end{lstlisting}
\end{itemize}
\subsection{Feedback}
The easiest way to contact the authors is via the official GitHub repository: \url{https://github.com/circuitikz/circuitikz/issues}. For general help question, a lot of nice people are quite active on \url{https://tex.stackexchange.com/questions/tagged/circuitikz} --- be sure to read the help pages for the site and ask!
\subsection{Package options}
\label{sec:package-options}
Circuit people are very opinionated about their symbols. In order to satisfy the individual taste you can set a bunch of package options.
There are arguably way too many options in \Circuitikz, as you can see in the following list. Since version \texttt{1.0}, it is recommended to just use the basic ones --- voltage directions (you \textbf{should} specify one of them), \texttt{siunitx} (only for \LaTeX{}), the global style (\texttt{american} or \texttt{european}) and use styles (see~\ref{sec:styling}) for the remaining options.
The standard options are set by historical reason, and reflect the preferences of the author that introduced them. For example you get this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R=2<\ohm>, i=?, v=84<\volt>] (2,0) --
(2,2) to[V<=84<\volt>] (0,2)
-- (0,0);
\end{circuitikz}
\end{LTXexample}
Feel free to load the package with your own cultural options:
\begin{center}
\begin{tabular}{ll}\toprule
\LaTeX & \ConTeXt \\ \midrule
\verb!\usepackage[american]{circuitikz}! & \verb!\usemodule[circuitikz][american]!\\
\bottomrule
\end{tabular}
\end{center}
\begin{LTXexample}[varwidth=true,linerange={1-1,3-6}]
\begin{circuitikz}
[circuitikz/voltage=american, circuitikz/resistor=american] % line not printed
\draw (0,0) to[R=2<\ohm>, i=?, v=84<\volt>] (2,0) --
(2,2) to[V<=84<\volt>] (0,2)
-- (0,0);
\end{circuitikz}
\end{LTXexample}
\textbf{However}, most of the global package options are not available in \ConTeXt; in that case you can always use the appropriate \verb|\tikzset{}| or \verb|\ctikzset{}| command after loading the package.
\medskip{}
\noindent Here is the list of all the options:
{\sloppy % for the big lists of \texttt here
\begin{itemize}
\item \texttt{europeanvoltages}: uses arrows to define voltages, and uses european-style voltage sources;
\item \texttt{straightvoltages}: uses arrows to define voltages, and and uses straight voltage arrows;
\item \texttt{americanvoltages}: uses $-$ and $+$ to define voltages, and uses american-style voltage sources;
\item \texttt{europeancurrents}: uses european-style current sources;
\item \texttt{americancurrents}: uses american-style current sources;
\item \texttt{europeanresistors}: uses rectangular empty shape for resistors, as per european standards;
\item \texttt{americanresistors}: uses zig-zag shape for resistors, as per american standards;
\item \texttt{europeaninductors}: uses rectangular filled shape for inductors, as per european standards;
\item \texttt{americaninductors}: uses ``4-bumps'' shape for inductors, as per american standards;
\item \texttt{cuteinductors}: uses my personal favorite, ``pig-tailed'' shape for inductors;
\item \texttt{americanports}: uses triangular logic ports, as per american standards;
\item \texttt{europeanports}: uses rectangular logic ports, as per european standards;
\item \texttt{americangfsurgearrester}: uses round gas filled surge arresters, as per american standards;
\item \texttt{europeangfsurgearrester}: uses rectangular gas filled surge arresters, as per european standards;
\item \texttt{european}: equivalent to \texttt{europeancurrents}, \texttt{europeanvoltages}, \texttt{europeanresistors}, \texttt{europeaninductors}, \texttt{europeanports}, \texttt{europeangfsurgearrester};
\item \texttt{american}: equivalent to \texttt{americancurrents}, \texttt{americanvoltages}, \texttt{americanresistors}, \texttt{americaninductors}, \texttt{americanports}, \texttt{americangfsurgearrester};
\item \texttt{siunitx}: integrates with \texttt{SIunitx} package. If labels, currents or voltages are of the form \verb!#1<#2>! then what is shown is actually \verb!\SI{#1}{#2}! (not supported in \ConTeXt; it has been disabled in upstream \ConTeXt, in favor of \href{https://www.pragma-ade.nl/general/manuals/units-mkiv.pdf}{its own \texttt{units} module});
\item \texttt{nosiunitx}: labels are not interpreted as above;
\item \texttt{fulldiode}: the various diodes are drawn \emph{and} filled by default, i.e. when using styles such as \texttt{diode}, \texttt{D}, \texttt{sD}, \ldots Other diode styles can always be forced with e.g. \texttt{Do}, \texttt{D-}, \ldots
\item \texttt{strokediode}: the various diodes are drawn \emph{and} stroke by default, i.e. when using styles such as \texttt{diode}, \texttt{D}, \texttt{sD}, \ldots Other diode styles can always be forced with e.g. \texttt{Do}, \texttt{D*}, \ldots
\item \texttt{emptydiode}: the various diodes are drawn \emph{but not} filled by default, i.e. when using styles such as \texttt{D}, \texttt{sD}, \ldots Other diode styles can always be forced with e.g. \texttt{Do}, \texttt{D-}, \ldots
\item \texttt{arrowmos}: pmos and nmos have arrows analogous to those of pnp and npn transistors;
\item \texttt{noarrowmos}: pmos and nmos do not have arrows analogous to those of pnp and npn transistors;
\item \texttt{fetbodydiode}: draw the body diode of a FET;
\item \texttt{nofetbodydiode}: do not draw the body diode of a FET;
\item \texttt{fetsolderdot}: draw solderdot at bulk-source junction of some transistors;
\item \texttt{nofetsolderdot}: do not draw solderdot at bulk-source junction of some transistors;
\item \texttt{emptypmoscircle}: the circle at the gate of a pmos transistor does not get filled;
\item \texttt{lazymos}: draws lazy nmos and pmos transistors. Chip designers with huge circuits prefer this notation;
\item \texttt{legacytransistorstext}: the text of transistor nodes is typeset near the collector;
\item \texttt{nolegacytransistorstext} or \texttt{centertransistorstext}: the text of transistor nodes is typeset near the center of the component;
\item \texttt{straightlabels}: labels on bipoles are always printed straight up, i.e.~with horizontal baseline;
\item \texttt{rotatelabels}: labels on bipoles are always printed aligned along the bipole;
\item \texttt{smartlabels}: labels on bipoles are rotated along the bipoles, unless the rotation is very close to multiples of 90°;
\item \texttt{compatibility}: makes it possibile to load \Circuitikz\ and \TikZ\ circuit library together.
\item Voltage directions: until v0.8.3, there was an error in the coherence between american and european voltages styles (see section~\ref{curr-and-volt}) for the batteries. This has been fixed, but to guarantee backward compatibility and to avoid nasty surprises, the fix is available with new options:
\begin{itemize}
\item \texttt{oldvoltagedirection}: Use old way of voltage direction having a difference between european and american direction, with wrong default labeling for batteries;
\item \texttt{nooldvoltagedirection}: The standard from 0.5 onward, utilizes the (German?) standard of voltage arrows in the direction of electric fields (without fixing batteries);
\item \texttt{RPvoltages} (meaning Rising Potential voltages): the arrow is in the direction of rising potential, like in \texttt{oldvoltagedirection}, but batteries and current sources are fixed to follow the passive/active standard;
\item \texttt{EFvoltages} (meaning Electric Field voltages): the arrow is in the direction of the electric field, like in \texttt{nooldvoltagedirection}, but batteries are fixed;
\end{itemize}
If none of these option are given, the package will default to \texttt{nooldvoltagedirection}. The behavior is also selectable circuit by circuit with the \texttt{voltage dir} style.
\item \texttt{betterproportions}\footnote{May change in the future!}: nicer proportions of transistors in comparision to resistors; notice that this option is superseded by styles and it's kept just for compatibility, do not use it in new projects;
\end{itemize}
The old options in the singular (like \texttt{american voltage}) are still available for compatibility, but are discouraged.
\medskip
Loading the package with no options is equivalent to the following options:
\texttt{[nofetsolderdot, europeancurrents, europeanvoltages, americanports,
americanresistors, cuteinductors, europeangfsurgearrester, nosiunitx, noarrowmos,
smartlabels, nocompatibility, centertransistorstext]}.
\medskip
In \ConTeXt\ the options are similarly specified: \texttt{current= european|american}, \texttt{voltage= european|american}, \texttt{resistor= american|european}, \texttt{inductor= cute|american|european}, \texttt{logic= american|european}, \texttt{arrowmos= false|true}.
} %\stop the \sloppy processing
\section{Tutorials}
Before even starting with \Circuitikz{} you should be sure to have understood the basics of \TikZ{}. It is \emph{hightly recommended} that you read and go through \emph{at least} the following parts of the \TikZ{} manual:
\begin{itemize}
\item ``Tutorial: A Picture for Karl's Students'' (around page 30);
\item ``Specifying Coordinates'' (around page 131)
\item ``Nodes and their shapes'' (around page 220)
\end{itemize}
\dots but obviously a good knowledge of \TikZ{} will help you a lot. Remember, a circuit drawn with \Circuitikz{} is nothing more than a \texttt{tikzpicture} with an (albeit powerful and extended) set of shapes and commodity macros.
Said that, to draw a circuit, you have to load the \Circuitikz{} package; this can be done with
\begin{lstlisting}
\usepackage[siunitx, RPvoltages]{circuitikz}
\end{lstlisting}
somewhere in your document preamble. It will load automatically the needed packages if not already done before.
\subsection{Getting started with \Circuitikz: a current shunt}
Let's say we want to prepare a circuit to teach how a current shunt works; the idea is to draw a current generator, a couple of resistors in parallel, and the indication of currents and voltages for the discussion.
A circuit in \Circuitikz{} is drawn into a \texttt{circuitikz} environment (which is really an alias for \texttt{tikzpicture}). In this first example we will use absolute coordinates.
The electrical components can be divided in two main categories: the ones that are bipoles and are placed along a path (also known as \texttt{to}-style component, for their usage), and components that are nodes and can have any number of poles or connections.
Let's start with the first type of component, and build a basic mesh:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,0) to[isource] (0,3) -- (2,3)
to[R] (2,0) -- (0,0);
\end{circuitikz}
\end{LTXexample}
The symbol for the current source might surprise some; this is actually the european-style symbol, and the type of symbol chosen reflects the default options of the package (see section~\ref{sec:package-options}). Let's change the style for now (the author of the tutorial, Romano, is European --- but he has always used American-style circuits, so\dots); and while we're at it, let's add the other branch and some labels.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[isource, l=$I_0$] (0,3) -- (2,3)
to[R=$R_1$] (2,0) -- (0,0);
\draw (2,3) -- (4,3) to[R=$R_2$]
(4,0) -- (2,0);
\end{circuitikz}
\end{LTXexample}
You can use a single path or multiple paths when drawing your circuit, it's just a question of style (but be aware that closing paths perfectly could be non-trivial, see section~\ref{sec:line-joins}), and you can use standard \TikZ\ lines (\verb|--|, \verb+|-+ or similar) for the wires. Nonetheless, sometime using the \Circuitikz{} specific \texttt{short} component for the wires can be useful, because then we can add labels and poles to them, as for example in the following circuit, where we add a current (with the key \texttt{i=...}, see section~\ref{sec:currents}) and a connection dot (with the special shortcut \texttt{-*} which adds a \texttt{circ} node at the end of the connection, see sections~\ref{sec:terminals} and~\ref{sec:bipole-nodes}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[isource, l=$I_0$] (0,3)
to[short, -*, i=$I_0$] (2,3)
to[R=$R_1$, i=$i_1$] (2,0) -- (0,0);
\draw (2,3) -- (4,3)
to[R=$R_2$, i=$i_2$]
(4,0) to[short, -*] (2,0);
\end{circuitikz}
\end{LTXexample}
One of the problems with this circuit is that we would like to have the current labels in a different position, such as for example on the upper side of the resistors, so that Kirchoff's Current Law at the node is better shown to students. No problem; as you can see in section~\ref{curr-and-volt} you can use the position specifiers \verb|<>^_| after the key \texttt{i}:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[isource, l=$I_0$] (0,3)
to[short, -*, i=$I_0$] (2,3)
to[R=$R_1$, i>_=$i_1$] (2,0) -- (0,0);
\draw (2,3) -- (4,3)
to[R=$R_2$, i>_=$i_2$]
(4,0) to[short, -*] (2,0);
\end{circuitikz}
\end{LTXexample}
Finally, we would like to add voltages indication for carrying out the current formulas; as the default position of the voltage signs seems a bit cramped to me, I am adding the \texttt{voltage shift} parameter to make a bit more space for it\dots
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american, voltage shift=0.5]
\draw (0,0)
to[isource, l=$I_0$, v=$V_0$] (0,3)
to[short, -*, i=$I_0$] (2,3)
to[R=$R_1$, i>_=$i_1$] (2,0) -- (0,0);
\draw (2,3) -- (4,3)
to[R=$R_2$, i>_=$i_2$]
(4,0) to[short, -*] (2,0);
\end{circuitikz}
\end{LTXexample}
\emph{Et voilà!}. Remember that this is still \LaTeX, which means that you have done a description of your circuit, which is, in a lot of way, independent of the visualization of it. If you ever have to adapt the circuit to, say, a journal that forces European style and flows instead of currents, you just change a couple of things and you have what seems a completely different diagram:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european, voltage shift=0.5]
\draw (0,0)
to[isourceC, l=$I_0$, v=$V_0$] (0,3)
to[short, -*, f=$I_0$] (2,3)
to[R=$R_1$, f>_=$i_1$] (2,0) -- (0,0);
\draw (2,3) -- (4,3)
to[R=$R_2$, f>_=$i_2$]
(4,0) to[short, -*] (2,0);
\end{circuitikz}
\end{LTXexample}
And finally, this is still \TikZ, so that you can freely mix other graphics element to the circuit.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american, voltage shift=0.5]
\draw (0,0)
to[isource, l=$I_0$, v=$V_0$] (0,3)
to[short, -*, f=$I_0$] (2,3)
to[R=$R_1$, f>_=$i_1$] (2,0) -- (0,0);
\draw (2,3) -- (4,3)
to[R=$R_2$, f>_=$i_2$]
(4,0) to[short, -*] (2,0);
\draw[red, thick] (0.6,2.1) rectangle (4.2,3.8)
node[pos=0.5, above]{KCL};
\end{circuitikz}
\end{LTXexample}
\clearpage
\subsection{A non-inverting op-amp amplifier}
\begin{minipage}[t]{0.55\linewidth}
Let's now try to draw a non-inverting amplifier based on op-amps; the canonical implementation can be, for example, \href{https://www.electronics-tutorials.ws/opamp/opamp_3.html}{this one from ``electronics tutorials''}.
Obviously, the style and form of drawing a circuit is often a matter of personal tastes and, maybe even more important, of the details you are focusing on; drawing a non-inverting amplifier will be different if you are drawing it to \emph{explain how it works} or if you are simply using it in a more complex circuit, assuming its operation well known by the reader. Anyway, the final objective is to have a circuit like the one on the right, drawn so that it is easy to reuse.
\end{minipage}\hfill
\begin{minipage}[t]{0.4\linewidth}
\begin{circuitikz}[baseline=(OA.+), ]
\ctikzset{amplifiers/fill=cyan!20, component text=left}
\draw (0,0) node[above]{$v_i$} to[short, o-] ++(1,0)
node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
(OA.-) -- ++(0,-1) coordinate(FB)
to[R=$R_1$] ++(0,-2) node[ground]{}
(FB) to[R=$R_2$, *-] (FB -| OA.out) -- (OA.out)
to [short, *-o] ++(1,0) node[above]{$v_o$}
;
\end{circuitikz}
\end{minipage}
We have to start the drawing from a generic point. Given that the idea is to have a reusable block, instead of positioning the op-amp and build around it, we will start from the input ``pole'':
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,0) node[above]{$v_i$} to[short, o-] ++(1,0)
node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
;
\end{circuitikz}
\end{LTXexample}
In this snippet, notice that the only absolute coordinate is the first one; that will enable us to ``copy and paste'' the circuit in several places, or create a macro for it. We position a text node above it, and then draw a wire with a pole to a relative \texttt{(1,0)} coordinate: in other words, we \emph{move} 1~unit to the right drawing a short-circuit, which is the same as a wire. The usage of \texttt{to[short...]} simplifies the position of the pole, but notice that we could have also written:
\begin{lstlisting}[numbers=none]
\draw (0,0) node[above]{$v_i$} node[ocirc]{} -- ++(1,0) ...
\end{lstlisting}
with the same result.
The second step is to position the op-amp. We can check the manual and see the component's description (section~\ref{sec:amplifiers}):
\begin{groupdesc}
\circuitdesc*{op amp}{Operational amplifier}{}( +/180/0.2, -/180/0.2, out/0/
0.2, up/90/0.2, down/-90/0.2 )
\end{groupdesc}
where we notice the type of the component (it is a node-type component, so we have to use
\texttt{node} to position it) and the available ``anchors'': points we can use to position the shape or to connect to. Not all the anchors are \emph{explicitly} printed in the description box; you should read further in the manual and you'll see a ``\emph{component} anchors'' (\ref{sec:amplifiers-anchors}) section with the relevant information.
Anyway, the op-amp must be connected with the \texttt{+} anchor to our input wire, so we say \texttt{anchor=+} in the option lists; this shifts the whole element so that the named anchor will lie at the current position of the path. Moreover, normally the shape has the inverting input on the bottom side, and we want it the other way around, so we use also \texttt{noinv input up} in the keys defining the node. We could also have flipped the shape with \texttt{yscale=-1}, but in this case we would need to consider the effects on anchors and on the text; see section~\ref{sec:mirroring-and-flipping}.
Now we can draw the resistors; let's start with $R_1$. We will draw it going down vertically from the \texttt{-} anchor --- we have named the node \texttt{OA} so that will be \texttt{OA.-}. We will need to connect the $R_2$ also, so we do the following:
\begin{itemize}
\item draw a wire going down, and mark a point where we want the feedback resistor to connect;
\item then draw $R_1$ and finally
\item draw the ground node.
\end{itemize}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=0.8, transform shape]
\draw (0,0) node[above]{$v_i$} to[short, o-] ++(1,0)
node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
(OA.-) -- ++(0,-1) coordinate(FB)
to[R=$R_1$] ++(0,-2) node[ground]{}
;
\end{circuitikz}
\end{LTXexample}
We are only missing the feedback resistor now. We will use \emph{orthogonal coordinates}, writing:
\begin{lstlisting}[numbers=none]
\draw (FB) to[R=$R_2$] (FB -| OA.out) -- (OA.out)
\end{lstlisting}
The meaning is the following:
\begin{itemize}
\item move the current point to the coordinate named \texttt{FB};
\item put a resistor, with label $R_2$, from here \textbf{to}\dots
\item the coordinates, which are at the intersection of a horizontal line through \texttt{FB} and a vertical line through \texttt{OA.out}: the \texttt{-|} coordinate operation is quite mnemonic;
\item then continue drawing to \texttt{OA.out}.
\end{itemize}
You can use a separate \verb|\draw| command or just continue the path you were writing; the choice is just personal preference, but be warned that it can affect the drawing of poles (see section~\ref{sec:bipole-nodes} about this if you notice strange things).
Finally, we add the output and a couple of nodes:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=0.8, transform shape]
\draw (0,0) node[above]{$v_i$} to[short, o-] ++(1,0)
node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
(OA.-) -- ++(0,-1) coordinate(FB)
to[R=$R_1$] ++(0,-2) node[ground]{}
(FB) to[R=$R_2$, *-] (FB -| OA.out) -- (OA.out)
to [short, *-o] ++(1,0) node[above]{$v_o$}
;
\end{circuitikz}
\end{LTXexample}
The last step to obtain the final look is to add a bit of styling. We want the op-amp filled with a light cyan color, and we prefer to have the label aligned with the left side of the device:
\begin{LTXexample}[varwidth=true]
\ctikzset{amplifiers/fill=cyan!20, component text=left}
\begin{circuitikz}[scale=0.8, transform shape]
\draw (0,0) node[above]{$v_i$} to[short, o-] ++(1,0)
node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
(OA.-) -- ++(0,-1) coordinate(FB)
to[R=$R_1$] ++(0,-2) node[ground]{}
(FB) to[R=$R_2$, *-] (FB -| OA.out) -- (OA.out)
to [short, *-o] ++(1,0) node[above]{$v_o$}
;
\end{circuitikz}
\end{LTXexample}
The \verb|\ctikzset| command choosing the style is better placed in the preamble, though. Style should be coherent for all the document body, so avoiding stating it for every circuit is normally the best strategy.
\subsubsection{Reusing the circuit: the easy way}
\begingroup % to keep changes local
The easiest way to reuse the circuit is to put it in a macro. This is a very flexible way of doing it; the only drawback is that the only easy way to position it is using the first coordinate: you will not be able to move the component using ``anchors''; that is more complex and will need the use of subcircuits (but you will lose parameters\dots see section~\ref{sec:subcircuits}).
Defining a macro for our amplifier could be as easy as this:
\ctikzset{amplifiers/fill=cyan!20, component text=left}
\newcommand\myNIA[4]{%1: name of this amplifier, %2 start coordinate, %3 R1, %4 R2
\draw #2 coordinate(#1-in) to[short] ++(1,0)
node[op amp, noinv input up, anchor=+](#1-OA){\texttt{#1}}
(#1-OA.-) -- ++(0,-1) coordinate(#1-FB)
to[R=#3] ++(0,-2) node[ground]{}
(#1-FB) to[R=#4, *-] (#1-FB -| #1-OA.out) -- (#1-OA.out)
to [short, *-] ++(1,0) coordinate(#1-out)
;
}
\begin{lstlisting}
\newcommand\myNIA[4]{%1: name of this amplifier, %2 start coordinate, %3 R1, %4 R2
\draw #2 coordinate(#1-in) to[short] ++(1,0)
node[op amp, noinv input up, anchor=+](#1-OA){\texttt{#1}}
(#1-OA.-) -- ++(0,-1) coordinate(#1-FB)
to[R=#3] ++(0,-2) node[ground]{}
(#1-FB) to[R=#4, *-] (#1-FB -| #1-OA.out) -- (#1-OA.out)
to [short, *-] ++(1,0) coordinate(#1-out)
;
}
\end{lstlisting}
We remove the open poles (it's better to draw them at the end to avoid artifacts) and then we make the names of the coordinates and of the nodes unique, by prepending a parameter that we will provide at every invocation. Then we remove the labels (for simplicity here) and add a couple of coordinates that we will be able to use from the outside when building our circuit.
And we can use it like in the following:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=0.7, transform shape]
\myNIA{OA1}{(0,0)}{$R_1$}{$R_2$}
% start drawing from the output of OA1
\myNIA{OA2}{(OA1-out)}{$R_3$}{$R_4$}
\node [ocirc] at (OA1-in) {};
\node [above] at (OA1-in) {$v_i$};
\node [ocirc] at (OA2-out){};
\node [above] at (OA2-out) {$v_o$};
\draw (OA1-out) -| (OA2-in);
\end{circuitikz}
\end{LTXexample}
\endgroup % remove the changes of the op-amp tutorial subsection
\clearpage
\subsection{A transistor-based amplifier}
\begingroup % do not propagate to the rest of the manual
The idea is to draw a two-stage amplifier for a lesson, or exercise, on the different qualities of BJT and MOSFET transistors.
Please notice that this section uses the ``new'' position for transistor labels, enabled since version \texttt{0.9.7}. You should refer to older manuals to see how to do the same with older versions; basically the transistor's names were output using an additional \verb|node{}| command.
Also notice that this is a more ``personal'' tutorial, showing a way to draw circuits that is, in the author's opinion, highly reusable and easy to do.
The idea is to use relative coordinates and named nodes as much as possible, so that changes in the circuit are easily done by changing just a few numbers that select relative positions and by using symmetries. Crucially, this kind of approach makes each block reusable in other diagrams by just changing one coordinate.
First of all, let's define a handy function to show the position of nodes:
\def\normalcoord(#1){coordinate(#1)}
\def\showcoord(#1){coordinate(#1) node[circle, red, draw, inner sep=1pt,
pin={[red, overlay, inner sep=0.5pt, font=\tiny, pin distance=0.1cm,
pin edge={red, overlay}]45:#1}](){}}
\let\coord=\normalcoord
\let\coord=\showcoord
\begin{lstlisting}
\def\normalcoord(#1){coordinate(#1)}
\def\showcoord(#1){coordinate(#1) node[circle, red, draw, inner sep=1pt,
pin={[red, overlay, inner sep=0.5pt, font=\tiny, pin distance=0.1cm,
pin edge={red, overlay}]45:#1}](){}}
\let\coord=\normalcoord
\let\coord=\showcoord
\end{lstlisting}
The idea is that you can use \verb|\coord()| instead of \verb|coordinate()| in paths, and that will draw small red \emph{markers} showing them. For example:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american,]
\draw (0,0) node[npn](Q){};
\path (Q.center) \coord(center)
(Q.B) \coord(B) (Q.C) \coord(C)
(Q.E) \coord(E);
\end{circuitikz}
\end{LTXexample}
After the circuit is drawn, simply commenting out the second \verb|\let| command will hide all the markers.
So let's start with the first stage transistor; given that my preferred way of drawing a MOSFET is with arrows, I'll start with the command \verb|\ctikzset{tripoles/mos style/arrows}|:
\ctikzset{tripoles/mos style/arrows}
\def\killdepth#1{{\raisebox{0pt}[\height][0pt]{#1}}}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american,]
\ctikzset{tripoles/mos style/arrows}
\def\killdepth#1{{\raisebox{0pt}[\height][0pt]{#1}}}
\path (0,0) -- (2,0); % bounding box
\draw (0,0) node[nmos](Q1){\killdepth{Q1}};
\end{circuitikz}
\end{LTXexample}
I had to do draw an invisible line to take into account the text for Q1 --- the text is not taken into account in calculating the bounding box. This is because the ``geographical'' anchors (\texttt{north}, \texttt{north west}, \dots) are defined for the symbol only. In a complex circuit, this is rarely a problem.
Another thing I like to modify with respect to the standard is the position of the arrows in transistors, which are normally in the middle of the symbol. Using the following setting (see section~\ref{sec:styling-transistors}) will move the arrows to the start or end of the corresponding pin.
\ctikzset{transistors/arrow pos=end}
\begin{lstlisting}
\ctikzset{transistors/arrow pos=end}
\end{lstlisting}
The tricky thing about \verb|\killdepth{}| macro is the finicky details. Without the \verb|\killdepth| macro, the labels of different transistors will be adjusted so that the vertical center of the box is at the \texttt{center} anchor, and as an effect, labels with descenders (like Q) will have a different baseline than labels without. You can see this here (it's really subtle):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american,]
\draw (0,0) node[nmos](Q1){q1} ++(2,0)
node[nmos](M1){m1};
\draw [red] (Q1.center) ++(0,-0.7ex) -- ++(3,0);
\draw (0,-2)node[nmos](Q1){\killdepth{q1}} ++(2,0)
node[nmos](M1){\killdepth{m1}};
\draw [red] (Q1.center) ++(0,-0.7ex) -- ++(3,0);
\end{circuitikz}
\end{LTXexample}
We will start connecting the first transistor with the power supply with a couple of resistors. Notice that I am naming the nodes \texttt{GND}, \texttt{VCC} and \texttt{VEE}, so that I can use the coordinates to have all the supply rails at the same vertical position (more on this later).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american,]
\draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
\draw (Q1.S) to[R, l2^=$R_S$ and \SI{5}{k\ohm}]
++(0,-3) node[vee](VEE){$V_{EE}=\SI{-10}{V}$};
\draw (Q1.D) to[R, l2_=$R_D$ and \SI{10}{k\ohm}]
++(0,3) node[vcc](VCC){$V_{CC}=\SI{10}{V}$};
\draw (Q1.S) to[short] ++(2,0) to[C=$C_1$]
++(0,-1.5) node[ground](GND){};
% show the named coordinates!
\path (GND) \coord(GND)
(VCC) \coord(VCC)
(VEE) \coord(VEE);
\end{circuitikz}
\end{LTXexample}
After that, let's add the input part. I will use a named node here, referring to it to add the input source. Notice how the ground node is positioned: the coordinate \texttt{(in |- GND)} is the point with the horizontal coordinate of \texttt{(in)} and the vertical one of \texttt{(GND)}, lining it up with the ground of the capacitor $C_1$ (you can think it as ``the point aligned vertically with \texttt{in} and horizontally with \texttt{GND}'').
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american, scale=0.7, transform shape]
\draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
\draw (Q1.S) to[R, l2^=$R_S$ and \SI{5}{k\ohm}]
++(0,-3) node[vee](VEE){$V_{EE}=\SI{-10}{V}$};
\draw (Q1.D) to[R, l2_=$R_D$ and \SI{10}{k\ohm}]
++(0,3) node[vcc](VCC){$V_{CC}=\SI{10}{V}$};
\draw (Q1.S) to[short] ++(2,0) to[C=$C_1$]
++(0,-1.5) node[ground](GND){};
\draw (Q1.G) to[short] ++(-1,0)
\coord (in) to[R, l2^=$R_G$ and \SI{1}{M\ohm}]
(in |- GND) node[ground]{};
\draw (in) to[C, l_=$C_2$,*-o]
++(-1.5,0) node[left](vi1){$v_i=v_{i1}$};
\end{circuitikz}
\end{LTXexample}
Notice that the only absolute coordinate here is the first one, \texttt{(0,0)}; so the elements are connected with relative movements and can be moved by just changing one number (for example, changing the \verb| to[C=$C_1$] ++(0,-1.5) | will move \emph{all} the grounds down).
This is the final circuit, with the nodes still marked:
\begin{lstlisting}[basicstyle=\small\ttfamily, escapechar=@]
% this is for the blue brackets under the circuit
\tikzset{blockdef/.style={%
{Straight Barb[harpoon, reversed, right, length=0.2cm]}-{Straight Barb[harpoon, reversed, left, length=0.2cm]},
blue,
}}
\def\killdepth#1{{\raisebox{0pt}[\height][0pt]{#1}}}
\def\coord(#1){coordinate(#1)}
\def\coord(#1){coordinate(#1) node[circle, red, draw, inner sep=1pt,
pin={[red, overlay, inner sep=0.5pt, font=\tiny, pin distance=0.1cm,
% we reset the arrow in pin edge to avoid carrying over the path one!
pin edge={red, overlay,-}]45:#1}](#1-node){}}
\begin{circuitikz}[american, ]
\draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
\draw (Q1.S) to[R, l2^=$R_S$ and \SI{5}{k\ohm}] ++(0,-3) node[vee](VEE){$V_{EE}=\SI{-10}{V}$}; %define VEE level
\draw (Q1.S) to[short] ++(2,0) to[C=$C_1$] ++(0,-1.5) node[ground](GND){};
\draw (Q1.G) to[short] ++(-1,0) \coord (in) to[R, l2^=$R_G$ and \SI{1}{M\ohm}] (in |- GND) node[ground]{};
\draw (in) to[C, l_=$C_2$,*-o] ++(-1.5,0) node[left](vi1){$v_i=v_{i1}$};
\draw (Q1.D) to[R, l2_=$R_D$ and \SI{10}{k\ohm}] ++(0,3) node[vcc](VCC){$V_{CC}=\SI{10}{V}$};
\draw (Q1.D) to[short, -o] ++(1,0) node[right](vo1){$v_{o1}$};
%
\path (vo1) -- ++(2,0) \coord(bjt); @\label{codeline:position-bjt}@
%
\draw (bjt) node[npn, anchor=B](Q2){\killdepth{Q2}};
\draw (Q2.B) to[short, -o] ++(-0.5,0) node[left](vi2){$v_{12}$};
\draw (Q2.E) to[R,l2^=$R_E$ and \SI{9.3}{k\ohm}] (Q2.E |- VEE) node[vee]{};
\draw (Q2.E) to[short, -o] ++(1,0) node[right](vo2){$v_{o2}$};
\draw (Q2.C) to[short] (Q2.C |- VCC) node[vcc]{};
%
\path (vo2) ++(1.5,0) \coord(load);
\draw (load) to[C=$C_3$] ++(1,0) \coord(tmp) to[R=$R_L$] (tmp |- GND) node[ground]{};
\draw [densely dashed] (vo2) -- (load);
%
\draw [densely dashed] (vo1) -- (vi2);
%
\draw [blockdef](vi1|-VEE) ++(0,-2) \coord(tmp)
-- node[midway, fill=white]{bloque 1} (vo1|- tmp);
\draw [blockdef] (vi2|-VEE) ++(0,-2) \coord(tmp)
-- node[midway, fill=white]{bloque 2} (vo2|- tmp);
\end{circuitikz}
\end{lstlisting}
\tikzset{blockdef/.style={%
{Straight Barb[harpoon, reversed, right, length=0.2cm]}-{Straight Barb[harpoon, reversed, left, length=0.2cm]},
blue, %densely dotted,
}}
\def\killdepth#1{{\raisebox{0pt}[\height][0pt]{#1}}}
\def\coord(#1){coordinate(#1)}
\def\coord(#1){coordinate(#1) node[circle, red, draw, inner sep=1pt,
pin={[red, overlay, inner sep=0.5pt, font=\tiny, pin distance=0.1cm,
% we reset the arrow in pin edge to avoid carrying over the path one!
pin edge={red, overlay,-}]45:#1}](#1-node){}}
\begin{circuitikz}[american, ]
\draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
\draw (Q1.S) to[R, l2^=$R_S$ and \SI{5}{k\ohm}] ++(0,-3) node[vee](VEE){$V_{EE}=\SI{-10}{V}$}; %define VEE level
\draw (Q1.S) to[short] ++(2,0) to[C=$C_1$] ++(0,-1.5) node[ground](GND){};
\draw (Q1.G) to[short] ++(-1,0) \coord (in) to[R, l2^=$R_G$ and \SI{1}{M\ohm}] (in |- GND) node[ground]{};
\draw (in) to[C, l_=$C_2$,*-o] ++(-1.5,0) node[left](vi1){$v_i=v_{i1}$};
\draw (Q1.D) to[R, l2_=$R_D$ and \SI{10}{k\ohm}] ++(0,3) node[vcc](VCC){$V_{CC}=\SI{10}{V}$};
\draw (Q1.D) to[short, -o] ++(1,0) node[right](vo1){$v_{o1}$};
%
\path (vo1) -- ++(2,0) \coord(bjt);
%
\draw (bjt) node[npn, anchor=B](Q2){\killdepth{Q2}};
\draw (Q2.B) to[short, -o] ++(-0.5,0) node[left](vi2){$v_{12}$};
\draw (Q2.E) to[R,l2^=$R_E$ and \SI{9.3}{k\ohm}] (Q2.E |- VEE) node[vee]{};
\draw (Q2.E) to[short, -o] ++(1,0) node[right](vo2){$v_{o2}$};
\draw (Q2.C) to[short] (Q2.C |- VCC) node[vcc]{};
%
\path (vo2) ++(1.5,0) \coord(load);
\draw (load) to[C=$C_3$] ++(1,0) \coord(tmp) to[R=$R_L$] (tmp |- GND) node[ground]{};
\draw [densely dashed] (vo2) -- (load);
%
\draw [densely dashed] (vo1) -- (vi2);
%
\draw [blockdef](vi1|-VEE) ++(0,-2) \coord(tmp)
-- node[midway, fill=white]{bloque 1} (vo1|- tmp);
\draw [blockdef] (vi2|-VEE) ++(0,-2) \coord(tmp)
-- node[midway, fill=white]{bloque 2} (vo2|- tmp);
\end{circuitikz}
You can see that after having found the place where we want to put the BJT transistor (line~\ref{codeline:position-bjt}), we use the option \texttt{anchor=B} so that the base anchor will be put at the coordinate \texttt{bjt}.
Finally, if you like a more compact drawing, you can add the options (for example):
\begin{lstlisting}
\begin{circuitikz}[american, scale=0.8] % this will scale only the coordinates
\ctikzset{resistors/scale=0.7, capacitors/scale=0.6}
...
\end{circuitikz}
\end{lstlisting}
and you will obtain the following diagram with the exact same code (I just removed the second \verb|\coord| definition to hide the coordinates markings).
\ctikzset{resistors/scale=0.7, capacitors/scale=0.6}
\def\coord(#1){coordinate(#1)}
\begin{circuitikz}[american, ]
\draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
\draw (Q1.S) to[R, l2^=$R_S$ and \SI{5}{k\ohm}] ++(0,-3) node[vee](VEE){$V_{EE}=\SI{-10}{V}$}; %define VEE level
\draw (Q1.S) to[short] ++(2,0) to[C=$C_1$] ++(0,-1.5) node[ground](GND){};
\draw (Q1.G) to[short] ++(-1,0) \coord (in) to[R, l2^=$R_G$ and \SI{1}{M\ohm}] (in |- GND) node[ground]{};
\draw (in) to[C, l_=$C_2$,*-o] ++(-1.5,0) node[left](vi1){$v_i=v_{i1}$};
\draw (Q1.D) to[R, l2_=$R_D$ and \SI{10}{k\ohm}] ++(0,3) node[vcc](VCC){$V_{CC}=\SI{10}{V}$};
\draw (Q1.D) to[short, -o] ++(1,0) node[right](vo1){$v_{o1}$};
%
\path (vo1) -- ++(2,0) \coord(bjt);
%
\draw (bjt) node[npn, anchor=B](Q2){\killdepth{Q2}};
\draw (Q2.B) to[short, -o] ++(-0.5,0) node[left](vi2){$v_{12}$};
\draw (Q2.E) to[R,l2^=$R_E$ and \SI{9.3}{k\ohm}] (Q2.E |- VEE) node[vee]{};
\draw (Q2.E) to[short, -o] ++(1,0) node[right](vo2){$v_{o2}$};
\draw (Q2.C) to[short] (Q2.C |- VCC) node[vcc]{};
%
\path (vo2) ++(1.5,0) \coord(load);
\draw (load) to[C=$C_3$] ++(1,0) \coord(tmp) to[R=$R_L$] (tmp |- GND) node[ground]{};
\draw [densely dashed] (vo2) -- (load);
%
\draw [densely dashed] (vo1) -- (vi2);
%
\draw [blockdef](vi1|-VEE) ++(0,-2) \coord(tmp)
-- node[midway, fill=white]{bloque 1} (vo1|- tmp);
\draw [blockdef] (vi2|-VEE) ++(0,-2) \coord(tmp)
-- node[midway, fill=white]{bloque 2} (vo2|- tmp);
\end{circuitikz}
\endgroup
\clearpage
\subsection{A logic circuit}
\begingroup % let's keep the tutorial thing separated.
\tikzset{sr-ff/.style={flipflop, flipflop def={
t1=S, t2=CP, t3=R, t4={\ctikztextnot{Q}},t6=Q, td=~, nd=1}},
}
\ctikzset{
logic ports=ieee,
logic ports/scale=0.7,
}
\newcommand*{\myblock}[1]{% the parameter will be prepended to the relevant node names
node[sr-ff](#1-FF){} (#1-FF.bup) node[above]{SR-FF}
(#1-FF.pin 1) -- ++(-1,0) node[and port, anchor=out](#1-AND1){}
% notice the second coordinate here, so that I have just one number
% to change if I want more or less space
(#1-FF.pin 3) -- (#1-FF.pin 3 -| #1-AND1.out) node[and port, anchor=out](#1-AND2){}
% go left again to put the not insert point
(#1-AND1.in 1) to[short, -*] ++(-1,0) coordinate(#1-in)
% let's position the NOT in the center to be really finicky
% this is using the calc tikz library
% ($(not up)!0.5!(not up|- #1-AND2.in 2)$) node[not port, rotate=-90](#1-NOT){}
% and connect it
% (not up) -- (#1-NOT.in) (#1-NOT.out) |- (#1-AND2.in 2)
% with the new path-style not
to[inline not] (#1-in |- #1-AND2.in 2) -- (#1-AND2.in 2)
% no ; to end the path, must add in usage!
}
\newcommand*{\fullcirc}[1][]{%
\begin{circuitikz}
\draw (0,0) \myblock{A};
\draw (0,-4) \myblock{B};
%
% do the connection
%
\draw (A-AND1.in 2) to[short, -*] (A-AND2.in 1)
to[short, -*] (B-AND1.in 2) to[short, -*] (B-AND2.in 1)
-- ++(0, -2) coordinate(down) node[below]{ENABLE};
\draw (A-FF.pin 2) to[short, -*] (B-FF.pin 2)
-- (B-FF.pin 2 |- down) node[below]{CP};
% look at the manual again here
\draw (B-FF.down) to[short, -*] ++(0,-0.3) coordinate(dd);
\draw (A-FF.down) -- ++(0,-.5) -- ++(1.5,0) |- (dd)
-- (dd |- down) node[below]{RESET};
\draw (A-in) -- ++(-0.5, 0) node[below]{$a_0$};
\draw (B-in) -- ++(-0.5, 0) node[below]{$a_1$};
%
#1
%
\end{circuitikz}%
}
\begin{minipage}{0.45\linewidth}
\parskip=6pt plus 12pt minus 2pt
Let's suppose we want to reproduce the circuit on the right\footnotemark, maybe as part of a more complex one.
Looking at the circuit to draw, I see that there is a basic block: the flip-flop with the added three-port circuit to its left, marked with the red dashed rectangle.
The main distance to respect here is that we want the two ANDs in line with the flip-flop inputs, so I'll start with the flip-flop and then add the rest of the block.
The shapes are very similar to the IEEE logic gates (see section~\ref{sec:ieeestdports});
after a first check, the standard size of the port is a bit too big with respect to the flip-flop, so I scale them down a bit.
\begin{lstlisting}
\ctikzset{
logic ports=ieee,
logic ports/scale=0.7,
}
\end{lstlisting}
\end{minipage}\hfill
\begin{minipage}{0.5\linewidth}
\fullcirc[{
\node[draw, red, dashed, fit=(A-in) (A-FF)]{};
}]
\end{minipage}
\footnotetext{It seems a quite popular one on \href{https://tex.stackexchange.com/q/545317/38080}{tex.stackexchange}\dots}
I want a reusable block, so I will start from a coordinate and then use only relative, defining coordinates along the way.
\begin{minipage}{0.7\linewidth}
The first thing is to define a suitable flip-flop. The standard SR~(see \ref{sec:flipflops}) is \emph{almost} what we need, but not exactly the same. So let's define a new one:
\begin{lstlisting}
\tikzset{sr-ff/.style={flipflop, flipflop def={
t1=S, t2=CP, t3=R, t4={\ctikztextnot{Q}},
t6=Q, nd=1}},
}
\end{lstlisting}
\end{minipage}\hfill
\begin{minipage}{0.2\linewidth}
\begin{circuitikz}[scale=0.8, transform shape]
\tikzset{sr-ff/.style={flipflop, flipflop def={
t1=S, t2=CP, t3=R, t4={\ctikztextnot{Q}},
t6=Q, nd=1}},
}
\node[sr-ff]{};
\end{circuitikz}
\end{minipage}
Now we can add the ``and'' gates. For example, we can add the gates to the right like this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,0) node[sr-ff](FF){} (FF.bup)
node[above]{SR-FF};
\draw (FF.pin 1) -- ++(-1,0) node[and port,
anchor=out](AND1){}
(FF.pin 3) -- ++(-1,0) node[and port,
anchor=out](AND2){};
\end{circuitikz}
\end{LTXexample}
You can notice a pair of things here: first of all, the use of the \texttt{anchor=out} in the port, to tell \TikZ{} that we want the node moved so that the \texttt{out} anchor is the reference one. The second one is that we have repeated the absolute shift (the \texttt{++(-1, 0)}) twice. This is a bad practice; it is much better to have the ``free'' parameters of a schematic just stated once, so that we can change them in just one point.
You can of course use a macro, like \verb|\newcommand{\andshift}{(-1,0)}| but it is much more elegant to do something like this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,0) node[sr-ff](FF){} (FF.bup)
node[above]{SR-FF};
\draw (FF.pin 1) -- ++(-1,0) node[and port,
anchor=out](AND1){}
(FF.pin 3) -- (FF.pin 3 -| AND1.out)
node[and port, anchor=out](AND2){};
\end{circuitikz}
\end{LTXexample}
In this snippet, the coordinate \texttt{(FF.pin 3 -| AND1.out)} is the \TikZ{} way to say ``the point which is horizontally straight from \texttt{FF.pin 3} and vertically form \texttt{AND1.out}''. That way one can change the number \texttt{-1} to move both AND ports nearer or farther away.
Now we can add the not port. Since version~\texttt{1.1.3} you can use a path-style not port, so you can just say: this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=0.8, transform shape]
\draw (0,0) node[sr-ff](FF){} (FF.bup)
node[above]{SR-FF} (FF.pin 1) -- ++(-1,0)
node[and port, anchor=out](AND1){}
(FF.pin 3) -- (FF.pin 3 -| AND1.out)
node[and port, anchor=out](AND2){}
(AND1.in 1) to[short, -*] ++(-1,0) coordinate(in)
to[inline not] (in |- AND2.in 2) -- (AND2.in 2);
\end{circuitikz}
\end{LTXexample}
In earlier versions, you should have found the center point between the two terminal, position the ``not'' shape and ten connect it, like for example (this code must stay into the \verb|\draw| command):
\begin{lstlisting}
% let's position the NOT in the center
% this is using the calc tikz library
($(in)!0.5!(in |- AND2.in 2)$) node[not port, rotate=-90](NOT){}
% and connect it
(in) -- (NOT.in) (NOT.out) |- (AND2.in 2)
\end{lstlisting}
Now we have the basic block; we have to use it twice, so one of the possible ways to do it is to prepare a command.
We will change the names of the nodes and the coordinates to be different for any ``call'' of the block (another option is to use a \texttt{pic}; but this is more straightforward).
\begin{lstlisting}
\newcommand*{\myblock}[1]{% Add #1- to the node and coord names
node[sr-ff](#1-FF){} (#1-FF.bup) node[above]{SR-FF}
(#1-FF.pin 1) -- ++(-1,0) node[and port, anchor=out](#1-AND1){}
(#1-FF.pin 3) -- (#1-FF.pin 3 -| #1-AND1.out)
node[and port, anchor=out](#1-AND2){}
(#1-AND1.in 1) to[short, -*] ++(-1,0) coordinate(#1-in)
to[inline not] (#1-in |- #1-AND2.in 2) -- (#1-AND2.in 2)
}
\end{lstlisting}
\begin{minipage}{0.45\linewidth}
\parskip=6pt plus 12pt minus 2pt
So now we can draw two of our blocks:
\begin{lstlisting}
\draw (0,0) \myblock{A};
\draw (0,-4) \myblock{B};
\end{lstlisting}
Part of the anchors and coordinates that we have accessible are marked in red in the diagram at the side.
Now we have to just connect the relevant parts and add the labels. The names of the inputs are quite easy:
\begin{lstlisting}
\draw (A-in) -- ++(-0.5, 0) node[below]{$a_0$};
\draw (B-in) -- ++(-0.5, 0) node[below]{$a_1$};
\end{lstlisting}
And finally:
\end{minipage}\hfill
\begin{minipage}{0.5\linewidth}
\begingroup
\def\showcoord(#1)<#2:#3>{%
node[circle, red, draw, inner sep=1pt,pin={%
[red, inner sep=0.5pt, font=\small,
pin distance=#3cm, pin edge={red, }%
]#2:#1}](){}}
\begin{circuitikz}[]
\draw (0,0) \myblock{A};
\draw (0,-4) \myblock{B};
\foreach \b in {A, B}
\foreach \n in {in, AND1.in 2, AND2.in 1, FF.pin 2, FF.down}
\path (\b-\n) \showcoord(\b-\n)<45:0.6>;
\end{circuitikz}
\endgroup
\end{minipage}
\begin{lstlisting}
\draw (A-AND1.in 2) to[short, -*] (A-AND2.in 1)
to[short, -*] (B-AND1.in 2) to[short, -*] (B-AND2.in 1)
-- ++(0, -2) coordinate(down) node[below]{ENABLE};
\draw (A-FF.pin 2) to[short, -*] (B-FF.pin 2)
-- (B-FF.pin 2 |- down) node[below]{CP};
\draw (B-FF.down) to[short, -*] ++(0,-0.3) coordinate(dd);
\draw (A-FF.down) -- ++(0,-.5) -- ++(1.5,0) |- (dd)
-- (dd |- down) node[below]{RESET};
\end{lstlisting}
Will create the final diagram:
\begin{circuitikz}[scale=0.8, transform shape]
\draw (0,0) \myblock{A};
\draw (0,-4) \myblock{B};
%
% do the connection
%
\draw (A-AND1.in 2) to[short, -*] (A-AND2.in 1)
to[short, -*] (B-AND1.in 2) to[short, -*] (B-AND2.in 1)
-- ++(0, -2) coordinate(down) node[below]{ENABLE};
\draw (A-FF.pin 2) to[short, -*] (B-FF.pin 2)
-- (B-FF.pin 2 |- down) node[below]{CP};
% look at the manual again here
\draw (B-FF.down) to[short, -*] ++(0,-0.3) coordinate(dd);
\draw (A-FF.down) -- ++(0,-.5) -- ++(1.5,0) |- (dd)
-- (dd |- down) node[below]{RESET};
\draw (A-in) -- ++(-0.5, 0) node[below]{$a_0$};
\draw (B-in) -- ++(-0.5, 0) node[below]{$a_1$};
%
\end{circuitikz}
\endgroup
\section{The components: usage}
Components in \Circuitikz{} come in two forms: path-style, to be used in a \texttt{to[\emph{component},...} path specifications, and node-style, which will be instantiated by a \texttt{node[\emph{component},...]} specification.
All the shapes defined by Circui\TikZ{} are \texttt{pgf} nodes, so they are usable in both \texttt{pgf} and \TikZ.
\subsection{Path-style components}
The path-style components are used as shown below:
\begin{lstlisting}
\begin{circuitikz}
\draw (0,0) to[#1=#2, options] (2,0);
\end{circuitikz}
\end{lstlisting}
where \verb|#1| is the name of the component, \verb|#2| is an (optional) label, and \verb|options| are optional labels, annotations, style specifier that will be explained in the rest of the manual.
Transistors and some other node-style components can also be placed using the syntax for bipoles. See section~\ref{sec:transasbip}.
Most path-style components can be used as a node-style components; to access them, you add a \texttt{shape} to the main name of component (for example, \texttt{diodeshape}). Such a ``node-shape name'' is specified in the description of each component.
\subsubsection{Anchors}
Normally, path-style components do not need anchors, although they have them just in case you need them. You have the basic ``geographical'' anchors (bipoles are defined horizontally and then rotated as needed):
\begin{center}
\begin{circuitikz}[
]
\draw (0,0) to[resistor, name=R] ++(2,0);
\path (R.center) \showcoord(center)<-90:0.3>;
\path (R.left) \showcoord(left)<135:0.3>;
\path (R.right) \showcoord(right)<45:0.3>;
\draw (5,0) to[resistor, name=R] ++(2,0);
\foreach \n/\a/\d in {north/90/0.3, north east/45/0.3, east/0/0.5,
south east/-45/0.3, south/-90/0.3, south west/-135/0.3,
west/180/0.5, north west/135/0.3}
\path (R.\n) \showcoord(\n)<\a:\d>;
\draw (10,-1) to[resistor, name=R] ++(0,2);
\foreach \n/\a/\d in {n/135/0.3, e/45/0.3,
s/-45/0.3, w/-135/0.3}
\path (R.\n) \showcoord(\n)<\a:\d>;
\end{circuitikz}
\end{center}
In the case of bipoles, also shortened geographical anchors exists. In the description, it will be shown when a bipole has additional anchors. To use the anchors, just give a name to the bipole element using the syntax \texttt{name=\emph{myname}}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[potentiometer, name=P, mirror] ++(0,2);
\draw (P.wiper) to[L] ++(2,0);
\end{circuitikz}
\end{LTXexample}
Alternatively, that you can use the shape form, and then use the \texttt{left} and \texttt{right} anchors to do your connections.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[potentiometershape, rotate=-90](P){};
\draw (P.wiper) to[L] ++(2,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Border anchors}\label{sec:bipoles-border-anchors}
\begingroup
\def\showbordersfornode#1{%
\begin{circuitikz}[baseline, scale=0.8, transform shape]
\node[#1shape, name=bip] at(0,0) {};
\foreach \a in {0,30,...,359} \draw[red] (bip.\a) -- ++(\a:0.7) node[font=\tiny, fill=white, inner sep=0.5pt]{\a};
\foreach \a in {15,45,...,359} \draw[red] (bip.\a) -- ++(\a:0.4);
\node [font=\ttfamily\small, black, below] at (bip.-90) {\detokenize\expandafter{#1}};
\end{circuitikz}
}
Bipoles have also installed generic border anchors --- that means, anchors that start at an angle. For complexity reason, these are for most of the components simply a generic enclosing rectangle (even for most of the round ones!\footnote{This is needed for the correct label/voltage etc. placement, and it's too much work to change it.}). They interact in a non-trivial way with the \texttt{mirror} and \texttt{invert} keys, so it's best not to use them directly.
\begin{quote}
\showbordersfornode{generic}
\showbordersfornode{resistor}
\showbordersfornode{fulldiode}
\showbordersfornode{vsource}
\showbordersfornode{capacitivesens}
\end{quote}
You can notice that the border anchors are a bit spaced out (this is useful because those anchors are used to position labels and annotations). You can override this if you need to reach exactly the border (whatever could that mean depends on the component) by using the key \texttt{bipoles/border margin}, which is a number that states how much the enclosing border is stretched out (default value is \texttt{1.1}). For example, setting
\verb|\ctikzset{bipoles/border margin=1}| will make the border anchor coincide with the geographical shape:
\begin{quote}
\ctikzset{bipoles/border margin=1}
\showbordersfornode{generic}
\showbordersfornode{resistor}
\showbordersfornode{fulldiode}
\showbordersfornode{vsource}
\showbordersfornode{capacitivesens}
\end{quote}
The above diagram has been obtained with the code:
\begin{lstlisting}
\def\showbordersfornode#1{%
\begin{circuitikz}[baseline, scale=0.8, transform shape]
\node[#1shape, name=bip] at(0,0) {};
\foreach \a in {0,30,...,359} \draw[red] (bip.\a) -- ++(\a:0.7)
node[font=\tiny, fill=white, inner sep=0.5pt]{\a};
\foreach \a in {15,45,...,359} \draw[red] (bip.\a) -- ++(\a:0.4);
\node [font=\ttfamily\small, black, below] at (bip.-90)
{\detokenize\expandafter{#1}};
\end{circuitikz}}
\ctikzset{bipoles/border margin=1}
\showbordersfornode{generic} \showbordersfornode{resistor}
\showbordersfornode{fulldiode} \showbordersfornode{vsource}
\showbordersfornode{capacitivesens}
\end{lstlisting}
\endgroup
\subsubsection{Relative coordinates}\label{sec:path-relative-coordinates}
As \href{https://github.com/circuitikz/circuitikz/issues/460}{noticed by user \texttt{septatrix}},
although full relative coordinates after a component work as expected when using \texttt{++(x,y)}-style coordinates,
often there are problems when using
the \texttt{+(x,y)}-style coordinates (which are supposed to set a temporary relative coordinate and then going back to the starting point).
These kind of coordinate have in practice little use for the building of circuits, so have been only (very) lightly tested; avoid them if you can --- the behavior will depend not only on the \Circuitikz{} version, but also on the \TikZ{} layer underneath.
This behavior, although not optimal, was standard in \texttt{to} operation in plain \TikZ{} before version 3.1.8; it was changed by Henri Menke in later versions. Notice that the change revealed a problem in \Circuitikz{} that should hopefully be fixed in \texttt{v1.4.1}; for more details see \href{https://github.com/circuitikz/circuitikz/issues/569}{this issue on GitHub}.
You can see from the example below (notice the blue curve using a spline line). If all the vertical lines are at the left, the manual has been compiled with a new \Circuitikz{} and \TikZ. Otherwise, the red and/or blue curve will have the vertical line at the right (which in principle is wrong).
In the last (green) example, you can see a workaround using local path and the key \texttt{current point is local} that will work for older (and do not create problems in newer) versions.
\begin{LTXexample}[varwidth=true, pos=t]
Plotted using \TikZ\ version \pgfversion{} and Circui\TikZ\ version \pgfcircversion{}.
\begin{tikzpicture}
\draw[color=red] (0,0) to[R] +(2,0) +(0,0) -- ++(0,-1);
\end{tikzpicture}
\qquad
\begin{tikzpicture}
\draw[color=blue] (0,0) to[out=30, in=120] +(2,0) +(0,0) -- ++(0,-1);
\end{tikzpicture}
\qquad
\begin{tikzpicture}
\draw[color=purple] (0,0) to[] +(2,0) +(0,0) -- ++(0,-1);
\end{tikzpicture}
\qquad
\begin{tikzpicture}
\draw[color=green!50!black] (0,0)
{[current point is local] to[R] +(2,0)} +(0,0) -- ++(0,-1);
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Customization}
\label{sec:components-size}
Pretty much all Circui\TikZ\ relies heavily on \texttt{pgfkeys} for value handling and configuration. Indeed, at the beginning of \texttt{circuitikz.sty} and in the file \texttt{pfgcirc.define.tex} a series of key definitions can be found that modify all the graphical characteristics of the package.
All can be varied using the \verb!\ctikzset! command, anywhere in the code.
Note that the details of the parameters that are not described in the manual can change in the future, so be ready to use a fixed version of the package (the ones with the specific number, like \verb|circuitikz-0.9.3|) if you dig into them.
\paragraph{Components size}\label{sec:pgfcircRlen}
Perhaps the most important parameter is \texttt{bipoles/length} (default \SI{1.4}{cm}), which
can be interpreted as the length of a resistor (including reasonable connections): all other lengths are relative to this value. For instance:
\begin{LTXexample}[pos=t,varwidth=true]
\ctikzset{bipoles/length=1.4cm}
\begin{circuitikz}[scale=1.2]\draw
(0,0) node[anchor=east] {B}
to[short, o-*] (1,0)
to[R=20<\ohm>, *-*] (1,2)
to[R=10<\ohm>, v=$v_x$] (3,2) -- (4,2)
to[cI=$\frac{\si{\siemens}}{5} v_x$, *-*] (4,0) -- (3,0)
to[R=5<\ohm>, *-*] (3,2)
(3,0) -- (1,0)
(1,2) to[short, -o] (0,2) node[anchor=east]{A}
;\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[pos=t,varwidth=true]
\ctikzset{bipoles/length=.8cm}
\begin{circuitikz}[scale=1.2]\draw
(0,0) node[anchor=east] {B}
to[short, o-*] (1,0)
to[R=20<\ohm>, *-*] (1,2)
to[R=10<\ohm>, v=$v_x$] (3,2) -- (4,2)
to[cI=$\frac{\si{\siemens}}{5} v_x$, *-*] (4,0) -- (3,0)
to[R=5<\ohm>, *-*] (3,2)
(3,0) -- (1,0)
(1,2) to[short, -o] (0,2) node[anchor=east]{A}
;\end{circuitikz}
\end{LTXexample}
The changes on \texttt{bipoles/length} should, however, be globally applied to every path, because they affect every element --- including the poles. So you can have artifacts like the one in the second line below:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
bigR/.style={R, bipoles/length=3cm}
]
\draw (0,3) to [bigR, o-o] ++(4,0);
\draw (0,1.5) to [bigR, o-o] ++(4,0)
to[R, o-o] ++(2,0); % will fail here
\draw (0,0) to [R, o-o] ++(4,0);
\end{circuitikz}
\end{LTXexample}
Several groups of components, on the other hand, have a special \texttt{scale} parameter that can be used safely in this case (starting with 0.9.4 --- more groups of components will be added going forward); the key to use will be explained in the specific description of the components. For example, in the case of resistors you have \texttt{resistors/scale} available:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
bigR/.style={R, resistors/scale=1.8}
]
\draw (0,3) to [bigR, o-o] ++(4,0);
\draw (0,1.5) to [bigR, o-o] ++(4,0)
to[R, o-o] ++(2,0); % ok now
\draw (0,0) to [R, o-o] ++(4,0);
\end{circuitikz}
\end{LTXexample}
Never use \texttt{scale}, \texttt{xscale} or~\texttt{yscale} in a path-style component (i.e., inside a \texttt{to[...]}) command.
\paragraph{Mirroring and flipping path-style components}\label{sec:mirror-flip-path}
To change the orientation of path-style components, \emph{never} use \texttt{xscale=-1} nor~\texttt{yscale=-1}. That will mess up the path completely. Use the \texttt{mirror} and \texttt{invert} options:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[N/.style={
font=\tiny\ttfamily, above}]
\draw (0,0) to [put] ++(0,2)
node[N]{no modifier};
\draw (1,0) to [put, mirror] ++(0,2)
node[N]{mirror};
\draw (2,0) to [put, invert] ++(0,2)
node[N]{invert};
\draw (3,0) to [put, mirror, invert] ++(0,2)
node[N]{both};
\end{tikzpicture}
\end{LTXexample}
\paragraph{Thickness of the lines}\label{sec:legacy-thickness} (globally)
The best way to alter the thickness of components is using styling, see section~\ref{sec:styling-thickness}. Alternatively, you can use ``legacy'' classes like \texttt{bipole}, \texttt{tripoles} and so on ---
for example changing the parameter \texttt{bipoles/thickness} (default 2). The number is relative to the thickness of the normal lines leading to the component.
\begin{LTXexample}[varwidth=true]
\ctikzset{bipoles/thickness=1}
\tikz \draw (0,0) to[C=1<\farad>] (2,0); \par
\ctikzset{bipoles/thickness=4}
\tikz \draw (0,0) to[C=1<\farad>] (2,0);
\end{LTXexample}
\paragraph{Shape of the components} (on a per-component-class basis)
The shape of the components are adjustable with a lot of parameters; in this manual we will comment the main ones, but you can look into the source files specified above to find more.
Notice however that the ``internal'' parameters, the ones not commented in this manual, are not part of the public interface so they can disappear or change in future versions.
It is recommended to use the styling parameters to change the shapes; they are not so fine-grained (for example, you can change the width of resistor), but they are more stable and coherent across your circuit.
\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[R=1<\ohm>] (3,0); \par
\ctikzset{resistors/width=2}
\tikz \draw (0,0) to[R=1<\ohm>] (3,0);
\end{LTXexample}
To change the height, you can use (locally) the class scale parameter and the width; you can even define a style that will work across the resistor styles:
\begin{LTXexample}[varwidth=true]
\ctikzset{american}
\tikz \draw (0,0) to[R=1<\ohm>] (4,0);
\ctikzset{tallR/.style={
resistors/scale=2, resistors/width=0.4}}
\tikz \draw (0,0) to[R=1<\ohm>, tallR] (4,0);
\ctikzset{european}
\tikz \draw (0,0) to[R=1<\ohm>, tallR] (4,0);
\end{LTXexample}
\subsubsection{Descriptions}
The typical entry in the component list will be like this:
\begin{groupdesc}
\circuitdescbip{resistor}{resistor, american style}{R, american resistor}
\circuitdescbip[potentiometer]{pR}{potentiometer, american style}{pR, american potentiometer}( wiper/0/0.3 )
\end{groupdesc}
where you have all the needed information about the bipole, with also no-standard anchors. If the component can be filled it will be specified in the description. In addition, as an example, the component shown will be filled with the option \texttt{fill=cyan!30!white}:
\begin{groupdesc}
\circuitdescbip*{ammeter}{Ammeter}{}
\end{groupdesc}
The \emph{Class} of the component (see section~\ref{sec:styling}) is printed at the end of the description.
Most path-style components can be used as a node-style components; to access them, normally you add a \texttt{shape} to the main name of component (for example, \texttt{diodeshape}). Sometimes though the ``node name'' is different, so it is specified in the description of each component.
\subsection{Node-style components}
Node-style components (monopoles, multipoles) can be drawn at a specified point with this syntax, where \verb!#1! is the name of the component:
\begin{lstlisting}
\begin{circuitikz}
\draw (0,0) node[#1,#2] (#3) {#4};
\end{circuitikz}
\end{lstlisting}
\noindent
Explanation of the parameters:\\
\texttt{\#1}: component name\footnote{For using bipoles as nodes, the name of the node is \texttt{\#1shape}.} (mandatory)\\
\texttt{\#2}: list of comma-separated options (optional)\\
\texttt{\#3}: name of an anchor (optional)\\
\texttt{\#4}: text written to the text anchor of the component (optional)\\
\begin{framed}
\noindent \textbf{Notice:} Nodes must have curly brackets at the end, even when empty. An optional anchor (\texttt{\#3}) can be defined within round brackets to be addressed again later on. And please don't forget the semicolon to terminate the \texttt{\textbackslash draw} command.
\end{framed}
\begin{framed}
\noindent\textbf{Also notice:} If using the \verb!\tikzexternalize! feature, as of \TikZ\ 2.1 all pictures must end with \verb!\end{tikzpicture}!. Thus you \emph{cannot} use the \verb!circuitikz! environment.
\noindent Which is OK: just use the environment \verb!tikzpicture!: everything will work there just fine.
\end{framed}
\subsubsection{Mirroring and flipping}\label{sec:mirroring-and-flipping}
Mirroring and flipping of node components is obtained by using the \TikZ\ keys \texttt{xscale} and \texttt{yscale}. Notice that these parameters also affect text labels, so they need to be un-scaled by hand. Notice that you \textbf{do not} use \texttt{xscale} or~\texttt{yscale} in a path-style component, see section~\ref{sec:mirror-flip-path} for that case.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=0.7, transform shape]
\draw (0,3) node[op amp]{OA1};
\draw (3,3) node[op amp, xscale=-1]{OA2};
\draw (0,0) node[op amp]{OA3};
\draw (3,0) node[op amp, xscale=-1]{%
\scalebox{-1}[1]{OA4}};
\end{circuitikz}
\end{LTXexample}
To simplify this task, \Circuitikz{} has three helper macros --- \verb|\ctikzflipx{}|,
\verb|\ctikzflipy{}|, and \verb|\ctikzflipxy{}|, that can be used to ``un-rotate''
the text of nodes drawn with, respectively,
\texttt{xscale=-1}, \texttt{yscale=-1}, and \texttt{scale=-1} (which is equivalent to
\texttt{xscale=-1, yscale=-1}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=0.7, transform shape]
\draw (0,3) node[op amp]{OA1};
\draw (3,3) node[op amp, xscale=-1]{\ctikzflipx{OA2}};
\draw (0,0) node[op amp, yscale=-1]{\ctikzflipy{OA3}};
\draw (3,0) node[op amp, scale=-1]{\ctikzflipxy{OA4}};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Anchors}
Node components anchors vary a lot across the various kinds of components, so they will be described better after each category is presented in the manual. In general all components have geographic anchors (\texttt{north}, \texttt{north west}, \dots), but most of the other anchors are very component-specific.
\subsubsection{Descriptions}
The typical entry in the component list will be like this:
\begin{groupdesc}
\circuitdesc{cute spdt down arrow}{Cute spdt down with arrow}{}
\circuitdesc{npn}{\scshape npn}{}( B/180/0.2,C/0/0.2,E/0/0.2 )
\end{groupdesc}
If the component can be filled it will be specified in the description. In addition, as an example, the component shown will be filled with the option \texttt{fill=cyan!30!white}:
\begin{groupdesc}
\circuitdesc*{plain amp}{Plain amplifier}{}( out/45/0.3 )
\end{groupdesc}
Sometime, components will expose internal (sub-)shapes that can be accessed with the syntax \texttt{\textsl{<node name>}-\textsl{<internal node name>}} (a dash is separating the node name and the internal node name); that will be shown in the description as a blue ``anchor'':
\begin{groupdesc}
\circuitdesc{rotaryswitch}{Rotary switch}{}(in/-180/0.2, cin/145/0.2, center/-90/0.2, mid/0/0.4, out 1/0/0.2,
cout 1/180/0.2)[out 1.n/90/0.2, out 4.w/0/0.3]
\end{groupdesc}
The \emph{Class} of the component (see section~\ref{sec:styling}) is printed at the end of the description.
\subsection{Styling circuits and components}\label{sec:relative-size}\label{sec:styling}
You can change the visual appearance of a circuit by using a circuit style different from the default. For styling the circuit, the concept of \emph{class} of a component is key: almost every component has a class, and a style change will affect all the components of that class.
\begingroup % protect from style change the rest of the manual
Let's see the effect over a simple circuit\footnote{This is a just an example, the circuit is not intended to be functional.}.
\begin{lstlisting}[basicstyle=\scriptsize\ttfamily]
\begin{circuitikz}[american, cute inductors]
\node [op amp](A1){\texttt{OA1}};
\draw (A1.-) to[short] ++(0,1) coordinate(tmp) to[R, l_=$R$] (tmp -| A1.out) to[short] (A1.out);
\draw (tmp) to[short] ++(0,1) coordinate(tmp) to[C=$C$] (tmp -| A1.out) to[short] (A1.out);
\draw (A1.+) to [battery2, invert] ++(0,-2.5) node[ground](GND){};
\draw (A1.-) to [L=$L$] ++(-2,0) coordinate(tmp) to[sV, l=$v_s$, fill=yellow] (tmp |-GND) node[ground]{};
\draw (A1.out) to[R=$R_s$] ++(2,0) coordinate(bb) to[I, l_=$I_B$, invert] ++(0,2) node[vcc](VCC){};
\draw (bb) to[D, l=$D$, *-] ++(0,-2) coordinate(bb1) to[R=$R_m$] ++(0,-2) node[vee](VEE){};
\draw (bb) --++(1,0) node[npn, anchor=B](Q1){Q1};
\draw (bb1) --++(1,0) node[pnp, anchor=B](Q2){Q2};
\draw (Q1.E) -- (Q2.E) ($(Q1.E)!0.5!(Q2.E)$) to [short, *-o, name=S] ++(2.5,0)
node[right]{$v_{o_Q}$};
\draw (S.s) to[european resistor, l=$Z_L$, *-] (S.s|-GND) node[ground]{};
\draw (Q1.C) -- (Q1.C|-VCC) node[vcc]{\SI{5}{V}};
\draw (Q2.C) -- (Q2.C|-VEE) node[vee]{\SI{-5}{V}};
\end{circuitikz}
\end{lstlisting}
This code, with the default parameters, will render like the following image.
\long\def\tmpcirc#1#2{% Define the circuit to reuse it
% \begin{center}
\begin{circuitikz}[american, cute inductors, #1]
#2
\node [op amp](A1){\texttt{OA1}};
\draw (A1.-) to[short] ++(0,1) coordinate(tmp) to[R, l_=$R$] (tmp -| A1.out) to[short] (A1.out);
\draw (tmp) to[short] ++(0,1) coordinate(tmp) to[C=$C$] (tmp -| A1.out) to[short] (A1.out);
\draw (A1.+) to [battery2, invert, l=$v_{io}$] ++(0,-2.5) node[ground](GND){};
\draw (A1.-) to [L=$L$] ++(-2,0) coordinate(tmp) to[sV, l=$v_s$, fill=yellow] (tmp |-GND) node[ground]{};
\draw (A1.out) to[R=$R_s$] ++(2,0) coordinate(bb) to[I, l_=$I_B$, invert] ++(0,2) node[vcc](VCC){};
\draw (bb) to[D, l=$D$, *-] ++(0,-2) coordinate(bb1) to[R=$R_m$] ++(0,-2) node[vee](VEE){};
\draw (bb) --++(1,0) node[npn, anchor=B](Q1){Q1};
\draw (bb1) --++(1,0) node[pnp, anchor=B](Q2){Q2};
\draw (Q1.E) -- (Q2.E) ($(Q1.E)!0.5!(Q2.E)$) to [short, *-o, name=S] ++(2.5,0)
node[right]{$v_{o_Q}$};
\draw (S.s) to[european resistor, l=$Z_L$, *-] (S.s|-GND) node[ground]{};
\draw (Q1.C) -- (Q1.C|-VCC) node[vcc]{\SI{5}{V}};
\draw (Q2.C) -- (Q2.C|-VEE) node[vee]{\SI{-5}{V}};
\end{circuitikz}%
% \end{center}
}
\tmpcirc{}{}
\subsubsection{Relative size}\label{sec:styling-scale}
Component size can be changed globally (see section~\ref{sec:pgfcircRlen}), or you can change their relative size by scaling a family of components by setting the key \texttt{\emph{class}/scale}; for example, you can change the size of all the diodes in your circuit by setting \texttt{diodes/scale} to something different from the default \texttt{1.0}.
Remember that if you use a global scale (be sure to read section~\ref{sec:bugs}!) you change the coordinate only, so using \texttt{scale=0.8} in the environment options you have:
\tmpcirc{scale=0.8}{}
If you want to scale all the circuit, you have to use also \texttt{transform shape}:
\tmpcirc{scale=0.8, transform shape}{}
Using relative sizes as described in section~\ref{sec:pgfcircRlen} enables your style for the circuit. For example, setting:
\begin{lstlisting}
\ctikzset{resistors/scale=0.8, % smaller R
capacitors/scale=0.7, % even smaller C
diodes/scale=0.6, % small diodes
transistors/scale=1.3} % bigger BJTs
\end{lstlisting}
Will result in a (much more readable in Romano's opinion) circuit:
\tmpcirc{scale=0.8, transform shape}{\ctikzset{resistors/scale=0.8, capacitors/scale=0.7, diodes/scale=0.6, transistors/scale=1.3}}
\textbf{Warning:} relative scaling is meant to work for a reasonable range of stretching and shortening, so try to keep your scale parameter in the \texttt{0.5} to~\texttt{2.0} range (more or less). Bigger or smaller value can result in awkward shapes.
\subsubsection{Fill color}\label{sec:styling-fillcolor}
You can also set a default fill color for the components. You can use the keys \texttt{\emph{class}/fill} (which defaults to \texttt{none}, no fill, i.e. transparent component) for all fillable components in the library.
If you add to the previous styles the following commands:
\begin{lstlisting}
\ctikzset{
amplifiers/fill=cyan,
sources/fill=green,
diodes/fill=red,
resistors/fill=violet,
}
\end{lstlisting}
you will have the following circuit (note that the first generator is \emph{explicitly} set to be yellow,
so if will not be colored green!):
\tmpcirc{scale=0.8, transform shape}{\ctikzset{resistors/scale=0.8, capacitors/scale=0.7, diodes/scale=0.6, transistors/scale=1.3,%
amplifiers/fill=cyan, sources/fill=green, diodes/fill=red, resistors/fill=violet,}}
Please use this option with caution. Although two-colors circuits can be nice, using more than that can become rapidly unbearable.
Old textbooks used the two-color style quite extensively, filling with a kind of light blue like \texttt{blue!30!white} ``closed'' components, but that was largely to hinder black-and-white photocopying\dots
\subsubsection{Line thickness}\label{sec:styling-thickness}
You can change the line thickness for any class of component in an independent way. The default standard thickness of components is defined on a loose ``legacy'' category (like \texttt{bipoles}, \texttt{tripoles} and so on, see section~\ref{sec:legacy-thickness}); to override that you set the key \texttt{\emph{class}/thickness} to any number. The default is \texttt{none}, which means that the old way of selecting thickness is used.
For example, \emph{amplifiers} have the legacy class of \texttt{tripoles}, as well as transistors and tubes. By default they are drawn with thickness 2 (relative to the base linewidth). To change them to be thicker, you can for example add to the previous style
\begin{lstlisting}
\ctikzset{amplifier/thickness=4}
\end{lstlisting}
\tmpcirc{scale=0.8, transform shape}{\ctikzset{resistors/scale=0.8, capacitors/scale=0.7, diodes/scale=0.6, transistors/scale=1.3,%
amplifiers/fill=cyan, sources/fill=green, diodes/fill=red, resistors/fill=violet,
amplifiers/thickness=4}}
\textbf{Caveat:} not every component has a ``class'', so you have to play with the available ones (it's specified in the component description) and with the absolute values to have the circuit following your taste. A bit of experimentation will create a kind of \emph{style options} that you could use in all your documents.
\subsubsection{Style files}
When using styles, it is possible to use \emph{style files} (see section~\ref{sec:writingstylefiles}), that then you can load with the command \verb|\ctikzloadstyle|. For example, in the distribution you have a number of style files: \texttt{legacy}, \texttt{romano}, \texttt{example}. When you load a style name \texttt{\emph{name}}, you will have available a style called \texttt{\emph{name} circuit style} that you can apply to your circuits.
The last style loaded is not enacted --- you have to explicitly do it if you want the style used by default, by putting for example in the preamble:
\begin{lstlisting}[numbers=none]
\ctikzloadstyle{romano}
\tikzset{romano circuit style}
\end{lstlisting}
Please notice that the style is at \TikZ{} level, not \Circuitikz --- that let's you use it in the top option of the circuit, like:
\begin{lstlisting}[numbers=none]
\begin{circuitikz}[legacy circuit style,
..., ]
...
\end{circuitikz}
\end{lstlisting}
If you just want to use one style, you can load and activate it in one command with
\begin{lstlisting}[numbers=none]
\ctikzsetstyle{romano}
\end{lstlisting}
The \texttt{example} style file will simply make the amplifiers filled with light blue:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[op amp]{OA1};
\end{circuitikz}
\ctikzloadstyle{example}
\begin{circuitikz}[example circuit style]
\draw (0,0) node[op amp]{OA1};
\end{circuitikz}
\end{LTXexample}
\ctikzloadstyle{legacy}
\ctikzloadstyle{romano}
The style \texttt{legacy} is a style that set (most) of the style parameters to the default, and \texttt{romano} is a style used by one of the authors; you can use these styles as is or you can use them to learn to how to write new file style following the instructions in section~\ref{sec:writingstylefiles}. In the next diagrams, the left hand one is using the \texttt{romano circuit style} and the rigth hand one the legacy style.
\fbox{\tmpcirc{scale=0.6, transform shape, romano circuit style}{}}
\fbox{\tmpcirc{scale=0.6, transform shape, legacy circuit style}{}}
\endgroup % restore state before example of sizing
\subsubsection{Style files: how to write them}\label{sec:writingstylefiles}
The best option is to start from \texttt{ctikzstyle-legacy.tex} and edit your style file from it. Then you just put it in your input path and that's all. If you want, you can contribute your style file to the project.
Basically, to write the style \texttt{example}, you edit a file named \texttt{ctikzstyle-romano.tex} with will define and enact \TikZ\ style with name \texttt{example circuit style}; basically it has to be something along this:
\lstinputlisting[frame=single, framesep=10pt]{ctikzstyle-example.tex}
This kind of style will \emph{add} to the existing style. If you want to have a style that \emph{substitutes} the current style, you should do like this:
\begin{lstlisting}[frame=single, framesep=10pt]
\ctikzloadstyle{legacy}% start from a known state
\tikzset{romano circuit style/.style={%
legacy circuit style, % load the legacy style
\circuitikzbasekey/.cd,%
% Resistors
resistors/scale=0.8,
[...]
}}
\end{lstlisting}
If you want to add a setting to your style file that has been recently added to the package (for example, the thyristor compact shapes added in \texttt{1.3.5}), but you want your style file to be still compatible with older versions of \Circuitikz, you can use the \texttt{.try} statement:
\begin{lstlisting}[frame=single, framesep=10pt]
% Diodes
diodes/scale=0.6,
diodes/thickness=1.0,
thyristor style/.try=compact,
\end{lstlisting}
Or, in case of new values of existing ``choice'' keys, you can use the syntax:
\begin{lstlisting}[frame=single, framesep=10pt]
% Logic ports
logic ports/ieee/.try,
% this way of setting the key does nothing if ieee option
% does not exist; logic ports/.try=ieee does not work
% if the key exists but the value is not defined
logic ports/scale=1.0,
\end{lstlisting}
\subsection{Subcircuits}\label{sec:subcircuits}
Starting from version \texttt{1.3.5}, there is support for generating sub-circuits, or circuit blocks. The creation and use of subcircuits is somewhat limited, to keep them simple and easy to define and maintain.
A subcircuit is basically a path (and just one path!) of generic \TikZ{} instructions, with a series of accessible coordinates that behave more or less like anchors in the ``real'' shapes. The basic limitation is that a subcircuit can be moved, replicated and placed around but it can't be easily personalized. Even if scaling and rotation is in principle possible, it is not easily done. Nevertheless, they can be quite useful to build complex components and reusable blocks.
\subsubsection{Subcircuit definition}
To define a block you use the \verb|\ctikzsubcircuitdef| macro; this macro has 3 arguments:
\begin{itemize}
\item the first argument is the name of the subcircuit, and it must form a valid TeX command name when prepended with a backslash: so just letters (no spaces, nor numbers, nor symbols like underscores, etc.);
\item the second one is a comma-separated list of anchor names; here you can use whatever you can use for naming a coordinate or a node (so it's much more relaxed than the first one);
\item finally, the commands that will draw the circuit. You must suppose you are in a \verb|\draw| command, with the start coordinate already set-up. You can (and should) use \verb|#1| as the name of the current node, and you \emph{must} define the coordinates of all the anchors listed before as \texttt{coordinate(\#1-\emph{anchorname})}. You should \textbf{not} finish the path here and use \textbf{only relative coordinates} or \textbf{named ones}.
\end{itemize}
Let's see that with an example:
\ctikzsubcircuitdef{optovishay}{in 1, out 1, in 2, out 2, center}{%
% reference anchor is -center
coordinate(#1-center)
(#1-center) +(-1.2,-1) rectangle +(1.2,1)
(#1-center) ++(-1.2,0.8) coordinate (#1-in 1)
(#1-center) ++(-1.2,-0.8) coordinate (#1-in 2)
(#1-center) ++(1.2,0.8) coordinate (#1-out 1)
(#1-center) ++(1.2,-0.8) coordinate (#1-out 2)
(#1-center) ++(0,1) coordinate (#1-up)
(#1-in 1) -- ++(0.5,0) coordinate(#1-tmp)
to[leD*, diodes/scale=0.6, led arrows from cathode]
(#1-tmp|- #1-in 2) -- (#1-in 2)
(#1-out 1) -- ++(-0.5,0) coordinate(#1-tmp)
to[pD*, diodes/scale=0.4, mirror] ++(0,-0.5)
edge[densely dashed] ++(0,-0.533) ++(0,-0.566)
to[pD*, diodes/scale=0.4,mirror] (#1-tmp|- #1-out 2) -- (#1-out 2)
% leave the position of the path at the center
(#1-center)
}
\begin{lstlisting}
\ctikzsubcircuitdef{optovishay}{in 1, out 1, in 2, out 2, center}{%
% reference anchor is -center
coordinate(#1-center)
(#1-center) +(-1.2,-1) rectangle +(1.2,1)
(#1-center) ++(-1.2,0.8) coordinate (#1-in 1)
(#1-center) ++(-1.2,-0.8) coordinate (#1-in 2)
(#1-center) ++(1.2,0.8) coordinate (#1-out 1)
(#1-center) ++(1.2,-0.8) coordinate (#1-out 2)
(#1-center) ++(0,1) coordinate (#1-up)
(#1-in 1) -- ++(0.5,0) coordinate(#1-tmp)
to[leD*, diodes/scale=0.6, led arrows from cathode]
(#1-tmp|- #1-in 2) -- (#1-in 2)
(#1-out 1) -- ++(-0.5,0) coordinate(#1-tmp)
to[pD*, diodes/scale=0.4, mirror] ++(0,-0.5)
edge[densely dashed] ++(0,-0.533) ++(0,-0.566)
to[pD*, diodes/scale=0.4,mirror] (#1-tmp|- #1-out 2) -- (#1-out 2)
% leave the position of the path at the center
(#1-center)
}
\end{lstlisting}
Our element is a symbol for an optocoupler; in this case is the symbol used for one cell of the double \href{https://www.vishay.com/docs/84639/vo1263aa.pdf}{Vishay vo1263 device}.
The name of the subcircuit is \texttt{optovishay} --- notice we can use only letters here, upper or lowercase, and nothing more.
Then we have a series of anchor names; here we can use letters, numbers, spaces and some symbol --- but avoid the dot (\texttt{.}) and the hyphen (\texttt{-}).
Additionally, the anchor named \texttt{subckt@reference} is reserved and shouldn't be used.
If you use spaces, be on the safe side and \emph{never} use two or more consecutive spaces.
After that, you have to draw your subcircuit as if you were into a \verb|\draw| command, starting from a generic point.
In this case, we decide to draw the circuit around this generic point so that it will result to be the center of the block; so as a first thing, we ``mark'' the position of the center anchor, with \texttt{coordinate(\#1-center)}.
The \texttt{\#1} will be substituted with the specific name of the subcircuit's instance later --- so if you then call one instance of the optocoupler \texttt{opto1}, that coordinate will be called \texttt{opto1-center}.
We continue by defining all our anchors (there is no need to do that at the start, but it's handy because then you can use them).
You \textbf{must} define all the anchors!
\textbf{Important}: all the coordinates used must be either relative, or named in the form \texttt{\#1-something}; absolute coordinate will not work when instantiating the block.
The block is thought to be used inside a path specification, so the idea is not to end the path --- that means that changing line styles or colors is at best difficult.
You can still use \texttt{edge}s, though (see~\ref{faqs:dashed}).
After that, we draw our circuit; in this case a LED and a couple of smaller photodiodes will do.
We also define a coordinate \texttt{-up} (you can define more coordinates, in addition to the anchors, or name elements with \texttt{name=\#1-\emph{something}} for later access) for adding text.
\subsubsection{Using the subcircuit}
To use the subcircuit, an additional step is needed. Somewhere you have to \emph{activate} it. This is needed to calculate the relative positions of anchors using the current set of style parameters. The normal place is to activate it just before usage; to do that you use the command \verb|\ctikzsubcircuitactivate| with the name of the subcircuit. That will define a new command, \texttt{\textbackslash\emph{nameofthesubcircuit}} that you can use then in your paths.
So to check your subcircuit while defining it you can use this simple snippet:
\begin{LTXexample}[varwidth=true]
\ctikzsubcircuitactivate{optovishay}
\begin{tikzpicture}
\draw (0,0) \optovishay{one}{};
\node [above] at (one-up) {O1};
\draw[color=blue] (one-out 1) -- ++(1,0)
\optovishay{two}{in 1};
\node [above] at (two-up) {O2};
\end{tikzpicture}
\end{LTXexample}
\paragraph{Scaling, flipping and rotating subcircuits}
To scale and rotate a subcircuit you have to include it into a \texttt{scope} with the appropriate \texttt{scale} and rotation commands. Notice that, as in general in \Circuitikz, global scales that affect rotation works only if \texttt{transform shape} is issued (see~\ref{sec:bugs}); nesting \texttt{transform shape} normally works, but it has been really lightly tested.
\begin{LTXexample}[varwidth=true]
\ctikzsubcircuitactivate{optovishay}
\begin{tikzpicture}[scale=0.8, transform shape]
\draw (0,0) \optovishay{three}{};
\draw (three-out 1) -- ++(0.5,0) coordinate(here);
\begin{scope}[xscale=-1,rotate=-45,transform shape]
\draw (here) \optovishay{four}{out 1};
\end{scope}
\draw[blue] (three-out 2) -| (four-out 2);
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Parameters in subcircuits}
There are no additional parameters definable for subcircuit shapes; this is a bit of a pity, because sometimes they could be useful, especially for labels of objects.
Given the need to use \texttt{transform shape} to translate and rotate them, though, it is better not to add invariant-direction things (like text) into the subcircuit, unless you are sure you will just translate them.
One possibility is to use additional macros and anchors for positioning, like in the following example.
Suppose you have defined
\begin{lstlisting}
\ctikzsubcircuitdef{divider}{in, out}{%
coordinate (#1-in) to[R, l=~, name=#1-rh, -*] ++(2,0)
coordinate(#1-tmp) to[R, l=~, name=#1-rl] ++(0,-2)
node[tlground]{} (#1-tmp) --++(0.5,0) coordinate(#1-out)
}
\end{lstlisting}
\ctikzsubcircuitdef{divider}{in, out}{%
coordinate (#1-in) to[R, l=~, name=#1-rh, -*] ++(2,0)
coordinate(#1-tmp) to[R, l=~, name=#1-rl] ++(0,-2)
node[tlground]{} (#1-tmp) --++(0.5,0) coordinate(#1-out)
}
then you can additionally define:
\begin{lstlisting}
\newcommand{\mydiv}[4]{
\divider{#1}{#2} (#1-rh.n) node[above]{#3}
(#1-rl.n) node[right]{#4} (#1-out)
}
\end{lstlisting}
\newcommand{\mydiv}[4]{
\divider{#1}{#2} (#1-rh.n) node[above]{#3}
(#1-rl.n) node[right]{#4} (#1-out)
}
And finally do:
\begin{LTXexample}[varwidth=true]
\ctikzsubcircuitactivate{divider}
\begin{tikzpicture}
\draw (0,0) \mydiv{a}{in}{$R_1$}{$R_2$};
\draw (a-out) -- \mydiv{b}{in}{$R_3$}{$R_4$};
\end{tikzpicture}
\end{LTXexample}
\section{The components: list}
This section is dedicated to the full list of available components.
\subsection{Grounds and supply voltages}
Ground symbols and power supplies --- they have two different classes for styling.
\subsubsection{Grounds}
For the grounds, the \texttt{center} anchor is put on the connecting point of the symbol, so that you can use them directly in a \texttt{path} specification.
\begin{groupdesc}
\circuitdesc{ground}{Ground}{}( center/0/0.3 )
\circuitdesc{tlground}{Tailless ground}{}( center/0/0.3 )
\circuitdesc{rground}{Reference ground}{}
\circuitdesc*{sground}{Signal ground}{}
\circuitdesc{tground}{Thicker tailless reference ground}{}
\circuitdesc{nground}{Noiseless ground}{}
\circuitdesc*{pground}{Protective ground}{}
\circuitdesc{cground}{Chassis ground\footnotemark}{}
\footnotetext{These last three were contributed by Luigi «Liverpool»}
\circuitdesc{eground}{European style ground}{}
\circuitdesc{eground2}{European style ground, version 2\footnotemark}{}
\footnotetext{These last two were contributed by \texttt{@fotesan}}
\end{groupdesc}
\paragraph{Grounds anchors}
Anchors for grounds are a bit strange, given that they have the \texttt{center} spot at the same location than \texttt{north} and all the ground will develop ``going down'':
\showanchors[baseline]{ground, scale=1.5}{}(north/90/0.4, north east/45/0.4, east/0/0.4, south east/-45/0.4,
south/-90/0.4, south west/-135/0.4, west/180/0.4, north west/135/0.4)
\showanchors[baseline]{ground, scale=1.5}{}(left/135/0.2, right/45/0.2, center/-180/0.2)
\paragraph{Grounds customization}
You can change the scale of these components (all the ground symbols together) by setting the key \texttt{grounds/scale} (default \texttt{1.0}).
\subsubsection{Power supplies}
\begin{groupdesc}
\circuitdesc{vcc}{VCC/VDD}{}
\circuitdesc{vee}{VEE/VSS}{}
\end{groupdesc}
The power supplies are normally drawn with the arrows shown in the list above.
\paragraph{Power supply anchors}
They are similar to ground anchors, and the geographical anchors are correct only for the default arrow.
\showanchors[baseline]{vcc, scale=1.5}{}(north/90/0.4, north east/45/0.4, east/0/0.4, south east/-45/0.4,
south/-90/0.4, south west/-135/0.4, west/180/0.4, north west/135/0.4)
\showanchors[baseline]{vcc, scale=1.5}{}(left/135/0.2, right/45/0.2, center/-180/0.2)
\paragraph{Power supplies customization}
You can change the scale of the power supplies by setting the key \texttt{power supplies/scale} (default \texttt{1.0}).
Given that the power supply symbols are basically arrows, you can change them using all the options of the \texttt{arrows.meta} package (see the \TikZ\ manual for details) by changing the keys \texttt{monopoles/vcc/arrow} and \texttt{monopoles/vee/arrow} (the default for both is \texttt{legacy}, which will use the old code for drawing them).
Note that the anchors are at the start of the connecting lines, and that geographical anchors are just approximation if you change the arrow symbol!
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
% next macro is available in ctikzmanutils.sty
\def\coord(#1){\showcoord(#1)<0:0.3>}
\draw (0,0)
node[vcc](vcc){VCC} \coord(vcc) ++(2,0)
node[vee](vee){VEE} \coord(vee);
\ctikzset{monopoles/vcc/arrow={Stealth[red, width=6pt, length=9pt]}}
\ctikzset{monopoles/vee/arrow={Latex[blue]}}
\draw (0,-2)
node[vcc](vcc){VCC} \coord(vcc) ++(2,0)
node[vee](vee){VEE} \coord(vee);
\end{circuitikz}
\end{LTXexample}
However, arrows in \TikZ{} are in the same class with the line thickness, so they do not scale with neither the class \texttt{power supplies} scale nor the global scale parameter (you should use \texttt{transform canvas=\{scale\dots\}} for this).
If you want the arrows to behave like the legacy symbols (which are shapes), \emph{only in the arrow definitions}, you can use the special length parameter \verb|\scaledwidth|\footnote{Thanks to @Schrödinger's cat on \href{https://tex.stackexchange.com/a/506249/38080}{\TeX{} stackexchange site}} in the arrow definition, which correspond to the width of the legacy \texttt{vcc} or \texttt{vee}. Compare the effects on the following circuit.
\begin{LTXexample}[pos=t]
\ctikzset{%
monopoles/vcc/arrow={Triangle[width=0.8*\scaledwidth, length=\scaledwidth]},
monopoles/vee/arrow={Triangle[width=6pt, length=8pt]},
}
\begin{circuitikz}[baseline=(vo.center)]
\node [ocirc](TW) at (0,0) {};
\draw (TW.east) -- ++(1,0) node[midway, above]{$v_i$} node[op amp, anchor=-](A1){};
\draw (A1.up) -- ++(0, 0.3) node[vcc]{\SI{+10}{V}};
\draw (A1.down) -- ++(0,-0.3) node[vee]{\SI{-10}{V}};
\draw (A1.+) -- ++(-0.5,0) to[battery2, invert, l_=\SI{2}{V}] ++(0,-1) node[ground]{};
\draw (A1.out) to[short, -o] ++(0.5,0) node[above](vo){$v_o$};
\end{circuitikz} \qquad
\begin{circuitikz}[baseline=(vo.center), scale=0.6, transform shape]
\node [ocirc](TW) at (0,0) {};
\draw (TW.east) -- ++(1,0) node[midway, above]{$v_i$} node[op amp, anchor=-](A1){};
\draw (A1.up) -- ++(0, 0.3) node[vcc]{\SI{+10}{V}};
\draw (A1.down) -- ++(0,-0.3) node[vee]{\SI{-10}{V}};
\draw (A1.+) -- ++(-0.5,0) to[battery2, invert, l_=\SI{2}{V}] ++(0,-1) node[ground]{};
\draw (A1.out) to[short, -o] ++(0.5,0) node[above](vo){$v_o$};
\end{circuitikz}
\end{LTXexample}
\subsection{Resistive bipoles}
\begin{groupdesc}
\circuitdescbip{short}{Short circuit}{}
\circuitdescbip{open}{Open circuit}{}
\circuitdescbip*{generic}{Generic (symmetric) bipole}{}
\circuitdescbip*{xgeneric}{Crossed generic (symmetric) bipole}{}
\circuitdescbip*{sgeneric}{Slashed generic bipole}{}
\circuitdescbip*{tgeneric}{Tunable generic bipole}{}
\circuitdescbip*{ageneric}{Generic asymmetric bipole}{}
\circuitdescbip*{memristor}{Memristor}{Mr}
\end{groupdesc}
Both \texttt{shortshape} and \texttt{openshape} are not really supposed to be used; they are dummy shapes used as placeholders for the path-drawing routines.
If \texttt{americanresistors} option is active (or the style \texttt{[american resistors]} is used --- this is the default for the package), the resistors are displayed as follows:
\begin{groupdesc}
\ctikzset{resistor=american}
\circuitdescbip[resistor]{R}{Resistor}{american resistor}
\circuitdescbip[vresistor]{vR}{Variable resistor}{variable american resistor}(wiper/180/0.3, tip/0/0.3)
\circuitdescbip[potentiometer]{pR}{Potentiometer}{american potentiometer}(wiper/0/0.3, tip/135/0.2)
\circuitdescbip[resistivesens]{sR}{Resistive sensor}{american resistive sensor}(label/0/0.3, wiper/180/0.3, tip/0/0.3)
\circuitdescbip*[ldresistor]{ldR}{Ligth-Dependent resistor}{american light dependent resistor}(arrows/-45/0.3)
\end{groupdesc}
If instead \texttt{europeanresistors} option is active (or the style \texttt{[european resistors]} is used), the resistors, variable resistors and potentiometers are displayed as follows:
\begin{groupdesc}
\ctikzset{resistor=european}
\circuitdescbip*[generic]{R}{Resistor}{european resistor}
\circuitdescbip*[tgeneric]{vR}{Variable resistor}{variable european resistor}(wiper/180/0.3, tip/0/0.3)
\circuitdescbip*[genericpotentiometer]{pR}{Potentiometer}{european potentiometer}(wiper/0/0.3, tip/135/0.2)
\circuitdescbip*[thermistor]{sR}{Resistive sensor}{european resistive sensor}(label/0/0.3, wiper/180/0.3, tip/0/0.3)
\circuitdescbip*[ldgeneric]{ldR}{Ligth-Dependent resistor}{european light dependent resistor}(arrows/-45/0.3)
\ctikzset{resistor=american} % reset default
\end{groupdesc}
Other miscellaneous resistor-like devices:
\begin{groupdesc}
\circuitdescbip*{varistor}{Varistor}{}
\circuitdescbip*{mov}{Metal-Oxide varistor}{}
\circuitdescbip*[photoresistor]{phR}{Photoresistor}{photoresistor}(arrows/0/0.3)
\circuitdescbip*[thermistor]{thR}{Thermistor}{thermistor}
\circuitdescbip*[thermistorptc]{thRp}{PTC thermistor}{thermistor ptc}
\circuitdescbip*[thermistorntc]{thRn}{NTC thermistor}{thermistor ntc}
\end{groupdesc}
\subsubsection{Potentiometers: wiper position}
Since version \texttt{0.9.5}, you can control the position of the wiper in potentiometers using the key \texttt{wiper pos}, which is a number in the range $[0,1]$. The default middle position is \texttt{wiper pos=0.5}.
\begin{LTXexample}[varwidth]
\begin{circuitikz}[american]
\ctikzset{resistors/width=1.5, resistors/zigs=9}
\draw (0,0) to[pR, name=A] ++(0,-4);
\draw (1.5,0) to[pR, wiper pos=0.3, name=B] ++(0,-4);
\ctikzset{european resistors}
\draw (3,0) to[pR, wiper pos=0.8, name=C] ++(0,-4);
\foreach \i in {A, B, C}
\node[right] at (\i.wiper) {\i};
\end{circuitikz}
\end{LTXexample}
Since version \texttt{1.6.0}, potentiometers and variable resistors have extra anchors\footnote{Thanks to a suggestion by \href{https://github.com/circuitikz/circuitikz/issues/663}{Dr. Matthias Jung on GitHub}}, to allow this kind of circuit (that seems to be common in some region):
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[european]
\draw (0,0) to[battery2, l=E] ++(0,4.5)
-- ++(2,0) coordinate(tmp)
to[vR, l2_=$P_1$ and \SI{10}{\kohm}, mirror,
invert, name=P]
(0,0-|tmp) -- (0,0);
\draw (0,0-|tmp) -- ++(1.5,0)
to[R=$R_1$, -*] ++(0,2) coordinate(p)
|- (P.wiper);
\draw (p) to[rmeterwa, t=V] (tmp-|p) -- (tmp);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Generic sensors anchors}\label{sec:sensors-anchors}
Generic sensors have an extra anchor named \texttt{label} to help position the type of dependence, if needed:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,2) to[sR, l=$R$, name=mySR] ++(3,0);
\node [font=\tiny, right] at(mySR.label) {-t\si{\degree}};
\draw (0,0) to[sL, l=$L$, name=mySL] ++(3,0);
\node [draw, circle, inner sep=2pt] at(mySL.label) {};
\draw (0,-2) to[sC, l=$C$, name=mySC] ++(3,0);
\node [font=\tiny, below right, inner sep=0pt] at(mySC.label) {+H\si{\%}};
\end{circuitikz}
\end{LTXexample}
The anchor is positioned just on the corner of the segmented line crossing the component.
\subsubsection{Resistive components customization}
\paragraph{Geometry.} You can change the scale of these components (all the resistive bipoles together) by setting the key \texttt{resistors/scale} (default \texttt{1.0}). Similarly, you can change the widths by setting \texttt{resistors/width} (default \texttt{0.8}).
You can change the width of these components (all the resistive bipoles together) by setting the key \texttt{resistors/width} to something different from the default \texttt{0.8}.
For the american style resistors, you can change the number of ``zig-zags'' by setting the key
\texttt{resistors/zigs} (default value \texttt{3}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
longpot/.style = {pR, resistors/scale=0.75,
resistors/width=1.6, resistors/zigs=6}]
\draw (0,1.5) to[R, l=$R$] ++(4,0);
\draw (0,0) to[longpot, l=$P$] ++(4,0);
\ctikzset{resistors/scale=1.5}
\draw (0,-1.5) to[R, l=$R$] ++(4,0);
\end{circuitikz}
\end{LTXexample}
\paragraph{Thickness.}\label{sec:resistor-thickness} The line thickness of the resistive components is governed by the class thickness; you can change it assigning a value to the key \texttt{resistors/thickness} (default \texttt{none}, that means \texttt{bipoles/thickness} is used, and that defaults to \texttt{2.0}; the value is relative to the base line thickness).
We can call \emph{modifiers} the elements that are added to the basic shape to express some characteristics of the component; for example the arrows for the variable resistors or the bar for the sensors. Normally the thickness of these elements are the same as the one chosen for the component\footnote{Due to a bug in versions before 1.3.4, that didn't happen for thermistors}. You can change their thickness with the class key \texttt{modifier thickness} which is relative to the main component thickness.
\begin{LTXexample}[varwidth]
\begin{circuitikz}[american]
\draw (0,2) to[vR] ++(2,0) to[sR] ++(2,0);
\ctikzset{resistors/thickness=4}
\draw (0,1) to[vR] ++(2,0) to[sR] ++(2,0);
\ctikzset{resistors/modifier thickness=0.5}
\draw (0,0) to[vR] ++(2,0) to[sR] ++(2,0);
\end{circuitikz}
\end{LTXexample}
\paragraph{Arrows.\label{sec:tunablearrows}} You can change the arrow tips used in tunable resistors (\texttt{vR}, \texttt{tgeneric}) with the key \texttt{tunable end arrow} and in potentiometers with the key \texttt{wiper end arrow} (by default the key is the word ``\texttt{default}'' to obtain the default arrow, which is \texttt{latexslim} for both).
Also you can change the start arrow with the corresponding \texttt{tunable start arrow} or \texttt{wiper start arrow} (the default value ``\texttt{default}'' is equivalent to \texttt{\{\}} for both, which means no arrow).
You can change that globally or locally, as ever. The tip specification is the one you can find in the \TikZ{} manual (``Arrow Tip Specifications'').
For the \texttt{photoresistor} and the two ``flavors'' of the light-dependent resistor (\texttt{ldR}, american or european), the style of the arrows follow the \texttt{opto} commands as in the photodiodes and phototransistor: see~\ref{sec:opto-arrows}.
\begin{LTXexample}[varwidth]
\begin{tikzpicture}[american]
% globally all the potentiometrs
\ctikzset{wiper end arrow={Kite[open]},
opto arrows/color=blue, opto end arrow={Triangle}}
\draw (0,0) to[tgeneric] ++(2,0) to[phR] ++(2,0)
% set locally on this variable resistor
to[vR, tunable end arrow={Stealth[red]},
tunable start arrow={Bar}, invert] ++(0,-2)
to[pR, mirror] ++(-4,0);
\end{tikzpicture}
\end{LTXexample}
\subsection{Capacitors and inductors: dynamical bipoles}
\subsubsection{Capacitors}
\begin{groupdesc}
\circuitdescbip*{capacitor}{Capacitor}{C}
\circuitdescbip*[ccapacitor]{curved capacitor}{Curved (polarized) capacitor}{cC}
\circuitdescbip*{ecapacitor}{Electrolytic capacitor}{eC,elko}
\circuitdescbip*[vcapacitor]{variable capacitor}{Variable capacitor}{vC}(wiper/180/0.3, tip/0/0.3)
\circuitdescbip*[capacitivesens]{capacitive sensor}{Capacitive sensor}{sC}(label/0/0.3, wiper/180/0.3, tip/0/0.3)
\circuitdescbip*{piezoelectric}{Piezoelectric Element}{PZ}
\circuitdescbip*{cpe}{Constant Phase Element}{cpe}
\circuitdescbip*[ferrocap]{feC}{Ferroelectric capacitor\footnotemark}{ferrocap}(kink left/180/0.2, kink right/0/0.2, curve left/160/0.3, curve right/-20/0.2, center/45/0.3)
\footnotetext{suggested by \href{https://github.com/circuitikz/circuitikz/issues/515}{Mayeul Cantan}}
\end{groupdesc}
Capacitors are fillable since \texttt{v1.4.1}; this is normally just a stylistic option but in the case of
ferroelectric capacitors that could be used to show the state of the hysteresis of the component.
\begin{LTXexample}[varwidth]
\begin{tikzpicture}[]
\ctikzset{capacitors/.cd,
thickness=4, modifier thickness=0.5}
\draw (0,0) to[feC, l=$C_1$, v=v1] ++(3,0)
to[feC, l=$C_2$, fill=green, name=C2] ++(0,-2);
\node [font=\tiny, above right, inner sep=1pt]
at(C2.kink left) {$S_1$};
\end{tikzpicture}
\end{LTXexample}
There is also the (deprecated\footnote{Thanks to \href{https://tex.stackexchange.com/questions/509594/polar-capacitor-orientation-in-circuitikz-seems-wrong}{Anshul Singhv for noticing}.} --- its polarity is not coherent with the rest of the components) \texttt{polar capacitor}; please do not use it.
\subsubsection{Capacitive sensors anchors}
For capacitive sensors, you have the same anchors than in the case of resistive sensors, see section~\ref{sec:sensors-anchors}.
\subsubsection{Capacitors customizations}\label{sec:capacitors-styling}
You can change the scale of the capacitors by setting the key \texttt{capacitors/scale} to something different from the default \texttt{1.0}. For thickness, you can use the same keys (applied to the \texttt{capacitors} class) as for resistors in~\ref{sec:resistor-thickness}.
Variable capacitors arrow tips follow the settings of resistors, see section~\ref{sec:tunablearrows}.
The relative size of the capacitors is a bit of a mixed bag, because each one has historically different internal parameters that makes maintaining coherence quite difficult. In \texttt{v1.4.1} this has changed and now you can use styling options to change the way the capacitors look. The main parameter you can set is \texttt{capacitors/width} (default \texttt{0.2}), which controls the standard distance between plates. That will change all the components (notice that \texttt{piezoelectric} and \texttt{cpe} default width is twice the size of a standard capacitor --- although this is not evident for the \texttt{cpe} given its shape.)
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[european]
\draw (0,1) to[C=aaa] ++(2,0) to[cpe=bbb] ++(2,0);
\draw[color=red] (0,0) to [C] ++(2,0);
\draw[color=blue] (0,0) to [cpe] ++(2,0)
to[cpe, fill=yellow, capacitors/width=0.1] ++(2,0);
\end{circuitikz}
\end{LTXexample}
The \texttt{capacitors/height} key is available also to set the height of the capacitor; the default is \texttt{0.6} for most of the capacitors, but \texttt{0.5} for electrolytic ones and \texttt{0.7} for piezoelectric. When used, it will set all of them at the same value, which is a good thing.
If you want that only a specific kind of capacitor has a different value for a key, you can always use a style which will have a local scope, as in the following example.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}
\draw (0,1) to [C] ++(1,0) to [elko] ++(1,0);
\ctikzset{capacitors/width=0.15, capacitors/height=0.5}
\draw (0,0) to [C] ++(1,0) to [elko] ++(1,0);
\tikzset{big elko/.style={elko=#1, capacitors/width=0.3}}
\draw (0,-1) to [C] ++(1,0) to[big elko] ++(1,0);
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Inductors}
If the \texttt{cuteinductors} option is active (default behaviour), or the style \texttt{[cute inductors]} is used, the inductors are displayed as follows:
\begin{groupdesc}
\ctikzset{inductor=cute}
\circuitdescbip[cuteinductor]{L}{Inductor}{cute inductor}(midtap/90/0.1)
\circuitdescbip[vcuteinductor]{vL}{Variable inductor}{variable cute inductor}(wiper/180/0.3, tip/0/0.3)
\circuitdescbip[scuteinductor]{sL}{Inductive sensor}{cute inductive sensor}(label/0/0.3, wiper/180/0.3, tip/0/0.3)
\end{groupdesc}
If the \texttt{americaninductors} option is active (or the style \texttt{[american inductors]} is used), the inductors are displayed as follows:
\begin{groupdesc}
\ctikzset{inductor=american}
\circuitdescbip[americaninductor]{L}{Inductor}{american inductor}(midtap/90/0.3)
\circuitdescbip[vamericaninductor]{vL}{Variable inductor}{variable american inductor}(core west/135/0.1, core east/45/0.1, wiper/180/0.3, tip/90/0.1)
\circuitdescbip[samericaninductor]{sL}{Inductive sensor}{american inductive sensor}(label/0/0.3, wiper/180/0.3, tip/0/0.3)
\end{groupdesc}
Finally, if the \texttt{europeaninductors} option is active (or the style \texttt{[european inductors]} is used), the inductors are displayed as follows:
\begin{groupdesc}
\ctikzset{inductor=european}
\circuitdescbip[fullgeneric]{L}{Inductor}{european inductor}(midtap/90/0.1)
\circuitdescbip[tfullgeneric]{vL}{Variable inductor}{variable european inductor}(wiper/180/0.3, tip/90/0.1,core west/135/0.1, core east/45/0.1)
\circuitdescbip[sfullgeneric]{sL}{Inductive sensor}{european inductive sensor}(label/0/0.3, wiper/180/0.3, tip/0/0.3)
\ctikzset{inductor=cute} % back to default
\end{groupdesc}
For historical reasons, \emph{chokes} come only in the \texttt{cute}. You can use the \texttt{core west} and \texttt{core east} anchors (see~\ref{sec:inductors-core-anchors}) to build your own core lines for the other inductors.
\begin{groupdesc}
\circuitdescbip[cutechoke]{cute choke}{Choke}{}
\end{groupdesc}
\subsubsection{Inductors customizations}\label{sec:tweak-l}
You can change the scale of the inductors by setting the key \texttt{inductors/scale} to something different from the default \texttt{1.0}. For thickness, you can use the same keys (applied to the \texttt{inductors} class) as for resistors in~\ref{sec:resistor-thickness}.
Variable inductors arrow tips follow the settings of resistors, see section~\ref{sec:tunablearrows}.
You can change the width of these components (all the inductors together, unless you use style or scoping) by setting the key \texttt{inductors/width} to something different from the default, which is \texttt{0.8} for american and european inductors, and \texttt{0.6} for cute inductors.
Moreover, you can change the number of ``coils'' drawn by setting the key
\texttt{inductors/coils} (default value \texttt{5} for cute inductors and \texttt{4} for american ones). \textbf{Notice} that the minimum number of \texttt{coils} is \texttt{1} for american inductors, and \texttt{2} for cute ones.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
longL/.style = {cute inductor, inductors/scale=0.75,
inductors/width=1.6, inductors/coils=9}]
\draw (0,1.5) to[L, l=$L$] ++(4,0);
\draw (0,0) to[longL, l=$L$] ++(4,0);
\ctikzset{inductors/scale=1.5, inductor=american}
\draw (0,-1.5) to[L, l=$L$] ++(4,0);
\end{circuitikz}
\end{LTXexample}
\paragraph{Chokes} can have single and double lines, and can have the line thickness adjusted (the value is relative to the thickness of the inductor). In general, you should use the anchors (see~\ref{sec:inductors-core-anchors}) to add core lines to inductors.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[cute choke] ++(3,0);
\draw (0,-1) to[cute choke, twolineschoke] ++(3,0);
\ctikzset{bipoles/cutechoke/cthick=2, twolineschoke}
\draw (0,-2) to[cute choke] ++(3,0);
\draw (0,-3) to[cute choke, onelinechoke] ++(3,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Inductors anchors}
For inductive sensors, you have the same anchors than in the case of resistive sensors, see section~\ref{sec:sensors-anchors}.
\paragraph{Taps.}
Inductors have an additional anchor, called \texttt{midtap}, that connects to the center of the coil ``wire''. Notice that this anchor could be on one side or the other of the component, depending on the number of loops of the element; if you need a fixed position, you can use the geographical anchors.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
loops/.style={circuitikz/inductors/coils=#1}]
\ctikzset{cute inductors}
\draw (0,2) to[L, loops=5, name=A] ++(2,0)
to[L, loops=6, name=B] ++(2,0);
\ctikzset{american inductors}
\draw (0,0) to[L, loops=5, name=C] ++(2,0)
to[L, loops=6, name=D] ++(2,0);
\foreach \i in {A, B, C, D}
\node[circle, fill=red, inner sep=1pt] at (\i.midtap){};
\end{circuitikz}
\end{LTXexample}
\paragraph{Core anchors.}\label{sec:inductors-core-anchors}
Inductors have additional anchors to add core lines (for historical reasons, there is a \texttt{cute choke} component also, but to use inductors in the chosen style you'd better use these anchors). The anchors are called \texttt{core west} and \texttt{core east} and they are positioned at a distance that you can tweak with the \texttt{\textbackslash ctikzset} key \texttt{bipoles/inductors/core distance} (default \texttt{2pt}).
\begin{LTXexample}[varwidth]
\begin{circuitikz}[]
\ctikzset{american}
\draw (0,3) to[L=$L$, name=myL] ++(2,0);
\draw[thick] (myL.core west) -- (myL.core east);
\ctikzset{cute inductors}
\draw (0,1.5) to[L=$L$, name=myL] ++(2,0);
\draw[densely dashed] (myL.core west) -- (myL.core east);
\ctikzset{european, bipoles/inductors/core distance=4pt}
\draw (0,0) to[L=$L$, name=myL, label distance=2pt] ++(2,0);
\draw[thick, double] (myL.core west) -- (myL.core east);
\end{circuitikz}
\end{LTXexample}
Notice that the core lines will \textbf{not} change the position of labels. You have to move them by hand if needed (or position them on the other side); see~\ref{sec:adjust-label-position}.
\paragraph{Dot anchors.}
Inductances also have ``dot'' anchors\footnote{proposed by Romano in a discussion by \href{https://github.com/circuitikz/circuitikz/issues/618}{GitHub user AndreaDiPietro92}},
to help positioning dots when specifying mutual inductance signs. The anchors are name \texttt{lr dot} (for lower right dot), \texttt{ur dot} (upper right) and so on:
\begin{quote}
\showanchors{cuteinductorshape}{}(lr dot/-45/0.2, ur dot/45/0.2, ll dot/-135/0.2, ul dot/135/0.2)
\quad
\showanchors{cuteinductorshape}{}(ur dot/-60/0.3, ul dot/-120/0.3, core west/135/0.2, core east/45/0.2)
\end{quote}
and as you can see, you have to be careful if you use dot anchors and core anchors together.
You can change the position of the dots by changing the keys \texttt{bipoles/inductors/dot x distance} (default \texttt{4pt}), which represent how much the dot extends outside the component width, and the corresponding \texttt{dot y distance} (default \texttt{1pt}), which serves the same scope in the height direction.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[]
\ctikzset{bipoles/inductors/.cd, dot x distance=3pt,
dot y distance=0pt}
\draw (0,2) to[L=$L_1$, name=l1] ++(3,0);
\draw (0,0) to[L, l_=$L_2$, name=l2, inductors/width=1.4,
inductors/coils=11] ++(3,0);
\path (l1.ur dot) node[circ]{} (l2.ul dot) node[circ]{};
\draw ([yshift=-0.2cm]l1.south)
to[out=-45, in=45] node[right]{$M$}
([yshift=0.2cm]l2.north);
\end{circuitikz}
\end{LTXexample}
Notice that the position of the dot anchors does not coincide with the position of the dots in the transformers (see section~\ref{sec:transformers}), because there they depend on the size of the complete double-bipole more that on the size of the inductances.
\subsection{Diodes and such}
There are three basic styles for diodes: \texttt{empty} (fillable in color), \texttt{full} (completely filled with the draw color) and \texttt{stroke} (empty, but with a line across them).
You can switch between the styles setting the key \texttt{diode} (for example \verb|\ctikzset{diode=full}| or \texttt{empty} or \texttt{stroke}, or with the styles \texttt{full diodes}, \texttt{empty diodes} and \texttt{stroke diodes}.
To use the default element, simply use the name shown for the empty diodes without the final ``o'' --- that is \texttt{D}, \texttt{sD}, and so on. The names shown in the following tables will draw the specified diode independently on the style chosen (that is, \texttt{leD*} is always a full LED diode).
\begin{framed}
The package options \texttt{fulldiode}, \texttt{strokediode}, and \texttt{emptydiode} (and the styles \texttt{[full diodes]}, \texttt{[stroke diodes]}, and \texttt{[empty diodes]}) define which shape will be used by abbreviated commands such that \texttt{D}, \texttt{sD}, \texttt{zD}, \texttt{zzD}, \texttt{tD}, \texttt{pD}, \texttt{leD}, \texttt{VC}, \texttt{Ty},\texttt{Tr} (no stroke symbol available!).
\end{framed}
\begin{groupdesc}
\circuitdescbip*[emptydiode] {empty diode}{Empty diode}{Do}
\circuitdescbip*[emptysdiode]{empty Schottky diode}{Empty Schottky diode}{sDo}
\circuitdescbip*[emptyzdiode]{empty Zener diode}{Empty Zener diode}{zDo}
\circuitdescbip*[emptyzzdiode]{empty ZZener diode}{Empty ZZener diode}{zzDo}
\circuitdescbip*[emptytdiode]{empty tunnel diode}{Empty tunnel diode}{tDo}
\circuitdescbip*[emptypdiode]{empty photodiode}{Empty photodiode}{pDo}(arrows/-30/0.3)
\circuitdescbip*[emptylediode]{empty led}{Empty led}{leDo}(arrows/-30/0.3)
\circuitdescbip*[emptylaserdiode]{empty laser diode}{Empty laser diode\footnotemark}{lasD}(arrows/-30/0.3)
\footnotetext{Added by André Alves in \texttt{v1.4.4}}
\circuitdescbip*[emptyvarcap]{empty varcap}{Empty varcap}{VCo}
\circuitdescbip*[emptytvsdiode]{empty TVS diode}{Empty TVS diode, transorb\footnotemark}{tvsDo}
\footnotetext{Transobs were suggested by \href{Anisio Braga}{https://tex.stackexchange.com/q/642219/38080}}
\circuitdescbip*[emptyshdiode]{empty Shockley diode}{Empty Shockley diode\footnotemark}{shDo}
\footnotetext{Shockley diodes were suggested by \href{@Dauph}{https://tex.stackexchange.com/q/646039/38080}}
\circuitdescbip*[emptybidirectionaldiode]{empty bidirectionaldiode}{Empty bidirectionaldiode}{biDo}
\circuitdescbip[fulldiode] {full diode}{Full diode}{D*}
\circuitdescbip[fullsdiode]{full Schottky diode}{Full Schottky diode}{sD*}
\circuitdescbip[fullzdiode]{full Zener diode}{Full Zener diode}{zD*}
\circuitdescbip[fullzzdiode]{full ZZener diode}{Full ZZener diode}{zzD*}
\circuitdescbip[fulltdiode]{full tunnel diode}{Full tunnel diode}{tD*}
\circuitdescbip[fullpdiode]{full photodiode}{Full photodiode}{pD*}(arrows/-30/0.3)
\circuitdescbip[fulllediode]{full led}{Full led}{leD*}(arrows/-30/0.3)
\circuitdescbip[fulllaserdiode]{full laser diode}{Full laser diode}{lasD*}(arrows/-30/0.3)
\circuitdescbip[fullvarcap]{full varcap}{Full varcap}{VC*}
\circuitdescbip[fulltvsdiode]{full TVS diode}{Full TVS diode, transorb}{tvsD*}
\circuitdescbip[fullshdiode]{full Shockley diode}{Full Shockley diode}{shD*}
\circuitdescbip[fullbidirectionaldiode]{full bidirectionaldiode}{Full bidirectionaldiode}{biD*}
\end{groupdesc}
These shapes have no exact node-style counterpart, because the stroke line is built upon the empty variants:
\begin{groupdesc}
\circuitdescbip*[emptydiode] {stroke diode}{Stroke diode}{D-}
\circuitdescbip*[emptysdiode]{stroke Schottky diode}{Stroke Schottky diode}{sD-}
\circuitdescbip*[emptyzdiode]{stroke Zener diode}{Stroke Zener diode}{zD-}
\circuitdescbip*[emptyzzdiode]{stroke ZZener diode}{Stroke ZZener diode}{zzD-}
\circuitdescbip*[emptytdiode]{stroke tunnel diode}{Stroke tunnel diode}{tD-}
\circuitdescbip*[emptypdiode]{stroke photodiode}{Stroke photodiode}{pD-}(arrows/-30/0.3)
\circuitdescbip*[emptylediode]{stroke led}{Stroke led}{leD-}(arrows/-30/0.3)
\circuitdescbip*[emptylaserdiode]{stroke laser diode}{Stroke laser diode}{lasD-}(arrows/-30/0.3)
\circuitdescbip*[emptyvarcap]{stroke varcap}{Stroke varcap}{VC-}
\end{groupdesc}
\subsubsection{Tripole-like diodes}\label{sec:othertrip} The following tripoles are entered with the usual command, of the form \texttt{to[Tr, \dots]}. In the following list you can see the traditional, or \texttt{legacy}, shape of the Thyristors-type devices.
\begin{groupdesc}
\ctikzset{thyristor style=legacy}
\circuitdescbip[fulldiode] {full diode}{Full diode}{D*}
\circuitdescbip*[emptydiode] {stroke diode}{Stroke diode}{D-}
\circuitdescbip*[emptytriac]{triac}{Standard triac (shape depends on package option)}{Tr}( G/0/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptytriac]{empty triac}{Empty triac}{Tro}( gate/0/0.3 )
\circuitdescbip[fulltriac]{full triac}{Full triac}{Tr*}
\circuitdescbip*[emptythyristor]{thyristor}{Standard thyristor (shape depends on package option)}{Ty}( G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptythyristor]{empty thyristor}{Empty thyristor}{Tyo}
\circuitdescbip[fullthyristor]{full thyristor}{Full thyristor}{Ty*}
\circuitdescbip*[emptythyristor]{stroke thyristor}{Stroke thyristor}{Ty-}
\circuitdescbip*[emptyput]{put}{Standard Programmable Unipolar Transistor\footnotemark (shape depends on package option)}{PUT}( G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\footnotetext{This components, and the GTO family, has been suggested by \href{https://github.com/circuitikz/circuitikz/issues/522}{GitHub user JetherReis}.}
\circuitdescbip*[emptyput]{empty put}{Empty PUT}{PUTo}
\circuitdescbip[fullput]{full put}{Full PUT}{PUT*}
\circuitdescbip*[emptyput]{stroke put}{Stroke PUT}{PUT-}
\circuitdescbip*[emptygto]{gto}{Standard GTO (shape depends on package option)}{GTO}( G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptygto]{empty gto}{Empty GTO}{GTOo}
\circuitdescbip[fullgto]{full gto}{Full GTO}{GTO*}
\circuitdescbip*[emptygto]{stroke gto}{Stroke GTO}{GTO-}
\circuitdescbip*[emptygtobar]{gtobar}{Standard GTO with bar-type gate (shape depends on package option)}{GTOb}( G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptygtobar]{empty gtobar}{Empty GTO, bar-type}{GTObo}
\circuitdescbip[fullgtobar]{full gtobar}{Full GTO, bar-type}{GTOb*}
\circuitdescbip*[emptygtobar]{stroke gtobar}{Stroke GTO, bar type}{GTOb-}
\circuitdescbip*[emptyagtobar]{agtobar}{Standard GTO with bar-type gate on anode (shape depends on package option)}{aGTOb}( G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptyagtobar]{empty agtobar}{Empty GTO, bar-type on anode}{aGTObo}
\circuitdescbip[fullagtobar]{full agtobar}{Full GTO, bar-type on anode}{aGTOb*}
\circuitdescbip*[emptyagtobar]{stroke agtobar}{Stroke GTO, bar-type on anode}{aGTOb-}
\end{groupdesc}
For basically stylistical reasons, there is a different, more compact, shape available for them, activated with the key \texttt{thyristor style=compact} (the default is \texttt{legacy}). All the devices above are present, we will show here just the automatic version for shortness.
\begin{groupdesc}
\ctikzset{thyristor style=compact}
\circuitdescbip*[emptytriac]{triac}{Standard triac (shape depends on package option)}{Tr}(G/0/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptythyristor]{thyristor}{Standard thyristor (shape depends on package option)}{Ty}(G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptyput]{put}{Standard Programmable Unipolar Transistor (shape depends on package option)}{PUT}( G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptygto]{gto}{Standard gto (shape depends on package option)}{GTO}(G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptygtobar]{gtobar}{Standard GTO with a bar symbol on the gate (shape depends on package option)}{GTOb}( G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\circuitdescbip*[emptyagtobar]{agtobar}{Standard GTO with bar-type gate on anode (shape depends on package option)}{aGTOb}( G/0/0.3, gate/45/0.3, anode/-90/0.2, cathode/-90/0.2)
\end{groupdesc}
\subsubsection{Thyristors anchors and customization}
When inserting a thrystor, a triac or a potentiometer, one needs to refer to the third node-gate (\texttt{gate} or \texttt{G}) for the former two; wiper (\texttt{wiper} or \texttt{W}) for the latter one. This is done by giving a name to the bipole:
\label{bipole-naming}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) to[Tr, n=TRI] (2,0)
to[pR, n=POT] (4,0);
\draw[dashed] (TRI.G) -| (POT.wiper)
;\end{circuitikz}
\end{LTXexample}
As commented above, you can change the shape of these devices (globally or locally) setting the key \texttt{thyristor style=compact} (the default is \texttt{legacy}). Additionally, normally the plain \texttt{GTO} symbols come without the arrows, but you can add them using a syntax similar to the one explained in section~\ref{sec:tunablearrows} using the arrow group \texttt{gto gate}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\ctikzset{thyristor style=compact}
\draw (0,0) to[GTO=$G_1$] ++(0,-3);
\ctikzset{gto gate end arrow=latexslim}
\draw (2,0) to[GTO*=$G_2$, mirror] ++(0,-3);
\draw (4,0) to[GTOb-=$G_2$, mirror] ++(0,-3);
\end{circuitikz}
\end{LTXexample}
Notice that you can set both \texttt{gto gate end arrow} and \texttt{gto gate start arrow} --- choosing just one of the two you can decide the ``rotation'' direction of the symbol. There is little space though, so don't overdo it.
\subsubsection{Diode customizations}\label{sec:tweak-d}
You can change the scale of the diodes by setting the key \texttt{diodes/scale} to something different from the default \texttt{1.0}. In Romano's opinion, diodes are somewhat big with the default style of the package, so a setting like \verb|\ctikzset{diodes/scale=0.6}| is recommended.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,1) to[D, l=$D$] ++(2,0)
node[npn, anchor=B]{};
\ctikzset{diodes/scale=0.6}
\draw (0,-1) to[D, l=$D$] ++(2,0)
node[npn, anchor=B]{};
\end{circuitikz}
\end{LTXexample}
\paragraph{Optical devices arrows}\label{sec:opto-arrows} You can change the direction of the LEDs and photodiodes' arrows by using the binary keys \texttt{led arrows from cathode} and \texttt{pd arrows to cathode} (the default are \texttt{led arrows from anode} and \texttt{pd arrows to anode}), as you can see in the following example.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{led arrows from anode} % default
\ctikzset{pd arrows to anode} % default
\ctikzset{full diodes}
\draw (0,0) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
\ctikzset{stroke diodes}
\draw (0,-1) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
\ctikzset{empty diodes}
\draw (0,-2) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
\ctikzset{led arrows from cathode}
\ctikzset{pd arrows to cathode}
\ctikzset{full diodes}
\draw (0,-4) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
\ctikzset{stroke diodes}
\draw (0,-5) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
\ctikzset{empty diodes}
\draw (0,-6) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
\end{circuitikz}
\end{LTXexample}
Since version \texttt{1.5.5}\footnote{Thanks to the idea by \href{https://github.com/circuitikz/circuitikz/issues/655}{Dr. Matthias Jung on GitHub}.}, you can change the arrows used for LEDs, photodiodes and laser diodes with the generic arrows options shown in~\ref{sec:tunablearrows}, using the name \texttt{opto}, like in the following (overdone) example. Normally you want just to change the \texttt{end arrow}\dots
As you can see, you can also have the option to globally change the color, relative thickness, and dash pattern by setting keys with the \verb!\ctikzset! command (or, like in the following example, directly in the node instantiation) under the \texttt{opto arrows} hierarchy. The available keys are:
\begin{center}
\begin{tabular}{>{\ttfamily}l>{\ttfamily}lp{0.5\linewidth}}
\toprule
parameter & default & description \\
\midrule
relative thickness & 1.0 & multiply the class thickness \\
color & default & stroke color: \texttt{default} is the same as the component \\
dash & default & dash pattern: \texttt{default} means not to change the setting for the component; \texttt{none} means unbroken line; every other input is a dash pattern.\footnotemark \\
\bottomrule
\end{tabular}
\footnotetext{Follows the syntax of the pattern sequence \texttt{\textbackslash pgfsetdash} --- see \TikZ{} manual for details; phase is always zero. Basically you pass pairs of dash-length -- blank-length dimensions, see the examples.}
\end{center}
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}
\newcommand{\optos}{%
to[leD] ++(1.5,0) to[pD*] ++(1.5,0)
to[lasD] ++(1.5,0)}
\begin{scope}
\draw (0,2) \optos;
\ctikzset{led arrows from cathode}
\ctikzset{pd arrows to cathode}
\ctikzset{opto arrows/.cd, color=red,
dash={{1pt}{1pt}}}
\draw (0,0) \optos;
\end{scope}
\begin{scope}[color=blue, yshift=-6cm]
\ctikzset{opto end arrow={Triangle[angle'=45]}}
\ctikzset{opto start arrow={Hooks[red]}}
\draw (0,4) \optos;
\ctikzset{opto arrows/color=black}
\ctikzset{opto arrows/relative thickness=2}
\draw (0,2) \optos;
\ctikzset{led arrows from cathode}
\ctikzset{pd arrows to cathode}
\draw (0,0) \optos;
\end{scope}
\end{tikzpicture}
\end{LTXexample}
\subsection{Sources and generators}
Notice that source and generators are divided in three classes that can be styled independently: traditional battery symbols (class \texttt{batteries}), independent generators (class \texttt{sources}) and dependent generators (class \texttt{csources}). This is because they are often treated differently, and so you can choose to, for example, fill the dependent sources but not the independent ones.
\subsubsection{Batteries}
\begin{groupdesc}
\circuitdescbip{battery}{Battery}{}
\circuitdescbip{battery1}{Single battery cell}{}
\circuitdescbip{battery2}{Single battery cell}{}
\circuitdescbip{baertty}{Randall Munroe's baertty\footnotemark}{}
\footnotetext{\href{https://xkcd.com/2818}{Mandatory xkcd}}
\end{groupdesc}
\subsubsection{Stationary sources}
\begin{groupdesc}
\circuitdescbip*[vsource]{european voltage source}{Voltage source (european style)}{vsource}
\circuitdescbip*[vsourceC]{cute european voltage source}{Voltage source (cute european style)}{vsourceC, ceV}
\circuitdescbip*[vsourceAM]{american voltage source}{Voltage source (american style)}{vsourceAM}
\circuitdescbip*[isource]{european current source}{Current source (european style)}{isource}
\circuitdescbip*[isourceC]{cute european current source}{Current source (cute european style)}{isourceC, ceI}
\circuitdescbip*[isourceAM]{american current source}{Current source (american style)}{isourceAM}
\end{groupdesc}
\begin{framed}
If (default behavior) \texttt{europeancurrents} option is active (or the style \texttt{[european currents]} is used), the shorthands \texttt{current source}, \texttt{isource}, and \texttt{I} are equivalent to \texttt{european current source}. Otherwise, if \texttt{americancurrents} option is active (or the style \texttt{[american currents]} is used) they are equivalent to \texttt{american current source}.
Similarly, if (default behavior) \texttt{europeanvoltages} option is active (or the style \texttt{[european voltages]} is used), the shorthands \texttt{voltage source}, \texttt{vsource}, and \texttt{V} are equivalent to \texttt{european voltage source}. Otherwise, if \texttt{americanvoltages} option is active (or the style \texttt{[american voltages]} is used) they are equivalent to \texttt{american voltage source}.
\end{framed}
\subsubsection{Sinusoidal sources}\label{sec:sinusoidal-vi} These two are basically the same symbol; to distinguish among them, you have to add a label, which will be a voltage or a current. Another option would be to configure the \texttt{sinusoidal current source} as an open shape using \texttt{\textbackslash ctikzset\string{bipoles/isourcesin/angle=80\string}} similar to the \texttt{dcisource} in section~\ref{sec:dc-sources}.
\begin{groupdesc}
\circuitdescbip*[vsourcesin]{sinusoidal voltage source}{Sinusoidal voltage source}{vsourcesin, sV}
\circuitdescbip*[isourcesin]{sinusoidal current source}{Sinusoidal current source\footnotemark}{isourcesin, sI}
\footnotetext{The configurable open shape of the \texttt{sinusoidal current source} has been added by \href{https://github.com/circuitikz/circuitikz/pull/737}{Maximilian Martin}}.
\end{groupdesc}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,2) to[sV=$V$] ++(3,0);
\draw (0,1) to[sI=$I$] ++(3,0);
\ctikzset{bipoles/isourcesin/angle=80}
\draw (0,0) to[sI] ++(3,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Controlled sources}
\begin{groupdesc}
\circuitdescbip*[cvsource]{european controlled voltage source}{Controlled voltage source (european style)}{cvsource}
\circuitdescbip*[cvsourceC]{cute european controlled voltage source}{Voltage source (cute european style)}{cvsourceC, cceV}
\circuitdescbip*[cvsourceAM]{american controlled voltage source}{Controlled voltage source (american style)}{cvsourceAM}
\circuitdescbip*[cisource]{european controlled current source}{Controlled current source (european style)}{cisource}
\circuitdescbip*[cisourceC]{cute european controlled current source}{Current source (cute european style)}{cisourceC, cceI}
\circuitdescbip*[cisourceAM]{american controlled current source}{Controlled current source (american style)}{cisourceAM}
\circuitdescbip*[ecsource]{empty controlled source}{Empty controlled source}{ecsource}
\end{groupdesc}
\begin{framed}
If (default behaviur) \texttt{europeancurrents} option is active (or the style \texttt{[european currents]} is used), the shorthands \texttt{controlled current source}, \texttt{cisource}, and \texttt{cI} are equivalent to \texttt{european controlled current source}. Otherwise, if \texttt{americancurrents} option is active (or the style \texttt{[american currents]} is used) they are equivalent to \texttt{american controlled current source}.
Similarly, if (default behaviur) \texttt{europeanvoltages} option is active (or the style \texttt{[european voltages]} is used), the shorthands \texttt{controlled voltage source}, \texttt{cvsource}, and \texttt{cV} are equivalent to \texttt{european controlled voltage source}. Otherwise, if \texttt{americanvoltages} option is active (or the style \texttt{[american voltages]} is used) they are equivalent to \texttt{american controlled voltage source}.
\end{framed}
The following two behave like the corresponding independent sources, see section~\ref{sec:sinusoidal-vi}.
\begin{groupdesc}
\circuitdescbip*[cvsourcesin]{controlled sinusoidal voltage source}{Controlled sinusoidal voltage source}{controlled vsourcesin, cvsourcesin, csV}
\circuitdescbip*[cisourcesin]{controlled sinusoidal current source}{Controlled sinusoidal current source}{controlled isourcesin, cisourcesin, csI}
\end{groupdesc}
\subsubsection{Noise sources}
In this case, the ``direction'' of the source is undefined. Noise sources are filled in gray by default, but if you choose the dashed style, they become fillable.
\begin{groupdesc}
\circuitdescbip[vsourceN]{noise voltage source}{Sinusoidal voltage source}{vsourceN, nV}
\circuitdescbip[isourceN]{noise current source}{Sinusoidal current source}{isourceN, nI}
\end{groupdesc}
You can change the fill color with the key \texttt{circuitikz/bipoles/noise sources/fillcolor}:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw(0,0) to [nV, l=$e_n$] ++(2,0);
\draw(0,-2) to [nI, l=$i_n$] ++(2,0);
\begin{scope}[circuitikz/bipoles/noise sources/fillcolor=red!50]
\draw(3,0) to [nV, l=$e_n$] ++(2,0);
\draw(3,-2) to [nI, l=$i_n$] ++(2,0);
\end{scope}
\end{circuitikz}
\end{LTXexample}
If you prefer a patterned noise generator (similar to the one you draw by hand) you can use the fake color \texttt{dashed}:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw(0,0) to [nV, l=$e_n$] ++(2,0);
\draw(0,-2) to [nI, l=$i_n$] ++(2,0);
\begin{scope}[circuitikz/bipoles/noise sources/fillcolor=dashed]
\draw(3,0) to [nV, l=$e_n$] ++(2,0);
\draw(3,-2) to [nI, l=$i_n$] ++(2,0);
\end{scope}
\end{circuitikz}
\end{LTXexample}
Notice that if you choose the dashed style, the noise sources are fillable:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{bipoles/noise sources/fillcolor=dashed}
\draw(0,0) to [nV, l=$e_n$] ++(2,0);
\draw(0,-2) to [nI, l=$i_n$] ++(2,0);
\begin{scope}
\draw(3,0) to [nV, l=$e_n$, fill=yellow!50!red] ++(2,0);
\draw(3,-2) to [nI, l=$i_n$, fill=blue!50!white] ++(2,0);
\end{scope}
\end{circuitikz}
\end{LTXexample}
\subsubsection{Special sources}
\begin{groupdesc}
\circuitdescbip*[vsourcesquare]{square voltage source}{Square voltage source}{vsourcesquare, sqV}
\circuitdescbip*{vsourcetri}{Triangle voltage source}{tV}
\circuitdescbip*{esource}{Empty voltage source}{}
\circuitdescbip*{pvsource}{Photovoltaic-voltage source}{}
\circuitdescbip*{pvmodule}{Photovoltaic module source\footnotemark}{}
\footnotetext{Added by André Alves in \texttt{v1.3.5}}
\circuitdescbip*[oosource]{ioosource}{Double Zero style current source}{}
\circuitdescbip*[oosource]{voosource}{Double Zero style voltage source}{}
\circuitdescbip*[oosourcetrans]{oosourcetrans}{transformer source\footnotemark}{}(centerprim/90/0.3, centersec/-90/0.3)
\footnotetext{The \texttt{oosourcetrans} and \texttt{ooosource} components have been added by \href{https://github.com/circuitikz/circuitikz/pull/397}{user \texttt{@olfline} on GitHub}}.
\begingroup
\ctikzset{sources/scale=1.5}
\circuitdescbip*[ooosource]{ooosource}{transformer with three windings\footnotemark}{}(left/175/0.2, right/5/0.7, prim1/130/.2, prim2/-130/.2, sec1/35/.2, sec2/60/.2, sec3/90/.2, tert1/0/.2, tert2/-45/.2, tert3/-90/.2, centerprim/92/0.8, centersec/35/0.9, centertert/-35/0.8)
\footnotetext{The component here is scaled up 1.5 times to better show the anchors.}
\endgroup
\end{groupdesc}
The transformer shapes vector group options can be specified for the primary (\texttt{prim=\emph{value}}), the secondary (\texttt{sec=\emph{value}}) and tertiary (\texttt{tert=\emph{value}}) three-phase vector groups: the value can be one of \texttt{delta}, \texttt{wye}, \texttt{eyw}\footnote{The \texttt{eyw} symbol was suggested by \href{https://github.com/circuitikz/circuitikz/pull/742}{Jakob «DraUX» on GitHub}} and \texttt{zig}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[oosourcetrans, prim=zig, sec=delta, o-] ++(2,0)
to[oosourcetrans, prim=delta, sec=wye,-o] ++(0,-2)
to[ooosource, prim=eyw, sec=zig, tert=delta] (0,0);
\end{circuitikz}
\end{LTXexample}
These two ``sources'' have additional anchors that reach the center of the symbol;\footnote{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/725}{user @lapreindl on GitHub}.} they are used sometimes to add a (symbolic) connection there, like for example a ground connection.
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[european, scale=2, transform shape,
smalldot/.style={draw, circle,red, inner sep=0.2pt}]
\draw (0,0) to[oosourcetrans, name=A,
prim=delta, sec=wye] ++(1,0)
to[ooosource, name=B, prim=eyw, sec=zig,
tert=delta] ++(1,0)
(A.symbolsec) -- ++(-45:0.5) node[ground]{};
\node [smalldot] at (A.symbolprim) {};
\node [smalldot] at (A.symbolsec) {};
\node [smalldot] at (B.symbolprim) {};
\node [smalldot] at (B.symbolsec) {};
\node [smalldot] at (B.symboltert) {};
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Nullator and norator}
These are special elements used in some approaches to model ideal amplifiers\footnote{See \href{https://en.m.wikipedia.org/wiki/Nullor}{the Wikipedia article}; suggested by \href{https://github.com/circuitikz/circuitikz/issues/615}{user atticus-sullivan on GitHub}.}.
\begin{groupdesc}
\circuitdescbip*{nullator}{Nullator element (virtual short circuit; forces V and I to zero)}{}
\circuitdescbip*{norator}{Norator element (admits any combination of V and I)}{}
\end{groupdesc}
They are in the \texttt{sources} class, but they are not treated like sources in the labeling sense (they have both \texttt{bipoles/is voltage=false} and \texttt{bipoles/is current=false}, see~\ref{sec:source-vif}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) node[ground](GND){}
to [I,l=$i_s$,invert]
++(0,2.5) -- ++(1.5,0) coordinate(up)
to[nullator, v=0, i=0, name=A]
(up|-GND) node[ground]{};
\draw (up) to[R, *-*] ++(2,0) coordinate(out)
to[norator, v^=$v_o$]
(out|-GND) node[ground]{};
\end{circuitikz}
\end{LTXexample}
The symbol shapes used here seems to be the most common in publications; if you prefer the shapes from the Wikipedia article, you can use the following definitions:
\begin{LTXexample}[varwidth=true]
\tikzset{noratorW/.style={voosource,
bipoles/oosource/circlesize=0.5,
bipoles/oosource/circleoffset=0.5},
nullatorW/.style={esource, sources/scale=0.5}}
\begin{tikzpicture}
\draw (0,0) to[nullatorW] ++(2,0) to[noratorW] ++(0, -2);
\end{tikzpicture}
\end{LTXexample}
\subsubsection{DC sources}\label{sec:dc-sources}
\begin{groupdesc}
\circuitdescbip*{dcvsource}{DC voltage source}{}
\circuitdescbip*{dcisource}{DC current source}{}
\end{groupdesc}
The size of the broken part of the DC current source is configurable by changing the value of \texttt{bipoles/dcisource/angle} (default \texttt{80}); values must be between 0 (no circle at all, probably not useful) and 90 (full circle, again not useful).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[dcvsource] ++(2,0)
to [dcisource, fill=yellow] ++(2,0) ;
\ctikzset{bipoles/dcisource/angle=45}
\draw (0,-2) to[dcvsource] ++(2,0)
to [dcisource, fill=yellow] ++(2,0) ;
\end{circuitikz}
\end{LTXexample}
\subsubsection{Sources customizations}\label{sec:tweak-sources}
\paragraph{Size.}
You can change the scale of the batteries by setting the key \texttt{batteries/scale}, for the controlled (dependent) sources with \texttt{csources/scale}, and for all the other independent sources and generators with \texttt{sources/scale}, to something different from the default \texttt{1.0}.
Notice that the size of the double-circle sources (and of the triple-circle one) are tuned so that the full source occupy more or less the same horizontal space than one of the single-circle one; as a consequence, the circles are much smaller. If you want to have the same circle radius, you have to scale (locally!) those sources by one factor that is \texttt{1.5384} ($1/0.65$) for \texttt{oosource}, \texttt{1.6667} ($1/0.6$) for \texttt{oosourcetrans}, and \texttt{1.8182} ($1/0.55$) for \texttt{ooosource}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw[color=red] (0,0) to[esource] ++(3,0);
\draw (0,0) to[oosourcetrans, prim=delta, sec=wye,
sources/scale=1.667] ++(3,0);
\end{circuitikz}
\end{LTXexample}
\paragraph{Waveform symbols.}
Internal symbols of sinusoidal, triangular and square sources are drawn with the same line thickness as the component by default. You can modify this by setting the key \texttt{sources/symbols/thickness} for independent sources and the corresponding \texttt{csource/...} for dependent ones. The value used here is relative to the component (i.e. the circle) value.
Normally the symbol is oriented in the same direction as the line, and rotate rigidly with the component; you can change this orientation using the key \texttt{sources/symbols/rotate} or \texttt{csource/...}. The default value is \texttt{90} which correspond to the ``line'' direction (remember, path components are defined as horizontal ones).
If instead of an angle value you use \texttt{auto}, the symbol will be rotated so that the waveform is always vertical, similar to what happens in instruments:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,1) to[sqV] ++(3,0)
to[sqV] ++(1,-1)
to[sqV] ++(0,-3);
\ctikzset{sources/symbol/rotate=auto}
\ctikzset{sources/symbol/rotate=auto, sources/symbol/thickness=3}
\draw[color=red] (0,0) to[sqV] ++(3,0)
to[sqV] ++(0,-3)
to[sqV] (0,0);
\end{circuitikz}
\end{LTXexample}
\paragraph{Polarity symbols.}
The symbols drawn into the \texttt{american voltage source}\footnote{Since version \texttt{1.1.0}, thanks to the suggestions and discussion
\href{https://tex.stackexchange.com/questions/538723/circuitikz-what-should-i-do-to-put-the-and-on-the-appropriate-places-like-t}{in this TeX.SX question}.} can be changed by using the \verb|\ctikzset| keys \texttt{bipoles/vsourceam/inner plus} and \texttt{.../inner minus} (by default they are \verb|$+$| and \verb|$\vphantom{+}-$| respectively, in the current font), and move them nearer of farther away by twiddling \texttt{bipoles/vsourceam/margin} (default \texttt{0.7}, less means nearer). The reason of the \verb|\vphantom| can be found in section~\ref{sec:american-voltage-custom}.
You can do the same with the \texttt{american controlled voltage sources}, substituting \texttt{cvsourceam} to \texttt{vsourceam} (notice the initial ``\texttt{c}'').
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\ctikzset{bipoles/vsourceam/inner plus={\tiny $+$}}
\ctikzset{bipoles/vsourceam/inner minus={\tiny $-$}}
\draw (0,0) to[V, l_=$V$] ++(0,3)
to[R=\SI{5}{\ohm}] ++(3,0)
to[V, invert,
bipoles/vsourceam/inner plus={\color{red}\tiny $\oplus$},
bipoles/vsourceam/inner minus={\color{blue}\tiny $\ominus$},
bipoles/vsourceam/margin=0.5]
++(0,-3) to[short, -*] (0,0) node[ground]{};
\end{circuitikz}
\end{LTXexample}
\paragraph{Orientation of the polarity symbols.}
When rotating the sources, they usually move rigidly. This results in the fact that American voltage sources look nice when vertical but could be better in other directions. Since \texttt{v1.6.7}\footnote{Thanks to the suggestions and discussion
\href{https://github.com/circuitikz/circuitikz/issues/773}{by user @jotagah on GitHub}.}, you can choose several rotation modes for those symbols (independent and dependent sources).
You can obtain several different rotations or rotation modes by changing the value of the key \texttt{sources/symbol/sign rotation} (with \verb!\ctikzset!). The value \texttt{default} (also the default value!) uses the legacy, ``rigid'' position.
If you provide a number, the symbols are rotated by that value (\texttt{0} means that the minus sign is aligned with the wire, \texttt{90} is very similar to \texttt{default}\footnote{Not exactly equal; the position of the symbols could be slightly different depending on the font.}).
If you use \texttt{straight}, the symbols are rotated to be always horizontal. With \texttt{auto}, the symbols are drawn in the same way as \texttt{0} for inclination less the \SI{45}{\degree}, and as \texttt{90} otherwise.The following drawing shows the results for several different parameter values.
\begin{LTXexample}[varwidth=true, pos=t]
\begin{tikzpicture}[american, scale=0.6, transform shape]
%\ctikzset{sources/symbol/sign rotation=default}
\foreach \a in {0,30,...,359} \draw (0,0) -- ++(\a:1) to[V] ++(\a:2);
\ctikzset{sources/symbol/sign rotation=0}
\foreach \a in {0,30,...,359} \draw[color=red] (6,0) -- ++(\a:1) to[V] ++(\a:2);
\ctikzset{sources/symbol/sign rotation=auto}
\foreach \a in {0,30,...,359} \draw[color=blue] (12,0) -- ++(\a:1) to[V] ++(\a:2);
\ctikzset{sources/symbol/sign rotation=straight}
\foreach \a in {0,30,...,359} \draw (18,0) -- ++(\a:1) to[V] ++(\a:2);
\end{tikzpicture}
\end{LTXexample}
\paragraph{Three-phase symbols.}
The three-phase symbols \texttt{delta}, \texttt{wye}, \texttt{eyw}, and \texttt{zig} follows the line thickness exactly as
the waveform ones (see above). Additionally, you can scale them up and down by changing the value of the keys
\texttt{sources/symbol/delta scale}, \texttt{.../wye scale}, \texttt{.../eyw scale}, and \texttt{.../zig scale} (default \texttt{1}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=1.8, transform shape]
\tikzset{myoosource/.style={ooosource,
prim=wye, sec=delta, tert=zig,
}}
\draw (0,2) to[myoosource] ++(2,0);
\ctikzset{%
sources/symbol/thickness=0.5,
sources/symbol/delta scale=1.2,
sources/symbol/wye scale=1.4,
sources/symbol/zig scale=1.3,
}
\draw (0,0) to[myoosource] ++(2,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Source borders}
Unfortunately, the border of the sources is only easily accessed if some anchor is provided.
The border anchors of the shapes are not tight on them (see section~\ref{sec:bipoles-border-anchors}), which is not easily changeable, given that the algorithm that positions the labels depends on it.
On the other hand, \TikZ{} powerful partway coordinate calculation (around section 13.5.3 of the manual) makes it possible to easily identify points on a circle if the center and one point of the circle are known, as you can see in the following example.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[]
\path (0,0) to[oosourcetrans, name=T, ]++(2,0);
% Use partway modifiers to reach a point on the left circle
\draw ($(T.centerprim)!1!45:(T.left)$) -- ++(-135:0.2)
-- ++(0,-1) node[ground]{};
\begin{scope}[font=\tiny\ttfamily, pin distance=2mm, inner sep=0pt]
\foreach \a in {-90,-45,...,90}
\node [circ, scale=0.5, pin=\a:\a, color=red] at
($(T.centersec)!1!\a:(T.right)$){};
\end{scope}
\end{tikzpicture}
\end{LTXexample}
A similar approach can be used for dependent sources. Just remember that the anchors move (rotate) together with the component.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[american]
\draw (0,0) to [cvsource, name=S] ++(0,2);
\node [circ,red] at ($(S.e)!0.3333!(S.n)$) {};
\node [circ,blue] at ($(S.e)!0.6666!(S.n)$) {};
\end{tikzpicture}
\end{LTXexample}
\subsection{Instruments}
\subsubsection{Basic round instruments}
\begin{groupdesc}
\circuitdescbip*{rmeter}{Round meter (use \texttt{t=...} for the symbol)}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\circuitdescbip*{rmeterwa}{Round meter with arrow (use \texttt{t=...} for the symbol)}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\circuitdescbip*{ammeter}{Legacy ammeter}{}
\circuitdescbip*{voltmeter}{Legacy voltmeter}{}
\circuitdescbip*{ohmmeter}{Legacy ohmmeter}{}
\end{groupdesc}
You can define styles if you want to use the new shapes for round instrument similarly to the legacy ones:%
\footnote{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/787}{user mxxmxn on GitHub}.}
\begin{LTXexample}[varwidth=true]
\tikzset{vmeter/.style={rmeterwa, t=V}}
\tikzset{ameter/.style={rmeterwa, t=A}}
\tikzset{ometer/.style={rmeterwa, t=$\Omega$}}
\begin{tikzpicture}
% Old meter style
\draw (0,2) to[voltmeter] ++(2,0)
to[ammeter] ++(2,0)
to[ohmmeter] ++(2,0);
% New meter style
\draw (0,0) to[vmeter] ++(2,0)
to[ameter] ++(2,0)
to[ometer] ++(2,0);
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Square instruments}
Sometimes it is better to use a shape for instruments which is very different from the round symbols used for sources.
\begin{groupdesc}
\circuitdescbip*{smeter}{Square meter (use \texttt{t=...} for the symbol)}{}(left/135/0.2, right/45/0.2, center/-90/0.3, in 1/-135/.5, in 2/-45/.5)
\circuitdescbip*{qiprobe}{QUCS-style current probe}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\circuitdescbip*{qvprobe}{QUCS-style voltage probe}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\circuitdescbip*{qpprobe}{QUCS-style power probe}{}(left/135/0.2, right/45/0.2, center/-90/0.3, v+/-135/.5, v-/-45/.5)
\end{groupdesc}
\subsubsection{Oscilloscopes and current probes}
\begin{groupdesc}
\circuitdescbip*[oscope]{oscope}{Oscilloscope\footnotemark}{}(left/135/0.2, right/45/0.2,
in 1/-135/0.4, in 2/-45/0.4)
\footnotetext{Suggested by \texttt{@nobrl} on GitHub}
\circuitdescbip{iloop}{Current loop (symbolic)}{}(left/135/0.2, right/45/0.2, center/-90/0.3, i/30/0.4)
\circuitdescbip{iloop2}{Current loop (real)}{}(left/135/0.2, right/-45/0.2, center/-90/0.3, i+/135/0.4, i-/45/0.4)
\end{groupdesc}
\subsubsection{Instruments customizations}\label{sec:tweak-instruments}
You can change the scale of all the instruments (including the current loops) by setting the key \texttt{instruments/scale} to something different from the default \texttt{1.0}.
\paragraph{Oscilloscope waveform.} You can change the waveform shown in the oscilloscope ``screen''\footnote{Suggested by \href{https://tex.stackexchange.com/q/595062/38080}{Mario Tafur on TeX.SX}}. To change it, you just set the key \texttt{bipoles/oscope/waveform} to one of the available shape. You have available the shapes in the following list (the default is \texttt{ramps}):
\begin{LTXexample}[pos=t, basicstyle=\small\ttfamily]
\begin{circuitikz}
\foreach [count=\i] \wvf in {ramps, sin, square, triangle, lissajous, zero, none} {
\ctikzset{bipoles/oscope/waveform=\wvf}
\draw ({2*\i},1.4) node[oscopeshape](O){}
({2*\i},0.65) node[anchor=base]{\texttt{\wvf}};
}
\ctikzset{bipoles/oscope/width=1.0}
\foreach [count=\i] \wvf in {ramps, sin, square, triangle, lissajous, zero, none} {
\ctikzset{bipoles/oscope/waveform=\wvf}
\draw ({2*\i},0) node[oscopeshape]{};
}
\end{circuitikz}
\end{LTXexample}
If you want more or different shapes, you can define your owns, but you have to use low-level \texttt{pgf} commands (see part IX, ``The Basic Layer'', in the PGF/\TikZ{} manual). The code is executed into a \verb|\pgfscope| \dots \verb|\endpgfscope| environment, and it must use the path built with a \verb|\pgfusepath|. The coordinates have been scaled so that the external box of the scope is a rectangle between \texttt{(-1cm, -1cm)} and \texttt{(1cm, 1cm)}; the oscilloscope grid is fixed and painted between \texttt{(-0.75cm, -0.5cm)} and \texttt{(0,75cm, 0.5cm)}. If you stretch the scope with the \texttt{\dots width} or \texttt{\dots height} keys, the drawing will be stretched too.
\begin{LTXexample}[varwidth=t, basicstyle=\small\ttfamily]
\ctikzset{%
bipoles/oscope/waveform/mywave/.code={%
\pgfsetcolor{red}
\pgfpathmoveto{\pgfpoint{-.75cm}{-.5cm}}
\pgfpathlineto{\pgfpoint{.75cm}{.5cm}}
\pgfusepath{draw}
\pgfsetcolor{green}
\pgfpathmoveto{\pgfpoint{-.75cm}{.5cm}}
\pgfpathlineto{\pgfpoint{.75cm}{-.5cm}}
\pgfusepath{draw}
}}
\begin{circuitikz}
\ctikzset{bipoles/oscope/waveform=mywave}
\draw (0,0) node[oscopeshape]{};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Rotation-invariant elements}
The \texttt{oscope} element will not rotate the ``graph'' shown with the component:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\foreach \a in {0,45,...,350} {
\draw (0,0) to[oscope] (\a:3);
}
\end{circuitikz}
\end{LTXexample}
The \texttt{rmeter}, \texttt{rmaterwa}, and \texttt{smeter} have the same behavior.
However, if you prefer that the \texttt{oscope}, \texttt{rmeter}, \texttt{smeter} and \texttt{rmeterwa} instruments rotate the text or the diagram,
you can use the key or style \texttt{rotated instruments} (the default style is \texttt{straight instruments}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=0.8, transform shape]
\ctikzset{rotated instruments} % new default
\draw (0,0) to[oscope] ++(0:3);
\draw (0,0) to[oscope] ++(60:3);
\draw (0,0) to[rmeter, t=A] ++(120:3);
% local override
\draw (0,0) to[rmeterwa, t=A, straight instruments] ++(180:3);
\ctikzset{straight instruments} % back to default
\draw (0,0) to[rmeterwa, t=A] ++(240:3);
% local override
\draw (0,0) to[smeter, t=A, rotated instruments] ++(300:3);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Instruments as node elements}
The node-style usage of the \texttt{oscope} is also interesting, using the additional \texttt{in 1} and \texttt{in 2} anchors; notice that in this case you can use the text content of the node to put labels above it.
Moreover, you can change the size of the oscilloscope by changing \texttt{bipoles/oscope/width} and \texttt{bipoles/oscope/height} keys (which both default to 0.6).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,1)
to[oscope=$C_1$, fill=green!20!gray, name=O1] ++(2,0);
\path (O1.right)
node[ground, scale=0.5, below right=4pt]{};
\ctikzset{bipoles/oscope/width=1.0}
\draw (1,-1)
node[oscopeshape, fill=yellow!20!orange](O2){$C_2$};
\draw (O2.in 2) to[short, *-] ++(0,-0.5) node[ground]{};
\draw (O2.in 1) to[short, *-] ++(0,-0.5)
-- ++(-1,0) node[currarrow, xscale=-1]{};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Measuring voltage and currents, multiple ways}
This is the classical (legacy) option, with the \texttt{voltmeter} and \texttt{ammeter}. The problem is that elements are intrinsically horizontal, so they look funny if put in vertically.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) -- ++(1,0) to[R] ++(2,0)
to [ammeter] ++(0,-2) node[ground]{};
\draw (1,0) to[voltmeter] ++(0,-2)
node[ground]{};
\end{circuitikz}
\end{LTXexample}
So the solution is often changing the structure to keep the meters in horizontal position.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) -- ++(1,0) to[R] ++(2,0)
to [ammeter] ++(2,0) --
++(0,-1) node[ground]{};
\draw (1,0) -- (1,1) to[voltmeter]
++(2,0) node[ground]{};
\end{circuitikz}
\end{LTXexample}
Since version 0.9.0 you have more options for the measuring instruments. You can use the generic \texttt{rmeterwa} (round meter with arrow), to which you can specify the internal symbol with the option \texttt{t=...} (and is fillable).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) -- ++(1,0) to[R] ++(2,0)
to [rmeterwa, t=A, i=$i$] ++(0,-2) node[ground]{};
\draw (1,0) to[rmeterwa, t=V, v=$v$] ++(0,-2)
node[ground]{};
\end{circuitikz}
\end{LTXexample}
This kind of component will keep the symbol horizontal, whatever the orientation:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) -- ++(1,0) to[R] ++(2,0)
to [rmeterwa, t=A, i=$i$] ++(2,0) --
++(0,-1) node[ground]{};
\draw (1,0) -- (1,1) to[rmeterwa, t=V, v^=$v$]
++(2,0) node[ground]{};
\end{circuitikz}
\end{LTXexample}
The plain \texttt{rmeter} is the same, without the measuring arrow:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) -- ++(1,0) to[R] ++(2,0)
to [rmeter, t=A, i=$i$] ++(0,-2) node[ground]{};
\draw (1,0) to[rmeter, t=V, v=$v$] ++(0,-2)
node[ground]{};
\end{circuitikz}
\end{LTXexample}
If you prefer it, you have the option to use square meters, in order to have more visual difference from generators:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) -- ++(1,0) to[R] ++(2,0)
to [smeter, t=A, i=$i$] ++(0,-2) node[ground]{};
\draw (1,0) to[smeter, t=V, v=$v$] ++(0,-2)
node[ground]{};
\end{circuitikz}
\end{LTXexample}
Another possibility is to use QUCS\footnote{QUCS is an open source circuit simulator: \url{http://qucs.sourceforge.net/}}-style probes, which have the nice property of explicitly showing the type of connection (in series or parallel) of the meter:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) -- ++(1,0) to[R] ++(2,0)
to [qiprobe, l=$i$] ++(0,-2) node[ground]{};
\draw (1,0) to[qvprobe, l=$v$] ++(0,-2)
node[ground]{};
\end{circuitikz}
\end{LTXexample}
If you want to explicitly show a power measurement, you can use the power probe \texttt{qpprobe} and using the additional anchors \texttt{v+} and \texttt{v-} :
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[short,-*] ++(1,0) coordinate(b)
to[R] ++(2,0) to [qpprobe, l=$i$, a=$v$, name=P]
++(0,-2.5) node[ground](GND){};
\draw (P.v-) -| ++(-0.5,-1) coordinate(a)
to [short, -*] (a-|GND);
\draw (P.v+) -| (b);
\end{circuitikz}
\end{LTXexample}
The final possibility is to use oscilloscopes. For example:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) -- ++(1,0) to[R] ++(3,0)
to [iloop, mirror, name=I] ++(0,-2)
node[ground] (GND){};
\draw (1,0) to[oscope, v=$v$] ++(0,-2)
node[ground]{};
\draw (I.i) -- ++(-0.5,0) node[oscopeshape, anchor=right, name=O]{};
\draw (O.south) -- (O.south |- GND) node[ground]{};
\end{circuitikz}
\end{LTXexample}
Or, if you want a more physical structure for the measurement setup:
\begin{LTXexample}[varwidth=true, pos=b]
\begin{circuitikz}[american]
\draw (0,0) -- ++(1,0) to[R] ++(3,0) to [iloop2, name=I] ++(0,-2)
node[ground] (GND){};
\ctikzset{bipoles/oscope/width=1.6}\ctikzset{bipoles/oscope/height=1.2}
\node [oscopeshape, fill=green!10](O) at (6,2){};
\node [bnc, xscale=-1, anchor=zero](bnc1) at (O.in 1){};
\node [bnc, , anchor=zero, rotate=-90](bnc2) at (O.in 2){};
\draw [-latexslim] (bnc1.hot) -| (1,0);
\draw (bnc2.hot) |- (I.i+);
\draw (I.i-) node[ground, scale=0.5]{};
\end{circuitikz}
\end{LTXexample}
\subsection{Mechanical Analogy}
\begin{groupdesc}
\circuitdescbip*{damper}{Mechanical Damping}{}
\circuitdescbip*{inerter}{Mechanical Inerter}{}
\circuitdescbip{spring}{Mechanical Stiffness}{}
\circuitdescbip*{viscoe}{Mechanical viscoelastic element\footnotemark}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\footnotetext{Suggested by @Alex in \url{https://tex.stackexchange.com/q/484268/38080}}
\circuitdescbip*{mass}{Mechanical Mass}{}
\end{groupdesc}
\subsubsection{Mechanical elements customizations}\label{sec:tweak-mechanicals}
You can change the scale of all the mechanical elements by setting the key \texttt{mechanicals/scale} to something different from the default \texttt{1.0}.
\subsection{Miscellaneous bipoles}
Here you'll find bipoles that are not easily grouped in the categories above.
\begin{groupdesc}
\circuitdescbip{thermocouple}{Thermocouple}{}
\circuitdescbip*{fuse}{Fuse}{}
\circuitdescbip*{afuse}{Asymmetric fuse}{asymmetric fuse}
\circuitdescbip{wfuse}{``wiggly'' fuse}{wiggly fuse}()[left/110/0.2, right/70/0.2]
\circuitdescbip{squid}{Squid}{}
\circuitdescbip{barrier}{Barrier}{}
\circuitdescbip{openbarrier}{Open barrier}{}
\end{groupdesc}
You can tune how big is the gap in the \texttt{openbarrier} component by setting the key \texttt{bipoles/openbarrier/gap} (default value \texttt{0.5}; \texttt{0} means no gap and \texttt{1} full gap).
\begin{groupdesc}
\circuitdescbip*{european gas filled surge arrester}{European gas filled surge arrester}{}
\circuitdescbip*{american gas filled surge arrester}{American gas filled surge arrester}{}
\end{groupdesc}
\begin{framed}
If (default behaviour) \texttt{europeangfsurgearrester} option is active (or the style \texttt{[european gas filled surge arrester]} is used), the shorthands \texttt{gas filled surge arrester} and \texttt{gf surge arrester} are equivalent to the european version of the component.
If otherwise \texttt{americangfsurgearrester} option is active (or the style \texttt{[american gas filled surge arrester]} is used), the shorthands the shorthands \texttt{gas filled surge arrester} and \texttt{gf surge arrester} are equivalent to the american version of the component.
\end{framed}
\begin{groupdesc}
\circuitdescbip*{lamp}{Lamp}{}
\circuitdescbip*{bulb}{Bulb}{}
\circuitdescbip*{loudspeaker}{loudspeaker}{}( north/90/0.4, ne/45/0.4, east/0/0.4, se/-45/0.4, south/-90/0.4, sw/-135/0.4, west/180/0.4, nw/135/0.4, left/135/0.2, right/45/0.2, center/-135/0.2)
\circuitdescbip*{mic}{mic}{}( north/90/0.4, east/0/0.4, south/-90/0.4, west/180/0.4, left/135/0.2, right/45/0.2, center/-135/0.2)
\circuitdescbip*{tlmic}{tail-less mic\footnotemark}{}( north/90/0.4, east/0/0.4, south/-90/0.4, west/180/0.4, left/135/0.2, right/45/0.2, center/-135/0.2)
\footnotetext{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/689}{Dr. Matthias Jung}.}
\circuitdescbip*{buzzer}{Buzzer\footnotemark}{}(left/135/0.6, right/45/0.6)
\circuitdescbip*{rbuzzer}{Reversed buzzer}{}(left/135/0.6, right/45/0.6)
\footnotetext{Buzzers were suggested by \href{https://tex.stackexchange.com/questions/640501/buzzer-symbol-in-circuitikz}{user Michael.H on TeX.SX}}
\end{groupdesc}
You can use microphones and loudspeakers with \texttt{waves} (see section~\ref{sec:RF}) too:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[mic, name=M] ++(0,2)
to[amp, t=$A$] ++(2,0)
to[loudspeaker, name=L] ++(0,-2)
to[short, -*] (0,0) node[ground]{};
\node [waves, scale=0.7, left=5pt]
at(M.north) {};
\node [waves, scale=0.7, right]
at(L.north) {};
\end{circuitikz}
\end{LTXexample}
You have two types of microphones; \texttt{mic} has protruding connection and \texttt{tlmic} (for tail-less microphone) is inline. This last one is handy for use as a separate shape (which is named \texttt{tlmicshape}). You can change the (relative) thickness of the straight bar using the key \texttt{bipoles/mic/bar thickness} (default \texttt{1}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,2) to[mic, name=M] ++(2,0) to[tlmic] ++(2,0);
\node [color=red, tlmicshape](T) at (M.center) {};
\ctikzset{bipoles/mic/bar thickness=3}
\draw (0,0) to[mic] ++(2,0) to[tlmic] ++(2,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Miscellaneous element customization}\label{sec:tweak-misc}
You can change the scale of all the miscellaneous elements by setting the key \texttt{misc/scale} to something different from the default \texttt{1.0}.
\paragraph{Wiggly fuses} can have (or not have) poles; you can switch between the two forms by setting to \texttt{true} or \texttt{false} (default \texttt{true}) the key \texttt{bipoles/wfuse/dots}; if they have poles, you can choose any of the pole shapes with the key \texttt{bipoles/wfuse/shape}.
The pole nodes are named \texttt{-left} and \texttt{-right} so that you can access their borders.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}
\draw (0,3) to[wfuse, bipoles/wfuse/dots=false] ++(2,0);
\draw (0,2) to[wfuse, name=A] ++(2,0);
\ctikzset{bipoles/wfuse/shape=osquarepole}
\draw (0,1) to[wfuse, name=B] ++(2,0);
\draw [red, densely dashed]
(A-left.-135) to[bend right] (B-left.135);
\ctikzset{bipoles/wfuse/shape=circ}
\draw (0,0) to[wfuse, name=B] ++(2,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Multiple wires (buses)}
These are simple drawings to indicate multiple wires.
\begin{groupdesc}
\circuitdescbip{multiwire}{Single line multiple wires}{multiwire}
\circuitdescbip{bmultiwire}{Double line multiple wires}{bmultiwire}
\circuitdescbip{tmultiwire}{Triple line multiple wires\footnotemark}{tmultiwire}
\footnotetext{added by \texttt{olfline}}
\end{groupdesc}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[multiwire=4] ++(1,0);
\draw (0,-2) to[bmultiwire=6] ++(1,0);
\draw (0,-4) to[tmultiwire=3] ++(1,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Crossings}
Path style:
\begin{groupdesc}
\circuitdescbip{crossing}{Jumper style non-contact crossing}{xing}
\end{groupdesc}
Node style:
\begin{groupdesc}
\circuitdesc{jump crossing}{Jumper-style crossing node}{}
\circuitdesc{plain crossing}{Plain style crossing node}{}
\end{groupdesc}
All circuit-drawing standards agree that to show a crossing without electric contact, a simple crossing of the wires suffices; the electrical contact must be explicitly marked with a filled dot.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw(1,-1) to[short] (1,1)
(0,0) to[short] (2,0);
\draw(4,-1) to[short] (4,1)
(3,0) to[short] (5,0)
(4,0) node[circ]{};
\end{circuitikz}
\end{LTXexample}
However, sometimes it is advisable to mark the non-contact situation more explicitly. To this end, you can use a path-style component called \texttt{crossing}:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw(1,-1) to[short] (1,1) (0,0) to[crossing] (2,0);
\draw(4,-1) to[short] (4,1) (3,0) to[short] (5,0)
(4,0) node[circ]{};
\end{circuitikz}
\end{LTXexample}
That should suffice most of the time; the only problem is that the crossing jumper will be put in the center of the subpath where the \texttt{to[crossing]} is issued, so sometimes a bit of trial and error is needed to position it.
For a more powerful (and elegant) way you can use the crossing nodes:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\node at (1,1)[jump crossing](X){};
\draw (X.west) -- ++(-1,0);
\draw (X.east) to[R] ++(2,0);
\draw (X.north) node[vcc]{};
\draw (X.south) to[C] ++(0,-1.5);
\end{circuitikz}
\end{LTXexample}
Notice that the \texttt{plain crossing} and the \texttt{jump crossing} have a small gap in the straight wire, to enhance the effect of crossing (as a kind of shadow).
\subsubsection{Crossing customization}
The size of the crossing elements can be changed with the key \texttt{bipoles/crossing/size} (default 0.2).
While the horizontal line will be drawn with the current path values, you can change the style of the vertical line\footnote{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/704}{user lkjell on GitHub}, implemented in \texttt{v1.6.2}.} in a similar way to the one used for transistor's bodydiodes, by setting keys with the \verb!\ctikzset! command under the \texttt{crossing vertical} hierarchy. The available keys are:
\begin{center}
\begin{tabular}{>{\ttfamily}l>{\ttfamily}lp{0.5\linewidth}}
\toprule
parameter & default & description \\
\midrule
relative thickness & 1.0 & multiply the default thickness (which is the same of the \texttt{choke} component).\\
color & default & stroke color: \texttt{default} is the same as the component. \\
dash & default & dash pattern: \texttt{default} means not to change the setting for the component; \texttt{none} means unbroken line; every other input is a dash pattern.\footnotemark \\
\bottomrule
\end{tabular}
\footnotetext{Follows the syntax of the pattern sequence \texttt{\textbackslash pgfsetdash} --- see \TikZ{} manual for details; phase is always zero. Basically you pass pairs of dash-length -- blank-length dimensions, see the examples.}
\end{center}
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[every node/.append style={scale=2}]
\draw (0,2) node[jump crossing](A){};
\begin{scope}
\ctikzset{crossing vertical/.cd, color=red, dash={{2pt}{1pt}}}
\draw (0,1) node[jump crossing](B){};
\end{scope}
\ctikzset{crossing vertical/dash=none}
\draw[densely dotted, blue] (0,0) node[plain crossing](B){};
\end{circuitikz}
\end{LTXexample}
\subsection{Arrows}\label{sec:arrows}
These are pseudo-arrows used in lot of places in the packages (for transistors, flows, currents, and so on). The first three arrows are magnified by a factor~3 in the boxes below; for the \texttt{trarrow}, the anchor \texttt{tip} is exactly on the tip and \texttt{btip} is slightly receded.
\begin{groupdesc}
\circuitdesc[3]{currarrow}{Arrow for current and voltage}{}(center/0/0.2)
\circuitdesc[3]{inputarrow}{Arrow that is anchored at its tip, useful for block diagrams.}{}(center/0/0.2)
\circuitdesc[3]{trarrow}{Arrow the same size of \texttt{currarrow} but only filled.}{}(center/90/0.2, tip/0/0.2, btip/-90/0.2)
\circuitdesc{flowarrow}{Arrow used for the flows, with a \texttt{text} anchor}{$I_p$}(center/-90/0.2, east/0/0.2, west/180/0.2, text/45/0.2)
\end{groupdesc}
\subsubsection{Arrows size}\label{sec:currarrow-size}
You can use the parameter \texttt{current arrow scale} to change the size of the arrows in various components and indicators; the normal value is 16, higher numbers give smaller arrows and so on. You need to use \texttt{circuitikz/current arrow scale} if you use it into a node.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i=f] ++(2,0) node[npn, anchor=B]{};
\draw (0,-2) to[R, f=f, current arrow scale=8] ++(2,0)
node[pnp, anchor=B, circuitikz/current arrow scale=8]{};
\draw (0,-4) to[R, f=f, current arrow scale=24] ++(2,0)
node[nigbt, anchor=B]{};
\end{circuitikz}
\end{LTXexample}
Moreover, you have the arrow tip \texttt{latexslim} which is an arrow similar to the old (in deprecated \texttt{arrows} library) \texttt{latex'} element:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american,]
\draw [latexslim-latexslim] (0,0) -- (1,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Generic Tunable Arrows}
The basic passive components (resistors, capacitors and inductors) come with a ``tunable version'' (see for example~\ref{sec:tunablearrows}) that conveys the information that their value is adjustable. For generic components you can obtain a similar effect with the extra macro \verb|\ctikztunablearrow|, introduced in version \texttt{1.4.1}. The macro should be called as:
\begin{quote}
\ttfamily
\textbackslash ctikztunablearrow[\emph{extra options}]\{\emph{thickness}\}\{\emph{length}\}\{\emph{angle}\}\{\emph{name}\}
\end{quote}
where \emph{extra options} is an optional argument with generic \TikZ{} keys, \emph{thickness} is the relative thickness (referred to the current line width when the macro is invoked), \emph{length} is the length of the arrow with respect to the diagonal size of the component, \emph{angle} is the inclination with respect to the normal direction of the component\footnote{which is the left-to-right direction of the component when shown in the component box in this manual.}, and finally \emph{name} is the reference name of the bipole or node.
The arrows are the ones set with the keys \texttt{tunable start arrow} and \texttt{tunable end arrow} (to maintain coherency across the circuit), but you can override them in the \emph{extra options} argument as shown in the following example.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}
\draw (0,0) node[tlground]{} to[sV, name=A] ++(0,3)
node[op amp, anchor=+](B){};
\ctikztunablearrow{1}{1.2}{30}{A}
\ctikzset{tunable start arrow={Bar},
tunable end arrow={Stealth}}
\ctikztunablearrow[color=green,
{Latex[reversed]}-Circle]{1}{1.2}{90}{A}
\ctikztunablearrow[color=blue, densely dashed]{1}{1.2}{-30}{A}
\begin{scope}[transparency group, opacity=0.5]
\ctikztunablearrow[red, shorten <=3mm]{6}{0.8}{110}{B}
\end{scope}
\end{circuitikz}
\end{LTXexample}
Notice also the need to force a transparency group if you want a semitransparent arrow.
\subsection{Terminal shapes}\label{sec:terminals}
These are the so-called ``bipole nodes'' shapes, or poles (see section~\ref{sec:bipole-nodes}). These nodes are always filled; the ``open'' versions (starting with an \texttt{o}) are by default filled with the color specified by the key \texttt{open nodes fill} (by default \texttt{white}), but you can override locally it with the \texttt{fill} parameter.
\begin{groupdesc}
\circuitdesc{circ}{Connected terminal}{}
\circuitdesc{ocirc}{Unconnected terminal}{}
\circuitdesc{diamondpole}{Diamond-square terminal}{}
\circuitdesc{odiamondpole}{Open diamond-square terminal}{}
\circuitdesc{squarepole}{Square-shape terminal}{}
\circuitdesc{osquarepole}{Open square-shape terminal}{}
\end{groupdesc}
Since version 0.9.0, ``bipole nodes'' shapes have all the standard geographical anchors, so you can do things like these:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american,]
\draw (0,-1) node[draw](R){R};
\draw (R.east) node[ocirc, right]{};
\end{circuitikz}
\end{LTXexample}
The size of the poles is controlled by the key \texttt{nodes width} (default \texttt{0.04}, relative to the basic length).
Be sure to see section~\ref{sec:bipole-nodes} for more usage and configurability.
\subsection{Connectors}\label{sec:connectors}
Connectors have a class by themselves (\texttt{connectors}), so you can use the \texttt{scale}, \texttt{fill} and \texttt{thickness} properties as usual.
\subsubsection{BNC connector/terminal}
\begin{groupdesc}
\circuitdesc*{bnc}{BNC connector}{}(left/135/0.6, right/45/0.6, center/-45/0.6, hot/0/0.6, zero/-135/0.6, shield/-90/0.4)
\end{groupdesc}
The BNC connector is defined so that you can easily connect it as input or output (but remember that you need to flip the text if you flip the component):
\begin{LTXexample}[varwidth, ]
\begin{circuitikz}
\draw (0,0)
node[bnc](B1){$v_i$} to[R=\SI{50}{\ohm}] ++(3,0)
% you can also use \ctikzflipx{$v_o$} in LaTeX
node[bnc, xscale=-1](B2){\scalebox{-1}[1]{$v_o$}};
\node [ground] at (B1.shield) {};
\node [eground] at (B2.shield){};
\end{circuitikz}
\end{LTXexample}
It also has a \texttt{zero} anchor if you need to rotate it about its real center.
\begin{LTXexample}[varwidth, ]
\begin{circuitikz}
\draw[thin, red] (0,0) -- ++(1,0) (0,-1) -- ++(1,0);
\path (0,0) node[bnc]{} ++(1,0) node[bnc, rotate=-90]{};
\path (0,-1) node[bnc, anchor=zero]{} ++(1,0) node[bnc, anchor=zero, rotate=-90]{};
\end{circuitikz}
\end{LTXexample}
\subsubsection{IEC 60617 socket-plug connectors}
Plug and socket connectors (modeled on the IEC60617 standard) are available\footnote{Since \texttt{v1.5.0}; thanks to Alexander Sauter for suggesting them and \href{https://github.com/circuitikz/circuitikz/issues/611}{helping in the design}.} both in path-style form and, with separated but matching shapes for plug and socket, in node-style. There are two differently oriented shapes for each type to ease the construction of ``split'' connections (see the examples below). \textbf{Notice} that the elements in the following table are scaled by a factor of 1.5, to better show the position of the anchors.
\begin{groupdesc}
\ctikzset{connectors/scale=1.5}
\circuitdescbip[iecconn]{iec connector}{IEC 60617 connector}{iecconn}(left/145/0.3, right/45/0.3, center/-90/0.4, plug center/90/0.4, socket center/-135/0.3)
\circuitdesc{iecconnshape}{IEC 60617 connector}{\tiny text}(left/145/0.3, right/45/0.3, center/-90/0.2)
\circuitdesc{iecsocketL}{IEC 60617 female socket, left side}{\tiny text}(left/145/0.3, right/45/0.3, center/-90/0.2, socket center/0/0.2)
\circuitdesc{iecplugR}{IEC 60617 male plug, right side}{\tiny text}(left/145/0.3, right/45/0.3, center/-90/0.2, plug center/90/0.4)
\circuitdesc{iecplugL}{IEC 60617 male plug, left side}{\tiny text}(left/145/0.3, right/45/0.3, center/-90/0.2, plug center/90/0.4)
\circuitdesc{iecsocketR}{IEC 60617 female socket, right side}{\tiny text}(left/145/0.3, right/45/0.3, center/-90/0.4, socket center/-135/0.3)
\end{groupdesc}
The \texttt{center} anchors (as well as the text position) of the split elements of the connectors are on the side of the component (similar to what happens with grounds and supply voltage arrows) to ease the most common use.
Also, the text for the plug nodes is raised to the same level of the text in the sockets, and it will ignore descendants, so that the two text lines up when the two components are put side by side.
The \texttt{plug center} anchor always point to the center of the rectangular plug shape, and the \texttt{socket center} to the center of the semicircle in the sockets.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}
\draw (0,1) node[bnc]{} to[R] ++(2,0)
to[iec connector] ++(1,0);
\draw (0,0) node[bnc]{} to[R] ++(2,0)
to[iec connector, invert] ++(1,0);
\end{circuitikz}
\end{LTXexample}
Aligning ``disconnected'' plugs and sockets is reasonably easy:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}
\draw (0,2) to[iec connector, name=C1] ++(2,0) coordinate(stop)
(C1.nw) node[above left, inner xsep=0pt]{s1}
(C1.ne) node[above right, inner xsep=0pt]{p1};
\draw (0,1) coordinate(tmp) -- (tmp-|C1.left)
node[iecsocketL](S2){s2};
\draw (0,0) coordinate(tmp) (tmp-|C1.socket center)
node[iecplugR](P3){p3} (P3.right) -- (tmp-|stop);
\draw[red, dashed] ([yshift=1cm]C1.socket center) -- ++(0,-4);
\end{circuitikz}
\end{LTXexample}
You can choose the best shape when rotating them, to simplify the positioning (shape rotates around the \texttt{center} anchor).
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}
\draw (0,0) -| ++(1,-1) node[iecsocketL, rotate=-90]{}
(2,-1) -| ++(1,1) node[iecplugR, rotate=90]{};
\end{circuitikz}
\end{LTXexample}
Choosing the proper left/right shape results in easily build ``mixed'' connectors; you can use the node text position properties to have lined-up labels, but remember that the text is outside the bounding box:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[]
\path (0,2); % for the bounding box, text is not accounted for
\draw (0,1)--++(1,0) node[iecsocketL](s1){S1};
\draw [color=red](s1.e) node[iecplugR](p1){P1} (p1.e)--++(1,0);
\draw (0,0) -- ++(1,0) node[iecplugL](p2){P2};
\draw [color=blue](p2.e) node[iecsocketR](s2){S2} (s2.e)--++(1,0);
\end{circuitikz}
\end{LTXexample}
You can use the \texttt{plug center} anchor to add the IEC ``multiplier'':
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[]
\draw (0,0) to[iec connector, connectors/scale=2, name=A,
a={\small\ttfamily output bus}] ++(3,0);
\draw (A.plug center) ++(-.2,-.4) -- ++(.4,.8) node[above]{8};
\end{circuitikz}
\end{LTXexample}
\subsection{Block diagram components}
\noindent Contributed by Stefan Erhardt.
\begin{groupdesc}
\circuitdesc*{mixer}{mixer}{}( w/180/0.1,s/-90/0.1,e/0/0.1,n/90/0.1, center/-120/0.3, geocenter/-60/.3 )
\circuitdesc*{mixer, boxed}{mixer, boxed}{}(right up/30/0.1, right down/-30/0.1, left up/150/0.1, left down/-150/0.1)
\circuitdesc*{adder}{adder}{}( west/180/0.1,south/-90/0.1,east/0/0.1,north/90/0.1 )
\circuitdesc*{oscillator}{oscillator}{}( w/180/0.1,s/-90/0.1,e/0/0.1,n/90/0.1, center/45/0.2, geocenter/-45/.3 )
\circuitdesc*{circulator}{circulator}{}( left/180/0.1,down/-90/0.1,right/0/0.1, up/90/0.1 )
\circuitdesc*{wilkinson}{wilkinson divider}{}( in/180/0.1, out2/45/0.1, out1/-45/0.1 )
\circuitdesc*{splitter}{resistive splitter\footnotemark}{}( in/180/0.1, out2/45/0.1, out1/-45/0.1 )
\footnotetext{added by \texttt{matthuszagh}}
\circuitdesc*{genericsplitter}{generic splitter\footnotemark}{$\SI{-3}{\deci\bel}$}( in/180/0.1, out2/45/0.1, out1/-45/0.1 )
\footnotetext{added by \texttt{frankplow}}
\circuitdesc*{gridnode}{gridnode\footnotemark}{}(left/135/0.2, right/45/0.2, center/-100/0.4, up/90/0.2, down/-45/.2)
\footnotetext{added by \texttt{olfline}}
\circuitdesc*{mzm}{Mach Zehnder Modulator\footnotemark}{}( in/180/0.1, mod/90/0.1, out/0/0.1)
\footnotetext{added by \texttt{dl1chb}}
\end{groupdesc}
\begin{groupdesc}
\circuitdescbip*{twoport}{generic two port (use \texttt{t=\dots} to specify text)}{}(w/180/0.1,s/-90/0.1,e/0/0.1,n/90/0.1, center/-120/0.3)
\circuitdescbip*{twoportsplit}{generic two port split (use \texttt{t1=\dots} and \texttt{t2=\dots} to specify text)}{}(right up/30/0.1, right down/-30/0.1, left up/150/0.1, left down/-150/0.1)
\circuitdescbip*{vco}{vco}{}
\circuitdescbip*{vco,box}{vco,box}{}(right up/30/0.1, right down/-30/0.1, left up/150/0.1, left down/-150/0.1)
\circuitdescbip*{bandpass}{bandpass}{}
\circuitdescbip*{bandstop}{bandstop}{}
\circuitdescbip*{highpass}{highpass}{}
\circuitdescbip*{lowpass}{lowpass}{}
\circuitdescbip*{allpass}{allpass}{}
\circuitdescbip*{highpass2}{simplified highpass (with only 2 waves)}{}
\circuitdescbip*{lowpass2}{simplified lowpass (with only 2 waves)}{}
\circuitdescbip*{adc}{A/D converter}{}
\circuitdescbip*{dac}{D/A converter}{}
\circuitdescbip*{dsp}{DSP}{}
\circuitdescbip*{fft}{FFT}{}
\circuitdescbip*{amp}{amplifier; use \texttt{t=\dots} to add a text}{}(up/90/0.2, down/-90/0.2)
\circuitdescbip*{iamp}{instrumentation amplifier; use \texttt{t=\dots} to add a text}{}(up/90/0.2, down/-90/0.2)
\circuitdescbip*{vamp}{VGA}{}
\circuitdescbip*{piattenuator}{$\pi$ attenuator}{}
\circuitdescbip*{vpiattenuator}{var. $\pi$ attenuator}{}
\circuitdescbip*{tattenuator}{T attenuator}{}
\circuitdescbip*{vtattenuator}{var.\ T attenuator}{}
\circuitdescbip*{phaseshifter}{phase shifter}{}
\circuitdescbip*{vphaseshifter}{var.\ phase shifter}{}
\circuitdescbip*{detector}{detector}{}
\circuitdescbip*{saturation}{Saturation\footnotemark}{}
\footnotetext{Contributed by \href{https://github.com/circuitikz/circuitikz/issues/758}{P. Sacco \texttt{<paul.sacco@estaca.eu>}}}
\circuitdescbip*{sigmoid}{Sigmoid}{}
\circuitdescbip*{allornothing}{Comparison, all-or-nothing}{}
\circuitdescbip*{fiber}{Optical Fiber}{}
\circuitdescbip*{sdcdc}{single wire DC/DC converter\footnotemark}{}(dc up in/135/.3, dc down in/185/.3, dc up out/45/.3, dc down out/-35/.3)
\footnotetext{the converter blocks added by \texttt{olfline}}
\circuitdescbip*{sacdc}{single phase AC/DC converter}{}(ac up in/135/.3, ac down in/185/.3, dc up out/45/.3, dc down out/-35/.3)
\circuitdescbip*{sdcac}{single phase DC/AC converter}{}(dc up in/135/.3, dc down in/185/.3, ac up out/45/.3, ac down out/-35/.3)
\circuitdescbip*{sacac}{single phase AC/AC converter}{}(ac up in/135/.3, ac down in/185/.3, ac up out/45/.3, ac down out/-35/.3)
\circuitdescbip*{tacdc}{three phases AC/DC converter}{}(ac up in/135/.3, ac mid in/185/.3, ac down in/-135/.3, dc up out/45/.3, dc down out/-35/.3)
\circuitdescbip*{tdcac}{three phases AC/DC converter}{}(ac up out/45/0.1, ac mid out/-5/.3, ac down out/-45/.1, dc up in/135/.3, dc down in/185/.3)
\circuitdescbip*{tacac}{three phases AC/DC converter}{}(ac up in/135/.3, ac mid in/185/.3, ac down in/-135/.3, ac up out/45/.3, ac mid out/-5/.3, ac down out/-45/.3)
\end{groupdesc}
\begin{groupdesc}
\circuitdesc*{fourport}{Generic fourport}{}(port1/180/0.1, port2/0/0.1, port3/0/0.2, port4/180/0.1)
\circuitdesc*{coupler}{Coupler}{}(left down/180/0.1, right down/0/0.1, right up/0/0.2, left up/180/0.1)
\circuitdesc*{coupler2}{Coupler with rounded arrows}{}
\end{groupdesc}
\subsubsection{Blocks anchors}
The ports of the \texttt{mixer}, \texttt{adder}, \texttt{oscillator} and \texttt{circulator} can be addressed with \texttt{west}, \texttt{south}, \texttt{east}, \texttt{north}; the equivalent \texttt{left}, \texttt{down}, \texttt{right}, \texttt{up}; or the shorter \texttt{w, s, e, n} ones:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[mixer] (mix) {}
(mix.w) node[left] {w}
(mix.s) node[below] {s}
(mix.e) node[right] {e}
(mix.n) node[above] {n}
;\end{circuitikz}
\end{LTXexample}
In addition, since \texttt{v1.6.0}, most blocks also have the \texttt{left up}, \texttt{left down}, \texttt{right up} and \texttt{right down} anchors:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) to[bandpass, name=bp] ++(2,0)
(bp.left up) node[circ, red]{}
(bp.left down) node[circ, blue]{}
(bp.right up) node[circ, green]{}
(bp.right down) node[circ, orange]{}
;\end{circuitikz}
\end{LTXexample}
Since \texttt{1.6.7} you can change the relative position of the lateral generic anchors\footnote{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/769}{user @sputeanus} on GitHub} using the keys \texttt{block left anchors pos} and \texttt{block right anchor pos} (default \texttt{0.5}, as in previous releases) which set the position as a fraction of the top to center segment.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{block left anchors pos=0.8, block right anchors pos=0.2}
\draw (0,0) to[bandpass, name=bp] ++(2,0)
(bp.left up) node[circ, red]{}
(bp.left down) node[circ, blue]{}
(bp.right up) node[circ, green]{}
(bp.right down) node[circ, orange]{}
;\end{circuitikz}
\end{LTXexample}
To set both left and right at the same value, you can use the key \texttt{block lateral anchors pos}, which set both to the same number.
You can use those anchors to build ``mixed-type'' circuits, using the node-shapes (the following drawing is a bit silly, but shows that the anchor position can be changed locally):
\begin{LTXexample}[pos=t, varwidth=true]
\begin{tikzpicture}[
big/.style={circuitikz/blocks/scale=1.5},
long/.style={circuitikz/bipoles/twoportsplit/width=1.5}]
\ctikzset{block lateral anchors pos=0.8}
\path (0,0) node[sacdcshape, big, circuitikz/block right anchors pos=0.2](A){}
(5,0) node[twoportsplitshape, big, long, t1=LNA, t2=Digital](B){};
\draw (A.right up) -- (B.left up) (A.right down) to[cute choke] (B.left down);
\end{tikzpicture}
\end{LTXexample}
Notice also from the previous example that the generic blocks (\texttt{twoport} and \texttt{twoportsplit}) can be made ``longer'' by setting different \texttt{width} and \texttt{height} (the other blocks are square, and just use the \texttt{width} key for both dimensions).
Also, for \texttt{amp} and \texttt{vamp}, the \texttt{up} and \texttt{down} anchors follow the shape when they are not boxed.
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}
\draw (0,0) to[vamp, name=a] ++(1.5,0)
to [vamp, boxed, name=ab] ++(1.5,0);
\path (a.up) node[circ, blue]{} (ab.up) node[circ, blue]{};
\path (a.down) node[circ, red]{} (ab.down) node[circ, red]{};
\end{tikzpicture}
\end{LTXexample}
The \texttt{oscillator} has a displaced \texttt{center} anchor, to simplify the task of putting it at the left side of a circuit; it also as a special position for the node text. The four round elements (mixer, circulator, adder, and the oscillator) have a \texttt{geocenter} anchor which always corresponds to the center of the circle.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[>=Stealth]
\draw (0,0)node[oscillator](O){$f_0$} -- ++(1,0);
\draw[blue, ->] (1,1) -- (O.center);
\draw[red, ->] (1,1) -- (O.geocenter);
\end{tikzpicture}
\end{LTXexample}
Moreover, the have proper border anchors since version \texttt{1.2.3} (and fixed for boxed elements in \texttt{1.5.0}), so you can do things like this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[adder] (mix) {}
(-1,1) -- ++(0.5,0) -- (mix)
(-1,-1) -- ++(0.5,0) -- (mix) -- ++(1,0);
\draw [red, <-] (mix.45) -- ++(1,1);
\end{circuitikz}
\end{LTXexample}
Those components have also \textbf{deprecated} anchors named \texttt{1, 2, 3, 4}; they are better not used because they can conflict with the border anchor. They still work for backward compatibility, but could be removed in a future release.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[mixer] (mix) {}
(mix.1) node[left] {1} (mix.2) node[below] {2}
(mix.3) node[right] {3} (mix.4) node[above] {4};
\draw [ultra thick, red, opacity=0.5]
(-1,-1)--(1,1)(-1,1)--(1,-1);
\node [red, below] at (0,-1) {DON'T USE};
\end{circuitikz}
\end{LTXexample}
The Wilkinson divider has (notice that the node text is outside the bounding box, similarly to what happens for transistors!):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[wilkinson] (w) {\SI{3}{dB}}
(w.in) to[short,-o] ++(-0.5,0)
(w.out1) to[short,-o] ++(0.5,0)
(w.out2) to[short,-o] ++(0.5,0)
(w.in) node[below left] {\texttt{in}}
(w.out1) node[below right] {\texttt{out1}}
(w.out2) node[above right] {\texttt{out2}}
;
\end{circuitikz}
\end{LTXexample}
The couplers have:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw (0,1.5) %bounding box
(0,0) node[coupler] (c) {\SI{10}{dB}}
(c.left down) to[short,-o] ++(-0.5,0)
(c.right down) to[short,-o] ++(0.5,0)
(c.right up) to[short,-o] ++(0.5,0)
(c.left up) to[short,-o] ++(-0.5,0)
(c.left down) node[below left] {\texttt{left down}}
(c.right down) node[below right] {\texttt{right down}}
(c.right up) node[above right] {\texttt{right up}}
(c.left up) node[above left] {\texttt{left up}}
;
\end{circuitikz}
\end{LTXexample}
Or you can also use \texttt{port1} to \texttt{port4} if you prefer:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw (0,1.5) %bounding box
(0,0) node[coupler2] (c) {\SI{3}{dB}}
(c.port1) to[short,-o] ++(-0.5,0)
(c.port2) to[short,-o] ++(0.5,0)
(c.port3) to[short,-o] ++(0.5,0)
(c.port4) to[short,-o] ++(-0.5,0)
(c.port1) node[below left] {\texttt{port1}}
(c.port2) node[below right] {\texttt{port2}}
(c.port3) node[above right] {\texttt{port3}}
(c.port4) node[above left] {\texttt{port4}}
;
\end{circuitikz}
\end{LTXexample}
Also they have the simpler \texttt{1, 2, 3, 4} anchors, and although they have no border anchors (for now), it is better not to use them.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw(0,1.5) %bounding box
(0,0) node[coupler] (c) {\SI{10}{dB}}
(c.1) to[short,-o] ++(-0.5,0)
(c.2) to[short,-o] ++(0.5,0)
(c.3) to[short,-o] ++(0.5,0)
(c.4) to[short,-o] ++(-0.5,0)
(c.1) node[below left] {\texttt{1}}
(c.2) node[below right] {\texttt{2}}
(c.3) node[above right] {\texttt{3}}
(c.4) node[above left] {\texttt{4}}
;
\end{circuitikz}
\end{LTXexample}
\subsubsection{Blocks customization}
You can change the scale of all the block elements by setting the key \texttt{blocks/scale} to something different from the default \texttt{1.0}.
With the option \texttt{>} you can draw an arrow to the input of the block diagram symbols.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) to[short,o-] ++(0.3,0)
to[lowpass,>] ++(2,0)
to[adc,>] ++(2,0)
to[short,-o] ++(0.3,0);
\end{circuitikz}
\end{LTXexample}
You can also change the width for the generic block:
\begin{LTXexample}[pos=t, varwidth=t, basicstyle=\small\ttfamily]
\begin{circuitikz}[european]
\draw (0,0) to[amp, >, t=$K_{\mathrm{p}}$] ++(2,0)
to[saturation, >, name=sat] ++(2,0) -- ++(0.5,0)
to[twoport, t=$\displaystyle\frac{\tau s +1}{\tau s}$, >,
bipoles/twoport/width=1.5] ++(3,0);
\node[above] at (sat.ne) {$+I_{\mathrm{max}}$};
\node[below] at (sat.sw) {$-I_{\mathrm{max}}$};
\end{circuitikz}
\end{LTXexample}
\paragraph{Multi ports}
Since inputs and outputs can vary, input arrows can be placed as nodes. Note that you have to rotate the arrow on your own:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[mixer] (m) {}
(m.w) to[short,-o] ++(-1,0)
(m.s) to[short,-o] ++(0,-1)
(m.e) to[short,-o] ++(1,0)
(m.w) node[inputarrow] {}
(m.s) node[inputarrow,rotate=90] {};
\end{circuitikz}
\end{LTXexample}
\paragraph{Labels and custom two-port boxes}
You can use the keys \texttt{t}, \texttt{t1}, \texttt{t2} (shorthands for \texttt{text}, \texttt{text in}, \texttt{text out}) to fill the generic blocks:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) to[short,o-] ++(0.3,0)
to[allpass,>] ++(2,0)
to[twoport,>,t={B}] ++(2,0)
to[twoportsplit,t1={\tiny in},
t2={\tiny\color{red}out}] ++(0,-2.5);
\end{circuitikz}
\end{LTXexample}
Some two-ports have the option to place a normal label (\texttt{l=}) and a inner label (\texttt{t=}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{bipoles/amp/width=0.9}
\draw (0,0) to[amp,t=LNA,l_=$F{=}0.9\,$dB,o-o] ++(3,0);
\end{circuitikz}
\end{LTXexample}
\paragraph{Box option}
Several devices have the possibility to add a box around them with the \texttt{box} or \texttt{boxed} option. The inner symbol scales down to fit inside the box. For the ``circled'' devices (mixer, adder, oscillator and circulator) the inner circle is normally drawn, unless you use the \texttt{box only} or \texttt{boxed only} option.\footnote{Since 1.5.0, suggested by \href{https://github.com/circuitikz/circuitikz/issues/621}{GitHub user myzinsky}}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[mixer, box only, anchor=east](m){}
to[amp, boxed, >, -o] ++(2.5,0)
(m.west) node[inputarrow]{} to[short,-o] ++(-0.8,0)
(m.south) node[inputarrow,rotate=90]{} --
++(0,-0.7) node[oscillator, box, anchor=north]{};
\end{circuitikz}
\end{LTXexample}
\paragraph{Dash optional parts}
To show that a device is optional, you can dash it. The inner symbol will be kept with solid lines, unless you set the key \texttt{inner blocks dashed} to true.
Moreover, the key \texttt{dashed blocks pattern} (default \verb|{{1mm}{1mm}}|), be careful with the number of braces!.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,1.5) to[amp,l=\SI{10}{dB}] ++(2.5,0);
\draw[dashed] (2.5,1.5) to[lowpass,l=opt.] ++(2.5,0);
% or just the block
\draw (0,0) to[amp,l=\SI{10}{dB}] ++(2.5,0)
to[lowpass,l=opt., dashed] ++(2.5,0);
% or everything
\ctikzset{inner blocks dashed,
dashed blocks pattern={{1.5pt}{1pt}},
}
\draw (0,-1.5) to[amp,l=\SI{10}{dB}] ++(2.5,0)
to[lowpass,l=opt., dashed] ++(2.5,0);
\end{circuitikz}
\end{LTXexample}
\paragraph{Dashing the DC symbol in blocks.}
The symbol for the DC side can be different across countries,\footnote{Head-up from \href{https://github.com/circuitikz/circuitikz/issues/680}{user \texttt{@dbstf} on GitHub}} with different kind of dashing on the bottom line.
Moreover, sometimes the dashing is used to convey different meanings (like rectified sinusoidal or stabilized DC).
You can change the general style for the DC symbol using the key \texttt{blocks dc segments}; using~\texttt{1} (default) will use a continuous line; using \texttt{2} you will have the international-styled symbol, and with~\texttt{3} the English one (you can use higher numbers; the only restriction is that it must be strictly greater than \texttt{0}). You can also change the input and output part separately with the keys \texttt{blocks dc in segments} and \texttt{blocks dc out segments} (see the following example). The \texttt{inner blocks dashed} option overrides these ones.
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[scale=0.9]
\ctikzset{blocks dc segments=3}
\draw (0,2) to[sacdc] ++(2,0) to[sdcdc]
++(2,0) to[sdcac] ++(2,0);
\ctikzset{blocks dc segments=1}
\draw (0,0) to[sacdc, blocks dc out segments=2]
++(2,0) to[sdcdc, blocks dc in segments=2]
++(2,0) to[sdcac] ++(2,0);
\end{tikzpicture}
\end{LTXexample}
\subsection{Transistors}
\subsubsection{Standard bipolar transistors}
\begin{groupdesc}
\circuitdesc{npn}{npn}{Q}( B/180/0.2,C/0/0.2,E/0/0.2 )
\circuitdesc{pnp}{pnp}{}
\circuitdesc{npn, schottky base}{schottky npn}{}
\circuitdesc{pnp, schottky base}{schottky pnp}{}
\circuitdesc{npn, bodydiode}{npn}{}(body C in/60/0.2, body E in/-60/0.2,body C out/0/0.3, body E out/-0/0.3)
\circuitdesc{npn,photo}{photo npn}{}(nobase/0/0.4)
\circuitdesc{pnp,photo}{photo pnp}{}(arrows/180/0.1)
\circuitdesc{nigbt}{nigbt}{Q}
\circuitdesc{pigbt}{pigbt}{}(centergap/0/0.5)
\circuitdesc{Lnigbt}{Lnigbt}{Q}
\circuitdesc{Lpigbt}{Lpigbt}{}
\circuitdesc{Lpigbt, bodydiode}{Lpigbt}{Q}(body C in/-60/0.2, body E in/60/0.2,body C out/0/0.3, body E out/-0/0.3)
\end{groupdesc}
\subsubsection{Multi-terminal bipolar transistors}
In addition to the standard BJTs transistors, since version~\texttt{0.9.6} the \texttt{bjtnpn} and \texttt{bjtpnp} are also available; these are devices where you can have more collectors and emitters (on the other hand, they have no \texttt{photo} nor \texttt{bodydiode} options --- they are silently ignored).
Basically they are the same as the normal \texttt{npn} and \texttt{pnp}, and they (by default) have similar sizes; the options \texttt{collectors} and \texttt{emitters} will change the number of the relative terminals. The base terminal is connected midway from the collector and the emitter, \emph{not} on the center of the base; a \texttt{cbase} anchor is available if you prefer to use it. The label of the component (the text) is set on the right side, vertically centered around the base terminal. They will accept the \texttt{schottky base} key.
\begin{groupdesc}
\circuitdesc{bjtnpn, collectors=1, emitters=2}{bjt npn}{Q}(B/180/0.2, C/45/0.2, E/-45/0.2, C1/0/0.4, E1/0/0.4, E2/0/0.4, nobase/135/0.4, cbase/-135/0.4, center/0/0.6)
\circuitdesc{bjtpnp, collectors=3, emitters=2}{bjt pnp}{Q}(B/180/0.2, C/-45/0.2, E/45/0.2, C1/0/0.4, C2/0/0.4, C3/0/0.4, E1/0/0.4, E2/0/0.4, nobase/135/0.4, cbase/-135/0.4)
\end{groupdesc}
\subsubsection{Field-effect transistors}
\begin{groupdesc}
\circuitdesc{nmos}{nmos}{Q}( G/180/0.2,D/0/0.2,S/0/0.2 )
\circuitdesc{pmos}{pmos}{}(centergap/0/0.5)
\circuitdesc{nmosd}{nmos depletion}{Q}( G/180/0.2,D/0/0.2,S/0/0.2 )
\circuitdesc{pmosd}{pmos depletion}{}
\circuitdesc{hemt}{hemt}{}
\circuitdesc{hemt, nobase}{hemt without base terminal}{Q}( G/180/0.2,D/0/0.2,S/0/0.2, nogate/-120/0.2)
\circuitdesc{GaN hemt}{Gallium Nitride hemt (a ``styled'' \texttt{hemt}, see~\ref{sec:hemt})}{Q}( G/180/0.2,D/0/0.2,S/0/0.2, nogate/-120/0.2)
\end{groupdesc}
\textsc{nfet}s and \textsc{pfet}s have been incorporated based on code provided by Clemens Helfmeier and Theodor Borsche. Use the package options \texttt{fetsolderdot}/\texttt{nofetsolderdot} to enable/disable solderdot at some fet-transistors. Additionally, the solderdot option can be enabled/disabled for single transistors with the option \texttt{solderdot} and \texttt{nosolderdot}, respectively (You can adjust the size of the solder dot, see section~\ref{sec:solderdot-scale}).
\begin{groupdesc}
\circuitdesc{nfet}{nfet}{Q}(G/180/0.1, D/0/0.1, S/0/0.1)
\circuitdesc{nfetd}{nfet depletion}{Q}(G/180/0.1, D/0/0.1, S/0/0.1)
\circuitdesc{nigfete}{nigfete}{Q}(G/180/0.1, D/0/0.1, S/0/0.1)
\circuitdesc{nigfete,solderdot}{nigfete}{}(centergap/0/0.5)
\circuitdesc{nigfetebulk}{nigfetebulk}{}
\circuitdesc{nigfetd}{nigfetd}{}(centergap/0/0.5)
\circuitdesc{pfet}{pfet}{Q}(G/180/0.1, D/0/0.1, S/0/0.1)
\circuitdesc{pfetd}{pfet depletion}{Q}(G/180/0.1, D/0/0.1, S/0/0.1)
\circuitdesc{pigfete}{pigfete}{}(centergap/0/0.5, G/180/0.1, D/0/0.1, S/0/0.1)
\circuitdesc{pigfetebulk}{pigfetebulk}{}
\circuitdesc{pigfetd}{pigfetd}{}
\end{groupdesc}
Since version \texttt{1.6.0}, you can add the \texttt{doublegate} option to the \texttt{*igfet*} family of devices to have a double gate MOS --- the additional gate is called \texttt{G2} or \texttt{gate2} (the plain \texttt{G} is where it will be without the \texttt{doublegate} option).
\begin{groupdesc}
\circuitdesc{nigfete, doublegate}{nigfete, doublegate}{Q}(G/180/0.1, G2/180/0.1, D/0/0.1, S/0/0.1)
\circuitdesc{nigfete,solderdot, doublegate}{nigfete, doublegate}{}(G1/180/0.1, centergap/0/0.5, G2/180/0.1)
\circuitdesc{nigfetebulk, doublegate}{nigfetebulk, doublegate}{}(G/180/0.1, G2/180/0.1)
\circuitdesc{nigfetd, doublegate}{nigfetd, doublegate}{}(G1/180/0.1, centergap/0/0.5, G2/180/0.1)
\circuitdesc{pigfete, doublegate}{pigfete, doublegate}{}(G/180/0.1, centergap/0/0.5, G2/180/0.1, D/0/0.1, S/0/0.1)
\circuitdesc{pigfetebulk, doublegate}{pigfetebulk, doublegate}{}(G/180/0.1, G2/180/0.1)
\circuitdesc{pigfetd, doublegate}{pigfetd, doublegate}{}(G1/180/0.1, G2/180/0.1)
\end{groupdesc}
You can use the double-gated transistor for example like this:%
\footnote{Found at \href{https://www.electronics-notes.com/articles/electronic_components/fet-field-effect-transistor/dual-gate-mosfet.php}{this page on electronics notes}.}
\begin{LTXexample}[varwidth=true, basicstyle=\scriptsize\ttfamily]
\begin{circuitikz}[european, scale=0.7, transform shape,
circuitikz/resistors/scale=0.7]
\draw (0,0) to[C, o-*] ++(1,0) coordinate(in)
to[R, -*] ++(0,-3) coordinate(GND)
++(1,0) to[C, *-] ++(0,4) -- ++(1,0) coordinate(div)
to[R, *-*] ++(0,2) coordinate(vdd)
(div) to[R, -*] (div|-GND)
(in) -- ++(2.5,0) node[nigfetd, doublegate, anchor=G1](Q){Q}
(Q.G2) to[short, -*] (Q.G2-|div)
(Q.D) to[R, -*] (Q.D|-vdd)
(Q.D) to[C, *-o] ++(2,0) coordinate(out)
(Q.S) to[R, *-*] (Q.S|-GND) (Q.S) -- ++(1,0) coordinate(Sd)
(Sd) to[C, -*] (Sd |- GND);
\draw (0,0|-GND) -- (out|-GND) (0,0|-vdd) -- (out|-vdd);
\end{circuitikz}
\end{LTXexample}
\textsc{JFET} are also available\footnote{based on code provided by Danilo Piazzalunga}, both n-type and p-type.
\begin{groupdesc}
\circuitdesc{njfet}{n-type JFET}{Q}(G/-135/0.2,D/0/0.2,S/0/0.2)
\circuitdesc{pjfet}{p-type JFET}{}(G/-135/0.2,D/0/0.2,S/0/0.2)
\end{groupdesc}
\textsc{UJT} transistors\footnote{sugged by \href{https://github.com/circuitikz/circuitikz/issues/522}{user JetherReis on GitHub}.} have a different anchor names although \textbf{most} of the others, like \texttt{D} and \texttt{G}, also work (the exception is \texttt{E} and \texttt{emitter}!). Notice that if used with \texttt{nobase}, the anchor \texttt{E} follows the wire, while \texttt{G} is fixed (as is \texttt{kink}).
\begin{groupdesc}
\circuitdesc{nujt}{n-type UJT}{Q}(G/-135/0.2,B1/0/0.2,B2/0/0.2 , kink/90/0.4, E/135/0.2)
\circuitdesc{pujt}{p-type UJT}{Q}(G/-135/0.2,B1/0/0.2,B2/0/0.2 , kink/90/0.4, E/135/0.2)
\circuitdesc{nujt, nobase}{n-type UJT with nobase option}{Q}(G/-135/0.2,B1/0/0.2,B2/0/0.2 , kink/90/0.4, E/135/0.2)
\end{groupdesc}
\textsc{isfet}:
\begin{groupdesc}
\circuitdesc{isfet}{isfet}{Q}
\end{groupdesc}
\textsc{Graphene fet} have been added in version \texttt{1.3.2}\footnote{added by Romano Giannetti after a suggestion by Cees Keyer.}. They look better if you set \texttt{transistors/arrow pos=end} and \texttt{transistor/thickness=3} or higher for them, so they are plotted with this option here.
\begin{groupdesc}
\ctikzset{transistors/thickness=3, transistors/arrow pos=end}
\circuitdesc*{ngfet}{N-type graphene FET}{Q}(outer hex up/45/0.3, outer hex down/-45/0.3, right/0/0.4)
\circuitdesc*{pgfet}{pgfet}{Q}(inner hex up/135/0.3, inner hex down/-135/0.3)
\end{groupdesc}
\subsubsection{Transistor texts (labels)}\label{sec:transistors-labels}
In versions before \texttt{0.9.7}, transistors text (the node text) was positioned near the collector terminal; since version \texttt{0.9.7} the default has been changed to a more natural position near the center of the device, similar to the multi-terminal transistors. You can revert to the old behavior locally with the key \texttt{legacy transistors text}, or globally by setting the package option \texttt{legacytransistorstext}.
Notice the use of the utility functions \verb|\ctikzflip{|\texttt{\textsl{x,y,xy}}\verb|}| as explained in section~\ref{sec:mirroring-and-flipping}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=0.8, transform shape]
\draw (0,0) node [npn]{T1}
++(1.2,0) node [npn, xscale=-1]{\ctikzflipx{T1}}
++(2,0) node [npn, yscale=-1]{\ctikzflipy{T1}}
++(1.2,0) node [npn, scale=-1]{\ctikzflipxy{T1}};
\ctikzset{legacy transistors text}
\draw (0,-2) node [npn]{T1}
++(1.2,0) node [npn, xscale=-1]{\ctikzflipx{T1}}
++(2,0) node [npn, yscale=-1]{\ctikzflipy{T1}}
++(1.2,0) node [npn, scale=-1]{\ctikzflipxy{T1}};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Transistors customization}\label{sec:styling-transistors}
\paragraph{Size.} You can change the scale of all the transistors by setting the key \texttt{transistors/scale} (default \texttt{1.0}).
The size of the arrows (if any) is controlled by the same parameters as \texttt{currarrow} (see section~\ref{sec:currarrow-size}) and the dots on P-type transistors (if any) are the same as the nodes/poles (see section~\ref{sec:bipole-nodes}).
\paragraph{Arrows.} The default position of the arrows in transistors is somewhat in the middle of the terminal; if you prefer you can move them to the end with the style key \texttt{transistors/arrow pos=end} (the default value is \texttt{legacy}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{tripoles/mos style=arrows}
\ctikzset{transistors/arrow pos=end}
\draw (0,0) node[npn, ](npn){};
\draw (2,0) node[pnp, ](npn){};
\draw (0,-2) node[nmos, ](npn){};
\draw (2,-2) node[pmos, ](npn){};
\end{circuitikz}
\end{LTXexample}
If the option \texttt{arrowmos} is used (or after the command \verb!\ctikzset{tripoles/mos style/arrows}! is given), this is the output:
\begin{groupdesc}
\ctikzset{tripoles/mos style/arrows}
\circuitdesc{nmos}{nmos}{}
\circuitdesc{pmos}{pmos}{}
\circuitdesc{nmosd}{nmos depletion}{}
\circuitdesc{pmosd}{pmos depletion}{}
\end{groupdesc}
You can go back to the no-arrows mos with \texttt{noarrowmos} locally or with
\texttt{\textbackslash ctikzset\{tripoles/mos style/no arrows\}}.
To draw the PMOS circle non-solid, use the option \texttt{emptycircle} or the command
\\\verb!\ctikzset{tripoles/pmos style/emptycircle}!. To remove the dot completely (only useful if you have \texttt{arrowmos} enabled, otherwise there will be no difference between P-MOS and N-MOS), you can use the option \texttt{nocircle} or \verb|\ctikzset{tripoles/pmos style/nocircle}|.
\begin{groupdesc}
\circuitdesc{pmos,emptycircle}{pmos}{}
\circuitdesc{pmos,nocircle,arrowmos}{pmos}{}
\end{groupdesc}
This example show the combined effects of the arrows and gate-circle options:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
info/.style={left=1cm, blue, text width=5em, align=right},]
\draw (0,1) node{pmos} (2,1) node{nmos};
\draw (0,0) node[info]{default} node[pmos]{} (2,0) node[nmos]{};
\ctikzset{tripoles/mos style/arrows}
\draw (0,-2) node[info]{arrows} node[pmos]{} (2,-2) node[nmos]{};
\ctikzset{tripoles/pmos style/emptycircle}
\draw (0,-4) node[info]{emptycircle} node[pmos]{} (2,-4) node[nmos]{};
\ctikzset{tripoles/pmos style/nocircle}
\draw (0,-6) node[info]{nocircle} node[pmos]{} (2,-6) node[nmos]{};
\ctikzset{tripoles/mos style/no arrows}
\draw (0,-8) node[info, red]{no circle, no arrows, DON'T do it}
node[pmos]{} (2,-8) node[nmos]{};
\end{circuitikz}
\end{LTXexample}
You can also change\footnote{Thanks to the idea by \href{https://github.com/circuitikz/circuitikz/issues/655}{Dr. Matthias Jung on GitHub}.} the type of the arrow for the ``light rays'' of the phototransistors with the generic arrows options shown in~\ref{sec:tunablearrows}, using the name \texttt{opto}, like in the following (overdone) example. Also the \texttt{opto arrows} styling options (see section~\ref{sec:opto-arrows}).
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}
\draw (0,2) node[npn, photo]{} ++(2,0) node[pnp, photo]{};
\ctikzset{opto end arrow={Triangle[angle'=60]}}
\ctikzset{opto arrows/.cd, color=red, dash={{1pt}{1pt}}}
\draw (0,0) node[npn, photo]{} ++(2,0) node[pnp, photo]{};
\end{tikzpicture}
\end{LTXexample}
\paragraph{Circles.} Since \texttt{1.2.6}, you can add a circle\footnote{Suggested by Matthias Jung \href{https://github.com/circuitikz/circuitikz/issues/442}{on GitHub}} to most of the transistor shapes --- with the exception of multi-terminal (\texttt{bjtnpn} and \texttt{bjtpnp}, where it would be awkward anyway) and graphene FETs. The circle is intended in some case as the component's housing, and used to distinguish discrete components from integrated ones.
To add the circle to a single transistor, you use the \texttt{tr circle} keys in the node; if you want all of your transistors with a circle, you can set the property \texttt{tr circle} with a \verb|\ctikzset| command (it will respect normal grouping, of course); in that case, you can use \texttt{tr circle=false} to locally disable them.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,2) node[npn]{} (2,2) node[npn, tr circle](Q){};
% collector connected to housing
\node [circ] at (Q.circle C){};
\ctikzset{tr circle=true} % or \ctikzset{tr circle} alone
\draw (0,0) node[nigfete]{}
(2,0) node[nigfete, tr circle=false]{};
\end{circuitikz}
\end{LTXexample}
You can tweak the appearance of transistor's circles and even draw it partially; see ~\ref{sec:trans-circle-custom} for details.
\paragraph{Body diodes and similar things.}\label{sec:bodydiodes-anchor} For all transistors (minus \texttt{bjtnpn} and \texttt{bjtpnp}) a body diode (or freewheeling or flyback diode) can automatically be drawn. Just use the global option \texttt{bodydiode}, or for single transistors, the \TikZ-option \texttt{bodydiode}.
As you can see in the next example, the text for the diode is moved if a bodydiode is present (but beware, if you change a lot the relative dimension of components, it may become misplaced):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[npn,bodydiode](npn){1}
++(2,0)node[pnp,bodydiode](npn){};
\draw (0,-2) node[nigbt,bodydiode](npn){2}
++(2,0)node[pigbt,bodydiode](npn){};
\draw (0,-4) node[nfet,bodydiode](npn){3}
++(2,0)node[pfet,bodydiode](npn){};
\end{circuitikz}
\end{LTXexample}
You can tweak the appearance of transistor's bodydiodes; see ~\ref{sec:trans-bodydiode-custom}.
For more complex snubs or protections, you can use the \texttt{body ...} anchors to add more or different things to the transistors in addition (or instead) of the flyback diode.
\begin{LTXexample}[varwidth=true]
\def\snubb#1#2{% add a snubber to a transistor
\draw (#1.body C #2) to[short, *-, nodes width=0.02]
++(0.3,0) coordinate(tmp) to [R, resistors/scale=0.3]
% 2/3 space for R, 1/3 for C
($(tmp)!0.66!(tmp|-#1.body E #2)$)
to [C, capacitors/scale=0.3] (tmp|-#1.body E #2)
to [short, -*, nodes width=0.02] (#1.body E #2);
}
\begin{circuitikz}
\node[npn](Q1) at(0,0) {};
\node[pnp](Q2) at(2,0) {};
\node[pnp, bodydiode](Q3) at(0,-3) {};
\node[npn, bodydiode](Q4) at(2,-3) {};
\snubb{Q1}{in} \snubb{Q2}{in}
\snubb{Q3}{out} \snubb{Q4}{out}
\end{circuitikz}
\end{LTXexample}
\paragraph{HEMT customization.\label{sec:hemt}} Since \texttt{v1.6.1} the shape of the \texttt{hemt} transistor can be customized.\footnote{After a suggestion from \href{https://github.com/circuitikz/circuitikz/issues/691}{user \texttt{@epsilon-phi} on GitHub}.}
There are several keys under the hierarchy \texttt{tripoles/hemt} that can be use to change the appearance; some of them are common to other transistors and some are specific.
The main ones are \texttt{\dots/split gate} (boolean, default \texttt{false}) that will create a ``split'' gate, which sometimes is used to convey that the device is enhancement-type;
\texttt{source arrow} (default \texttt{0}), to add an arrow on the source terminal (\texttt{1} for a right-facing one, \texttt{-1} the other way around; the arrow will obey \texttt{arrow pos=end} if issued, but otherwise the position is fixed);
\texttt{gate asym} (default \texttt{0.0}) which displaces the gate asymmetrically. For example, the \texttt{GaN hemt} component is really a styled \texttt{hemt} (predefined), with the definition:
\begin{lstlisting}
\tikzset{GaN hemt/.style={hemt,
circuitikz/tripoles/hemt/base height=0.6,% length of the "base" vertical bar
circuitikz/tripoles/hemt/gate height=0.5,% distance of the S/D terminals
circuitikz/tripoles/hemt/bodydiode conn=0.85,% attachment point of body diode
circuitikz/tripoles/hemt/gate asym=-0.1,% slightly down
circuitikz/tripoles/hemt/split gate=true,% split gate
circuitikz/tripoles/hemt/source arrow=1,% right-facing arrow
},
}
\end{lstlisting}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\path (-1,-1) rectangle (3,3);% bounding box
\node [hemt] at (0,2) {A};
\node [hemt,
circuitikz/tripoles/hemt/split gate=true
] at (2,2) {B};
\node [GaN hemt] at (0,0) {C};
\node [GaN hemt,
circuitikz/tripoles/hemt/split gate=false
] at (2,0) {D};
\end{circuitikz}
\end{LTXexample}
\paragraph{Schottky transistors.}
The Schottky transistors are generated by adding the \texttt{schottky base} key (there is also a \texttt{no schottky base} key that can be used if you use the other one as a default).
You can change the size of the Schottky ``hook'' changing the parameter \texttt{tripoles/schottky base size} with \verb|\ctikzset{}| (default \texttt{\ctikzvalof{tripoles/schottky base size}}; the unit is the standard resistor length, scaled if needed.)
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,4) node[npn]{}
++(2,0) node[npn, schottky base]{};
\draw (1,2) node[bjtnpn, collectors=2, emitters=3,
schottky base, rotate=90]{};
\tikzset{schottky base}
\ctikzset{tripoles/schottky base size=0.1}
\draw (0,0) node[pnp]{}
++(2,0) node[npn, no schottky base]{};
\end{circuitikz}
\end{LTXexample}
\paragraph{Ferroelectric transistors} You can add the ferroelectric modifier\footnote{suggested by \href{https://github.com/circuitikz/circuitikz/issues/515}{Mayeul Cantan}} to the \texttt{*mos} and \texttt{*fet} transistor types. Similarly to the Schottky bipolar transistors, you activate it by adding the \texttt{ferroel gate} key (there is also a \texttt{no ferroel base} key that can be used if you use the other one as a default).
The mark will follow the \texttt{transistors} class thickness, but you can adjust it independently using the class parameter \texttt{modifier thickness} as in passive components --- this value is relative to the class' thickness.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,2) node[nmos]{}
++(2,0) node[nmos, ferroel gate]{};
\ctikzset{ferroel gate} % by default from now on
\ctikzset{transistors/.cd, % class properties
thickness=1, modifier thickness=3}
\draw (0,0) node[pfet]{}
++(2,0) node[pfet, no ferroel gate]{};
\end{circuitikz}
\end{LTXexample}
\paragraph{IGBT outer base.}
Normally, in bipolar IGBTs the outer base is the same size (height) of the inner one, and of the same thickness (which will depend on the class thickness value). You can change this by setting (via \verb|\ctikzset|) the keys \texttt{tripoles/igbt/outer base height} (default \texttt{0.4}, the same as \texttt{base height}), and \texttt{tripoles/igbt/outer base thickness} (default \texttt{1.0}), which will be relative to the class thickness.
\begin{LTXexample}[varwidth=true, pos=t]
\begin{circuitikz}
\draw (0,0)
-- ++(1,0) node[nigbt, anchor=B](B){} (B.nobase)
-- ++(1,0) node[pigbt, anchor=B](B){} (B.nobase)
-- ++(1,0) node[Lnigbt, anchor=B](B){} (B.nobase)
-- ++(1,0) node[Lpigbt, anchor=B](B){} (B.nobase)
;
\ctikzset{tripoles/igbt/outer base height=0.3}
\ctikzset{tripoles/igbt/outer base thickness=1.5}
\draw (6,0)
-- ++(1,0) node[nigbt, anchor=B](B){} (B.nobase)
-- ++(1,0) node[pigbt, anchor=B](B){} (B.nobase)
-- ++(1,0) node[Lnigbt, anchor=B](B){} (B.nobase)
-- ++(1,0) node[Lpigbt, anchor=B](B){} (B.nobase)
;
\end{circuitikz}
\end{LTXexample}
\paragraph{UJT transistors.}\label{sec:ujt} They look better if you use \texttt{transistors/arrow pos=end}, especially if you use them with \texttt{tr circle}. If you use the key \texttt{nobase} with UJTs, the horizontal part of the controlling terminal is not drawn; notice that this \emph{will} move the \texttt{E} or \texttt{emitter} anchor, but not the generic ones like \texttt{G}.
\begin{LTXexample}[varwidth=true, basicstyle=\footnotesize\ttfamily]
\begin{circuitikz}[scale=0.8]
\draw (0,5) node[nujt]{} ++(2,0) node[pujt]{}
++(2,0) node[nujt, tr circle]{} ++(2,0)
node[pujt, tr circle]{};
\ctikzset{transistors/arrow pos=end}
\draw (0,2.5) node[nujt](A){} ++(2,0) node[pujt]{}
++(2,0) node[nujt, tr circle]{} ++(2,0)
node[pujt, tr circle](C){};
\draw (0,0) node[nujt, nobase](B){} ++(2,0)
node[pujt, nobase]{} ++(2,0)
node[nujt, tr circle, nobase]{} ++(2,0)
node[pujt, tr circle, nobase](D){};
% "E" anchor follows the nobase option:
\draw[red] (A.E) |- (B.E) (C.E) |- (D.E);
\end{circuitikz}
\end{LTXexample}
\paragraph{Base/Gate terminal.} The Base/Gate connection of all transistors can be disabled by the options \textit{nogate} or \textit{nobase}, respectively. The Base/Gate anchors are floating, but there is an additional anchor \texttt{nogate}/\texttt{nobase} , which can be used to point to the unconnected base:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (2,0) node[npn,nobase](npn){};
\draw (npn.E) node[below]{E};
\draw (npn.C) node[above]{C};
\draw (npn.B) node[circ]{} node[left]{B};
\draw[dashed,red,-latex] (1,0.5)--(npn.nobase);
\end{circuitikz}
\end{LTXexample}
\paragraph{Bulk terminals.} You can add a bulk terminal\footnote{Thanks to Burak Kelleci <kellecib@hotmail.com>.} to \texttt{nmos} and \texttt{pmos} using the key \texttt{bulk} in the node (and \texttt{nobulk} if you set the bulk terminal by default); additional anchors \texttt{bulk} and \texttt{nobulk} are added (in the next example, \texttt{tripoles/mos style/arrows} is enacted, too):
\begin{groupdesc}
\ctikzset{tripoles/mos style/arrows}
\circuitdesc{nmos, bulk}{pmos}{}(bulk/45/0.3, nobulk/-30/.4)
\circuitdesc{pmos, bulk}{pmos}{}
\circuitdesc{nmosd, bulk}{nmos depletion}{}(bulk/45/0.3, nobulk/-30/.4)
\circuitdesc{pmosd, bulk}{pmos depletion}{}
\circuitdesc{nigbt}{nigbt}{}(nobase/135/0.3, nobulk/-30/.4)
\circuitdesc{pigbt, nobase}{pigbt with no base terminal\footnotemark}{}(nobase/135/0.3, nobulk/-30/.4)
\footnotetext{Since \texttt{v1.4.4}, noticed by \href{https://tex.stackexchange.com/q/619334/38080}{user \texttt{hinata exc} on Stack Exchange}.}
\end{groupdesc}
\paragraph{Solder dots.}\label{sec:solderdot-scale}
Solder dots are scaled-down\footnote{Since \texttt{v1.6.3}, suggested by \href{https://tex.stackexchange.com/q/687225/38080}{user Hartomes on TeX StackExchange}; previously, the default scale was \texttt{1.0}, which created a clash with body diodes.} version of the normal \texttt{circ} connection dot (\emph{pole}).
This is to convey the information that the connection is \emph{internal} to the device, and not controllable from the outside. By default, they are scaled as the bodydiode connection dots (see section~\ref{sec:trans-bodydiode-custom}), but you can change them with the command \texttt{\textbackslash ctikzset\{transistor solderdot scale=\emph{x}\}}, where $x$ is the scale with respect to the normal \texttt{circ} node (default: \texttt{0.7}).
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[]
\draw (0,0) to[short,*-] ++(.1,0)
node[nigfete, solderdot, anchor=G]{};
\ctikzset{transistor solderdot scale=1}
\draw (2,0) to[short,*-] ++(.1,0)
node[nigfete, solderdot, anchor=G]{};
\end{tikzpicture}
\end{LTXexample}
\paragraph{Simplified symbols for depletion-mode MOSFETs}.
The \texttt{nmosd}, \texttt{pmosd} (symplified) symbols for depletion-mode MOSFET (introduced in \texttt{1.2.4}) behave exactly like the normal (without the final \texttt{d}) ones.
By default, the thick bar (indicating the pre-formed channel) is filled with the same color as the drawing:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[ ]
\draw (0,2) to[R] ++(2,0) node[nmosd, anchor=G]{};
\draw[color=red] (0,0) to[R] ++(2,0) node[pmosd, anchor=G]{};
\end{circuitikz}
\end{LTXexample}
You can change this behavior by setting the key
\texttt{tripoles/nmosd/depletion color} (default value \texttt{default}, which means ``use the draw color'') to the color you want; using \texttt{none} will lead to an unfilled channel (note that in this case the color does not change automatically with the path!):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[ ]
\ctikzset{tripoles/nmosd/depletion color=gray}
\draw (0,2) to[R] ++(2,0) node[nmosd, anchor=G]{};
\ctikzset{tripoles/pmosd/depletion color=none}
\draw[color=red] (0,0) to[R] ++(2,0)
node[pmosd, anchor=G]{};
\ctikzset{tripoles/pmosd/depletion color=
{cyan!50!white}}
\draw[color=blue] (0,-2) to[R] ++(2,0)
node[pmosd, anchor=G, bulk]{};
\end{circuitikz}
\end{LTXexample}
Obviously you have the equivalent \texttt{tripoles/pmosd/depletion color} for type-P transistors.
They also have path-style syntax, as the other transistors.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[ ]
\draw (0,0) to[Tnmosd] ++(2,0)
to[Tpmosd, invert] ++(0,-2)
;
\end{circuitikz}
\end{LTXexample}
\paragraph{Gate/Base gap coloring.} You can color the space representing the gate capacitor or the insulated base by using the key \texttt{tr gap fill} (default \texttt{none}, which means nothing is drawn there). This fill is done \emph{after} any circle fill but before any additional modifier (see the example below). You can use it locally or set it globally (normal scoping works, as ever).
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}
\node[nigfete, tr gap fill=green] at(0,0){};
\node[nigfete, tr gap fill=red, tr circle,
fill=cyan!30] at(1.5,0){};
\node[nmos, tr gap fill=cyan, ferroel gate](A)
at(3,0){};
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Multiple terminal transistors customization}
You can create completely ``bare'' transistors (without the connection leads to the \texttt{B}, \texttt{C} y \texttt{E} terminals), by changing the parameter \texttt{tripoles/bjt/pins width} (default \texttt{0.3}; it is expressed as a fraction of the basic (scaled) length) or using the style \texttt{bjt pins width}; and you can change the distance between multiple collectors/emitters setting with \verb|\ctikzset{}| the parameter \texttt{tripoles/bjt/multi height} (default \texttt{0.5}) or the style \texttt{bjt multi height}.
\begin{groupdesc}
\circuitdesc{bjtnpn, collectors=2, emitters=2, bjt pins width=0, bjt multi height=0.8}{bjt npn with parameters}{Q}(B/180/0.2, C/45/0.2, E/-45/0.2, C1/0/0.4, C2/0/0.4, E1/0/0.4, E2/0/0.4, nobase/-135/0.4, cbase/135/0.4)
\end{groupdesc}
\subsubsection{Transistor circle customization}\label{sec:trans-circle-custom}
\paragraph{Position and size.} You can see in the following diagram where the circle is positioned --- when there is no bodydiode, it will pass through the anchors for the body diode and near the base connection. The dimension of the circle is bigger when the bodydiode is in, to encompass it.
The anchors are present even if there is no circle, so you can use them to draw different kinds of circles (say, encompassing two transistors) in a coherent way.
\circuitdesc{npn, tr circle}{npn with a circle}{}(circle base/90/0.5, circle C/30/0.2, circle E/-30/0.2, circle center/0/0.5)
\circuitdesc{npn, tr circle, bodydiode}{npn with a circle}{}(circle base/90/0.6, circle C/30/0.2, circle E/-30/0.2, circle center/0/0.5 )
The position of the circle on collector and emitter by default is the one shown above; the position along the base can be adjusted in most transistors using the \verb|\ctikzset| parameter \texttt{transistor circle/default base in} (by default \texttt{\ctikzvalof{transistor circle/default base in}}); \texttt{njfet} and \texttt{pjfet} use \texttt{transistor circle/njfet base in} (default \texttt{\ctikzvalof{transistor circle/njfet base in}}; the same for \texttt{pjfet}) and, finally, \texttt{isfet} uses \texttt{transistor circle/isfet base in} (default \texttt{\ctikzvalof{transistor circle/isfet base in}}). You can change the resulting size of the circle by setting to something different to \texttt{1.0} the parameter \texttt{transistor circle/scale circle radius} --- that will move the anchors too; for example:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=1.5, transform shape]
\draw (0,0) node[npn, tr circle](Q1){};
\node [circ] at (Q1.circle C){};
\ctikzset{transistor circle/scale circle radius=1.2}
\draw[color=red] (0,0) node[npn, tr circle](Q2){};
\node [circ, color=red] at (Q2.circle C){};
\end{circuitikz}
\end{LTXexample}
\paragraph{Line and color.} Normally the circle follows the style of the component --- the line thickness is fixed by the class element \texttt{transistors/thickness} and the color is the same as the component color. You can change, if you need, all of these things using the parameters of the following table (the parameters are under the \verb|\ctikzset| category root \texttt{transistor circle/}.
\begin{center}
\begin{tabular}{>{\ttfamily}l>{\ttfamily}ll}
\toprule
parameter & default & description \\
\midrule
relative thickness & 1.0 & multiply the class thickness \\
color & default & stroke color: \texttt{default} is the same as the component \\
dash & default & dash pattern: none means solid line, default means keep the global pattern\footnotemark \\
partial borders & none & draw only part of the circle border: none means draw all \\
partial border dash & \{\{2pt\}\{2pt\}\} & dash pattern used in partial borders \\
\bottomrule
\end{tabular}
\footnotetext{Follows the syntax of the pattern sequence \texttt{\textbackslash pgfsetdash} --- see \TikZ{} manual for details; phase is always zero. Basically you pass pairs of dash-length -- blank-length dimensions, see the examples.}
\end{center}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,2) node[npn, tr circle](Q1){};
\ctikzset{transistor circle/relative thickness=2}
\draw (2,2) node[npn, tr circle](Q1){};
\ctikzset{transistor circle/color=red}
\draw (0,0) node[npn, tr circle](Q1){};
\ctikzset{transistor circle/color=default}
\ctikzset{transistor circle/dash={{4pt}{4pt}{1pt}{4pt}}}
\draw[color=blue] (2,0) node[npn, tr circle](Q1){};
\end{circuitikz}
\end{LTXexample}
Finally, using the class style you can do quite interesting things.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\ctikzset{transistors/thickness=4, transistors/fill=cyan!30,
transistor circle/relative thickness=0.25,}
\draw (0,0) node[npn, tr circle](Q1){};
\ctikzset{transistor circle/dash={{2pt}{2pt}}}
\draw (1.5,0) node[npn, tr circle, xscale=-1](Q2){};
\end{circuitikz}
\end{LTXexample}
\paragraph{Partially drawn circle borders}
In some circuits, transistors are drawn with partial or dashed border (to convey the meaning of several active components encased in the same physical package, or to signify thermal contact). To achieve this effect, you can use the \texttt{transistor circle/partial border}\footnote{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/602}{Jether Fernandes Reis} for tubes, implemented by Romano in \texttt{v1.5.2}.} key (default \texttt{none}). This key can be set to \texttt{none}, or must be a sequence of \textbf{exactly} 4 numbers, that can have value \texttt{0}, \texttt{1}, or \texttt{2}. Each number defines the style of a part of the border to be not drawn, solid or dashed respectively.
The part of the border are numbered from 1 to 4 as shown below:
\begin{quote}
\begin{circuitikz}[circuitikz/transistors/fill=cyan!20,
circuitikz/transistor circle/partial borders=1212]
\draw (0,0) node[npn, tr circle](T){};
\draw[red, font=\ttfamily\small\bfseries]
([shift={(.3,-.2)}]T.north east) node{1}
([shift={(.3,.2)}]T.south east) node{2}
([shift={(.2,.2)}]T.south west) node{3}
([shift={(.2,-.2)}]T.north west) node{4}
;
\end{circuitikz}
\end{quote}
The dashed line pattern can be changed by setting the key \texttt{transistor circle/partial border dash} (default \verb|{{2pt}{2pt}}|). Be careful with the extra set of braces here.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\ctikzset{transistors/thickness=4, transistors/fill=cyan!30,
transistor circle/relative thickness=0.25,
transistor circle/partial borders=2211}
\draw (0,0) node[npn, tr circle](Q1){};
\ctikzset{transistor circle/dash={{2pt}{2pt}}}
\draw (1.5,0) node[npn, tr circle, xscale=-1](Q2){};
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\ctikzset{transistors/thickness=4, transistors/fill=cyan!30,
transistor circle/relative thickness=0.25,
transistor circle/partial borders=0011}
\draw (0,0) node[npn, tr circle](Q1){};
\ctikzset{transistor circle/dash={{2pt}{2pt}}}
\draw (1.5,0) node[npn, tr circle, xscale=-1](Q2){};
\draw[dashed] (Q1.circle top) -- (Q2.circle top);
\draw[dashed] (Q1.circle bottom) -- (Q2.circle bottom);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Transistor bodydiode customization}\label{sec:trans-bodydiode-custom}
You can change the style of the bodydiode\footnote{Suggested by \href{https://tex.stackexchange.com/questions/653348/drawing-mosfet-bodydiode-dashed}{user Alex Ghilas on TeX.SX}, implemented in \texttt{v1.5.4}; \texttt{scale} suggested by \href{https://github.com/circuitikz/circuitikz/issues/703}{user \texttt{@sputeanus} on GitHub} and added in version \texttt{1.6.2}.} in a similar way to the one used for circles (albeit with less options), by setting keys with the \verb!\ctikzset! command (or, like in the following example, directly in the node instantiation) under the \texttt{transistor bodydiode} hierarchy. The available keys are:
\begin{center}
\begin{tabular}{>{\ttfamily}l>{\ttfamily}lp{0.5\linewidth}}
\toprule
parameter & default & description \\
\midrule
relative thickness & 1.0 & multiply the class thickness \\
color & default & stroke color: \texttt{default} is the same as the component \\
dash & default & dash pattern: \texttt{default} means not to change the setting for the component; \texttt{none} means unbroken line; every other input is a dash pattern\footnotemark \\
scale & 0.3 & scale of the diode, with respect to the basic (not scaled) diode dimension.\\
dot scale & 0.7 & scale of bodydiode connections dots, with respect to the \texttt{circ} pole. Use zero to remove them (useful if you have circles around the transistor).\\
\bottomrule
\end{tabular}
\footnotetext{Follows the syntax of the pattern sequence \texttt{\textbackslash pgfsetdash} --- see \TikZ{} manual for details; phase is always zero. Basically you pass pairs of dash-length -- blank-length dimensions, see the examples.}
\end{center}
The following is a quite extensive example. Obviously, a good strategy in this case is to define styles for the options, or, better, set the option in your style file or in the preamble (for coherency).
\begin{LTXexample}[varwidth=true, pos=t, basicstyle=\small\ttfamily]
\begin{tikzpicture}[red solid thin bodydiode/.style={bodydiode,
circuitikz/transistor bodydiode/dash=none,
circuitikz/transistor bodydiode/color=red,
circuitikz/transistor bodydiode/relative thickness=0.3}]
\draw (0,0) node (mosfet1) [nigfete,anchor=D,bodydiode] {$Q_1$};
\draw[densely dashed] (3,0) node (mosfet1) [nigfete,anchor=D,bodydiode] {$Q_2$};
\draw (6,0) node (mosfet1) [nigfete,anchor=D,bodydiode, tr circle,
circuitikz/transistor bodydiode/color=gray,
circuitikz/transistor bodydiode/scale=0.2,
circuitikz/transistor bodydiode/dot scale=0] {$Q_3$};
\draw (0,-2) node (mosfet1) [nigfete,anchor=D,bodydiode,
circuitikz/transistor bodydiode/dash={{2pt}{1pt}}] {$Q_4$};
\draw[densely dashed] (3,-2) node (mosfet1) [nigfete,anchor=D,
red solid thin bodydiode] {$Q_5$};
\ctikzset{transistor bodydiode/relative thickness=.5,
transistor bodydiode/scale=0.6}% from now on, in scope
\draw[densely dotted] (6,-2) node (mosfet1) [nigfete,anchor=D,bodydiode,
circuitikz/transistor bodydiode/dash=none,
circuitikz/transistor bodydiode/dot scale=1] {$Q_6$};
\path (7,0); %% adjust bounding box (node text is outside it!)
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Transistors anchors}
For \textsc{nmos}, \textsc{pmos}, \textsc{nfet}, \textsc{nigfete}, \textsc{nigfetd}, \textsc{pfet}, \textsc{pigfete}, and \textsc{pigfetd} transistors one has \texttt{base}, \texttt{gate}, \texttt{source} and \texttt{drain} anchors (which can be abbreviated with \texttt{B}, \texttt{G}, \texttt{S} and \texttt{D}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[nmos] (mos) {}
(mos.gate) node[anchor=east] {G}
(mos.drain) node[anchor=south] {D}
(mos.source) node[anchor=north] {S}
;\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[pigfete] (pigfete) {}
(pigfete.G) node[anchor=east] {G}
(pigfete.D) node[anchor=north] {D}
(pigfete.S) node[anchor=south] {S}
(pigfete.bulk) node[anchor=west] {Bulk}
;\end{circuitikz}
\end{LTXexample}
Similarly \textsc{njfet} and \textsc{pjfet} have \texttt{gate}, \texttt{source} and \texttt{drain} anchors (which can be abbreviated with \texttt{G}, \texttt{S} and \texttt{D}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[pjfet] (pjfet) {}
(pjfet.G) node[anchor=east] {G}
(pjfet.D) node[anchor=north] {D}
(pjfet.S) node[anchor=south] {S}
;\end{circuitikz}
\end{LTXexample}
For \textsc{npn}, \textsc{pnp}, \textsc{nigbt} and \textsc{pigbt} transistors, the anchors are \texttt{base}, \texttt{emitter} and \texttt{collector} anchors (which can be abbreviated with \texttt{B}, \texttt{E} and \texttt{C}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[npn] (npn) {}
(npn.base) node[anchor=east] {B}
(npn.collector) node[anchor=south] {C}
(npn.emitter) node[anchor=north] {E}
;\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[pigbt] (pigbt) {}
(pigbt.B) node[anchor=east] {B}
(pigbt.C) node[anchor=north] {C}
(pigbt.E) node[anchor=south] {E}
;\end{circuitikz}
\end{LTXexample}
Notice that the geographical anchors of transistors are \emph{not} affected by either the bodydiode and the circle options; the label text is also outside of them. This is to permit aligning the components independently from those features. On the other hand, this can sometimes create problems because that element is outside the bounding box automatically calculated by \TikZ{}.
The exception is the \texttt{right} anchor which, when a circle is present, indicates the edge of the circle itself (since \texttt{v1.3.2})
{\geolrcoord{npn} \geolrcoord{npn, bodydiode} \geolrcoord{npn, bodydiode, tr circle}}
All transistors, except the multi-terminal \texttt{bjtnpn} and \texttt{bjtpnp}, (since \texttt{0.9.6}) have internal nodes on the terminal corners, called \texttt{inner up} and \texttt{inner down}; you do not normally need them, but they are here for special applications:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\node [npn](A) at(0,2) {};
\node [pmos](B) at(0,0) {};
\foreach \e in {A, B}
\foreach \a in {inner up, inner down} {
\node[red, circle, inner sep=1pt, draw]
at (\e.\a) {};
\node [right, font=\tiny, blue]
at (\e.\a) {\a};
}
\end{circuitikz}
\end{LTXexample}
Additionally, you can access the position for the flyback diodes and possibly snubbers as shown in~\ref{sec:bodydiodes-anchor}.
\begin{quote}
\showanchors{npn}{}(body C in/45/0.4, body E in/-45/0.4, body C out/0/0.4, body E out/0/0.4)
\showanchors{npn, bodydiode}{}(body C in/45/0.4, body E in/-45/0.4, body C out/0/0.4, body E out/0/0.4)
\showanchors{pnp}{}(body C in/-45/0.4, body E in/45/0.4, body C out/0/0.4, body E out/0/0.4)
\end{quote}
Transistor circles also have several anchors on them:
\begin{quote}
\showanchors{npn, tr circle}{}(circle center/-135/0.6, circle top/90/0.3, circle left/180/0.2, circle right/0/0.2, circle bottom/-90/0.3, circle C/45/0.2, circle E/-45/0.2)
\showanchors{pigfete, bodydiode, tr circle}{}(circle center/-135/0.6, circle top/90/0.3, circle left/180/0.2, circle right/0/0.2, circle bottom/-90/0.3, circle C/-45/0.2, circle E/45/0.2)
\end{quote}
The multi-terminal transistors have all the geographical anchors; note though that the \texttt{center} anchor is not the geometrical center of the component, but the logical one (at the same height as the base).
The additional anchors \texttt{vcenter} (vertical geometric center of the collector--emitter zone) and \texttt{gcenter} (graphical center) are provided, as shown in the following picture. They have no bodydiode anchors nor \texttt{inner \emph{up/down}} ones.
\begin{quote}
\geocoord{bjtnpn, collectors=1, emitters=2}
\showanchors{bjtpnp, collectors=4, emitters=1, bjt pins width=0.6}{}(north/90/0.4, east/0/0.4, south/-90/0.4, west/180/0.4, center/120/0.3, vcenter/0/0.4, gcenter/-120/0.4, cbase/-60/0.6)
\end{quote}
A complete example of multiple terminal transistor application is the following PNP double current mirror circuit.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{transistors/arrow pos=end}
\draw (0,0) node[bjtpnp, xscale=-1](Q1){%
\scalebox{-1}[1]{Q1}};
\draw (Q1.B) node[bjtpnp, anchor=B, collectors=2]
(Q2){Q2} (Q1.B) node[circ]{};
\draw (Q1.E) node[circ]{} node[vcc]{} (Q2.E)
node[vcc]{} (Q1.E) -| (Q1.B);
\draw (Q1.C) to[R, l_=$R_0$, f=$I_0$] ++(0,-3.5)
node[ground](GND){};
\draw (Q2.C) -- ++(0,-0.5) coordinate(a);
\draw (Q2.C1) -- ++(1,0) coordinate(b) -- (b|-a);
\draw (a) ++(0,-0.1) node[flowarrow, rotate=-90,
anchor=west]{\rotatebox{90}{$I_0$}};
\draw (b|-a) ++(0,-0.1) node[flowarrow, rotate=-90,
anchor=west]{\rotatebox{90}{$I_0$}};
\path (b) ++(0.5,0); % bounding box adjust
\end{circuitikz}
\end{LTXexample}
Here is one composite example (please notice that the \texttt{xscale=-1} style would also reflect the label of the transistors, so here a new node is added and its text is used, instead of that of \texttt{pnp1}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} []\draw
(0,0) node[pnp] (pnp2) {Q2}
(pnp2.B) node[pnp, xscale=-1, anchor=B] (pnp1) {}
(pnp1) node[left, inner sep=0pt] {Q1}
(pnp1.C) node[npn, anchor=C] (npn1) {Q3}
(pnp2.C) node[npn, xscale=-1, anchor=C] (npn2)
{\scalebox{-1}[1]{Q4}}
(pnp1.E) -- (pnp2.E) (npn1.E) -- (npn2.E)
(pnp1.B) node[circ] {} |- (pnp2.C) node[circ] {}
;\end{circuitikz}
\end{LTXexample}
Notice that the text labels of transistors are outside the bounding box of the component (that is, the set of geographical anchors). If it is a problem, use a separate text node to set the transistor's label.
Of course, transistors like other components can be reflected vertically:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[pigfete, yscale=-1] (pigfete) {}
(pigfete.bulk) node[anchor=west] {Bulk}
(pigfete.G) node[anchor=east] {G}
(pigfete.D) node[anchor=south] {D}
(pigfete.S) node[anchor=north] {S}
;\end{circuitikz}
\end{LTXexample}
Finally, double-gated components (MOSes, FETs, IGBTs) have an extra anchor \texttt{centergap} positioned in the middle of the ``gate capacitor'' or base.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\node [nmos](A) at (0,3) {};
\node [nfet](B) at (0,1.5) {};
\node [pigbt](C) at (0,0) {};
\foreach \myn in {A, B, C}
\draw[color=red] (\myn.centergap)
node[ocirc]{} -- ++(1,0)
node[right, font=\tiny]{centergap};
\end{circuitikz}
\end{LTXexample}
For UJT transistors anchors, see section~\ref{sec:ujt}.
\subsubsection{Transistor paths}\label{sec:transasbip}
For syntactical convenience standard transistors (not multi-terminal ones) can be placed using the normal path notation used for bipoles. The transistor type can be specified by simply adding a ``T'' (for transistor) in front of the node name of the transistor. It will be placed with the base/gate orthogonal to the direction of the path:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[njfet] {1}
(-1,2) to[Tnjfet=2] (1,2)
to[Tnjfet=3, mirror] (3,2)
;\end{circuitikz}
\end{LTXexample}
Access to the gate and/or base nodes can be gained by naming the transistors with the \texttt{n} or \texttt{name} path style:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw[yscale=1.1, xscale=.8]
(2,4.5) -- (0,4.5) to[Tpmos=p1, n=p1] (0,3)
to[Tnmos=n1, n=n1] (0,1.5)
to[Tnmos=n2, n=n2] (0,0) node[ground] {}
(2,4.5) to[Tpmos=p2,n=p2] (2,3) to[short, -*] (0,3)
(p1.G) -- (n1.G) to[short, *-o] ($(n1.G)+(3,0)$)
(n2.G) ++(2,0) node[circ] {} -| (p2.G)
(n2.G) to[short, -o] ($(n2.G)+(3,0)$)
(0,3) to[short, -o] (-1,3)
;\end{circuitikz}
\end{LTXexample}
Transistors used in path are fully path-style components, so to flip and rotate them you should use \texttt{mirror} and \texttt{invert} as shown in section~\ref{sec:mirror-flip-path}.
Transistor paths have the possibility to use the poles syntax (see section~\ref{sec:bipole-nodes}) but they have \textbf{no} voltage, current, flow, annotation options.
Also, the positioning of the labels is very simple and is not foolproof for all rotations; if you need to control them more please name the node and position them by hand, or use the more natural node style for transistors.
The \texttt{name} property is available also for bipoles; this is useful mostly for triac, potentiometer and thyristor (see~\ref{sec:othertrip}).
\subsection{Electronic Tubes}
Electronic tubes, also known as vacuum tubes, control current flow between electrodes. They come in many different flavours.
\small{Contributed by J. op den Brouw (\texttt{J.E.J.opdenBrouw@hhs.nl}).}
\begin{groupdesc}
\circuitdesc*{diodetube}{Tube Diode}{}(anode/90/0.2, cathode/-90/0.2 )
\circuitdesc*{triode}{Triode}{}(anode/90/0.2, cathode/-90/0.2, control/180/0.2 )
\circuitdesc*{tetrode}{Tetrode}{}(anode/90/0.2, cathode/-90/0.2, control/190/0.2,screen/170/0.2 )
\circuitdesc*{pentode}{Pentode}{}(anode/90/0.2, cathode/-90/0.2, control/190/0.2,screen/180/0.2,suppressor/170/0.2 )
\end{groupdesc}
Some pentodes have the suppressor grid internally connected to the control grid, which saves a pin on the tube's housing.
\begin{groupdesc}
\circuitdesc*{pentode suppressor to cathode}{Pentode with suppressor grid connected to cathode}{}( anode/90/0.2, cathode/-90/0.2, control/190/0.2,screen/180/0.2 )
\end{groupdesc}
Note that the \verb|diodetube| is used as component name to avoid clashes with the semiconductor diode.
Normally, the filament is not drawn. If you want a filament, put the \verb|filament| option in the node description:
\begin{groupdesc}
\circuitdesc*{diodetube,filament}{Tube Diode}{}(anode/90/0.2, filament 1/-135/0.2, filament 2/-45/0.2 )
\end{groupdesc}
Sometimes, you don't want the cathode to be drawn (but you do want the filament). Use the \verb|nocathode| option in the node description:
\begin{groupdesc}
\circuitdesc*{diodetube,filament,nocathode}{Tube Diode}{}(anode/90/0.2 )
\end{groupdesc}
If you want a full cathode to be drawn, use the \verb|fullcathode| option in the node description. You can then use the anchors \verb|cathode 1| and \verb|cathode 2|.
\begin{groupdesc}
\circuitdesc*{diodetube,fullcathode}{Tube Diode}{}(anode/90/0.2, cathode 1/-135/0.2, cathode 2/-45/0.2 )
\end{groupdesc}
\subsubsection{Tubes customization}
The tubes can be scaled using the key \texttt{tubes/scale}, default \texttt{1.0}. In addition, they are
fully configurable, and the attributes are described below:
\begin{tabular}{l | l | l}
Key & Default value & Description\\
\hline
\verb|tubes/scale| & \verb|1| & scale factor \\
\verb|tubes/width| & \verb|1| & relative width \\
\verb|tubes/height| & \verb|1.4| & relative height \\
\verb|tubes/tube radius| & \verb|0.40| & radius of tube circle \\
\verb|tubes/anode distance| & \verb|0.40| & distance from center \\
\verb|tubes/anode width| & \verb|0.40| & width of an anode/plate \\
\verb|tubes/grid protrusion| & \verb|0.25| & distance from center \\
\verb|tubes/grid dashes| & \verb|5| & number of grid dashes \\
\verb|tubes/grid separation| & \verb|0.2| & separation between grids \\
\verb|tubes/grid shift| & \verb|0.0| & y shift of grids from center \\
\verb|tubes/cathode distance| & \verb|0.40| & distance from grid \\
\verb|tubes/cathode width| & \verb|0.40| & width of a cathode \\
\verb|tubes/cathode corners| & \verb|0.06| & corners of the cathode wire \\
\verb|tubes/cathode right extend| & \verb|0.075| & extension at the right side \\
\verb|tubes/filament distance| & \verb|0.1| & distance from cathode \\
\verb|tubes/filament angle| & \verb|15| & angle from the centerpoint \\
\end{tabular}
Conventionally, the model of the tube is indicated at the \verb|east| anchor:
\begin{LTXexample}[varwidth]
\ctikzset{tubes/width=1.4}
\ctikzset{tubes/height=1}
\begin{circuitikz}
\draw (0,0) node[triode] (Tri) {};
\draw (Tri.east) node[right] {12AX7};
\end{circuitikz}
\end{LTXexample}
Example triode amplifier:
\begin{lstlisting}
\begin{circuitikz}
\draw (0,0) node (start) {}
to[sV=$V_i$] ++(0,2+\ctikzvalof{tubes/height})
to[C=$C_i$] ++(2,0) coordinate(Rg)
to[R=$R_g$] (Rg |- start)
(Rg) to[short,*-] ++(1,0)
node[triode,anchor=control] (Tri) {} ++(2,0)
(Tri.cathode) to[R=$R_c$,-*] (Tri.cathode |- start)
(Tri.anode) to [R=$R_a$] ++(0,2)
to [short] ++(3.5,0) node(Vatop) {}
to [V<=$V_a$] (Vatop |- start)
to [short] (start)
(Tri.anode) ++(0,0.2) to[C=$C_o$,*-o] ++(2,0)
(Tri.cathode) ++(0,-0.2) to[short,*-] ++(1.5,0) node(Cctop) {}
to[C=$C_c$,-*] (start -| Cctop)
;
\draw[red,thin,dashed] (Tri.north west) rectangle (Tri.south east);
\draw (Tri.east) node[right] {12AX7};
\end{circuitikz}
\end{lstlisting}
\begin{circuitikz}[scale=0.7, transform shape]
\draw (0,0) node (start) {}
to[sV=$V_i$] ++(0,2+\ctikzvalof{tubes/height})
to[C=$C_i$] ++(2,0) coordinate(Rg)
to[R=$R_g$] (Rg |- start)
(Rg) to[short,*-] ++(1,0)
node[triode,anchor=control] (Tri) {} ++(2,0)
(Tri.cathode) to[R=$R_c$,-*] (Tri.cathode |- start)
(Tri.anode) to [R=$R_a$] ++(0,2)
to [short] ++(3.5,0) node(Vatop) {}
to [V<=$V_a$] (Vatop |- start)
to [short] (start)
(Tri.anode) ++(0,0.2) to[C=$C_o$,*-o] ++(2,0)
(Tri.cathode) ++(0,-0.2) to[short,*-] ++(1.5,0) node(Cctop) {}
to[C=$C_c$,-*] (start -| Cctop)
;
\draw[red,thin,dashed] (Tri.north west) rectangle (Tri.south east);
\draw (Tri.east) node[right] {12AX7};
\end{circuitikz}
\subsubsection{Tubes anchors}
Apart from the geographic anchors, which take into account the leads of the components, you have several anchors on the border:
\begin{quote}
\geolrcoord{pentode, scale=0.8}
\geolrcoord{triode, circuitikz/tubes/width=1.4, circuitikz/tubes/height=1, scale=0.8}
\geolrcoord{triode, circuitikz/tubes/width=1, circuitikz/tubes/height=1, scale=0.8}
\showanchors{pentode, circuitikz/tubes/height=1.8}{}(%
tube top/90/0.3, tube left/180/0.2, tube right/0/0.2, tube bottom/-90/0.3,
tube top right/30/0.2, tube top left/150/0.4, tube bottom right/-45/0.4, tube bottom left/-150/0.2,
tube top center/75/0.5, tube bottom center/-105/0.5)
\showanchors{pentode,circuitikz/tubes/width=2.6, circuitikz/tubes/tube radius=0.3}{}(%
tube top/90/0.5, tube left/160/0.5, tube right/0/0.2, tube bottom/-90/0.6,
tube top right/70/0.4, tube top left/150/0.4, tube bottom right/-45/0.4, tube bottom left/-120/0.4,
tube right center/30/0.4, tube left center/-120/0.4)
\end{quote}
\subsubsection{Partially drawn tube borders}\label{sec:partial-tube-borders}
In some circuits, tubes are drawn with partial or dashed border (to convey the meaning of several active components encased in the same physical tube). To achieve this effect, you can use the \texttt{tubes/partial border}\footnote{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/602}{Jether Fernandes Reis}, implemented by Romano in \texttt{v1.5.2}.} key (default \texttt{none}). This key can be set to \texttt{none}, or must be a sequence of \textbf{exactly} 6 numbers, which can have value \texttt{0}, \texttt{1}, or \texttt{2}. Each number defines the style of a part of the border to be not drawn, solid or dashed respectively.
The part of the border are numbered from 1 to 6 as shown below:
\begin{quote}
\begin{circuitikz}[circuitikz/tubes/fill=cyan!20,
circuitikz/tubes/partial borders=121212]
\draw (0,0) node[pentode,anchor=control](V){};
\draw (4,0) node[pentode,anchor=control,
circuitikz/tubes/width=1.4,
circuitikz/tubes/height=1](H){};
\draw[red, font=\ttfamily\small\bfseries]
([shift={(-.2,-.2)}]V.ne) node{1}
([shift={(.1,0)}]V.e) node{2}
([shift={(-.2,.2)}]V.se) node{3}
([shift={(.2,.2)}]V.sw) node{4}
([shift={(-.1,0)}]V.w) node{5}
([shift={(.2,-.2)}]V.nw) node{6}
([shift={(.2,-.2)}]H.nw) node{1}
([shift={(0,.1)}]H.n) node{2}
([shift={(-.2,-.2)}]H.ne) node{3}
([shift={(-.2,.2)}]H.se) node{4}
([shift={(0,-.1)}]H.s) node{5}
([shift={(.2,.2)}]H.sw) node{6}
;
\end{circuitikz}
\end{quote}
(notice that the straight parts, if they exist, are numbered \texttt{2} and \texttt{5} in both tubes, vertical or horizontal).
The dashed line pattern can be changed by setting the key \texttt{tubes/partial border dash} (default \verb|{{2pt}{2pt}}|).\footnote{Follows the syntax of the pattern sequence \texttt{\textbackslash pgfsetdash} --- see \TikZ{} manual for details; phase is always zero. Basically you pass pairs of dash-length -- blank-length dimensions, see the examples.} Be careful with the extra set of braces here.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[circuitikz/tubes/fill=cyan!20,
circuitikz/tubes/partial borders=012012]
\draw (0,0) node[pentode]{};
\draw (2,0) node[pentode,
circuitikz/tubes/width=1.4,
circuitikz/tubes/height=1]{};
\draw (1,-2) node[triode,
circuitikz/tubes/height=1,
circuitikz/tubes/partial border dash=%
{{3pt}{1pt}{1pt}{1pt}}]{};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Multi-anode tube}
The multi-anode tube (\texttt{matube}) is a component thought to be tailored for several different usages,\footnote{It was added in \texttt{v1.6.8} after suggestions by user \texttt{bogger33} on GitHub \href{https://github.com/circuitikz/circuitikz/issues/781}{here} and \href{https://github.com/circuitikz/circuitikz/issues/785}{here}.} as shown in the examples below.
The anchors for the multiple anodes have also alias names to ease the use in the case of implementing nixie tubes, because in that case the anode/cathode roles are swapped.
\begin{groupdesc}
\circuitdesc*{matube}{Multi-anode tube}{}(anode 1/110/0.2, anode 2/60/0.2, anode 3/-30/0.2, cathode/-90/0.2, control/180/0.2 )
\circuitdesc*{matube, nixieanode, anodedot, nogrid}{Multi-anode tube used for nixie tubes}{}(nixie k1/110/0.2, nixie k2/60/0.2, nixie k3/-30/0.2, nixie a/-90/0.2)
\end{groupdesc}
Basically all the parameters available for triodes are available. The main difference is that the \texttt{anode width} parameter define the length of \emph{all} the anodes; those tubes are normally used with a \texttt{width} parameter bigger than \texttt{height}, to have an elongated device.
The additional parameters/flags available only for \texttt{matube}s are the following.
\begin{tabular}{l | l | l}
Key/Flag & Default value & Description\\
\hline
\texttt{anodes} & 3 & number of anodes \\
\texttt{anodedot} & false & substitute anodes bar for dots \\
\texttt{nixieanode} & false & substitute the cathode for the nixie-style anode \\
\texttt{nogrid} & false & suppresses the drawing of the grid \\
\end{tabular}
In the next example, we define a 10-anodes VFD tube:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\tikzset{vfd 10/.style={matube, filament, nocathode,
circuitikz/tubes/.cd,
width=3.6, height=1, anodes=10, anode width=0.6,
cathode width=0.1,
}}
\begin{circuitikz}[european]
\draw (0,0) node[vfd 10](A){};
\foreach \i in {1,...,10} \path (A.anode \i)
node[red, ocirc]{} node[above]{\tiny \i};
\end{circuitikz}
\end{LTXexample}
And a 10-cathodes nixie tube:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\tikzset{nixie/.style={matube, nogrid, nixieanode,
anodedot, circuitikz/tubes/.cd, cathode width=0.6,
width=3.6, height=1, anodes=10, anode width=0.6,
}}
\begin{circuitikz}[european]
\draw (0,0) node[nixie](A){};
\foreach \i in {1,...,10} \path (A.nixie k\i)
node[red, ocirc]{} node[above]{\tiny \i};
\path (A.nixie a) node[red, ocirc]{};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Other tubes-like components}
The \texttt{magnetron} and \texttt{dynode} shapes will also scale with \texttt{tubes/scale}.
\begin{groupdesc}
\circuitdesc*{magnetron}{Magnetron}{}( anode/-90/0.2, cathode1/135/0.2,
cathode2/45/0.2, left/180/0.2, right/0/0.2, top/90/0.4 )
\circuitdesc{dynode}{Dynode\footnotemark}{D}( top/90/0.1, bottom/180/0.3, left/180/0.3, right/0/0.3, center/0/0.3, arc/-30/0.4, top right/30/0.2, top left/150/0.2 )
\footnotetext{Suggested by the user \texttt{ferdymercury} on \href{https://github.com/circuitikz/circuitikz/issues/469}{GitHub}.}
\end{groupdesc}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,-2)node[rground](gnd){} to[voltage source,v<={HV}]++(0,3)--++(1,0)to[V,n=DC]++(2,0);
\draw (2,-1) node[magnetron,scale=1](magn){};
\draw (DC.left)++(-0.2,0)to [short,*-] ++(0,-1) to [short] (magn.cathode1);
\draw (DC.right)++(0.2,0)to [short,*-] ++(0,-1) to [short] (magn.cathode2);
\draw (magn.anode) to [short] (magn.anode|-gnd) node[rground]{};
\draw (magn.cathode1)node[above]{$1$};
\draw (magn.cathode2)node[above]{$2$};
\draw[->](magn.east) --++(1,0)node[right]{$RF_{out}$};
\end{circuitikz}
\end{LTXexample}
\paragraph{Dynode customization.}
The dynode element can be heavily customized. The parameters are the following (all of them under the \verb|\ctikzset| family \texttt{monopoles/dynode}):
\begin{center}
\begin{tabular}{>{\ttfamily}l>{\ttfamily}rp{0.75\linewidth}}
\toprule
parameter & default & description \\
\midrule
width & \ctikzvalof{monopoles/dynode/width} & Total width (relative to the base length) measured at the arc width.\\
height & \ctikzvalof{monopoles/dynode/height} & Total height (same units as width).\\
arc angle & \ctikzvalof{monopoles/dynode/arc angle} & Angle (from the horizontal, going down) where the arc starts. A value of \texttt{90} don't plot any arc, \texttt{0} plots a semicircle. To avoid artifacts, use a value between \texttt{-60} and \texttt{90}; the arc horizontal size is always equal to the \texttt{width}.\\
arc pos & \ctikzvalof{monopoles/dynode/arc pos} & Vertical position (relative to the height) of the arc center. \\
top width & \ctikzvalof{monopoles/dynode/top width} & Relative width of the top bar; a value of \texttt{1} means full width, \texttt{0} means no bar.\\
\bottomrule
\end{tabular}
\end{center}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american] \ctikzset{tubes/thickness=4}
\draw (0,0) to[R] (2,0) node[dynode]{} to[R,-*] (4,0);
\ctikzset{monopoles/dynode/.cd,
arc angle=0, arc pos=0.7, top width=0.5}
\draw (4,0) node[dynode]{};
\end{circuitikz}
\end{LTXexample}
You can use styles and the parameters to create different types of electrodes:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american] \ctikzset{tubes/thickness=4}
\tikzset{anode/.style={dynode,
circuitikz/monopoles/dynode/arc angle=90},
photocatode/.style={dynode,
circuitikz/monopoles/dynode/arc pos=1,
circuitikz/monopoles/dynode/top width=0},
}
\draw (0,0) node[dynode]{} (1,0) node[anode]{}
(2,0) node[photocatode]{};
\end{circuitikz}
\end{LTXexample}
\subsection{RF components}\label{sec:RF}
For the RF components, similarly to the grounds and supply rails, the \texttt{center} anchor is put on the connecting point of the symbol, so that you can use them directly in a \texttt{path} specification.
Notes that in the transmission and receiving antennas, the ``waves'' are outside the geographical anchors.
\begin{groupdesc}
\circuitdesc*{bareantenna}{Bare Antenna}{A}( top/90/0.1, bottom/180/0.3, left/180/0.3, right/45/0.3, center/0/0.3 )
\circuitdesc*{dinantenna}{DIN antenna\footnotemark}{A}(left/135/0.6, right/45/0.6, center/-45/0.6)
\footnotetext{Since 1.5.0, suggested by \href{https://github.com/circuitikz/circuitikz/issues/621}{GitHUb user myzinsky}}
\circuitdesc*{bareTXantenna}{Bare TX Antenna}{Tx}( top/90/0.1, center/180/0.3, waves/90/0.3 )
\circuitdesc*{bareRXantenna}{Bare RX Antenna}{Rx}( top/90/0.1, center/0/0.3, waves/90/0.3 )
\circuitdesc{waves}{Waves}{}( north/90/0.4, north east/45/0.4, east/-45/0.4, south east/-45/0.4,
south/-90/0.4, south west/-135/0.4, west/180/0.4, north west/135/0.4,
left/135/0.2, top/45/0.2, right/45/0.2, bottom/-45/0.2 )
\circuitdescbip*{mstline}{Microstrip transmission line\footnotemark}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\circuitdesc*{mslstub}{Microstrip linear stub}{text}(left/135/0.2, right/45/0.2, center/-45/0.3)
\circuitdesc*{msport}{Microstrip port}{T}(left/135/0.2, right/45/0.2, center/-45/0.3)
\circuitdesc*{msrstub}{Microstrip radial stub}{}(left/135/0.2, right/45/0.2, center/-45/0.3)
\footnotetext{These four components were suggested by \texttt{@tcpluess} on GitHub}
\circuitdesc{antenna}{Legacy antenna (with tails)}{}( center/0/0.3 )
\circuitdesc{rxantenna}{Legacy receiving antenna (with tails)}{}
\circuitdesc{txantenna}{Legacy transmitting antenna (with tails)}{}
\circuitdesc*{tlinestub}{Transmission line stub}{}
\circuitdescbip*[tline]{TL}{Transmission line}{transmission line, tline}(left/135/0.3, right/45/0.3, top left/90/0.2, top right/90/0.4, bottom left/-90/0.4, bottom right/-70/0.3, center right/-30/0.2, center left/-160/0.2)
\circuitdescbip[tline]{TL, bipoles/tline/bare=true}{Transmission line without wires (notice that if you fill it, the fill will overwrite the exiting wire)}{transmission line, tline}(left/90/0.3, right/90/0.3)
\circuitdesc{match}{match}{}
\end{groupdesc}
\subsubsection{RF elements customization}
The RF elements can be scaled using the key \texttt{RF/scale}, default \texttt{1.0}.
\subsubsection{Microstrip customization}
The microstrip linear components' (\texttt{mstline}, \texttt{mslstub}, \texttt{msport}) heights can be changed by setting the parameter \texttt{bipoles/mstline/height} (for the three of them, default 0.3). The widths are specified in \texttt{bipoles/mstline/width} for the first two and by \texttt{monopoles/msport/width} for the port (defaults: 1.2, 0.5).
For the length parameter of the transmission line there is a shortcut in the form of the direct parameter \texttt{mstlinelen}.
\begin{LTXexample}[varwidth=true, pos=t]
\begin{circuitikz}
\draw (0,0) node[msport, right, xscale=-1]{}
to[mstline, -o] ++(3,0) coordinate(there)
to[mstline, mstlinelen=2, l=longer, o-*] ++(4,0)
coordinate(here) -- ++(0.5,0) node[mslstub, fill=yellow]{stub}
(here) -- ++(0,0.5) node[mslstub, rotate=90, mstlinelen=0.5]{short};
\draw (there) to[short, o-] ++(0, 0.5) node[msrstub]{};
\draw (here) -- ++(0, -0.5) node[msrstub, yscale=-1]{};
\end{circuitikz}
\end{LTXexample}
The legacy \texttt{tline} can be used as in the following example. You can change the length with the key \texttt{bipoles/tline/width} (default \texttt{0.6}). The ``bare'' version, which differs only for the small line on the visible ellipse, and activated with the boolean key \texttt{\dots/bare}, is useful as a substitute for \texttt{tlinestub} (with more flexibility).
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[]
\tikzset{bare tl/.style={tlineshape,
circuitikz/bipoles/tline/bare=true}}
\draw (0,0) node[bare tl](A){} (A.right)
to[TL, bipoles/tline/width=1] ++(3,0)
node[bare tl, anchor=left]{};
\end{tikzpicture}
\end{LTXexample}
\subsection{Electro-Mechanical Devices}
The internal part of the motor and generator are, by default, filled with white (to avoid compatibility problems with older versions of the package).
\begin{groupdesc}
\circuitdesc*{elmech}{Motor}{M}(bottom/-90/0.2, left/180/0.2, right/0/0.2, top/90/0.4, 45/45/0.2)
\circuitdesc*{elmech}{Generator}{G}(block down right/0/0.2, block north east/0/0.2)
\end{groupdesc}
\subsubsection{Electro-Mechanical Devices anchors}
Apart from the standard geographical anchors, \texttt{elmech} has the border anchors (situated on the inner circle) and the following anchors on the ``block'':
\begin{quote}
\begin{circuitikz}
\def\coordx(#1)[#2:#3]#4{node[circle, #4, draw, inner sep=1pt,pin={[#4, inner sep=0.5pt, font=\scriptsize, pin distance=#2cm, pin edge={#4, }]#3:#1}](#1){}}
\node [elmech](T) at(0,0) {A};
\foreach \a/\d/\t in {block north east/0.2/45, block south east/0.2/-45,
block south west/0.2/-135, block north west/0.1/135, 150/0.1/150,
180/0.1/180, 210/0.1/210, 60/0.4/-15, -60/0.4/15}
\path (T.\a) \coordx(\a)[\d:\t]{red};
\node [elmech](T) at(6,0) {B};
\foreach \a/\d/\t in {block up right/0.2/45, block down right/0.2/-45,
block down left/0.2/-135, block up left/0.1/135, north/0.3/90,
south/0.3/-90, east/0.3/0, west/0.3/180}
\path (T.\a) \coordx(\a)[\d:\t]{red};
\end{circuitikz}
\end{quote}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (2,0) node[elmech](motor){M};
\draw (motor.north) |-(0,2) to [R] ++(0,-2) to[dcvsource]++(0,-2) -| (motor.bottom);
\draw[thick,->>](motor.right)--++(1,0)node[midway,above]{$\omega$};
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (2,0) node[elmech](motor){};
\draw (motor.north) |-(0,2) to [R] ++(0,-2) to[dcvsource]++(0,-2) -| (motor.bottom);
\draw[thick,->>](motor.center)--++(1.5,0)node[midway,above]{$\omega$};
\end{circuitikz}
\end{LTXexample}
The symbols can also be used along a path, using the transistor-path-syntax(\texttt{T} in front of the shape name, see section \ref{sec:transasbip}). Don't forget to use parameter $n$ to name the node and get access to the anchors:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to [Telmech=M,n=motor] ++(0,-3) to [Telmech=M] ++(3,0) to [Telmech=G,n=generator] ++(0,3) to [R] (0,0);
\draw[thick,->>](motor.left)--(generator.left)node[midway,above]{$\omega$};
\end{circuitikz}
\end{LTXexample}
\subsection{Double bipoles (transformers)}\label{sec:transformers}
Transformers automatically use the inductor shape currently selected. These are the three possibilities:
\begin{groupdesc}
\ctikzset{inductor=cute}
\circuitdesc{transformer}{Transformer (cute inductor)}{$T_1$}( A1/180/0.1,
A2/180/0.1, B1/0/0.1, B2/0/0.1, north/45/0.4,
inner dot A1/-135/0.2, inner dot A2/135/0.2, inner dot B1/-45/0.1,
inner dot B2/45/0.1 )
\ctikzset{inductor=american}
\circuitdesc{transformer}{Transformer (american inductor)}{}( %
outer dot A1/180/0.2, outer dot A2/180/0.2,
outer dot B1/0/0.2, outer dot B2/0/0.2 )
\ctikzset{inductor=european}
\circuitdesc{transformer}{Transformer (european inductor)}{}
\circuitdesc*{gyrator}{Gyrator}{}
\end{groupdesc}
Transformers with core are also available:
\begin{groupdesc}
\ctikzset{inductor=cute}
\circuitdesc{transformer core}{Transformer core (cute inductor)}{}
\ctikzset{inductor=american}
\circuitdesc{transformer core}{Transformer core (american inductor)}{}
\ctikzset{inductor=european}
\circuitdesc{transformer core}{Transformer core (european inductor)}{}
\ctikzset{inductor=cute} % reset default
\end{groupdesc}
You can also build generic double bipoles\footnote{The idea of generic double bipoles was originated by user \href{https://github.com/circuitikz/circuitikz/issues/641}{erwindenboer on GitHub}.} (although it's often better to use subcircuits in this case; see section~\ref{sec:subcircuits}).
\begin{groupdesc}
\circuitdesc{double bipole}{Generic double bipole (configurable components)}{$A_v$}(north/45/0.4, center/-90/0.6, east/45/0.2)[L.south/180/0.2, R.west/-45/0.2]
\ctikzset{double bipole L=fulllediodeshape, double bipole R=emptydiodeshape, double bipole R invert, diodes/scale=0.6}
\circuitdesc{double bipole}{Generic double bipole (this specific configuration is shown in section~\ref{sec:doublebipoles})}{$A_v$}(north/45/0.4, center/-90/0.6, east/45/0.2)[L.south/180/0.2, R.west/-45/0.2]
\end{groupdesc}
\subsubsection{Transformer anchors}
All the double bipoles/quadrupoles have the four anchors, two for each port.
The first port, to the left, is port \texttt{A}, having the anchors \texttt{A1} (up) and \texttt{A2} (down); same for port \texttt{B}.
They also expose the \texttt{base} anchor, for labeling, and anchors for setting dots or signs to specify polarity.
The set of anchors, to which the standard ``geographical'' \texttt{north}, \texttt{north east}, etc. is here:
\medskip
\begin{quote}
\begin{circuitikz}[cute inductors,
]
\def\coordx(#1)[#2:#3]#4{node[circle, #4, draw, inner sep=1pt,pin={[#4, overlay, inner sep=0.5pt, font=\scriptsize, pin distance=#2cm, pin edge={#4, overlay,}]#3:#1}](#1){}}
\foreach \comp/\pos/\case in {%
transformer/0/0%
,transformer core/4/1%
,gyrator/8/2%
}{
\draw (\pos, 0) node[\comp](T){};
\ifcase\case
\foreach \a/\d/\t in {inner dot A1/0.2/75, inner dot A2/0.2/-75, inner dot B1/0.1/-45, inner dot B2/0.1/45}
\path (T.\a) \coordx(\a)[\d:\t]{red};
\or
\foreach \a/\d/\t in {outer dot A1/0.2/75, outer dot A2/0.2/-75, outer dot B1/0.2/-45, outer dot B2/0.2/45}
\path (T.\a) \coordx(\a)[\d:\t]{blue};
\or
\foreach \a/\t in {A1/120, A2/-120, B1/120, B2/-120, base/-90}
\path (T.\a) \coordx(\a)[0.2:\t]{green!50!black};
\fi
}
\end{circuitikz}
\end{quote}
\medskip
Also, the standard ``geographical'' \texttt{north}, \texttt{north east}, etc. are defined.
A couple of examples follow:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[transformer] (T) {}
(T.A1) node[anchor=east] {A1}
(T.A2) node[anchor=east] {A2}
(T.B1) node[anchor=west] {B1}
(T.B2) node[anchor=west] {B2}
(T.base) node{K}
(T.inner dot A1) node[circ]{}
(T.inner dot B2) node[circ]{}
;\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[gyrator] (G) {}
(G.A1) node[anchor=east] {A1}
(G.A2) node[anchor=east] {A2}
(G.B1) node[anchor=west] {B1}
(G.B2) node[anchor=west] {B2}
(G.base) node{K}
;\end{circuitikz}
\end{LTXexample}
Moreover, you can access the two internal coils (inductances); if your transformer node is called \texttt{T}, they are named \texttt{T-L1} and \texttt{T-L2}. Notice that the two inductors are rotated (by -90 degrees the first, +90 degrees the second) so you have to be careful with the anchors. Also, the \texttt{midtap} anchor of the inductors can be on the external or internal side depending on the numbers of coils. Finally, the anchors \texttt{L1.a} and \texttt{L1.b} are marking the start and end of the coils.
\begin{quote}
\begin{circuitikz}[american inductors,
]
\def\coordx(#1)[#2:#3]#4{node[circle, #4, draw, inner sep=1pt,pin={[#4, overlay, inner sep=0.5pt, font=\scriptsize, pin distance=#2cm, pin edge={#4, overlay,}]#3:#1}](){}}
\draw (-2,0) (0, 0) node[transformer](T){};
\foreach \a/\d/\t in {L1.midtap/0.2/180, L1.south west/0.2/180, L1.south east/0.2/180,
L2.south/0.2/0, L2.south west/0.2/0, L2.south east/0.2/0}
\path (T-\a) \coordx(T-\a)[\d:\t]{red};
\ctikzset{cute inductors}
\draw (4, 0) node[transformer](T){};
\foreach \a/\d/\t in {L1.a/0.2/-120, L1.b/0.2/120,
L2.midtap/0.5/0, L2.south west/0.2/0, L2.south east/0.2/0}
\path (T-\a) \coordx(T-\a)[\d:\t]{blue};
\node[font=\small\ttfamily,above] at (T.north) {inductors/coils=5};
\draw (8, 0) node[transformer, circuitikz/inductors/coils=6](T){};
\foreach \a/\d/\t in {L2.a/0.2/120, L2.b/0.2/-120,
L2.midtap/0.2/0, L2.south west/0.2/0, L2.south east/0.2/0}
\path (T-\a) \coordx(T-\a)[\d:\t]{red};
\node[font=\small\ttfamily,above] at (T.north) {inductors/coils=6};
\end{circuitikz}
\end{quote}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[ground](GND){} to [sV] ++(0,2) -- ++(1,0)
node[transformer, circuitikz/inductors/coils=6,
anchor=A1](T){};
\draw (T.A2) to[short, -*] (T.A2-|GND);
\draw (T-L2.midtap) to[short, *-o] (T.B1 |- T-L2.midtap);
\node [ocirc] at (T.B1){}; \node [ocirc] at (T.B2){};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Transformers customization}
Transformers are in the \texttt{inductors} class (also the gyrator\dots), so they scale with the key \texttt{inductors/scale}.
You can change the aspect of a quadpole using the corresponding parameters \texttt{quadpoles/*/width} and \texttt{quadpoles/*/heigth} (substitute the star for \texttt{transformer}, \texttt{transformer core} or \texttt{gyrator}; default value is \texttt{1.5} for all). You have to be careful to not choose value that overlaps the components!
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{quadpoles/transformer/width=1,
quadpoles/transformer/height=2}
\draw (0,0) node[transformer] (T) {}
(T.base) node{K}
(T.inner dot A1) node[circ]{}
(T.inner dot B2) node[circ]{};
\end{circuitikz}
\end{LTXexample}
Transformers also inherit the \texttt{inductors/scale} (see~\ref{sec:tweak-l}) and similar parameters. It's your responsibility to set the aforementioned parameters if you change the scale or width of inductors.
Transformers core line distance is specified by the parameter \texttt{quadpoles/transformer core/core width} (default \texttt{0.05}) and the thickness of the lines follows the choke one; in other words, you can set it changing \texttt{bipoles/cutechoke/cthick}.
You can change the style of the core lines\footnote{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/702}{user myzinsky on GitHub}, implemented in \texttt{v1.6.2}.} in a similar way to the one used for transistor's bodydiodes, by setting keys with the \verb!\ctikzset! command under the \texttt{transformer core} hierarchy. The available keys are:
\begin{center}
\begin{tabular}{>{\ttfamily}l>{\ttfamily}lp{0.5\linewidth}}
\toprule
parameter & default & description \\
\midrule
relative thickness & 1.0 & multiply the default thickness (which is the same of the \texttt{choke} component).\\
color & default & stroke color: \texttt{default} is the same as the component. \\
dash & default & dash pattern: \texttt{default} means not to change the setting for the component; \texttt{none} means unbroken line; every other input is a dash pattern.\footnotemark \\
\bottomrule
\end{tabular}
\footnotetext{Follows the syntax of the pattern sequence \texttt{\textbackslash pgfsetdash} --- see \TikZ{} manual for details; phase is always zero. Basically you pass pairs of dash-length -- blank-length dimensions, see the examples.}
\end{center}
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[]
\draw (0,0) node[transformer core](A){};
\ctikzset{transformer core/.cd, relative thickness=2, color=red, dash={{4pt}{2pt}}}
\draw (2,0) node[transformer core](B){};
\end{circuitikz}
\end{LTXexample}
Another very useful parameter is \texttt{quadpoles/*/inner} (default \texttt{0.4}) that determine which part of the component is the ``vertical'' one. So, setting that parameter to 1 will eliminate the horizontal part of the component (obviously, to maintain the general aspect ratio you need to change the width also):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[transformer] (T) {}
(T.A1) node[anchor=east] {A1}
(T.A2) node[anchor=east] {A2}
(T.B1) node[anchor=west] {B1}
(T.B2) node[anchor=west] {B2}
(T.base) node{K} ;
\ctikzset{quadpoles/transformer/inner=1, quadpoles/transformer/width=0.6}
\draw (0,-3) node[transformer] (P) {}
(P.base) node{T}
(P.inner dot A2) node[ocirc]{}
(P.inner dot B2) node[ocirc]{};
\end{circuitikz}
\end{LTXexample}
This can be useful if you want to put seamlessly something in series with either side of the component; for simplicity, you have a style setting \texttt{quadpoles style} to toggle between the standard shape of double bipoles (called \texttt{inward}, default) and the one without horizontal leads (called \texttt{inline}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{inductor=cute, quadpoles style=inline}
\draw
(0,0) to[R] ++(0,-2)
node[transformer, anchor=A1](T){}
(T.A2) node[ground](GND){}
(T.inner dot A1) node[font=\small\boldmath]{$\oplus$}
(T.inner dot B2) node[]{$+$}
(T.B1) node[above, ocirc]{}
(T.B2) -- (GND);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Styling transformer's coils independently}
Since \texttt{0.9.6}, you can tweak the style of each of the coils of the transformers by
changing the value of the two styles \texttt{transformer L1} and \texttt{transformer L2};
the default for both are \texttt{\{\}}, that means inherit the inductors style in force.
\begin{LTXexample}[pos=t]
\begin{circuitikz}[american]
\begin{scope}
\ctikzset{transformer L1/.style={inductors/coils=1, inductors/width=0.2}}
\draw (0,0) node[transformer core](T1){};
\end{scope}
\draw (3,0) node[transformer](T2){};
\ctikzset{cute inductors, quadpoles style=inline}
\ctikzset{transformer L1/.style={inductors/coils=2, inductors/width=0.2}}
\draw (6,0) node[transformer core](T3){};
\ctikzset{transformer L1/.style={american inductors, inductors/coils=1, inductors/width=0.2}}
\ctikzset{transformer L2/.style={inductors/coils=7, inductors/width=1.0}}
\draw (9,0) node[transformer ](T4){};
\foreach \t in {T1, T2, T3, T4} {
\foreach \l in {L1, L2} {
\foreach \a/\c in {a/blue, b/red}
\node [circle, fill=\c, inner sep=1pt] at (\t-\l.\a) {};
}
}
\end{circuitikz}
\end{LTXexample}
\textbf{Caveat:} the size of the transformer is independent from the styles for \texttt{L1} and \texttt{L2}, so they follow whatever the parameters for the inductances were before applying them. In other words, the size of the transformer could result too small if you are not careful.
\begin{LTXexample}[varwidth]
\begin{circuitikz}
\ctikzset{transformer L1/.style={inductors/width=1.8, inductors/coils=13}}
% too small!
\draw (0,0) node[transformer core](T1){};
% adjust it
\ctikzset{quadpoles/transformer core/height=2.4}
\draw (2.5,0) node[transformer core](T1){};
\end{circuitikz}
\end{LTXexample}
You can obviously define a style for a ``non-standard'' transformer. For example, you can have a current transformer\footnote{Suggested by Alex Pacini on \href{https://github.com/circuitikz/circuitikz/issues/297}{GitHub}} defined like this:
\begin{LTXexample}[varwidth]
\begin{circuitikz}[
TA core/.style={transformer core,
% at tikz level, you have to use circuitikz/ explicitly
circuitikz/quadpoles style=inline,
circuitikz/transformer L1/.style={
american inductors, inductors/coils=1,
inductors/width=0.3},
} ]
\draw (0,0) node[TA core](T1){};
% changes are local
\draw (0,-3) node[transformer]{};
\end{circuitikz}
\end{LTXexample}
Remember that the default \texttt{pgfkeys} directory is \texttt{/tikz} for nodes and for the options of the environment, so you \emph{have} to use the full path (with \texttt{circuitikz/}) there.
\subsubsection{Generic double bipoles}\label{sec:doublebipoles}
Generic double bipoles have more or less the same keys for size that the transformers (like \texttt{../width}, \texttt{.../inner} etc.) using the component name \texttt{double bipole}. Also the anchors are similar, with the main difference that the ``dot'' anchors are fixed, so they do \emph{not} adapt to the size of the component.
Another important difference is that the class of the generic double bipole is \texttt{misc}, not \texttt{inductors} (which is reserved to transformers and, for an historical hiccup, to the gyrator).
By default, the left component is a generic impedance, and the right one is an (American-style, it will not change automatically) voltage generator. You can use \texttt{quadpoles style=inner} as shown in the rightmost drawing below.
\geocoord{double bipole} {\ctikzset{quadpoles style=inline}\geocoord{double bipole}}
The other anchors behave similarly to the transistor's ones; you also have access to the internal components nodes by using \texttt{\emph{nodename}-R} and \texttt{\emph{nodename}-L} names for the right and left element, which is supposed to be \texttt{T} in the drawing below. Be wary that given that here you can (see later) reverse the direction of one or both of the elements, the rotation (and so the anchors) is not fixed (you can see that in the blue and green examples below).
\begin{quote}
\begin{circuitikz}[cute inductors,
]
\def\coordx(#1)[#2:#3]#4{node[circle, #4, draw, inner sep=1pt,pin={[#4, overlay, inner sep=0.5pt, font=\scriptsize, pin distance=#2cm, pin edge={#4, overlay,}]#3:#1}](#1){}}
\tikzset{ddpinv/.style={double bipole, circuitikz/double bipole R invert}}
\foreach \comp/\pos/\case in {%
double bipole/0/0%
,double bipole/4/1%
,ddpinv/8/2%
}{
\draw (\pos, 0) node[\comp](T){};
\ifcase\case
\foreach \a/\d/\t in {inner dot A1/0.2/75, inner dot A2/0.2/-75, inner dot B1/0.1/-45, inner dot B2/0.1/45}
\path (T.\a) \coordx(\a)[\d:\t]{red};
\path (T-L.south) \coordx(T-L.south)[0.6:180]{red};
\or
\foreach \a/\d/\t in {outer dot A1/0.4/90, outer dot A2/0.4/-90, outer dot B1/0.2/45, outer dot B2/0.2/-45}
\path (T.\a) \coordx(\a)[\d:\t]{blue};
\path (T-R.a) \coordx(T-R.a)[0.6:0]{blue};
\path (T-R.b) \coordx(T-R.b)[0.6:0]{blue};
\path (T-R.south) \coordx(T-R.south)[0.6:0]{blue};
\or
\foreach \a/\t in {A1/120, A2/-120, B1/120, B2/-120, base/-90}
\path (T.\a) \coordx(\a)[0.2:\t]{green!50!black};
\path (T-R.a) \coordx(T-R.a)[0.6:0]{green!50!black};
\path (T-R.b) \coordx(T-R.b)[0.6:0]{green!50!black};
\path (T-R.north) \coordx(T-R.north)[0.6:0]{green!50!black};
\fi
}
\end{circuitikz}
\end{quote}
Generic double bipoles are meant to be used through a style, choosing the left and right components. The keys that let you change the components are the following ones:
\begin{itemize}
\item \texttt{double bipole L}, \texttt{double bipole R}: the \textbf{nodename} of the component you want on the left and right side (default: \texttt{genericshape} and \texttt{vsourceAMshape}).
\item \texttt{double bipole L invert}, \texttt{double bipole R invert}: controls the direction of the element inserted (default \texttt{false} for both; that means that the left bipole goes ``down'' and the second one ``up'').
\item \texttt{every double bipole L}, \texttt{every double bipole R}: a style that is enacted when drawing the component; by default it's void.
\end{itemize}
For example, the LED-diode double bipole at the start of the section could be obtained this way:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
led to D/.style={double bipole,
% at tikz level, you have to use circuitikz/ explicitly
circuitikz/double bipole L=fulllediodeshape,
circuitikz/double bipole R=emptydiodeshape,
circuitikz/every double bipole L/.style={diodes/scale=0.6},
circuitikz/every double bipole R/.style={diodes/scale=0.6},
circuitikz/double bipole R invert,
},
]
\draw (0,0) node[led to D]{};
\end{circuitikz}
\end{LTXexample}
As a final example, and given that the addition of generic double bipole was stimulated by an issue opened by \href{https://github.com/circuitikz/circuitikz/issues/641}{user erwindenboer on GitHub} suggesting the addition of a nullor shape, the nullor can be obtained like this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
nullor/.style={double bipole,
% at tikz level, you have to use circuitikz/ explicitly
circuitikz/double bipole L=nullatorshape,
circuitikz/double bipole R=noratorshape,
circuitikz/every double bipole L/.style={sources/scale=0.5},
},
]
\draw (0,0) node[nullor](T1){};
\end{circuitikz}
\end{LTXexample}
although now adding currents and voltages is not as trivial as if the component is built with a subcircuit\dots
\subsection{Amplifiers}\label{sec:amplifiers}
\begin{groupdesc}
\circuitdesc*{op amp}{Operational amplifier}{}( +/180/0.2, -/180/0.2, out/0/0.2, up/90/0.2, down/-90/0.2 )
\circuitdesc*{en amp}{Operational amplifier compliant to DIN/EN 60617 standard}{}
\circuitdesc*{fd op amp}{Fully differential operational amplifier\footnotemark}{}( out +/0/0.2, out -/0/0.2 )
\footnotetext{Contributed by Kristofer M. Monisit.}
\circuitdesc*{gm amp}{transconductance amplifier}{}
\circuitdesc*{inst amp}{plain instrumentation amplifier}{}( up/90/0.2, down/-90/0.2, refv up/45/0.2, refv down/-45/0.2 )
\circuitdesc*{fd inst amp}{Fully differential instrumentation amplifier}{}
\circuitdesc*{inst amp ra}{instrumentation amplifier with amplification resistance terminals}{}( ra+/180/0.1, ra-/180/0.1 )
\circuitdesc*{plain amp}{Plain amplifier, unmarked, two inputs}{A$_1$}(in up/180/0.1, in down/180/0.1, up/90/0.2, out/-90/0.2, bin up/145/0.2, bin down/-145/0.2, bout/90/0.3)
\circuitdesc*{plain mono amp}{Plain amplifier, one input}{}(in/180/0.2, out/0/0.2, up/90/0.2, center/-30/0.6, bin/145/0.1, bout/45/0.3)
\circuitdesc*{buffer}{Buffer}{}(in/180/0.2, out/0/0.2, center/-30/0.6, bin/145/0.1, bout/45/0.3)
\end{groupdesc}
\subsubsection{Amplifiers anchors}\label{sec:amplifiers-anchors}
The op amp defines the inverting input (\texttt{-}), the non-inverting input (\texttt{+}) and the output (\texttt{out}) anchors:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[op amp] (opamp) {}
(opamp.+) node[left] {$v_+$}
(opamp.-) node[left] {$v_-$}
(opamp.out) node[right] {$v_o$}
(opamp.up) --++(0,0.5) node[vcc]{5\,\textnormal{V}}
(opamp.down) --++(0,-0.5) node[vee]{-5\,\textnormal{V}}
;\end{circuitikz}
\end{LTXexample}
There are also two more anchors defined, \texttt{up} and \texttt{down}, for the power supplies:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[op amp] (opamp) {}
(opamp.+) node[left] {$v_+$}
(opamp.-) node[left] {$v_-$}
(opamp.out) node[right] {$v_o$}
(opamp.down) node[ground] {}
(opamp.up) ++ (0,.5) node[above] {\SI{12}{\volt}}
-- (opamp.up)
;\end{circuitikz}
\end{LTXexample}
The fully differential op amp defines two outputs:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[fd op amp] (opamp) {}
(opamp.+) node[left] {$v_+$}
(opamp.-) node[left] {$v_-$}
(opamp.out +) node[right] {out +}
(opamp.out -) node[right] {out -}
(opamp.down) node[ground] {}
;\end{circuitikz}
\end{LTXexample}
The instrumentation amplifier inst amp defines also references (normally you use the \texttt{down}, unless you are flipping the component):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[inst amp] (opamp) {}
(opamp.+) node[left] {$v_+$}
(opamp.-) node[left] {$v_-$}
(opamp.out) node[right] {out}
(opamp.up) node[vcc]{}
(opamp.down) node[vee] {}
(opamp.refv down) node[ground]{}
(opamp.refv up) to[short, -o] ++(0,0.3)
;\end{circuitikz}
\end{LTXexample}
The fully differential instrumentation amplifier inst amp defines two outputs:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[fd inst amp] (opamp) {}
(opamp.+) node[left] {$v_+$}
(opamp.-) node[left] {$v_-$}
(opamp.out +) node[right] {out +}
(opamp.out -) node[right] {out -}
(opamp.up) node[vcc]{}
(opamp.down) node[vee] {}
(opamp.refv down) node[ground]{}
(opamp.refv up) to[short, -o] ++(0,0.3)
;\end{circuitikz}
\end{LTXexample}
The instrumentation amplifier with resistance terminals (\texttt{inst amp ra}) also defines terminals to add an amplification resistor:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[inst amp ra] (opamp) {}
(opamp.+) node[left] {$v_+$}
(opamp.-) node[left] {$v_-$}
(opamp.out) node[right] {out}
(opamp.up) node[vcc]{}
(opamp.down) node[vee] {}
(opamp.refv down) node[ground]{}
(opamp.refv up) to[short, -o] ++(0,0.3)
(opamp.ra-) to[R] (opamp.ra+)
;\end{circuitikz}
\end{LTXexample}
Amplifiers also have ``border'' anchors (just add \texttt{b}, without space, to the anchor, like \texttt{b+} or \texttt{bin up} and so on). These can be useful to add ``internal components'' or to modify the component. Also the \texttt{leftedge} anchor (on the border midway between input) is available.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,2.2) node[op amp](OA){IA1};
\node[oosourceshape, rotate=90, scale=0.5]
at (OA.leftedge) {};
\draw (0,0) node[plain amp](A){$A$};
\draw [color=red] (A.bin up) -- ++(0.2,0)
coordinate (tmp)
to[R, resistors/scale=0.5]
(tmp|-A.bin down) -- (A.bin down);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Amplifiers customization}\label{sec:amplifiers-customization}
You can scale the amplifiers using the key \texttt{amplifiers/scale} and setting it to something different from \texttt{1.0}. The font used for symbols will not scale, so it's your responsibility to change it if the need arises.
\paragraph{Input polarity.}
All these amplifiers have the possibility to flip input and output (if needed) polarity. You can change polarity of the input with the
\texttt{noinv input down} (default) or \texttt{noinv input up} key; and the output with \texttt{noinv output up} (default) or \texttt{noinv output down} key:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[fd inst amp,
noinv input up,
noinv output down] (opamp) {}
(opamp.+) node[left] {$v_+$}
(opamp.-) node[left] {$v_-$}
(opamp.out +) node[right] {out +}
(opamp.out -) node[right] {out -}
(opamp.up) node[vcc]{}
(opamp.down) node[vee] {}
(opamp.refv down) node[ground]{}
(opamp.refv up) to[short, -o] ++(0,0.3)
;\end{circuitikz}
\end{LTXexample}
When you use the \texttt{noinv input/output ...} keys the anchors (\texttt{+}, \texttt{-}, \texttt{out +}, \texttt{out -}) will change with the effective position of the terminals. You also have the anchors \texttt{in up}, \texttt{in down}, \texttt{out up}, \texttt{out down} that will not change with the positive or negative sign.
\paragraph{Input and output pins symbols.}
You can change the symbols ``$+$'' or ``$-$'' appearing in the amplifiers if you want, both globally and on component-by-component basis. The plus and minus symbols can be changed with \verb|\ctikzset| of the keys \texttt{amplifiers/plus} and \texttt{amplifiers/minus} (which defaults to the math mode plus or minus cited before), or using the styles \texttt{amp plus} and \texttt{amp minus}.
The font used is set in several keys, but you can change it globally with \texttt{\textbackslash tikzset\{amp symbol font\}}, which has a default of 10-point (in \LaTeX, and the corresponding one in \ConTeXt). You can change it for example with
\begin{lstlisting}
\tikzset{amp symbol font={%
\color{blue}\fontsize{12}{12}\selectfont\boldmath}}
\end{lstlisting}
to have plus and minus symbols that are bigger and blue.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
% change in this circuit only
\tikzset{amp symbol font={\color{blue}\small\boldmath}}
% local change
\draw (0,2.2) node[op amp, amp plus=$\oplus$]{};
\draw (0,0) node[op amp]{};
% from now on...
\ctikzset{amplifiers/plus={$\oplus$}}
\ctikzset{amplifiers/minus={$\ominus$}}
\draw (0,-2.2) node[fd op amp]{};
\end{circuitikz}
\end{LTXexample}
If you want different symbols for input and output you can use a null symbol and put them manually using the border anchors.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\ctikzset{amplifiers/plus={}}
\ctikzset{amplifiers/minus={}}
\draw (0,0) node[fd op amp](A){};
\node [font=\small\bfseries, right] at(A.bin up) {1};
\node [font=\small\bfseries, right] at(A.bin down) {2};
\node [font=\small\bfseries, below] at(A.bout up) {3};
\node [font=\small\bfseries, above] at(A.bout down) {4};
\end{circuitikz}
\end{LTXexample}
\paragraph{Input and output pins length.} The length of the wires that extends outside the main amplifier shape is not easily changed globally. You can use a trick\footnote{See the discussion with \href{https://github.com/circuitikz/circuitikz/issues/645}{user @erwindenboer on GitHub};notice that this method is using internal keys and can stop working in the future.} though if you want to remove them completely:
the size of an amplifier (included the pins) is set by the \texttt{circuitikz} key \texttt{tripoles/\emph{amplifier style}/width} and the size of the body of the amplifier, relative to it, is set by the key\texttt{tripoles/\emph{amplifier style}/port width}.
Making the latter equal to one will set the length of the pin to zero; if you want to maintain the same aspect ratio of the shape you need to compensate with the width.
For example, for the normal operational amplifier the key \texttt{tripoles/op amp/width} defaults to 1.7 and \texttt{tripoles/op amp/port width} is 0.7 (you need to peek that values in the source file \texttt{pgfcirctripoles.tex}). So you can do this:
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[]
\draw (0,0) node[op amp](A){};
\ctikzset{tripoles/op amp/port width=1,
tripoles/op amp/width=1.19, % 1.7*0.7
}
\draw (2.5,0) node[op amp](B){};
\draw
(A.out) node[red, circ]{} (A.+) node[blue, circ]{}
(B.out) node[red, circ]{} (B.+) node[blue, circ]{};
\end{tikzpicture}
\end{LTXexample}
\paragraph{Main amplifier label.} The amplifier label (given as the text of the node) is normally more or less centered in the shape (in the case of the triangular shape, it is shifted a bit to the left to \emph{seem} visually centered); since version \texttt{1.1.0} you can move it at the left side plus a fixed offset setting the key \texttt{component text} or the style with the same name to \texttt{left}; by default the key is \texttt{center}.
You can change the offset with the key \texttt{left text distance} (default \texttt{0.3em}; you must use a length here). These parameters are shared with IEEE-style logic ports.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,2.5) node[plain amp]{\texttt{741}};
\draw (3,2.5)
node[plain amp, component text=left]
{\texttt{741}};
\ctikzset{component text=left}
\draw (0,0) node[op amp]{\texttt{741}};
\ctikzset{left text distance=0.6em}
\draw (3,0) node[op amp]{\texttt{741}};
\end{circuitikz}
\end{LTXexample}
These keys are also used for the positioning of the labels in the label positioning of IEEE logic gates (see~\ref{sec:ieeestdports}).
\paragraph{European-style amplifier customization.}
Thanks to the suggestions from David Rouvel (\email{david.rouvel@iphc.cnrs.fr}) there are several possible customization for the European-style amplifiers.
Since 0.9.0, the default appearance of the symbol has changed to be more in line with the standard; notice that to have a bigger triangle by default we should require more packages, and I fear {Con\TeX t} compatibility; but see later on how to change it. Notice that the font used for the symbol is defined in \texttt{tripoles/en amp/font2} and that the font used for the \texttt{+} and \texttt{-} symbols is \texttt{tripoles/en amp/font}.
You can change the distances of the inputs, using \texttt{tripoles/en amp/input height} (default 0.3):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{tripoles/en amp/input height=0.45}
\draw (0,0)node[en amp](E){}
(E.out) node[right] {$v_{\mathrm{out}}$}
(E.-) node[left] {$v_{\mathrm{in}-}$}
(E.+) node[left] {$v_{\mathrm{in}+}$};
\end{circuitikz}
\end{LTXexample}
and of course the key \texttt{noinv input up} is fully functional:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{tripoles/en amp/input height=0.45}
\draw (0,0)node[en amp, noinv input up](E){}
(E.out) node[right] {$v_{\mathrm{out}}$}
(E.-) node[left] {$v_{\mathrm{in}-}$}
(E.+) node[left] {$v_{\mathrm{in}+}$};
\end{circuitikz}
\end{LTXexample}
To flip the amplifier in the horizontal direction, you can use \texttt{xscale=-1} as usual:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{tripoles/en amp/input height=0.45}
\draw (0,0)node[en amp, xscale=-1, noinv input up](E){}
(E.out) node[left] {$v_{\mathrm{out}}$}
(E.-) node[right] {$v_{\mathrm{in}-}$}
(E.+) node[right] {$v_{\mathrm{in}+}$};
\end{circuitikz}
\end{LTXexample}
Notice that the label is fully mirrored, so check below for the generic way to change this.
You can use the new key \texttt{en amp text A} to change the infinity symbol with an A:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0)node[en amp, en amp text A](E){}
(E.out) node[right] {$v_{\mathrm{out}}$}
(E.-) node[left] {$v_{\mathrm{in}-}$}
(E.+) node[left] {$v_{\mathrm{in}+}$} ;
\end{circuitikz}
\end{LTXexample}
And if you want, you can completely change the text using the key \texttt{en amp text={}}, which by default is \verb|$\mathstrut{\triangleright}\,{\infty}$|:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0)node[en amp, en amp text={%
${\triangleright}$ \small 200}](E){}
(E.out) node[right] {$v_{\mathrm{out}}$}
(E.-) node[left] {$v_{\mathrm{in}-}$}
(E.+) node[left] {$v_{\mathrm{in}+}$} ;
\end{circuitikz}
\end{LTXexample}
Notice two things here: the first, that \verb|\triangleright| is enclosed in braces to remove the default spacing it has as a binary operator, and that \texttt{en amp text A} is simply a shortcut for
\begin{lstlisting}
en amp text={$\mathstrut{\triangleright}\,\mathrm{A}$}
\end{lstlisting}
To combine flipping with a generic label you just do:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0)node[en amp, xscale=-1, en amp text A](E){}
(E.out) node[left] {$v_{\mathrm{out}}$}
(E.-) node[right] {$v_{\mathrm{in}-}$}
(E.+) node[right] {$v_{\mathrm{in}+}$} ;
\end{circuitikz}
\end{LTXexample}
But notice that the ``A'' is also flipped by the \texttt{xscale} parameter. So the solution in this case is to use \texttt{scalebox}, like this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0)node[en amp, xscale=-1, en amp text={%
${\triangleright}$ \scalebox{-1}[1]{\small 200}}](E){}
(E.out) node[left] {$v_{\mathrm{out}}$}
(E.-) node[right] {$v_{\mathrm{in}-}$}
(E.+) node[right] {$v_{\mathrm{in}+}$} ;
\end{circuitikz}
\end{LTXexample}
\subsubsection{Designing your own amplifier}\label{sec:muxdemux-amplis}
If you need a different kind of amplifier, you can use the \texttt{muxdemux}
(see section~\ref{sec:muxdemuxes}) shape for defining one that suits your needs
(you need version \texttt{1.0.0} for this to work,
and \texttt{1.3.8} for the \texttt{draw only...} option).
\begin{LTXexample}[varwidth=true]
\tikzset{tdax/.style={muxdemux,
muxdemux def={NL=2, Lh=3, NR=1, Rh=0,
NB=4, NT=5}, font=\scriptsize\ttfamily}}
\begin{circuitikz}
\draw (0,0) node[tdax](A){TDA1};
\draw (2.5,0) node[tdax, muxdemux def={Rh=0.5},
draw only top pins={1,4-5}]{TDA2};
\end{circuitikz}
\end{LTXexample}
\subsection{Switches, buttons and jumpers}
Switches and buttons come in to-style (the simple ones and the pushbuttons), and as nodes.
The switches can be scaled with the key \texttt{switches/scale} (default \texttt{1.0}). Notice that scaling the switches will not scale the poles, which are controlled with their own parameters (see section~\ref{sec:terminals}).
\subsubsection{Traditional switches}
These are all of the to-style type:
\begin{groupdesc}
\circuitdescbip[cspst]{switch}{Switch}{spst}(left/135/0.1, right/45/0.1, mid/90/0.3)
\circuitdescbip[cspst]{closing switch}{Closing switch}{cspst}
\circuitdescbip[ospst]{opening switch}{Opening switch}{ospst}
\circuitdescbip[nos]{normal open switch}{Normally open switch}{nos}(left/135/0.1, right/45/0.1, mid/90/0.3)
\circuitdescbip[ncs]{normal closed switch}{Normally closed switch}{ncs}
\circuitdescbip[oncs]{opening normal closed switch}{Opening normally closed switch}{oncs}
\circuitdescbip[cncs]{closing normal closed switch}{Closing normally closed switch}{cncs}
\circuitdescbip[onos]{opening normal open switch}{Opening normally open switch}{onos}
\circuitdescbip[cnos]{closing normal open switch}{Closing normally open switch\footnotemark}{cnos}
\footnotetext{These last four were contributed by \href{https://tex.stackexchange.com/questions/693446/new-switch-components-for-circuitikz}{Jakob «DraUX»}}
\circuitdescbip[pushbutton]{push button}{Normally open push button}{normally open push button, nopb}(tip/0/0.2, mid/-90/0.2)
\circuitdescbip[ncpushbutton]{normally closed push button}{Normally closed push button}{ncpb}(tip/0/0.2, mid/-90/0.2)
\circuitdescbip[pushbuttonc]{normally open push button closed}{Normally open push button (in closed position)}{nopbc}(tip/0/0.2, mid/-90/0.2)
\circuitdescbip[ncpushbuttono]{normally closed push button open}{Normally closed push button (in open position)}{ncpbo}(tip/0/0.2, mid/-90/0.2)
\circuitdescbip[toggleswitch]{toggle switch}{Toggle switch}{}(out 1/0/0.2, out 2/0/0.2, in/135/0.1, mid/-90/0.2)
\circuitdescbip*{reed}{Reed switch}{}(left/135/0.1, right/45/0.1, mid/90/0.3)
\end{groupdesc}
while this is a node-style component:
\begin{groupdesc}
\circuitdesc{spdt}{spdt}{}(in/180/0.2, out 1/0/0.2, out 2/0/0.2, mid/90/0.2)
\end{groupdesc}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) node[spdt] (Sw) {}
(Sw.in) node[left] {in}
(Sw.out 1) node[right] {out 1}
(Sw.out 2) node[right] {out 2}
;\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) to[C] (1,0) to[toggle switch , n=Sw] (2.5,0)
-- (2.5,-1) to[battery1] (1.5,-1) to[R] (0,-1) -| (0,0)
(Sw.out 2) -| (2.5, 1) to[R] (0,1) -- (0,0)
;\end{circuitikz}
\end{LTXexample}
\subsubsection{Cute switches}
These switches have been introduced after version 0.9.0, and they come in also in to-style and in node-style, but they are size-matched so that they can be used together in a seamless way.
The path element (to-style) are:
\begin{groupdesc}
\circuitdescbip[cuteclosedswitch]{cute closed switch}{Cute closed switch}{ccsw}(mid/90/0.2, in/-135/0.2, out/-45/0.2)
\circuitdescbip[cuteopenswitch]{cute open switch}{Cute open switch}{cosw}(out/45/0.2)[out.s/-90/0.2]
\circuitdescbip[cuteclosingswitch]{cute closing switch}{Cute closing switch}{ccgsw}
\circuitdescbip[cuteopeningswitch]{cute opening switch}{Cute opening switch}{cogsw}
\end{groupdesc}
while the node-style components are the single-pole, double-throw (\texttt{spdt}) ones:
\begin{groupdesc}
\circuitdesc{cute spdt up}{Cute spdt up}{}( in/180/0.2, out 1/0/0.2, out 2/0/0.2 , mid/0/0.4)
\circuitdesc{cute spdt mid}{Cute spdt mid}{}
\circuitdesc{cute spdt down}{Cute spdt down}{}(mid/0/0.4)
\circuitdesc{cute spdt up arrow}{Cute spdt up with arrow}{}
\circuitdesc{cute spdt mid arrow}{Cute spdt mid with arrow}{}
\circuitdesc{cute spdt down arrow}{Cute spdt down with arrow}{}
\end{groupdesc}
\paragraph{Cute switches anchors}
The nodes-style switches have the following anchors:
\bigskip
\begin{circuitikz}
\def\coorda(#1)<#2>{node[circle, red, draw, inner sep=1pt,pin={[red, overlay, inner sep=0.5pt, font=\small, pin distance=0.1cm, pin edge={red, overlay,}]#2:#1}](#1){}}
\path (0,-1) -- (3,1); %bbox
\draw (0, 0) node[spdt](S){};
\foreach \a/\b in {center/0, in/-135, out 1/45, out 2/-45}
\path (S.\a) \coorda(\a)<\b>;
\draw (3, 0) node[cute spdt up arrow](CS){};
\foreach \a/\b in {center/0, in/-135, out 1/45, out 2/-45, mid/135}
\path (CS.\a) \coorda(\a)<\b>;
\draw (6, 0) node[cute spdt up arrow](CS2){};
\foreach \a/\b in {cin/-135, cout 1/45, cout 2/-45}
\path (CS2.\a) \coorda(\a)<\b>;
\end{circuitikz}
Please notice the position of the normal anchors at the border of the \texttt{ocirc} shape for the cute switches; they are thought to be compatible with an horizontal wire going out.
Additionally, you have the \texttt{cin}, \texttt{cout 1} y \texttt{cout 2} which are anchors on the center of the contacts.
For more complex situations, the contact nodes are available\footnote{Thanks to \texttt{@marmot} on \href{https://tex.stackexchange.com/a/492599/38080}{tex.stackexchange.com}.} using the syntax \emph{name of the node}\texttt{-in}, \dots\texttt{-out 1} and \dots\texttt{-out 2}, with all their anchors.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[cute spdt up] (S1) {}
(S1.in) node[left] {in}
(S1.out 1) node[right] {out 1};
\draw (0,-2) node[cute spdt up,
/tikz/circuitikz/bipoles/cuteswitch/height=0.8] (S2) {}
(S2.in) node[left] {in}
(S2.out 2) node[right] {out 2};
\draw [red] (S1-in.s) -- (S2-in.n);
\draw [blue] (S1-out 2.s) -- (S2-out 1.n);
\end{circuitikz}
\end{LTXexample}
The \texttt{mid} anchor in the cute switches (both path- and node-style) can be used to combine switches to get more complex configurations:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,1.4) node[cute spdt up](S1){};
\draw (0,0) node[cute spdt up](S2){};
\draw (0,-1) node[cuteclosedswitchshape, yscale=-1](S3){};
\draw [densely dashed] (S1.mid)--(S2.mid)--(S3.mid);
\end{circuitikz}
\end{LTXexample}
\paragraph{Cute switches customization}
You can use the key \texttt{bipoles/cuteswitch/thickness} to decide the thickness of the switch lever.
The units are the diameter of the \texttt{ocirc} connector, and the default is \texttt{1}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{bipoles/cuteswitch/thickness=0.5}
\draw (0,1.4) node[cute spdt up](S1){};
\draw (0,0) node[cute spdt up](S2){};
\draw (0,-1) node[cuteclosedswitchshape, yscale=-1](S3){};
\draw [densely dashed] (S1.mid)--(S2.mid)--(S3.mid);
\end{circuitikz}
\end{LTXexample}
Finally, the switches are normally drawn using the \texttt{ocirc} shape, but you can change it, as in the following example, with the key \texttt{bipoles/cuteswitch/shape}. Be careful that the shape is used with its defaults (which can lead to strange results), and that the standard anchors will be correct only for \texttt{circ} and \texttt{ocirc} shapes, so you have to use the internal node syntax to connect it.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\begin{scope}
\ctikzset{bipoles/cuteswitch/thickness=0.5,
bipoles/cuteswitch/shape=circ}
\draw (0,2) node[cute spdt up](S1){};
\ctikzset{bipoles/cuteswitch/thickness=0.25,
bipoles/cuteswitch/shape=emptyshape}
\draw (0,0) node[cute spdt up](S2){};
\draw (S2.cin) node[draw, inner sep=2pt]{};
\draw (S2.cout 1) node[draw, inner sep=2pt]{};
\draw (S2.cout 2) node[draw=red, inner sep=2pt]{};
\end{scope}
\draw (0,-2) node[cuteclosedswitchshape, yscale=-1](S3){};
\draw [densely dashed] (S1.mid)--(S2.mid)--(S3.mid);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Proximity switches}
\begin{groupdesc}
\circuitdesc*{proximeter}{proximeter}{text}(hlines nw/135/0.4, hlines ne/45/0.4, hlines sw/-135/0.4, hlines se/-45/0.4, center/-90/0.4)
\circuitdescbip*{inline proximeter}<proximeter>{proximeter switch, inline}{}(left/135/0.4, right/45/0.4)
\end{groupdesc}
The \texttt{proximeter} shape\footnote{Suggested by \href{https://github.com/circuitikz/circuitikz/issues/631}{Anisio Rogerio Braga}, implemented in \texttt{v1.5.2}; see also \href{https://knowledge.autodesk.com/support/autocad-electrical/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Electrical/files/GUID-1B18023D-241C-4E50-822A-94F873FC258B-htm.html}{here}.} can be used as a dipole with the \texttt{inline proximeter} variant.
It has been assigned to the \texttt{switches} class; you can adjust the (relative) thickness of the inside horizontal lines with the key \texttt{proximeter/hlines thickness} (default \texttt{0.5}) and their vertical position with \texttt{proximeter/hlines position} (default \texttt{0.3}). You can also change the default size of \emph{all} proximeter symbols by changing \texttt{proximeter/width} (only safe at picture level; better set in the preamble if you need to change it. The default value is \texttt{0.3}).
Notice in the following example that, as ever for node-type shape, the text is not included in the bounding box:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}
\tikzset{small up proxi/.style={proximeter, solid,
circuitikz/switches/scale=0.707,
circuitikz/proximeter/hlines thickness=1,
circuitikz/proximeter/hlines position=0.1}}
\draw (0,0) to[inline proximeter, l=P1] ++(2,0)
to[ccgsw, name=P2] ++(2,0);
\draw[dashed] (P2.mid) -- ++(0,0.5)
node[small up proxi, above](P2p){Fe}
(P2p.north) ++ (0,0.5); % extend bounding box
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Rotary switches}
Rotary switches are a kind of generic multipole switches; they are implemented as a strongly customizable element (and a couple of styles to simplify its usage). The basic element is the following one, and it has the same basic anchors of the cute switches, included the access to internal nodes (shown in blue here).
\begin{groupdesc}
\circuitdesc{rotaryswitch}{Rotary switch}{}(in/-180/0.2, cin/145/0.2, center/-90/0.2, mid/0/0.4, out 1/0/0.2,
cout 1/180/0.2)[out 1.n/90/0.2, out 4.w/0/0.3]
\end{groupdesc}
Notice that the name of the shape is \texttt{rotaryswitch}, no spaces.
The default rotary switch component has 5 channels (this is set in the parameter \texttt{multipoles/rotary/channels}), spanning form \SI{-60}{\degree} to \SI{60}{\degree} (parameter \texttt{multipoles/rotary/angle}) and with the wiper at \SI{20}{\degree} (parameter \texttt{multipoles/rotary/wiper}).
Moreover, there are by default no arrows on the wiper; if needed, you can change this default setting the parameter \texttt{multipoles/rotary/arrow} which can assume the values \texttt{none}, \texttt{cw} (clockwise), \texttt{ccw} (counterclockwise) or \texttt{both}.
To simplify the usage of the component, a series of styles are defined: \texttt{rotary switch=\textsl{<channels>} in \textsl{<angle>} wiper \textsl{<wiper angle>}} (notice the space in the name of the style!). Using \texttt{rotary switch} without parameters will generate a default switch.
To add arrows, you can use the styles \texttt{rotary switch -} (no arrow, whatever the default), \texttt{rotary switch <-} (counterclockwise arrow), \texttt{rotary switch ->} (clockwise) and \texttt{rotary switch <->} (both).
Notice that the defaults of the styles are the same as the default values of the parameters, but that if you change globally the defaults using the keys mentioned above, you only change the defaults for the ``bare'' component \texttt{rotaryswitch}, not for the styles.
\begin{LTXexample}[varwidth=true, pos=t]
\begin{circuitikz}
\ctikzset{multipoles/rotary/arrow=both}
\draw (0,0) -- ++(1,0) node[rotary switch <-=8 in 120 wiper 40, anchor=in](A){};
\draw (3,0) -- ++(1,0) node[rotary switch, anchor=in](B){}; % default values
\draw[red] (A.out 4) -| (3,0);
\draw[blue] (A-out 2.n) -- ++(0,0.5) -| (B-out 1.n);
\draw (B.out 3) -- ++(1,0) node[rotary switch -=5 in 90 wiper 15, anchor=in](C){};
\draw (C.out 3) -- ++(1,0) node[rotary switch ->, xscale=-1, anchor=out 3](D){};
\draw[green, dashed] (B.mid) -- ++(-.5,-1) -| (C.mid);
\end{circuitikz}
\end{LTXexample}
\paragraph{Rotary switch anchors}
Rotary switches anchors are basically the same as the cute switches, including access (with the \texttt{\textsl{<node name>}-<anchor name>} notation) to the internal connection nodes. The geographical anchors work as expected, marking the limits of the component.
\showanchors{rotary switch}{}(north/90/0.4, north east/45/0.4, east/0/0.4, south east/-45/0.4,
south/-90/0.4, south west/-135/0.4, west/180/0.4, north west/135/0.4, center/-120/0.3)
\qquad
\showanchors{rotary switch=25 in 120 wiper 10}{}(north/90/0.4, north east/45/0.4, east/0/0.4, south east/-45/0.4,
south/-90/0.4, south west/-135/0.4, west/180/0.4, north west/135/0.4, center/-120/0.3)
In addition to the anchors they have in common with the cute switches, the rotary switch has the so called ``angled'' anchors and the ``external square anchors''. \emph{Angled anchors}, called \texttt{aout 1}, \texttt{aout 2} and so forth, are anchors placed on the output poles at the same angle as the imaginary lines coming from the input pole; \emph{square anchors}, called \texttt{sqout 1}\dots, are located on an imaginary square surrounding the rotary switch on the same line.
\bigskip
\begin{circuitikz}
\begin{scope}[scale=2, transform shape]
\clip (-1,-.4) rectangle (1,.6);
\draw (0,0) node[rotary switch=9 in 90 wiper 10](Z){};
\draw [dashed, blue] (Z.cin) -- (Z.sqout 4);
\end{scope}
\path (Z.aout 4) \showcoord(aout 4)<-15:0.4>;
\path (Z.sqout 4) \showcoord(sqout 4)<0:0.4>;
\path (Z.out 3) \showcoord(out 3)<15:0.4>;
\path (Z.cout 3) \showcoord(cout 3)<180:0.4>;
\draw (8,0) node[rotary switch -=31 in 150 wiper 10](D){};
\foreach \i in {1,...,31} \draw (D.sqout \i) -- (D.aout \i);
\foreach \l/\a/\d in {north/90/0.2, north east/45/0.2, east/0/0.2,
south east/-45/0.2, south/-90/0.2, south west/-135/0.2, west/180/0.2, north west/135/0.2,
center/-145/0.7}
\path (D.ext \l) \showcoord(ext \l)<\a:\d>;
\path (D.aout 12) \showcoordb(aout 12)<-5:0.4>;
\path (D.sqout 12) \showcoordb(sqout 12)<0:0.4>;
\draw[blue, densely dotted] (D.ext north west) rectangle (D.ext south east);
\end{circuitikz}
The code for the diagram at the left, above, without the markings for the anchors, is:
\begin{lstlisting}[basicstyle=\small\ttfamily]
\begin{circuitikz}
\draw (8,0) node[rotary switch -=31 in 150 wiper 10](D){};
\foreach \i in {1,...,31} \draw (D.sqout \i) -- (D.aout \i);
\draw[blue, densely dotted] (D.ext north west) rectangle (D.ext south east);
\end{circuitikz}
\end{lstlisting}
One possible application for the angled and the ``on square'' anchors is that you can use them to move radially from the output poles, for example for adding numbers:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[rotary switch=13 in 120 wiper 0](S){};
\foreach \i in {1,...,13} % requires "calc"
\path ($(S.aout \i)!1ex!(S.sqout \i)$)
node[font=\tiny\color{red}]{\i};
\end{circuitikz}
\end{LTXexample}
Finally, notice that the value of width for the rotary switches is taken from the one for the ``cute switches'' which in turn is taken from the width of traditional \texttt{spdt} switch, so that they match (notice that the ``center'' anchor is better centered in the rotary switch, so you have to explicitly align them).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[color=blue, rotary switch=2 in 35 wiper 30,
anchor=in](R){};
\draw (0,-1) node[cute spdt up, anchor=in](C){};
\draw (0,-2) node[color=blue, rotary switch=3 in 35 wiper 30,
anchor=in](R){};
\end{circuitikz}
\end{LTXexample}
\paragraph{Rotary switch customization}
Apart from the basic customization seen above (number of channels, etc.) you can change, as in the cute switches, the shape used by the connection points with the parameter \texttt{multipoles/rotary/shape}, and the thickness of the wiper with \texttt{multipoles/rotary/thickness}. The optional arrow has thickness equal to the standard bipole thickness \texttt{bipoles/thickness} (default 2).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{multipoles/rotary/thickness=0.5}
\draw (0,1.6) node[rotary switch ->, color=blue](S1){};
\ctikzset{multipoles/rotary/shape=circ}
\draw (0,0) node[rotary switch ->](S2){};
\ctikzset{bipoles/thickness=0.5}
\draw (0,-1.6) node[rotary switch ->, color=red](S3){};
\end{circuitikz}
\end{LTXexample}
Finally, the size can be changed using the parameter \texttt{tripoles/spdt/width} (default 0.85).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,2) node[rotary switch ->, color=blue](S1){};
\ctikzset{tripoles/spdt/width=1.6, fill=cyan,
multipoles/rotary/shape=osquarepole}
\draw (0,0) node[rotary switch ->](S2){};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Switch arrows\label{sec:switcharrows}}
You can change the arrow tips used in all switches (traditional and ``cute'') with the key \texttt{switch end arrow} (by default the key is the word ``\texttt{default}'' to obtain the default arrow, which is \texttt{latexslim}).
Also you can change the start arrow with the corresponding \texttt{switchable start arrow} or \texttt{wiper start arrow} (the default value ``\texttt{default}'' is equivalent to \texttt{\{\}}, which means no arrow). The keys are settable with \verb|\ctikzset| as with \verb|\tikzset| (to ease their usage in nodes).
You can change that globally or locally, as ever. The tip specification is the one you can find in the \TikZ{} manual (``Arrow Tip Specifications'').
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,2) to[cspst] ++(2,0)
node[cute spdt up arrow, anchor=in]{};
\draw (0,0) to[cspst] ++(2,0)
node[cute spdt up arrow, anchor=in,
switch start arrow={Bar[red]},
switch end arrow={Triangle[blue]}]{};
\end{circuitikz}
\end{LTXexample}
You can also have the option to change the color, relative thickness, and dash pattern by setting keys with the \verb!\ctikzset! command under the \texttt{switch arrows} hierarchy. The available keys are:
\begin{center}
\begin{tabular}{>{\ttfamily}l>{\ttfamily}lp{0.5\linewidth}}
\toprule
parameter & default & description \\
\midrule
relative thickness & 1.0 & multiply the class thickness \\
color & default & stroke color: \texttt{default} is the same as the component \\
dash & default & dash pattern: \texttt{default} means not to change the setting for the component; \texttt{none} means unbroken line; every other input is a dash pattern.\footnotemark \\
\bottomrule
\end{tabular}
\footnotetext{Follows the syntax of the pattern sequence \texttt{\textbackslash pgfsetdash} --- see \TikZ{} manual for details; phase is always zero. Basically you pass pairs of dash-length -- blank-length dimensions, see the examples.}
\end{center}
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}
\draw (0,2) to[spst] ++(1,0) to[cogsw]
++(1,0) to[oncs] ++(1,0);
\ctikzset{switch arrows/color=red}
\ctikzset{switch arrows/relative thickness=0.5}
\ctikzset{switch arrows/dash={{1pt}{1pt}}}
\draw (0,0) to[spst] ++(1,0) to[cogsw, switch arrows/dash=none]
++(1,0) to[oncs, switch arrows/color=blue] ++(1,0);
\end{circuitikz}
\end{LTXexample}
\paragraph{Rotary switch arrows.} You can change the rotary switch arrow shape in the same way as you change the ones in regular switches. Notice however that if you set either \texttt{switch end arrow} or \texttt{switch start arrow} they will be followed only if you have set both arrows with \texttt{<->} or equivalent, otherwise just one will be used.
\begin{LTXexample}[varwidth=true, pos=t]
\begin{circuitikz}
\ctikzset{multipoles/rotary/arrow=both}
\draw (0,0) -- ++(1,0) node[rotary switch <-=8 in 120 wiper 40, anchor=in](A){};
\draw (3,0) -- ++(1,0) node[rotary switch, anchor=in](B){}; % default values
\draw (B.out 3) -- ++(1,0) node[rotary switch -=5 in 90 wiper 15, anchor=in](C){};
\draw (C.out 3) -- ++(1,0) node[rotary switch ->, xscale=-1, anchor=out 3](D){};
\ctikzset{switch end arrow={Triangle[blue]}}
\ctikzset{switch start arrow={Bar[red]}}
\begin{scope}[yshift=-2cm]
\draw (0,0) -- ++(1,0) node[rotary switch <-=8 in 120 wiper 40, anchor=in](A){};
\draw (3,0) -- ++(1,0) node[rotary switch, anchor=in](B){}; % default values
\draw (B.out 3) -- ++(1,0) node[rotary switch -=5 in 90 wiper 15, anchor=in](C){};
\draw (C.out 3) -- ++(1,0) node[rotary switch ->, xscale=-1, anchor=out 3](D){};
\end{scope}
\end{circuitikz}
\end{LTXexample}
\subsubsection{Jumpers}
You can think of jumpers like a kind of switches (they have the same function, just the way of operating them is different).
\Circuitikz{} has two types of jumper symbols available, the simple ones and the three pins (or two-ways) ones.
\paragraph{Simple jumpers.} These are the most common ones. They come in three variations, bare, open and closed.
\begin{groupdesc}
\circuitdescbip*[bjumper]{bare jumper}{Bare jumper}{}(in/135/0.6, out/45/0.6)[out.n/90/0.2]
\circuitdescbip*[ojumper]{open jumper}{Open jumper}{}(in/135/0.6, out/45/0.6, top arc/90/0.3)[out.s/-90/0.2]
\circuitdescbip*[cjumper]{closed jumper}{Closed jumper}{}(left/135/0.6, right/45/0.6, top arc/90/0.3)[in.s/-90/0.2]
\end{groupdesc}
The \texttt{top arc} anchor can be used to locate the position of the top of the wire (when present). In bare jumper, the anchor is located in the middle of the connectors gap.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[scale=0.8]
\draw (0,0) to[open jumper, l=J1] ++(2,0)
to[closed jumper, l_=J2, name=J2] ++(2,0)
to[bare jumper=J3] ++(2,0);
\draw [dashed] (J2.top arc) -- ++(0,0.5)
node[above] {\tiny open to enable};
\end{circuitikz}
\end{LTXexample}
Similarly to switches, you have access to the subnodes representing the contacts, to be able to draw wires at different angles.
The kind of poles used in the diagram can be changed with the \verb!\ctikzset! key \texttt{bipoles/jumpers/shape}.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[scale=0.8]
\draw (0,0) to[open jumper, l=J1, name=J1] ++(2,0)
to[closed jumper, l_=J2, name=J2,
bipoles/jumper/shape=odiamondpole] ++(2,0);
\draw [red] (J2-in.-135) -- ++(-135:1)
node[font=\tiny, below]{marked \emph{hot}};
\end{circuitikz}
\end{LTXexample}
\paragraph{Two-ways (three-pins) jumpers.} In this case, the symbol represent two-ways jumpers (normally, three pins that can be connected in a couple of ways).
To maintain flexibility, every possible combination of bare, open or closed is available; but to avoid having to define too much different bipoles, a different approach is used here. You have to specify the style using a different key, namely \texttt{tjumper connections}.
\begin{groupdesc}
\circuitdescbip*[tjumper]{three-pins jumper}{Three-pins jumper (see later for connections)}{}(in/135/0.6, out/45/0.6, tap/-90/0.2)[out.n/90/0.2]
\ctikzset{tjumper connections=12}
\circuitdescbip*[tjumper]{three-pins jumper}{Three-pins jumper (connections \texttt{\ctikzvalof{tjumper connections}})}{}(top arc left/135/0.6, top arc right/45/0.6, tap/-145/0.2)[out.n/-90/0.2]
\ctikzset{tjumper connections=S1}
\circuitdescbip*[tjumper]{three-pins jumper}{Three-pins jumper (connections \texttt{\ctikzvalof{tjumper connections}})}{}(top arc left/135/0.6, top arc right/45/0.6, tap/-145/0.2)[out.n/-90/0.2]
\end{groupdesc}
The option is used as shown in the following example, or by setting the key using \verb!\ctikzset!. The value \textbf{must} be two characters, either two numbers (where \texttt{0} means ``bare'', \texttt{1} means ``open'', and \texttt{2} means ``closed'') or the letter \texttt{S} (for ``span'') and one number. In the latter case, the arc will connect the fist and last pole\footnote{Although really I never saw an example of this use\dots You never know.}
\begin{LTXexample}[varwidth=true, pos=t, basicstyle=\small\ttfamily]
\begin{circuitikz}
\draw (0,1.5) to[three-pins jumper, l=J1, name=T] ++(3,0)
to[three-pins jumper, tjumper connections=21, l=J2] ++(3,0)
to[three-pins jumper, tjumper connections=20, l=J3] ++(3,0);
\draw (T.tap) -- ++(0,-0.5);
\ctikzset{bipoles/jumper/shape=osquarepole}
\draw (0,0) to[three-pins jumper, l=JA, name=T] ++(3,0)
to[three-pins jumper, tjumper connections=S1, l=JB] ++(3,0)
to[three-pins jumper, tjumper connections=S2, l=JB] ++(3,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Solder jumpers.} Solder jumpers are basically jumpers that can be closed or opened on the printed circuit board. Although electrically they behave exactly as jumpers, these are thought to change configurations in a more stable way (to change them from their default connection you have to use a cutter and/or a soldering iron).
\begin{groupdesc}
\circuitdescbip[osjumper]{open solder jumper}{Open solder jumper}{}(in/135/0.3, out/45/0.3)
\circuitdescbip[csjumper]{closed solder jumper}{Closed solder jumper}{}(left/135/0.3, right/45/0.3)
\circuitdescbip[odsjumper]{open double solder jumper}{Open double solder jumper}{}(in/135/0.3, out/45/0.3, tap/90/0.1)
\circuitdescbip[ldsjumper]{left double solder jumper}{Left double solder jumper}{}(left/135/0.3, right/45/0.3,
tap up/90/0.1, tap down/-90/0.1)
\circuitdescbip[rdsjumper]{right double solder jumper}{Right double solder jumper}{}(left/135/0.3, right/45/0.3,
tap up/90/0.1, tap down/-90/0.1)
\circuitdescbip[cdsjumper]{closed double solder jumper}{Closed double solder jumper}{}
\end{groupdesc}
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{circuitikz}[scale=0.8]
\draw (0,0) to[open solder jumper, l=J1] ++(2,0)
to[closed solder jumper, l_=J2, name=J2] ++(2,0)
to[right double solder jumper, l=J3,
name=J3] ++(2,0);
\draw (J3.tap down) -- ++(0,-1) node[ocirc]{};
\end{circuitikz}
\end{LTXexample}
\subsection{Logic gates}
Logic gates, with two or more input, are supported. Albeit in principle these components are multipoles, the are considered tripoles here, for historical reasons (when they just had two inputs).
\subsubsection{American Logic gates}
\begin{groupdesc}
\circuitdesc*{american and port}{American \textsc{and} port}{}( in 1/180/0.2, in 2/180/0.2, out/0/0.2 )
\circuitdesc*{american or port}{American \textsc{or} port}{}( bin 1/135/0.2, bin 2/-135/0.2, bout/-45/0.2 )
\circuitdesc*{american nand port}{American \textsc{nand} port}{}
\circuitdesc*{american nor port}{American \textsc{nor} port}{}
\circuitdesc*{american xor port}{American \textsc{xor} port}{}
\circuitdesc*{american xnor port}{American \textsc{xnor} port}{}
\circuitdesc*{american buffer port}{American \textsc{buffer} port}{}
\circuitdesc*{american not port}{American \textsc{not} port}{}
\end{groupdesc}
There is no ``european'' version of the following symbols; for now they are used both in \texttt{american} and \texttt{european} styles, but iy may change in the future.
\begin{groupdesc}
\circuitdesc*{schmitt}{Non-Inverting Schmitt trigger}{}
\circuitdesc*{invschmitt}{Inverting Schmitt trigger}{}
\end{groupdesc}
\subsubsection{IEEE logic gates}\label{sec:ieeestdports}
In addition to the legacy ports, since release 1.1.0, logic ports following the recommended geometry of distinctive-shape symbols in IEEE Std 91a-1991 Annex A (Recommended symbol proportions) are also available\footnote{Thanks to Jason for proposing it and digging out the info, see this \href{https://github.com/circuitikz/circuitikz/issues/383}{GitHub issue}.}.
These ports are completely independent from the legacy set (either \texttt{american} or \texttt{european}); they are not enabled by default because the relative size of the ports is very different from the legacy ones, and that will disrupt every schematic (especially if drawn with absolute coordinate). If you want to use them as default, you can use the command \verb|\ctikzset{logic ports=ieee}| and by default the shapes \texttt{and port}, \texttt{or port} and so on will be the IEEE standard ones.
The transmission gate (also known as ``bowtie'') components are not described in the IEEE standard, so they are simply inspired by the other IEEE ports --- this is why their name is prefixed by \texttt{ieee} and not by \texttt{ieeestd}. They are aliased to \texttt{tgate} and \texttt{double tgate} though, and it is recommended to use those names (maybe in the future there will be \texttt{american ports} and/or \texttt{european ports} versions available).
\begin{groupdesc}
\circuitdesc*{ieeestd and port}{IEEE standard ``and'' port}{}(in 1/180/0.2, in 2/180/0.2, out/0/0.2, bout/45/0.2)
\circuitdesc*{ieeestd nand port}{IEEE standard ``nand'' port}{}(in 1/180/0.2, out/0/0.2, bout/45/0.2)
\circuitdesc*{ieeestd or port}{IEEE standard ``or'' port}{}(in 1/180/0.2, bin 2/-155/0.2, out/0/0.2, bout/45/0.2)
\circuitdesc*{ieeestd nor port}{IEEE standard ``nor'' port}{}(left/180/0.2, center/-45/0.4, up/30/0.2,
down/-30/0.2)[not/45/0.3]
\circuitdesc*{ieeestd xor port}{IEEE standard ``xor'' port xor}{}(left/180/0.2, bin 1/145/0.3, ibin 1/45/0.3, right/45/0.2)
\circuitdesc*{ieeestd xnor port}{IEEE standard ``xnor'' port}{}(body left/70/0.4, body right/-70/0.3,
out/0/0.2, bout/45/0.2)
\circuitdesc*{ieeestd buffer port}{IEEE standard buffer port}{}(in 1/180/0.2, bin 1/-155/0.2, up/30/0.2, down/-30/0.2)
\circuitdesc*{ieeestd not port}{IEEE standard ``not'' port}{}(in/180/0.2, bin/-155/0.2, out/0/0.2, bout/45/0.2)
\circuitdesc*{ieeestd schmitt port}{Schmitt port matched to IEEE standard ports}{}(in/180/0.2, out/0/0.2, bout/45/0.2)
\circuitdesc*{ieeestd invschmitt port}{Inverting Schmitt port matched to IEEE standard ports}{}
\circuitdesc*{ieee tgate}{IEEE style transmission gate}{}(in 1/180/0.2, bin 1/-155/0.2, up/30/0.2, down/-30/0.2, out/0/0.2, bout/45/0.2, notgate/135/0.4, gate/-135/0.4)
\circuitdesc*{ieee double tgate}{IEEE style double transmission gate}{}(in/180/0.2, bin/-155/0.2, out/0/0.2, bout/45/0.2, up/30/0.2, down/-30/0.2, bnotgate/135/0.4, bgate/-115/0.4)
\circuitdesc*{notcirc}{Inverting dot for IEEE ports}{}(west/180/0.1, east/0/0.1)
\circuitdesc*{schmitt symbol}{Schmitt symbol to add to input pins if needed}{}(north west/145/0.1, south east/-45/0.1)
\end{groupdesc}
\subsubsection{European Logic gates}
\begin{groupdesc}
\circuitdesc*{european and port}{European \textsc{and} port}{}( in 1/180/0.2, in 2/180/0.2, out/0/0.2 )
\circuitdesc*{european or port}{European \textsc{or} port}{}( bin 1/135/0.2, bin 2/-135/0.2, bout/-45/0.2 )
\circuitdesc*{european nand port}{European \textsc{nand} port}{}
\circuitdesc*{european nor port}{European \textsc{nor} port}{}
\circuitdesc*{european xor port}{European \textsc{xor} port}{}
\circuitdesc*{european xnor port}{European \textsc{xnor} port}{}
\circuitdesc*{european buffer port}{European \textsc{buffer} port}{}
\circuitdesc*{european not port}{European \textsc{not} port}{}
\circuitdesc*{european blank port}{European blank port}{A}
\circuitdesc*{european blank not port}{European blank not port}{B}
\end{groupdesc}
\begin{framed}
If (default behaviour) \texttt{americanports} option is active (or the style \texttt{[american ports]} is used), the shorthands \texttt{and port}, \texttt{or port}, \texttt{buffer port}, \texttt{nand port}, \texttt{nor port}, \texttt{not port}, \texttt{xor port}, \texttt{xnor port}, \texttt{schmitt port} and \texttt{invschmitt port} are equivalent to the american version of the respective logic port.
If otherwise \texttt{europeanports} option is active (or the style \texttt{[european ports]} is used), the shorthands \texttt{and port}, \texttt{or port}, \texttt{buffer port}, \texttt{nand port}, \texttt{nor port}, \texttt{not port}, \texttt{xor port}, \texttt{xnor port} are equivalent to the european version of the respective logic port; \texttt{schmitt port} and \texttt{invschmitt port} are the same as in \texttt{american ports} style.
Finally, for version \texttt{1.1.0} and up, you can use the style \texttt{ieee ports} to set the shorthands to the set of \texttt{ieeestd} ports. (There is no global option for this).
\end{framed}
\subsubsection{Path-style logic ports}
The one-input, one-output ports have a handy path-style equivalent; they are the following:
\begin{groupdesc}
\ctikzset{logic ports=ieee}
\circuitdescbip*{inline not}<not port>{``not'' logic port}{}
\circuitdescbip*{inline buffer}<buffer port>{``buffer'' logic port}{}
\circuitdescbip*{inline schmitt}<schmitt port>{Schmitt logic port}{}
\circuitdescbip*{inline invschmitt}<invschmitt port>{Inverting Schmitt logic port}{}
\circuitdescbip*{inline tgate}<tgate>{transmission gate}{}(bgate/-90/0.2, bnotgate/90/0.2)
\circuitdescbip*{inline double tgate}<double tgate>{double transmission gate}{}(bgate/-90/0.2, bnotgate/90/0.2)
\end{groupdesc}
Those ports follow the current selected style, although you can change it on the fly (even if it does not have a lot of sense); you can apply labels, annotations and (again, not a lot of sense) voltages to them. The assigned value is typeset as if it were the main text of the node.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\ctikzset{logic ports=ieee}
\draw (0,0) to[inline not=I1, l=label, v=$\Delta V$] ++(2,0);
\draw (0,-2) to[inline not, a=ann, european ports] ++(2,0);
\end{circuitikz}
\end{LTXexample}
Notice that in the inline version the leading pins are not drawn,
so in the case of the transmission gates
you have to use the border pins to connect the gates.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[ ]
\ctikzset{logic ports=ieee,
logic ports/fill=yellow}
\draw (0,0) to[inline not] ++(2,0)
to[inline double tgate, name=P] ++(3,0)
(P.bnotgate) |- ++(-3,1);
\end{circuitikz}
\end{LTXexample}
\subsubsection{American ports usage}
Since version \texttt{1.0.0}, the default shape of the family of american ``or'' ports has changed to a more ``pointy'' one, for better distinguish them from the ``and''-type ports. You can still go back to the previous aspect with the key \texttt{american or shape} that can be set to \texttt{pointy} or \texttt{roundy}. The \texttt{legacy} style will enact the old, roundy style also.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[
american]
% legacy shapes
\ctikzset{american or shape=roundy}
\ctikzset{logic ports/fill=yellow}
\node [or port](O1) at (0,0) {};
\node [nor port](O2) at (0,-1.5) {};
\node [xor port](O3) at (0,-3) {};
\node [xnor port](O4) at (0,-4.5) {};
\begin{scope}[xshift=3cm]
% new shapes
\ctikzset{american or shape=pointy}
\node [or port](O1) at (0,0) {};
\node [nor port](O2) at (0,-1.5) {};
\node [xor port](O3) at (0,-3) {};
\node [xnor port](O4) at (0,-4.5) {};
\end{scope}
\end{circuitikz}
\end{LTXexample}
\paragraph{American logic port customization}
Logic port class is called \texttt{logic ports}, so you can scale them all with \texttt{logic ports/scale} (default \texttt{1.0}).
As for most components, you can change the width and height of the ports; the thickness is given by the parameter \texttt{tripoles/thickness} (default 2).
It is possible to change height and width of the logic ports using the parameters \texttt{tripoles/american \emph{type} port/} plus \texttt{width} or \texttt{height}:
\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) node[nand port] {}; \par
\ctikzset{tripoles/american nand port/input height=.2}
\ctikzset{tripoles/american nand port/port width=.4}
\ctikzset{tripoles/thickness=4}
\tikz \draw (0,0) node[nand port] {};
\end{LTXexample}
This is especially useful if you have ports with more than two inputs, which are instantiated
with the parameter \texttt{number inputs} :
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,3) node[american and port] (A) {P1};
\begin{scope}
\ctikzset{tripoles/american or port/height=1.6}
\draw (A.out) -- ++(0.5,0)
node[american or port,
number inputs=5,
anchor=in 1] (B) {P2};
\end{scope}
\draw (0,1.5) node[american or port] (C) {P3};
\draw (C.out) |- (B.in 2);
\end{circuitikz}
\end{LTXexample}
You can suppress the drawing of the logic ports input leads by using the boolean key \texttt{logic ports draw input leads} (default \texttt{true}) or, locally, with the style \texttt{no inputs leads} (that can be reverted with \texttt{input leads}), like in the following example. The anchors do not change and you have to take responsibility to make the connection to the ``border''-anchors.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\node [or port](O1) at (0,2) {};
\node [or port, no input leads](O1) at (2,2) {};
\ctikzset{logic ports draw input leads=false}
\node [and port](O1) at (0,0) {};
\node [nand port, input leads](O1) at (2,0) {};
\end{circuitikz}
\end{LTXexample}
This is useful if you need to draw a generic port, like the one following here:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{tripoles/american nand port/height=1.6}
\draw (0,0)
node[american nand port,
circuitikz/tripoles/american nand port/height=1.1,
number inputs=5, no input leads,
] (B) {Pn};
\draw (B.in 1) -- (B.bin 1) (B.in 5) -- (B.bin 5);
\node[rotate=90] at (B.in 3) {\dots};
\end{circuitikz}
\end{LTXexample}
In an analogous manner, there is a setting \texttt{logic ports draw output leads} (and a corresponding style \texttt{no output leads}) that suppresses the drawing of the output lead. A shortcut boolean key \texttt{logic ports draw leads} will suppress or enable all leads (the corresponding styles are \texttt{no leads} and \texttt{all leads}).
You can tweak the appearance of american ``or'' family (\texttt{or}, \texttt{nor}, \texttt{xor} and \texttt{xnor}) ports, too, with the parameters \texttt{inner} (how much the base circle goes ``into'' the shape, default 0.3) and \texttt{angle} (the angle at which the base starts, default 70).
\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) node[xnor port] {};
\ctikzset{tripoles/american xnor port/inner=.7}
\ctikzset{tripoles/american xnor port/angle=40}
\tikz \draw (0,0) node[xnor port] {};
\end{LTXexample}
\paragraph{American logic port anchors}
These are the anchors for logic ports:
\bigskip
\begin{circuitikz} [american]
\def\coorda(#1)<#2>{node[circle, red, draw, inner sep=1pt,pin={[red, overlay, inner sep=0.5pt, font=\small, pin distance=0.1cm, pin edge={red, overlay,}]#2:#1}](#1){}}
\path(-2,1) -- (11,-1);
\draw (0,0) node[and port, number inputs=3](A){IC1} ;
\foreach \a/\d in {left/45, right/45, out/-45, in 1/135, in 2/135, in 3/135}
\path (A.\a) \coorda(\a)<\d>;
\draw (4.5,0) node[and port, number inputs=3](A){IC1};
\foreach \a/\d in {north/90, north west/135, west/180, south west/-135,
south/-90, south east/45, east/45, north east/45}
\path (A.\a) \coorda(\a)<\d>;
\draw (9,0) node[nand port, ](A){} ;
\foreach \a/\d in {left/45, right/45, center/-90}
\path (A.\a) \coorda(\a)<\d>;
\end{circuitikz}
\bigskip
You also have ``border pin anchors'':
\bigskip
\begin{circuitikz} [american]
\def\coorda(#1)<#2>{node[circle, red, draw, inner sep=1pt,pin={[red, overlay, inner sep=0.5pt, font=\small, pin distance=0.1cm, pin edge={red, overlay,}]#2:#1}](#1){}}
\path(-2,1) -- (11,-1);
\draw (0,0) node[american and port, number inputs=3](A){IC1} ;
\foreach \a/\d in {bin 1/-135, bin 2/-135, bin 3/-135, bout/-45}
\path (A.\a) \coorda(\a)<\d>;
\draw (4.5,0) node[american or port, number inputs=3](A){IC1};
\foreach \a/\d in {bin 1/-135, bin 2/-135, bin 3/-135, bout/-45}
\path (A.\a) \coorda(\a)<\d>;
\draw (9,0) node[nand port, ](A){} ;
\foreach \a/\d in {bin 1/-135, bin 2/-135, bout/-45}
\path (A.\a) \coorda(\a)<\d>;
\end{circuitikz}
\bigskip
These anchors are especially useful if you want to negate inputs:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,3) node[american and port] (A) {P1};
\node at (A.bin 1) [ocirc, left]{} ;
\begin{scope}
\ctikzset{tripoles/american or port/height=1.6}
\draw (A.out) -- ++(0.5,0) node[american or port,
number inputs=5, anchor=in 1] (B) {P2};
\node at (B.bin 3) [ocirc, left]{} ;
\end{scope}
\draw (0,1.5) node[american or port] (C) {P3};
\node at (C.bin 2) [ocirc, left]{} ;
\draw (C.out) |- (B.in 2);
\end{circuitikz}
\end{LTXexample}
As you can see, the \texttt{center} anchor is (for historic reasons) not in the center at all. You can fix this with the command \verb|\ctikzset{logic ports origin=center}|:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{logic ports origin=center}
\draw (0,0) node[and port] (myand) {}
(myand.in 1) node[anchor=east] {1}
(myand.in 2) node[anchor=east] {2}
(myand.out) node[anchor=west] {3};
\draw[<-] (myand.center) -- ++(1,-1)
node{center};
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,2) node[and port] (myand1) {}
(0,0) node[and port] (myand2) {}
(2,1) node[xnor port] (myxnor) {}
(myand1.out) -| (myxnor.in 1)
(myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}
In the case of \textsc{not}, there are only \texttt{in} and \texttt{out} (although for compatibility reasons \texttt{in 1} is still defined and equal to \texttt{in}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(1,0) node[not port] (not1) {}
(3,0) node[not port] (not2) {}
(0,0) -- (not1.in)
(not2.in) -- (not1.out)
++(0,-1) node[ground] {} to[C] (not1.out)
(not2.out) -| (4,1) -| (0,0)
;\end{circuitikz}
\end{LTXexample}
This last circuit could be drawn also (and probably in a more natural manner) using the path-style components:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) node[ground]{} to[C] ++(0,1.5)
coordinate(c)
to[inline not] ++(2.5,0) -- ++(0,1)
-| ++(-5,-1)
to[inline not] (c);
\end{circuitikz}
\end{LTXexample}
\subsubsection{IEEE logic gates usage.}
\begingroup % for IEEE ports
The rest of this section will assume you have issued the command \verb|\ctikzset{logic ports=ieee}|, so that the short form of the names is used.
\ctikzset{logic ports=ieee}
IEEE standard logic gates have a basic difference with the legacy ones: the proportions of their shapes do not change when you change the size, so you can't have a ``tall'' port or a ``squatty'' one. The two-inputs gates, by default, have their default size designed so that they match the chips component (see~\ref{sec:chips}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[dipchip](C){IC} (C.pin 8)
node[or port, anchor=in 1,
color=red](A){IC2A};
\end{circuitikz}
\end{LTXexample}
If you need, say, a 4-inputs port, the port will look like this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[dipchip](C){IC} (C.pin 8)
node[or port, anchor=in 1, number inputs=4,
color=red](A){IC2A};
\end{circuitikz}
\end{LTXexample}
\dots and in this case it is clear that it does not match. With standard ports, there are two possibilities.
The first one is to scale the port; if you set the port height so that it has the same size (see ``IEEE logic gates customization'' below for details) as the number of ports, they will match again.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[dipchip](C){IC} (C.pin 8)
node[or port, anchor=in 1,
number inputs=4,
circuitikz/ieeestd ports/height=4,
color=red](A){IC2A};
\end{circuitikz}
\end{LTXexample}
But then the size of the port is quite ``unusual''. The solution in technical literature is to use what we can call a ``rack'' for the inputs; basically, only a certain number of pins are kept on the port, and the others are put on an extended input line.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[dipchip](C){IC} (C.pin 8)
node[or port, anchor=in 1,
number inputs=4,
inner inputs=2,
color=red](A){IC2A};
\end{circuitikz}
\end{LTXexample}
When using the \texttt{inner inputs} key, keep in mind the rule of thumbs:
\begin{itemize}
\item the distance between the pins is matched with the chip ones when the \texttt{inner inputs} match the \texttt{/ieeestd ports/height} key;
\item when the number of pins in the rack is odd, the result is often quite ugly, so try to avoid it.
\end{itemize}
For example, look at the following example; given that we are asking an odd number of pins on the rack, some of the inputs are drawn on the port's border, resulting in a less-than-ideal diagram.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[dipchip](C){IC} (C.pin 8)
node[or port, anchor=in 1,
number inputs=5,
inner inputs=2,
color=red](A){IC2A};
\end{circuitikz}
\end{LTXexample}
In this case, if you don't like the solution, the better approach is to let the gate grow a bit.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[dipchip](C){IC} (C.pin 8)
node[or port, anchor=in 1,
number inputs=5,
inner inputs=3,
circuitikz/ieeestd ports/height=3,
color=red](A){IC2A};
\end{circuitikz}
\end{LTXexample}
The good thing about the rack mechanism is that you can have quite big ports without problems.
\begin{LTXexample}[varwidth=true, pos=t]
\begin{circuitikz}[scale=0.75, transform shape]
\draw node[nor port, number inputs=32, inner inputs=2,
rotate=90](A){\rotatebox{-90}{IC1A}};
\end{circuitikz}
\end{LTXexample}
You can use the additional elements (the \texttt{notcirc} and the \texttt{schmitt symbol} to obtain circuits like the following ones (well, a bit of a mix of conventions, but...):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[and port](A){A} (A.out)
node[buffer port, anchor=in,
component text=left](B){B} (B.bin)
node[schmitt symbol, above left]{}
(A.bin 1) node[schmitt symbol, right]{};
\node [notcirc, left] at (A.bin 1) {};
\node [notcirc, above](C) at (B.up) {};
\draw (C.north) |- ++(-1,1) (B.down) --++(0,-1);
\end{circuitikz}
\end{LTXexample}
Notice the key \texttt{component text=left} that moves the label near to the left border of the component. There is also a \verb|\ctikzset{component text=left}| if you prefer to have it as a default for all the IEEE ports.\footnote{You can use the same key with amplifiers, too.}
\paragraph{Stacking and aligning IEEE standard gates.} The standard gates are designed so that they stacks up nicely when positioned using the external leads as anchors. Notice that the ports \textbf{do} have different sizes, but the leads lengths are designed to counter the differences.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw
(0,0) node[and port, anchor=in 1]{A1}
(0,-1.2) node[nand port, anchor=in 1]{A2}
(0,-2.4) node[or port, anchor=in 1]{A3}
(0,-3.6) node[xnor port, anchor=in 1]{A4};
\draw
(3,0) node[and port, anchor=in 1](A1){A1}
(3,-1.2) node[nand port, anchor=in 1]{A2}
(3,-2.4) node[or port, anchor=in 1]{A3}
(3,-3.6) node[xnor port, anchor=in 1](A4){A4};
\draw[red, dashed]([yshift=0.8cm]A1.body left)
-- ([yshift=-0.8cm]A4.body left);
\end{circuitikz}
\end{LTXexample}
The length of the external leads can be changed by the user, but notice that if you use a too small value you can jeopardize that property.
The single input ports (\texttt{not port}, \texttt{buffer port} and their Schmitt equivalent) are smaller than the six standard ports, so they are not kept aligned by default; the just have the same distance at the input side. For the not ports, the \texttt{left} position of the text results often in a better look (the centered text in the triangle seems to be much more at the right).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{component text=left}
\draw (0,0) node[nand port, anchor=in 1]{A1}
(0,-1.8) node[buffer port, anchor=in 1]{A2}
(0,-3.2) node[not port, anchor=in 1]{A3};
\draw (3,0) node[nand port, anchor=in 1](A1){A1}
(3,-1.8) node[buffer port, anchor=in 1]{A2}
(3,-3.2) node[not port, anchor=in 1](A3){A3};
\draw[red, dashed]([yshift=0.8cm]A1.body left)
-- ([yshift=-0.8cm]A3.body left);
\end{circuitikz}
\end{LTXexample}
\paragraph{IEEE standard ports customization}
There are several parameters that can be used to customize the IEEE standard ports, although less than the ones in the legacy american ones --- the basic shape is set to follow the IEEE recommendation. The basic parameters are shown in the following table, and they can be set via \verb|\ctikzset{ieeestd ports/...}|
\begin{tabular}{@{}>{\ttfamily}l >{\ttfamily} l >{\RaggedRight}p{0.6\textwidth}@{}}
\toprule
\multicolumn{1}{l}{\textbf{key}} &
\multicolumn{1}{l}{\textbf{default}} &
\multicolumn{1}{l}{\textbf{description}} \\
\midrule
baselen & 0.4 & the basic length for every dimension, as a fraction of the (scaled) resistor length \\
height & 2 & the height of the port, in term of \texttt{baselen}. Pin distance is given by this parameter divided by the inner pins.\\
pin length & 0.7 & length of the external pin leads that are drawn with the port. This length is always calculated starting from the inner body of the shape.\\
not radius & 0.154 & radius of the ``not circle'' added to the negated-output ports. The default value is the IEEE recommended one. \\
xor bar distance & 0.192 & distance of the detached input shape in \texttt{xor} and \texttt{xnor} ports. The default value is the IEEE recommended one. \\
xor leads in & 1 & If set to \texttt{0}, there will be no leads drawn between the detached input line and the body in the \texttt{xor} and \texttt{xnor} ports. IEEE recommends \texttt{1} here. \\
schmitt symbol size & 0.3 & Size of the small Schmitt symbol to use near input leads. \\
\bottomrule
\end{tabular}
For example, using a \texttt{not radius} of \texttt{0.1} will give a ``not ball'' of the same size of a connecting pole, as it is in the legacy ports.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,2) node[xnor port](P){}
(P.out) to[short, -o] ++(1,0);
\ctikzset{ieeestd ports/.cd, not radius=0.1,
xor bar distance=0.3, xor leads in=0}
\draw (0,0) node[xnor port](P){}
(P.out) to[short, -o] ++(1,0);
\end{circuitikz}
\end{LTXexample}
In addition to the specific parameters, you can also apply to these ports the boolean style \texttt{no input leads} as in legacy ones (this simply \emph{does not draw} the input leads, but the anchors stays where they should):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[nand port,
number inputs=5, no input leads,](B){Pn};
\draw (B.in 1) -- (B.bin 1) (B.in 5) -- (B.bin 5);
\node[rotate=90] at (B.in 3) {\dots};
\end{circuitikz}
\end{LTXexample}
Changing the leads length must be done with a bit of care, because if the length is shorter than the port left or right extrusions strange things can happen (yes, a 4-inputs xnor gates is not so well defined\dots but it's a nice example to show):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{ieeestd ports/pin length=0.2}
\draw (0,0) node[xnor port,
number inputs=4, inner inputs=2](B){};
\end{circuitikz}
\end{LTXexample}
\paragraph{IEEE standard ports anchors} Geographical anchors define the rectangular space that the port is using, included the leads if presents.
\geocoord{ieeestd and port}
\geocoord{ieeestd xnor port, number inputs=6, inner inputs=2,
circuitikz/ieeestd ports/height=1}
Most of the anchors can be seen in the following diagram:
\begin{circuitikz}[]
\draw (0,0) node[ieeestd and port, number inputs=4](A){};
\draw (5.8,0) node[ieeestd xnor port, number inputs=2,
circuitikz/ieeestd ports/.cd, baselen=0.6, pin length=1, xor bar distance=0.4](B){};
\draw (11,0) node[ieeestd or port, number inputs=6, inner inputs=2](C){};
%
\foreach \i in {1,2,3,4} {
\path (A.in \i) \showcoord(in \i)<180:0.3>;
\path (A.bin \i) \showcoordb(bin \i)<45:0.3>;
}
\path (A.out) \showcoord(out)<0:0.2>;
\path (A.bout) \showcoordb(bout)<-45:0.2>;
\path (A.left) \showcoord(left)<-45:0.4>;
\path (A.right) \showcoord(right)<45:0.4>;
\path (B.ibin 1) \showcoordb(ibin 1)<90:0.4>;
\path (B.ibin 2) \showcoordb(ibin 2)<-90:0.4>;
\path (B.bin 1) \showcoordb(bin 1)<-145:0.2>;
\path (B.out) \showcoord(out)<0:0.2>;
\path (B.bout) \showcoordb(bout)<-45:0.2>;
\path (B.left) \showcoord(left)<-145:0.4>;
\path (B.body left) \showcoord(body left)<145:0.6>;
\path (B.right) \showcoord(right)<45:0.4>;
\path (B.body right) \showcoord(body right)<90:0.5>;
\path (C.up) \showcoordb(up)<90:0.2>;
\path (C.down) \showcoordb(down)<-90:0.2>;
\foreach \i in {1,...,6} {
\path (C.in \i) \showcoord(in \i)<180:0.2>;
}
\end{circuitikz}
The inputs anchor are \texttt{in \emph{number}} (on the tip of the lead) and \texttt{bin \emph{number}} (\textbf{b}order \textbf{in}puts) on the component's border (useful if you draw the ports with \texttt{no inut leads}).
Additionally, you have \texttt{ibin \emph{number}} (\textbf{i}nner \textbf{b}order \textbf{in}puts) for the \emph{x}-type ports. The anchor named \texttt{left} is where a central border input would be.
In one-input ports (\texttt{not port}, the buffer, and Schmitt-type ports) you can use plain \texttt{in} or \texttt{in 1} indifferently.
On the output, \texttt{out} is on the tip of the lead, and \texttt{bout} on the rightmost border (so, if there is a negation circle, it is on it); \texttt{right} is the same as \texttt{bout}.
The main body of the port is marked with \texttt{body left} and \texttt{body right} anchors (as seen in the middle port in the diagram above); you also have an \texttt{up} and \texttt{down} anchors centered on the body (you can use them as enable signals or similar things).
Finally, the internal \texttt{notcirc} node used for the output negation is accessible with the name \texttt{\emph{nodename}-not}, where \emph{nodename} is the name given to the logic port node.
\endgroup % for IEEE ports ctikzset
%%
\paragraph{Transmission gate symbols.}\label{sec:passgate}
The \texttt{tgate} and \texttt{double tgate} components are available since \texttt{1.2.4} but only in the IEEE style. An additional parameter \texttt{tgate scale} (default \texttt{0.7}; if you set this to \texttt{1} the triangles will have the same size as a \texttt{ieeestd buffer port}) select the relative scale of the components.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{logic ports=ieee}
\draw (0,0) to[inline not, *-*] ++(2,0)
node[tgate, anchor=in]{};
\end{circuitikz}
\end{LTXexample}
The anchors for the tgate's control point are called \texttt{gate} and \texttt{notgate} (and the corresponding \texttt{bgate} and \texttt{bnotgate} for the border anchors).
\begin{quote}
\begin{circuitikz}
\ctikzset{logic ports=ieee, tgate scale=1}
\node[ieee tgate](A) at (0,0) {};
\path (A.in) \showcoord(in)<180:0.2>;
\path (A.bin) \showcoordb(bin)<-135:0.2>;
\path (A.out) \showcoord(out)<0:0.2>;
\path (A.bout) \showcoordb(bout)<-45:0.2>;
\path (A.left) \showcoord(left)<135:0.4>;
\path (A.right) \showcoord(right)<45:0.4>;
\path (A.gate) \showcoord(gate)<-160:0.3>;
\path (A.bgate) \showcoordb(bgate)<-75:0.3>;
\path (A.notgate) \showcoord(notgate)<160:0.3>;
\path (A.bnotgate) \showcoordb(bnotgate)<75:0.3>;
\node[ieee double tgate](A) at (5,0) {};
\path (A.in) \showcoord(in)<180:0.2>;
\path (A.bin) \showcoordb(bin)<-135:0.2>;
\path (A.out) \showcoord(out)<0:0.2>;
\path (A.bout) \showcoordb(bout)<-45:0.2>;
\path (A.left) \showcoord(left)<135:0.4>;
\path (A.right) \showcoord(right)<45:0.4>;
\path (A.gate) \showcoord(gate)<-160:0.3>;
\path (A.bgate) \showcoordb(bgate)<-75:0.3>;
\path (A.notgate) \showcoord(notgate)<160:0.3>;
\path (A.bnotgate) \showcoordb(bnotgate)<75:0.3>;
\end{circuitikz}
\end{quote}
\subsubsection{European logic port usage}
European logic port are in the same class as american and IEEE-style ones, and they obey the same class modifier. Moreover, you can use the \texttt{no inputs pin} as in the other logic ports to suppress input pins.
The standard text inside the port does not rotate (not flip) with the component\footnote{since \texttt{1.6.4}, thanks to a suggestion by \href{https://github.com/circuitikz/circuitikz/issues/730}{user \texttt{@sputeanus} on GitHub}.}, but you can change the font (and color and so on) with the key \texttt{european ports font} (default nothing, which means it uses the standard font and color).
For more complex customization, you can use the two ``blank'' European ports, and add the text you want on them.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}
\ctikzset{
logic ports=european,
logic ports origin=center,
logic ports/scale=1.5,
tripoles/european not symbol=ieee circle,
}
% Draw the Nand with big AND symbol
\ctikzset{european ports font=\Huge\color{red}}
\draw(0,0) node [nand port, rotate=90,
number inputs=4]{};
\draw(3,0) node [nand port, xscale=-1]{};
% the un-rotation is not automatic for node text!
\draw(0,-3) node [blank port, rotate=90,
]{\rotatebox{-90}{\Huge ?}};
\draw(3,-3) node [blank not port, xscale=-1]{?};
\end{tikzpicture}
\end{LTXexample}
\paragraph{European logic port customization} Normally the European-style logic port with inverted output are marked with a small triangle; if you want you can change it with the key \texttt{tripoles/european not symbol}; its default is \texttt{triangle} but you can set it to \texttt{circle} like in the following example. As you can see, the circle size is the same as the circuit poles; if you prefer the size used in the IEEE standard ports, you can use set it to \texttt{ieee circle}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european]
\draw (0,3) node[nand port](A){}
(A.out) to[short, *-o] ++(0.5,0);
\ctikzset{tripoles/european not symbol=circle}
\draw (0,1.5) node[nand port](A){}
(A.out) to[short, *-o] ++(0.5,0);
\ctikzset{tripoles/european not symbol=ieee circle}
\draw (0,0) node[european nand port](A){}
(A.out) to[short, *-o] ++(0.5,0);
\end{circuitikz}
\end{LTXexample}
In some standard, the \texttt{xnor} port is different --- without the negation at the end and with just an $=$ sign.\footnote{Suggested by user \texttt{Schlepptop} on GitHub.}
You can switch to this if you like, with the key \texttt{european xnor style} that can be \texttt{default} or \texttt{direct}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european]
\draw (0,0) node[xnor port]{};
\ctikzset{european xnor style=direct}
\draw (3,0) node[xnor port]{};
\end{circuitikz}
\end{LTXexample}
\paragraph{European logic port anchors} The anchors are basically the same as in the american-style ports.
\bigskip
\begin{circuitikz} [american]
\def\coorda(#1)<#2>{node[circle, red, draw, inner sep=1pt,pin={[red, overlay, inner sep=0.5pt, font=\small, pin distance=0.1cm, pin edge={red, overlay,}]#2:#1}](#1){}}
\draw (0, 0) node[european and port, ](A){} ;
\foreach \a/\d in {left/45, right/45, center/-90}
\path (A.\a) \coorda(\a)<\d>;
\draw (3,0) node[european and port, ](A){} ;
\foreach \a/\d in {bin 1/-135, bin 2/-135, bout/-45}
\path (A.\a) \coorda(\a)<\d>;
\draw (6,0) node[european nand port, ](A){} ;
\foreach \a/\d in {bin 1/-135, bin 2/-135, bout/-45}
\path (A.\a) \coorda(\a)<\d>;
\ctikzset{tripoles/european not symbol=circle}
\draw (9,0) node[european nand port, ](A){} ;
\foreach \a/\d in {bin 1/-135, bin 2/-135, bout/-45}
\path (A.\a) \coorda(\a)<\d>;
\end{circuitikz}
\bigskip
\subsection{Flip-flops}\label{sec:flipflops}
Flip-flops (available since version \texttt{1.0.0}) are an hybrid between the logic ports and the chips. They have a class by themselves (\texttt{flipflops}) but the default parameters are set at the same values as the logic gates one.
The default flip flop is empty: it is just a rectangular box like a blank \texttt{dipchip} with 6 pins.
\begin{groupdesc}
\circuitdesc*{flipflop}{Blank (void) flip flop}{FF}(
pin 1/180/0.2, pin 2/180/0.2, pin 3/180/0.2,
bpin 1/120/0.3, bpin 6/60/0.3, up/90/0.2, down/-90/0.2, bup/30/0.2, bdown/-30/0.2,
pin 6/0/0.2, pin 5/0/0.2, pin 4/0/0.2)
\end{groupdesc}
As you can see, in a void flip flop no external pins are drawn: you have to define the meaning of each of them to see them.
To define a specific flip-flop, you have to set a series of keys under the \verb|\ctikzset| directory \texttt{multipoles/flipflop/}, corresponding to pins \texttt{1}\dots \texttt{6}, \texttt{u} for ``up'' and \texttt{d} for ``down'':
\begin{itemize}
\item a \emph{text} value \texttt{t0}, \texttt{t1}, \dots \texttt{t6}, and \texttt{tu} and \texttt{td} (the last ones for up and down) which will set a label on the pin;
\item a \emph{clock wedge} flag (\texttt{c0}, \dots \texttt{c6}, \texttt{cu}, \texttt{cd}), with value \texttt{0} or \texttt{1}, which will draw a triangle shape on the border of the corresponding pin;
\item a \emph{negation} flag (\texttt{n0}, \dots \texttt{n6}, \texttt{nu}, \texttt{nd}), with value \texttt{0} or \texttt{1}, which will put an \texttt{ocirc} shape on the outer border of the corresponding pin.
\end{itemize}
To set all these keys, an auxiliary style \texttt{flipflop def} is defined, so that you can do the following thing:
\begingroup
\tikzset{flipflop AB/.style={flipflop,
flipflop def={t1=A, t3=B, t6=Q, t4={\ctikztextnot{Q}},
td=rst, nd=1, c2=1, n2=1, t2={\texttt{CLK}}},
}}
\begin{lstlisting}
\tikzset{flipflop AB/.style={flipflop,
flipflop def={t1=A, t3=B, t6=Q, t4={\ctikztextnot{Q}},
td=rst, nd=1, c2=1, n2=1, t2={\texttt{CLK}}},
}}
\end{lstlisting}
to obtain:
\begin{groupdesc}
\circuitdesc*{flipflop AB}{Example custom flip flop}{}(
pin 1/180/0.2, pin 2/180/0.2, pin 3/180/0.2,
bpin 1/120/0.3, bpin 6/60/0.3, down/-90/0.2, bdown/-30/0.2,
pin 6/0/0.2)
\end{groupdesc}
\endgroup
\verb|\ctikztextnot{}| is a small utility macro to set a overbar to a text, like \ctikztextnot{RST} (created by \verb|\ctikztextnot{RST}|).
By default, the following flip-flops are defined, as well as a support shape for the clock wedge:
\begin{groupdesc}
\circuitdesc*{latch}{D-type latch}{}
\circuitdesc*{flipflop SR}{flip-flop SR}{}
\circuitdesc*{flipflop D}{Edge-triggered synchronous flip-flop D}{}
\circuitdesc*{flipflop T}{Edge-triggered synchronous flip-flop T}{}
\circuitdesc*{flipflop JK}{Edge-triggered synchronous flip-flop JK}{}
\circuitdesc{clockwedge}{clock wedge shape}{text}(center/180/0.6, nw/90/0.2, sw/-90/0.2, right/45/0.5)
\end{groupdesc}
If you prefer that the negated output is labelled \texttt{Q} and a dot indicating negation is shown, you can add the \texttt{dot on notQ} key:
\begin{groupdesc}
\circuitdesc*{flipflop JK, dot on notQ}{synchronous flip-flop JK with asynchronous set and reset}{}
\end{groupdesc}
You can also add ``vertical'' asynchronous set and reset (active low) adding the style \texttt{add async SR} to all of them:
\begin{groupdesc}
\circuitdesc*{flipflop JK, add async SR}{synchronous flip-flop JK with asynchronous set and reset}{}
\end{groupdesc}
\subsubsection{Custom flip-flops}
If you like different pin distributions, you can easily define different flip-flops to your taste. For example, somebody likes the clock pin on the bottom pin:
\begingroup
\tikzset{flipflop myJK/.style={flipflop,
flipflop def={t1=J, t2=K, t6=Q, t4={\ctikztextnot{Q}}, c3=1}}
}
\begin{lstlisting}
\tikzset{flipflop myJK/.style={flipflop,
flipflop def={t1=J, t2=K, t6=Q, t4={\ctikztextnot{Q}}, c3=1}}
}
\end{lstlisting}
\begin{groupdesc}
\circuitdesc*{flipflop myJK}{Example custom flip flop}{}
\end{groupdesc}
\endgroup
The standard definition of the default flip-flops are the following (in the file \texttt{pgfcircmultipoles.tex}):
\begin{lstlisting}[basicstyle=\small\ttfamily]
\tikzset{
% async
latch/.style={flipflop, flipflop def={t1=D, t6=Q, t3=CLK, t4=\ctikztextnot{Q}}},
flipflop SR/.style={flipflop, flipflop def={t1=S, t3=R, t6=Q, t4=\ctikztextnot{Q}}},
% sync
flipflop D/.style={flipflop, flipflop def={t1=D, t6=Q, c3=1, t4=\ctikztextnot{Q}}},
flipflop T/.style={flipflop, flipflop def={t1=T, t6=Q, c3=1, t4=\ctikztextnot{Q}}},
flipflop JK/.style={flipflop,
flipflop def={t1=J, t3=K, c2=1, t6=Q, t4=\ctikztextnot{Q}}},
% additional features
add async SR/.style={flipflop def={%
tu={\ctikztextnot{SET}}, td={\ctikztextnot{RST}}}},
dot on notQ/.style={flipflop def={t4={Q}, n4=1}},
}
\end{lstlisting}
\subsubsection{Flip-flops anchors}
Flip-flops have all the standard geometrical anchors, although it should be noticed that the external pins are \emph{outside} them. The pins are accessed by the number \texttt{1} to \texttt{6} for the lateral ones (like in DIP chips), and with the \texttt{up} and \texttt{down} anchors for the top and bottom one. All the pins have the ``border'' variant (add a \texttt{b} in front of them, no spaces).
\begin{quote}
\geocoord{flipflop JK}\qquad
\showanchors{flipflop JK, add async SR, external pins width=0.5}{}(%
pin 1/180/0.5, pin 2/180/0.5, pin 3/180/0.5,
up/90/0.2, down/-90/0.2,
pin 6/0/0.5, pin 5/0/0.5, pin 4/0/0.5,
bpin 1/120/0.3, bpin 2/135/0.3, bpin 3/-120/0.2,
bup/30/0.3, bdown/-30/0.3,
bpin 6/60/0.3, bpin 5/30/0.3, bpin 4/-30/0.4)
\end{quote}
If you have negated pins, you can access the \texttt{ocirc} shapes with the name as \texttt{\textsl{<nodename>}-N\textsl{<pin number>}}, and all the respective anchors (for example --- \verb|myFFnode-N4.west|).
\subsubsection{Flip-flops customization}\label{sec:flip-flop-cust}
Flip-flop's size is controlled by the class parameters (like \texttt{flipflops/scale}) and the specific \verb|\ctikzset| keys \texttt{multipoles/flipflop/width} and \texttt{multipoles/flipflop/pin spacing}. Class parameters are also used for line thickness and fill color. The default values are matched with the logic ports ones.
The fonts used for the pins \texttt{1}\dots \texttt{6} is set by the key \texttt{multipoles/flipflop/font} (by default \verb|\small| in \LaTeX{} and the equivalent in other formats) and the font used for pins \texttt{u} and \texttt{d} is \texttt{multipoles/flipflop/fontud} (\verb|\tiny| by default).
You can change it globally or specifically for each flip flop.
As in chips, you can change the length of the external pin with the key \texttt{external pins width}; you can for example have a pinless flip-flop like this:
\begin{groupdesc}
\circuitdesc*{flipflop JK, add async SR, external pins width=0}{synchronous flip-flop JK}{}
\end{groupdesc}
Notice however that negated pins when the pins width is zero has to be handled with care. As explained in the poles sections, the \texttt{ocirc} shape is drawn at the end of the shape to cancel out the wires below; so if you use a pinless flipflop when you make the connection you should take care of connecting the symbol correctly. To this end, the shapes of the negation circles are made available as \texttt{\textsl{<nodename>}-N\textsl{<pin number>}}, as you can see in the next (contrived) example.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[scale=3, transform shape]
\clip (0.2,0.5) rectangle (1.2,-1.3);
\node [flipflop JK,
flipflop def={n5=1,n4=1,t5={/c},c5=1},
external pins width=0,
](A){};
\draw (A-N5.east) -- ++(1,0); % correct
\draw (A.pin 4) -- ++(1,0); % wrong
\end{circuitikz}
\end{LTXexample}
Normally the symbols on the flip-flop are un-rotated when you rotate the symbol, but as in case of chips, you can avoid it.
\begin{LTXexample}[pos=t]
\begin{tikzpicture}
\draw (0,0) node[flipflop JK, add async SR]{};
\draw (3,0) node[flipflop JK, add async SR, rotate=90]{};
\draw (7,0) node[flipflop JK, add async SR, rotate=90, rotated numbers]{};
\end{tikzpicture}
\end{LTXexample}
You can also change the size of the wedge, with the key \texttt{multipoles/flipflop/clock wedge size} (default value \texttt{0.2}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,0) node[flipflop JK]{JK};
\ctikzset{multipoles/flipflop/clock wedge size=0.1}
\draw (2.3,0) node[flipflop JK]{JK};
\ctikzset{multipoles/flipflop/clock wedge size=0.4}
\draw (4.6,0) node[flipflop JK]{JK};
\end{circuitikz}
\end{LTXexample}
Flip-flops ``not circles'' follows the current logic port setting (either if you choose \texttt{ieee ports}, or if you are using \texttt{european ports} with \texttt{european not symbol} set to \texttt{cirle} or \texttt{ieee circle}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\ctikzset{logic ports=european,
tripoles/european not symbol=ieee circle}
\draw (0,0) node[nand port](A){}
(A.out) to[short] ++(0.5,0)
node[flipflop JK, dot on notQ, anchor=pin 2]{JK};
\ctikzset{logic ports=european,
tripoles/european not symbol=circle}
\draw (0,-3) node[nand port](A){}
(A.out) to[short] ++(0.5,0)
node[flipflop JK, dot on notQ, anchor=pin 2]{JK};
\end{circuitikz}
\end{LTXexample}
\subsection{Multiplexer and de-multiplexer}\label{sec:muxdemuxes}
The shape used for muxes and de-muxes is probably the most configurable shape of the package; it has been added by Romano in \texttt{v1.0.0}. The basic shape is a multiplexer with 8 input pin, one output pin, and three control pins ($2^3\to1$ multiplexer). The pins are not named as input or output pins (see below for a full description for anchors) for reasons that will be clear later.
\begin{groupdesc}
\circuitdesc*[0.7]{muxdemux}{mux-demux}{MD1}(lpin 1/180/0.2, lpin 2/180/0.2, bpin 1/-90/0.2, blpin 1/0/0.2, blpin 2/0/0.2, bbpin 1/90/0.2, rpin 1/0/0.1, brpin 1/-110/0.1)
\circuitdesc{wedgeinv, scale=2}{Inversion marker for European logic symbols\footnotemark}{}(base/180/0.2, top/90/0.2, apex/0/0.2, mid/45/0.2, center/135/0.2)
\footnotetext{Thanks for the contribution by \href{https://github.com/circuitikz/circuitikz/issues/679}{\texttt{yashpalgoyal1304} on GitHub}.}
\circuitdesc{circleinv, scale=2}{Circle-shaped inversion marker}{}(base/180/0.2, top/90/0.2, apex/0/0.2, mid/45/0.2, center/135/0.2, bottom/-90/0.1)
\end{groupdesc}
You can define a custom shape for the \texttt{muxdemux}es using an interface similar to the one used in flip-flops; for example:
\begin{lstlisting}
\tikzset{demux/.style={muxdemux, muxdemux def={Lh=4, Rh=8, NL=1, NB=3, NR=8}}}
\end{lstlisting}
will generate the following shape (the definition above is already defined in the package):
\begin{groupdesc}
\circuitdesc*[0.7]{demux}{Demultiplexer $1\to2^3$ with \texttt{Lh=4, Rh=8, NL=1, NB=3, NR=8} }{MD2}
\end{groupdesc}
The shape can also be defined with an inset. For example it can be used like this to define a 1-bit adder (also already available):
\begin{lstlisting}
\tikzset{one bit adder/.style={muxdemux,
muxdemux def={Lh=4, NL=2, Rh=2, NR=1, NB=1, w=1.5,
inset w=0.5, inset Lh=2, inset Rh=1.5}}}
\end{lstlisting}
\begin{groupdesc}
\circuitdesc*{one bit adder}{One-bit adder}{\Large$\oplus$}
\end{groupdesc}
Or a Arithmetic Logic Unit (again, already defined by default):
\begin{lstlisting}
\tikzset{ALU/.style={muxdemux,
muxdemux def={Lh=5, NL=2, Rh=2, NR=1, NB=2, NT=1, w=2,
inset w=1, inset Lh=2, inset Rh=0, square pins=1}}}
\end{lstlisting}
\begin{groupdesc}
\circuitdesc*{ALU}{ALU}{\rotatebox{90}{\small\ttfamily ALU}}
\end{groupdesc}
\subsubsection{Mux-Demux: design your own shape}
\begin{minipage}{0.45\linewidth}
\RaggedRight
In designing the shape there are several parameters to be taken into account. In the diagram on the right they are shown in a (hopefully) practical way. The parameter can be set in a node or in a style using the \texttt{muxdemux def} key as shown above, or set with \verb|\ctikzset| as \texttt{multipoles/muxdemux/Lh} keys and so on.
\end{minipage}%
\begin{minipage}{0.5\linewidth}
\centering
\begin{circuitikz}[quote/.style={thin, blue, <->}, refline/.style={red, dashed}]
\def\myquotev#1#2#3#4{%
\draw [refline] (A.#1) -- ++(#2,0) coordinate(tmp) --++(#3,0);
\draw [quote] (tmp|-A.center) -- (tmp |- A.#1)
node [midway, below=4pt, sloped, fill=white]{\texttt{#4}};
}
\def\myquoteh#1#2#3#4#5{%
\draw [refline] (A.#1) -- ++(0,#2) coordinate(tmp) --++(0,#3);
\draw [quote] (tmp) -- (tmp -| A.#5)
node [right, fill=white]{\texttt{#4}};
}
\begin{scope}
\clip (-4,-0.5) rectangle (2,3);
\node [muxdemux, muxdemux def={NL=6, NR=3, NT=3,
inset w=1.0, inset Lh=3.0, inset Rh=2.0}, no input leads](A) at(0,0) {};
\draw [refline] (-4,0) -- (2,0);
\draw [refline] (0,-1) -- (0,3);
\end{scope}
\myquotev{top left}{-2.8}{-.2}{Lh}
\myquotev{inset top left}{-2.0}{-.2}{inset Lh}
\myquotev{inset top right}{-1.4}{-.2}{inset Rh}
\myquotev{top right}{.5}{.2}{Rh}
\myquoteh{top left}{.3}{.2}{w}{center}
\myquoteh{inset top left}{-1.5}{-.2}{inset w}{inset top right}
\end{circuitikz}
\end{minipage}
\bigskip
The default values are $\texttt{Lh}=8$, $\texttt{Rh}=6$, $\texttt{w}=3$ and no inset: $\texttt{inset Lh}=\texttt{inset Rh}=\texttt{inset w}=0$. In addition, you can set the following parameters:
\begin{description}
\item [NL, NR, NB, NT]: number of pins relatively on the left, right, bottom and top side (default \texttt{8}, \texttt{1}, \texttt{3}, \texttt{0}). When an inset is active (in other words, when $\texttt{Lh}>0$) the pins are positioned on the top and bottom part, not in the inset; the exception is when the number of left pins is odd, in which case you have one pin set on the center of the inset.
If you do not want a pin in one side, use \texttt{0} as number of pins.
\item [square pins]: set to \texttt{0} (default) if you want the square pins to stick out following the slope of the bottom or top side, \texttt{1} if you want them to stick out in a square way (see the example above for the ALU).
\end{description}
All the distances are multiple of \texttt{multipoles/muxdemux/base len} (default \texttt{0.4}, to be set with \verb|\ctikzset|), which is relative to the basic length. That value has been chosen so that, if you have a number of pins which is equal to the effective distance where they are spread (which is \texttt{Lh} without inset, $\texttt{Lh}- (\texttt{inset Lh})$ with an inset), then the distance is the same as the default pin distance in chips, as shown in the next circuit. In the same drawing you can see the effect of \texttt{square pins} parameters (without it, the rightmost bottom lead of the \texttt{mux 4by2} shape will not connect with the below one).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\tikzset{mux 4by2/.style={muxdemux,
muxdemux def={Lh=4, NL=4, Rh=3,
NB=2, w=2, square pins=1}}}
\node [dipchip, num pins=8](A) at (0,0) {IC1};
\node [one bit adder, scale=-1, anchor=lpin 2]
at (A.pin 1){};
\node [mux 4by2, anchor=lpin 1](B)
at (A.pin 8){MUX};
\node [qfpchip, num pins=8, anchor=pin 8] at
(B.bpin 1) {IC2};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Mux-Demux customization}
Mux-demuxes have the normal parameters of their class (\texttt{muxdemuxes}): you can scale them with the \verb|\ctikzset| key \texttt{muxdemuxes/scale}, control the border thickness with \texttt{muxdemuxes/thickness} and the default fill color with \texttt{muxdemuxes/fill} --- they are set, by default, at the same values than \texttt{logic ports}.
External pins' length is controlled by the key \texttt{multipoles/external pins width} (default \texttt{0.2}) or by the style \texttt{external pins width}. The parameter
\texttt{multipoles/external pins thickness} is also respected.
like in chips. In addition, like in logic ports, you can suppress the
drawing of the leads by using the boolean key
\texttt{logic ports draw input leads} (default \texttt{true}) or, locally,
with the style \texttt{no inputs leads} (that can be reverted with
\texttt{input leads}).
The main difference between setting \texttt{external pins width} to \texttt{0} or using \texttt{no inputs lead} is that in the first case the normal pin anchors and the border anchors will coincide, and in the second case they will not move and stay where they should have been if the leads were drawn.
You can draw only selected pins and leave out the rest by setting the keys
\texttt{multipoles/draw only \emph{side} pins} and the corresponding style
\texttt{draw only \emph{side} pins} where \texttt{\emph{side}} can be \texttt{left}, \texttt{right},
\texttt{top}, \texttt{bottom}.
Those key accept a comma-separated list of
pin numbers or ranges of pin numbers (a range is given as
\texttt{$\langle$start$\rangle$ - $\langle$end$\rangle$}, ends are inclusive).
The numbers will not be expanded in any way, except those given as ends of
ranges. A special value (and the initial one) is \texttt{all}, in which case all
pins are drawn. The anchors will be adjusted, such that each \texttt{\emph{x}pin
\textit{n}} will be placed at the end of the pins which are drawn, and coincide
with the \texttt{b\emph{x}pin \textit{n}} anchors for the suppressed pins.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\node [muxdemux, muxdemux def={NL=4, NR=3, NT=5, NB=3, w=2,
inset w=0.5, Lh=4, inset Lh=2.0, inset Rh=1.0,
square pins=1},
draw only right pins={1,3},
draw only top pins={1-3},
draw only bottom pins={3}](C) at (0,0) {X};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Mux-Demux anchors}
Mux-demuxes have a plethora of anchors. As in the case of chips, the geographic anchors mark the rectangle occupied by the component, without taking into account the pin leads.
\begin{quote}
\scalebox{0.7}{%
\geocoord[baseline=(N.center)]{muxdemux}
\showanchors[baseline=(N.center)]{muxdemux}{X}(top left/180/0.3, top/90/0.3, top right/0/0.3,
bottom left/180/0.3, bottom/-90/0.3, bottom right/0/0.3, left/180/0.3, right/0/0.3,
center/45/0.2, center up/0/0.4, center down/0/0.4)
\showanchors[baseline=(N.center)]{muxdemux, muxdemux def={NL=6, NR=3, NT=3, inset w=1.0,
inset Lh=3.0, inset Rh=2.0}, no input leads}{}(inset top left/180/0.3, inset top/90/0.5,
inset top right/0/0.3, inset bottom left/180/0.3, inset bottom/-90/0.5,
inset bottom right/-20/0.3, inset left/180/0.3, inset right/-20/0.2, inset center/135/0.2,
narrow center/20/0.2, center up/45/0.4, center down/-45/0.4)
}
\end{quote}
The pins anchors are named \texttt{lpin}, \texttt{rpin}, \texttt{bpin} and \texttt{tpin} for the left, right, bottom and top pin respectively, and points to the ``external'' pin. The border pins are named the same, with a \texttt{b} added in front: \texttt{blpin}, \texttt{brpin}, \texttt{bbpin} and \texttt{btpin}.
The following graph will show the numbering and position of the pin anchors.
\begin{quote}
\begin{circuitikz}
\node [muxdemux, muxdemux def={NL=4, NR=3, NT=3, NB=3, w=2, inset w=0.5,
Lh=4, inset Lh=2.0, inset Rh=1.0, square pins=1}](C) at (0,0) {X};
\node [muxdemux, muxdemux def={NL=7, NR=8, NT=4, inset w=1.0,
inset Lh=4.0, inset Rh=0.0}](D) at (4,0) {X};
\foreach \myn/\NL/\NR/\NB/\NT in {C/4/3/3/3,D/7/8/3/4} {
\foreach \myp in {1,...,\NL} \node[right, font=\tiny] at (\myn.blpin \myp){\myp};
\foreach \myp in {1,...,\NR} \node[left, font=\tiny] at(\myn.brpin \myp) {\myp};
\foreach \myp in {1,...,\NB} \node[above, font=\tiny] at (\myn.bbpin \myp){\myp};
\foreach \myp in {1,...,\NT} \node[below, font=\tiny] at (\myn.btpin \myp){\myp};
}
\path (C.lpin 1) \showcoord(lpin 1)<180:0.3>;
\path (D.blpin 1) \showcoord(blpin 1)<135:0.3>;
\path (C.tpin 1) \showcoord(tpin 1)<180:0.3>;
\path (D.btpin 1) \showcoord(btpin 1)<45:0.3>;
\path (C.rpin 1) \showcoord(rpin 1)<0:0.3>;
\path (D.brpin 1) \showcoord(brpin 1)<45:0.3>;
\path (C.bpin 2) \showcoord(bpin 2)<-90:0.3>;
\path (C.bbpin 2) \showcoord(bbpin 2)<-60:0.3>;
\path (D.bbpin 2) \showcoord(bbpin 2)<-45:0.3>;
\end{circuitikz}
\end{quote}
The code that implemented the printing of the numbers (which in \texttt{muxdemux}es, differently from chips, are never printed automatically) in the last graph is the following one.
\begin{lstlisting}[basicstyle=\small\ttfamily]
\begin{circuitikz}
\node [muxdemux, muxdemux def={NL=4, NR=3, NT=3, NB=3, w=2, inset w=0.5,
Lh=4, inset Lh=2.0, inset Rh=1.0, square pins=1}](C) at (0,0) {X};
\node [muxdemux, muxdemux def={NL=7, NR=8, NT=4, inset w=1.0,
inset Lh=4.0, inset Rh=0.0}](D) at (4,0) {X};
\foreach \myn/\NL/\NR/\NB/\NT in {C/4/3/3/3,D/7/8/3/4} {
\foreach \myp in {1,...,\NL} \node[right, font=\tiny] at (\myn.blpin \myp){\myp};
\foreach \myp in {1,...,\NR} \node[left, font=\tiny] at(\myn.brpin \myp) {\myp};
\foreach \myp in {1,...,\NB} \node[above, font=\tiny] at (\myn.bbpin \myp){\myp};
\foreach \myp in {1,...,\NT} \node[below, font=\tiny] at (\myn.btpin \myp){\myp};
}
\end{circuitikz}
\end{lstlisting}
\subsubsection{Adding labels to the pins}\label{sec:muxdemux-labels}
In \texttt{muxdemux}es, there is no automatic labelling of pins with numbers as in chips; there is no simple standard enumeration possible. But since \texttt{v1.6.5} it is possible to associate a name to the pins that will be printed with the shape; that names are called \emph{pin labels}.
Pin labels are counter-rotated by default if the shape is rotated, as in chip pin numbers~(see \ref{sec:chip-rotation}), but you can avoid it with the key \texttt{rotated numbers} (the default is \texttt{straight numbers}).
Additionally, you can set also \emph{border labels} on the four borders (more or less, see later); that are normally not counter-rotated \emph{unless} the result would be upside-down (or if you use \texttt{straight numbers}, of course), and clock and negation symbols.
All of these labels and symbols are added by specifying them in a \texttt{muxdemux label=\{\dots\}} clause. Notice that the key specified there are not checked for validity; if you misspell any of that, it will be simply ignored.
\paragraph{Inner pin labels} will be printed in the inside of the shape, with the font specified in the \verb|\ctikzset| key \texttt{muxdemux/inner label font} (default is \verb|\tiny| in \LaTeX, other engine can have it different --- better set it in case of doubt) and with a padding setting with the keys \texttt{muxdemux/inner label xsep} and \texttt{muxdemux/inner label ysep} (respectively for horizontal and vertical shifts; default for both \texttt{2pt}). You can also use the key \texttt{muxdemux/inner label sep} to set both at the same time.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\tikzset{myICwl/.style={muxdemux,
muxdemux def={Lh=4, Rh=4, w=4,
NR=1, NL=2, NB=2, NT=2,},
muxdemux label={L1=left1, L2=left2,
R1=r1, B2=b2, T1=t1, T2=t2},
}
}
\draw (0, 0) node[myICwl]{chip} ++(3,0)
node[myICwl, rotate=-90]{chip};
\draw (0, -3) node[myICwl]{chip} ++(3,0)
node[myICwl, rotate=-90,
rotated numbers]{chip};
\end{circuitikz}
\end{LTXexample}
As you can see, the syntax is to add a \texttt{muxdemux label} to the specification; the labels are set using one of the letter \texttt{L}, \texttt{R}, \texttt{B}, and \texttt{T} for respectively left, right, bottom and top labels. You can define all the labels, none (which will give the default behavior of no-labels as it was before \texttt{v1.6.5}), or any number you wish.
If you want some specific label rotated in a different way, you have to do it manually, as shown in the following example.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\tikzset{mux 4by2 wl/.style={muxdemux,
muxdemux def={Lh=6, NL=6, Rh=3, NB=2, w=3, NT=1},
draw only left pins={2-5},
muxdemux label={B1=$A_1$, B2=$A_0$, R1=OUT,
L2=$D_{00}$, L3=$D_{01}$, L4=$D_{10}$, L5=$D_{11}$,
T1=\rotatebox{90}{\texttt{Enable}}},
circuitikz/muxdemux/inner label ysep=4pt}}
\node [mux 4by2 wl]{};
\end{circuitikz}
\end{LTXexample}
\paragraph{Outer pin labels} will be printed on the outside of the pin position --- in the case of left and right pins, either above (``up'', identified by \texttt{LU} and \texttt{RU} labels), or below (``down'', \texttt{LD} and \texttt{RD} labels); in the case of top and bottom pin, either at the left (\texttt{TL} and \texttt{BL}) or at the right (\texttt{TR} and \texttt{BR}). The font is specified in the key \texttt{muxdemux/outer label font} (default \verb|\tiny|) and the padding with the corresponding \texttt{muxdemux/outer label xsep} and \texttt{muxdemux/outer label ysep} (default for both \texttt{2pt}), or \texttt{muxdemux/outer label sep} to set both at the same time.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{muxdemux/outer label
font={\tiny\ttfamily\color{blue}}}
\tikzset{myICwl/.style={muxdemux,
muxdemux def={Lh=4, Rh=4, w=4,
NR=1, NL=2, NB=2, NT=2,},
muxdemux label={L1=left1, L2=left2,
R1=r1, B2=b2, T1=t1, T2=t2,
LU1=lu1, LU2=lu2, LD1=ld1, LD2=ld2,
BR1=br1, BL1=bl1, BR2=br2, BL2=bl2,
RU1=ru1, RD1=rd1,TR2=tr2, TL2=tl2,
TR1=tr1, TL1=tl1},}
}
\draw (0, 0) node[myICwl]{chip} ++(3,0)
node[myICwl, rotate=-90]{chip};
\draw (0, -3) node[myICwl]{chip} ++(3,0)
node[myICwl, rotate=-90,
rotated numbers]{chip};
\end{circuitikz}
\end{LTXexample}
\paragraph{Border labels} are drawn \emph{before} the other labels along the external border (to be exact: in north, south, east, and west position) of the component.
You set them with the key \texttt{N}, \texttt{S}, \texttt{W}, and \texttt{E} for the outer position, and \texttt{Ni}, \texttt{Si}, \texttt{Wi}, and \texttt{Ei} for the inner ones.
The font is specified in the key \texttt{muxdemux/border label font} (default \verb|\tiny|) and the padding with the corresponding \texttt{muxdemux/border label xsep} and \texttt{muxdemux/border label ysep} (default for both \texttt{2pt}), or \texttt{muxdemux/border label sep} to set both at the same time.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{muxdemux/outer label
font={\tiny\ttfamily\color{blue}}}
\tikzset{myICwl/.style={muxdemux,
muxdemux def={Lh=4, Rh=4, w=4,
NR=1, NL=2, NB=0, NT=0,},
muxdemux label={L1=inA, L2=inB,
R1=OUT, RU1=3, LU1=1, LU2=2,
N=mychip},}
}
\draw (0, 0) node[myICwl]{} ++(3,0)
node[myICwl, rotate=180]{};
\draw (0, -3) node[myICwl,
muxdemux label={N=another}]{};
\end{circuitikz}
\end{LTXexample}
As you can see, you can locally change any label in a specific instance.
\paragraph{Clock and negation symbols} are not exactly labels, but they can be added with the same mechanism. There are four symbols available:
\begin{description}
\item [clock wedge:] activated by the key \texttt{c} followed by the position (for example, \texttt{cL2} will set the clock wedge on the second left pin); its size can be changed with the key \texttt{muxdemux/clock wedge size} (default \texttt{0.2}, relative to \texttt{muxdemux/base len});
\item [not ball:] activated by the key \texttt{n} followed by the position (for example, \texttt{cR1} will set the negation circle on the first right pin); the type and shape of the ball will depend on the logic port negation in use (basically it will use a \texttt{circleinv} shape unless you are using european ports with the small \texttt{ocirc} negation symbol);
\item [wedge in:] a wedge negation \emph{entering} the component (with the point on the border), activated by the key \texttt{wi} followed by the position;
\item [wedge out:] a wedge negation \emph{exiting} the component (with the base on the border), activated by the key \texttt{wo} followed by the position.
\end{description}
The value of the key should be \texttt{0} or \texttt{1} for clocks and not circles; zero means ``do not draw'' and is used to override a previously specified element. In the case of wedge-style not, the \texttt{-1} value flips the side of the triangle (see the following example).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \ctikzset{muxdemux/outer label
font={\tiny\ttfamily\color{blue}}}
\ctikzset{logic ports=ieee, multipoles/external pins width=0.3}
\tikzset{myICwl/.style={muxdemux,
muxdemux def={Lh=4, Rh=4, w=4, NR=2, NL=2, NB=1, NT=0,},
muxdemux label={L1=inA, L2=inB, R1=OUT, RU1=3, LU1=1, LU2=2,
N=example, nL1=1, woR1=1, woR2=-1, wiB1=1, cL2=1},}
}
\draw (0, 0) node[myICwl]{};
\draw (0, -3) node[myICwl,
muxdemux label={N=another, LU1={1\strut},
RU1={3\strut}, cL2=0}](A){};
\draw[red, <-] (A-nL1.-135) -- ++(-135:0.3);
\end{circuitikz}
\end{LTXexample}
As you can see, the label position is not affected (with the exception of the clock wedge, that displaces the inner label), so you have to manually take care of not having overruns; you can change the \texttt{xsep} or \texttt{ysep} or, as shown in the example, modify the heigh and depth of the affected labels.
You have also to take care of the effect shown for the flip-flops in section~\ref{sec:flip-flop-cust}, to avoid overrun the not circles when connecting wires. The ``not'' elements are named after the instance as \texttt{\textsl{<nodename>}-\textsl{<activating key>}} to give access to the border (show also in the example, although in bit of forced way\dots look at the red arrow).
\subsubsection{Manually adding wedges or circular inversion markers}\label{sec:wedge-inversion}
If the standard ``internal'' negation symbols are not sufficiently configurable for your application, you can add them manually.
To add the wedge symbol, the \texttt{wedgeinv} shape will nicely do. It'll scale with the \texttt{muxdemuxes} class, and the length and height can be changed with the keys \texttt{wedge inversion mark/width} (default \texttt{0.2}) and \texttt{height} (default \texttt{0.1}), with the same units that are used for the \texttt{external pins width} and similar keys.
Similarly, there is also a \texttt{circleinv} shape, which is basically the same as the \texttt{notcirc} (see~\ref{sec:ieeestdports}) one, but that scales with the \texttt{muxdemuxes} class and that has the default anchor at its left, similarly to \texttt{wedgeinv}. This one will be filled if the class says so, contrary to the wedge-like shapes that are always open.
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[]
\path (0,4) node[muxdemux, muxdemux def={NL=2,Lh=2,Rh=2,NB=1},
external pins width = 0.5](mdemux){};
\draw (mdemux.blpin 1) node[wedgeinv,anchor=apex]{};
\draw (mdemux.brpin 1) node[wedgeinv]{};
\draw (mdemux.bbpin 1) node[wedgeinv, anchor=apex,
rotate=90]{};
\ctikzset{wedge inversion mark/.cd, width=0.1}
\ctikzset{muxdemuxes/.cd, fill=yellow, thickness=3, scale=0.8}
\path (0,2) node[muxdemux, muxdemux def={NL=2,Lh=2,Rh=2,NB=0},
external pins width = 0.5](mdemux){};
\draw (mdemux.blpin 1) node[wedgeinv,anchor=apex]{};
\draw (mdemux.brpin 1) node[wedgeinv]{};
\path (0,0) node[muxdemux, muxdemux def={NL=2,Lh=2,Rh=2,NB=0},
external pins width = 0.5](mdemux){};
\draw (mdemux.blpin 1) node[circleinv,anchor=apex]{};
\draw (mdemux.brpin 1) node[circleinv]{};
\end{tikzpicture}
\end{LTXexample}
\subsubsection{Adding a background drawing to the muxdemux}
In a similar way to the oscilloscope waveform, you can add a drawing to the \texttt{muxdemux} component, provided you use basic-level \texttt{pgf} commands. You have to define a \texttt{.code} key named \texttt{bgpicture} in the \texttt{muxdemux def} definitions, as in the following example. The coordinate system is changed so that the horizontal axis of the shape is mapped between \SI{-1}{\cm} and \SI{+1}{\cm} and the origin at the center; the vertical extent will then depend on the form factor of the \texttt{muxdemux}: for example, the vertical coordinate of the top left border will be $\SI{1}{\cm}\cdot{\mathtt{Lh}/\mathtt{w}}$.
\begin{LTXexample}[varwidth=true, basicstyle=\scriptsize\ttfamily, keepspaces=true]
\begin{circuitikz}
\ctikzset{muxdemux/outer label font={\tiny\ttfamily\color{blue}}}
\tikzset{myICwl/.style={muxdemux,
muxdemux def={Lh=4, Rh=4, w=3, NR=1, NL=2, NB=0, NT=0,
bgpicture/.code={%
\pgfsetcolor{gray!50}\pgfsetlinewidth{1mm}
\pgfpathmoveto{\pgfpoint{-1cm}{1cm*4/3}} \pgfpathlineto{\pgfpointorigin}
\pgfpathmoveto{\pgfpoint{-1cm}{-1cm*4/3}}\pgfpathlineto{\pgfpointorigin}
\pgfpathmoveto{\pgfpoint{1cm}{0cm}} \pgfpathlineto{\pgfpointorigin}
\pgfpathcircle{\pgfpointorigin}{0.5cm}
\pgfusepath{draw}
},
},
muxdemux label={RU1=3, LU1=1, LU2=2, N=flux, Ni=converter},}
}
\draw (0, 0) node[myICwl]{}{};
\end{circuitikz}
\end{LTXexample}
You can even embed images:
\begin{LTXexample}[varwidth=true, basicstyle=\scriptsize\ttfamily]
\begin{circuitikz}
\ctikzset{muxdemux/outer label font={\tiny\ttfamily\color{blue}}}
\tikzset{myICwl/.style={muxdemux,
muxdemux def={Lh=4, Rh=4, w=3, NR=1, NL=2, NB=0, NT=0,
bgpicture/.code={%
\pgfdeclareimage[width=1.5cm]{myimg}{example-image-a}
\pgftext{\pgfuseimage{myimg}}
},
},
muxdemux label={RU1=3, LU1=1, LU2=2, N=embedding, Ni=images},}
}
\draw (0, 0) node[myICwl]{}{};
\end{circuitikz}
\end{LTXexample}
For more complex things, consider using a normal macro that draws on the background layer and that use the geographical coordinates of the node to locate it.
\subsubsection{Mux-Demux special usage}
You can use these shapes to draw a lot of symbols that are unavailable; using a bit of \LaTeX{} command trickery you can use them quite naturally too\dots. Examples with personalized amplifier shapes are listed in section~\ref{sec:muxdemux-amplis}.
As an additional example, this was used before the introduction of the \texttt{double tgate} symbol in \texttt{1.2.4} (see ~\ref{sec:passgate}):
\begin{LTXexample}[varwidth=true]
\def\tgate#1{
node[simple triangle, anchor=left, no input leads](#1-LR){}
(#1-LR.right) node[simple triangle, xscale=-1,
anchor=left](#1-RL){}
([yshift=.5ex]#1-RL.btpin 1) node[ocirc]{}}
\begin{circuitikz}[
simple triangle/.style={muxdemux, muxdemux def={
NL=1, NR=1, NB=1, NT=1, w=2, Lh=2, Rh=0,
}}]
\draw (0,0) \tgate{A} (0,-2) \tgate{B};
\draw (A-RL.bpin 1) -- (B-RL.tpin 1);
\end{circuitikz}
\end{LTXexample}
Finally, you can play with them to create chips that have generic numbers of pins on the four sides, as in the following example (asked on \href{https://tex.stackexchange.com/q/596320/38080}{TeX.Stackexchange}; notice however that this example has been made \emph{before} the option for labels existed; it could be quite streamlined now, as shown later):
\begin{LTXexample}[varwidth=true, basicstyle=\scriptsize\ttfamily]
\begin{tikzpicture}[scale=0.7, transform shape]
\tikzset{ic555/.style={muxdemux,
muxdemux def={Lh=10, NL=5, Rh=10, NR=5, NB=2, w=6, NT=2,
square pins=1},
no input leads, external pins width=0.4,
circuitikz/muxdemuxes/fill=blue!10}
}
\node [ic555, font=\small\ttfamily,align=center](A) at (0,0) {555\\Astable};
% left pins
\foreach \rawpin/\npin/\label in {2/7/Discharge, 4/2/Trigger, 5/6/Threshold}{
\draw (A.lpin \rawpin) -- (A.blpin \rawpin)
node[midway, blue, font=\small, above]{\npin}
node[right, font=\small]{\label};
}
% top pins
\foreach \rawpin/\npin in {1/8, 2/4} {
\draw (A.tpin \rawpin) -- (A.btpin \rawpin)
node[midway, blue, font=\small, left]{\npin};
}
% bottom pins
\foreach \rawpin/\npin in {1/5, 2/1} {
\draw (A.bpin \rawpin) -- (A.bbpin \rawpin)
node[midway, blue, font=\small, left]{\npin};
}
% finally, right
\draw (A.rpin 3) -- (A.brpin 3)
node[midway, blue, font=\small, above]{3};
\end{tikzpicture}
\end{LTXexample}
In a version of \Circuitikz{} better or equal to \texttt{v1.6.5}, you can do this:
\begin{LTXexample}[varwidth=true, basicstyle=\scriptsize\ttfamily]
\begin{tikzpicture}[scale=0.7, transform shape]
\ctikzset{muxdemux/inner label font=\small}
\ctikzset{muxdemux/outer label font={\small\color{blue}}}
\tikzset{ic555/.style={muxdemux,
muxdemux def={Lh=10, NL=5, Rh=10, NR=1, NB=2, w=6, NT=2},
muxdemux label={L2=Discharge, L4=Trigger, L5=Threshold,
T1=VCC, B2=GND,
LU2=7, LU4=2, LU5=6, TL1=8, TL2=4, RU1=3, BL1=5, BL2=1},
external pins width=0.4,
draw only left pins={2,4,5},
circuitikz/muxdemuxes/fill=blue!10}
}
\node [ic555, font=\small\ttfamily,align=center](A)
at (0,0) {555\\Astable};
\end{tikzpicture}
\end{LTXexample}
\subsection{Chips (integrated circuits)}\label{sec:chips}
\texttt{CircuiTikZ} supports two types of variable-pin chips: DIP (Dual-in-Line Package) and QFP (Quad-Flat Package).
\begin{groupdesc}
\circuitdesc*{dipchip}{Dual-in-Line Package chip}{}
\circuitdesc*{qfpchip}{Quad-Flat Package chip}{}
\end{groupdesc}
\subsubsection{DIP and QFP chips customization}
You can scale chips with the key \texttt{chips/scale}. As ever, that will \textbf{not} scale text size of the labels, when they are printed.
The line thickness of the main shape is controlled by \texttt{multipoles/thickness} (default 2) and the one of the external pins/pads with \texttt{multipoles/external pins thickness} (default 1).
You can customize the DIP chip with the key \texttt{multipoles/dipchip/width} (with a default of \texttt{1.2}) and the key \texttt{multipoles/dipchip/pin spacing} (default \texttt{0.4}) that are expressed in fraction of basic lengths (see section~\ref{sec:components-size}).
The height of the chip will be equal to half the numbers of pins multiplied by the spacing, plus one spacing for the borders.
For the QFP chips, you can only chose the pin spacing with \texttt{multipoles/qfpchip/pin spacing} key.
The number of pins is settable with the key \texttt{num pins}.
\textbf{Please notice} that the number of pins \textbf{must} be \emph{even} for \texttt{dipchip}s and \emph{multiple of 4} for \texttt{qfpchip}s, otherwise havoc will ensue.
The pins of the chip can be ``hidden'' (that is, just a spot in the border, optionally marked with a number) or ``stick out'' with a thin lead by setting \texttt{multipoles/external pins width} greater than 0 (default value is \texttt{0.2}, so you'll have leads as shown above).
Moreover, you can transform the thin lead into a pad by setting the key \texttt{multipoles/external pad fraction} to something different form 0 (default is \texttt{0}); the value expresses the fraction of the pin spacing space that the pad will use on both sides of the pin.
You can, if you want, avoid printing the numbers of the pin with \texttt{hide numbers} (default \texttt{show numbers}) if you prefer positioning them yourself (see the next section for the anchors you can use).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{multipoles/thickness=4}
\ctikzset{multipoles/external pins thickness=2}
\draw (0,0) node[dipchip,
num pins=12,
hide numbers,
external pins width=0.3,
external pad fraction=4 ](C){IC1};
\draw (C.pin 1) -- ++(-0.5,0) to[R]
++(0,-3) node[ground]{};
\node [right, font=\tiny]
at (C.bpin 1) {RST};
\end{circuitikz}
\end{LTXexample}
Also, you can suppress the drawing of the pins, by using the style \texttt{no inputs leads} (that can be reverted with \texttt{input leads}). The main difference between setting \texttt{external pins width} to \texttt{0} or using \texttt{no inputs lead} is that in the first case the normal pin anchors and the border anchors will coincide, and in the second case they will not move and stay where they should have been if the leads were drawn.
For special use you can suppress the orientation mark with the key \texttt{no topmark} (default \texttt{topmark}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[dipchip,
num pins=8, no topmark,
external pins width=0.0](C){IC1};
\draw (C.pin 1) -- ++(-0.5,0) to[R]
++(0,-1.5) node[ground]{};
\end{circuitikz}
\end{LTXexample}
The font used for the pins is adjustable with the key \texttt{multipoles/font} (default \verb|\tiny|)
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{multipoles/font={\color{red}\tiny}}
\draw (0,0) node[qfpchip,
num pins=16,
external pad fraction=6](C){IC1};
\draw (C.pin 1) -- ++(-0.5,0) to[R]
++(0,-2) node[ground]{};
\end{circuitikz}
\end{LTXexample}
You can draw only selected pins and leave out the rest by setting
\texttt{multipoles/draw only pins}\footnote{Added by
\href{https://github.com/circuitikz/circuitikz/pull/550}{Jonathan P. Spratte in \texttt{v1.3.8}}}.
This key accepts a comma-separated list of
pin numbers or ranges of pin numbers (a range is given as
\texttt{$\langle$start$\rangle$ - $\langle$end$\rangle$}, ends are inclusive).
The numbers will not be expanded in any way, except those given as ends of
ranges. A special value (and the initial one) is \texttt{all}, in which case all
pins are drawn. The anchors will be adjusted, such that each \texttt{pin
\textit{n}} will be placed at the end of the pins which are drawn, and coincide
with the \texttt{bpin \textit{n}} anchors for the suppressed pins.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,3) node[dipchip,
num pins=8,
draw only pins={1, 3, 5-8}](C){IC1};
\draw (C.pin 1) -- ++(-0.5,0) to[R]
++(0,-1.5) node[ground]{};
\foreach \x in {1,...,8} {
\draw[red] (C.pin \x) circle[radius=2pt];
\draw[blue] (C.bpin \x) circle[radius=1pt];
}
\draw (0, 0) node[qfpchip, draw only pins={1-2, 6, 8, 4},
external pad fraction=4, num pins=12](Q){};
\foreach \x in {1,...,12} {
\draw[red] (Q.pin \x) circle[radius=2pt];
\draw[blue] (Q.bpin \x) circle[radius=1pt];
}
\end{circuitikz}
\end{LTXexample}
\subsubsection{Chip anchors}
Chips have anchors on pins and global anchors for the main shape.
The pin anchors to be used to connect wires to the chip are called \texttt{pin 1}, \texttt{pin 2} , \dots, with just one space between \texttt{pin} and the number.
Border pin anchors (\texttt{bpin 1}\dots) are always on the box border, and can be used to add numbers or whatever markings are needed.
Obviously, in case of \texttt{multipoles/external pins width} equal to zero, border and normal pin anchors will coincide.
Additionally, you have geometrical anchors on the chip ``box'', see the following figure. The nodes are available with the full name (like \texttt{north}) and with the short abbreviations \texttt{n}, \texttt{nw}, \texttt{w}\dots. The \texttt{dot} anchor is useful to add a personalized marker if you use the \texttt{no topmark} key.
\begin{quote}
\bigskip
\def\coord(#1){node[circle, red, draw, inner sep=1pt,pin={[red, overlay, inner sep=0.5pt, font=\scriptsize, pin distance=0.2cm, fill=white, fill opacity=0.5, text opacity=1, pin edge={red, overlay,}]75:#1}](#1){}}
\def\coordd(#1){node[circle, red, draw, inner sep=1pt,pin={[red, overlay, inner sep=0.5pt, font=\scriptsize, pin distance=0.2cm, fill=white, fill opacity=0.5, text opacity=1,pin edge={red, overlay,}]-45:#1}](#1){}}
\begin{circuitikz}[american, ]
\ctikzset{multipoles/dipchip/pin spacing=0.7}
\draw (0,0) node[dipchip,
external pins width=0.4,
external pad fraction=4](C){IC1};
\foreach \p in {1,...,8}
\path (C.pin \p) \coord(pin \p)
(C.bpin \p) \coordd(bpin \p);
% second chip
\draw (C.pin 7) to[R] ++(3,0)
node[dipchip,anchor=pin 2](D){IC2};
\foreach \p in {center, nw, ne, se, sw, north, south, west, east}
\path (D.\p) \coord(\p);
\path (D.text) \coordd(text);
% third chip
\draw (D.pin 7) ++(2,0)
node[dipchip,anchor=pin 2, no topmark](E){};
\foreach \p in {center, n, w, e, s, dot}
\path (E.\p) \coord(\p);
\end{circuitikz}
\end{quote}
\subsubsection{Chip rotation}\label{sec:chip-rotation}
You can rotate chips, and normally the pin numbers are kept straight (option \texttt{straight numbers}, which is the default), but you can rotate them if you like with \texttt{rotated numbers}.
Notice that the main label has to be (counter-) rotated manually in this case.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[dipchip,
rotate=90]{%
\rotatebox{-90}{IC2}};
\draw (3,0) node[qfpchip,
rotated numbers,
rotate=45]{IC3};
\end{circuitikz}
\end{LTXexample}
\subsubsection{Chip special usage}
You can use chips to have special, personalized blocks.
Look at the following example, which is easily put into a macro.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{multipoles/thickness=3}
\ctikzset{multipoles/dipchip/width=2}
\draw (0,0) node[dipchip,
num pins=10, hide numbers, no topmark,
external pins width=0](C){Block};
\node [right, font=\tiny] at (C.bpin 1) {RST};
\node [right, font=\tiny] at (C.bpin 2) {IN1};
\node [right, font=\tiny] at (C.bpin 4) {/IN2};
\node [left, font=\tiny] at (C.bpin 8) {OUT};
\draw (C.bpin 2) -- ++(-0.5,0) coordinate(extpin);
\node [ocirc, anchor=0](notin2) at (C.bpin 4) {};
\draw (notin2.180) -- (C.bpin 4 -| extpin);
\draw (C.bpin 8) to[short,-o] ++(0.5,0);
\draw (C.bpin 5) ++(0,0.1) -- ++(0.1,-0.1)
node[right, font=\tiny]{CLK} -- ++(-0.1,-0.1);
\draw (C.n) -- ++(0,1) node[vcc]{};
\draw (C.s) -- ++(0,-1) node[ground]{};
\end{circuitikz}\end{LTXexample}
\subsection{Seven segment displays}
\begin{groupdesc}
\circuitdesc*{bare7seg}{Seven segment display}{}
\end{groupdesc}
The seven-segment display lets you show values as if they were displayed in a classical seven-segment display.\footnote{This component has been loosely inspired by the package \texttt{SevenSeg} by Germain Gondor, 2009, see \href{http://www.texample.net/tikz/examples/seven-segment-display/}{\TeX{}example.net}.}
The main ``bare'' component is the one shown above, but for simplicity a couple of style interfaces are defined:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) node[seven segment val=A dot off box on]{};
\draw (1,0) node[seven segment val=- dot none box on]{};
\draw (0,-2) node[seven segment bits=1001001 dot empty box on]{};
\draw (1,-2) node[seven segment bits=0011101 dot none box off]{};
\end{circuitikz}
\end{LTXexample}
There are two main configuration methods. The first one is \texttt{seven segment val}, which will take an hexadecimal number or value and display it: the possible values are \texttt{0,...,15}, plus \texttt{A, B, C, D, E, F} (or lowercase) and the symbol \texttt{-} (minus).
The other interface is \texttt{seven segment bits}, where you specify seven bits saying which segment must be on (please never specify a different number of bits, it will throw a very obscure error); you can see in the anchors the name of each segment.
The option \texttt{dot} specifies if you want a decimal dot or not. The key \texttt{none} will remove the dot and the space it would take; \texttt{empty} will not show the dot at all but reserve the space, and \texttt{on} or \texttt{off} will show the dot in the corresponding state.
The option \texttt{box} (can be \texttt{on} or \texttt{off}) simply toggles the drawing of the external box. You can separate it from the display with the key \texttt{seven seg/box sep} (default \texttt{1pt}), and it will use the thickness specified in \texttt{multipoles/thickness} (The same as the chips).
You can use these option with the ``bare'' object \texttt{bare7seg} and the keys \texttt{seven seg/bits} (default \texttt{0000000}), \texttt{seven seg/dot} (default \texttt{none}) and \texttt{seven seg/box} (default \texttt{off}); there is no option equivalent to the \texttt{val} interface.
\subsubsection{Seven segments anchors}
These are the anchors for the seven-segment displays; notice that when the \texttt{dot} parameter is not \texttt{none}, the cell is a bit wider at the right side.
\begingroup
\ctikzset{seven seg/color off=gray, multipoles/thickness=1}
\showanchors{bare7seg}{}(north/90/0.4, north east/45/0.4, east/0/0.4,
south east/-45/0.4, south/-90/0.4, south west/-135/0.4, west/180/0.4,
north west/135/0.4, center/-140/0.5)
\ctikzset{seven seg/dot=off}
\ctikzset{seven seg/box=on}
\showanchors{bare7seg}{}(north/90/0.4, north east/45/0.4, east/0/0.4,
south east/-45/0.4, south/-90/0.4, center/-140/0.5)
\ctikzset{seven seg/box=off}
\showanchors{bare7seg}{}(a/90/0.4, b/45/0.4, c/0/0.4, d/-90/0.4,
e/-129/0.4, f/145/0.4, g/190/0.4, dot/-45/0.2)
\endgroup
\subsubsection{Seven segments customization}
You can scale the seven segment display with the key \texttt{displays/scale}. This will scale the size of the digit, but not the absolute sizes shown below --- if you want them to scale, yo have to do it manually.
You can change several parameters to adjust the displays:
\begin{lstlisting}[basicstyle=\small\ttfamily]
\ctikzset{seven seg/width/.initial=0.4}% relative to \pgf@circ@Rlen (scalable)
\ctikzset{seven seg/thickness/.initial=4pt}% segment thickness (not scaled)
\ctikzset{seven seg/segment sep/.initial=0.2pt}% gap between segments (not scaled)
\ctikzset{seven seg/box sep/.initial=1pt}% external box gap (not scaled)
\ctikzset{seven seg/color on/.initial=red}% color for segment "on"
\ctikzset{seven seg/color off/.initial=gray!20!white} % ...and "off"
\end{lstlisting}
A couple of examples are shown below.
\begin{LTXexample}[varwidth=true, pos=b]
\begin{circuitikz}[scale=0.5]
\ctikzset{seven seg/width=0.2, seven seg/thickness=2pt}
\foreach \i in {0,...,15} \path (\i,0)
node[seven segment val=\i dot on box off]{};
\ctikzset{seven seg/color on=black}
\foreach \i in {0,...,15} \path (\i,-1.5)
node[seven segment val=\i dot off box off, fill=gray!30!white]{};
\ctikzset{seven seg/color on=green, seven seg/color off=yellow!30}
\foreach \i in {0,...,15} \path[color=red] (\i,-3)
node[seven segment val=\i dot none box on, xslant=0.2]{};
\end{circuitikz}
\end{LTXexample}
\section{Labels, voltages and currents}
You can add ``decorations'' to the path-style components; there are basically five types of them: labels, annotations, voltages, currents, and flows. Let's see an example of all of them\dots
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, l=$R_1$, f=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R=$R_1$, a=\SI{1}{\kohm}] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, v=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R=$R_1$, i=$i_1$, v=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R=$R_1$, i=$i_1$, v=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
Long names/styles for the bipoles can be used, of course, and there is a special syntax (that works only in simple cases, and olny with \LaTeX{} --- use it with caution!) if you load the package with the `siunitx` options:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}\draw
(0,0) to[resistor=1<\kilo\ohm>] (2,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Labels and Annotations}
\label{sec:labels-and-annotations}
Since Version 0.7, beside the original label (\texttt{l}) option, there is a new option to place a second label, called annotation (\texttt{a}) at each bipole.
\subsubsection{Label and annotation position}
When drawing a component left-to-right, the label \texttt{l} is by default above the component, and the annotation \texttt{a} is by default below it. The position of annotations and labels can be adjusted adding the characters \verb|_| or \verb|^| to the key.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, l=$R_1$,a=1<\kilo\ohm>] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, l_=$R_1$,a^=1<\kilo\ohm>] (2,0);
\end{circuitikz}
\end{LTXexample}
For passive components, you can use \texttt{\emph{component type}=text} as a shortcut for \texttt{\emph{component type}, l=text}:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R=$R_1$,a=1<\kilo\ohm>] (2,0);
\end{circuitikz}
\end{LTXexample}
Notice though that in active component (sources of either voltage or current) the shortcut will set the voltage (\texttt{v}) or current (\texttt{i}) property.
\paragraph{Adjust label and annotation position.}\label{sec:adjust-label-position}
Normally the package will guess a good position for the label or annotation; if you do not like it,
you can add\footnote{Since version \texttt{1.3.3}} (or remove, with negative values) distance using the \verb|\ctikzset| keys \texttt{label distance} and \texttt{annotation distance}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[sR, l=$R$, label distance=-4pt] (2,0)
to [sR, l=$R$] (4,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\ctikzset{bipoles/inductors/core distance=4pt}
\draw (0,1) to[L=$L$, name=myL] ++(2,0);
\draw[thick, double] (myL.core west) -- (myL.core east);
\draw (0,0) to[L=$L$, name=myL, label distance=2pt] ++(2,0);
\draw[thick, double] (myL.core west) -- (myL.core east);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Special symbols in labels and annotations.}\label{sec:bracing-of-labels}
When \TikZ{} processes the options, there will be problems if the label (or annotation, voltage, or current) contains one of the characters $=$ (equal) or $,$ (comma) --- because the parser search for those two characters to delimit the arguments, giving unexpected errors and wrong output.
These two characters can be protected from the option parser using an extra set of braces.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
% the following will fail:
% \draw (0,0) to[R, l=$R=3$]
\draw (0,0) to[R, l={$R=3$}] (3,0);
\draw (0,0) to[R={$R=3$}] (0,3);
\draw (3,3) to[R={$R,3$}] (3,0);
% this works, but it has wrong spacing
\draw (0,3) to[R, l=$R{=}3$] (3,3);
\end{circuitikz}
\end{LTXexample}
\textbf{Caveat:} up to version \texttt{1.2.7}, due to the way in which \Circuitikz{} used to processes the options, even that was not sufficient, so you must protect that tokens even more, for example using an \verb|\mbox| command, or redefining the characters with a \TeX\ \verb|\def|:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\def\eq{=}
% the following will fail up to 1.2.7:
% \draw (0,0) to[R, l={$R=3$}] (3,0);
\draw (0,0) to[R, l=\mbox{$R=3$}] (3,0);
\draw (0,0) to[R, l=$R\eq3$] (0,3);
\draw (3,3) to[R, l=\mbox{$R,3$}] (3,0);
% this works, but it has wrong spacing
\draw (0,3) to[R, l=$R{=}3$] (3,3);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Labels and annotation orientation.}
The default orientation of labels is controlled by the options \texttt{smartlabels}, \texttt{rotatelabels} and \texttt{straightlabels} (or the corresponding \texttt{label/align} keys). Here are examples to see the differences:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{label/align = straight}
\def\DIR{0,45,90,135,180,-90,-45,-135}
\foreach \i in \DIR {
\draw (0,0) to[R=\i, *-o] (\i:2.5);
}
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{label/align = rotate}
\def\DIR{0,45,90,135,180,-90,-45,-135}
\foreach \i in \DIR {
\draw (0,0) to[R=\i, *-o] (\i:2.5);
}
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{label/align = smart}
\def\DIR{0,45,90,135,180,-90,-45,-135}
\foreach \i in \DIR {
\draw (0,0) to[R=\i, *-o] (\i:2.5);
}
\end{circuitikz}
\end{LTXexample}
\subsubsection{Stacked (two lines) labels.}
When using \texttt{circuitikz} in LaTeX, you can use stacked (two lines) labels. The example should be self-explanatory: the two lines are specified as \texttt{l2=}\emph{line1}\texttt{ and }\emph{line2}. You can use the keys \texttt{l2 halign} to control horizontal position (\texttt{l}eft, \texttt{c}enter, \texttt{r}ight) and \texttt{l2 valign} to control the vertical one (\texttt{b}ottom, \texttt{c}enter, \texttt{t}op). The default values for alignments are thought for vertical components (where the stacke labels are more natural), in other positions you have to force them.
Notice that you \textbf{can't use} the compact \texttt{<...>} notation for \texttt{siunitx} with stacked labels. Before \texttt{v1.3.6} the label was ignored, but that has been converted into an error.
Since \texttt{v1.3.6} you have the same possibility with the \texttt{annotation} (just use \texttt{a2=...}, \verb|a2_=...|, \texttt{a2 valign} and so on. Notice that the default position for stacked annotation is \texttt{v2 halign=l}.
The \texttt{l2} and \texttt{a2} will only work in LaTeX because they use a \texttt{tabular} environment in their implementation. For plain TeX and \ConTeXt{} you have to use \texttt{l} and \texttt{a} and build the stack of labels externally.
%
% This is hacky --- better not to publish it for now
%
% \begin{circuitikz}[]
% \draw (0,2) to [R, l2= {A=B} and X, l2 valign=b, l2 halign=c] ++(2,0) to[L, l2=A and X \\ {C=Z}] ++(0,-2);
% \end{circuitikz}
\begin{LTXexample}[varwidth=true, pos=t, keepspaces, basicstyle=\footnotesize\ttfamily]
\begin{circuitikz}[american]
%
% default for l2 is: l2 halign=l, l2 valign=c. DO NOT USE the <...> notation
%
\draw (0,0) to[R, l2_=$R_{CC}$ and \SI{4.7}{k\ohm}, , l2 valign=t] ++(2,0);
\draw (0,0) to[R, l2_=$R_{CC}$ and \SI{4.7}{k\ohm}, , ] ++(0,2);
\draw (0,0) to[R, l2_=$R_{CC}$ and \SI{4.7}{k\ohm}, l2 halign=c, l2 valign=b] ++(-2,0);
\draw (0,0) to[R, l2_=$R_{CC}$ and \SI{4.7}{k\ohm}, l2 halign=r, l2 valign=c] ++(0,-2);
\draw (5,0) to[R, l2^=$R_{CC}$ and \SI{4.7}{k\ohm}, l2 halign=c, l2 valign=b] ++(2,0);
\draw (5,0) to[R, l2^=$R_{CC}$ and \SI{4.7}{k\ohm}, l2 halign=c, ] ++(0,2);
\draw (5,0) to[R, l2^=$R_{CC}$ and \SI{4.7}{k\ohm}, , l2 valign=t] ++(-2,0);
\draw (5,0) to[R, l2^=$R_{CC}$ and \SI{4.7}{k\ohm}, l2 halign=c, l2 valign=t] ++(0,-2);
\draw (10,2) to[R, l2={A=B} and X, a2={C=D} and Y] ++(0,-4);
\end{circuitikz}
\end{LTXexample}
For extra options about labels and annotations, please refer to section~\ref{sec:ornament-style}
\subsection{Currents and voltages}\label{curr-and-volt}
The default direction/sign for currents and voltages in the components is, unfortunately, not standard, and can change across country and sometime across different authors.
This unfortunate situation created a bit of confusion in \texttt{circuitikz} across the versions, with several incompatible changes starting from version 0.5.
From version 0.9.0 onward, the maintainers agreed a new policy for the directions of bipoles' voltages and currents, depending on 4 different possible options:
\begin{itemize}
\item \texttt{oldvoltagedirection}, or the key style \texttt{voltage dir=old}: Use old way of voltage direction having a difference between european and american direction, with wrong default labeling for batteries (it was the default before version 0.5);
\item \texttt{nooldvoltagedirection}, or the key style \texttt{voltage dir=noold}: The standard from version 0.5 onward, utilize the (German?) standard of voltage arrows in the direction of electric fields (without fixing batteries);
\item \texttt{RPvoltages} (meaning Rising Potential voltages), or the key style \texttt{voltage dir=RP}: the arrow is in direction of rising potential, like in \texttt{oldvoltagedirection}, but batteries and current sources are fixed so that they follow the passive/active standard: the default direction of \texttt{v} and \texttt{i} are chosen so that, when both values are positive:
\begin{itemize}
\item in passive component, the element is \emph{dissipating power};
\item in active components (generators), the element is \emph{generating power}.
\end{itemize}
\item \texttt{EFvoltages} (meaning Electric Field voltages), or the key style \texttt{voltage dir=EF}: the arrow is in the direction of the electric field, like in \texttt{nooldvoltagedirection}, but batteries are fixed;
\end{itemize}
Notice that the four styles are designed to be used at the environment level: that is, you should use them at the start of your environment as in \verb|\begin{circuitikz}[voltage dir=old] ...| and not as a key for single components, in which case the behavior is not guaranteed.
The standard direction of currents, flows and voltages are changed by these options; notice that the default drops in case of passive and active elements is normally different. Take care that in the case of \texttt{noold} and \texttt{EFvoltages} also the currents can switch directions. It is much easier to understand the several behaviors by looking at the following examples, that have been generated by the code:
\begin{lstlisting}
\foreach\element in {R, C, D, battery2, V, I, sV, cV, cI}{%
\noindent\ttfamily
\begin{tabular}{p{2cm}}
\element \\ american \\[15pt]
\element \\ european \\
\end{tabular}
\foreach\mode in {old, noold, RP, EF} {
\begin{tabular}{@{}l@{}}
\multicolumn{1}{c}{voltage dir} \\
\multicolumn{1}{c}{dir=\mode} \\[4pt]
\begin{tikzpicture}[
american, voltage dir=\mode,
]
\draw (0,0) to[\element, *-o, v=$v_1$, i=$i_1$, ] (2.5,0);
\end{tikzpicture}\\
\begin{tikzpicture}[
european, voltage dir=\mode,
]
\draw (0,0) to[\element, *-o, v=$v_1$, i=$i_1$, ] (2.5,0);
\end{tikzpicture}
\end{tabular}
\medskip
}
\par
}
\end{lstlisting}
\foreach\element in {R, C, D, battery2, V, I, sV, cV, cI}{%
\noindent\ttfamily
\begin{tabular}{p{2cm}}
\element \\ american \\[15pt]
\element \\ european \\
\end{tabular}
\foreach\mode in {old, noold, RP, EF} {
\begin{tabular}{@{}l@{}}
\multicolumn{1}{c}{voltage dir} \\
\multicolumn{1}{c}{dir=\mode} \\[4pt]
\begin{tikzpicture}[
american, voltage dir=\mode,
]
\draw (0,0) to[\element, *-o, v=$v_1$, i=$i_1$, ] (2.5,0);
\end{tikzpicture}\\
\begin{tikzpicture}[
european, voltage dir=\mode,
]
\draw (0,0) to[\element, *-o, v=$v_1$, i=$i_1$, ] (2.5,0);
\end{tikzpicture}
\end{tabular}
\medskip
}
\par
}
Obviously, you normally use just one between current and flows, but anyway you can
change the direction of the voltages,
currents and flows using the complete keys \verb|i_>|, \verb|i^<|, \verb|i>_|, \verb|i>^|,
as shown in the following examples.
This manual has been typeset with the option \texttt{\chosenvoltoption}.
\subsubsection{Common properties of voltages and currents}
\label{sec:common-vif-pos}
Currents, voltages and flows (see later) are positioned along, or across, the part of the wires that connect the inner component to the rest of the circuit. So, changing the length of the connection (the coordinates that embrace the \texttt{to[...]} command) will change the position of the components.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (-1,1) to[R, v=$v$, i=$i$, f>^=$f$] (1,1);
\draw (-2,0) to[R, v=$v$, i=$i$, f>^=$f$] (2,0);
\end{circuitikz}
\end{LTXexample}
However, you can override the properties \texttt{voltage/distance from node} (default \texttt{0.5}: how distant from the initial and final points of the path the arrow starts and ends or the plus and minus symbols are drawn) and \texttt{voltage/bump b} (how high the bump of the arrow is --- how curved it is, default \texttt{1.5}), and also \texttt{voltage/european label distance} (how distant from the normal position the voltage label will be, default \texttt{1.4}) on a per-component basis, in order to fine-tune the voltages:
\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[R, v=1<\volt>] (2,0); \par
\ctikzset{voltage/distance from node=.1}
\ctikzset{voltage/bump b=2.5}
\tikz \draw (0,0) to[R, v=1<\volt>] (2,0);
\end{LTXexample}
You can also use a global \texttt{ctikzset} on the key \texttt{voltage/distance from node} (and similar) that will act as a default value. Notice however that the specific component value \textbf{overrides} the global one, and several components have pre-defined overrides, so they will ignore the default value. The components that have out of the box predefined overrides for \texttt{distance from node} are \texttt{generic}, \texttt{ageneric}, \texttt{fullgeneric} and \texttt{memristor} (set to \texttt{0.4}), and the ones that have it for \texttt{bump b} are
\texttt{generic}, \texttt{ageneric}, \texttt{fullgeneric}, \texttt{memristor}, \texttt{tline}, \texttt{varistor}, \texttt{photoresistor}, \texttt{thermistor}, \texttt{thermistorntc}, \texttt{thermistorptc}, \texttt{ccapacitor}, \texttt{emptyzzdiode}, \texttt{fullzzdiode}, \texttt{emptythyristor}, \texttt{fullthyristor}, \texttt{emptytriac} and \texttt{fulltriac},, with several values (you can look at them in the file \texttt{pgfcirc.defines.tex})
Notice also that normally \texttt{distance from node} is a relative displacement, computed on the node-component wire. So that this will put the start and stop point $1/4$ of the way between node and component:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{voltage/distance from node=0.25}
\draw (0, 2) to[D, v=$v_1$] ++(4,0);
\draw (0, 1) to[D, v=$v_1$] ++(3,0);
\draw (0, 0) to[D, v=$v_1$] ++(2,0);
\end{circuitikz}
\end{LTXexample}
The value of \texttt{distance from node} can also be an absolute distance; in that case is measured from the start of the connection toward the component on the left (and symmetrically on the right), so this will put the start and end point to \SI{0.25}{\cm} from the start of the node:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{voltage/distance from node=0.25cm}
\draw (0, 2) to[D, v=$v_1$] ++(4,0);
\draw (0, 1) to[D, v=$v_1$] ++(3,0);
\draw (0, 0) to[D, v=$v_1$] ++(2,0);
\end{circuitikz}
\end{LTXexample}
There is currently no way to specify the position at a fixed distance from the component (as opposed as from the node).
The same concept as \texttt{distance from node} applies to the key \texttt{current/distance} for the position of the current's arrow (and to \texttt{flow/distance} for the flow arrow position):
\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[C, i=$\imath$] (2,0); \par
\ctikzset{current/distance = .2}
\tikz \draw (0,0) to[C, i=$\imath$] (2,0);
\end{LTXexample}
If you want to change those parameters by defining a component-specific key you have to use the internal name of the component (in the component list, is the \texttt{nodename} without the terminal ``\texttt{shape}'' part):
\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[R, v=1<\volt>] (1.5,0)
to[C, v=2<\volt>] (3,0); \par
\ctikzset{bipoles/capacitor/voltage/distance from node/.initial=.7}
\tikz \draw (0,0) to[R, v=1<\volt>] (1.5,0)
to[C, v=2<\volt>] (3,0); \par
\end{LTXexample}
Note the \texttt{.initial}; you have to create such key the first time you use it. These kinds of adjustments are not guaranteed to work in future upgrades, though; if you have to create a key you are somehow touching the internal structure of the package; it's much safer to create a style.
One common request is to change the style of the arrows (both head and line) of these elements. Voltages, currents and flows are part of the same path of the component, so this is not possible in simple way; you have to draw your own with \TikZ{} commands using the facilities explained in section~\ref{sec:vif-anchors}.
\subsubsection{Special treatment for generators}\label{sec:source-vif}
The ``active'' elements (sources and batteries, mainly) are treated differently from passive elements, in the sense that the default current and voltage direction and position could be different\footnote{This, in hindsight, has been a bad feature --- and I'm partly responsible for it. But removing it would create \emph{too small} variations in circuits, easily to go unnoticed, so it stays: nobody wants \emph{wrong} circuits just by recompiling.} following the chosen global voltage direction strategy (see section~\ref{curr-and-volt}). If they change or not depend on both the element and the chosen \texttt{voltage dir} option.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[]
\draw (0,0) to[sV, v=$V_s$] ++(2,0)
to[battery, v=$V_B$] ++(2,0)
to[R, v=$V_R$] ++(2,0);
\end{tikzpicture}
\end{LTXexample}
The consistency between symbols drawings and the default voltage and current directions are designed to work well \emph{when this default is enabled}. If you want, though, you can override this behavior by ``switching off'' the source status of the component by setting the property \texttt{bipole/is voltage} to \texttt{false}:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[]
\draw (0,0) to[sV, bipole/is voltage=false,
v=$V_s$] ++(2,0)
to[battery, bipole/is voltage=false,
v=$V_B$] ++(2,0)
to[R, v=$V_R$] ++(2,0);
\end{tikzpicture}
\end{LTXexample}
When you do this, \textbf{be careful} that (as you can see) the direction of the plain \texttt{v=...} option will change (please notice that this does not mean that it is incorrect, given that the voltage and current direction are arbitrary; in the case above, if the battery is a \SI{3}{V} one, $V_B=\SI{-3}{V}$ with the \texttt{RPvoltages} conventions).
Also, notice that there is an ordering problem in the \texttt{to[...]} options: you have to switch the \texttt{is voltage} property off \textbf{before} setting the voltage, otherwise you will have a mix of the source-type and passive positioning:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[]
% correct way
\draw (0,0) to[sV, bipole/is voltage=false, v=$V_s$] ++(2,0)
% wrong way, setting voltage before changing type
to[sV=$V_B$ , bipole/is voltage=false, ] ++(2,0);
\end{tikzpicture}
\end{LTXexample}
In the first \texttt{to[]} command, the voltage is set before changing the type (assigning a value to the name of the element is understood as a \texttt{v=...} command for voltage sources).
A similar switch is present for current generators, called \texttt{bipoles/.is current}, acting in a very similar way.
If you would prefer to switch to the \texttt{is voltage=false, is current=false} behavior by default, you can (since \texttt{v1.4.4}\footnote{Suggested by user \href{https://github.com/circuitikz/circuitikz/issues/590}{\texttt{@judober} on GitHub}.}) by setting the option \texttt{bipole/override source vif} to \texttt{true}. This is \emph{highly} experimental, so use with care.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[]
\draw (0,0) to [battery=vb] ++(2,0)
to[sV=sV] ++(2,0) to[R, v=vR] ++(2,0);
\ctikzset{bipole/override source vif=true}
\draw (0,-2) to [battery=vb] ++(2,0)
to[sV=sV] ++(2,0) to[R, v=vR] ++(2,0);
\end{tikzpicture}
\end{LTXexample}
Notice that the option \texttt{override source vif} is ``stronger'' than the normal \texttt{is voltage}; so to locally re-set the behavior for just one source, you need to disable that \emph{before} using a voltage designator.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\begin{tikzpicture}[american]
% dangerous option ahead: USE WITH CARE
\ctikzset{bipole/override source vif=true}
% ugly output, you should really use V>=va
\draw (0,6) to [V=va] ++(2,0);
% not working!
\draw (0,4) to [V=va, bipole/override source vif=false] ++(2,0);
% ok, this one is working --- you need both settings!
\draw (0,2) to [V,
bipole/override source vif=false,
bipole/is voltage=true,
v=va] ++(2,0);
\end{tikzpicture}
\end{LTXexample}
Clearly, if you find yourself using the last component often, it is better to define a style, which will save you a lot of typing and help readability:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\tikzset{myV/.style={V, bipole/override source vif=false,
bipole/is voltage=true, v={#1}}}%
\begin{tikzpicture}[american]
% dangerous option ahead: USE WITH CARE
\ctikzset{bipole/override source vif=true}
\draw (0,0) to [V>=va] ++(2,0);
\draw (0,-2) to[myV=vb] ++(2,0);
\end{tikzpicture}
\end{LTXexample}
On the other way around, you could use styles to set \texttt{is voltage=false} only on the components you use and without using the global switch --- which is the recommended way of doing it.
\subsection{Currents}\label{sec:currents}
Inline (along the wire) currents are selected with \verb|i_>|, \verb|i^<|, \verb|i>_|, \verb|i>^|, and various combinations; the default position and direction is obtained with the simple key \verb|i=...|.
Basically, \verb|^| and \verb|_| control if the label is above or below the line (above and below \textbf{do} depend on the direction of the component path), and \verb|<| and \verb|>| the direction of the arrow; swapping them (from for example from \verb|i^>| to \verb|i>^|) will switch the side of the component where the symbol is drawn. See the following examples:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i^>=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i_>=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i^<=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i_<=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i>^=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i>_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i<^=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i<_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
Also notice that the direction of the path is important:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (2,1) to[R, i<=$i_1$] (0,1);
\draw (0,0) to[R, i<=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
Default directions can change if the component is active or passive,\footnote{This is better explained in section~\ref{sec:source-vif}} following the chosen global voltage direction strategy (see section~\ref{curr-and-volt}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[V=10V, i_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[voltage dir=EF]
\draw (0,0) to[V=10V, i_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[V=10V, i_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[V=10V,invert, i_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
Current generators with the direct label (the one obtained by, for example, \texttt{I = something}) will treat it as a current:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[I=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
If you use the option \texttt{americancurrent} or using the style \texttt{[american currents]}
you can change the style of current generators.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american currents]
\draw (0,0) to[I=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Flows}\label{flows}
As an alternative for the current arrows, you can also use the following ``flows''. They can also be used to indicate thermal or power flows. The syntax is pretty the same as for currents.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, f=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, f<=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, f_=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, f_>=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, f<^=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, f<_=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, f>_=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Voltages}
See the introduction at Currents and Voltages (section~\ref{curr-and-volt}, page \pageref{curr-and-volt}) for the default direction of the voltage and currents.
Voltages come in four different styles: European (with curved or straight arrows) and American (with signs that can stay near the wire or raised at the label level).
Direction and position of the symbols are controlled in the same way as for the currents (see section~\ref{sec:currents}) with the \verb|_^<>| symbols.
\subsubsection{European style} The default, with curved arrows. Use option \texttt{europeanvoltage} or style \verb![european voltages]!, or setting (even locally) \texttt{voltage=european}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european voltages]
\draw (0,0) to[R, v^>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european voltages]
\draw (0,0) to[R, v^<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european voltages]
\draw (0,0) to[R, v_>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european voltages]
\draw (0,0) to[R, v_<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
The default direction for active elements can change, depending on the global \texttt{voltage dir} setting, so be careful.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[I=1A, v_=$u_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[I<=1A, v_=$u_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[I=$~$,l=1A, v_=$u_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[I,l=1A, v_=$u_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
Moreover, for historical reasons, voltage generators have differently looking arrows (they are straight even in curved European style).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[battery,l_=1V, v=$u_1$, i=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[V=10V, i_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
You can change this last thing by forcing ``off'' the status of ``voltage generator'' of the component; but now the normal (passive) rule will apply, so, again, be careful and read section~\ref{sec:source-vif}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[battery, bipole/is voltage=false,
v>=$u_1$,] (2,0);
\end{circuitikz}
\end{LTXexample}
As for the currents, the direct label of voltage sources is passed as a voltage:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[cV=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
The following results from using the option \texttt{americanvoltage} or the style \texttt{[american voltages]}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages]
\draw (0,0) to[V=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Straight European style} Using straight arrows. Use option \texttt{straightvoltages} or style \verb![straight voltages]!, or setting (even locally) \texttt{voltage=straight}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[straight voltages]
\draw (0,0) to[R, v^>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[straight voltages]
\draw (0,0) to[R, v^<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[straight voltages]
\draw (0,0) to[R, v_>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[straight voltages]
\draw (0,0) to[R, v_<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
Again, voltage generators are treated differently:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[straight voltages]
\draw (0,0) to[V=10V, i_=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[straight voltages]
\draw (0,0) to[I, v=10V, i_=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
And you can override that with \texttt{bipole/is voltage} keeping into account that the default direction will be the one of passive components (see~\ref{sec:source-vif}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[straight voltages]
\draw (0,0) to[V, bipole/is voltage=false,
v=10V, i_=$i_1$] (3,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{American style}
Use option \texttt{americanvoltage} or set \verb![american voltages]! or use the option \texttt{voltage=american}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages]
\draw (0,0) to[R, v^>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages]
\draw (0,0) to[R, v^<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages]
\draw (0,0) to[R, v_>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages]
\draw (0,0) to[R, v_<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[I=1A, v_=$u_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[I<=1A, v_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Raised American style}
Since version \texttt{1.2.1}, ``raised'' American voltages are available; to use them, set the style \verb![raised voltages]! or use the option \texttt{voltage=raised}.
This is a version of the American-style voltage where the signs are raised to the level of the label.
The label is centered between the two signs, and the position of the signs is calculated by supposing that the label itself will be pretty simple; if you have very big labels you will need to adjust the position with \texttt{voltage shift} and/or the \texttt{voltage/distance from node} properties (see section~\ref{sec:common-vif-pos}).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[raised voltages]
\draw (0,0) to[R, v^>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[raised voltages]
\draw (0,0) to[R, v^<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[raised voltages]
\draw (0,0) to[R, v_>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[raised voltages]
\draw (0,0) to[R, v_<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\ctikzset{voltage=raised}
\draw (0,0) to[I=1A, v_=$u_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[raised voltages]
\draw (0,0) to[I<=1A, v_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Voltage position}\label{sec:sub-voltage-position}
It is possible to move the arrows and the plus or minus signs away from the component with the key \texttt{voltages shift} (default value is \texttt{0}, which gives the standard position):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,0) to[R, v=$v_1$, i=$i_1$] (2,0);
\draw (0,-1) to[R, v=$v_1$, i=$i_1$,
voltage shift=0.5] (2,-1);
\draw (0,-2) to[R, v=$v_1$, i=$i_1$,
voltage shift=1.0] (2,-2);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages, voltage shift=0.5]
\draw (0,0) to[R, v=$v_1$, i=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
Negative values do work as expected:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[raised voltages]
\draw (0,1.5) to[R, v^=$v_1$, i=$i_1$] ++(2,0);
\draw (0,0) to[R, v^=$v_1$, i_=$i_1$,
voltage shift=-1.0] ++(2,0);
\end{circuitikz}
\end{LTXexample}
Unfortunately\footnote{see \href{https://github.com/circuitikz/circuitikz/issues/747}{this bug report}.} the amount of shift given by \texttt{voltage shift} is not always the same between sources and passive bipoles, especially if the sizes of the component is very different from the default. Although this qualifies as a bug, and should be fixed in a more comprehensive way, a workaround is available with the key \texttt{voltage shift sources adjust} (default: \texttt{\ctikzvalof{voltage shift sources adjust}}). A smaller value is better for smaller components, as you can see in the example below.
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\newcommand{\example}[2][]{\draw[#1] (#2)
to [V_=$U$] ++(0, -1) (#2) ++(2,0)
to [R,v=$U_R$] ++(0,-1);
}
\ctikzset{resistors/scale=0.55,inductors/scale=0.55,
capacitors/scale=0.6,sources/scale=.8}
\begin{circuitikz}[circuitikz/voltage=straight,
voltage dir=EF]
\example{0,4}
\ctikzset{voltage shift=2}
\example[color=red]{0,2}
\ctikzset{voltage shift sources adjust=0.2}
\example[color=blue]{0,0}
\end{circuitikz}
\end{LTXexample}
You can fine-tune the position of the \texttt{+} and \texttt{-} symbols and the label in independent way using \texttt{voltage/shift} (default \texttt{0.0} for the former and \texttt{voltage/american label distance} (the distance of the label from the lines of the symbols, default \texttt{1.4}) for the latter.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages]
\draw (0,1) to[R, v=$v_1$, i=$i_1$] ++(2,0);
% normally 1.4, make it tighter
\ctikzset{voltage/american label distance=0.5}
\draw (0,0) to[R, v=$v_1$, i=$i_1$] ++(2,0);
\end{circuitikz}
\end{LTXexample}
Notes that \texttt{american voltage} also affects batteries.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[voltage shift=0.5]
\draw (0,0) to[battery,l_=1V, v=$u_1$, i=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages, voltage shift=0.5]
\draw (0,0) to[battery,l_=1V, v=$u_1$, i=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}
Additionally, the \texttt{open} component is treated differently; the voltage is placed in the middle of the open space\footnote{Since \texttt{v1.1.2}, thank to an \href{https://github.com/circuitikz/circuitikz/issues/374}{issue opened by user \texttt{rhandley} on GitHub}.}:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltages]
\draw (0,1.5) -- ++(0.5,0)
to[open, v=$v_o$, o-o] ++(2,0) -- ++(0.5,0);
\draw (0,0) -- ++(0.5,0)
to[open, v=$v_o$, voltage=straight, *-*] ++(2,0)
-- ++(0.5,0);
\end{circuitikz}
\end{LTXexample}
If you want or need to maintain the old behavior for \texttt{open} voltage, you can set the key \texttt{open voltage position} to \texttt{legacy} (the default is the new behavior, which corresponds to the value \texttt{center}).
\subsubsection{American voltages customization}\label{sec:american-voltage-custom}
Since 0.9.0, you can change the font\footnote{There was a bug before, noticed by the user \texttt{dzereb} on \href{https://tex.stackexchange.com/questions/487683/odd-minus-style-when-drawing-american-voltage}{tex.stackexchange.com} which made the symbols using different fonts in a basically random way. In the same page, user \texttt{campa} found the problem. Thanks!} used by the \texttt{american voltages} style, by setting to something different from nothing the key \texttt{voltage/american font} (default: nothing, using the current font) style:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\begin{scope}
\ctikzset{voltage/american font=\tiny\boldmath}
\draw (0,0) to[R,v=$V_S$] ++(2,0);
\end{scope}
\draw (0,-2) to[R,v=$V_S$] ++(2,0);
\end{circuitikz}
\end{LTXexample}
Also, if you want to change the symbols (sometimes just the $+$ sign is drawn, for example, or for highlighting something),
using the keys \texttt{voltage/american plus} and \texttt{voltage/american minus} (default \verb|$+$| and \verb|$\vphantom{+}-$|).
Notice that the definition of the minus sign is not simply \verb|$-$| because in most font (but not Computer Modern!) the size of the bounding box for the mathematical plus or minus are different. The \verb|\vphantom| forces the vertical size of the minus sign to be the same as the plus sign.\footnote{Changed in v1.6.3, you can look at \href{https://github.com/circuitikz/circuitikz/issues/721}{this issue on GitHub} for more details.}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\ctikzset{voltage/american font=\scriptsize\boldmath}
\ctikzset{voltage/american plus=\textcolor{red}{$\oplus$}}
\ctikzset{voltage/american minus=\textcolor{blue}{$\ominus$}}
\draw (0,0) to[R,v_>=$V_S$] ++(2,0);
\draw (0,-2) to[R,v_<=$V_S$] ++(2,0);
\end{circuitikz}
\end{LTXexample}
This could be especially useful if you define a style, to use like this:
\begin{LTXexample}[varwidth=true]
\tikzset{red plus/.style={
circuitikz/voltage/american plus=\textcolor{red}{$+$},
}}
\begin{circuitikz}[american]
\draw (0,0) to[R,v_>=$V_S$, red plus] ++(2,0);
\draw (0,-2) to[R,v_<=$V_S$] ++(2,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Combining different styles}\label{sec:mixing-voltage-styles}
Due to an historical hiccup, you need to be careful if you want to mix styles, like for example having \texttt{american} styled components and straight voltages (which are basically \texttt{european} style, at least in \Circuitikz{}). The problem is that the order of style parameters can change the output\footnote{%
thanks to Stack Exchange user \href{https://tex.stackexchange.com/q/665466/38080}{Mads P Olesen} for noticing.} as you can see in the following example, where in the red case the voltage generator shape reverted to the \texttt{european} one.
\begin{LTXexample}
\begin{circuitikz}[straight voltages, american]
\draw (0,0) to [V, v=$V_P$] ++(0,3);
\draw (1,0) to [R, v=$V_P$] ++(0,3);
\end{circuitikz}\color{red}%
\begin{circuitikz}[american, straight voltages]
\draw (0,0) to [V, v=$V_P$] ++(0,3);
\draw (1,0) to [R, v=$V_P$] ++(0,3);
\end{circuitikz}
\end{LTXexample}
This is arguably a bug, but fixing it (separating the voltage generator shapes from the voltage style) would break havoc with older circuits, so this will not be fixed for now.
\subsection{Changing the style of labels, voltages, and other text ornaments}\label{sec:ornament-style}
Since version \texttt{0.9.5}, it is possible to change the style of bipole text ornaments (labels, annotations, voltages etc) by using the appropriate styles or keys.
The basic style applied to the text is defined in the \texttt{/tikz/circuitikz} key directory and applied to every node that contains the text; you can also change them locally by using the \texttt{tikz} direct keys in local scopes.
For example, you can make all annotations small by using:
\begin{lstlisting}[numbers=none]
\ctikzset{bipole annotation style/.style={font=\small}}
\end{lstlisting}
And/or change (override) the setting in one specific bipole using:
\begin{lstlisting}[numbers=none]
...to[bipole annotation style={color=red}, R, a={Red note}]...
\end{lstlisting}
where the annotation will be in normal font (it has been reset!) and red, or append to the style:
\begin{lstlisting}[numbers=none]
...to[bipole annotation append style={color=red}, R, a={Red small note}]...
\end{lstlisting}
\textbf{Caveat:} you have to put the style changing key at the start of the \texttt{to} arguments to have any effect\footnote{No, I do not know why. Hints and fixes are welcome.}.
The available styles and commands are \texttt{bipole label style}, \texttt{bipole annotation style}, \texttt{bipole voltage style}, \texttt{bipole current style}, and \texttt{bipole flow style}. The following example shows a bit of everything.
\begin{LTXexample}[pos=t ]
\begin{circuitikz}[american]
\ctikzset{bipole annotation style/.style={font=\tiny}}
\ctikzset{bipole current style/.style={font=\small\sffamily}}
\draw (0,0) to [bipole annotation append style={fill=yellow}, R=L1, a=A1] ++(3,0)
to [bipole label style={fill=cyan}, R, l2_=L2 and 2L, a^=A2] ++(3,0);
\draw (7,0) to [bipole voltage style={color=blue},
bipole flow style={fill=green, outer sep=5pt},
R=R1, v=V1, i=I1, f>^=F1] ++(3,0)
to [bipole current append style={color=red}, R, v<=V2, i^=I2, f>^=F2] ++(3,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Accessing labels text nodes}
Since 0.9.5, you can access all the labels nodes\footnote{The access to \texttt{label}s and \texttt{annotation}s was present before, but not documented.} using special node names. So, if you use \texttt{name} to give a name to the bipole node, you can also access the following nodes: \texttt{namelabel} (notice: no space nor any other symbol between \texttt{name} and \texttt{label}!), \texttt{nameannotation}, \texttt{namevoltage}, \texttt{namecurrent} and \texttt{nameflow}. Notice that the node names are available only if the bipole has an anchor or an annotation, of course.
\begin{LTXexample}[varwidth=true,
pos=t
]
\newcommand{\marknode}[2][45]{%
\node[circle, draw, red, inner sep=1pt,
pin={[red, font=\tiny]#1:#2}] at (#2.center) {};
}
\begin{circuitikz}[ american]
\draw (0,0) to [R=L1, a=A1, name=L1] ++(3,0)
to [R, l2_=L2 and 2L, a^=A2, name=L2] ++(3,0);
\marknode{L1} \marknode{L1label} \marknode[0]{L1annotation}
\marknode{L2} \marknode[0]{L2label} \marknode{L2annotation}
\draw[blue] (L2label.south west) rectangle (L2label.north east);
\draw (6.1,0) to [R=R1, v=V1, i=I1, f>^=F1, name=R1] ++(3,0)
to [R, v<=V2, i^=I2, f>^=F2, name=R2] ++(3,0);
\marknode[0]{R1voltage} \marknode[0]{R2voltage} \marknode[90]{R1current}
\marknode[90]{R2current} \marknode{R1flow} \marknode{R2flow}
\end{circuitikz}
\end{LTXexample}
If you want to have more access to the label positioning algorithm, since \texttt{1.2.5} you can access the label rotation using the command \texttt{\textbackslash ctikzgetdirection\{\emph{nodename}\}} (where node name is for example \texttt{L1label} or \texttt{L2annotation}), and the anchor used for positioning the node as \texttt{\textbackslash ctikzgetanchor\{\emph{component label}\}\{\emph{type}\}}, where \emph{component label} is, for example, \texttt{L1} and type is either \texttt{label} or \texttt{annotation} (notice that the syntax is slightly different, for implementation reasons).
Those values are available only if the dipole declares a \texttt{l} or \texttt{a} keys; if you want them without any label you need to declare a blank one (like for example \texttt{l=\textasciitilde}).
The following example gives an idea of the values of those macros for the three types of label positioning strategies.
\begin{LTXexample}[varwidth=true, pos=t]
\newcommand{\marklabann}[3][45]{% [angle] {node label} {type: label or annotation}
\node[circle, draw, blue, inner sep=1pt,
pin={[draw, blue, font=\tiny, align=left]#1:{#2 \\ dir: \ctikzgetdirection{#2#3} \\
anchor: \ctikzgetanchor{#2}{#3}}}] at (#2#3.\ctikzgetanchor{#2}{#3}) {};}
\begin{tikzpicture}[scale=0.95, transform shape]
\foreach \style/\xdelta in {straight/0, smart/5, rotate/10} {
\begin{scope}[xshift=\xdelta cm]
\ctikzset{label/align = \style}
\draw (0,0) node[above right, rotate=45]{\style}
to[L, o-, l=$L_{ab}$, v, name=L1, a=a] ++(3,3)
to[ceV, -*, v, name=V1, l2_=L1 and L2, a^=A] ++(0,-3);
\marklabann[135]{L1}{label}
\marklabann[-90]{L1}{annotation}
\marklabann[90]{V1}{label}
\marklabann[-90]{V1}{annotation}
\end{scope}}
\end{tikzpicture}
\end{LTXexample}
\subsection{Advanced voltages, currents and flows}\label{sec:vif-anchors}
Since version \texttt{1.2.1}\footnote{some options have been added in \texttt{v1.4.1}}, it is possible to access the anchors of the ``ornaments'' --- voltage, current and flows, together with some additional information that makes it possible to personalize them.
Normally, voltages and flow and currents are drawn into the path of the bipoles, so that it is not possible, for example, to change the line type or color of the arrows, or the type of arrows\footnote{in regular voltages, the arrows are not real \TikZ{} arrows, but the auxiliary arrow shapes of \Circuitikz{}}. Access to the anchors allows you to do all these things, and more.
For example, you can do something like this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\draw (0,1) to[R, v=$v$] ++(3,0);
\draw (0,0) to[R, v, name=R, voltage/bump b=3] ++(3,0);
\draw [thin, red, -{Stealth[width=8pt]}, ]
(R-Vfrom) .. controls (R-Vcont1) and (R-Vcont2).. (R-Vto)
node [black, pos=0.5, fill=white]{v};
\end{circuitikz}
\end{LTXexample}
Or, for example, to have a different voltage style; normally you would define a macro (see~\ref{sec:american-voltage-custom} to understand the \verb|\vphantom|).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[voltage shift=0.5]
\def\eurVPM#1#2{% node, label
\draw [thin, -{Stealth[width=8pt]}, shorten >=5pt,
shorten <=5pt] (#1-Vfrom) node[font=\tiny]{$\vphantom{+}-$}
.. controls (#1-Vcont1) and (#1-Vcont2)..
(#1-Vto) node[font=\tiny]{$+$}
node[pos=0.5,anchor=\ctikzgetanchor{#1}{Vlab}]{#2};}
\draw (0,0) to[R=R1, name=R1, v, i=$i$] ++(3,0)
to[R, l_=R2, v^, name=R2] ++(0,-3);
\eurVPM{R1}{$v_1$} \eurVPM{R2}{$v_2$}
\end{circuitikz}
\end{LTXexample}
Since \texttt{v1.4.1} you can also keep the voltage, current and flow labels and suppress the output of the symbols (arrows or plus/minus depending on the style) with the keys \texttt{no v symbols}, \texttt{no i symbols}, \texttt{no f symbols} (there are also the corresponding \texttt{v symbols}, \texttt{i symbols} and \texttt{f symbols} in case you want to switch the behavior off/on globally). This for example simplify an often requested feature, like having all the current in one color and the voltages in another one, which is not possible natively because the arrows are part of the same path. One possible implementation of that is the following one:
\begin{LTXexample}[varwidth=true, basicstyle=\small\ttfamily]
\newcommand{\iarronly}[1]{% name
\node [currarrow, color=red, anchor=center,
rotate=\ctikzgetdirection{#1-Iarrow}] at (#1-Ipos) {};
}
\newcommand{\varronly}[1]{% name
\draw [color=blue] (#1-Vfrom) .. controls (#1-Vcont1)
and (#1-Vcont2).. (#1-Vto) node [currarrow,
sloped, anchor=tip, allow upside down,pos=1]{};
}
\begin{circuitikz}[]
\ctikzset{!vi/.style={no v symbols, no i symbols}}
\ctikzset{bipole voltage style/.style={color=blue},
bipole current style/.style={color=red}}
\draw (120:6) to[R, *-, name=R, v^=$v_R$, !vi]
(120:3) to[short, i=$i_R$, name=SR, !vi] (0,0);
\draw (180:4) to[L, o-, l=$L$, name=L2, v=$v_L$, !vi]
(180:2) to[V, -*, name=V2, v_=$v_2$, !vi] (0:0);
\iarronly{SR}\varronly{R}\varronly{L2}\varronly{V2}
\end{circuitikz}
\end{LTXexample}
\subsubsection{Activating the anchors}
You will have access to the anchors for voltages, currents and flows when, in the bipole, you have both a \texttt{v}, \texttt{i}, \texttt{f} specification (one or more of them) \textbf{and} a \texttt{name} key, to give the bipole a name. Otherwise, the anchors and the associated functions are not defined.
To suppress the normal output of the \texttt{v}, \texttt{i}, \texttt{f} keys, you can use such keys without any argument, like in the previous example; notice that the \verb|_| and \verb|^| modifiers work as expected.
The following line of resistors has been drawn with the following commands; it is used to show the name of the available anchors.
\begin{lstlisting}
\draw (0,0) to[R=R1, v=$v$, name=R1] ++(4,0)
to[R, l_=R2, i=$i$, name=R2] ++(4,0)
to[R=R3, f=$f$, name=R3] ++(4,0);
\end{lstlisting}
\begin{circuitikz}[]
\draw (0,0) to[R=R1, v=$v$, name=R1] ++(4,0) to[R, l_=R2, i=$i$, name=R2] ++(4,0) to[R=R3, f=$f$, name=R3] ++(4,0);
\path
(R1-Vto) \showcoord(R1-Vto)<-135:0.2>
(R1-Vfrom) \showcoord(R1-Vfrom)<-45:0.2>
(R1-Vcont1) \showcoord(R1-Vcont1)<-45:0.2>
(R1-Vcont2) \showcoord(R1-Vcont2)<-135:0.2>
(R1-Vlab) \showcoord(R1-Vlab)<-90:0.5>
(R2-Ito) \showcoord(R2-Ito)<45:0.3>
(R2-Ifrom) \showcoord(R2-Ifrom)<135:0.3>
(R2-Ipos) \showcoord(R2-Ipos)<-90:0.3>
(R3-Fto) \showcoord(R3-Fto)<45:0.3>
(R3-Ffrom) \showcoord(R3-Ffrom)<135:0.3>
(R3-Fpos) \showcoord(R3-Fpos)<-90:0.4>
;
\end{circuitikz}
The meaning of the anchors is the following:
\begin{itemize}
\item
\texttt{Vfrom} and \texttt{Vto} are the main points where the voltage information is given: start and end point of the arrow, or position of the $+$ or $-$ sign. This is the same for the \texttt{Ffrom} or \texttt{Fto} anchors for flows; for inline currents, the corresponding \texttt{Ifrom} and \texttt{Ito} mark the wire segment where the arrowhead is positioned (at the specified \texttt{current/distance} fraction. The direction of the arrow is available using the auxiliary macro \verb|\ctikzgetdirection| (see below).
\item
\texttt{Vcont1} and \texttt{Vcont2} are the control points for the curved arrow (see the examples above); in the case of straight arrows or american-style voltages, they are set at the midpoint between \texttt{Vfrom} and \texttt{Vto}.
\item
\texttt{Vlab} is where the text label for the voltage is normally positioned. The anchor used for such label is available using the auxiliary macro \verb|\ctikzgetanchor| (see below)
\item
\texttt{Ipos} and \texttt{Fpos} are the position for the arrowhead or the small flow arrow (which is a \texttt{currarrow} or \texttt{flowarrow} node normally) is positioned, respectively. The label is then added to the correct side of it using the anchor available via \verb|\ctikzgetanchor| (see below,~\ref{sec:advances-aux-info}). In this case, the exact position of the label is not available if you do not position the element, for this there is no \texttt{Flab} or \texttt{Ilab} coordinate; you have to use the \texttt{Fpos} and \texttt{Ipos} coordinate with the corresponding \texttt{Ilab} and \texttt{Flab} anchors.
\end{itemize}
Changing the options of the elements will change the anchors accordingly:
\begin{lstlisting}
\ctikzset{current/distance=0.2}
\draw (0,0) to[R=R1, v>=$v$, name=R1] ++(4,0)
to[R, l_=R2, i<_=$i$, name=R2] ++(4,0)
to[R, l_=R3, f<_=$f$, name=R3] ++(4,0);
\end{lstlisting}
\begin{circuitikz}[]
\ctikzset{current/distance=0.2}
\draw (0,0) to[R=R1, v>=$v$, name=R1] ++(4,0) to[R, l_=R2, i<_=$i$, name=R2] ++(4,0) to[R, l_=R3, f<_=$f$, name=R3] ++(4,0);
\path
(R1-Vto) \showcoord(R1-Vto)<-45:0.2>
(R1-Vfrom) \showcoord(R1-Vfrom)<-135:0.2>
(R1-Vcont1) \showcoord(R1-Vcont1)<-135:0.2>
(R1-Vcont2) \showcoord(R1-Vcont2)<-45:0.2>
(R1-Vlab) \showcoord(R1-Vlab)<-90:0.5>
(R2-Ito) \showcoord(R2-Ito)<135:0.3>
(R2-Ifrom) \showcoord(R2-Ifrom)<45:0.3>
(R2-Ipos) \showcoord(R2-Ipos)<90:0.3>
(R3-Fto) \showcoord(R3-Fto)<90:0.4>
(R3-Ffrom) \showcoord(R3-Ffrom)<80:0.4>
(R3-Fpos) \showcoord(R3-Fpos)<-90:0.4>
;
\end{circuitikz}
Obviously, the anchors follow the voltage style you choose:
\begin{lstlisting}
\draw (0,0) to[R=R1, v=$v$, name=R1, voltage=straight] ++(4,0)
to[R=R2, v=$v$, name=R2, voltage=american] ++(4,0)
to[R=R3, v=$v$, name=R3, voltage=raised] ++(4,0);
\end{lstlisting}
\begin{circuitikz}[]
\ctikzset{current/distance=0.2}
\draw (0,0) to[R=R1, v=$v$, name=R1, voltage=straight] ++(4,0)
to[R=R2, v=$v$, name=R2, voltage=american] ++(4,0)
to[R=R3, v=$v$, name=R3, voltage=raised] ++(4,0);
\foreach \i in {1, 2, 3} {
\path
(R\i-Vto) \showcoord(R\i-Vto)<-90:0.4>
(R\i-Vfrom) \showcoord(R\i-Vfrom)<-90:0.4>
(R\i-Vcont1) \showcoord(R\i-Vcont1)<135:0.6>
(R\i-Vcont2) \showcoord(R\i-Vcont2)<45:0.6>
(R\i-Vlab) \showcoord(R\i-Vlab)<-90:0.6>
;
}
\end{circuitikz}
Notice the position of the control points, as well as the fact that the anchor available with \verb|\ctikzgetanchor| is applied to \texttt{Vfrom} and \texttt{Vto} symbols, too.
Finally, as ever, generators are treated differently, but you have all your anchors too.
\begin{lstlisting}
\ctikzset{american}
\draw (0,0) to[V=$v$, name=G1, voltage=european] ++(4,0)
to[V=$v$, v=$v$, name=G2, voltage=american] ++(4,0)
to[battery2, v=$v$, name=G3, voltage=raised] ++(4,0);
\end{lstlisting}
\begin{circuitikz}[]
\ctikzset{american}
\draw (0,0) to[V=$v$, name=G1, voltage=european] ++(4,0)
to[V=$v$, v=$v$, name=G2, voltage=american] ++(4,0)
to[battery2, v=$v$, name=G3, voltage=raised] ++(4,0);
\foreach \i in {1, 2, 3} {
\path
(G\i-Vto) \showcoord(G\i-Vto)<-60:0.1>
(G\i-Vfrom) \showcoord(G\i-Vfrom)<-120:0.1>
(G\i-Vlab) \showcoord(G\i-Vlab)<90:0.3>
;
}
\end{circuitikz}
\subsubsection{Auxiliary information}\label{sec:advances-aux-info}
When the anchors are activated, there are additional macros that you can use:
\begin{itemize}
\item \texttt{\textbackslash ctikzgetanchor\{\emph{<name>}\}\{\emph{<anchor>}\}}: \emph{name} is the name of the bipole, and \emph{anchor} can be \texttt{Vlab}, \texttt{Fpos} or \texttt{Ipos}. This macro expands to the normal anchor position (something like \texttt{north}, \texttt{south west}). Notice that if you have not activated the corresponding anchor, the content of this macro is not specified. It could be equivalent to \verb|\relax| (basically, empty) or contains the anchor of a bipole with the same name from another drawing --- it's a global macro like the coordinates.
\item \texttt{\textbackslash ctikzgetdirection\{\emph{<name>}\}}: a number which is the direction of the \emph{name}d bipole.
\item \texttt{\textbackslash ctikzgetdirection\{\emph{<name>}-Iarrow\}}: a number which is the direction of the current arrow requested for the \emph{name}d bipole; using \texttt{\emph{<name>}-Farrow} you get the same information for flow arrows.
\end{itemize}
For example, you could like the voltage label oriented with the bipole:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\def\myvv#1#2{%
\draw [thin, blue, ->,]
(#1-Vfrom) .. controls (#1-Vcont1) and (#1-Vcont2).. (#1-Vto)
node [pos=0.5, below,
rotate=\ctikzgetdirection{#1}] at (#1-Vlab) {#2}; }
\draw (0,0) to[R, v, name=A] ++(3,0);
\draw (0,0) to[R, v, name=B] ++(3,3);
\myvv{A}{$v_A$}\myvv{B}{$v_B$}
\end{circuitikz}
\end{LTXexample}
Or you could use the anchor to substitute the flow with a fancy one and still position the label automatically; suppose you have the following definition in your preamble (see \TikZ{} manual, ``Path decorations''):
\begin{lstlisting}
% requires \usetikzlibrary{decorations, decorations.pathmorphing}
\tikzset{%
lray/.style={decorate, decoration={
snake, amplitude=2pt,pre length=1pt,post length=2pt, segment length=5pt,},
-Triangle,
}}
\end{lstlisting}
\tikzset{%
lray/.style={decorate, decoration={
snake, amplitude=2pt,pre length=1pt,post length=2pt, segment length=5pt, },
-Triangle,
}}
You can then define a kind of ``power flow'' style:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[]
\newcommand\myff[3][blue]{% [opt: color] node label
\draw [lray, #1, ] (#2-Ffrom) -- (#2-Fto)
node [anchor=\ctikzgetanchor{#2}{Flab}, inner sep=4pt]
at (#2-Fpos) {#3};}
\draw (0,1) to[R, f, name=A] ++(3,0);
\draw (0,0) to[R, f_<, name=B] ++(3,0);
\myff{A}{$P_A$}\myff[red]{B}{$P_B$}
\end{circuitikz}
\end{LTXexample}
\subsubsection{Fixed voltage arrows: an example of advanced voltage usage}
\begingroup % to contain example definitions
An interesting application of the advanced voltage is to have fixed length straight voltage arrows.\footnote{This was suggested by users \texttt{Franklin} and \texttt{Zarko} in \href{https://tex.stackexchange.com/questions/574576/circuitikz-straight-voltage-arrows-with-fixed-length}{a question on \texttt{tex.stackexchange.com}}}
The normal voltage arrows length depends not on the component length but on the node distance (this is the behavior since when the voltages were first introduced, so it can't be changed).
\begin{LTXexample}[varwidth=true, basicstyle=\scriptsize\ttfamily, pos=t]
\begin{circuitikz}[european,]
\ctikzset{voltage=straight}
\draw (0,0) to[R,v=$v_1$,*-*] ++(2,0) to[R, v<=$v_2$] ++(4,0) to[C, *-*, v=$v_3$] ++(1,0);
\end{circuitikz}
\end{LTXexample}
Using the advanced voltage interface mechanism, you can for example design voltages that are of fixed lengths; in the example below the new \texttt{xparse} method for defining commands is used, so that we can have a couple of different optional arguments:
\begin{lstlisting}[basicstyle=\scriptsize\ttfamily]
\NewDocumentCommand{\fixedvlen}{O{0.5cm} m m O{}}{% [semilength]{node}{label}[extra options]
% get the center of the standard arrow
\coordinate (#2-Vcenter) at ($(#2-Vfrom)!0.5!(#2-Vto)$);
% draw an arrow of a fixed size around that center and on the same line
\draw[-Triangle, #4] ($(#2-Vcenter)!#1!(#2-Vfrom)$) -- ($(#2-Vcenter)!#1!(#2-Vto)$);
% position the label as in the normal voltages
\node[anchor=\ctikzgetanchor{#2}{Vlab}, #4] at (#2-Vlab) {#3};
}
\end{lstlisting}
\NewDocumentCommand{\fixedvlen}{O{0.5cm} m m O{}}{% [semilength]{node}{label}[extra options]
% get the center of the standard arrow
\coordinate (#2-Vcenter) at ($(#2-Vfrom)!0.5!(#2-Vto)$);
% draw an arrow of a fixed size around that center and on the same line
\draw[-Triangle, #4] ($(#2-Vcenter)!#1!(#2-Vfrom)$) -- ($(#2-Vcenter)!#1!(#2-Vto)$);
% position the label as in the normal voltages
\node[anchor=\ctikzgetanchor{#2}{Vlab}, #4] at (#2-Vlab) {#3};
}
\begin{LTXexample}[varwidth=true, basicstyle=\scriptsize\ttfamily, pos=t]
\begin{circuitikz}[european,]
\ctikzset{voltage=straight}
\draw (0,2) to[R,v=$v_1$,*-*] ++(2,0) to[R, v<=$v_2$] ++(4,0) to[C, *-*, v=$v_3$] ++(1,0);
\draw (0,0) to[R,v=,name=v1,*-*] ++(2,0) to[R, v<=, name=v2] ++(4,0) to[C, *-*, v, name=v3] ++(1,0);
\fixedvlen{v1}{$V_1$}
\fixedvlen{v2}{$V_2$}
\fixedvlen{v3}{$V_3$}[red]
\end{circuitikz}
\end{LTXexample}
Notice that with a coherent naming you can use a \verb|\foreach| loop for the last three lines.
You can also notice that the arrow is not exactly the same as other arrows in the circuit; if you want them to be exactly the same, you can use a trick to get the default \Circuitikz{} arrow size --- please look at \href{https://tex.stackexchange.com/questions/549347/circuitikz-arrowhead/549354#549354}{this answer by Romano on \texttt{tex.stackexchange.com}}.
Another possibility is to have the arrow length based on the length of the component; for example you can use this code:
\begin{lstlisting}[basicstyle=\scriptsize\ttfamily]
\NewDocumentCommand{\compvlen}{O{1.5} m m O{}}{% [relative length]{node}{label}[extra options]
% get the center of the standard arrow
\coordinate (#2-Vcenter) at ($(#2-Vfrom)!0.5!(#2-Vto)$);
% draw an arrow of a size proportional to the component length
% around that center and on the same line
% the component length is calculated using the let...in with the left and right anchors
% and multiplied by the relative length
\draw[-Triangle, #4] let \p1=(#2.left), \p2=(#2.right), \n1={0.5*#1*veclen(\x2-\x1,\y2-\y1)}
in ($(#2-Vcenter)!\n1!(#2-Vfrom)$) -- ($(#2-Vcenter)!\n1!(#2-Vto)$);
% position the label as in the normal voltages
\node[anchor=\ctikzgetanchor{#2}{Vlab}, #4] at (#2-Vlab) {#3};
}
\end{lstlisting}
\NewDocumentCommand{\compvlen}{O{1.5} m m O{}}{% [relative length]{node}{label}[extra options]
% get the center of the standard arrow
\coordinate (#2-Vcenter) at ($(#2-Vfrom)!0.5!(#2-Vto)$);
% draw an arrow of a size proportional to the component length
% around that center and on the same line
% the component length is calculated using the let...in with the left and right anchors
% and multiplied by the relative length
\draw[-Triangle, #4] let \p1=(#2.left), \p2=(#2.right), \n1={0.5*#1*veclen(\x2-\x1,\y2-\y1)}
in ($(#2-Vcenter)!\n1!(#2-Vfrom)$) -- ($(#2-Vcenter)!\n1!(#2-Vto)$);
% position the label as in the normal voltages
\node[anchor=\ctikzgetanchor{#2}{Vlab}, #4] at (#2-Vlab) {#3};
}
\begin{LTXexample}[varwidth=true, basicstyle=\scriptsize\ttfamily, pos=t]
\begin{circuitikz}[european,]
\ctikzset{voltage=straight}
\draw (0,2) to[R,v=$v_1$,*-*] ++(2,0) to[R, v<=$v_2$] ++(4,0) to[C, *-*, v=$v_3$] ++(1,0);
\draw (0,0) to[R,v=,name=v1,*-*] ++(2,0) to[R, v<=, name=v2] ++(4,0) to[C, *-*, v, name=v3] ++(1,0);
\compvlen{v1}{$V_1$}
\compvlen{v2}{$V_2$}
\compvlen{v3}{$V_3$}[red]
\end{circuitikz}
\end{LTXexample}
\endgroup
\subsection{Integration with {\ttfamily siunitx}}
If the option {\ttfamily siunitx} is active\footnote{This option is still experimental --- personally (Romano) I would advise using the normal \texttt{\textbackslash SI\{\}\{\}} syntax, or the \texttt{\textbackslash qty\{\}\{\}} one for \texttt{siunitx} \texttt{v3} and newer.}, then the following are equivalent (this will \textbf{not} work in \ConTeXt{}, it has been disabled in upstream \ConTeXt, in favor of \href{https://www.pragma-ade.nl/general/manuals/units-mkiv.pdf}{its own \texttt{units} module}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, l=1<\kilo\ohm>] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, l=$\SI{1}{\kilo\ohm}$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i=1<\milli\ampere>] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, i=$\SI{1}{\milli\ampere}$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, v=1<\volt>] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, v=$\SI{1}{\volt}$] (2,0);
\end{circuitikz}
\end{LTXexample}
\section{Using bipoles in circuits}
\subsection{Nodes (also called poles)}\label{sec:bipole-nodes}
You can add nodes to the bipoles, positioned at the coordinates surrounding the component. The general style to use is \texttt{bipole nodes=\{start\}\{stop\}}, where \texttt{start} and \texttt{stop} are the nodes --- to be chosen between \texttt{none}, \texttt{circ}, \texttt{ocirc}, \texttt{squarepole}, \texttt{osquarepole}, \texttt{diamondpole}, \texttt{odiamondpole} and \texttt{rectfill}\footnote{You can use other shapes too, but at your own risk\dots Moreover, notice that \texttt{none} is not really a node, just a special word used to say ``do not put any node here''.} (see section~\ref{sec:terminals}).
\begin{LTXexample}[varwidth=true,
basicstyle=\small\ttfamily
]
\begin{circuitikz}
\ctikzset{bipoles/length=.5cm, nodes width=0.1}%small components, big nodes
\foreach \a/\p [evaluate=\a as \b using (\a+180)] in
{-90/none, -60/circ, -30/ocirc, 0/diamondpole, 30/odiamondpole, 60/squarepole, 90/osquarepole}
\draw (0,0) to[R, bipole nodes={none}{\p}] ++(\a:1.5) node[font=\tiny, anchor=\b]{\p};
\end{circuitikz}
\end{LTXexample}
These bipole nodes are added \emph{after} any single path is drawn, as every node in \TikZ\ --- this is the reason why they are always filled (with the main color the normal nodes, with white the open ones), in order to ``hide'' the wire below. You can override the fill color if you want; but notice that if you draw things in two different paths, you will have ``strange'' results; notice that in the second line of resistors the second wire is starting from the center of the white \texttt{ocirc} of the previous path.
\begin{LTXexample}[varwidth=true,
pos=t
]
\begin{circuitikz}
\draw (0,0) to[R, *-o] ++(2,0) to[R, -d] ++(2,0)
to[R, bipole nodes={diamondpole}{odiamondpole, fill=red}] ++(2,0);
\draw (0,-1) to[R, *-o] ++(2,0) ;
\draw (2,-1) to[R, -d] ++(2,0) to[R, bipole nodes={none}{squarepole}] ++(2,0);
\end{circuitikz}
\end{LTXexample}
You can define shortcuts for the \texttt{bipole nodes} you use most; for example if you want a shortcut for a bipole with open square node in red in the right side you can:
\begin{LTXexample}[varwidth=true,
basicstyle=\small\ttfamily
]
\begin{circuitikz}
\ctikzset{-s/.style = {bipole nodes={none}{osquarepole, fill=red}}}
\draw (0,0) to[R, -s] ++(2,0);
\end{circuitikz}
\end{LTXexample}
There are several predefined shorthand as the above; in the following pages you can see all of them.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, o-o] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, -o] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, o-] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, *-*] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, -*] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, *-] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, d-d] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, -d] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, d-] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, o-*] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, *-o] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, o-d] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, d-o] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, *-d] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R, d-*] (2,0);
\end{circuitikz}
\end{LTXexample}
\subsubsection{Transparent poles}\label{sec:transparent-poles}
``Open-poles'' terminals (\texttt{ocirc}, \texttt{odiamondpole}, and \texttt{osquarepole}) are normally filled with the background color at full opacity. The is reason is that \TikZ{}, when stroking a path, places and draws the nodes \emph{after} the lines are drawn; that way the poles ``white-out'' the underlying lines. Clearly this works if the wires and poles are written \emph{in the same path command}, otherwise the explicit order is respected.
Anyway, \emph{if you know what you are doing}, you can change it with the key \texttt{poles/open fill opacity} (with \verb|\ctikzset|) or the style \texttt{open poles opacity}. Notice that you will have artifacts if you don't use the border anchors of the poles to connect wires, and you need to do that by hand.
Notice that in poles, the opacity is \emph{always} selected with these keys, and it overrides the opacity of the draw commands (when not set explicitly is as if it is set to \texttt{1.0}, i.e., full opaque). This is because you normally do not want unfilled poles!
\begin{LTXexample}[pos=t]
\begin{circuitikz}[scale=3, transform shape]
\fill[cyan] (0,0) rectangle (4.1,-0.6);
\ctikzset{open poles fill=red}
\tikzset{open poles opacity=0.5}
% automatic positioning when opacity is not 1.0 creates artifacts
% note that the global fill opacity affects the "generic shape", but not the poles!
% the fill color of the poles, instead, goes with the component
\draw[fill opacity=0.8] (0,0) to[generic, fill=white, -o] ++(2,0) --++(0,-0.5);
% \draw (0,0) to[generic, fill=white, -o] ++(2,0) --++(0,-0.5);
% you have to use manual positioning
\draw (2.2,0) -- ++(0.5,0) node[ocirc, anchor=180, fill opacity=0.5]{};
\draw (3,0) node[ocirc, fill opacity=0.5](B){} (B.0) --++(0.5,0) (B.-90) --++(0,-0.5);
% maybe really useful only for terminals going out of the circuit...
% notice that in node commands you can specify the opacity directly
\draw (3.6,0) -- ++(0.2,0) node[ocirc, fill=white, fill opacity=0.5, anchor=180]{};
\end{circuitikz}
\end{LTXexample}
You also have the similar keys for the ``full'' poles (albeit they are probably not useful at all).
\subsection{Mirroring and Inverting}
Bipole paths can also be mirrored and inverted (or reverted) to change the drawing direction.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[pD] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[pD, mirror] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[pD, invert] (2,0);
\end{circuitikz}
\end{LTXexample}
Placing labels, currents and voltages also works, please note, that mirroring and inverting does not influence the positioning of labels and voltages. Labels are by default above/right of the bipole and voltages below/left, respectively.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[ospst=T, i=$i_1$, v=$v$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[ospst=T, mirror, i=$i_1$, v=$v$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[ospst=T, invert, i=$i_1$, v=$v$] (2,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[ospst=T,mirror,invert, i=$i_1$, v=$v$] (2,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Putting them together}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R=1<\kilo\ohm>,
i>_=1<\milli\ampere>, o-*] (3,0);
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[D*, v=$v_D$,
i=1<\milli\ampere>, o-*] (3,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Line joins between Path Components}
\label{sec:line-joins}
Line joins should be calculated correctly - if they are on the same path, and the path is not closed. For example, the following path is not closed correctly (\textit{--cycle} does not work here!):
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[line width=3pt,european]
\draw (0,0) to[R]++(2,0)to[R]++(0,2)
--++(-2,0)to[R]++(0,-2);
\draw[red,line width=1pt] circle(2mm);
\end{tikzpicture}
\end{LTXexample}
To correct the line ending, there are support shapes to fill the missing rectangle. They can be used like the support shapes (*,o,d) using a dot (.) on one or both ends of a component (have a look at the last resistor in this example:
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[line width=3pt,european]
\draw (0,0) to[R]++(2,0)to[R]++(0,2)
--++(-2,0)to[R,-.]++(0,-2);
\draw[red,line width=1pt] circle(2mm);
\end{tikzpicture}
\end{LTXexample}
\section{Colors}\label{sec:colors}
Color support in \Circuitikz{} has been quite limited up to version 1.5.1; from that one onward there has been an effort to make components' behavior more intuitive.
Part of the problem is how colors in paths are treated by \TikZ{} itself; you can see part of the discussion on \href{https://github.com/circuitikz/circuitikz/issues/605}{this issue} and in \href{https://tex.stackexchange.com/questions/634987/pgf-basic-layer-struggling-again-with-colors}{this question on TeX.SX} --- many thanks to \texttt{@muzimuzhi} for helping there. Basically, nodes are drawn \emph{after} the path is completed, and color is applied to the path at the end. Look at this code (pure \TikZ, no \Circuitikz{} here):
\begin{LTXexample}[varwidth=true]
\tikz \draw[thick] (0,0) -- (1,0) {[color=red] -- (2,0) node[draw]{}} --(3,0); \par
\tikz \draw[thick] (0,0) -- (1,0) [color=red] -- (2,0) node[draw]{} --(3,0);
\end{LTXexample}
So the path is drawn with the last ``effective'' (in current group) color. The deferred behavior of the color properties is very difficult to track for \Circuitikz, especially when the shorthand \texttt{color-name} (e.g., \texttt{red} instead of \texttt{color=red}) is used. \Circuitikz{} will try to keep track of the colors specified by \texttt{color=...} and \texttt{fill=...}, but if you use the implicit way (\texttt{\textbackslash draw[red]...}) it often fails.
If you're adventurous, you can try to add
\begin{lstlisting}[numbers=none]
\usepackage{regexpatch}\ctikzPatchImplicitColor
\end{lstlisting}
after loading \Circuitikz, and it will try to patch the default commands to keep track of the ``current color''; if it fails will give a warning like \texttt{patch failed, use only explicit color=...}. This is, unfortunately, not compatible with package \texttt{xpatch} (and much others, which load \texttt{xpatch}).\footnote{version \texttt{1.5.0} loaded it unconditionally for LaTeX; please do not use it}.
Before 1.5.0, \Circuitikz{} used black as the default color. Now it tries to follow the current color, as \TikZ{} does normally; but notice that there is a difference with the fill strategy:
\begin{LTXexample}[pos=t]
\color{red}
Red text
\tikz \draw (0,0) -- node[draw] {x} (1,0) -- node[draw=cyan] {y} (2,0);
\tikz \draw (0,0) to[R] (2,0) to[R,color=cyan] (4,0) to [generic] (6,0) to [fullgeneric] (8,0);
\color{blue}
Blue text
\tikz \draw (0,0) -- node[draw] {x} (1,0) -- node[draw=cyan] {y} (2,0);
\tikz \draw (0,0) to[R] (2,0) to[R,color=cyan] (4,0) to [generic] (6,0) to [fullgeneric] (8,0);
\color{black}
Black text
\tikz \draw[fill=yellow] (0,0) -- node[draw, fill] {x} (1,0) -- node[draw=cyan] {y} (2,0);
\tikz \draw[fill=yellow] (0,0) to[R] (2,0) to[R,color=cyan] (4,0) to [generic] (6,0) to [fullgeneric] (8,0);
\end{LTXexample}
\Circuitikz{} components that are fillable will inherit the \texttt{fill} property of the path (it is almost impossible to do otherwise) as if the \texttt{fill} flag was present. ``Full''-type elements (for example, full diodes or similar) are filled with the draw color; elements with intrinsic labels (i.e., labels that are part of the shape, like signs on amplifiers and pin numbers in chips) are drawn with the ``draw'' colors.
Basically, you should have no problem if:
\begin{enumerate}
\item You stick to use styles (see~\ref{sec:styling-fillcolor}) for filling your components, or using a direct \texttt{fill=...} option in the component node or \texttt{to} option;
\item do not try to change the color mid-path; sometimes it works (see the examples below), but it's better to avoid it (using different paths is better);
\item when coloring whole circuits, it's better to use the option \texttt{color=...} in your global picture options or in the \verb|\draw| command (not just the color name as a shorthand);
\item forget about transparency.
\end{enumerate}
Nevertheless, if you really need to do strange things with colors you can read on; you can do almost everything but there are several glitches to take into account.
Moreover, in some cases, also the engine you are using (as \texttt{pdflatex}, \texttt{xelatex}, and so on) can impact corner cases (or even not so corner, like in \href{https://tex.stackexchange.com/q/709273/38080}{american-style voltage source signs}).
\subsection{Shape colors}
The color of the components is stored in the key \verb!\circuitikzbasekey/color!. Circui\TikZ\ tries to follow the color set in \TikZ, although sometimes it fails. The following circuit will fail to draw the circuit in red if the patching of the inner commands of \TikZ{} fails, like for example in \ConTeXt{}.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw[red]
(0,2) node[and port](myand1){1}
(0,0) node[and port](myand2){2}
(2,1) node[xnor port](myxnor){3}
(myand1.out) -| (myxnor.in 1)
(myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}
If you see this problem, please do not use just the color name as a style, like \verb![red]!, but rather assign the style \verb![color=red]!.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw[color=red]
(0,2) node[and port](myand1){1}
(0,0) node[and port](myand2){2}
(2,1) node[xnor port](myxnor){3}
(myand1.out) -| (myxnor.in 1)
(myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}
One can, of course, change the color directly in the component:
\begin{LTXexample}[pos=t, varwidth=true]
\begin{circuitikz} \draw
(0,0) node[pnp, color=blue](pnp2){q1}
(pnp2.B) node[pnp, xscale=-1, anchor=B, color=brown](pnp1){\ctikzflipx{q2}}
(pnp1.C) node[npn, anchor=C, color=green](npn1){q3}
(pnp2.C) node[npn, xscale=-1, anchor=C, color=magenta](npn2){\ctikzflipx{q4}}
(pnp1.E) -- (pnp2.E) (npn1.E) -- (npn2.E)
(pnp1.B) node[circ]{} |- (pnp2.C) node[circ]{}
;\end{circuitikz}
\end{LTXexample}
The all-in-one stream of bipoles poses some challenges, as only the actual body of the bipole, and not the connecting lines, will be rendered in the specified color (Notice that the following example uses the special \texttt{siunitx} shorthand; you can use it only in simple cases like here, in general using the full \verb|\SI{}| or \verb|\qty{}| commands).
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) to[V=1<\volt>] (0,2)
to[R=1<\ohm>, color=red] (2,2)
to[C=1<\farad>] (2,0) -- (0,0)
;\end{circuitikz}
\end{LTXexample}
The postponed application of colors creates a problem if you want to use arrows for voltages, because the ``arrows'' are partially part of the path, partially nodes:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0){[red] to[V=1<\volt>] (0,2) }
to[R=1<\ohm>] (2,2)
to[C=1<\farad>] (2,0) -- (0,0)
;\end{circuitikz}
\end{LTXexample}
...and that can become quite frustrating:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,0) to[V=1<\volt>, color=red] (0,2)
to[R=1<\ohm>] (2,2)
to[C=1<\farad>] (2,0) -- (0,0)
;\end{circuitikz}
\end{LTXexample}
In those cases, the only way out is to specify different paths (and/or using advanced voltages, see~\ref{sec:vif-anchors})
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw[color=red]
(0,0) to[V=1<\volt>, color=red] (0,2);
\draw (0,2) to[R=1<\ohm>] (2,2)
to[C=1<\farad>] (2,0) -- (0,0)
;\end{circuitikz}
\end{LTXexample}
\subsection{Fill colors}
Since version 0.9.0, you can also fill most shapes with a color (the manual specifies which ones are fillable or not). The syntax is quite intuitive:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,2) node[and port, fill=yellow](myand1){1}
(0,0) node[and port, fill=cyan](myand2){2}
(2,1) node[xnor port,fill=red!30!white](myxnor){3}
(myand1.out) -| (myxnor.in 1)
(myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}
This fill color will override any color defined by the style (see section~\ref{sec:styling-fillcolor}). If you want to override a style fill color with no-fill for a specific component, you need to override the style --- it's a bit unfortunate, but should be an exceptional thing anyway. Notice that in simple case \texttt{fill opacity} works, but don't count too much on it.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\ctikzset{logic ports/fill=cyan!30!white}
\draw[red] (-0.5,3) -- (-0.5, -1);
\draw[red] (1.5,3) -- (1.5, -1);
\draw
(0,2) node[and port](myand1){1}
(0,0) node[and port, fill=cyan, fill opacity=0.7](myand2){2}
(2,1) node[xnor port, circuitikz/logic ports/fill=none
](myxnor){3}
(myand1.out) -| (myxnor.in 1)
(myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}
You can combine shape colors with fill colors, too, but you should use the explicit \texttt{color} option style for this:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw[color=red]
(0,2) node[and port, fill=yellow](myand1) {1}
(0,0) node[and port, fill=cyan] (myand2){2}
(2,1) node[xnor port,fill=red!30!white](myxnor){3}
(myand1.out) -| (myxnor.in 1)
(myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
(0,2) node[and port, color=black](myand1){1}
(0,0) node[and port, color=blue, fill=cyan](myand2){2}
(2,1) node[xnor port, color=red, fill=cyan](myxnor){3}
(myand1.out) -| (myxnor.in 1)
(myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}
\subsubsection{Background colors different from white}
Notice also that the connection point is always filled, and the color \emph{tries} to follow the color of the filling of the component (but look at section~\ref{sec:transparent-poles}). Moreover, if you want to pass fill transparency down to path-style components, you \emph{have} to put it into the options of the \verb|\draw| command.
\begin{LTXexample}[varwidth=true, pos=t]
\begin{circuitikz}
\fill[cyan] (0,3.0) rectangle (7,7);
\draw [fill opacity=0.5] (1,6.5) to[generic, fill=white,o-o] ++(2,0);
\draw (1,5.5) to[short, fill=red, o-o] ++(1,0) to[short, -o] ++(1,0);
\draw[fill=yellow] (1,5) to[short, o-o] ++(1,0) to[short, -o] ++(1,0);
\draw (1,4.5) to[short, o-o] ++(1,0) to[short, -o] ++(1,0);
\draw (1,4) node[ocirc]{} -- ++(1,0) node[ocirc]{};
\draw [thick, color=green!50!black] (4,4) to [D,o-o,fill=yellow] ++(0,2) to[D*, fill=yellow]
++(2,0) to[D*,fill=yellow] ++(0,-2) to[D, fill=red, o-o] ++(-2,0);
\end{circuitikz}
\end{LTXexample}
As you can see, the ``black'' components (as \texttt{D*}) follow the color of the line, not the fill.
Note, however, that if you choose a colored background, for example with the \verb|\pagecolor{}| command or with other tricks, the nodes will be by default still filled with white.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european]
\fill[color=blue] (-1,-1) rectangle (4,1);
\draw[color=white] (0,0) to[R, o-o] ++(3,0);
\end{circuitikz}
\end{LTXexample}
You have two solutions for this. You can redefine the \texttt{o-o} (and the similar commands \texttt{-o}, \texttt{o-}, \texttt{*-o} and so on) with a blue filled ``open'' pole:
\begin{LTXexample}[varwidth=true]
\tikzset{bcirc/.style={shape=ocirc, fill=blue}}
\ctikzset{o-o/.style ={
\circuitikzbasekey/bipole/nodes/left=bcirc,
\circuitikzbasekey/bipole/nodes/right=bcirc}}
\begin{circuitikz}[european]
\fill[color=blue] (-1,-1) rectangle (4,1);
\draw[color=white] (0,0) to[R, o-o] ++(3,0);
\end{circuitikz}
\end{LTXexample}
Also, since \texttt{v1.2.3}, you can set the key \texttt{open poles fill} (default: \texttt{white} which works for \texttt{ocirc}, \texttt{odiamondpole} and \texttt{osquarepole}):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european]
\ctikzset{open poles fill=blue}
\fill[color=blue] (-1,-1) rectangle (4,1);
\draw[color=white] (0,0) to[R, o-o] ++(3,0);
\end{circuitikz}
\end{LTXexample}
\section{FAQ: Frequently asked questions}
\def\faqQ{\par\medskip\noindent\textbf{Q: }}
\def\faqA{\par\noindent\textbf{A: }}
\subsection{Using named nodes in circuits}\label{faqs:nodes}
\faqQ When I use a node to name a connection in the circuit, I have gaps in the wires! I am sure it used to work!
\faqA This is explained in~\ref{sec:incompatible-changes}. The fast answer is that in a hurry, use the \texttt{1.1.2} fallback point with:
\verb|\usepackage{circuitikz-1.1.2}|
in your preamble.
But really, your circuit definition is buggy, so the best thing to do is fix that; if you want to name a point in your circuit, you should use a \texttt{coordinate}, not a \texttt{node}.\footnote{Yes, I understand from where the confusion arise --- in circuit theory they are called nodes.} Here is a small tutorial on \emph{why} you should change your circuit.
Nodes, in \TikZ, normally have a non-zero size even when they are empty; moreover, connections are supposed to join the border of nodes. Please study the following (pure \TikZ, not \Circuitikz):
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}
\path (1,1) node (A){}; % empty node at (1,1)
\draw (1,0) -- (A) -- (2,1); % surprise!
\end{tikzpicture}
\end{LTXexample}
The gap is there because the node has a non-zero size (more in detail, its \texttt{inner sep} is by default different from zero). You can see it easily if you draw the node shape:
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}
\path (1,1) node [draw=red](A){};
\draw (1,0) -- (A) -- (2,1);
\end{tikzpicture}
\end{LTXexample}
The problem is that when you want to name a coordinate, in the sense of a dimensionless point, you should use a \texttt{coordinate}, \textbf{not} a node!
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}
\path (1,1) coordinate (A); % give a name to (1,1)
\draw (1,0) -- (A) -- (2,1);% now it's ok!
\end{tikzpicture}
\end{LTXexample}
Now, before version \texttt{1.2.1} (and since around \texttt{0.6}), \Circuitikz{} was detecting when a connection was between nodes and sort-of added a \texttt{node.center} movement to the path. That in turn generated the need of hacks to draw the correct joining of lines, because that kind of movement broke the continuity of the path, like in this example:
\begin{LTXexample}[varwidth=true]
\begin{tikzpicture}[line width=4pt]
\path (1,1) node (A){};
\draw (1,0) -- (A.center) (A) (A.center) -- (2,1);
\end{tikzpicture}
\end{LTXexample}
You can see more examples and more reasonings on GitHub; start from the
\href{https://github.com/circuitikz/circuitikz/issues/417}{issue detecting the join problem}, then
\href{https://github.com/circuitikz/circuitikz/pull/418}{look at the merged fix}; you can follow several issues and discussions from there, but for example there are circuits that can't be drawn with the ``hack'' in, \href{https://github.com/circuitikz/circuitikz/issues/76#issuecomment-652980687}{like this one}.
So finally it was decided\footnote{well, Romano decided, so you can blame him. \emph{I do not think that workarounds to correct malformed circuits are really maintainable; just see the bunch of code removed by the patch! --- Romano.}} to remove the change, to simplify the code and to make the package more maintainable.
\subsection{Using dashed (or colored) wires in circuits}\label{faqs:dashed}
\faqQ How can I make part of the wires dashed (or colored)? This does not work:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R] ++(2,0)
to[short, dashed, red] ++(1,0)
to [R] ++(2,0); % surprise!
\end{circuitikz}
\end{LTXexample}
Nor this one, which is even stranger:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R] ++(2,0)
[dashed, red] -- ++(1,0)
to [R] ++(2,0); % surprise!
\end{circuitikz}
\end{LTXexample}
\faqA This is an effect on how \TikZ{} builds and draws path. As explained in the \TikZ{} manual,\footnote{in 3.1.5b, section~14, ``syntax for path specification''} most path options are globally valid for the whole path; color and dash/dot is one of this. You have two options in this case. The first one is to use two paths.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R] ++(2,0) coordinate(a);
\draw [dashed, red] (a) -- ++(1,0) coordinate(b);
\draw (b) to [R] ++(2,0);
\end{circuitikz}
\end{LTXexample}
The other one is to use \texttt{edge} operations\footnote{I took the idea form \href{https://tex.stackexchange.com/a/554905/38080}{this answer by \texttt{@LaTeXdraw-com} user on TeX.SE}, thanks!}; be sure to read about it on the \TikZ{} manual\footnote{in 3.1.5b, section~17.12, ``connecting nodes: use the \texttt{edge} operation''} --- but basically this is similar to the \texttt{to} operation but it builds another path (added at the end of the current path, like nodes are). This means that it can use different options, and that it \textbf{does not} move the path coordinates.
So, for example:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R] ++(2,0)
edge[dashed, red] ++(1,0)
% we have to move the path position here!
++(1,0) to [R] ++(2,0);
\end{circuitikz}
\end{LTXexample}
The only problem with this approach is that the \texttt{edge}s are added \emph{after} the nodes, so it can create problems with nodes (look carefully!):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R,-o] ++(2,0)
edge[dashed, red] ++(1,0)
++(1,0) to [R] ++(2,0);
\end{circuitikz}
\end{LTXexample}
So it's better, in this case, to add the nodes manually after the path (there is no perfect solution!):
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
\draw (0,0) to[R] ++(2,0) coordinate(a)
edge[dashed, red] ++(1,0)
++(1,0) to [R] ++(2,0);
\node [ocirc] at (a){};
\end{circuitikz}
\end{LTXexample}
A more complex example can be seen (look at the comments!) in the following circuit.
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american]
\draw (0,0) to[R, v=$v_1$] ++(2,0)
edge[dashed] ++(1,0)
++(1,0) to[R]
++(2,0) to [R] ++(0,2) coordinate(a)
edge[red, dashed] ++(0,1)
% several edges start from the same position
edge[dashed, ->] node[above]{here} ++(-1,0)
% notice that the path here is still
% at coordinate (a)!
++(0,1) to[R] ++(0,2)
(a) ++(-1,0) to[sV] ++(-2,0);
\end{circuitikz}
\end{LTXexample}
\subsection{Errors when externalizing pictures}\label{faqs:externalize}
\faqQ When using \verb!\tikzexternalize! I get the following error:
\begin{verbatim}
! Emergency stop.
\end{verbatim}
\faqA The \TikZ\ manual states:
\begin{quotation}
\noindent Furthermore, the library assumes that all \LaTeX\ pictures are ended
with \\\verb!\end{tikzpicture}!.
\end{quotation}
Just substitute every occurrence of the environment \verb!circuitikz! with \verb!tikzpicture!. They are actually pretty much the same.
\subsection{Labels, voltages and currents woes}\label{faqs:labels}
\faqQ How do I draw the voltage between two nodes?
\faqA Between any two nodes there is an open circuit!
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw
node[ocirc] (A) at (0,0) {}
node[ocirc] (B) at (2,1) {}
(A) to[open, v=$v$] (B)
;\end{circuitikz}
\end{LTXexample}
\bigskip
\faqQ I cannot write \verb!to[R = $R_1=12V$]! nor \verb!to[ospst = open, 3s]!: I get errors.
\faqA It is a limitation of the parser, joined with a suboptimal processing by \Circuitikz{} (up to \texttt{1.2.7}) of the passing of the argument of keys.
You should protect commas and equal signs like in \verb!to[R = {$R_1=12V$}]! or \verb!to[ospst = {open, 3s}]!.
In versions up to \texttt{1.2.7}, use for example \verb|\mbox{}| or define \verb|\def{\eq}{=}| and use \verb!to[R = $R_1\eq 12V$]!, or try to protect commas and equal signs like \verb!to[ospst = open{,} 3s]! or \verb|ospst=\mbox{open, 3s}| instead; see caveat in section~\ref{sec:labels-and-annotations}.
\subsection{Global scaling and rotating}\label{faqs:scale-and-rotate}
\faqQ I tried to change the direction of the $y$-axis with \texttt{yscale=-1}, but the circuit is completely messed up.
\faqA Yes, it's a known bug (or misfeature, or limitation). See section~\ref{sec:bugs}. Don't do that.
\faqQ I tried to put a diode in a \texttt{pic}, but it's coming out badly rotated.
\faqA Yes, it's a known bug (or misfeature, or limitation, or a fact of life). See section~\ref{sec:bugs}. \Circuitikz{} is not compatible with \texttt{pic}s at this point.
\subsection{Tunable components}\label{faq:tunable-arrow}
\faqQ The direction of the arrows in variable resistors or capacitors changed!
\faqA Yes, it changed in \texttt{v1.3.3}.
Version 1.3.3 fixes the direction of the arrows in tunable elements; before this version, they were more or less random, now the arrow goes from bottom left to top right. You have the option to go back to the old behavior with \texttt{\textbackslash ctikzset\{bipoles/fix tunable direction=false\}}. As a compensation for the fuss, now the arrows are configurable.
\begin{LTXexample}[pos=t]
\begin{circuitikz}[european]
\draw (1,0) node{new default} (4,0) node{old default} (7,0) node{new!};
\foreach [count=\i] \comp in
{variable american resistor, variable european resistor,
variable cute inductor, variable american inductor, tfullgeneric,
variable capacitor} {
\draw (0,-\i) node[left]{\texttt{\comp}} to[\comp, name=E] ++(2,0);
\ctikzset{bipoles/fix tunable direction=false}
\draw (3,-\i) to[\comp, name=E] ++(2,0);
\ctikzset{bipoles/fix tunable direction=true, tunable end arrow={Bar}}
\draw (6,-\i) to[\comp, name=E] ++(2,0);
}
\end{circuitikz}
\end{LTXexample}
\section{Defining new components}
\begin{quote}
Per me si va ne la città dolente,\\
per me si va ne l'etterno dolore,\\
per me si va tra la perduta gente.\\
\dots\\
Lasciate ogne speranza, voi ch'intrate.%
\footnote{\url{https://classicsincontext.wordpress.com/2010/02/28/canto-iii-per-me-si-va-ne-la-citta-dolente/}}
\end{quote}
\textbf{Big fat warning}: this material is reserved for \TeX-hackers; do not delve into this if you have no familiarity with (at least) a bit of core \TeX{} programming and to the basic \TikZ{} layer. You have been warned.
\subsection{Suggested setup}
Notice: the source code has been reorganized after release 1.2.7; if you are bound to use an older version check the corresponding manual.
The suggested way to start working on a new component is to use the utilities of the \Circuitikz{} manual for checking and testing your device. Basically, find (or download) the source code of the last version of \Circuitikz{} and find the file \texttt{ctikzmanutils.sty}; copy it in your directory and prepare a file like this:
\begin{lstlisting}[keepspaces=true]
\documentclass[a4paper, titlepage]{article}
\usepackage{a4wide} %smaller borders
\usepackage[utf8]{inputenc} %not needed since LaTeX 2019
\usepackage[T1]{fontenc}
\parindent=0pt
\parskip=4pt plus 6pt minus 2pt
\usepackage[siunitx, RPvoltages]{circuitikzgit}
\usepackage{ctikzmanutils}
\makeatletter
%% Test things here
% defines
% components
% paths
\makeatother
\begin{document}
\circuitdescbip*{damper}{Mechanical damping}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\geolrcoord{dampershape, fill=yellow}
\begin{LTXexample}[varwidth]
\begin{circuitikz}
\draw (0,0) to[R] ++(2,0)
to[damper] ++(2,0);
\end{circuitikz}
\end{LTXexample}
\end{document}
\end{lstlisting}
This will compile to something like this (in this case, we are using a couple of existing components to check everything is OK):
\circuitdescbip*{damper}{Mechanical damping}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\geolrcoord{dampershape, fill=yellow}
\begin{LTXexample}[varwidth]
\begin{circuitikz}
\draw (0,0) to[R] ++(2,0)
to[damper] ++(2,0);
\end{circuitikz}
\end{LTXexample}
The command \verb|circuitdescbip*| is used to show the component description (you can check the definition and the usage looking at \texttt{ctikzmanutils.sty} file, and the \verb|\geolrcoord| is used to show the main anchors (geographical plus \texttt{left} and \texttt{right}) of the component.
From now on, you can add the new commands for the component between the \verb|\makeatletter| and \verb|\makeatother| commands and, modifying the example, check the results.
\subsection{Path-style component}
Let's define for example a path style component, like the one suggested by the user \texttt{@alex} on \href{https://tex.stackexchange.com/questions/484268/combined-spring-damper-in-circuitikz}{\TeX{} stackexchange site}. The component will be a mix of the \texttt{damper} and the \texttt{spring} components already present.
The definitions of the components are in the files \texttt{pgfcirc\emph{something}.tex}; they are more or less distributed by the number of terminals, but there are exceptions (for example, switches are in \texttt{bipoles}, even if several of them are tripoles or more\dots \texttt{grep} is your friend here.
To define the new component we will look into (in this case) \texttt{pgfcircbipoles.tex}; at the start of the block where the components are defined, you can find the relevant definitions (sometime some of the definitions are in \texttt{pgfcirc.defines.tex}, for historical or dependencies reasons).
The first step is to check if we can use the definition already existing for similar elements (for coherence of size) or if we need to define new ones; for this you have to check into the we find
\begin{lstlisting}
\ctikzset{bipoles/spring/height/.initial=.5}
\ctikzset{bipoles/spring/width/.initial=.5}
\ctikzset{bipoles/damper/height/.initial=.35}
\ctikzset{bipoles/damper/length/.initial=.3}
\ctikzset{bipoles/damper/width/.initial=.4}
\end{lstlisting}
We will use them; at this stage you can decide to add other parameters if you need them. (Notice, however, than although flexibility is good, these parameters should be described in the manual, otherwise they're as good as a fixed number in the code).
After that we will copy, for example, the definition of the damper into our code, just changing the name:
\begin{lstlisting}[keepspaces=true]
%% mechanical resistor - damper
\pgfcircdeclarebipolescaled{mechanicals}
{} % extra anchors
{\ctikzvalof{bipoles/damper/height}} % depth (under the path line)
{viscoe} % name
{\ctikzvalof{bipoles/damper/height}} % height (above the path line)
{\ctikzvalof{bipoles/damper/width}} % width
{
\pgfpathrectanglecorners{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right}{\pgf@circ@res@down}}{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}
\pgf@circ@maybefill
% line into the damper
\pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@zero}}
\pgfpathlineto{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right}
{\pgf@circ@res@zero}}
\pgfusepath{stroke}
% damper box
\pgf@circ@setlinewidth{bipoles}{\pgfstartlinewidth}
\pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}
\pgfpathlineto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@down}}
\pgfpathlineto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}
\pgfpathlineto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@up}}
\pgfsetrectcap
\pgfsetmiterjoin
\pgfusepath{stroke}
% damper vertical element
\pgfpathmoveto{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right}
{.8\pgf@circ@res@down}}
\pgfpathlineto{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right}
{.8\pgf@circ@res@up}}
\pgfsetbuttcap
\pgfusepath{stroke}
}
\end{lstlisting}
This \verb|\pgfcircdeclarebipolescaled| command will define a shape that is named \texttt{viscoeshape}, with all the correct geographical anchors based on the depth, height and width defined in the parameters: in this case we are reusing the ones of the \texttt{damper} shape. Moreover, the element is assigned to the class \texttt{mechanicals} for styling.
To be coherent with the styling, you should use (when needed) the length \verb|\pgf@circ@scaled@Rlen| as the ``basic'' length for drawing, using the fill functions (they are defined at the start of the file \texttt{pgfcirc.defines.tex}) to fill and stroke --- so that the operation will follow the style parameters and, finally, use the macro \verb|\pgf@circ@setlinewidth| to set the line thickness: the first argument is the ``legacy'' class, if you do not want to assign one you can use the pseudo-legacy class \texttt{none}.
The anchors for the bipole (which then set the lengths \verb|\pgf@circ@res@left|) are already scaled for your use. You can use these lengths (which defines, normally, the geographical anchors of the element) to draw your shapes.
This is not sufficient for using the element in a \texttt{to[]} path command; you need to ``activate'' it (the definition of the commands are normally in \texttt{pgfcircpath.tex}). In this case the component is simple --- look at the definitions if you need to do more complex things.
\begin{lstlisting}
\pgfcirc@activate@bipole@simple{l}{viscoe}
\end{lstlisting}
In the definition above, the \texttt{\{l\}} parameter means that using the component like \texttt{to[viscoe=A]} will be equivalent to \texttt{to[viscoe, l=A]}; you can also use \texttt{v} or \texttt{i} or \texttt{f} if your component needs it.
Now you can show it with:
\begin{lstlisting}
\circuitdescbip*{viscoe}{Mechanical viscoelastic element}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\geolrcoord{viscoeshape, fill=yellow}
\begin{LTXexample}[varwidth]
\begin{circuitikz}
\draw (0,0) to[spring] ++(2,0)
to[viscoe] ++(2,0);
\end{circuitikz}
\end{LTXexample}
\end{lstlisting}
Obviously, at first you just have a component that is the same as the one you copied with another name.
It is now just a matter of modifying it so that it has the desired shape; in the example above you can already see the new symbol after the changes.
When doing the drawing in the main argument of the \verb|\pgfcircdeclarebipole|, things will be set up so that the lengths \verb|\pgf@circ@res@right|
and \verb|\pgf@circ@res@up| are the $x$-$y$ coordinates of the upper right corner, and
\verb|\pgf@circ@res@left| and \verb|\pgf@circ@res@down| are the $x$-$y$ coordinates of the lower left corner of your shape. The \texttt{center} coordinate is usually at $(0pt, 0pt)$.
Looking at the implementation of the \texttt{spring} element, one possibility is changing the lines between lines~12 and~16 with:
\begin{lstlisting}
% spring into the damper
\pgfscope
\pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@zero}}
\pgf@circ@setlinewidth{bipoles}{\pgfstartlinewidth}
\pgfsetcornersarced{\pgfpoint{.25\pgf@circ@res@up}{.25\pgf@circ@res@up}}
\pgfpathlineto{\pgfpoint{.75\pgf@circ@res@left}{.75\pgf@circ@res@up}}
\pgfpathlineto{\pgfpoint{.5\pgf@circ@res@left}{-.75\pgf@circ@res@up}}
\pgfpathlineto{\pgfpoint{.25\pgf@circ@res@left}{.75\pgf@circ@res@up}}
\pgfpathlineto{\pgfpoint{0pt}{-.75\pgf@circ@res@up}}
\pgfpathlineto{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right}{.75\pgf@circ@res@up}}
\pgfusepath{stroke}
\endpgfscope
\end{lstlisting}
which leads to:
\circuitdescbip*{viscoe}{Mechanical viscoelastic element}{}(left/135/0.2, right/45/0.2, center/-90/0.3)
\geolrcoord{viscoeshape, fill=yellow}
\begin{LTXexample}[varwidth]
\begin{circuitikz}
\draw (0,0) to[spring] ++(2,0)
to[viscoe] ++(2,0);
\end{circuitikz}
\end{LTXexample}
Now you can check if the voltage labels are correct for your new component:
\begin{LTXexample}[varwidth]
\begin{circuitikz}[]
\draw (0,0) to[spring] ++(2,0)
to[viscoe, v=V] ++(2,0);
\end{circuitikz}
\end{LTXexample}
If you think they are too tight or too loose, you can use a (developer-only) key to adjust the distance:
\begin{LTXexample}[varwidth]
\begin{circuitikz}
\ctikzset{bipoles/viscoe/voltage/additional shift/.initial=1}
\draw (0,0) to[spring] ++(2,0)
to[viscoe, v=V] ++(2,0);
\end{circuitikz}
\end{LTXexample}
Notice that by default the key \texttt{bipoles/\emph{mybipole}/voltage/additional shift} is not defined, so if you want to use it you must create it before (this is the meaning of the \texttt{.initial} here).
Now you can save all the code between the \verb|\makeatletter| and \verb|\makeatother| in a file and \verb|\input{}| it for using your special component, or submit the component to the project (see below).
As a final note, notice that the \texttt{viscoe} element is already added to the standard package.
\subsection{Node-style component}
Adding a node-style component is much more straightforward. Just define it by following examples in, for example, \texttt{pgfcirctripoles.tex} or the other files; be careful that you should define all the geographical anchors of the shape if you want that the \TikZ{} positioning options (like \texttt{left}, \texttt{above}, etc.) behave correctly with your component.
To have a scalable component, for example in the \texttt{transistors} class, you should use something like
\begin{lstlisting}
\savedmacro{\ctikzclass}{\edef\ctikzclass{transistors}}
\saveddimen{\scaledRlen}{\pgfmathsetlength{\pgf@x}{\ctikzvalof{\ctikzclass/scale}\pgf@circ@Rlen}}
\end{lstlisting}
at the start of anchors and macros definition, and use (for example, the exact code will change greatly depending on your component):
\begin{lstlisting}
\savedanchor\northeast{% upper right
\pgfmathsetlength{\pgf@circ@scaled@Rlen}{\ctikzvalof{\ctikzclass/scale}\pgf@circ@Rlen}
\pgf@y=\pgf@circ@scaled@Rlen
\pgf@y=0.5\pgf@y
\pgf@x=0.3\pgf@y
}
\end{lstlisting}
in all the \texttt{savedanchors}.
Then, to draw your component, you should start with\footnote{Since \texttt{v1.5.0}; component defined with this mechanism will not be compatible with older \Circuitikz{}.}:
\begin{lstlisting}
\pgf@circ@draw@component{%
\pgf@circ@scaled@Rlen=\scaledRlen
...
}
\end{lstlisting}
and then use \verb|\pgf@circ@scaled@Rlen| (or the anchors) as the default length while you draw it.
The special command \verb|\pgf@circ@draw@component| will issue a \texttt{\textbackslash behindforegroundpath} command, and take care of calling the start and end hooks for the component. Notice that, given the use of \texttt{\textbackslash behindforegroundpath}, you must take care to use the path you define here! The path itself is protected bu a \texttt{pgfscope} (and so also by a \TeX{} group), so local definitions will be reset after exiting.
\subsubsection{The internal hook system}\label{sec:drawing-hooks}
Since version \texttt{v1.5.0}, before starting the drawing of any component, \Circuitikz{} will check for the existence of three different hooks, in the following order (suppose that the shape name is \texttt{\emph{myname}}, and it has a class \texttt{\emph{myclass}}:
\begin{itemize}
\item \texttt{\textbackslash ctikz@hook@start@draw@component@\emph{myname}}
\item \texttt{\textbackslash ctikz@hook@start@draw@class@\emph{myclass}}
\item \texttt{\textbackslash ctikz@hook@start@draw@default}
\end{itemize}
The first one that is defined in the current (or outer) scope is used, and the following ones are not used. These hooks can be used to set drawing parameters, or to reset them to a known state: \TikZ{} normally inherit most of the drawing option, but that can lead to surprises (like unexpected arrows, etc.).
In the same way, before leaving \verb|\pgf@circ@draw@component|, a set of similar hooks (with \texttt{end} instead of \texttt{start}) is tried, with the same logic.
The only predefined hook is \texttt{\textbackslash ctikz@hook@start@draw@default}, which is set to the equivalent of:
\begin{lstlisting}
\pgfsetshortenstart{+0pt}\pgfsetshortenend{+0pt}\pgfsetarrows{-}%
\def\pgf@circ@reset@rounded{\pgfsetcornersarced{\pgfpointorigin}}%
\end{lstlisting}
which means that, by default, arrows parameters are reset to the default (no shorten, no arrows) and that corners are not rounded. If you want to override them, just define the appropriate hook for your component/class and the generic one will not be called.
No \texttt{...@end@draw@...} hook is defined by default.
\subsubsection{Finishing your work}
Once you have a satisfactory element, you should
\begin{itemize}
\item Clean up your code;
\item write a piece of documentation explaining its use, with an example;
\item Propose the element for inclusion in the GitHub page of the project (you will have to license this as explained in that page, of course).
\end{itemize}
The best way of contributing is forking the project, adding your component in the correct files, modifying the manual and creating a pull request for the developers to merge. Anyway, if this is a problem, just open an issue and someone (when they have time\dots) will answer.
\section{Examples}
Here a series of examples, contributed by several people, is shown with their code.
\subsection{A red diode}
\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1.4]\draw
(0,0) to[C, l=10<\micro\farad>] (0,2) -- (0,3)
to[R, l=2.2<\kilo\ohm>] (4,3) -- (4,2)
to[L, l=12<\milli\henry>, i=$i_1$,v=b] (4,0) -- (0,0)
(4,2) to[D*, color=red] (2,0)
(0,2) to[R, l=1<\kilo\ohm>, *-] (2,2)
to[cV, i=1, -*, v=$\SI{.3}{\kilo\ohm}\, i_1$] (4,2)
(2,0) to[I, i=1<\milli\ampere>, *-*] (2,2)
;\end{circuitikz}
\end{LTXexample}
\newpage
\subsection{Using the (experimental) \texttt{siunitx} syntax}
\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1.2]\draw
(0,0) node[ground] {}
to[V=$e(t)$, *-*] (0,2) to[C=4<\nano\farad>] (2,2)
to[R, l_=.25<\kilo\ohm>, *-*] (2,0)
(2,2) to[R=1<\kilo\ohm>] (4,2)
to[C, l_=2<\nano\farad>, *-*] (4,0)
(5,0) to[I, i_=$a(t)$, -*] (5,2) -- (4,2)
(0,0) -- (5,0)
(0,2) -- (0,3) to[L, l=2<\milli\henry>] (5,3) -- (5,2)
{[anchor=south east] (0,2) node {1} (2,2) node {2} (4,2) node {3}}
;
\end{circuitikz}
\end{LTXexample}
\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1.2]\draw
(0,0) node[anchor=east] {B}
to[short, o-*] (1,0)
to[R=20<\ohm>, *-*] (1,2)
to[R=10<\ohm>, v=$v_x$] (3,2) -- (4,2)
to[cI=$\frac{\si{\siemens}}{5} v_x$, *-*] (4,0) -- (3,0)
to[R=5<\ohm>, *-*] (3,2)
(3,0) -- (1,0)
(1,2) to[short, -o] (0,2) node[anchor=east]{A}
;\end{circuitikz}
\end{LTXexample}
\newpage
\subsection{Photodiodes}
\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1]\draw
(0,0) node[transformer] (T) {}
(T.B2) to[pD] ($(T.B2)+(2,0)$) -| (3.5, -1)
(T.B1) to[pD] ($(T.B1)+(2,0)$) -| (3.5, -1)
;\end{circuitikz}
\end{LTXexample}
\subsection{A Sallen-Key cell}
\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1]\draw
(5,.5) node [op amp] (opamp) {}
(0,0) node [left] {$U_{we}$} to [R, l=$R_d$, o-*] (2,0)
to [R, l=$R_d$, *-*] (opamp.+)
to [C, l_=$C_{d2}$, *-] ($(opamp.+)+(0,-2)$) node [ground] {}
(opamp.out) |- (3.5,2) to [C, l_=$C_{d1}$, *-] (2,2) to [short] (2,0)
(opamp.-) -| (3.5,2)
(opamp.out) to [short, *-o] (7,.5) node [right] {$U_{wy}$}
;\end{circuitikz}
\end{LTXexample}
\newpage
\subsection{Mixing circuits and graphs}
\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1.2, american]\draw
(0,2) to[I=1<\milli\ampere>] (2,2)
to[R, l_=2<\kilo\ohm>, *-*] (0,0)
to[R, l_=2<\kilo\ohm>] (2,0)
to[V, v_=2<\volt>] (2,2)
to[cspst, l=$t_0$] (4,2) -- (4,1.5)
to [generic, i=$i_1$, v=$v_1$] (4,-.5) -- (4,-1.5)
(0,2) -- (0,-1.5) to[V, v_=4<\volt>] (2,-1.5)
to [R, l=1<\kilo\ohm>] (4,-1.5);
\begin{scope}[xshift=6.5cm, yshift=.5cm]
\draw [->] (-2,0) -- (2.5,0) node[anchor=west] {$v_1/\si{\volt}$};
\draw [->] (0,-2) -- (0,2) node[anchor=west] {$i_1/\si{\milli\ampere}$} ;
\draw (-1,0) node[anchor=north] {-2} (1,0) node[anchor=south] {2}
(0,1) node[anchor=west] {4} (0,-1) node[anchor=east] {-4}
(2,0) node[anchor=north west] {4}
(-1.5,0) node[anchor=south east] {-3};
\draw [thick] (-2,-1) -- (-1,1) -- (1,-1) -- (2,0) -- (2.5,.5);
\draw [dotted] (-1,1) -- (-1,0) (1,-1) -- (1,0)
(-1,1) -- (0,1) (1,-1) -- (0,-1);
\end{scope}
\end{circuitikz}
\end{LTXexample}
\newpage
\subsection{RF circuit}
\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1]
\ctikzset{bipoles/detector/width=.35}
\ctikzset{quadpoles/coupler/width=1}
\ctikzset{quadpoles/coupler/height=1}
\ctikzset{tripoles/wilkinson/width=1}
\ctikzset{tripoles/wilkinson/height=1}
%\draw[help lines,red,thin,dotted] (0,-5) grid (5,5);
\draw
(-2,0) node[wilkinson](w1){}
(2,0) node[coupler] (c1) {}
(0,2) node[coupler,rotate=90] (c2) {}
(0,-2) node[coupler,rotate=90] (c3) {}
(w1.out1) .. controls ++(0.8,0) and ++(0,0.8) .. (c3.port3)
(w1.out2) .. controls ++(0.8,0) and ++(0,-0.8) .. (c2.port4)
(c1.port1) .. controls ++(-0.8,0) and ++(0,0.8) .. (c3.port2)
(c1.port4) .. controls ++(-0.8,0) and ++(0,-0.8) .. (c2.port1)
(w1.in) to[short,-o] ++(-1,0)
(w1.in) node[left=30] {LO}
(c1.port2) node[match,yscale=1] {}
(c1.port3) to[short,-o] ++(1,0)
(c1.port3) node[right=30] {RF}
(c2.port3) to[detector,-o] ++(0,1.5)
(c2.port2) to[detector,-o] ++(0,1.5)
(c3.port1) to[detector,-o] ++(0,-1.5)
(c3.port4) to[detector,-o] ++(0,-1.5)
;
\end{circuitikz}
\end{LTXexample}
\subsection{A styled low noise input stage}
\ctikzloadstyle{romano}
\scalebox{0.707}{%
\begin{circuitikz}[american, romano circuit style]
\ctikzset{bipoles/cuteswitch/thickness=0.5}
\draw (0,0) node[ground](GND0){} to[sV, l=$v_{cm}$] ++(0,1)
to [R, l=$R_c$, -*] ++(0,1.5) coordinate(vcm) --++(0,0.5) coordinate(diffc);
\draw (diffc) -| ++(-0.5, 0.5) to[sV,l=$v_+$, name=vplus] ++(0,1) --++(0,2)
-- ++(2.5,0) coordinate(skin+ a) to[battery2, l=$E_+$, name=eplus] ++(1,0)
to[R=$R_+$, name=rplus] ++(2,0) coordinate(skin+ b) -- ++(0.5,0)
-- ++(4,0) coordinate(hpin+) to[highpass] ++(2,0)
node[inst amp, anchor=+, noinv input up,
circuitikz/amplifiers/scale=1.6,
circuitikz/tripoles/inst amp/width=1](LNA){LNA}
(LNA.out);
\coordinate (skin- a) at (LNA.- -| skin+ a);
\draw (diffc) -| ++(0.5,0.5) to[sV,l_=$v_-$, name=vminus] ++(0, 1) |- (skin- a);
\draw (skin- a) to[battery2, l_=$E_-$, name=eminus] ++(1,0)
to[R, l_=$R_-$, name=rminus] ++(2,0) coordinate(skin- b) -- ++(2.5,0)
-- (skin- b -| hpin+) to[highpass] (LNA.-);
\coordinate (gnd a) at (vcm -| skin+ a);
\draw (vcm) -- (gnd a) to[battery2, l_=$E_\mathrm{gnd}$, name=egnd] ++(1,0)
to[R, l_=$R_\mathrm{gnd}$, name=rgnd] ++(2,0) coordinate(gnd b);
% switch set
\def\swdown{-3.2}
\draw (skin- b) ++(1,0) coordinate(sw1) to[cosw, invert, mirror, l=1, *-, name=s1] ++(0,\swdown) to[short, -*] ++(0, -1.5);
\draw (sw1) ++(1,0) coordinate(sw2) to[cosw, invert, mirror, l=2, *-] ++(0,\swdown) to[R=$R$, -*] ++(0, -1.5);
\draw (sw2|-skin+ b) ++(1,0) coordinate(sw3) to[short, *-] (sw3|-sw2) to[cosw, invert, mirror, l=3,] ++(0,\swdown) to[R=$R$, -*] ++(0, -1.5);
\draw (sw3) ++(1,0) coordinate(sw4) to[short, *-] (sw4|-sw2) to[cosw, invert, mirror, l=4, name=s4] ++(0,\swdown) to[short] ++(0, -1.5) coordinate(endsw);
\draw (gnd b) |- (endsw) node[rectjoinfill]{};
% boxes
\node [rectangle, draw, dashed, fit=(GND0) (vplus) (vpluslabel) (vminuslabel)](body){};
\node [anchor=south east, align=center] at (body.south east) {Body} ;
\node [rectangle, draw, dashed, fit=(rplus) (eplus) (epluslabel) (rpluslabel)](top){};
\node [rectangle, draw, dashed, fit=(eminus) (rminus) (eminuslabel) (rminuslabel)](bot){};
\node [anchor=center, align=center] at ($(top.south)!0.5!(bot.north)$) {electrodes} ;
\node [rectangle, draw, dashed, fit=(egnd) (rgnd) (egndlabel) (rgndlabel)](gnd){};
\node [below, align=center] at (gnd.south) {ground\\ electrode} ;
\node [rectangle, draw, dashed, fit=(s1) (s4label), inner ysep=8pt](switches){};
% ADC and micro
\draw (LNA.out) -- ++(0.5,0) node[msport,circuitikz/RF/scale=2](ADC){ADC};
\draw (ADC.right) -- ++(0.5,0) node[twoportshape, anchor=left, t=$\upmu$C](uC){};
\draw (uC.south) -- (uC.south |- switches.east) -- ++(-4,0)
node[align=left, anchor=east](DCS){\small digitally\\ controlled\\ switches};
\draw[-Stealth] (DCS.west) -- (switches.east);
% components
\node [anchor=north west] at ([xshift=-10pt, yshift=-5pt]switches.south east) {ADG1414};
\node [anchor=north west] at ([yshift=-5pt]LNA.refv down) {AD8429};
\end{circuitikz}
} % scalebox
\begin{lstlisting}[basicstyle=\small\ttfamily]
\ctikzloadstyle{romano}
\scalebox{0.707}{%
\begin{circuitikz}[american, romano circuit style]
\ctikzset{bipoles/cuteswitch/thickness=0.5}
\draw (0,0) node[ground](GND0){} to[sV, l=$v_{cm}$] ++(0,1)
to [R, l=$R_c$, -*] ++(0,1.5) coordinate(vcm) --++(0,0.5) coordinate(diffc);
\draw (diffc) -| ++(-0.5, 0.5) to[sV,l=$v_+$, name=vplus] ++(0,1) --++(0,2)
-- ++(2.5,0) coordinate(skin+ a) to[battery2, l=$E_+$, name=eplus] ++(1,0)
to[R=$R_+$, name=rplus] ++(2,0) coordinate(skin+ b) -- ++(0.5,0)
-- ++(4,0) coordinate(hpin+) to[highpass] ++(2,0)
node[inst amp, anchor=+, noinv input up,
circuitikz/amplifiers/scale=1.6,
circuitikz/tripoles/inst amp/width=1](LNA){LNA}
(LNA.out);
\coordinate (skin- a) at (LNA.- -| skin+ a);
\draw (diffc) -| ++(0.5,0.5) to[sV,l_=$v_-$, name=vminus] ++(0, 1) |- (skin- a);
\draw (skin- a) to[battery2, l_=$E_-$, name=eminus] ++(1,0)
to[R, l_=$R_-$, name=rminus] ++(2,0) coordinate(skin- b) -- ++(2.5,0)
-- (skin- b -| hpin+) to[highpass] (LNA.-);
\coordinate (gnd a) at (vcm -| skin+ a);
\draw (vcm) -- (gnd a) to[battery2, l_=$E_\mathrm{gnd}$, name=egnd] ++(1,0)
to[R, l_=$R_\mathrm{gnd}$, name=rgnd] ++(2,0) coordinate(gnd b);
% switch set
\def\swdown{-3.2}
\draw (skin- b) ++(1,0) coordinate(sw1) to[cosw, invert, mirror, l=1, *-, name=s1] ++(0,\swdown) to[short, -*] ++(0, -1.5);
\draw (sw1) ++(1,0) coordinate(sw2) to[cosw, invert, mirror, l=2, *-] ++(0,\swdown) to[R=$R$, -*] ++(0, -1.5);
\draw (sw2|-skin+ b) ++(1,0) coordinate(sw3) to[short, *-] (sw3|-sw2) to[cosw, invert, mirror, l=3,] ++(0,\swdown) to[R=$R$, -*] ++(0, -1.5);
\draw (sw3) ++(1,0) coordinate(sw4) to[short, *-] (sw4|-sw2) to[cosw, invert, mirror, l=4, name=s4] ++(0,\swdown) to[short] ++(0, -1.5) coordinate(endsw);
\draw (gnd b) |- (endsw) node[rectjoinfill]{};
% boxes
\node [rectangle, draw, dashed, fit=(GND0) (vplus) (vpluslabel) (vminuslabel)](body){};
\node [anchor=south east, align=center] at (body.south east) {Body} ;
\node [rectangle, draw, dashed, fit=(rplus) (eplus) (epluslabel) (rpluslabel)](top){};
\node [rectangle, draw, dashed, fit=(eminus) (rminus) (eminuslabel) (rminuslabel)](bot){};
\node [anchor=center, align=center] at ($(top.south)!0.5!(bot.north)$) {electrodes} ;
\node [rectangle, draw, dashed, fit=(egnd) (rgnd) (egndlabel) (rgndlabel)](gnd){};
\node [below, align=center] at (gnd.south) {ground\\ electrode} ;
\node [rectangle, draw, dashed, fit=(s1) (s4label), inner ysep=8pt](switches){};
% ADC and micro
\draw (LNA.out) -- ++(0.5,0) node[msport,circuitikz/RF/scale=2](ADC){ADC};
\draw (ADC.right) -- ++(0.5,0) node[twoportshape, anchor=left, t=$\upmu$C](uC){};
\draw (uC.south) -- (uC.south |- switches.east) -- ++(-4,0)
node[align=left, anchor=east](DCS){\small digitally\\ controlled\\ switches};
\draw[-Stealth] (DCS.west) -- (switches.east);
% components
\node [anchor=north west] at ([xshift=-10pt, yshift=-5pt]switches.south east) {ADG1414};
\node [anchor=north west] at ([yshift=-5pt]LNA.refv down) {AD8429};
\end{circuitikz}
} % scalebox
\end{lstlisting}
\subsection{An example with the \texttt{compatibility} option}
\label{ex:compatibility}
\IfFileExists{compatibility.pdf}{\fbox{\includegraphics{compatibility.pdf}}}{}%
\begin{lstlisting}
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{circuits.ee.IEC}
\usetikzlibrary{positioning}
\usepackage[compatibility]{circuitikzgit}
\ctikzset{bipoles/length=.9cm}
\begin{document}
\begin{tikzpicture}[circuit ee IEC]
\draw (0,0) to [resistor={name=R}] (0,2)
to[diode={name=D}] (3,2);
\draw (0,0) to[*R=$R_1$] (1.5,0) to[*Tnpn] (3,0)
to[*D](3,2);
\end{tikzpicture}
\end{document}
\end{lstlisting}
\newpage
\subsection{3-phases block schematic}
\begin{LTXexample}[varwidth=true,pos=t]
\begin{circuitikz}[smallR/.style={european resistor, resistors/scale=0.5}]
\draw (0,0) node[tacdcshape, anchor=ac mid in](acdc){} to[smallR] ++(-2,0)
-- coordinate(point) node[circ](){} ++(-.5,0);
\draw (acdc.ac up in)
to[nos, invert, mirror, name=switch,color=red] ++(-2,0)
-- (point);
\draw (acdc.ac down in) to[smallR] ++(-2,0)
-- (point)
to[oosourcetrans,prim=wye,sec=delta,l=transformer] ++(-1.5,0)
to[tmultiwire] ++(-.5,0)
node[gridnode, anchor=right]{};
\node[above=.3cm,color=red] at (switch) {fault};
\draw (acdc.dc up out) to[smallR,l=HVDC line] ++(2,0 )
node[tdcacshape, anchor=dc up in](dcac){};
\draw (acdc.dc down out) -- (dcac.dc down in);
\draw (dcac.right)
to[ooosource,prim=delta,sec=delta,tert=wye,invert] ++(1.5,0)
to[tmultiwire] ++(.5,0) node[gridnode,anchor=left]{};
\end{circuitikz}
\end{LTXexample}
% % changelog.tex will be updated by makefile from CHANGELOG.md
\section{Changelog and Release Notes}
\IfFileExists{changelog.tex}
{\sloppy\input{changelog.tex}}
{The file changelog.tex was not found, run 'make changelog' at toplevel to generate it with pandoc from CHANGELOG.md}
\printindex
\end{document}
% vim: set fdm=marker fmr=%<<<,%>>>:
|