1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
%
% Copyright (C) 2018, 2019, 2020 by
% Anna Capietto, Sandro Coriasco, Boris Doubrov, Alexander Koslovski,
% Tiziana Armano, Nadir Murru, Dragan Ahmetovic, Cristian Bernareggi
%
% Based on accsupp and tagpdf
%
% This work consists of the main source files axessibility.dtx and axessibility.lua,
% and the derived files
% axessibility.ins, axessibility.sty, axessibility.pdf, README,
% axessibilityExampleSingleLineT.tex, axessibilityExampleSingleLineA.tex,
%. axessibilityExampleAlignT.tex, axessibilityExampleAlignA.tex
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status `maintained'.
%
% The Current Maintainer of this work is
% Sandro Coriasco
%
\documentclass[a4paper,11pt]{article}
\usepackage[accsupp]{axessibility}
\title{The golden mean}
\author{}
\date{}
\begin{document}
\maketitle
The golden mean is the number
\[\frac{1 + \sqrt{5}}{2},\]
that is the root larger in modulus of
\begin{equation} x^2 - x - 1. \end{equation}
It is usually defined as the ratio of two lengths \(a\) and \(b\) such that
\begin{equation*} (a+b) : a = a : b. \end{equation*}
Let \(x\) be the ratio \( \frac{a}{b} \), we have \( \frac{a+b}{a} = 1 + \frac{1}{x} \), from which we get the equation \(x^2 = x + 1\).
\end{document}
|