summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/aiaa/pre2004/demos/talk/smptalk.tex
blob: 4dba1b85ff562e6e17b9adf6baf397cb94f7471f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
%
%  'smptalk.tex' sample slide presentation - courtesy of karen bibb
%
%  typical (unix) processing sequence for postscript printer:
%
%    latex smptalk                         - create dvi file
%    xdvi -paper usr smptalk               - preview dvi file
%    dvips -t landscape smptalk            - transform dvi file to postscript
%    ghostview -landscape -swap smptalk.ps - check postscript output
%    lpr smptalk.ps                        - print postscript file

\documentclass[landscape]{slides}

% load custom command definitions and other default settings:
\usepackage{smptalk}

% un-comment for ``page'' numbers:
%\pagestyle{plain}

% un-comment for processing only a select few slides or notes:
%\onlyslides{1-2,5,10-999}
%\onlynotes{1-2,12}
% or, for interactive prompting, un-comment the following:
%\typein[\slides]{Which slides to do?}
%\onlyslides{\slides}
%\onlynotes{\slides}

\begin{document}

\begin{slide}\typeout{Title:}
  \begin{center}
    {\Large\bf Hypersonic Flow Computations On Unstructured Meshes}

    {\large\bf AIAA 97--0625}

    \begin{tabular}{cc}
      K. L. Bibb                & J. Peraire               \\[.1in]
      \it NASA Langley Research & \it Massachusetts Institute  \\
      \it Center                & \it of Technology           \\
      \it Hampton, Virginia     & \it Cambridge, Massachusetts
    \end{tabular}

    C. J. Riley \\[.1in]
    \it NASA Langley Research Center \\
        Hampton, Virginia
  \end{center}
\end{slide}

\begin{note}
  \begin{describe}[1.5in]
    \item [Session] Applied Computational Aero
    \item [Time] wed afternoon
    \item [Mention] colleagues
          \begin{items} 
             \item Ram Prabhu for running codes
             \item Bill Scallion \& Matt Rhode for UPWT data
          \end{items}
  \end{describe}
\end{note}

\begin{slide}\typeout{Background:}
  \title{Background}
  \begin{items}
    \item Rapid, accurate aerodynamic screening capability is
          needed:
          \begin{items}
            \item aerodynamic performance coefficients
            \item pressure loads for preliminary structural analysis
            \item general flow features, for example, shock location
          \end{items}
    \item Unstructured grids offer flexible and rapid grid generation
    \item Historically, unstructured Euler schemes
          are not robust hypersonically
  \end{items}
\end{slide}

\begin{slide}\typeout{Outline:}
  \title{Outline}
  \leftmargin 3in
  \begin{items}
    \item Computational algorithm
    \item Comparisons to other codes\\
          and experiment
    \item Use as a screening tool
    \item Concluding remarks
  \end{items}
\end{slide}

\begin{note}
  \begin{items}
     \item details are in the paper for the algorithm
     \item screening tools are talked about throughout
  \end{items}
\end{note}

\begin{slide}\typeout{Flow solver (overview):}
  \title{FELISA System}
  \begin{items} 
    \item Unstructured mesh generation
    \item `Standard' Euler flow solver, 
          for subsonic $\Rightarrow$ low supersonic
    \item Hypersonic Euler flow solver, FELISA\_HYP
          \begin{items}
            \item perfect gas
            \item equilibrium air
            \item CF$_4$
          \end{items}
    \item Parallel versions of flow solvers
  \end{items}
\end{slide}

\begin{note}
  \begin{items}
    \item for parallel:  work on IBM sP2, J90, workstation clusters.
    \item not used for the calculations in the paper
  \end{items}
\end{note}

\begin{slide}\typeout{Flow solver (FELISA):}

  \title{Unstructured Inviscid\\ Hypersonic Flow Solver\\ (FELISA\_HYP)}
  \leftmargin 3in
  \begin{items}
    \item Euler equations
    \item Finite volume formulation
    \item Edge data structure
    \item H\"{a}nel flux vector splitting
    \item MUSCL reconstruction
    \item Explicit time stepping
  \end{items}
\end{slide}

\begin{note}
  \title{Time Stepping}
  \leftmargin 2.5in
  \begin{items}
    \item check to ensure monotonicity
    \item eliminate limit cycle behavior
  \end{items}
\end{note}

\begin{slide}\typeout{Edge Data Structure:}
  \title{Edge Data Structure}
  \begin{center}
    \begin{minipage}{.45\linewidth}
      \incfig[\linewidth]{smpfig}
    \end{minipage}
    \hspace{0.05\linewidth}
    \begin{minipage}{.45\linewidth}
      \begin{items}
        \item control volumes are tetrahedra surrounding each node
        \item fluxes computed across outer faces of control volume
        \item flux computations grouped by edge
      \end{items}
    \end{minipage}
  \end{center}
\end{slide}

\begin{note}
  \title{Old Edge Data Structure notes\ldots}
  \leftmargin 2in
  \begin{items}
    \item edge il is used in all of the figures\ldots\
  \end{items}
  \leftmargin 0in
  \begin{tabular}{p{.45\linewidth}p{.45\linewidth}}
    \begin{items}
      \item fluxes computed across faces of tetrahedra 
      \item control volume is tetrahedra 
      \item nodal info for cells is stored
    \end{items}&
    \begin{items}
      \item fluxes computed across $S^e$ for all edges of node~$i$
      \item control volume surrounds node
      \item weights for $S^e$ stored
    \end{items}
  \end{tabular}
\end{note}

\begin{slide}
  \typeout{Flux vector splitting:}
  \title{H\"anel Flux Vector Splitting}
  \begin{items}
    \item Upwind formulation; allows for stable computations
          across strong shocks
    \item No 'free' parameters are required
    \item Allows for constant enthalpy solution where solution is
          fully converged 
  \end{items}
\end{slide}

\begin{slide}\typeout{Reconstruction:}
  \title{Gradient Reconstruction}
  \incfig[.8\linewidth]{smpfig}
\end{slide}

\begin{note}
  \title{Gradient Reconstruction notes}
  \begin{items}
    \item compare to structured grid gradient calculation\\ 
    \item edge il is used in all of the figures...\\
    \item MUSCL reconstruction
          (Monotone Upwind Scheme Conservation Law)
  \end{items}
\end{note}

\begin{slide}\typeout{NASA's use of FELISA:}
  \title{Recent Applications of the FELISA System}
  \leftmargin 1in
  \begin{items}
    \item Lockheed-Martin RLV/X-33 Phase I; aerodynamics
    \item Lockheed-Martin RLV/X-33 Phase II; 
          Ascent shock interaction study; transonic aerodynamic screening
    \item McDonnell Douglas Phase I RLV/X-33;
          control surface loading (NASA CR 201606)
          and aerodynamics\\
          (subsonic $\Rightarrow$ hypersonic)  
    \item OSC X-34, transonic screening, control surface loading
  \end{items}
\end{slide}

\begin{slide}\typeout{X-33 body:}
  \title{Code to Code Comparisons for\\
         Preliminary Lockheed--Martin X-33 Vehicle}
  \begin{items}
    \item Codes:\\
      -- FELISA\_HYP:  inviscid, unstructured mesh\\
      -- LAURA:  viscous, structured grid\\
      -- DPLUR:  inviscid, structured grid, parallel
    \item Flow feature, surface pressure comparisons:\\
      -- $M_\infty = 9.8$, $\alpha = 40^{\circ}$
    \item Aerodynamic force and moment comparisons:\\
      -- $M_\infty = 4.5$, experimental data from LaRC UPWT
  \end{items}
\end{slide}

\begin{slide}
  \title{X33 Configuration}
  \begin{center}
    \begin{tabular}{cc}
      \incfig[.45\linewidth]{smpfig}&
      \incfig[.45\linewidth]{smpfig}
    \end{tabular}
  \end{center}
\end{slide}

\begin{note}
  \title{Code to Code Comparisons for
         Preliminary Lockheed--Martin X-33 Vehicle}
  \leftmargin 3in
  \begin{items}
    \item mention code authors
  \end{items}
\end{note}

\begin{slide}\typeout{How has FELISAHYP been used?}
  \title{Grid Generation Time Comparisons}
  \begin{items}
    \item Initial geometry definition, surface and volume mesh generation
          for an X-33 configuration, first~time~$\|$ most~recent:
          \begin{items}
            \item FELISA:  1.5 weeks $\|$ 4 days
            \item structured: 6 weeks $\|$ 3.5 weeks
          \end{items}
    \item Case-specific grid generation:
          bow shock spacing: time consuming for FELISA, 1-2 days
          control surface deflections:
          \begin{items}
            \item $1/2$ day for unstructured
            \item $1/2$ week for LAURA 
          \end{items}
  \end{items}
\end{slide}

\begin{note}
  \title{Grid Generation Time Comparisons}
  \begin{describe}[.9in]
    \item[felisa] put together surfaces, intersection curves, topology
    \item[laura] build surface on cad
  \end{describe}
\end{note}

\begin{slide}\typeout{Concluding Remarks:}
  \title{Concluding Remarks}
  \begin{items}
    \item FELISA\_HYP flow solver  developed\\
    \item Applied FELISA System with FELISA\_HYP to complex \\configurations
          \begin{items}
            \item Comparable accuracy to structured grid solvers
            \item Faster turn--around time than structured grid methods
          \end{items}
    \item Significant impact on major NASA programs
  \end{items}
\end{slide}

\end{document}