summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex
blob: 7332ee4e06d4a6a631f79011fdcb1f92063fb98e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
%% $Id: pst-magneticfield-docEN.tex 912 2019-01-17 10:46:15Z herbert $
\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings,
    headexclude,footexclude,oneside]{pst-doc}
\usepackage{pst-magneticfield}
\let\pstMFfv\fileversion
\usepackage{graphicx}
\lstset{pos=t,language=PSTricks,
    morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily}

\newenvironment{postscript}{}{} % uncomment, when running with latex

\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}}
\def\bgImage{}

\addbibresource{pst-magneticfield-doc.bib}

\begin{document}

\title{\texttt{pst-magneticfield}}
\subtitle{Magnetic field lines of a solenoid; v.\pstMFfv}
\author{Juergen Gilg\\ Manuel Luque\\Herbert Vo\ss}
\date{\today}
\maketitle


\clearpage% 
\begin{abstract}
The package \LPack{pst-magneticfield} aims to trace the shape of field lines
of a solenoid. The physical parameters are the radius of the solenoid, the number of
turns and its length, the default values are given below:

\begin{enumerate}
  \item the number of turns: \LKeyset{N=6} ;
  \item the radius : \LKeyset{R=2} ;
  \item the length : \LKeyset{L=4}.
\end{enumerate}

The field lines were calculated with the Runge-Kutta 2 algorithm, which, after several tries, 
seemed to be the best compromise between speed and accuracy of calculations for the path.
The calculation of elliptic integrals for the evaluation of the magnetic field
was achieved by polynomial approximations from the "Handbook of Mathematical
Functions With Formulas, Graph, And Mathematical Tables" by Milton Abramowitz and
Irene.\,A. Stegun (\url{http://www.math.sfu.ca/~cbm/aands/}).~\cite{abramowitz}
\end{abstract}

\clearpage
\tableofcontents


\clearpage

\section{Introduction}

The route options, with the default values are as follows:
\begin{enumerate}
  \item The maximum number of points on each line of the entire coil: \LKeyset{pointsB=500};
  \item the maximum number of points on lines around turns selected: \LKeyset{pointsS=1000};
  \item the number of lines of the entire coil: \LKeyset{nL=8};
  \item differential steps for the lines of the entire coil: \LKeyset{PasB=0.02};
  \item differential steps for the lines around turns selected: \LKeyset{PasS=0.00275};
  \item the choice of individual coils to improve the rendering of its
      layout: \LKeyset{numSpires=\{\}}, we place following the sign "=" the numbers of turns \textsf{1 2 3 etc.} 
      starting from the top spire. By default, all the turns are targeted.
  \item The number of field lines around the turns selected: \LKeyset{nS=1}.
  \item We may decide not to represent the solenoid with the option \LKeyset{drawSelf=false}
      is useful for 3D representation.
  \item The route options for the turns (color, thickness, arrows) are:
  \begin{enumerate}
        \item The color and thickness of the coils: \Lkeyset{styleSpire=styleSpire};
        \item the current direction signs: \Lkeyset{styleCourant=sensCourant}.
  \end{enumerate}
\begin{verbatim}
\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth}
\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1}
\end{verbatim}
      
 \item The color and thickness of the field lines can be adjusted with the 
      usual \LPack{pstricks} parameters: \Lkeyword{linecolor} and  \Lkeyword{linewidth}
\end{enumerate}

A command \Lcs{psmagneticfieldThreeD} allows 3D visualization of the solenoid and
field lines. 

\begin{BDef}
\Lcs{psmagneticfield}\OptArgs\OptArg*{\coord1}\OptArg*{\coord2}\\
\Lcs{psmagneticfieldThreeD}\OptArgs\OptArg*{\coord1}\OptArg*{\coord2}
\end{BDef}

Missing coordinates are substituted to \verb+(-6,-5)(6,5)+!
\clearpage
\section{Influence of physical parameters on the map magnetic field}

\subsection{The length of the solenoid}

\begin{center}
\begin{postscript}
\psset{unit=0.5cm}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]}
\end{pspicture*}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.5cm}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]}
\end{pspicture*}
\end{lstlisting}



\textbf{Note:} To refine the layout of the second solenoid, we had to increase the
points and lower the pitch of the route: 
\begin{postscript}
\Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}
\end{postscript}, which
takes more time for the calculations.



\clearpage

\subsection{The number of turns}
\begin{center}
\begin{postscript}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8)
\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]}
\end{pspicture*}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8)
\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]}
\end{pspicture*}
\end{lstlisting}


\begin{center}
\begin{postscript}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]}
\end{pspicture*}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]}
\end{pspicture*}
\end{lstlisting}


\clearpage
\section{The three route options}
\subsection{The number of field lines}

Due to the symmetry of the problem the number of field lines given
(\Lkeyword{nL}) option is half the number actually represented with an added line
identic to the the axis of revolution. We must also add the lines around the turns \Lkeyword{nS},
these turns can be selected individually \Lkeyword{numSpires}.



\begin{center}
\begin{postscript}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]}
\end{pspicture*}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]}
\end{pspicture*}
\end{lstlisting}

\clearpage
\subsection{The number of points for the path}
  The plot of field lines is achieved by a numerical method (RK2) and
follows the step of the route and the number of selected points affect the accuracy of the route,
as in the two examples below:


\begin{center}
\begin{postscript}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]}
\end{pspicture*}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]}
\end{pspicture*}
\begin{pspicture*}[showgrid](-7,-8)(7,8)
\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100](-7,-8)(7,8)
\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8)
\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}}
\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7)
\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]}
\end{pspicture*}
\end{lstlisting}


If the defaults do not suit it must be found by testing the
values that give a correct path.



\clearpage

\section{The parameter \nxLkeyword{numSpires}}
\begin{center}
\begin{postscript}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-8,-10)(8,10)
\psset{linecolor=blue}
\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10)
\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9)
\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]}
\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
\end{pspicture*}\quad
\begin{pspicture*}[showgrid](0,-10)(16,10)
\psset{linecolor=blue}
\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10)
\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9)
\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]}
\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
\end{pspicture*}
\end{postscript}
\end{center}


\begin{lstlisting}
\psset{unit=0.5}
\begin{pspicture*}[showgrid](-8,-10)(8,10)
\psset{linecolor=blue}
\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075](-8,-10)(8,10)
\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9)
\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]}
\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
\end{pspicture*}\quad
\begin{pspicture*}[showgrid](0,-10)(16,10)
\psset{linecolor=blue}
\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075](0,-10)(16,10)
\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9)
\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]}
\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}}
\end{pspicture*}
\end{lstlisting}

\clearpage
\section{The parameter \nxLkeyword{AntiHelmholtz}}
\begin{center}
\begin{postscript}
\psset{unit=0.75,AntiHelmholtz,N=2,
  R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
  nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
\newpsstyle{cadre}{linecolor=yellow!50}
\begin{pspicture*}[showgrid](-7,-6)(7,6)
\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6)
\psmagneticfield[linecolor={[HTML]{660066}}]
\end{pspicture*}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.75,AntiHelmholtz,N=2,
  R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
  nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
\newpsstyle{cadre}{linecolor=yellow!50}
\begin{pspicture*}[showgrid](-7,-6)(7,6)
\psframe*[linecolor={[HTML]{996666}}](-7,6)(7,6)
\psmagneticfield[linecolor={[HTML]{660066}}]
\end{pspicture*}
\end{lstlisting}


\clearpage
\section{3D views}
3D views are possible with the macros

\begin{BDef}
\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\
\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2
\end{BDef}

in which options are settings \Lcs{psmagneticfield} and \verb+(x1,y1)(x2,y2)+
coordinates of bottom left corner and upper right framework
is encapsulated as the field map for \Lcs{psframe}. We can use the option
\Lkeyword{viewpoint} of the \LPack{pst-3d} package to change the view.
  The options framework are by default, the following:
\begin{verbatim}
\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10}
\newpsstyle{cadre}{linecolor=green!20}
\end{verbatim}

In the following example we can see the handling of these two psstyles.

\begin{center}
\begin{postscript}
\psset{unit=0.7cm}
\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
\newpsstyle{cadre}{linecolor=yellow!50}
\begin{pspicture}(-7,-6)(7,6)
\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6)
\end{pspicture}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.7cm}
\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
\newpsstyle{cadre}{linecolor=yellow!50}
\begin{pspicture}(-7,-6)(7,6)
\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-6)(7,6)
\end{pspicture}
\end{lstlisting}


\begin{center}
\begin{postscript}
\psset{unit=0.7cm}
\begin{pspicture}(-7,-6)(7,6)
\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6)
\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}}
\end{pspicture}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.7cm}
\begin{pspicture}(-7,-6)(7,6)
\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-6)(7,6)
\ThreeDput{\rput(0,-7){\textbf{Bobines de HELMHOLTZ}}}
\end{pspicture}
\end{lstlisting}

\begin{center}
\begin{postscript}
\psset{unit=0.75cm,AntiHelmholtz,N=2,
  R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
  nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant}
\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
\newpsstyle{cadre}{linecolor=yellow!50}
\begin{pspicture}(-7,-6)(7,6)
\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6)
\end{pspicture}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.75cm,AntiHelmholtz,N=2,
  R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10,
  nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant}
\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10}
\newpsstyle{cadre}{linecolor=yellow!50}
\begin{pspicture}(-7,-6)(7,6)
\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6)
\end{pspicture}
\end{lstlisting}

\section{Density plots}
The optional argument \Lkeyword{StreamDensityPlot} allows to plot the
magnetic field as a colored stream density. A gray colored output is possioble
with setting the keyword \Lkeyword{setgray}. 

\begin{center}
\begin{postscript}
\begin{pspicture}(-6,-4)(6,4)
\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
\end{pspicture}
\end{postscript}
\end{center}

\begin{lstlisting}
\begin{pspicture}(-6,-4)(6,4)
\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
\end{pspicture}
\end{lstlisting}

\begin{center}
\begin{postscript}
\psset{unit=0.75}
\begin{pspicture}(-6,-5)(6,5)
\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
\end{pspicture}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.75}
\begin{pspicture}(-6,-5)(6,5)
\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
\end{pspicture}
\end{lstlisting}


\begin{center}
\begin{postscript}
\psset{unit=0.75,AntiHelmholtz,
  R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
  nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
\begin{pspicture*}(-7,-6)(7,6)
\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
\end{pspicture*}
\end{postscript}
\end{center}


\begin{lstlisting}
\psset{unit=0.75,AntiHelmholtz,
  R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
  nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
\begin{pspicture*}(-7,-6)(7,6)
\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
\end{pspicture*}
\end{lstlisting}


\clearpage
\section{Stream density}


\begin{center}
\begin{postscript}
\begin{pspicture}(-6,-4)(6,4)
\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
\end{pspicture}
\end{postscript}
\end{center}

\begin{lstlisting}
\begin{pspicture}(-6,-4)(6,4)
\psmagneticfield[N=3,R=2,L=2,StreamDensityPlot](-6,-4)(6,4)
\end{pspicture}
\end{lstlisting}

\begin{center}
\begin{postscript}
\psset{unit=0.75}
\begin{pspicture}(-6,-5)(6,5)
\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
\end{pspicture}
\end{postscript}
\end{center}

\begin{lstlisting}
\psset{unit=0.75}
\begin{pspicture}(-6,-5)(6,5)
\psmagneticfield[N=2,R=2,L=1,StreamDensityPlot,setgray](-6,-5)(6,5)
\end{pspicture}
\end{lstlisting}


\begin{center}
\begin{postscript}
\psset{unit=0.75,AntiHelmholtz,
  R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
  nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
\begin{pspicture*}(-7,-6)(7,6)
\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
\end{pspicture*}
\end{postscript}
\end{center}


\begin{lstlisting}
\psset{unit=0.75,AntiHelmholtz,
  R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10,
  nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant}
\begin{pspicture*}(-7,-6)(7,6)
\psmagneticfield[linecolor={[HTML]{660066}},StreamDensityPlot](-7,-6)(7,6)
\end{pspicture*}
\end{lstlisting}



\section{Bar magnet}
The magnetic field of a bat magnet can be simulated. There is one macro for the bar magnet, which will be
put over one of the above created mnagnetic fields.

\begin{BDef}
\Lcs{psBarMagnet}\OptArgs\OptArg{\Largr{$x,y$}}
\end{BDef}

\begin{LTXexample}
\begin{pspicture}(-1,-2)(12,2)
\psBarMagnet% (0,0) is assumed
\psBarMagnet(2,0.5)
\psBarMagnet*(4,0)
\psBarMagnet[rot=90](7,0)
\psBarMagnet[rot=45](10,0)
\end{pspicture}
\end{LTXexample}


Bar magnet and field can be put of the other by single commands:


\begin{LTXexample}
\begin{pspicture*}[showgrid=false](-5,-8)(5,8)
\psset{linecolor=blue}
\psscalebox{0.8 1.2}{\psmagneticfield[R=1,L=5,N=5,pointsS=200,nL=9,nS=0,PasB=0.1,numSpires=0](-8,-10)(8,10)}
\rput(0,0){\psscalebox{2.2 3.0}{\psBarMagnet}}
\end{pspicture*}
\end{LTXexample}


or by using the optional argument \Lkeyword{showField}:

\begin{LTXexample}
\begin{pspicture*}(-5,-8)(5,8)
\psBarMagnet[showField](0,0)
\end{pspicture*}
\end{LTXexample}

A rotation has to be done with the command \Lcs{rotatebox} from package \LPack{graphicx}:


\begin{LTXexample}
\begin{pspicture*}(-5,-8)(5,8)
\rotatebox{180}{\psBarMagnet[showField](0,0)}
\end{pspicture*}
\end{LTXexample}


Scaling is possible with the optional argument \Lkeyword{magnetscale} and all options which
are valid for


\begin{LTXexample}
\begin{pspicture*}(-5,-8)(5,8)
\psBarMagnet[showField,nL=18,magnetScale=1 1.5](0,0)
\end{pspicture*}
\end{LTXexample}




\clearpage
\section{List of all optional arguments for \texttt{pst-magneticfield}}

\xkvview{family=pst-magneticfield,columns={key,type,default}}

\nocite{*}
\bgroup
\raggedright
\printbibliography
\egroup


\printindex




\end{document}