blob: ee118300fa44af8a64719593c154b29eef043265 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
\pagestyle{empty}
%Accents:
\begin{displaymath}
\widehat{bcd} \ \widetilde{efg} \ \dot A \ \dot R \ \mathbf{\dot A \check t}
\ \check{\mathcal{A}} \check{\mathcal{a}} \ \mathbf{\acute \imath}
\end{displaymath}
%Angle brackets:
\begin{displaymath}
\langle a \rangle \left\langle \frac{a}{b} \right\rangle
\left\langle \frac{\frac{a}{b}}{c} \right\rangle
\end{displaymath}
%Big operators:
\begin{displaymath}
(x + a)^n = \sum_{k=0}^n {n \choose k} x^k a^{n-k}
\end{displaymath}
%%Horizontal brackets:
\begin{displaymath}
\underbrace{\overbracket{aaaaaaa}}_\textrm{Siédém}
\underbrace{\overparen{aaaaa}}_\textrm{pięć}
\end{displaymath}
%Squares:
\begin{displaymath}
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}} =
\frac{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}}}}}{\frac{2}{3}}
\end{displaymath}
%Cardinal numbers
\begin{displaymath}
\aleph_{0}<2^{\aleph_0}<2^{2^{\aleph_0}}
\end{displaymath}
%Powers
\begin{displaymath}
x^{\alpha} e^{\beta x^{\gamma} e^{\delta x^{\epsilon}}}
\end{displaymath}
%Integrals
\begin{displaymath}
\oint_C\mathbf{F}\cdot d\mathbf{r}=\int_S\mathbf{\nabla}\times\mathbf{F}\cdot d\mathbf{S}\qquad
\oint_C\vec{A}\cdot\vec{dr}=\iint_S(\nabla\times\vec{A})\,\vec{dS}
\end{displaymath}
%Sum
\begin{displaymath}
(1+x)^n=1+\frac{nx}{1!}+\frac{n(n-1)x^2}{2!}+\cdots
\end{displaymath}
%Equations
\setlength\arraycolsep{0.15em}
\begin{eqnarray*}
\int_{-\infty}^\infty e^{-x^2}dx &=& \left[\int_{-\infty}^\infty e^{-x^2}dx
\int_{-\infty}^\infty e^{-y^2}dy\right]^{1/2}\\
&=& \left[\int_{0}^{2\pi} \int_0^\infty e^{-r^2}r\,dr\,d\theta\right]^{1/2}\\
&=& \left[\pi\int_{0}^\infty e^{-u}du\right]^{1/2}\\
&=& \sqrt{\pi}
\end{eqnarray*}
\endinput
|