blob: 86f5562f4fd8cf0e9545a712265cd88b185fd48e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
% !TEX TS-program = pdflatexmk
% Template file for TeXShop by Michael Sharpe, LPPL
\documentclass[12pt]{article}
\usepackage[margin=1in]{geometry}
\usepackage[parfill]{parskip}% Begin paragraphs with an empty line rather than an indent
\usepackage{graphicx}
\pdfmapfile{=libertinust1math.map}
%SetFonts
% libertine+newtxmath
\usepackage[sb]{libertine} % use sb in place of bold
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\makeatletter
\def\LinuxLibertine@scale{1.2}
\makeatother
\usepackage[varqu,varl]{zi4}% inconsolata
\usepackage{amsmath,amsthm}
\usepackage[sansmath]{libertinust1math}
%\usepackage[noamssymbols]{newtxmath}
% option vvarbb gives you stix blackboard bold
\useosf % use oldstyle figures except in math
\usepackage[cal=boondoxo]{mathalfa}% less slanted than STIX cal
%SetFonts
\usepackage{booktabs}
\pagestyle{empty}
\begin{document}
%\expandafter\meaning\csname mathsfbfit \endcsname
{\tt Options=[sansmath]}\\
%\verb|\mathsf{x}+\mathsfbf{y}+\mathsfbfit{z}+\mathsfit(w)|}
%\[\mathsf{x}\quad+\]
%\quad\mathsfbf{y}\quad+\quad\mathsfbfit{z}\quad\text{$\backslash$mathsfit is undefined}\]
The boundedness of $\Phi_ 0$ then yields
\[\int_D|\overline\partial u|^2e^{\alpha |{z}|^2}\geq c_6\alpha
\int_{D}|{u}|^2e^{\alpha|{z}|^2}
+c_7\delta^{-2}\int_ A|{u}|^2e^{\alpha|{z}|^2}.\]
Let $B(X)$ be the set of blocks of $\Lambda_{X}$
and let $b(X) \coloneq |{B(X)}|$. If $\phi \in Q_{X}$ then
$\phi$ is constant on the blocks of $\Lambda_{X}$.
\begin{equation}\label{far-d}
P_{X} = \{ \phi \in M \mid \Lambda_{\phi} = \Lambda_{X} \},
\qquad
Q_{X} = \{\phi \in M \mid \Lambda_{\phi} \geq \Lambda_{X} \}.
\end{equation}
If $\Lambda_{\phi} \geq \Lambda_{X}$ then
$\Lambda_{\phi} = \Lambda_{Y}$ for some $Y \geq X$ so that
\[ Q_{X} = \bigcup_{Y \geq X} P_{Y}. \]
Thus by M\"obius inversion
\[ P_{Y} = \sum_{X\geq Y} \mu (Y,X)Q_{\hat{X}}.\]
Thus there is a bijection from $Q_{X}$ to $W^{B(X)}$.
In particular $ |Q_{X}| = w^{b(X)}$.
\ShowMathFonts
%+\quad\mathsfit{w}\]
\end{document}
*** Mathgroups ***
(0: \LS1/libertinust1math/m/n/12 = libertinust1-mathsfrm at 14.39996pt [operators])
(1: \LS1/libertinust1math/m/it/12 = libertinust1-mathsfit at 14.39996pt [letters])
(2: \LS2/libertinust1mathsym/m/n/12 = libertinust1-mathsym at 14.39996pt [symbols])
(3: \LS2/libertinust1mathex/m/n/12 = libertinust1-mathex at 14.39996pt [largesymbols])
(4: \LS1/libertinust1mathbb/m/n/12 = libertinust1-mathbb at 14.39996pt [symbolsbb])
(5: \LS1/libertinust1math/b/n/12 = libertinust1-mathsfrm-bold at 14.39996pt [bold-operators])
(6: \LS1/libertinust1math/b/it/12 = libertinust1-mathsfit-bold at 14.39996pt [bold-letters])
|