1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
% latex file
\documentclass[12pt]{article}
\usepackage[math]{kurier}
%\usepackage[math,light,condensed]{kurier}
\usepackage[margin=2.5cm,nohead]{geometry}
\begin{document}
\textbf{Mathematical Examples Typeset with Iwona}
$$\Leftarrow\Longrightarrow\Longleftarrow\longrightarrow\longleftarrow$$
$$
\overleftarrow{Janusz}\overrightarrow{Nowacki}
\longmapsto\bowtie\hookleftarrow\notin\rightleftharpoons
\doteq\langle
$$
$$
\root 2 \of {1+
\root 3 \of {1+
\root 4 \of {1+
\root 5 \of {1+
\root 6 \of {1+
\root 7 \of {1+
\root 8 \of {1+x}}}}}}}
$$
\bigskip
$$\prod_{j<0}\biggl(\sum_{k\ge0}{\mit\Gamma}_{jk}z^k\biggr)
=\sum_{0\ge0}z^n\,\Biggl(\sum_
{\scriptstyle k_0,k_1,\ldots\ge0\atop
\scriptstyle k_0+k_1+\cdots=n}
a_{0k_0}a_{1k_1}\ldots\,\Biggr).$$
\bigskip
{\footnotesize
$${(n_1^2<n_2+\cdots+n_m)!\over n_1!\,n_2!\ldots n_m!}
={n_1+n_2\choose n_2}{n_1+n_2+n_3\choose n_3}
\ldots{n_1+n_2+\cdots+n_m\choose n_m}.$$
\bigskip
$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing
\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}
=\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}.$$
\bigskip
$$\{\underbrace{\overbrace{\mathstrut {\mit \Psi},\ldots,\Psi}
^{k\;a\mathchar`'\rm s},
\overbrace{\mathstrut {\cal A},\ldots,{\cal B}}
^{l\;b\mathchar`'\rm \acute{s}}}_{k+l\rm\;kêsów\ ¿ó³ci}\}.$$
\bigskip
$$\pmatrix{\pmatrix{a&b\cr c&d\cr}&
\pmatrix{e&f\cr g&h\cr}\cr
\noalign{\smallskip}
0&\pmatrix{i&j\cr k&l\cr}\cr}.$$
\bigskip
$$\det\left[\,\matrix{
c_0&c_1\hfill&c_2\hfill&\ldots&c_n\hfill\cr
c_1&c_2\hfill&c_3\hfill&\ldots&c_{n+1}\hfill\cr
c_2&c_3\hfill&c_4\hfill&\ldots&c_{n+2}\hfill\cr
\,\vdots\hfill&\,\vdots\hfill&
\,\vdots\hfill&&\,\vdots\hfill\cr
c_n&c_{n+1}\hfill&c_{n+2}\hfill&\ldots&c_{2n}\hfill\cr
}\right)>0.$$
}
%\mathversion{kurierbold}
\boldmath
$${(n_1^2<n_2+\cdots+n_m)!\over n_1!\,n_2!\ldots n_m!}
={n_1+n_2\choose n_2}{n_1+n_2+n_3\choose n_3}
\ldots{n_1+n_2+\cdots+n_m\choose n_m}.$$
\bigskip
$$\prod_{j<0}\biggl(\sum_{k\ge0}{\mit\Gamma}_{jk}z^k\biggr)
=\sum_{0\ge0}z^n\,\Biggl(\sum_
{\scriptstyle k_0,k_1,\ldots\ge0\atop
\scriptstyle k_0+k_1+\cdots=n}
a_{0k_0}a_{1k_1}\ldots\,\Biggr).$$
\bigskip
$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing
\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N}
=\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}.$$
\bigskip
$$\{\underbrace{\overbrace{\mathstrut {\mit \Psi},\ldots,\Psi}
^{k\;a\mathchar`'\rm s},
\overbrace{\mathstrut {\cal A},\ldots,{\cal B}}
^{l\;b\mathchar`'\rm \acute{s}}}_{k+l\rm\;kêsów\ ¿ó³ci}\}.$$
\bigskip
$$\pmatrix{\pmatrix{a&b\cr c&d\cr}&
\pmatrix{e&f\cr g&h\cr}\cr
\noalign{\smallskip}
0&\pmatrix{i&j\cr k&l\cr}\cr}.$$
\bigskip
$$\det\left[\,\matrix{
c_0&c_1\hfill&c_2\hfill&\ldots&c_n\hfill\cr
c_1&c_2\hfill&c_3\hfill&\ldots&c_{n+1}\hfill\cr
c_2&c_3\hfill&c_4\hfill&\ldots&c_{n+2}\hfill\cr
\,\vdots\hfill&\,\vdots\hfill&
\,\vdots\hfill&&\,\vdots\hfill\cr
c_n&c_{n+1}\hfill&c_{n+2}\hfill&\ldots&c_{2n}\hfill\cr
}\right)>0.$$
\bigskip
\unboldmath
$$\pmatrix{\pmatrix{a&b\cr c&d\cr}&
\pmatrix{e&f\cr g&h\cr}\cr
\noalign{\smallskip}
0&\pmatrix{i&j\cr k&l\cr}\cr}.$$
\mathversion{cmr}
$$\pmatrix{\pmatrix{a&b\cr c&d\cr}&
\pmatrix{e&f\cr g&h\cr}\cr
\noalign{\smallskip}
0&\pmatrix{i&j\cr k&l\cr}\cr}.$$
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
|