1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
struct rmf {
triple p,r,t,s;
void operator init(triple p, triple r, triple t) {
this.p=p;
this.r=r;
this.t=t;
s=cross(t,r);
}
transform3 transform() {
return transform3(r,s,t);
}
}
// Rotation minimizing frame
// http://www.cs.hku.hk/research/techreps/document/TR-2007-07.pdf
rmf[] rmf(path3 g, real[] t, triple perp=O)
{
triple T=dir(g,0);
triple Tp=abs(perp) < sqrtEpsilon ? perp(T) : unit(perp);
rmf[] R=new rmf[t.length];
R[0]=rmf(point(g,0),Tp,T);
for(int i=1; i < t.length; ++i) {
rmf Ri=R[i-1];
real t=t[i];
triple p=point(g,t);
triple v1=p-Ri.p;
if(v1 != O) {
triple r=Ri.r;
triple u1=unit(v1);
triple ti=Ri.t;
triple tp=ti-2*dot(u1,ti)*u1;
ti=dir(g,t);
triple rp=r-2*dot(u1,r)*u1;
triple u2=unit(ti-tp);
rp=rp-2*dot(u2,rp)*u2;
R[i]=rmf(p,unit(rp),unit(ti));
} else
R[i]=R[i-1];
}
return R;
}
rmf[] rmf(triple z0, triple c0, triple c1, triple z1, real[] t, triple perp=O)
{
static triple s0;
real norm=sqrtEpsilon*max(abs(z0),abs(c0),abs(c1),abs(z1));
// Special case of dir for t in (0,1].
triple dir(real t) {
if(t == 1) {
triple dir=z1-c1;
if(abs(dir) > norm) return unit(dir);
dir=2.0*c1-c0-z1;
if(abs(dir) > norm) return unit(dir);
return unit(z1-z0+3.0*(c0-c1));
}
triple a=z1-z0+3.0*(c0-c1);
triple b=2.0*(z0+c1)-4.0*c0;
triple c=c0-z0;
triple dir=a*t*t+b*t+c;
if(abs(dir) > norm) return unit(dir);
dir=2.0*a*t+b;
if(abs(dir) > norm) return unit(dir);
return unit(a);
}
triple T=c0-z0;
if(abs(T) < norm) {
T=z0-2*c0+c1;
if(abs(T) < norm)
T=z1-z0+3.0*(c0-c1);
}
T=unit(T);
triple Tp=perp == O ? cross(s0,T) : perp;
Tp=abs(Tp) < sqrtEpsilon ? perp(T) : unit(Tp);
rmf[] R=new rmf[t.length];
R[0]=rmf(z0,Tp,T);
for(int i=1; i < t.length; ++i) {
rmf Ri=R[i-1];
real t=t[i];
triple p=bezier(z0,c0,c1,z1,t);
triple v1=p-Ri.p;
if(v1 != O) {
triple r=Ri.r;
triple u1=unit(v1);
triple ti=Ri.t;
triple tp=ti-2*dot(u1,ti)*u1;
ti=dir(t);
triple rp=r-2*dot(u1,r)*u1;
triple u2=unit(ti-tp);
rp=rp-2*dot(u2,rp)*u2;
R[i]=rmf(p,unit(rp),unit(ti));
} else
R[i]=R[i-1];
}
s0=R[t.length-1].s;
return R;
}
surface tube(triple z0, triple c0, triple c1, triple z1, real w)
{
surface s;
static real[] T={0,1/3,2/3,1};
rmf[] rmf=rmf(z0,c0,c1,z1,T);
real aw=a*w;
triple[] arc={(w,0,0),(w,aw,0),(aw,w,0),(0,w,0)};
triple[] g={z0,c0,c1,z1};
void f(transform3 R) {
triple[][] P=new triple[4][];
for(int i=0; i < 4; ++i) {
transform3 T=shift(g[i])*rmf[i].transform()*R;
P[i]=new triple[] {T*arc[0],T*arc[1],T*arc[2],T*arc[3]};
}
s.push(patch(P,copy=false));
}
f(identity4);
f(t1);
f(t2);
f(t3);
s.PRCprimitive=false;
s.draw=new void(frame f, transform3 t=identity4, material[] m,
light light=currentlight, render render=defaultrender)
{
material m=material(m[0],light);
drawTube(f,t*g,w,m.p,m.opacity,m.shininess,m.metallic,m.fresnel0,
t*min(s),t*max(s),m.opacity == 1);
};
return s;
}
real tubethreshold=20;
// Note: casting an array of surfaces to a single surface will disable
// primitive compression.
surface operator cast(surface[] s) {
surface S;
for(surface p : s)
S.append(p);
return S;
}
struct tube
{
surface[] s;
path3 center; // tube axis
void Null(transform3) {}
void Null(transform3, bool) {}
surface[] render(path3 g, real r) {
triple z0=point(g,0);
triple c0=postcontrol(g,0);
triple c1=precontrol(g,1);
triple z1=point(g,1);
real norm=sqrtEpsilon*max(abs(z0),abs(c0),abs(c1),abs(z1));
surface[] s;
void Split(triple z0, triple c0, triple c1, triple z1,
real depth=mantissaBits) {
if(depth > 0) {
pair threshold(triple z0, triple c0, triple c1) {
triple u=c1-z0;
triple v=c0-z0;
real x=abs(v);
return (x,abs(u*x^2-dot(u,v)*v));
}
pair a0=threshold(z0,c0,c1);
pair a1=threshold(z1,c1,c0);
real rL=r*arclength(z0,c0,c1,z1)*tubethreshold;
if((a0.x >= norm && rL*a0.y^2 > a0.x^8) ||
(a1.x >= norm && rL*a1.y^2 > a1.x^8)) {
triple m0=0.5*(z0+c0);
triple m1=0.5*(c0+c1);
triple m2=0.5*(c1+z1);
triple m3=0.5*(m0+m1);
triple m4=0.5*(m1+m2);
triple m5=0.5*(m3+m4);
--depth;
Split(z0,m0,m3,m5,depth);
Split(m5,m4,m2,z1,depth);
return;
}
}
s.push(tube(z0,c0,c1,z1,r));
}
Split(z0,c0,c1,z1);
return s;
}
void operator init(path3 p, real width) {
center=p;
real r=0.5*width;
void generate(path3 p) {
int n=length(p);
for(int i=0; i < n; ++i) {
if(straight(p,i)) {
triple v=point(p,i);
triple u=point(p,i+1)-v;
transform3 t=shift(v)*align(unit(u))*scale(r,r,abs(u));
// Draw opaque surfaces with core for better small-scale rendering.
surface unittube=t*unitcylinder;
unittube.draw=unitcylinderDraw(core=true);
s.push(unittube);
} else
s.append(render(subpath(p,i,i+1),r));
}
}
transform3 t=scale3(r);
bool cyclic=cyclic(p);
int begin=0;
int n=length(p);
for(int i=cyclic ? 0 : 1; i < n; ++i)
if(abs(dir(p,i,1)-dir(p,i,-1)) > sqrtEpsilon) {
generate(subpath(p,begin,i));
triple dir=dir(p,i,-1);
transform3 T=t*align(dir);
s.push(shift(point(p,i))*T*(straight(p,i-1) && straight(p,i) ?
unithemisphere : unitsphere));
begin=i;
}
path3 g=subpath(p,begin,n);
generate(g);
}
}
|