1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
|
// Copyright 2015 Charles Staats III
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// smoothcontour3
// An Asymptote module for drawing smooth implicitly defined surfaces
// author: Charles Staats III
// charles dot staats dot iii at gmail dot com
import graph_settings; // for nmesh
import three;
import math;
/***********************************************/
/******** CREATING BEZIER PATCHES **************/
/******** WITH SPECIFIED NORMALS **************/
/***********************************************/
// The weight given to minimizing the sum of squares of
// the mixed partials at the corners of the bezier patch.
// If this weight is zero, the result is undefined in
// places and can be rather wild even where it is
// defined.
// The struct is used to as a namespace.
struct pathwithnormals_settings {
static real wildnessweight = 1e-3;
}
private from pathwithnormals_settings unravel wildnessweight;
// The Bernstein basis polynomials of degree 3:
real B03(real t) { return (1-t)^3; }
real B13(real t) { return 3*t*(1-t)^2; }
real B23(real t) { return 3*t^2*(1-t); }
real B33(real t) { return t^3; }
private typedef real function(real);
function[] bernstein = new function[] {B03, B13, B23, B33};
// This function attempts to produce a Bezier patch
// with the specified boundary path and normal directions.
// For instance, the patch should be normal to
// u0normals[0] at (0, 0.25),
// normal to u0normals[1] at (0, 0.5), and
// normal to u0normals[2] at (0, 0.75).
// The actual normal (as computed by the patch.normal() function)
// may be parallel to the specified normal, antiparallel, or
// even zero.
//
// A small amount of deviation is allowed in order to stabilize
// the algorithm (by keeping the mixed partials at the corners from
// growing too large).
//
// Note that the specified normals are projected to be orthogonal to
// the specified boundary path. However, the entries in the array
// remain intact.
patch patchwithnormals(path3 external, triple[] u0normals, triple[] u1normals,
triple[] v0normals, triple[] v1normals)
{
assert(cyclic(external));
assert(length(external) == 4);
assert(u0normals.length == 3);
assert(u1normals.length == 3);
assert(v0normals.length == 3);
assert(v1normals.length == 3);
triple[][] controlpoints = new triple[4][4];
controlpoints[0][0] = point(external,0);
controlpoints[1][0] = postcontrol(external,0);
controlpoints[2][0] = precontrol(external,1);
controlpoints[3][0] = point(external,1);
controlpoints[3][1] = postcontrol(external,1);
controlpoints[3][2] = precontrol(external,2);
controlpoints[3][3] = point(external,2);
controlpoints[2][3] = postcontrol(external,2);
controlpoints[1][3] = precontrol(external,3);
controlpoints[0][3] = point(external,3);
controlpoints[0][2] = postcontrol(external,3);
controlpoints[0][1] = precontrol(external, 4);
real[][] matrix = new real[24][12];
for (int i = 0; i < matrix.length; ++i)
for (int j = 0; j < matrix[i].length; ++j)
matrix[i][j] = 0;
real[] rightvector = new real[24];
for (int i = 0; i < rightvector.length; ++i)
rightvector[i] = 0;
void addtocoeff(int i, int j, int count, triple coeffs) {
if (1 <= i && i <= 2 && 1 <= j && j <= 2) {
int position = 3 * (2 * (i-1) + (j-1));
matrix[count][position] += coeffs.x;
matrix[count][position+1] += coeffs.y;
matrix[count][position+2] += coeffs.z;
} else {
rightvector[count] -= dot(controlpoints[i][j], coeffs);
}
}
void addtocoeff(int i, int j, int count, real coeff) {
if (1 <= i && i <= 2 && 1 <= j && j <= 2) {
int position = 3 * (2 * (i-1) + (j-1));
matrix[count][position] += coeff;
matrix[count+1][position+1] += coeff;
matrix[count+2][position+2] += coeff;
} else {
rightvector[count] -= controlpoints[i][j].x * coeff;
rightvector[count+1] -= controlpoints[i][j].y * coeff;
rightvector[count+2] -= controlpoints[i][j].z * coeff;
}
}
int count = 0;
void apply_u0(int j, real a, triple n) {
real factor = 3 * bernstein[j](a);
addtocoeff(0,j,count,-factor*n);
addtocoeff(1,j,count,factor*n);
}
void apply_u0(real a, triple n) {
triple tangent = dir(external, 4-a);
n -= dot(n,tangent)*tangent;
n = unit(n);
for (int j = 0; j < 4; ++j) {
apply_u0(j,a,n);
}
++count;
}
apply_u0(0.25, u0normals[0]);
apply_u0(0.5, u0normals[1]);
apply_u0(0.75, u0normals[2]);
void apply_u1(int j, real a, triple n) {
real factor = 3 * bernstein[j](a);
addtocoeff(3,j,count,factor*n);
addtocoeff(2,j,count,-factor*n);
}
void apply_u1(real a, triple n) {
triple tangent = dir(external, 1+a);
n -= dot(n,tangent)*tangent;
n = unit(n);
for (int j = 0; j < 4; ++j)
apply_u1(j,a,n);
++count;
}
apply_u1(0.25, u1normals[0]);
apply_u1(0.5, u1normals[1]);
apply_u1(0.75, u1normals[2]);
void apply_v0(int i, real a, triple n) {
real factor = 3 * bernstein[i](a);
addtocoeff(i,0,count,-factor*n);
addtocoeff(i,1,count,factor*n);
}
void apply_v0(real a, triple n) {
triple tangent = dir(external, a);
n -= dot(n,tangent) * tangent;
n = unit(n);
for (int i = 0; i < 4; ++i)
apply_v0(i,a,n);
++count;
}
apply_v0(0.25, v0normals[0]);
apply_v0(0.5, v0normals[1]);
apply_v0(0.75, v0normals[2]);
void apply_v1(int i, real a, triple n) {
real factor = 3 * bernstein[i](a);
addtocoeff(i,3,count,factor*n);
addtocoeff(i,2,count,-factor*n);
}
void apply_v1(real a, triple n) {
triple tangent = dir(external, 3-a);
n -= dot(n,tangent)*tangent;
n = unit(n);
for (int i = 0; i < 4; ++i)
apply_v1(i,a,n);
++count;
}
apply_v1(0.25, v1normals[0]);
apply_v1(0.5, v1normals[1]);
apply_v1(0.75, v1normals[2]);
addtocoeff(0,0,count,9*wildnessweight);
addtocoeff(1,1,count,9*wildnessweight);
addtocoeff(0,1,count,-9*wildnessweight);
addtocoeff(1,0,count,-9*wildnessweight);
count+=3;
addtocoeff(3,3,count,9*wildnessweight);
addtocoeff(2,2,count,9*wildnessweight);
addtocoeff(3,2,count,-9*wildnessweight);
addtocoeff(2,3,count,-9*wildnessweight);
count+=3;
addtocoeff(0,3,count,9*wildnessweight);
addtocoeff(1,2,count,9*wildnessweight);
addtocoeff(1,3,count,-9*wildnessweight);
addtocoeff(0,2,count,-9*wildnessweight);
count += 3;
addtocoeff(3,0,count,9*wildnessweight);
addtocoeff(2,1,count,9*wildnessweight);
addtocoeff(3,1,count,-9*wildnessweight);
addtocoeff(2,0,count,-9*wildnessweight);
count += 3;
real[] solution = leastsquares(matrix, rightvector, warn=false);
if (solution.length == 0) { // if the matrix was singular
write("Warning: unable to solve matrix for specifying edge normals "
+ "on bezier patch. Using coons patch.");
return patch(external);
}
for (int i = 1; i <= 2; ++i) {
for (int j = 1; j <= 2; ++j) {
int position = 3 * (2 * (i-1) + (j-1));
controlpoints[i][j] = (solution[position],
solution[position+1],
solution[position+2]);
}
}
return patch(controlpoints);
}
// This function attempts to produce a Bezier triangle
// with the specified boundary path and normal directions at the
// edge midpoints. The bezier triangle should be normal to
// n1 at point(external, 0.5),
// normal to n2 at point(external, 1.5), and
// normal to n3 at point(external, 2.5).
// The actual normal (as computed by the patch.normal() function)
// may be parallel to the specified normal, antiparallel, or
// even zero.
//
// A small amount of deviation is allowed in order to stabilize
// the algorithm (by keeping the mixed partials at the corners from
// growing too large).
patch trianglewithnormals(path3 external, triple n1,
triple n2, triple n3) {
assert(cyclic(external));
assert(length(external) == 3);
// Use the formal symbols a3, a2b, abc, etc. to denote the control points,
// following the Wikipedia article on Bezier triangles.
triple a3 = point(external, 0), a2b = postcontrol(external, 0),
ab2 = precontrol(external, 1), b3 = point(external, 1),
b2c = postcontrol(external, 1), bc2 = precontrol(external, 2),
c3 = point(external, 2), ac2 = postcontrol(external, 2),
a2c = precontrol(external, 0);
// Use orthogonal projection to ensure that the normal vectors are
// actually normal to the boundary path.
triple tangent = dir(external, 0.5);
n1 -= dot(n1,tangent)*tangent;
n1 = unit(n1);
tangent = dir(external, 1.5);
n2 -= dot(n2,tangent)*tangent;
n2 = unit(n2);
tangent = dir(external, 2.5);
n3 -= dot(n3,tangent)*tangent;
n3 = unit(n3);
real wild = 2 * wildnessweight;
real[][] matrix = { {n1.x, n1.y, n1.z},
{n2.x, n2.y, n2.z},
{n3.x, n3.y, n3.z},
{ wild, 0, 0},
{ 0, wild, 0},
{ 0, 0, wild} };
real[] rightvector =
{ dot(n1, (a3 + 3a2b + 3ab2 + b3 - 2a2c - 2b2c)) / 4,
dot(n2, (b3 + 3b2c + 3bc2 + c3 - 2ab2 - 2ac2)) / 4,
dot(n3, (c3 + 3ac2 + 3a2c + a3 - 2bc2 - 2a2b)) / 4 };
// The inner control point that minimizes the sum of squares of
// the mixed partials on the corners.
triple tameinnercontrol =
((a2b + a2c - a3) + (ab2 + b2c - b3) + (ac2 + bc2 - c3)) / 3;
rightvector.append(wild * new real[]
{tameinnercontrol.x, tameinnercontrol.y, tameinnercontrol.z});
real[] solution = leastsquares(matrix, rightvector, warn=false);
if (solution.length == 0) { // if the matrix was singular
write("Warning: unable to solve matrix for specifying edge normals "
+ "on bezier triangle. Using coons triangle.");
return patch(external);
}
triple innercontrol = (solution[0], solution[1], solution[2]);
return patch(external, innercontrol);
}
// A wrapper for the previous functions when the normal direction
// is given as a function of direction. The wrapper can also
// accommodate cyclic boundary paths of between one and four
// segments, although the results are best by far when there
// are three or four segments.
patch patchwithnormals(path3 external, triple normalat(triple)) {
assert(cyclic(external));
assert(1 <= length(external) && length(external) <= 4);
if (length(external) == 3) {
triple n1 = normalat(point(external, 0.5));
triple n2 = normalat(point(external, 1.5));
triple n3 = normalat(point(external, 2.5));
return trianglewithnormals(external, n1, n2, n3);
}
while (length(external) < 4) external = external -- cycle;
triple[] u0normals = new triple[3];
triple[] u1normals = new triple[3];
triple[] v0normals = new triple[3];
triple[] v1normals = new triple[3];
for (int i = 1; i <= 3; ++i) {
v0normals[i-1] = unit(normalat(point(external, i/4)));
u1normals[i-1] = unit(normalat(point(external, 1 + i/4)));
v1normals[i-1] = unit(normalat(point(external, 3 - i/4)));
u0normals[i-1] = unit(normalat(point(external, 4 - i/4)));
}
return patchwithnormals(external, u0normals, u1normals, v0normals, v1normals);
}
/***********************************************/
/********* DUAL CUBE GRAPH UTILITY *************/
/***********************************************/
// Suppose a plane intersects a (hollow) cube, and
// does not intersect any vertices. Then its intersection
// with cube forms a cycle. The goal of the code below
// is to reconstruct the order of the cycle
// given only an unordered list of which edges the plane
// intersects.
//
// Basically, the question is this: If we know the points
// in which a more-or-less planar surface intersects the
// edges of cube, how do we connect those points?
//
// When I wrote the code, I was thinking in terms of the
// dual graph of a cube, in which "vertices" are really
// faces of the cube and "edges" connect those "vertices."
// An enum for the different "vertices" (i.e. faces)
// available. NULL_VERTEX is primarily intended as a
// return value to indicate the absence of a desired
// vertex.
private int NULL_VERTEX = -1;
private int XHIGH = 0;
private int XLOW = 1;
private int YHIGH = 2;
private int YLOW = 3;
private int ZHIGH = 4;
private int ZLOW = 5;
// An unordered set of nonnegative integers.
// Since the intent is to use
// only the six values from the enum above, no effort
// was made to use scalable algorithms.
struct intset {
private bool[] ints = new bool[0];
private int size = 0;
bool contains(int item) {
assert(item >= 0);
if (item >= ints.length) return false;
return ints[item];
}
// Returns true if the item was added (i.e., was
// not already present).
bool add(int item) {
assert(item >= 0);
while (item >= ints.length) ints.push(false);
if (ints[item]) return false;
ints[item] = true;
++size;
return true;
}
int[] elements() {
int[] toreturn;
for (int i = 0; i < ints.length; ++i) {
if (ints[i]) toreturn.push(i);
}
return toreturn;
}
int size() { return size; }
}
// A map from integers to sets of integers. Again, no
// attempt is made to use scalable data structures.
struct int_to_intset {
int[] keys = new int[0];
intset[] values = new intset[0];
void add(int key, int value) {
for (int i = 0; i < keys.length; ++i) {
if (keys[i] == key) {
values[i].add(value);
return;
}
}
keys.push(key);
intset newset;
values.push(newset);
newset.add(value);
}
private int indexOf(int key) {
for (int i = 0; i < keys.length; ++i) {
if (keys[i] == key) return i;
}
return -1;
}
int[] get(int key) {
int i = indexOf(key);
if (i < 0) return new int[0];
else return values[i].elements();
}
int numvalues(int key) {
int i = indexOf(key);
if (i < 0) return 0;
else return values[i].size();
}
int numkeys() {
return keys.length;
}
}
// A struct intended to represent an undirected edge between
// two "vertices."
struct edge {
int start;
int end;
void operator init(int a, int b) {
start = a;
end = b;
}
bool bordersvertex(int v) { return start == v || end == v; }
}
string operator cast(edge e) {
int a, b;
if (e.start <= e.end) {a = e.start; b = e.end;}
else {a = e.end; b = e.start; }
return (string)a + " <-> " + (string)b;
}
bool operator == (edge a, edge b) {
if (a.start == b.start && a.end == b.end) return true;
if (a.start == b.end && a.end == b.start) return true;
return false;
}
string operator cast(edge[] edges) {
string toreturn = "{ ";
for (int i = 0; i < edges.length; ++i) {
toreturn += edges[i];
if (i < edges.length-1) toreturn += ", ";
}
return toreturn + " }";
}
// Finally, the function that strings together a list of edges
// into a cycle. It makes assumptions that hold true if the
// list of edges did in fact come from a plane intersection
// containing no vertices of the cube. For instance, such a
// plane can contain at most two noncollinear points of any
// one face; consequently, no face can border more than two of
// the selected edges.
//
// If the underlying assumptions prove to be false, the function
// returns null.
int[] makecircle(edge[] edges) {
if (edges.length == 0) return new int[0];
int_to_intset graph;
for (edge e : edges) {
graph.add(e.start, e.end);
graph.add(e.end, e.start);
}
int currentvertex = edges[0].start;
int startvertex = currentvertex;
int lastvertex = NULL_VERTEX;
int[] toreturn = new int[0];
do {
toreturn.push(currentvertex);
int[] adjacentvertices = graph.get(currentvertex);
if (adjacentvertices.length != 2) return null;
for (int v : adjacentvertices) {
if (v != lastvertex) {
lastvertex = currentvertex;
currentvertex = v;
break;
}
}
} while (currentvertex != startvertex);
if (toreturn.length != graph.numkeys()) return null;
toreturn.cyclic = true;
return toreturn;
}
/***********************************************/
/********** PATHS BETWEEN POINTS ***************/
/***********************************************/
// Construct paths between two points with additional
// constraints; for instance, the path must be orthogonal
// to a certain vector at each of the endpoints, must
// lie within a specified plane or a specified face
// of a rectangular solid,....
// A vector (typically a normal vector) at a specified position.
struct positionedvector {
triple position;
triple direction;
void operator init(triple position, triple direction) {
this.position = position;
this.direction = direction;
}
}
string operator cast(positionedvector vv) {
return "position: " + (string)(vv.position) + " vector: " + (string)vv.direction;
}
// The angle, in degrees, between two vectors.
real angledegrees(triple a, triple b) {
real dotprod = dot(a,b);
real lengthprod = max(abs(a) * abs(b), abs(dotprod));
if (lengthprod == 0) return 0;
return aCos(dotprod / lengthprod);
}
// A path (single curved segment) between two points. At each point
// is specified a vector orthogonal to the path.
path3 pathbetween(positionedvector v1, positionedvector v2) {
triple n1 = unit(v1.direction);
triple n2 = unit(v2.direction);
triple p1 = v1.position;
triple p2 = v2.position;
triple delta = p2-p1;
triple dir1 = delta - dot(delta, n1)*n1;
triple dir2 = delta - dot(delta, n2)*n2;
return p1 {dir1} .. {dir2} p2;
}
// Assuming v1 and v2 are linearly independent, returns an array {a, b}
// such that a v1 + b v2 is the orthogonal projection of toproject onto
// the span of v1 and v2. If v1 and v2 are dependent, returns an empty array
// (if warn==false) or throws an error (if warn==true).
real[] projecttospan_findcoeffs(triple toproject, triple v1, triple v2,
bool warn=false) {
real[][] matrix = {{v1.x, v2.x},
{v1.y, v2.y},
{v1.z, v2.z}};
real[] desiredanswer = {toproject.x, toproject.y, toproject.z};
return leastsquares(matrix, desiredanswer, warn=warn);
}
// Project the triple toproject into the span of a and b, but restrict
// to the quarter-plane of linear combinations a v1 + b v2 such that
// a >= mincoeff and b >= mincoeff. If v1 and v2 are linearly dependent,
// return a random (positive) linear combination.
triple projecttospan(triple toproject, triple v1, triple v2,
real mincoeff = 0.05) {
real[] coeffs = projecttospan_findcoeffs(toproject, v1, v2, warn=false);
real a, b;
if (coeffs.length == 0) {
a = mincoeff + unitrand();
b = mincoeff + unitrand();
} else {
a = max(coeffs[0], mincoeff);
b = max(coeffs[1], mincoeff);
}
return a*v1 + b*v2;
}
// A path between two specified vertices of a cyclic path. The
// path tangent at each endpoint is guaranteed to lie within the
// quarter-plane spanned by positive linear combinations of the
// tangents of the two outgoing paths at that endpoint.
path3 pathbetween(path3 edgecycle, int vertex1, int vertex2) {
triple point1 = point(edgecycle, vertex1);
triple point2 = point(edgecycle, vertex2);
triple v1 = -dir(edgecycle, vertex1, sign=-1);
triple v2 = dir(edgecycle, vertex1, sign= 1);
triple direction1 = projecttospan(unit(point2-point1), v1, v2);
v1 = -dir(edgecycle, vertex2, sign=-1);
v2 = dir(edgecycle, vertex2, sign= 1);
triple direction2 = projecttospan(unit(point1-point2), v1, v2);
return point1 {direction1} .. {-direction2} point2;
}
// This function applies a heuristic to choose two "opposite"
// vertices (separated by three segments) of edgecycle, which
// is required to be a cyclic path consisting of 5 or 6 segments.
// The two chosen vertices are pushed to savevertices.
//
// The function returns a path between the two chosen vertices. The
// path tangent at each endpoint is guaranteed to lie within the
// quarter-plane spanned by positive linear combinations of the
// tangents of the two outgoing paths at that endpoint.
path3 bisector(path3 edgecycle, int[] savevertices) {
real mincoeff = 0.05;
assert(cyclic(edgecycle));
int n = length(edgecycle);
assert(n >= 5 && n <= 6);
triple[] forwarddirections = sequence(new triple(int i) {
return dir(edgecycle, i, sign=1);
}, n);
forwarddirections.cyclic = true;
triple[] backwarddirections = sequence(new triple(int i) {
return -dir(edgecycle, i, sign=-1);
}, n);
backwarddirections.cyclic = true;
real[] angles = sequence(new real(int i) {
return angledegrees(forwarddirections[i], backwarddirections[i]);
}, n);
angles.cyclic = true;
int lastindex = (n == 5 ? 4 : 2);
real maxgoodness = 0;
int chosenindex = -1;
triple directionout, directionin;
for (int i = 0; i <= lastindex; ++i) {
int opposite = i + 3;
triple vec = unit(point(edgecycle, opposite) - point(edgecycle, i));
real[] coeffsbegin = projecttospan_findcoeffs(vec, forwarddirections[i],
backwarddirections[i]);
if (coeffsbegin.length == 0) continue;
coeffsbegin[0] = max(coeffsbegin[0], mincoeff);
coeffsbegin[1] = max(coeffsbegin[1], mincoeff);
real[] coeffsend = projecttospan_findcoeffs(-vec, forwarddirections[opposite],
backwarddirections[opposite]);
if (coeffsend.length == 0) continue;
coeffsend[0] = max(coeffsend[0], mincoeff);
coeffsend[1] = max(coeffsend[1], mincoeff);
real goodness = angles[i] * angles[opposite] * coeffsbegin[0] * coeffsend[0]
* coeffsbegin[1] * coeffsend[1];
if (goodness > maxgoodness) {
maxgoodness = goodness;
directionout = coeffsbegin[0] * forwarddirections[i] +
coeffsbegin[1] * backwarddirections[i];
directionin = -(coeffsend[0] * forwarddirections[opposite] +
coeffsend[1] * backwarddirections[opposite]);
chosenindex = i;
}
}
if (chosenindex == -1) {
savevertices.push(0);
savevertices.push(3);
return pathbetween(edgecycle, 0, 3);
} else {
savevertices.push(chosenindex);
savevertices.push(chosenindex+3);
return point(edgecycle, chosenindex) {directionout} ..
{directionin} point(edgecycle, chosenindex + 3);
}
}
// A path between two specified points (with specified normals) that lies
// within a specified face of a rectangular solid.
path3 pathinface(positionedvector v1, positionedvector v2,
triple facenorm, triple edge1normout, triple edge2normout)
{
triple dir1 = cross(v1.direction, facenorm);
real dotprod = dot(dir1, edge1normout);
if (dotprod > 0) dir1 = -dir1;
// Believe it or not, this "tiebreaker" is actually relevant at times,
// for instance, when graphing the cone x^2 + y^2 = z^2 over the region
// -1 <= x,y,z <= 1.
else if (dotprod == 0 && dot(dir1, v2.position - v1.position) < 0) dir1 = -dir1;
triple dir2 = cross(v2.direction, facenorm);
dotprod = dot(dir2, edge2normout);
if (dotprod < 0) dir2 = -dir2;
else if (dotprod == 0 && dot(dir2, v2.position - v1.position) < 0) dir2 = -dir2;
return v1.position {dir1} .. {dir2} v2.position;
}
triple normalout(int face) {
if (face == XHIGH) return X;
else if (face == YHIGH) return Y;
else if (face == ZHIGH) return Z;
else if (face == XLOW) return -X;
else if (face == YLOW) return -Y;
else if (face == ZLOW) return -Z;
else return O;
}
// A path between two specified points (with specified normals) that lies
// within a specified face of a rectangular solid.
path3 pathinface(positionedvector v1, positionedvector v2,
int face, int edge1face, int edge2face) {
return pathinface(v1, v2, normalout(face), normalout(edge1face),
normalout(edge2face));
}
/***********************************************/
/******** DRAWING IMPLICIT SURFACES ************/
/***********************************************/
// DEPRECATED
// Quadrilateralization:
// Produce a surface (array of *nondegenerate* Bezier patches) with a
// specified three-segment boundary. The surface should approximate the
// zero locus of the specified f with its specified gradient.
//
// If it is not possible to produce the desired result without leaving the
// specified rectangular region, returns a length-zero array.
//
// Dividing a triangle into smaller quadrilaterals this way is opposite
// the usual trend in mathematics. However, *before the introduction of bezier
// triangles,* the pathwithnormals algorithm
// did a poor job of choosing a good surface when the boundary path did
// not consist of four positive-length segments.
patch[] triangletoquads(path3 external, real f(triple), triple grad(triple),
triple a, triple b) {
static real epsilon = 1e-3;
assert(length(external) == 3);
assert(cyclic(external));
triple c0 = point(external, 0);
triple c1 = point(external, 1);
triple c2 = point(external, 2);
triple center = (c0 + c1 + c2) / 3;
triple n = unit(cross(c1-c0, c2-c0));
real g(real t) { return f(center + t*n); }
real tmin = -realMax, tmax = realMax;
void absorb(real t) {
if (t < 0) tmin = max(t,tmin);
else tmax = min(t,tmax);
}
if (n.x != 0) {
absorb((a.x - center.x) / n.x);
absorb((b.x - center.x) / n.x);
}
if (n.y != 0) {
absorb((a.y - center.y) / n.y);
absorb((b.y - center.y) / n.y);
}
if (n.z != 0) {
absorb((a.z - center.z) / n.z);
absorb((b.z - center.z) / n.z);
}
real fa = g(tmin);
real fb = g(tmax);
if ((fa > 0 && fb > 0) || (fa < 0 && fb < 0)) {
return new patch[0];
} else {
real t = findroot(g, tmin, tmax, fa=fa, fb=fb);
center += t * n;
}
n = unit(grad(center));
triple m0 = point(external, 0.5);
positionedvector m0 = positionedvector(m0, unit(grad(m0)));
triple m1 = point(external, 1.5);
positionedvector m1 = positionedvector(m1, unit(grad(m1)));
triple m2 = point(external, 2.5);
positionedvector m2 = positionedvector(m2, unit(grad(m2)));
positionedvector c = positionedvector(center, unit(grad(center)));
path3 pathto_m0 = pathbetween(c, m0);
path3 pathto_m1 = pathbetween(c, m1);
path3 pathto_m2 = pathbetween(c, m2);
path3 quad0 = subpath(external, 0, 0.5)
& reverse(pathto_m0)
& pathto_m2
& subpath(external, -0.5, 0)
& cycle;
path3 quad1 = subpath(external, 1, 1.5)
& reverse(pathto_m1)
& pathto_m0
& subpath(external, 0.5, 1)
& cycle;
path3 quad2 = subpath(external, 2, 2.5)
& reverse(pathto_m2)
& pathto_m1
& subpath(external, 1.5, 2)
& cycle;
return new patch[] {patchwithnormals(quad0, grad),
patchwithnormals(quad1, grad),
patchwithnormals(quad2, grad)};
}
// Attempts to fill the path external (which should by a cyclic path consisting of
// three segments) with bezier triangle(s). Returns an empty array if it fails.
//
// In more detail: A single bezier triangle is computed using trianglewithnormals. The normals of
// the resulting triangle at the midpoint of each edge are computed. If any of these normals
// is in the negative f direction, the external triangle is subdivided into four external triangles
// and the same procedure is applied to each. If one or more of them has an incorrectly oriented
// edge normal, the function gives up and returns an empty array.
//
// Thus, the returned array consists of 0, 1, or 4 bezier triangles; no other array lengths
// are possible.
//
// This function assumes that the path orientation is consistent with f (and its gradient)
// -- i.e., that
// at a corner, (tangent in) x (tangent out) is in the positive f direction.
patch[] maketriangle(path3 external, real f(triple),
triple grad(triple), bool allowsubdivide = true) {
assert(cyclic(external));
assert(length(external) == 3);
triple m1 = point(external, 0.5);
triple n1 = unit(grad(m1));
triple m2 = point(external, 1.5);
triple n2 = unit(grad(m2));
triple m3 = point(external, 2.5);
triple n3 = unit(grad(m3));
patch beziertriangle = trianglewithnormals(external, n1, n2, n3);
if (dot(n1, beziertriangle.normal(0.5, 0)) >= 0 &&
dot(n2, beziertriangle.normal(0.5, 0.5)) >= 0 &&
dot(n3, beziertriangle.normal(0, 0.5)) >= 0)
return new patch[] {beziertriangle};
if (!allowsubdivide) return new patch[0];
positionedvector m1 = positionedvector(m1, n1);
positionedvector m2 = positionedvector(m2, n2);
positionedvector m3 = positionedvector(m3, n3);
path3 p12 = pathbetween(m1, m2);
path3 p23 = pathbetween(m2, m3);
path3 p31 = pathbetween(m3, m1);
patch[] triangles = maketriangle(p12 & p23 & p31 & cycle, f, grad=grad,
allowsubdivide=false);
if (triangles.length < 1) return new patch[0];
triangles.append(maketriangle(subpath(external, -0.5, 0.5) & reverse(p31) & cycle,
f, grad=grad, allowsubdivide=false));
if (triangles.length < 2) return new patch[0];
triangles.append(maketriangle(subpath(external, 0.5, 1.5) & reverse(p12) & cycle,
f, grad=grad, allowsubdivide=false));
if (triangles.length < 3) return new patch[0];
triangles.append(maketriangle(subpath(external, 1.5, 2.5) & reverse(p23) & cycle,
f, grad=grad, allowsubdivide=false));
if (triangles.length < 4) return new patch[0];
return triangles;
}
// Returns true if the point is "nonsingular" (in the sense that the magnitude
// of the gradient is not too small) AND very close to the zero locus of f
// (assuming f is locally linear).
bool check_fpt_zero(triple testpoint, real f(triple), triple grad(triple)) {
real testval = f(testpoint);
real slope = abs(grad(testpoint));
static real tolerance = 2*rootfinder_settings.roottolerance;
return !(slope > tolerance && abs(testval) / slope > tolerance);
}
// Returns true if pt lies within the rectangular solid with
// opposite corners at a and b.
bool checkptincube(triple pt, triple a, triple b) {
real xmin = a.x;
real xmax = b.x;
real ymin = a.y;
real ymax = b.y;
real zmin = a.z;
real zmax = b.z;
if (xmin > xmax) { real t = xmax; xmax=xmin; xmin=t; }
if (ymin > ymax) { real t = ymax; ymax=ymin; ymin=t; }
if (zmin > zmax) { real t = zmax; zmax=zmin; zmin=t; }
return ((xmin <= pt.x) && (pt.x <= xmax) &&
(ymin <= pt.y) && (pt.y <= ymax) &&
(zmin <= pt.z) && (pt.z <= zmax));
}
// A convenience function for combining the previous two tests.
bool checkpt(triple testpt, real f(triple), triple grad(triple),
triple a, triple b) {
return checkptincube(testpt, a, b) &&
check_fpt_zero(testpt, f, grad);
}
// Attempts to fill in the boundary cycle with a collection of
// patches to approximate smoothly the zero locus of f. If unable to
// do so while satisfying certain checks, returns null.
// This is distinct from returning an empty
// array, which merely indicates that the boundary cycle is too small
// to be worth filling in.
patch[] quadpatches(path3 edgecycle, positionedvector[] corners,
real f(triple), triple grad(triple),
triple a, triple b, bool usetriangles) {
assert(corners.cyclic);
// The tolerance for considering two points "essentially identical."
static real tolerance = 2.5 * rootfinder_settings.roottolerance;
// If there are two neighboring vertices that are essentially identical,
// unify them into one.
for (int i = 0; i < corners.length; ++i) {
if (abs(corners[i].position - corners[i+1].position) < tolerance) {
if (corners.length == 2) return new patch[0];
corners.delete(i);
edgecycle = subpath(edgecycle, 0, i)
& subpath(edgecycle, i+1, length(edgecycle))
& cycle;
--i;
assert(length(edgecycle) == corners.length);
}
}
static real areatolerance = tolerance^2;
assert(corners.length >= 2);
if (corners.length == 2) {
// If the area is too small, just ignore it; otherwise, subdivide.
real area0 = abs(cross(-dir(edgecycle, 0, sign=-1, normalize=false),
dir(edgecycle, 0, sign=1, normalize=false)));
real area1 = abs(cross(-dir(edgecycle, 1, sign=-1, normalize=false),
dir(edgecycle, 1, sign=1, normalize=false)));
if (area0 < areatolerance && area1 < areatolerance) return new patch[0];
else return null;
}
if (length(edgecycle) > 6) abort("too many edges: not possible.");
for (int i = 0; i < length(edgecycle); ++i) {
if (angledegrees(dir(edgecycle,i,sign=1),
dir(edgecycle,i+1,sign=-1)) > 80) {
return null;
}
}
if (length(edgecycle) == 3) {
patch[] toreturn = usetriangles ? maketriangle(edgecycle, f, grad)
: triangletoquads(edgecycle, f, grad, a, b);
if (toreturn.length == 0) return null;
else return toreturn;
}
if (length(edgecycle) == 4) {
return new patch[] {patchwithnormals(edgecycle, grad)};
}
int[] bisectorindices;
path3 middleguide = bisector(edgecycle, bisectorindices);
triple testpoint = point(middleguide, 0.5);
if (!checkpt(testpoint, f, grad, a, b)) {
return null;
}
patch[] toreturn = null;
path3 firstpatch = subpath(edgecycle, bisectorindices[0], bisectorindices[1])
& reverse(middleguide) & cycle;
if (length(edgecycle) == 5) {
path3 secondpatch = middleguide
& subpath(edgecycle, bisectorindices[1], 5+bisectorindices[0]) & cycle;
toreturn = usetriangles ? maketriangle(secondpatch, f, grad)
: triangletoquads(secondpatch, f, grad, a, b);
if (toreturn.length == 0) return null;
toreturn.push(patchwithnormals(firstpatch, grad));
} else {
// now length(edgecycle) == 6
path3 secondpatch = middleguide
& subpath(edgecycle, bisectorindices[1], 6+bisectorindices[0])
& cycle;
toreturn = new patch[] {patchwithnormals(firstpatch, grad),
patchwithnormals(secondpatch, grad)};
}
return toreturn;
}
// Numerical gradient of a function
typedef triple vectorfunction(triple);
vectorfunction nGrad(real f(triple)) {
static real epsilon = 1e-3;
return new triple(triple v) {
return ( (f(v + epsilon*X) - f(v - epsilon*X)) / (2 epsilon),
(f(v + epsilon*Y) - f(v - epsilon*Y)) / (2 epsilon),
(f(v + epsilon*Z) - f(v - epsilon*Z)) / (2 epsilon) );
};
}
// A point together with a value at that location.
struct evaluatedpoint {
triple pt;
real value;
void operator init(triple pt, real value) {
this.pt = pt;
this.value = value;
}
}
triple operator cast(evaluatedpoint p) { return p.pt; }
// Compute the values of a function at every vertex of an nx by ny by nz
// array of rectangular solids.
evaluatedpoint[][][] make3dgrid(triple a, triple b, int nx, int ny, int nz,
real f(triple), bool allowzero = false)
{
evaluatedpoint[][][] toreturn = new evaluatedpoint[nx+1][ny+1][nz+1];
for (int i = 0; i <= nx; ++i) {
for (int j = 0; j <= ny; ++j) {
for (int k = 0; k <= nz; ++k) {
triple pt = (interp(a.x, b.x, i/nx),
interp(a.y, b.y, j/ny),
interp(a.z, b.z, k/nz));
real value = f(pt);
if (value == 0 && !allowzero) value = 1e-5;
toreturn[i][j][k] = evaluatedpoint(pt, value);
}
}
}
return toreturn;
}
// The following utilities make, for instance, slice(A, i, j, k, l)
// equivalent to what A[i:j][k:l] ought to mean for two- and three-
// -dimensional arrays of evaluatedpoints and of positionedvectors.
typedef evaluatedpoint T;
T[][] slice(T[][] a, int start1, int end1, int start2, int end2) {
T[][] toreturn = new T[end1-start1][];
for (int i = start1; i < end1; ++i) {
toreturn[i-start1] = a[i][start2:end2];
}
return toreturn;
}
T[][][] slice(T[][][] a, int start1, int end1,
int start2, int end2,
int start3, int end3) {
T[][][] toreturn = new T[end1-start1][][];
for (int i = start1; i < end1; ++i) {
toreturn[i-start1] = slice(a[i], start2, end2, start3, end3);
}
return toreturn;
}
typedef positionedvector T;
T[][] slice(T[][] a, int start1, int end1, int start2, int end2) {
T[][] toreturn = new T[end1-start1][];
for (int i = start1; i < end1; ++i) {
toreturn[i-start1] = a[i][start2:end2];
}
return toreturn;
}
T[][][] slice(T[][][] a, int start1, int end1,
int start2, int end2,
int start3, int end3) {
T[][][] toreturn = new T[end1-start1][][];
for (int i = start1; i < end1; ++i) {
toreturn[i-start1] = slice(a[i], start2, end2, start3, end3);
}
return toreturn;
}
// An object of class gridwithzeros stores the values of a function at each vertex
// of a three-dimensional grid, together with zeros of the function along edges
// of the grid and the gradient of the function at each such zero.
struct gridwithzeros {
int nx, ny, nz;
evaluatedpoint[][][] corners;
positionedvector[][][] xdirzeros;
positionedvector[][][] ydirzeros;
positionedvector[][][] zdirzeros;
triple grad(triple);
real f(triple);
int maxdepth;
bool usetriangles;
// Populate the edges with zeros that have a sign change and are not already
// populated.
void fillzeros() {
for (int j = 0; j < ny+1; ++j) {
for (int k = 0; k < nz+1; ++k) {
real y = corners[0][j][k].pt.y;
real z = corners[0][j][k].pt.z;
real f_along_x(real t) { return f((t, y, z)); }
for (int i = 0; i < nx; ++i) {
if (xdirzeros[i][j][k] != null) continue;
evaluatedpoint start = corners[i][j][k];
evaluatedpoint end = corners[i+1][j][k];
if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
xdirzeros[i][j][k] = null;
else {
triple root = (0,y,z);
root += X * findroot(f_along_x, start.pt.x, end.pt.x,
fa=start.value, fb=end.value);
triple normal = grad(root);
xdirzeros[i][j][k] = positionedvector(root, normal);
}
}
}
}
for (int i = 0; i < nx+1; ++i) {
for (int k = 0; k < nz+1; ++k) {
real x = corners[i][0][k].pt.x;
real z = corners[i][0][k].pt.z;
real f_along_y(real t) { return f((x, t, z)); }
for (int j = 0; j < ny; ++j) {
if (ydirzeros[i][j][k] != null) continue;
evaluatedpoint start = corners[i][j][k];
evaluatedpoint end = corners[i][j+1][k];
if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
ydirzeros[i][j][k] = null;
else {
triple root = (x,0,z);
root += Y * findroot(f_along_y, start.pt.y, end.pt.y,
fa=start.value, fb=end.value);
triple normal = grad(root);
ydirzeros[i][j][k] = positionedvector(root, normal);
}
}
}
}
for (int i = 0; i < nx+1; ++i) {
for (int j = 0; j < ny+1; ++j) {
real x = corners[i][j][0].pt.x;
real y = corners[i][j][0].pt.y;
real f_along_z(real t) { return f((x, y, t)); }
for (int k = 0; k < nz; ++k) {
if (zdirzeros[i][j][k] != null) continue;
evaluatedpoint start = corners[i][j][k];
evaluatedpoint end = corners[i][j][k+1];
if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
zdirzeros[i][j][k] = null;
else {
triple root = (x,y,0);
root += Z * findroot(f_along_z, start.pt.z, end.pt.z,
fa=start.value, fb=end.value);
triple normal = grad(root);
zdirzeros[i][j][k] = positionedvector(root, normal);
}
}
}
}
}
// Fill in the grid vertices and the zeros along edges. Each cube starts at
// depth one and the depth increases each time it subdivides; maxdepth is the
// maximum subdivision depth. When a cube at maxdepth cannot be resolved to
// patches, it is left empty.
void operator init(int nx, int ny, int nz,
real f(triple), triple a, triple b,
int maxdepth = 6, bool usetriangles) {
this.nx = nx;
this.ny = ny;
this.nz = nz;
grad = nGrad(f);
this.f = f;
this.maxdepth = maxdepth;
this.usetriangles = usetriangles;
corners = make3dgrid(a, b, nx, ny, nz, f);
xdirzeros = new positionedvector[nx][ny+1][nz+1];
ydirzeros = new positionedvector[nx+1][ny][nz+1];
zdirzeros = new positionedvector[nx+1][ny+1][nz];
for (int i = 0; i <= nx; ++i) {
for (int j = 0; j <= ny; ++j) {
for (int k = 0; k <= nz; ++k) {
if (i < nx) xdirzeros[i][j][k] = null;
if (j < ny) ydirzeros[i][j][k] = null;
if (k < nz) zdirzeros[i][j][k] = null;
}
}
}
fillzeros();
}
// Doubles nx, ny, and nz by halving the sizes of the cubes along the x, y, and z
// directions (resulting in 8 times as many cubes). Already existing data about
// function values and zeros is copied; vertices and edges with no such pre-existing
// data are populated.
//
// Returns true if subdivide succeeded, false if it failed (because maxdepth
// was exceeded).
bool subdivide() {
if (maxdepth <= 1) {
return false;
}
--maxdepth;
triple a = corners[0][0][0];
triple b = corners[nx][ny][nz];
nx *= 2;
ny *= 2;
nz *= 2;
evaluatedpoint[][][] oldcorners = corners;
corners = new evaluatedpoint[nx+1][ny+1][nz+1];
for (int i = 0; i <= nx; ++i) {
for (int j = 0; j <= ny; ++j) {
for (int k = 0; k <= nz; ++k) {
if (i % 2 == 0 && j % 2 == 0 && k % 2 == 0) {
corners[i][j][k] = oldcorners[quotient(i,2)][quotient(j,2)][quotient(k,2)];
} else {
triple pt = (interp(a.x, b.x, i/nx),
interp(a.y, b.y, j/ny),
interp(a.z, b.z, k/nz));
real value = f(pt);
if (value == 0) value = 1e-5;
corners[i][j][k] = evaluatedpoint(pt, value);
}
}
}
}
positionedvector[][][] oldxdir = xdirzeros;
xdirzeros = new positionedvector[nx][ny+1][nz+1];
for (int i = 0; i < nx; ++i) {
for (int j = 0; j < ny + 1; ++j) {
for (int k = 0; k < nz + 1; ++k) {
if (j % 2 != 0 || k % 2 != 0) {
xdirzeros[i][j][k] = null;
} else {
positionedvector zero = oldxdir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
if (zero == null) {
xdirzeros[i][j][k] = null;
continue;
}
real x = zero.position.x;
if (x > interp(a.x, b.x, i/nx) && x < interp(a.x, b.x, (i+1)/nx)) {
xdirzeros[i][j][k] = zero;
} else {
xdirzeros[i][j][k] = null;
}
}
}
}
}
positionedvector[][][] oldydir = ydirzeros;
ydirzeros = new positionedvector[nx+1][ny][nz+1];
for (int i = 0; i < nx+1; ++i) {
for (int j = 0; j < ny; ++j) {
for (int k = 0; k < nz + 1; ++k) {
if (i % 2 != 0 || k % 2 != 0) {
ydirzeros[i][j][k] = null;
} else {
positionedvector zero = oldydir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
if (zero == null) {
ydirzeros[i][j][k] = null;
continue;
}
real y = zero.position.y;
if (y > interp(a.y, b.y, j/ny) && y < interp(a.y, b.y, (j+1)/ny)) {
ydirzeros[i][j][k] = zero;
} else {
ydirzeros[i][j][k] = null;
}
}
}
}
}
positionedvector[][][] oldzdir = zdirzeros;
zdirzeros = new positionedvector[nx+1][ny+1][nz];
for (int i = 0; i < nx + 1; ++i) {
for (int j = 0; j < ny + 1; ++j) {
for (int k = 0; k < nz; ++k) {
if (i % 2 != 0 || j % 2 != 0) {
zdirzeros[i][j][k] = null;
} else {
positionedvector zero = oldzdir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
if (zero == null) {
zdirzeros[i][j][k] = null;
continue;
}
real z = zero.position.z;
if (z > interp(a.z, b.z, k/nz) && z < interp(a.z, b.z, (k+1)/nz)) {
zdirzeros[i][j][k] = zero;
} else {
zdirzeros[i][j][k] = null;
}
}
}
}
}
fillzeros();
return true;
}
// Forward declaration of the draw method, which will be called by drawcube().
patch[] draw(bool[] reportactive = null);
// Construct the patches, assuming that we are working
// with a single cube (nx = ny = nz = 1). This method will subdivide the
// cube if necessary. The parameter reportactive should be an array of
// length 6. Setting an entry to true indicates that the surface abuts the
// corresponding face (according to the earlier enum), and thus that the
// algorithm should be sure that something is drawn in the cube sharing
// that face--even if all the vertices of that cube have the same sign.
patch[] drawcube(bool[] reportactive = null) {
// First, determine which edges (if any) actually have zeros on them.
edge[] zeroedges = new edge[0];
positionedvector[] zeros = new positionedvector[0];
int currentface, nextface;
void pushifnonnull(positionedvector v) {
if (v != null) {
zeroedges.push(edge(currentface, nextface));
zeros.push(v);
}
}
positionedvector findzero(int face1, int face2) {
edge e = edge(face1, face2);
for (int i = 0; i < zeroedges.length; ++i) {
if (zeroedges[i] == e) return zeros[i];
}
return null;
}
currentface = XLOW;
nextface = YHIGH;
pushifnonnull(zdirzeros[0][1][0]);
nextface = YLOW;
pushifnonnull(zdirzeros[0][0][0]);
nextface = ZHIGH;
pushifnonnull(ydirzeros[0][0][1]);
nextface = ZLOW;
pushifnonnull(ydirzeros[0][0][0]);
currentface = XHIGH;
nextface = YHIGH;
pushifnonnull(zdirzeros[1][1][0]);
nextface = YLOW;
pushifnonnull(zdirzeros[1][0][0]);
nextface = ZHIGH;
pushifnonnull(ydirzeros[1][0][1]);
nextface = ZLOW;
pushifnonnull(ydirzeros[1][0][0]);
currentface = YHIGH;
nextface = ZHIGH;
pushifnonnull(xdirzeros[0][1][1]);
currentface = ZHIGH;
nextface = YLOW;
pushifnonnull(xdirzeros[0][0][1]);
currentface = YLOW;
nextface = ZLOW;
pushifnonnull(xdirzeros[0][0][0]);
currentface = ZLOW;
nextface = YHIGH;
pushifnonnull(xdirzeros[0][1][0]);
//Now, string those edges together to make a circle.
patch[] subdividecube() {
if (!subdivide()) {
return new patch[0];
}
return draw(reportactive);
}
if (zeroedges.length < 3) {
return subdividecube();
}
int[] faceorder = makecircle(zeroedges);
if (alias(faceorder,null)) {
return subdividecube();
}
positionedvector[] patchcorners = new positionedvector[0];
for (int i = 0; i < faceorder.length; ++i) {
patchcorners.push(findzero(faceorder[i], faceorder[i+1]));
}
patchcorners.cyclic = true;
//Now, produce the cyclic path around the edges.
path3 edgecycle;
for (int i = 0; i < faceorder.length; ++i) {
path3 currentpath = pathinface(patchcorners[i], patchcorners[i+1],
faceorder[i+1], faceorder[i],
faceorder[i+2]);
triple testpoint = point(currentpath, 0.5);
if (!checkpt(testpoint, f, grad, corners[0][0][0], corners[1][1][1])) {
return subdividecube();
}
edgecycle = edgecycle & currentpath;
}
edgecycle = edgecycle & cycle;
{ // Ensure the outward normals are pointing in the same direction as the gradient.
triple tangentin = patchcorners[0].position - precontrol(edgecycle, 0);
triple tangentout = postcontrol(edgecycle, 0) - patchcorners[0].position;
triple normal = cross(tangentin, tangentout);
if (dot(normal, patchcorners[0].direction) < 0) {
edgecycle = reverse(edgecycle);
patchcorners = patchcorners[-sequence(patchcorners.length)];
patchcorners.cyclic = true;
}
}
patch[] toreturn = quadpatches(edgecycle, patchcorners, f, grad,
corners[0][0][0], corners[1][1][1], usetriangles);
if (alias(toreturn, null)) return subdividecube();
return toreturn;
}
// Extracts the specified cube as a gridwithzeros object with
// nx = ny = nz = 1.
gridwithzeros getcube(int i, int j, int k) {
gridwithzeros cube = new gridwithzeros;
cube.grad = grad;
cube.f = f;
cube.nx = 1;
cube.ny = 1;
cube.nz = 1;
cube.maxdepth = maxdepth;
cube.usetriangles = usetriangles;
cube.corners = slice(corners,i,i+2,j,j+2,k,k+2);
cube.xdirzeros = slice(xdirzeros,i,i+1,j,j+2,k,k+2);
cube.ydirzeros = slice(ydirzeros,i,i+2,j,j+1,k,k+2);
cube.zdirzeros = slice(zdirzeros,i,i+2,j,j+2,k,k+1);
return cube;
}
// Returns an array of patches representing the surface.
// The parameter reportactive should be an array of
// length 6. Setting an entry to true indicates that the surface abuts the
// corresponding face of the cube that bounds the entire grid.
//
// If reportactive == null, it is assumed that this is a top-level call;
// a dot is printed to stdout for each cube drawn as a very rough
// progress indicator.
//
// If reportactive != null, then it is assumed that the caller had a strong
// reason to believe that this grid contains a part of the surface; the
// grid will subdivide all the way to maxdepth if necessary to find points
// on the surface.
draw = new patch[](bool[] reportactive = null) {
if (alias(reportactive, null)) progress(true);
// A list of all the patches not already drawn but known
// to contain part of the surface. This "queue" is
// actually implemented as stack for simplicity, since
// it does not make any difference. In a multi-threaded
// version of the algorithm, a queue (shared across all threads)
// would make more sense than a stack.
triple[] queue = new triple[0];
bool[][][] enqueued = new bool[nx][ny][nz];
for (int i = 0; i < enqueued.length; ++i) {
for (int j = 0; j < enqueued[i].length; ++j) {
for (int k = 0; k < enqueued[i][j].length; ++k) {
enqueued[i][j][k] = false;
}
}
}
void enqueue(int i, int j, int k) {
if (i >= 0 && i < nx
&& j >= 0 && j < ny
&& k >= 0 && k < nz
&& !enqueued[i][j][k]) {
queue.push((i,j,k));
enqueued[i][j][k] = true;
}
if (!alias(reportactive, null)) {
if (i < 0) reportactive[XLOW] = true;
if (i >= nx) reportactive[XHIGH] = true;
if (j < 0) reportactive[YLOW] = true;
if (j >= ny) reportactive[YHIGH] = true;
if (k < 0) reportactive[ZLOW] = true;
if (k >= nz) reportactive[ZHIGH] = true;
}
}
for (int i = 0; i < nx+1; ++i) {
for (int j = 0; j < ny+1; ++j) {
for (int k = 0; k < nz+1; ++k) {
if (i < nx && xdirzeros[i][j][k] != null) {
for (int jj = j-1; jj <= j; ++jj)
for (int kk = k-1; kk <= k; ++kk)
enqueue(i, jj, kk);
}
if (j < ny && ydirzeros[i][j][k] != null) {
for (int ii = i-1; ii <= i; ++ii)
for (int kk = k-1; kk <= k; ++kk)
enqueue(ii, j, kk);
}
if (k < nz && zdirzeros[i][j][k] != null) {
for (int ii = i-1; ii <= i; ++ii)
for (int jj = j-1; jj <= j; ++jj)
enqueue(ii, jj, k);
}
}
}
}
if (!alias(reportactive, null) && queue.length == 0) {
if (subdivide()) return draw(reportactive);
}
patch[] surface = new patch[0];
while (queue.length > 0) {
triple coord = queue.pop();
int i = floor(coord.x);
int j = floor(coord.y);
int k = floor(coord.z);
bool[] reportface = array(6, false);
patch[] toappend = getcube(i,j,k).drawcube(reportface);
if (reportface[XLOW]) enqueue(i-1,j,k);
if (reportface[XHIGH]) enqueue(i+1,j,k);
if (reportface[YLOW]) enqueue(i,j-1,k);
if (reportface[YHIGH]) enqueue(i,j+1,k);
if (reportface[ZLOW]) enqueue(i,j,k-1);
if (reportface[ZHIGH]) enqueue(i,j,k+1);
surface.append(toappend);
if (alias(reportactive, null)) progress();
}
if (alias(reportactive, null)) progress(false);
return surface;
};
}
// The external interface of this whole module. Accepts exactly one
// function (throws an error if two or zero functions are specified).
// The function should be differentiable. (Whatever you do, do not
// pass in an indicator function!) Ideally, the zero locus of the
// function should be smooth; singularities will significantly slow
// down the algorithm and potentially give bad results.
//
// Returns a plot of the zero locus of the function within the
// rectangular solid with opposite corners at a and b.
//
// Additional parameters:
// n - the number of initial segments in each of the x, y, z directions.
// overlapedges - if true, the patches of the surface are slightly enlarged
// to compensate for an artifact in which the viewer can see through the
// boundary between patches. (Some of this may actually be a result of
// edges not lining up perfectly, but I'm fairly sure a lot of it arises
// purely as a rendering artifact.)
// nx - override n in the x direction
// ny - override n in the y direction
// nz - override n in the z direction
// maxdepth - the maximum depth to which the algorithm will subdivide in
// an effort to find patches that closely approximate the true surface.
surface implicitsurface(real f(triple) = null, real ff(real,real,real) = null,
triple a, triple b,
int n = nmesh,
bool keyword overlapedges = false,
int keyword nx=n, int keyword ny=n,
int keyword nz=n,
int keyword maxdepth = 8,
bool keyword usetriangles=true) {
if (f == null && ff == null)
abort("implicitsurface called without specifying a function.");
if (f != null && ff != null)
abort("Only specify one function when calling implicitsurface.");
if (f == null) f = new real(triple w) { return ff(w.x, w.y, w.z); };
gridwithzeros grid = gridwithzeros(nx, ny, nz, f, a, b, maxdepth=maxdepth,
usetriangles=usetriangles);
patch[] patches = grid.draw();
if (overlapedges) {
for (int i = 0; i < patches.length; ++i) {
triple center = (patches[i].triangular ?
patches[i].point(1/3, 1/3) : patches[i].point(1/2,1/2));
patches[i] = shift(center) * scale3(1.01) * shift(-center) * patches[i];
}
}
return surface(...patches);
}
|