summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/asymptote/lmfit.asy
blob: c3dfddce0613228dc65e3bf90a8d1171757f2f77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
/*
  Copyright (c) 2009 Philipp Stephani

  Permission is hereby granted, free of charge, to any person
  obtaining a copy of this software and associated documentation files
  (the "Software"), to deal in the Software without restriction,
  including without limitation the rights to use, copy, modify, merge,
  publish, distribute, sublicense, and/or sell copies of the Software,
  and to permit persons to whom the Software is furnished to do so,
  subject to the following conditions:

  The above copyright notice and this permission notice shall be
  included in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  SOFTWARE.
*/

/*
  Fitting $n$ data points $(x_1, y_1 \pm \Delta y_1), \dots, (x_n, y_n \pm \Delta y_n)$
  to a function $f$ that depends on $m$ parameters $a_1, \dots, a_m$ means minimizing
  the least-squares sum
  %
  \begin{equation*}
  \sum_{i = 1}^n \left( \frac{y_i - f(a_1, \dots, a_m; x_i)}{\Delta y_i} \right)^2
  \end{equation*}
  %
  with respect to the parameters $a_1, \dots, a_m$.
*/

/*
  This module provides an implementation of the Levenberg--Marquardt
  (LM) algorithm, converted from the C lmfit routine by Joachim Wuttke
  (see http://www.messen-und-deuten.de/lmfit/).

  Implementation strategy: Fortunately, Asymptote's syntax is very
  similar to C, and the original code cleanly separates the
  customizable parts (user-provided data, output routines, etc.) from
  the dirty number crunching.  Thus, mst of the code was just copied
  and slightly modified from the original source files.  I have
  amended the lm_data_type structure and the callback routines with a
  weight array that can be used to provide experimental errors.  I
  have also created two simple wrapper functions.
*/


// copied from the C code
private real LM_MACHEP = realEpsilon;
private real LM_DWARF = realMin;
private real LM_SQRT_DWARF = sqrt(realMin);
private real LM_SQRT_GIANT = sqrt(realMax);
private real LM_USERTOL = 30 * LM_MACHEP;

restricted string lm_infmsg[] = {
  "improper input parameters",
  "the relative error in the sum of squares is at most tol",
  "the relative error between x and the solution is at most tol",
  "both errors are at most tol",
  "fvec is orthogonal to the columns of the jacobian to machine precision",
  "number of calls to fcn has reached or exceeded maxcall*(n+1)",
  "ftol is too small: no further reduction in the sum of squares is possible",
  "xtol too small: no further improvement in approximate solution x possible",
  "gtol too small: no further improvement in approximate solution x possible",
  "not enough memory",
  "break requested within function evaluation"
};

restricted string lm_shortmsg[] = {
  "invalid input",
  "success (f)",
  "success (p)",
  "success (f,p)",
  "degenerate",
  "call limit",
  "failed (f)",
  "failed (p)",
  "failed (o)",
  "no memory",
  "user break"
};


// copied from the C code and amended with the weight (user_w) array
struct lm_data_type {
  real[] user_t;
  real[] user_y;
  real[] user_w;
  real user_func(real user_t_point, real[] par);  
};


// Asymptote has no pointer support, so we need reference wrappers for
// the int and real types
struct lm_int_type {
  int val;
  
  void operator init(int val) {
    this.val = val;
  }
};


struct lm_real_type {
  real val;
  
  void operator init(real val) {
    this.val = val;
  }
};


// copied from the C code; the lm_initialize_control function turned
// into a constructor
struct lm_control_type {
  real ftol;
  real xtol;
  real gtol;
  real epsilon;
  real stepbound;
  real fnorm;
  int maxcall;
  lm_int_type nfev;
  lm_int_type info;

  void operator init() {
    maxcall = 100;
    epsilon = LM_USERTOL;
    stepbound = 100;
    ftol = LM_USERTOL;
    xtol = LM_USERTOL;
    gtol = LM_USERTOL;
  }
};


// copied from the C code
typedef void lm_evaluate_ftype(real[] par, int m_dat, real[] fvec, lm_data_type data, lm_int_type info);
typedef void lm_print_ftype(int n_par, real[] par, int m_dat, real[] fvec, lm_data_type data, int iflag, int iter, int nfev);


// copied from the C code
private real SQR(real x) {
  return x * x;
}


// Asymptote doesn't support pointers to arbitrary array elements, so
// we provide an offset parameter.
private real lm_enorm(int n, real[] x, int offset=0) {
  real s1 = 0;
  real s2 = 0;
  real s3 = 0;
  real x1max = 0;
  real x3max = 0;
  real agiant = LM_SQRT_GIANT / n;
  real xabs, temp;

  for (int i = 0; i < n; ++i) {
    xabs = fabs(x[offset + i]);
    if (xabs > LM_SQRT_DWARF && xabs < agiant) {
      s2 += SQR(xabs);
      continue;
    }

    if (xabs > LM_SQRT_DWARF) {
      if (xabs > x1max) {
        temp = x1max / xabs;
        s1 = 1 + s1 * SQR(temp);
        x1max = xabs;
      } else {
        temp = xabs / x1max;
        s1 += SQR(temp);
      }
      continue;
    }
    if (xabs > x3max) {
      temp = x3max / xabs;
      s3 = 1 + s3 * SQR(temp);
      x3max = xabs;
    } else {
      if (xabs != 0.0) {
        temp = xabs / x3max;
        s3 += SQR(temp);
      }
    }
  }

  if (s1 != 0)
    return x1max * sqrt(s1 + (s2 / x1max) / x1max);
  if (s2 != 0) {
    if (s2 >= x3max)
      return sqrt(s2 * (1 + (x3max / s2) * (x3max * s3)));
    else
      return sqrt(x3max * ((s2 / x3max) + (x3max * s3)));
  }

  return x3max * sqrt(s3);
}


// This function calculated the vector whose square sum is to be
// minimized.  We use a slight modification of the original code that
// includes the weight factor.  The user may provide different
// customizations.
void lm_evaluate_default(real[] par, int m_dat, real[] fvec, lm_data_type data, lm_int_type info) {
  for (int i = 0; i < m_dat; ++i) {
    fvec[i] = data.user_w[i] * (data.user_y[i] - data.user_func(data.user_t[i], par));
  }
}


// Helper functions to print padded strings and numbers (until
// Asymptote provides a real printf function)
private string pad(string str, int count, string pad=" ") {
  string res = str;
  while (length(res) < count)
    res = pad + res;
  return res;
}


private string pad(int num, int digits, string pad=" ") {
  return pad(string(num), digits, pad);
}


private string pad(real num, int digits, string pad=" ") {
  return pad(string(num), digits, pad);
}


// Similar to the C code, also prints weights
void lm_print_default(int n_par, real[] par, int m_dat, real[] fvec, lm_data_type data, int iflag, int iter, int nfev) {
  real f, y, t, w;
  int i;

  if (iflag == 2) {
    write("trying step in gradient direction");
  } else if (iflag == 1) {
    write(format("determining gradient (iteration %d)", iter));
  } else if (iflag == 0) {
    write("starting minimization");
  } else if (iflag == -1) {
    write(format("terminated after %d evaluations", nfev));
  }

  write("  par: ", none);
  for (i = 0; i < n_par; ++i) {
    write(" " + pad(par[i], 12), none);
  }
  write(" => norm: " + pad(lm_enorm(m_dat, fvec), 12));

  if (iflag == -1) {
    write("  fitting data as follows:");
    for (i = 0; i < m_dat; ++i) {
      t = data.user_t[i];
      y = data.user_y[i];
      w = data.user_w[i];
      f = data.user_func(t, par);
      write(format("    t[%2d]=", i) + pad(t, 12) + " y=" + pad(y, 12) + " w=" + pad(w, 12) + " fit=" + pad(f, 12) + " residue=" + pad(y - f, 12));
    }
  }
}


// Prints nothing
void lm_print_quiet(int n_par, real[] par, int m_dat, real[] fvec, lm_data_type data, int iflag, int iter, int nfev) {
}


// copied from the C code
private void lm_qrfac(int m, int n, real[] a, bool pivot, int[] ipvt, real[] rdiag, real[] acnorm, real[] wa) {
  int i, j, k, kmax, minmn;
  real ajnorm, sum, temp;
  static real p05 = 0.05;

  for (j = 0; j < n; ++j) {
    acnorm[j] = lm_enorm(m, a, j * m);
    rdiag[j] = acnorm[j];
    wa[j] = rdiag[j];
    if (pivot)
      ipvt[j] = j;
  }

  minmn = min(m, n);
  for (j = 0; j < minmn; ++j) {
    while (pivot) {
      kmax = j;
      for (k = j + 1; k < n; ++k)
        if (rdiag[k] > rdiag[kmax])
          kmax = k;
      if (kmax == j)
        break;

      for (i = 0; i < m; ++i) {
        temp = a[j * m + i];
        a[j * m + i] = a[kmax * m + i];
        a[kmax * m + i] = temp;
      }
      rdiag[kmax] = rdiag[j];
      wa[kmax] = wa[j];
      k = ipvt[j];
      ipvt[j] = ipvt[kmax];
      ipvt[kmax] = k;

      break;
    }

    ajnorm = lm_enorm(m - j, a, j * m + j);
    if (ajnorm == 0.0) {
      rdiag[j] = 0;
      continue;
    }

    if (a[j * m + j] < 0.0)
      ajnorm = -ajnorm;
    for (i = j; i < m; ++i)
      a[j * m + i] /= ajnorm;
    a[j * m + j] += 1;

    for (k = j + 1; k < n; ++k) {
      sum = 0;

      for (i = j; i < m; ++i)
        sum += a[j * m + i] * a[k * m + i];

      temp = sum / a[j + m * j];

      for (i = j; i < m; ++i)
        a[k * m + i] -= temp * a[j * m + i];

      if (pivot && rdiag[k] != 0.0) {
        temp = a[m * k + j] / rdiag[k];
        temp = max(0.0, 1 - SQR(temp));
        rdiag[k] *= sqrt(temp);
        temp = rdiag[k] / wa[k];
        if (p05 * SQR(temp) <= LM_MACHEP) {
          rdiag[k] = lm_enorm(m - j - 1, a, m * k + j + 1);
          wa[k] = rdiag[k];
        }
      }
    }

    rdiag[j] = -ajnorm;
  }
}


// copied from the C code
private void lm_qrsolv(int n, real[] r, int ldr, int[] ipvt, real[] diag, real[] qtb, real[] x, real[] sdiag, real[] wa) {
  static real p25 = 0.25;
  static real p5 = 0.5;

  int i, kk, j, k, nsing;
  real qtbpj, sum, temp;
  real _sin, _cos, _tan, _cot;

  for (j = 0; j < n; ++j) {
    for (i = j; i < n; ++i)
      r[j * ldr + i] = r[i * ldr + j];
    x[j] = r[j * ldr + j];
    wa[j] = qtb[j];
  }

  for (j = 0; j < n; ++j) {
    while (diag[ipvt[j]] != 0.0) {
      for (k = j; k < n; ++k)
        sdiag[k] = 0.0;
      sdiag[j] = diag[ipvt[j]];

      qtbpj = 0.;
      for (k = j; k < n; ++k) {
        if (sdiag[k] == 0.)
          continue;
        kk = k + ldr * k;
        if (fabs(r[kk]) < fabs(sdiag[k])) {
          _cot = r[kk] / sdiag[k];
          _sin = p5 / sqrt(p25 + p25 * _cot * _cot);
          _cos = _sin * _cot;
        } else {
          _tan = sdiag[k] / r[kk];
          _cos = p5 / sqrt(p25 + p25 * _tan * _tan);
          _sin = _cos * _tan;
        }

        r[kk] = _cos * r[kk] + _sin * sdiag[k];
        temp = _cos * wa[k] + _sin * qtbpj;
        qtbpj = -_sin * wa[k] + _cos * qtbpj;
        wa[k] = temp;

        for (i = k + 1; i < n; ++i) {
          temp = _cos * r[k * ldr + i] + _sin * sdiag[i];
          sdiag[i] = -_sin * r[k * ldr + i] + _cos * sdiag[i];
          r[k * ldr + i] = temp;
        }
      }
      break;
    }
    
    sdiag[j] = r[j * ldr + j];
    r[j * ldr + j] = x[j];
  }

  nsing = n;
  for (j = 0; j < n; ++j) {
    if (sdiag[j] == 0.0 && nsing == n)
      nsing = j;
    if (nsing < n)
      wa[j] = 0;
  }

  for (j = nsing - 1; j >= 0; --j) {
    sum = 0;
    for (i = j + 1; i < nsing; ++i)
      sum += r[j * ldr + i] * wa[i];
    wa[j] = (wa[j] - sum) / sdiag[j];
  }

  for (j = 0; j < n; ++j)
    x[ipvt[j]] = wa[j];
}


// copied from the C code
private void lm_lmpar(int n, real[] r, int ldr, int[] ipvt, real[] diag, real[] qtb, real delta, lm_real_type par, real[] x, real[] sdiag, real[] wa1, real[] wa2) {
  static real p1 = 0.1;
  static real p001 = 0.001;

  int nsing = n;
  real parl = 0.0;

  int i, iter, j;
  real dxnorm, fp, fp_old, gnorm, parc, paru;
  real sum, temp;

  for (j = 0; j < n; ++j) {
    wa1[j] = qtb[j];
    if (r[j * ldr + j] == 0 && nsing == n)
      nsing = j;
    if (nsing < n)
      wa1[j] = 0;
  }
  for (j = nsing - 1; j >= 0; --j) {
    wa1[j] = wa1[j] / r[j + ldr * j];
    temp = wa1[j];
    for (i = 0; i < j; ++i)
      wa1[i] -= r[j * ldr + i] * temp;
  }

  for (j = 0; j < n; ++j)
    x[ipvt[j]] = wa1[j];

  iter = 0;
  for (j = 0; j < n; ++j)
    wa2[j] = diag[j] * x[j];
  dxnorm = lm_enorm(n, wa2);
  fp = dxnorm - delta;
  if (fp <= p1 * delta) {
    par.val = 0;
    return;
  }

  if (nsing >= n) {
    for (j = 0; j < n; ++j)
      wa1[j] = diag[ipvt[j]] * wa2[ipvt[j]] / dxnorm;

    for (j = 0; j < n; ++j) {
      sum = 0.0;
      for (i = 0; i < j; ++i)
        sum += r[j * ldr + i] * wa1[i];
      wa1[j] = (wa1[j] - sum) / r[j + ldr * j];
    }
    temp = lm_enorm(n, wa1);
    parl = fp / delta / temp / temp;
  }

  for (j = 0; j < n; ++j) {
    sum = 0;
    for (i = 0; i <= j; ++i)
      sum += r[j * ldr + i] * qtb[i];
    wa1[j] = sum / diag[ipvt[j]];
  }
  gnorm = lm_enorm(n, wa1);
  paru = gnorm / delta;
  if (paru == 0.0)
    paru = LM_DWARF / min(delta, p1);

  par.val = max(par.val, parl);
  par.val = min(par.val, paru);
  if (par.val == 0.0)
    par.val = gnorm / dxnorm;

  for (;; ++iter) {
    if (par.val == 0.0)
      par.val = max(LM_DWARF, p001 * paru);
    temp = sqrt(par.val);
    for (j = 0; j < n; ++j)
      wa1[j] = temp * diag[j];
    lm_qrsolv(n, r, ldr, ipvt, wa1, qtb, x, sdiag, wa2);
    for (j = 0; j < n; ++j)
      wa2[j] = diag[j] * x[j];
    dxnorm = lm_enorm(n, wa2);
    fp_old = fp;
    fp = dxnorm - delta;
        
    if (fabs(fp) <= p1 * delta || (parl == 0.0 && fp <= fp_old && fp_old < 0.0) || iter == 10)
      break;
        
    for (j = 0; j < n; ++j)
      wa1[j] = diag[ipvt[j]] * wa2[ipvt[j]] / dxnorm;

    for (j = 0; j < n; ++j) {
      wa1[j] = wa1[j] / sdiag[j];
      for (i = j + 1; i < n; ++i)
        wa1[i] -= r[j * ldr + i] * wa1[j];
    }
    temp = lm_enorm(n, wa1);
    parc = fp / delta / temp / temp;
    
    if (fp > 0)
      parl = max(parl, par.val);
    else if (fp < 0)
      paru = min(paru, par.val);
    
    par.val = max(parl, par.val + parc);
  }
}


// copied from the C code; the main function
void lm_lmdif(int m, int n, real[] x, real[] fvec, real ftol, real xtol, real gtol, int maxfev, real epsfcn, real[] diag, int mode, real factor, lm_int_type info, lm_int_type nfev, real[] fjac, int[] ipvt, real[] qtf, real[] wa1, real[] wa2, real[] wa3, real[] wa4, lm_evaluate_ftype evaluate, lm_print_ftype printout, lm_data_type data) {
  static real p1 = 0.1;
  static real p5 = 0.5;
  static real p25 = 0.25;
  static real p75 = 0.75;
  static real p0001 = 1.0e-4;
  
  nfev.val = 0;
  int iter = 1;
  lm_real_type par = lm_real_type(0);
  real delta = 0;
  real xnorm = 0;
  real temp = max(epsfcn, LM_MACHEP);
  real eps = sqrt(temp);
  int i, j;
  real actred, dirder, fnorm, fnorm1, gnorm, pnorm, prered, ratio, step, sum, temp1, temp2, temp3;

  if ((n <= 0) || (m < n) || (ftol < 0.0) || (xtol < 0.0) || (gtol < 0.0) || (maxfev <= 0) || (factor <= 0)) {
    info.val = 0;
    return;
  }
  if (mode == 2) {
    for (j = 0; j < n; ++j) {
      if (diag[j] <= 0.0) {
        info.val = 0;
        return;
      }
    }
  }
  
  info.val = 0;
  evaluate(x, m, fvec, data, info);
  if(printout != null) printout(n, x, m, fvec, data, 0, 0, ++nfev.val);
  if (info.val < 0)
    return;
  fnorm = lm_enorm(m, fvec);

  do {
    for (j = 0; j < n; ++j) {
      temp = x[j];
      step = eps * fabs(temp);
      if (step == 0.0)
        step = eps;
      x[j] = temp + step;
      info.val = 0;
      evaluate(x, m, wa4, data, info);
      if(printout != null) printout(n, x, m, wa4, data, 1, iter, ++nfev.val);
      if (info.val < 0)
        return;
      for (i = 0; i < m; ++i)
        fjac[j * m + i] = (wa4[i] - fvec[i]) / (x[j] - temp);
      x[j] = temp;
    }
    
    lm_qrfac(m, n, fjac, true, ipvt, wa1, wa2, wa3);

    if (iter == 1) {
      if (mode != 2) {
        for (j = 0; j < n; ++j) {
          diag[j] = wa2[j];
          if (wa2[j] == 0.0)
            diag[j] = 1.0;
        }
      }
      for (j = 0; j < n; ++j)
        wa3[j] = diag[j] * x[j];
      xnorm = lm_enorm(n, wa3);
      delta = factor * xnorm;
      if (delta == 0.0)
        delta = factor;
    }

    for (i = 0; i < m; ++i)
      wa4[i] = fvec[i];

    for (j = 0; j < n; ++j) {
      temp3 = fjac[j * m + j];
      if (temp3 != 0.0) {
        sum = 0;
        for (i = j; i < m; ++i)
          sum += fjac[j * m + i] * wa4[i];
        temp = -sum / temp3;
        for (i = j; i < m; ++i)
          wa4[i] += fjac[j * m + i] * temp;
      }
      fjac[j * m + j] = wa1[j];
      qtf[j] = wa4[j];
    }

    gnorm = 0;
    if (fnorm != 0) {
      for (j = 0; j < n; ++j) {
        if (wa2[ipvt[j]] == 0) continue;
        sum = 0.0;
        for (i = 0; i <= j; ++i)
          sum += fjac[j * m + i] * qtf[i] / fnorm;
        gnorm = max(gnorm, fabs(sum / wa2[ipvt[j]]));
      }
    }

    if (gnorm <= gtol) {
      info.val = 4;
      return;
    }

    if (mode != 2) {
      for (j = 0; j < n; ++j)
        diag[j] = max(diag[j], wa2[j]);
    }

    do {
      lm_lmpar(n, fjac, m, ipvt, diag, qtf, delta, par, wa1, wa2, wa3, wa4);

      for (j = 0; j < n; ++j) {
        wa1[j] = -wa1[j];
        wa2[j] = x[j] + wa1[j];
        wa3[j] = diag[j] * wa1[j];
      }
      pnorm = lm_enorm(n, wa3);

      if (nfev.val <= 1 + n)
        delta = min(delta, pnorm);

      info.val = 0;
      evaluate(wa2, m, wa4, data, info);
      if(printout != null) printout(n, x, m, wa4, data, 2, iter, ++nfev.val);
      if (info.val < 0)
        return;

      fnorm1 = lm_enorm(m, wa4);

      if (p1 * fnorm1 < fnorm)
        actred = 1 - SQR(fnorm1 / fnorm);
      else
        actred = -1;

      for (j = 0; j < n; ++j) {
        wa3[j] = 0;
        for (i = 0; i <= j; ++i)
          wa3[i] += fjac[j * m + i] * wa1[ipvt[j]];
      }
      temp1 = lm_enorm(n, wa3) / fnorm;
      temp2 = sqrt(par.val) * pnorm / fnorm;
      prered = SQR(temp1) + 2 * SQR(temp2);
      dirder = -(SQR(temp1) + SQR(temp2));

      ratio = prered != 0 ? actred / prered : 0;

      if (ratio <= p25) {
        if (actred >= 0.0)
          temp = p5;
        else
          temp = p5 * dirder / (dirder + p5 * actred);
        if (p1 * fnorm1 >= fnorm || temp < p1)
          temp = p1;
        delta = temp * min(delta, pnorm / p1);
        par.val /= temp;
      } else if (par.val == 0.0 || ratio >= p75) {
        delta = pnorm / p5;
        par.val *= p5;
      }
      
      if (ratio >= p0001) {
        for (j = 0; j < n; ++j) {
          x[j] = wa2[j];
          wa2[j] = diag[j] * x[j];
        }
        for (i = 0; i < m; ++i)
          fvec[i] = wa4[i];
        xnorm = lm_enorm(n, wa2);
        fnorm = fnorm1;
        ++iter;
      }

      info.val = 0;
      if (fabs(actred) <= ftol && prered <= ftol && p5 * ratio <= 1)
        info.val = 1;
      if (delta <= xtol * xnorm)
        info.val += 2;
      if (info.val != 0)
        return;

      if (nfev.val >= maxfev)
        info.val = 5;
      if (fabs(actred) <= LM_MACHEP && prered <= LM_MACHEP && p5 * ratio <= 1)
        info.val = 6;
      if (delta <= LM_MACHEP * xnorm)
        info.val = 7;
      if (gnorm <= LM_MACHEP)
        info.val = 8;
      if (info.val != 0)
        return;
    } while (ratio < p0001);
  } while (true);
}


// copied from the C code; wrapper of lm_lmdif
void lm_minimize(int m_dat, int n_par, real[] par, lm_evaluate_ftype evaluate, lm_print_ftype printout, lm_data_type data, lm_control_type control) {
  int n = n_par;
  int m = m_dat;
  
  real[] fvec = new real[m];
  real[] diag = new real[n];
  real[] qtf = new real[n];
  real[] fjac = new real[n * m];
  real[] wa1 = new real[n];
  real[] wa2 = new real[n];
  real[] wa3 = new real[n];
  real[] wa4 = new real[m];
  int[] ipvt = new int[n];

  control.info.val = 0;
  control.nfev.val = 0;

  lm_lmdif(m, n, par, fvec, control.ftol, control.xtol, control.gtol, control.maxcall * (n + 1), control.epsilon, diag, 1, control.stepbound, control.info, control.nfev, fjac, ipvt, qtf, wa1, wa2, wa3, wa4, evaluate, printout, data);

  if(printout != null) printout(n, par, m, fvec, data, -1, 0, control.nfev.val);
  control.fnorm = lm_enorm(m, fvec);
  if (control.info.val < 0)
    control.info.val = 10;
}


// convenience functions; wrappers of lm_minimize

/*
  The structure FitControl specifies various control parameters.
*/
struct FitControl {
  real squareSumTolerance;      // relative error desired in the sum of squares
  real approximationTolerance;  // relative error between last two approximations
  real desiredOrthogonality;    // orthogonality desired between the residue vector and its derivatives
  real epsilon;                 // step used to calculate the jacobian
  real stepBound;               // initial bound to steps in the outer loop
  int maxIterations;            // maximum number of iterations
  bool verbose;                 // whether to print detailed information about every iteration, or nothing

  void operator init(real squareSumTolerance=LM_USERTOL, real approximationTolerance=LM_USERTOL, real desiredOrthogonality=LM_USERTOL, real epsilon=LM_USERTOL, real stepBound=100, int maxIterations=100, bool verbose=false) {
    this.squareSumTolerance = squareSumTolerance;
    this.approximationTolerance = approximationTolerance;
    this.desiredOrthogonality = desiredOrthogonality;
    this.epsilon = epsilon;
    this.stepBound = stepBound;
    this.maxIterations = maxIterations;
    this.verbose = verbose;
  }

  FitControl copy() {
    FitControl result = new FitControl;
    result.squareSumTolerance = this.squareSumTolerance;
    result.approximationTolerance = this.approximationTolerance;
    result.desiredOrthogonality = this.desiredOrthogonality;
    result.epsilon = this.epsilon;
    result.stepBound = this.stepBound;
    result.maxIterations = this.maxIterations;
    result.verbose = this.verbose;
    return result;
  }
};

FitControl operator init() {
  return FitControl();
}

FitControl defaultControl;


/*
  Upon returning, this structure provides information about the fit.
*/
struct FitResult {
  real norm;        // norm of the residue vector
  int iterations;   // actual number of iterations
  int status;       // status of minimization

  void operator init(real norm, int iterations, int status) {
    this.norm = norm;
    this.iterations = iterations;
    this.status = status;
  }
};


/*
  Fits data points to a function that depends on some parameters.

  Parameters:
  - xdata: Array of x values.
  - ydata: Array of y values.
  - errors: Array of experimental errors; each element must be strictly positive
  - function: Fit function.
  - parameters: Parameter array. Before calling fit(), this must contain the initial guesses for the parameters.
  Upon return, it will contain the solution parameters.
  - control: object of type FitControl that controls various aspects of the fitting procedure.

  Returns:
  An object of type FitResult that conveys information about the fitting process.
*/
FitResult fit(real[] xdata, real[] ydata, real[] errors, real function(real[], real), real[] parameters, FitControl control=defaultControl) {
  int m_dat = min(xdata.length, ydata.length);
  int n_par = parameters.length;
  lm_evaluate_ftype evaluate = lm_evaluate_default;
  lm_print_ftype printout = control.verbose ? lm_print_default : lm_print_quiet;
  
  lm_data_type data;
  data.user_t = xdata;
  data.user_y = ydata;
  data.user_w = 1 / errors;
  data.user_func = new real(real x, real[] params) {
    return function(params, x);
  };

  lm_control_type ctrl;
  ctrl.ftol = control.squareSumTolerance;
  ctrl.xtol = control.approximationTolerance;
  ctrl.gtol = control.desiredOrthogonality;
  ctrl.epsilon = control.epsilon;
  ctrl.stepbound = control.stepBound;
  ctrl.maxcall = control.maxIterations;

  lm_minimize(m_dat, n_par, parameters, evaluate, printout, data, ctrl);
  
  return FitResult(ctrl.fnorm, ctrl.nfev.val, ctrl.info.val);
}


/*
  Fits data points to a function that depends on some parameters.

  Parameters:
  - xdata: Array of x values.
  - ydata: Array of y values.
  - function: Fit function.
  - parameters: Parameter array. Before calling fit(), this must contain the initial guesses for the parameters.
  Upon return, it will contain the solution parameters.
  - control: object of type FitControl that controls various aspects of the fitting procedure.

  Returns:
  An object of type FitResult that conveys information about the fitting process.
*/
FitResult fit(real[] xdata, real[] ydata, real function(real[], real), real[] parameters, FitControl control=defaultControl) {
  return fit(xdata, ydata, array(min(xdata.length, ydata.length), 1.0), function, parameters, control);
}