summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/asymptote/contour3.asy
blob: a15a6663b235e4cd3c0775b77789b3d0933925c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import graph_settings;
import three;

real eps=10000*realEpsilon;

private struct weighted
{
  triple normal;
  real ratio;
  int kpa0,kpa1,kpa2;
  int kpb0,kpb1,kpb2;
  triple v;
}

private struct bucket
{
  triple v;
  triple val;
  int count;
}

struct vertex
{
  triple v;
  triple normal;
}

// A group of 3 or 4 points.
private struct object
{
  bool active;
  weighted[] pts;
}

// Return contour vertices for a 3D data array.
// z:         three-dimensional array of nonoverlapping mesh points
// f:         three-dimensional arrays of real data values
// midpoint:  optional array containing estimate of f at midpoint values
vertex[][] contour3(triple[][][] v, real[][][] f,
                    real[][][] midpoint=new real[][][],
                    projection P=currentprojection)
{
  int nx=v.length-1;
  if(nx == 0)
    abort("array v must have length >= 2");
  int ny=v[0].length-1;
  if(ny == 0)
    abort("array v[0] must have length >= 2");
  int nz=v[0][0].length-1;
  if(nz == 0)
    abort("array v[0][0] must have length >= 2");

  bool midpoints=midpoint.length > 0;

  bucket[][][][] kps=new bucket[2nx+1][2ny+1][2nz+1][];
  for(int i=0; i < 2nx+1; ++i)
    for(int j=0; j < 2ny+1; ++j)
      for(int k=0; k < 2nz+1; ++k)
        kps[i][j][k]=new bucket[];

  object[] objects;

  // go over region a rectangle at a time
  for(int i=0; i < nx; ++i) {
    triple[][] vi=v[i];
    triple[][] vp=v[i+1];
    real[][] fi=f[i];
    real[][] fp=f[i+1];
    int i2=2i;
    int i2p1=i2+1;
    int i2p2=i2+2;
    for(int j=0; j < ny; ++j) {
      triple[] vij=vi[j];
      triple[] vpj=vp[j];
      triple[] vip=vi[j+1];
      triple[] vpp=vp[j+1];
      real[] fij=fi[j];
      real[] fpj=fp[j];
      real[] fip=fi[j+1];
      real[] fpp=fp[j+1];
      int j2=2j;
      int j2p1=j2+1;
      int j2p2=j2+2;

      for(int k=0; k < nz; ++k) {
        // vertex values
        real vdat0=fij[k];
        real vdat1=fij[k+1];
        real vdat2=fip[k];
        real vdat3=fip[k+1];
        real vdat4=fpj[k];
        real vdat5=fpj[k+1];
        real vdat6=fpp[k];
        real vdat7=fpp[k+1];

        // define points
        triple p000=vij[k];
        triple p001=vij[k+1];
        triple p010=vip[k];
        triple p011=vip[k+1];
        triple p100=vpj[k];
        triple p101=vpj[k+1];
        triple p110=vpp[k];
        triple p111=vpp[k+1];
        triple m0=0.25*(p000+p010+p110+p100);
        triple m1=0.25*(p010+p110+p111+p011);
        triple m2=0.25*(p110+p100+p101+p111);
        triple m3=0.25*(p100+p000+p001+p101);
        triple m4=0.25*(p000+p010+p011+p001);
        triple m5=0.25*(p001+p011+p111+p101);
        triple mc=0.5*(m0+m5);

        // optimization: we make sure we don't work with empty rectangles
        int countm=0;
        int countz=0;
        int countp=0;

        void check(real vdat) {
          if(vdat < -eps) ++countm;
          else {
            if(vdat <= eps) ++countz;
            else ++countp;
          }
        }

        check(vdat0);
        check(vdat1);
        check(vdat2);
        check(vdat3);
        check(vdat4);
        check(vdat5);
        check(vdat6);
        check(vdat7);

        if(countm == 8 || countp == 8 ||
           ((countm == 7 || countp == 7) && countz == 1)) continue;

        int k2=2k;
        int k2p1=k2+1;
        int k2p2=k2+2;

        // Evaluate midpoints of cube sides.
        // Then evaluate midpoint of cube.
        real vdat8=midpoints ? midpoint[i2p1][j2p1][k2] :
          0.25*(vdat0+vdat2+vdat6+vdat4);
        real vdat9=midpoints ? midpoint[i2p1][j2p2][k2p1] :
          0.25*(vdat2+vdat6+vdat7+vdat3);
        real vdat10=midpoints ? midpoint[i2p2][j2p1][k2p1] :
          0.25*(vdat7+vdat6+vdat4+vdat5);
        real vdat11=midpoints ? midpoint[i2p1][j2][k2p1] :
          0.25*(vdat0+vdat4+vdat5+vdat1);
        real vdat12=midpoints ? midpoint[i2][j2p1][k2p1] :
          0.25*(vdat0+vdat2+vdat3+vdat1);
        real vdat13=midpoints ? midpoint[i2p1][j2p1][k2p2] :
          0.25*(vdat1+vdat3+vdat7+vdat5);
        real vdat14=midpoints ? midpoint[i2p1][j2p1][k2p1] :
          0.125*(vdat0+vdat1+vdat2+vdat3+vdat4+vdat5+vdat6+vdat7);

        // Go through the 24 pyramids, 4 for each side.

        void addval(int kp0, int kp1, int kp2, triple add, triple v) {
          bucket[] cur=kps[kp0][kp1][kp2];
          for(int q=0; q < cur.length; ++q) {
            if(length(cur[q].v-v) < eps) {
              cur[q].val += add;
              ++cur[q].count;
              return;
            }
          }
          bucket newbuck;
          newbuck.v=v;
          newbuck.val=add;
          newbuck.count=1;
          cur.push(newbuck);
        }

        void accrue(weighted w) {
          triple val1=w.normal*w.ratio;
          triple val2=w.normal*(1-w.ratio);
          addval(w.kpa0,w.kpa1,w.kpa2,val1,w.v);
          addval(w.kpb0,w.kpb1,w.kpb2,val2,w.v);
        }

        triple dir=P.normal;

        void addnormals(weighted[] pts) {
          triple vec2=pts[1].v-pts[0].v;
          triple vec1=pts[0].v-pts[2].v;
          triple vec0=-vec2-vec1;
          vec2=unit(vec2);
          vec1=unit(vec1);
          vec0=unit(vec0);
          triple normal=cross(vec2,vec1);
          normal *= sgn(dot(normal,dir));

          real angle(triple u, triple v) {
            real Dot=-dot(u,v);
            return Dot > 1 ? 0 : Dot < -1 ? pi : acos(Dot);
          }

          real angle0=angle(vec1,vec2);
          real angle1=angle(vec2,vec0);
          pts[0].normal=normal*angle0;
          pts[1].normal=normal*angle1;
          pts[2].normal=normal*(pi-angle0-angle1);
        }

        void addobj(object obj) {
          if(!obj.active) return;

          if(obj.pts.length == 4) {
            weighted[] points=obj.pts;
            object obj1;
            object obj2;
            obj1.active=true;
            obj2.active=true;
            obj1.pts=new weighted[] {points[0],points[1],points[2]};
            obj2.pts=new weighted[] {points[1],points[2],points[3]};
            addobj(obj1);
            addobj(obj2);
          } else {
            addnormals(obj.pts);
            for(int q=0; q < obj.pts.length; ++q)
              accrue(obj.pts[q]);
            objects.push(obj);
          }
        }

        weighted setupweighted(triple va, triple vb, real da, real db,
                               int[] kpa, int[] kpb) {
          weighted w;
          real ratio=abs(da/(db-da));
          w.v=interp(va,vb,ratio);
          w.ratio=ratio;
          w.kpa0=i2+kpa[0];
          w.kpa1=j2+kpa[1];
          w.kpa2=k2+kpa[2];
          w.kpb0=i2+kpb[0];
          w.kpb1=j2+kpb[1];
          w.kpb2=k2+kpb[2];

          return w;
        }

        weighted setupweighted(triple v, int[] kp) {
          weighted w;
          w.v=v;
          w.ratio=0.5;
          w.kpa0=w.kpb0=i2+kp[0];
          w.kpa1=w.kpb1=j2+kp[1];
          w.kpa2=w.kpb2=k2+kp[2];

          return w;
        }

        // Checks if a pyramid contains a contour object.
        object checkpyr(triple v0, triple v1, triple v2, triple v3,
                        real d0, real d1, real d2, real d3,
                        int[] c0, int[] c1, int[] c2, int[] c3) {
          object obj;
          real a0=abs(d0);
          real a1=abs(d1);
          real a2=abs(d2);
          real a3=abs(d3);

          bool b0=a0 < eps;
          bool b1=a1 < eps;
          bool b2=a2 < eps;
          bool b3=a3 < eps;

          weighted[] pts;

          if(b0) pts.push(setupweighted(v0,c0));
          if(b1) pts.push(setupweighted(v1,c1));
          if(b2) pts.push(setupweighted(v2,c2));
          if(b3) pts.push(setupweighted(v3,c3));

          if(!b0 && !b1 && abs(d0+d1)+eps < a0+a1)
            pts.push(setupweighted(v0,v1,d0,d1,c0,c1));
          if(!b0 && !b2 && abs(d0+d2)+eps < a0+a2)
            pts.push(setupweighted(v0,v2,d0,d2,c0,c2));
          if(!b0 && !b3 && abs(d0+d3)+eps < a0+a3)
            pts.push(setupweighted(v0,v3,d0,d3,c0,c3));
          if(!b1 && !b2 && abs(d1+d2)+eps < a1+a2)
            pts.push(setupweighted(v1,v2,d1,d2,c1,c2));
          if(!b1 && !b3 && abs(d1+d3)+eps < a1+a3)
            pts.push(setupweighted(v1,v3,d1,d3,c1,c3));
          if(!b2 && !b3 && abs(d2+d3)+eps < a2+a3)
            pts.push(setupweighted(v2,v3,d2,d3,c2,c3));

          int s=pts.length;
          //There are three or four points.
          if(s > 2) {
            obj.active=true;
            obj.pts=pts;
          } else obj.active=false;

          return obj;
        }

        void check4pyr(triple v0, triple v1, triple v2, triple v3,
                       triple v4, triple v5,
                       real d0, real d1, real d2, real d3, real d4, real d5,
                       int[] c0, int[] c1, int[] c2, int[] c3, int[] c4,
                       int[] c5) {
          addobj(checkpyr(v5,v4,v0,v1,d5,d4,d0,d1,c5,c4,c0,c1));
          addobj(checkpyr(v5,v4,v1,v2,d5,d4,d1,d2,c5,c4,c1,c2));
          addobj(checkpyr(v5,v4,v2,v3,d5,d4,d2,d3,c5,c4,c2,c3));
          addobj(checkpyr(v5,v4,v3,v0,d5,d4,d3,d0,c5,c4,c3,c0));
        }

        static int[] pp000={0,0,0};
        static int[] pp001={0,0,2};
        static int[] pp010={0,2,0};
        static int[] pp011={0,2,2};
        static int[] pp100={2,0,0};
        static int[] pp101={2,0,2};
        static int[] pp110={2,2,0};
        static int[] pp111={2,2,2};
        static int[] pm0={1,1,0};
        static int[] pm1={1,2,1};
        static int[] pm2={2,1,1};
        static int[] pm3={1,0,1};
        static int[] pm4={0,1,1};
        static int[] pm5={1,1,2};
        static int[] pmc={1,1,1};

        check4pyr(p000,p010,p110,p100,mc,m0,
                  vdat0,vdat2,vdat6,vdat4,vdat14,vdat8,
                  pp000,pp010,pp110,pp100,pmc,pm0);
        check4pyr(p010,p110,p111,p011,mc,m1,
                  vdat2,vdat6,vdat7,vdat3,vdat14,vdat9,
                  pp010,pp110,pp111,pp011,pmc,pm1);
        check4pyr(p110,p100,p101,p111,mc,m2,
                  vdat6,vdat4,vdat5,vdat7,vdat14,vdat10,
                  pp110,pp100,pp101,pp111,pmc,pm2);
        check4pyr(p100,p000,p001,p101,mc,m3,
                  vdat4,vdat0,vdat1,vdat5,vdat14,vdat11,
                  pp100,pp000,pp001,pp101,pmc,pm3);
        check4pyr(p000,p010,p011,p001,mc,m4,
                  vdat0,vdat2,vdat3,vdat1,vdat14,vdat12,
                  pp000,pp010,pp011,pp001,pmc,pm4);
        check4pyr(p001,p011,p111,p101,mc,m5,
                  vdat1,vdat3,vdat7,vdat5,vdat14,vdat13,
                  pp001,pp011,pp111,pp101,pmc,pm5);
      }
    }
  }

  vertex preparevertex(weighted w) {
    vertex ret;
    triple normal=O;
    bool first=true;
    bucket[] kp1=kps[w.kpa0][w.kpa1][w.kpa2];
    bucket[] kp2=kps[w.kpb0][w.kpb1][w.kpb2];
    bool notfound1=true;
    bool notfound2=true;
    int count=0;
    int stop=max(kp1.length,kp2.length);
    for(int r=0; r < stop; ++r) {
      if(notfound1) {
        if(length(w.v-kp1[r].v) < eps) {
          if(first) {
            ret.v=kp1[r].v;
            first=false;
          }
          normal += kp1[r].val;
          count += kp1[r].count;
          notfound1=false;
        }
      }
      if(notfound2) {
        if(length(w.v-kp2[r].v) < eps) {
          if(first) {
            ret.v=kp2[r].v;
            first=false;
          }
          normal += kp2[r].val;
          count += kp2[r].count;
          notfound2=false;
        }
      }
    }
    ret.normal=normal*2/count;
    return ret;
  }

  // Prepare return value.
  vertex[][] g;

  for(int q=0; q < objects.length; ++q) {
    object p=objects[q];
    g.push(new vertex[] {preparevertex(p.pts[0]),preparevertex(p.pts[1]),
                           preparevertex(p.pts[2])});
  }
  return g;
}

// Return contour vertices for a 3D data array on a uniform lattice.
// f:         three-dimensional arrays of real data values
// midpoint:  optional array containing estimate of f at midpoint values
// a,b:       diagonally opposite points of rectangular parellelpiped domain
vertex[][] contour3(real[][][] f, real[][][] midpoint=new real[][][],
                    triple a, triple b, projection P=currentprojection)

{
  int nx=f.length-1;
  if(nx == 0)
    abort("array f must have length >= 2");
  int ny=f[0].length-1;
  if(ny == 0)
    abort("array f[0] must have length >= 2");
  int nz=f[0][0].length-1;
  if(nz == 0)
    abort("array f[0][0] must have length >= 2");

  triple[][][] v=new triple[nx+1][ny+1][nz+1];
  for(int i=0; i <= nx; ++i) {
    real xi=interp(a.x,b.x,i/nx);
    triple[][] vi=v[i];
    for(int j=0; j <= ny; ++j) {
      triple[] vij=v[i][j];
      real yj=interp(a.y,b.y,j/ny);
      for(int k=0; k <= nz; ++k) {
        vij[k]=(xi,yj,interp(a.z,b.z,k/nz));
      }
    }
  }
  return contour3(v,f,midpoint,P);
}

// Return contour vertices for a 3D data array, using a pyramid mesh
// f:         real-valued function of three real variables
// a,b:       diagonally opposite points of rectangular parellelpiped domain
// nx,ny,nz   number of subdivisions in x, y, and z directions
vertex[][] contour3(real f(real, real, real), triple a, triple b,
                    int nx=nmesh, int ny=nx, int nz=nx,
                    projection P=currentprojection)
{
  // evaluate function at points and midpoints
  real[][][] dat=new real[nx+1][ny+1][nz+1];
  real[][][] midpoint=new real[2nx+2][2ny+2][2nz+1];

  for(int i=0; i <= nx; ++i) {
    real x=interp(a.x,b.x,i/nx);
    real x2=interp(a.x,b.x,(i+0.5)/nx);
    real[][] dati=dat[i];
    real[][] midpointi2=midpoint[2i];
    real[][] midpointi2p1=midpoint[2i+1];
    for(int j=0; j <= ny; ++j) {
      real y=interp(a.y,b.y,j/ny);
      real y2=interp(a.y,b.y,(j+0.5)/ny);
      real datij[]=dati[j];
      real[] midpointi2p1j2=midpointi2p1[2j];
      real[] midpointi2p1j2p1=midpointi2p1[2j+1];
      real[] midpointi2j2p1=midpointi2[2j+1];
      for(int k=0; k <= nz; ++k) {
        real z=interp(a.z,b.z,k/nz);
        real z2=interp(a.z,b.z,(k+0.5)/nz);
        datij[k]=f(x,y,z);
        if(i == nx || j == ny || k == nz) continue;
        int k2p1=2k+1;
        midpointi2p1j2p1[2k]=f(x2,y2,z);
        midpointi2p1j2p1[k2p1]=f(x2,y2,z2);
        midpointi2p1j2[k2p1]=f(x2,y,z2);
        midpointi2j2p1[k2p1]=f(x,y2,z2);
        if(i == 0) midpoint[2nx][2j+1][k2p1]=f(b.x,y2,z2);
        if(j == 0) midpointi2p1[2ny][k2p1]=f(x2,b.y,z2);
        if(k == 0) midpointi2p1j2p1[2nz]=f(x2,y2,b.z);
      }
    }
  }
  return contour3(dat,midpoint,a,b,P);
}

// Construct contour surface for a 3D data array, using a pyramid mesh.
surface surface(vertex[][] g)
{
  surface s=surface(g.length);
  for(int i=0; i < g.length; ++i) {
    vertex[] cur=g[i];
    s.s[i]=patch(cur[0].v--cur[1].v--cur[2].v--cycle);
  }
  return s;
}