1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
/*****
* knot.cc
* Andy Hammerlindl 2005/02/10
*
* Describes a knot, a point and its neighbouring specifiers, used as an
* intermediate structure in solving paths.
*****/
#include "knot.h"
#include "util.h"
#include "angle.h"
#include "settings.h"
namespace camp {
/***** Debugging *****/
//bool tracing_solving=false;
template <typename T>
ostream& info(ostream& o, const char *name, cvector<T>& v)
{
if (settings::verbose > 3) {
o << name << ":\n\n";
for(Int i=0; i < (Int) v.size(); ++i)
o << v[i] << endl;
o << endl;
}
return o;
}
ostream& info(ostream& o, string name, knotlist& l)
{
if (settings::verbose > 3) {
o << name << ":\n\n";
for(Int i=0; i < (Int) l.size(); ++i)
o << l[i] << endl;
if (l.cyclic())
o << "cyclic" << endl;
o << endl;
}
return o;
}
#define INFO(x) info(cerr,#x,x)
/***** Auxillary computation functions *****/
// Computes the relative distance of a control point given the angles.
// The name is somewhat misleading as the velocity (with respect to the
// variable that parameterizes the path) is relative to the distance
// between the knots and even then, is actually three times this.
// The routine is based on the velocity function in Section 131 of the MetaPost
// code, but differs in that it automatically accounts for the tension and
// bounding with tension atleast.
double velocity(double theta, double phi, tension t)
{
static const double VELOCITY_BOUND = 4.0;
static const double a = sqrt(2.0);
static const double b = 1.0/16.0;
static const double c = 1.5*(sqrt(5.0)-1.0);
static const double d = 1.5*(3.0-sqrt(5.0));
double st = sin(theta), ct = cos(theta),
sf = sin(phi), cf = cos(phi);
double denom = t.val * (3.0 + c*ct + d*cf);
double r = denom != 0.0 ? (2.0 + a*(st - b*sf)*(sf - b*st)*(ct-cf)) / denom
: VELOCITY_BOUND;
//cerr << " velocity(" << theta << "," << phi <<")= " << r << endl;
if (r > VELOCITY_BOUND)
r = VELOCITY_BOUND;
// Apply boundedness condition for tension atleast cases.
if (t.atleast)
{
double sine = sin(theta + phi);
if ((st >= 0.0 && sf >= 0.0 && sine > 0.0) ||
(st <= 0.0 && sf <= 0.0 && sine < 0.0))
{
double rmax = sf / sine;
if (r > rmax)
r = rmax;
}
}
return r;
}
double niceAngle(pair z)
{
return z.gety() == 0 ? z.getx() >= 0 ? 0 : PI
: angle(z);
}
// Ensures an angle is in the range between -PI and PI.
double reduceAngle(double angle)
{
return angle > PI ? angle - 2.0*PI :
angle < -PI ? angle + 2.0*PI :
angle;
}
bool interesting(tension t)
{
return t.val!=1.0 || t.atleast==true;
}
bool interesting(spec *s)
{
return !s->open();
}
ostream& operator<<(ostream& out, const knot& k)
{
if (interesting(k.tin))
out << k.tin << " ";
if (interesting(k.in))
out << *k.in << " ";
out << k.z;
if (interesting(k.out))
out << " " << *k.out;
if (interesting(k.tout))
out << " " << k.tout;
return out;
}
eqn dirSpec::eqnOut(Int j, knotlist& l, cvector<double>&, cvector<double>&)
{
// When choosing the control points, the path will come out the first knot
// going straight to the next knot rotated by the angle theta.
// Therefore, the angle theta we want is the difference between the
// specified heading given and the heading to the next knot.
double theta=reduceAngle(given-niceAngle(l[j+1].z-l[j].z));
// Give a simple linear equation to ensure this theta is picked.
return eqn(0.0,1.0,0.0,theta);
}
eqn dirSpec::eqnIn(Int j, knotlist& l, cvector<double>&, cvector<double>&)
{
double theta=reduceAngle(given-niceAngle(l[j].z-l[j-1].z));
return eqn(0.0,1.0,0.0,theta);
}
eqn curlSpec::eqnOut(Int j, knotlist& l, cvector<double>&,
cvector<double>& psi)
{
double alpha=l[j].alpha();
double beta=l[j+1].beta();
double chi=alpha*alpha*gamma/(beta*beta);
double C=alpha*chi+3-beta;
double D=(3.0-alpha)*chi+beta;
return eqn(0.0,C,D,-D*psi[j+1]);
}
eqn curlSpec::eqnIn(Int j, knotlist& l, cvector<double>&, cvector<double>&)
{
double alpha=l[j-1].alpha();
double beta=l[j].beta();
double chi=beta*beta*gamma/(alpha*alpha);
double A=(3-beta)*chi+alpha;
double B=beta*chi+3-alpha;
return eqn(A,B,0.0,0.0);
}
spec *controlSpec::outPartner(pair z)
{
static curlSpec curl;
return cz==z ? (spec *)&curl : (spec *)new dirSpec(z-cz);
}
spec *controlSpec::inPartner(pair z)
{
static curlSpec curl;
return cz==z ? (spec *)&curl : (spec *)new dirSpec(cz-z);
}
// Compute the displacement between points. The j-th result is the distance
// between knot j and knot j+1.
struct dzprop : public knotprop<pair> {
dzprop(knotlist& l)
: knotprop<pair>(l) {}
pair solo(Int) { return pair(0,0); }
pair start(Int j) { return l[j+1].z - l[j].z; }
pair mid(Int j) { return l[j+1].z - l[j].z; }
pair end(Int) { return pair(0,0); }
};
// Compute the distance between points, using the already computed dz. This
// doesn't use the infomation in the knots, but the knotprop class is useful as
// it takes care of the iteration for us.
struct dprop : public knotprop<double> {
cvector<pair>& dz;
dprop(knotlist &l, cvector<pair>& dz)
: knotprop<double>(l), dz(dz) {}
double solo(Int j) { return length(dz[j]); }
double start(Int j) { return length(dz[j]); }
double mid(Int j) { return length(dz[j]); }
double end(Int j) { return length(dz[j]); }
};
// Compute the turning angles (psi) between points, using the already computed
// dz.
struct psiprop : public knotprop<double> {
cvector<pair>& dz;
psiprop(knotlist &l, cvector<pair>& dz)
: knotprop<double>(l), dz(dz) {}
double solo(Int) { return 0; }
// We set the starting and ending psi to zero.
double start(Int) { return 0; }
double end(Int) { return 0; }
double mid(Int j) { return niceAngle(dz[j]/dz[j-1]); }
};
struct eqnprop : public knotprop<eqn> {
cvector<double>& d;
cvector<double>& psi;
eqnprop(knotlist &l, cvector<double>& d, cvector<double>& psi)
: knotprop<eqn>(l), d(d), psi(psi) {}
eqn solo(Int) {
assert(False);
return eqn(0.0,1.0,0.0,0.0);
}
eqn start(Int j) {
// Defer to the specifier, as it knows the specifics.
return dynamic_cast<endSpec *>(l[j].out)->eqnOut(j,l,d,psi);
}
eqn end(Int j) {
return dynamic_cast<endSpec *>(l[j].in)->eqnIn(j,l,d,psi);
}
eqn mid(Int j) {
double lastAlpha = l[j-1].alpha();
double thisAlpha = l[j].alpha();
double thisBeta = l[j].beta();
double nextBeta = l[j+1].beta();
// Values based on the linear approximation of the curvature coming
// into the knot with respect to theta[j-1] and theta[j].
double inFactor = 1.0/(thisBeta*thisBeta*d[j-1]);
double A = lastAlpha*inFactor;
double B = (3.0 - lastAlpha)*inFactor;
// Values based on the linear approximation of the curvature going out of
// the knot with respect to theta[j] and theta[j+1].
double outFactor = 1.0/(thisAlpha*thisAlpha*d[j]);
double C = (3.0 - nextBeta)*outFactor;
double D = nextBeta*outFactor;
return eqn(A,B+C,D,-B*psi[j]-D*psi[j+1]);
}
};
// If the system of equations is homogeneous (ie. we are solving for x in
// Ax=0), there is no need to solve for theta; we can just use zeros for the
// thetas. In fact, our general solving method may not work in this case.
// A common example of this is
//
// a{curl 1}..{curl 1}b
//
// which arises when solving a one-length path a..b or in a larger path a
// section a--b.
bool homogeneous(cvector<eqn>& e)
{
for(cvector<eqn>::iterator p=e.begin(); p!=e.end(); ++p)
if (p->aug != 0)
return false;
return true;
}
// Checks whether the equation being solved will be solved as a straight
// path from the first point to the second.
bool straightSection(cvector<eqn>& e)
{
return e.size()==2 && e.front().aug==0 && e.back().aug==0;
}
struct weqn : public eqn {
double w;
weqn(double pre, double piv, double post, double aug, double w=0)
: eqn(pre,piv,post,aug), w(w) {}
friend ostream& operator<< (ostream& out, const weqn we)
{
return out << (eqn &)we << " + " << we.w << " * theta[0]";
}
};
weqn scale(weqn q) {
assert(q.pre == 0 && q.piv != 0);
return weqn(0,1,q.post/q.piv,q.aug/q.piv,q.w/q.piv);
}
/* Recalculate the equations in the form:
* theta[j] + post * theta[j+1] = aug + w * theta[0]
*
* Used as the first step in solve cyclic equations.
*/
cvector<weqn> recalc(cvector<eqn>& e)
{
Int n=(Int) e.size();
cvector<weqn> we;
weqn lasteqn(0,1,0,0,1);
we.push_back(lasteqn); // As a placeholder.
for (Int j=1; j < n; j++) {
// Subtract a factor of the last equation so that the first entry is
// zero, then procede to scale it.
eqn& q=e[j];
lasteqn=scale(weqn(0,q.piv-q.pre*lasteqn.post,q.post,
q.aug-q.pre*lasteqn.aug,-q.pre*lasteqn.w));
we.push_back(lasteqn);
}
// To keep all of the infomation enocoded in the linear equations, we need
// to augment the computation to replace our trivial start weqn with a
// real one. To do this, we take one more step in the iteration and
// compute the weqn for j=n, since n=0 (mod n).
{
eqn& q=e[0];
we.front()=scale(weqn(0,q.piv-q.pre*lasteqn.post,q.post,
q.aug-q.pre*lasteqn.aug,-q.pre*lasteqn.w));
}
return we;
}
double solveForTheta0(cvector<weqn>& we)
{
// Solve for theta[0]=theta[n].
// How we do this is essentially to write out the first equation as:
//
// theta[n] = aug[0] + w[0]*theta[0] - post[0]*theta[1]
//
// and then use the next equation to substitute in for theta[1]:
//
// theta[1] = aug[1] + w[1]*theta[0] - post[1]*theta[2]
//
// and so on until we have an equation just in terms of theta[0] and
// theta[n] (which are the same theta).
//
// The loop invariant maintained is that after j iterations, we have
// theta[n]= a + b*theta[0] + c*theta[j]
Int n=(Int) we.size();
double a=0,b=0,c=1;
for (Int j=0;j<n;++j) {
weqn& q=we[j];
a+=c*q.aug;
b+=c*q.w;
c=-c*q.post;
}
// After the iteration we have
//
// theta[n] = a + b*theta[0] + c*theta[n]
//
// where theta[n]=theta[0], so
return a/(1.0-(b+c));
}
cvector<double> backsubCyclic(cvector<weqn>& we, double theta0)
{
Int n=(Int) we.size();
cvector<double> thetas;
double lastTheta=theta0;
for (Int j=1;j<=n;++j)
{
weqn& q=we[n-j];
assert(q.pre == 0 && q.piv == 1);
double theta=-q.post*lastTheta+q.aug+q.w*theta0;
thetas.push_back(theta);
lastTheta=theta;
}
reverse(thetas.begin(),thetas.end());
return thetas;
}
// For the non-cyclic equations, do row operation to put the matrix into
// reduced echelon form, ie. calculates equivalent equations but with pre=0 and
// piv=1 for each eqn.
struct ref : public knotprop<eqn> {
cvector<eqn>& e;
eqn lasteqn;
ref(knotlist& l, cvector<eqn>& e)
: knotprop<eqn>(l), e(e), lasteqn(0,1,0,0) {}
// Scale the equation so that the pivot (diagonal) entry is one, and save
// the new equation as lasteqn.
eqn scale(eqn q) {
assert(q.pre == 0 && q.piv != 0);
return lasteqn = eqn(0,1,q.post/q.piv,q.aug/q.piv);
}
eqn start(Int j) {
return scale(e[j]);
}
eqn mid(Int j) {
// Subtract a factor of the last equation so that the first entry is
// zero, then procede to scale it.
eqn& q=e[j];
return scale(eqn(0,q.piv-q.pre*lasteqn.post,q.post,
q.aug-q.pre*lasteqn.aug));
}
// The end case is the same as the middle case.
};
// Once the matrix is in reduced echelon form, we can solve for the values by
// back-substitution. This algorithm works from the bottom-up, so backCompute
// must be used to get the answer.
struct backsub : public knotprop<double> {
cvector<eqn>& e;
double lastTheta;
backsub(knotlist& l, cvector<eqn>& e)
: knotprop<double>(l), e(e) {}
double end(Int j) {
eqn& q=e[j];
assert(q.pre == 0 && q.piv == 1 && q.post == 0);
double theta=q.aug;
lastTheta=theta;
return theta;
}
double mid(Int j) {
eqn& q=e[j];
assert(q.pre == 0 && q.piv == 1);
double theta=-q.post*lastTheta+q.aug;
lastTheta=theta;
return theta;
}
// start is the same as mid.
};
// Once the equations have been determined, solve for the thetas.
cvector<double> solveThetas(knotlist& l, cvector<eqn>& e)
{
if (homogeneous(e))
// We are solving Ax=0, so a solution is zero for every theta.
return cvector<double>(e.size(),0);
else if (l.cyclic()) {
// The knotprop template is unusually unhelpful in this case, so I
// won't use it here. The algorithm breaks into three passes on the
// object. The old Asymptote code used a two-pass method, but I
// implemented this to stay closer to the MetaPost source code.
// This might be something to look at for optimization.
cvector<weqn> we=recalc(e);
INFO(we);
double theta0=solveForTheta0(we);
return backsubCyclic(we, theta0);
}
else { /* Non-cyclic case. */
/* First do row operations to get it into reduced echelon form. */
cvector<eqn> el=ref(l,e).compute();
/* Then, do back substitution. */
return backsub(l,el).backCompute();
}
}
// Once thetas have been solved, determine the first control point of every
// join.
struct postcontrolprop : public knotprop<pair> {
cvector<pair>& dz;
cvector<double>& psi;
cvector<double>& theta;
postcontrolprop(knotlist& l, cvector<pair>& dz,
cvector<double>& psi, cvector<double>& theta)
: knotprop<pair>(l), dz(dz), psi(psi), theta(theta) {}
double phi(Int j) {
/* The third angle: psi + theta + phi = 0 */
return -psi[j] - theta[j];
}
double vel(Int j) {
/* Use the standard velocity function. */
return velocity(theta[j],phi(j+1),l[j].tout);
}
// start is the same as mid.
pair mid(Int j) {
// Put a control point at the relative distance determined by the velocity,
// and at an angle determined by theta.
return l[j].z + vel(j)*expi(theta[j])*dz[j];
}
// The end postcontrol is the same as the last knot.
pair end(Int j) {
return l[j].z;
}
};
// Determine the first control point of every join.
struct precontrolprop : public knotprop<pair> {
cvector<pair>& dz;
cvector<double>& psi;
cvector<double>& theta;
precontrolprop(knotlist& l, cvector<pair>& dz,
cvector<double>& psi, cvector<double>& theta)
: knotprop<pair>(l), dz(dz), psi(psi), theta(theta) {}
double phi(Int j) {
return -psi[j] - theta[j];
}
double vel(Int j) {
return velocity(phi(j),theta[j-1],l[j].tin);
}
// The start precontrol is the same as the first knot.
pair start(Int j) {
return l[j].z;
}
pair mid(Int j) {
return l[j].z - vel(j)*expi(-phi(j))*dz[j-1];
}
// end is the same as mid.
};
// Puts solved controls into a protopath starting at the given index.
// By convention, the first knot is not coded, as it is assumed to be coded by
// the previous section (or it is the first breakpoint and encoded as a special
// case).
struct encodeControls : public knoteffect {
protopath& p;
Int k;
cvector<pair>& pre;
cvector<pair>& post;
encodeControls(protopath& p, Int k,
cvector<pair>& pre, knotlist& l, cvector<pair>& post)
: knoteffect(l), p(p), k(k), pre(pre), post(post) {}
void encodePre(Int j) {
p.pre(k+j)=pre[j];
}
void encodePoint(Int j) {
p.point(k+j)=l[j].z;
}
void encodePost(Int j) {
p.post(k+j)=post[j];
}
void solo(Int) {
#if 0
encodePoint(j);
#endif
}
void start(Int j) {
#if 0
encodePoint(j);
#endif
encodePost(j);
}
void mid(Int j) {
encodePre(j);
encodePoint(j);
encodePost(j);
}
void end(Int j) {
encodePre(j);
encodePoint(j);
}
};
void encodeStraight(protopath& p, Int k, knotlist& l)
{
pair a=l.front().z;
double at=l.front().tout.val;
pair b=l.back().z;
double bt=l.back().tin.val;
pair step=(b-a)/3.0;
if (at==1.0 && bt==1.0) {
p.straight(k)=true;
p.post(k)=a+step;
p.pre(k+1)=b-step;
p.point(k+1)=b;
}
else {
p.post(k)=a+step/at;
p.pre(k+1)=b-step/bt;
p.point(k+1)=b;
}
}
void solveSection(protopath& p, Int k, knotlist& l)
{
if (l.length()>0) {
info(cerr, "solving section", l);
// Calculate useful properties.
cvector<pair> dz = dzprop(l) .compute();
cvector<double> d = dprop(l,dz).compute();
cvector<double> psi = psiprop(l,dz).compute();
INFO(dz); INFO(d); INFO(psi);
// Build and solve the linear equations for theta.
cvector<eqn> e = eqnprop(l,d,psi).compute();
INFO(e);
if (straightSection(e))
// Handle straight section as special case.
encodeStraight(p,k,l);
else {
cvector<double> theta = solveThetas(l,e);
INFO(theta);
// Calculate the control points.
cvector<pair> post = postcontrolprop(l,dz,psi,theta).compute();
cvector<pair> pre = precontrolprop(l,dz,psi,theta).compute();
// Encode the results into the protopath.
encodeControls(p,k,pre,l,post).exec();
}
}
}
// Find the first breakpoint in the knotlist, ie. where we can start solving a
// non-cyclic section. If the knotlist is fully cyclic, then this returns
// NOBREAK.
// This must be called with a knot that has all of its implicit specifiers in
// place.
const Int NOBREAK=-1;
Int firstBreakpoint(knotlist& l)
{
for (Int j=0;j<l.size();++j)
if (!l[j].out->open())
return j;
return NOBREAK;
}
// Once a breakpoint, a, is found, find where the next breakpoint after it is.
// This must be called with a knot that has all of its implicit specifiers in
// place, so that breakpoint can be identified by either an in or out specifier
// that is not open.
Int nextBreakpoint(knotlist& l, Int a)
{
// This is guaranteed to terminate if a is the index of a breakpoint. If the
// path is non-cyclic it will stop at or before the last knot which must be a
// breakpoint. If the path is cyclic, it will stop at or before looping back
// around to a which is a breakpoint.
Int j=a+1;
while (l[j].in->open())
++j;
return j;
}
// Write out the controls for section of the form
// a.. control b and c ..d
void writeControls(protopath& p, Int a, knotlist& l)
{
// By convention, the first point will already be encoded.
p.straight(a)=dynamic_cast<controlSpec *>(l[a].out)->straight;
p.post(a)=dynamic_cast<controlSpec *>(l[a].out)->cz;
p.pre(a+1)=dynamic_cast<controlSpec *>(l[a+1].in)->cz;
p.point(a+1)=l[a+1].z;
}
// Solves a path that has all of its specifiers laid out explicitly.
path solveSpecified(knotlist& l)
{
protopath p(l.size(),l.cyclic());
Int first=firstBreakpoint(l);
if (first==NOBREAK)
/* We are solving a fully cyclic path, so do it in one swoop. */
solveSection(p,0,l);
else {
// Encode the first point.
p.point(first)=l[first].z;
// If the path is cyclic, we should stop where we started (modulo the
// length of the path); otherwise, just stop at the end.
Int last=l.cyclic() ? first+l.length()
: l.length();
Int a=first;
while (a!=last) {
if (l[a].out->controlled()) {
assert(l[a+1].in->controlled());
// Controls are already picked, just write them out.
writeControls(p,a,l);
++a;
}
else {
// Find the section a to b and solve it, putting the result (starting
// from index a into our protopath.
Int b=nextBreakpoint(l,a);
subknotlist section(l,a,b);
solveSection(p,a,section);
a=b;
}
}
// For a non-cyclic path, the end control points need to be set.
p.controlEnds();
}
return p.fix();
}
/* If a knot is open on one side and restricted on the other, this replaces the
* open side with a restriction determined by the restriction on the other
* side. After this, any knot will either have two open specs or two
* restrictions.
*/
struct partnerUp : public knoteffect {
partnerUp(knotlist& l)
: knoteffect(l) {}
void mid(Int j) {
knot& k=l[j];
if (k.in->open() && !k.out->open())
k.in=k.out->inPartner(k.z);
else if (!k.in->open() && k.out->open())
k.out=k.in->outPartner(k.z);
}
};
/* Ensures a non-cyclic path has direction specifiers at the ends, adding curls
* if there are none.
*/
void curlEnds(knotlist& l)
{
static curlSpec endSpec;
if (!l.cyclic()) {
if (l.front().in->open())
l.front().in=&endSpec;
if (l.back().out->open())
l.back().out=&endSpec;
}
}
/* If a point occurs twice in a row in a knotlist, write in controls
* between the two knots at that point (unless it already has controls).
*/
struct controlDuplicates : public knoteffect {
controlDuplicates(knotlist& l)
: knoteffect(l) {}
void solo(Int) { /* One point ==> no duplicates */ }
// start is the same as mid.
void mid(Int j) {
knot &k1=l[j];
knot &k2=l[j+1];
if (!k1.out->controlled() && k1.z==k2.z) {
k1.out=k2.in=new controlSpec(k1.z,true);
}
}
void end(Int) { /* No next point to compare with. */ }
};
path solve(knotlist& l)
{
if (l.empty())
return path();
else {
info(cerr, "input knotlist", l);
curlEnds(l);
controlDuplicates(l).exec();
partnerUp(l).exec();
info(cerr, "specified knotlist", l);
return solveSpecified(l);
}
}
// Code for Testing
#if 0
path solveSimple(cvector<pair>& z)
{
// The two specifiers used: an open spec and a curl spec for the ends.
spec open;
// curlSpec curl;
// curlSpec curly(2.0);
// dirSpec E(0);
// dirSpec N(PI/2.0);
controlSpec here(pair(150,150));
// Encode the knots as open in the knotlist.
cvector<knot> nodes;
for (cvector<pair>::iterator p=z.begin(); p!=z.end(); ++p) {
knot k;
k.z=*p;
k.in=k.out=&open;
nodes.push_back(k);
}
// Substitute in a curl spec for the ends.
//nodes.front().out=nodes.back().in=&curl;
// Test direction specifiers.
//nodes.front().tout=2;
//nodes.front().out=nodes.back().in=&curly;
//nodes[0].out=nodes[0].in=&E;
nodes[1].out=nodes[2].in=&here;
simpleknotlist l(nodes,false);
return solve(l);
}
#endif
} // namespace camp
|