summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/vptovf.web
blob: 724398e61ab8aac21a82d9638ee73baa22ac59b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
% This program by D. E. Knuth is not copyrighted and can be used freely.
% Version 1 was implemented in December 1989.
% Version 1.1 fixed some for-loop indices for stricter Pascal (April 1990).
% Version 1.2 fixed `nonexistent char 0' bug, and a bit more (September 1990).
% Version 1.3 has more robust `out_scaled' (March 1991).
% Version 1.4 (March 1995) initialized lk_step_ended (Armin K\"ollner).   
% Version 1.5 (August 1998) corrected vf_fix(0) (Wayne Sullivan).
% Version 1.6 (January 2014) corrected possible end-of-line glitch (Ken Nakano),
%  and get_fix now treats -- as + (Peter Breitenlohner).

% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\indent\ignorespaces}
\font\ninerm=cmr9
\let\mc=\ninerm % medium caps for names like SAIL
\def\PASCAL{Pascal}
\font\logo=logo10 % for the METAFONT logo
\def\MF{{\logo METAFONT}}

\def\(#1){} % this is used to make section names sort themselves better
\def\9#1{} % this is used for sort keys in the index

\def\title{VP\lowercase{to}VF}
\def\contentspagenumber{201}
\def\topofcontents{\null
  \titlefalse % include headline on the contents page
  \def\rheader{\mainfont\hfil \contentspagenumber}
  \vfill
  \centerline{\titlefont The {\ttitlefont VPtoVF} processor}
  \vskip 15pt
  \centerline{(Version 1.6, January 2014)}
  \vfill}
\def\botofcontents{\vfill
  \centerline{\hsize 5in\baselineskip9pt
    \vbox{\ninerm\noindent
    The preparation of this program
    was supported in part by the National Science
    Foundation and by the System Development Foundation. `\TeX' is a
    trademark of the American Mathematical Society.}}}
\pageno=\contentspagenumber \advance\pageno by 1

@* Introduction.
The \.{VPtoVF} utility program converts virtual-property-list (``\.{VPL}'')
files into an equivalent pair of files called a virtual font (``\.{VF}'') file
and a \TeX\ font metric (``\.{TFM}'') file. It also makes a thorough check
of the given \.{VPL} file, so that the \.{VF} file should be acceptable to
device drivers and the \.{TFM} file should be acceptable to \TeX.

\indent\.{VPtoVF} is an extended version of the program \.{PLtoTF}, which
is part of the standard \TeX ware library. 
The idea of a virtual font was inspired by the work of David R. Fuchs
@^Fuchs, David Raymond@>
who designed a similar set of conventions in 1984 while developing a
device driver for ArborText, Inc. He wrote a somewhat similar program
called \.{PLFONT}.

The |banner| string defined here should be changed whenever \.{VPtoVF}
gets modified.

@d banner=='This is VPtoVF, Version 1.6' {printed when the program starts}

@ This program is written entirely in standard \PASCAL, except that
it has to do some slightly system-dependent character code conversion
on input. Furthermore, lower case letters are used in error messages;
they could be converted to upper case if necessary. The input is read
from |vpl_file|, and the output is written on |vf_file| and |tfm_file|;
error messages and
other remarks are written on the |output| file, which the user may
choose to assign to the terminal if the system permits it.
@^system dependencies@>

The term |print| is used instead of |write| when this program writes on
the |output| file, so that all such output can be easily deflected.

@d print(#)==write(#)
@d print_ln(#)==write_ln(#)

@p program VPtoVF(@!vpl_file,@!vf_file,@!tfm_file,@!output);
const @<Constants in the outer block@>@/
type @<Types in the outer block@>@/
var @<Globals in the outer block@>@/
procedure initialize; {this procedure gets things started properly}
  var @<Local variables for initialization@>@/
  begin print_ln(banner);@/
  @<Set initial values@>@/
  end;

@ The following parameters can be changed at compile time to extend or
reduce \.{VPtoVF}'s capacity.

@<Constants...@>=
@!buf_size=60; {length of lines displayed in error messages}
@!max_header_bytes=100; {four times the maximum number of words allowed in
  the \.{TFM} file header block, must be 1024 or less}
@!vf_size=10000; {maximum length of |vf| data, in bytes}
@!max_stack=100; {maximum depth of simulated \.{DVI} stack}
@!max_param_words=30; {the maximum number of \.{fontdimen} parameters allowed}
@!max_lig_steps=5000;
  {maximum length of ligature program, must be at most $32767-257=32510$}
@!max_kerns=500; {the maximum number of distinct kern values}
@!hash_size=5003; {preferably a prime number, a bit larger than the number
  of character pairs in lig/kern steps}

@ Here are some macros for common programming idioms.

@d incr(#) == #:=#+1 {increase a variable by unity}
@d decr(#) == #:=#-1 {decrease a variable by unity}
@d do_nothing == {empty statement}

@* Property list description of font metric data.
The idea behind \.{VPL} files is that precise details about fonts, i.e., the
facts that are needed by typesetting routines like \TeX, sometimes have to
be supplied by hand. The nested property-list format provides a reasonably
convenient way to do this.

A good deal of computation is necessary to parse and process a
\.{VPL} file, so it would be inappropriate for \TeX\ itself to do this
every time it loads a font. \TeX\ deals only with the compact descriptions
of font metric data that appear in \.{TFM} files. Such data is so compact,
however, it is almost impossible for anybody but a computer to read it.

Device drivers also need a compact way to describe mappings from \TeX's idea
of a font to the actual characters a device can produce. They can do this
conveniently when given a packed sequence of bytes called a \.{VF} file.

The purpose of \.{VPtoVF} is to convert from a human-oriented file of text
to computer-oriented files of binary numbers. There's a companion program,
\.{VFtoVP}, which goes the other way.

@<Glob...@>=
@!vpl_file:text;

@ @<Set init...@>=
reset(vpl_file);

@ A \.{VPL} file is like a \.{PL} file with a few extra features, so we
can begin to define it by reviewing the definition of \.{PL} files. The
material in the next few sections is copied from the program \.{PLtoTF}.

A \.{PL} file is a list of entries of the form
$$\.{(PROPERTYNAME VALUE)}$$
where the property name is one of a finite set of names understood by
this program, and the value may itself in turn be a property list.
The idea is best understood by looking at an example, so let's consider
a fragment of the \.{PL} file for a hypothetical font.
$$\vbox{\halign{\.{#}\hfil\cr
(FAMILY NOVA)\cr
(FACE F MIE)\cr
(CODINGSCHEME ASCII)\cr
(DESIGNSIZE D 10)\cr
(DESIGNUNITS D 18)\cr
(COMMENT A COMMENT IS IGNORED)\cr
(COMMENT (EXCEPT THIS ONE ISN'T))\cr
(COMMENT (ACTUALLY IT IS, EVEN THOUGH\cr
\qquad\qquad IT SAYS IT ISN'T))\cr
(FONTDIMEN\cr
\qquad   (SLANT R -.25)\cr
\qquad   (SPACE D 6)\cr
\qquad   (SHRINK D 2)\cr
\qquad   (STRETCH D 3)\cr
\qquad   (XHEIGHT R 10.55)\cr
\qquad   (QUAD D 18)\cr
\qquad   )\cr
(LIGTABLE\cr
\qquad   (LABEL C f)\cr
\qquad   (LIG C f O 200)\cr
\qquad   (SKIP D 1)\cr
\qquad   (LABEL O 200)\cr
\qquad   (LIG C i O 201)\cr
\qquad   (KRN O 51 R 1.5)\cr
\qquad   (/LIG C ? C f)\cr
\qquad   (STOP)\cr
\qquad   )\cr
(CHARACTER C f\cr
\qquad   (CHARWD D 6)\cr
\qquad   (CHARHT R 13.5)\cr
\qquad   (CHARIC R 1.5)\cr
\qquad   )\cr}}$$
This example says that the font whose metric information is being described
belongs to the hypothetical
\.{NOVA} family; its face code is medium italic extended;
and the characters appear in ASCII code positions. The design size is 10 points,
and all other sizes in this \.{PL} file are given in units such that 18 units
equals the design size. The font is slanted with a slope of $-.25$ (hence the
letters actually slant backward---perhaps that is why the family name is
\.{NOVA}). The normal space between words is 6 units (i.e., one third of
the 18-unit design size), with glue that shrinks by 2 units or stretches by 3.
The letters for which accents don't need to be raised or lowered are 10.55
units high, and one em equals 18 units.

The example ligature table is a bit trickier. It specifies that the
letter \.f followed by another \.f is changed to code @'200, while
code @'200 followed by \.i is changed to @'201; presumably codes @'200
and @'201 represent the ligatures `ff' and `ffi'.  Moreover, in both cases
\.f and @'200, if the following character is the code @'51 (which is a
right parenthesis), an additional 1.5 units of space should be inserted
before the @'51.  (The `\.{SKIP}~\.D~\.1' skips over one \.{LIG} or
\.{KRN} command, which in this case is the second \.{LIG}; in this way
two different ligature/kern programs can come together.)
Finally, if either \.f or @'200 is followed by a question mark,
the question mark is replaced by \.f and the ligature program is
started over. (Thus, the character pair `\.{f?}' would actually become
the ligature `ff', and `\.{ff?}' or `\.{f?f}' would become `fff'. To
avoid this restart procedure, the \.{/LIG} command could be replaced
by \.{/LIG>}; then `\.{f?}' would become `f\kern0ptf' and `\.{f?f}'
would become `f\kern0ptff'.)

Character \.f itself is 6 units wide and 13.5 units tall, in this example.
Its depth is zero (since \.{CHARDP} is not given), and its italic correction
is 1.5 units.

@ The example above illustrates most of the features found in \.{PL} files.
Note that some property names, like \.{FAMILY} or \.{COMMENT}, take a
string as their value; this string continues until the first unmatched
right parenthesis. But most property names, like \.{DESIGNSIZE} and \.{SLANT}
and \.{LABEL}, take a number as their value. This number can be expressed in
a variety of ways, indicated by a prefixed code; \.D stands for decimal,
\.H for hexadecimal, \.O for octal, \.R for real, \.C for character, and
\.F for ``face.''  Other property names, like \.{LIG}, take two numbers as
their value.  And still other names, like \.{FONTDIMEN} and \.{LIGTABLE} and
\.{CHARACTER}, have more complicated values that involve property lists.

A property name is supposed to be used only in an appropriate property
list.  For example, \.{CHARWD} shouldn't occur on the outer level or
within \.{FONTDIMEN}.

The individual property-and-value pairs in a property list can appear in
any order. For instance, `\.{SHRINK}' precedes `\.{STRETCH}' in the example
above, although the \.{TFM} file always puts the stretch parameter first.
One could even give the information about characters like `\.f' before
specifying the number of units in the design size, or before specifying the
ligature and kerning table. However, the \.{LIGTABLE} itself is an exception
to this rule; the individual elements of the \.{LIGTABLE} property list
can be reordered only to a certain extent without changing the meaning
of that table.

If property-and-value pairs are omitted, a default value is used. For example,
we have already noted that the default for \.{CHARDP} is zero. The default
for {\sl every\/} numeric value is, in fact, zero, unless otherwise stated
below.

If the same property name is used more than once, \.{VPtoVF} will not notice
the discrepancy; it simply uses the final value given. Once again, however, the
\.{LIGTABLE} is an exception to this rule; \.{VPtoVF} will complain if there
is more than one label for some character. And of course many of the
entries in the \.{LIGTABLE} property list have the same property name.

@ A \.{VPL} file also includes information about how to create each character,
by typesetting characters from other fonts and/or by drawing lines, etc.
Such information is the value of the `\.{MAP}' property, which can be
illustrated as follows:
$$\vbox{\halign{\.{#}\hfil\cr
(MAPFONT D 0 (FONTNAME Times-Roman))\cr
(MAPFONT D 1 (FONTNAME Symbol))\cr
(MAPFONT D 2 (FONTNAME cmr10)(FONTAT D 20))\cr
(CHARACTER O 0 (MAP (SELECTFONT D 1)(SETCHAR C G)))\cr
(CHARACTER O 76 (MAP (SETCHAR O 277)))\cr
(CHARACTER D 197 (MAP\cr
\qquad(PUSH)(SETCHAR C A)(POP)\cr
\qquad(MOVEUP R 0.937)(MOVERIGHT R 1.5)(SETCHAR O 312)))\cr
(CHARACTER O 200 (MAP (MOVEDOWN R 2.1)(SETRULE R 1 R 8)))\cr
(CHARACTER O 201 (MAP\cr
\qquad (SPECIAL ps: /SaveGray currentgray def .5 setgray)\cr
\qquad (SELECTFONT D 2)(SETCHAR C A)\cr
\qquad (SPECIAL ps: SaveGray setgray)))\cr
}}$$
(These specifications appear in addition to the conventional \.{PL}
information. The \.{MAP} attribute can be mixed in with other attributes
like \.{CHARWD} or it can be given separately.)

In this example, the virtual font is composed of characters that can be
fabricated from three actual fonts, `\.{Times-Roman}',
`\.{Symbol}', and `\.{cmr10} \.{at} \.{20\\u}' (where \.{\\u}
is the unit size in this \.{VPL} file). Character |@'0| is typeset as
a `G' from the symbol font. Character |@'76| is typeset as character |@'277|
from the ordinary Times font. (If no other font is selected, font
number~0 is the default. If no \.{MAP} attribute is given, the default map
is a character of the same number in the default font.)

Character 197 (decimal) is more interesting: First an A is typeset (in the
default font Times), and this is enclosed by \.{PUSH} and \.{POP} so that
the original position is restored. Then the accent character |@'312| is
typeset, after moving up .937 units and right 1.5 units.

To typeset character |@'200| in this virtual font, we move down 2.1 units,
then typeset a rule that is 1 unit high and 8 units wide.

Finally, to typeset character |@'201|, we do something that requires a
special ability to interpret PostScript commands; this example
sets the PostScript ``color'' to 50\char`\%\ gray and typesets an `A'
from \.{cmr10} \.{at} \.{20\\u} in that color.

In general, the \.{MAP} attribute of a virtual character can be any sequence
of typesetting commands that might appear in a page of a \.{DVI} file.
A single character might map into an entire page.

@ But instead of relying on a hypothetical example, let's consider a complete
grammar for \.{VPL} files, beginning with the (unchanged) grammatical rules
for \.{PL} files. At the outer level, the following property names
are valid in any \.{PL} file:

\yskip\hang\.{CHECKSUM} (four-byte value). The value, which should be a
nonnegative integer less than $2^{32}$, is used to identify a particular
version of a font; it should match the check sum value stored with the font
itself. An explicit check sum of zero is used to bypass
check sum testing. If no checksum is specified in the \.{VPL} file,
\.{VPtoVF} will compute the checksum that \MF\ would compute from the
same data.

\yskip\hang\.{DESIGNSIZE} (numeric value, default is 10). The value, which
should be a real number in the range |1.0<=x<2048|, represents the default
amount by which all quantities will be scaled if the font is not loaded
with an `\.{at}' specification. For example, if one says
`\.{\\font\\A=cmr10 at 15pt}' in \TeX\ language, the design size in the \.{TFM}
file is ignored and effectively replaced by 15 points; but if one simply
says `\.{\\font\\A=cmr10}' the stated design size is used. This quantity is
always in units of printer's points.

\yskip\hang\.{DESIGNUNITS} (numeric value, default is 1). The value
should be a positive real number; it says how many units equals the design
size (or the eventual `\.{at}' size, if the font is being scaled). For
example, suppose you have a font that has been digitized with 600 pixels per
em, and the design size is one em; then you could say `\.{(DESIGNUNITS R 600)}'
if you wanted to give all of your measurements in units of pixels.

\yskip\hang\.{CODINGSCHEME} (string value, default is `\.{UNSPECIFIED}').
The string should not contain parentheses, and its length must be less than 40.
It identifies the correspondence between the numeric codes and font characters.
(\TeX\ ignores this information, but other software programs make use of it.)

\yskip\hang\.{FAMILY} (string value, default is `\.{UNSPECIFIED}').
The string should not contain parentheses, and its length must be less than 20.
It identifies the name of the family to which this font belongs, e.g.,
`\.{HELVETICA}'.  (\TeX\ ignores this information; but it is needed, for
example, when converting \.{DVI} files to \.{PRESS} files for Xerox
equipment.)

\yskip\hang\.{FACE} (one-byte value). This number, which must lie between
0 and 255 inclusive, is a subsidiary ident\-ifi\-ca\-tion of the font within its
family. For example, bold italic condensed fonts might have the same family name
as light roman extended fonts, differing only in their face byte.  (\TeX\
ignores this information; but it is needed, for example, when converting
\.{DVI} files to \.{PRESS} files for Xerox equipment.)

\yskip\hang\.{SEVENBITSAFEFLAG} (string value, default is `\.{FALSE}'). The
value should start with either `\.T' (true) or `\.F' (false). If true, character
codes less than 128 cannot lead to codes of 128 or more via ligatures or
charlists or extensible characters. (\TeX82 ignores this flag, but older
versions of \TeX\ would only accept \.{TFM} files that were seven-bit safe.)
\.{VPtoVF} computes the correct value of this flag and gives an error message
only if a claimed ``true'' value is incorrect.

\yskip\hang\.{HEADER} (a one-byte value followed by a four-byte value).
The one-byte value should be between 18 and a maximum limit that can be
raised or lowered depending on the compile-time setting of |max_header_bytes|.
The four-byte value goes into the header word whose index is the one-byte
value; for example, to set |header[18]:=1|, one may write
`\.{(HEADER D 18 O 1)}'. This notation is used for header information that
is presently unnamed. (\TeX\ ignores it.)

\yskip\hang\.{FONTDIMEN} (property list value). See below for the names
allowed in this property list.

\yskip\hang\.{LIGTABLE} (property list value). See below for the rules
about this special kind of property list.

\yskip\hang\.{BOUNDARYCHAR} (one-byte value). If this character appears in
a \.{LIGTABLE} command, it matches ``end of word'' as well as itself.
If no boundary character is given and no \.{LABEL} \.{BOUNDARYCHAR} occurs
within \.{LIGTABLE}, word boundaries will not affect ligatures or kerning.

\yskip\hang\.{CHARACTER}. The value is a one-byte integer followed by
a property list. The integer represents the number of a character that is
present in the font; the property list of a character is defined below.
The default is an empty property list.

@ Numeric property list values can be given in various forms identified by
a prefixed letter.

\yskip\hang\.C denotes an ASCII character, which should be a standard visible
character that is not a parenthesis. The numeric value will therefore be
between @'41 and @'176 but not @'50 or @'51.

\yskip\hang\.D denotes an unsigned decimal integer, which must be
less than $2^{32}$, i.e., at most `\.{D 4294967295}'.

\yskip\hang\.F denotes a three-letter Xerox face code; the admissible codes
are \.{MRR}, \.{MIR}, \.{BRR}, \.{BIR}, \.{LRR}, \.{LIR}, \.{MRC}, \.{MIC},
\.{BRC}, \.{BIC}, \.{LRC}, \.{LIC}, \.{MRE}, \.{MIE}, \.{BRE}, \.{BIE},
\.{LRE}, and \.{LIE}, denoting the integers 0 to 17, respectively.

\yskip\hang\.O denotes an unsigned octal integer, which must be less than
$2^{32}$, i.e., at most `\.{O 37777777777}'.

\yskip\hang\.H denotes an unsigned hexadecimal integer, which must be less than
$2^{32}$, i.e., at most `\.{H FFFFFFFF}'.

\yskip\hang\.R denotes a real number in decimal notation, optionally preceded
by a `\.+' or `\.-' sign, and optionally including a decimal point. The
absolute value must be less than 2048.

@ The property names allowed in a \.{FONTDIMEN} property list correspond to
various \TeX\ parameters, each of which has a (real) numeric value. All
of the parameters except \.{SLANT} are in design units. The admissible
names are \.{SLANT}, \.{SPACE}, \.{STRETCH}, \.{SHRINK}, \.{XHEIGHT},
\.{QUAD}, \.{EXTRASPACE}, \.{NUM1}, \.{NUM2}, \.{NUM3}, \.{DENOM1},
\.{DENOM2}, \.{SUP1}, \.{SUP2}, \.{SUP3}, \.{SUB1}, \.{SUB2}, \.{SUPDROP},
\.{SUBDROP}, \.{DELIM1}, \.{DELIM2}, and \.{AXISHEIGHT}, for parameters
1~to~22. The alternate names \.{DEFAULTRULETHICKNESS},
\.{BIGOPSPACING1}, \.{BIGOPSPACING2}, \.{BIGOPSPACING3},
\.{BIGOPSPACING4}, and \.{BIGOPSPACING5}, may also be used for parameters
8 to 13.

The notation `\.{PARAMETER} $n$' provides another way to specify the
$n$th parameter; for example, `\.{(PARAMETER} \.{D 1 R -.25)}' is another way
to specify that the \.{SLANT} is $-0.25$. The value of $n$ must be positive
and less than |max_param_words|.

@ The elements of a \.{CHARACTER} property list can be of six different types.

\yskip\hang\.{CHARWD} (real value) denotes the character's width in
design units.

\yskip\hang\.{CHARHT} (real value) denotes the character's height in
design units.

\yskip\hang\.{CHARDP} (real value) denotes the character's depth in
design units.

\yskip\hang\.{CHARIC} (real value) denotes the character's italic correction in
design units.

\yskip\hang\.{NEXTLARGER} (one-byte value), specifies the character that
follows the present one in a ``charlist.'' The value must be the number of a
character in the font, and there must be no infinite cycles of supposedly
larger and larger characters.

\yskip\hang\.{VARCHAR} (property list value), specifies an extensible character.
This option and \.{NEXTLARGER} are mutually exclusive; i.e., they cannot
both be used within the same \.{CHARACTER} list.

\yskip\noindent
The elements of a \.{VARCHAR} property list are either \.{TOP}, \.{MID},
\.{BOT}, or \.{REP}; the values are integers, which must be zero or the number
of a character in the font. A zero value for \.{TOP}, \.{MID}, or \.{BOT} means
that the corresponding piece of the extensible character is absent. A nonzero
value, or a \.{REP} value of zero, denotes the character code used to make
up the top, middle, bottom, or replicated piece of an extensible character.

@ A \.{LIGTABLE} property list contains elements of four kinds, specifying a
program in a simple command language that \TeX\ uses for ligatures and kerns.
If several \.{LIGTABLE} lists appear, they are effectively concatenated into
a single list.

\yskip\hang\.{LABEL} (one-byte value) means that the program for the
stated character value starts here. The integer must be the number of a
character in the font; its \.{CHARACTER} property list must not have a
\.{NEXTLARGER} or \.{VARCHAR} field. At least one \.{LIG} or \.{KRN} step
must follow.

\yskip\hang\.{LABEL} \.{BOUNDARYCHAR} means that the program for
beginning-of-word ligatures starts here.

\yskip\hang\.{LIG} (two one-byte values). The instruction `\.{(LIG} $c$ $r$\.)'
means, ``If the next character is $c$, then insert character~$r$ and
possibly delete the current character and/or~$c$;
otherwise go on to the next instruction.''
Characters $r$ and $c$ must be present in the font. \.{LIG} may be immediately
preceded or followed by a slash, and then immediately followed by \.>
characters not exceeding the number of slashes. Thus there are eight
possible forms:
$$\hbox to .8\hsize{\.{LIG}\hfil\.{/LIG}\hfil\.{/LIG>}\hfil
\.{LIG/}\hfil\.{LIG/>}\hfil\.{/LIG/}\hfil\.{/LIG/>}\hfil\.{/LIG/>>}}$$
The slashes specify retention of the left or right original character; the
\.> signs specify passing over the result without further ligature processing.

\yskip\hang\.{KRN} (a one-byte value and a real value). The instruction
`\.{(KRN} $c$ $r$\.)' means, ``If the next character is $c$, then insert
a blank space of width $r$ between the current character and $c$;
otherwise go on to the next instruction.'' The value of $r$, which is in
design units, is often negative. Character code $c$ must exist
in the font.

\yskip\hang\.{STOP} (no value). This instruction ends a ligature/kern program.
It must follow either a \.{LIG} or \.{KRN} instruction, not a \.{LABEL}
or \.{STOP} or \.{SKIP}.

\yskip\hang\.{SKIP} (value in the range |0..127|). This instruction specifies
continuation of a ligature/kern program after the specified number of \.{LIG}
or \.{KRN} steps has been skipped over. The number of subsequent \.{LIG} and
\.{KRN} instructions must therefore exceed this specified amount.

@ In addition to all these possibilities, the property name \.{COMMENT} is
allowed in any property list. Such comments are ignored.

@ So that is what \.{PL} files hold. In a \.{VPL} file additional
properties are recognized; two of these are valid on the outermost level:

\yskip\hang\.{VTITLE} (string value, default is empty). The value will be
reproduced at the beginning of the \.{VF} file (and printed on the terminal
by \.{VFtoVP} when it examines that file).

\yskip\hang\.{MAPFONT}. The value is a nonnegative integer followed by
a property list. The integer represents an identifying number for fonts
used in \.{MAP} attributes. The property list, which identifies the font and
relative size, is defined below.

\yskip\noindent
And one additional ``virtual property'' is valid within a \.{CHARACTER}:

\yskip\hang\.{MAP}. The value is a property list consisting of typesetting
commands. Default is the single command \.{SETCHAR}~$c$, where $c$ is
the current character number.

@ The elements of a \.{MAPFONT} property list can be of the following types.

\yskip\hang\.{FONTNAME} (string value, default is \.{NULL}).
This is the font's identifying name.

\yskip\hang\.{FONTAREA} (string value, default is empty). If the font appears
in a nonstandard directory, according to local conventions, the directory
name is given here. (This is system dependent, just as in \.{DVI} files.)

\yskip\hang\.{FONTCHECKSUM} (four-byte value, default is zero). This value,
which should be a nonnegative integer less than $2^{32}$, can be used to
check that the font being referred to matches the intended font. If nonzero,
it should equal the \.{CHECKSUM} parameter in that font.

\yskip\hang\.{FONTAT} (numeric value, default is the \.{DESIGNUNITS} of the
present virtual font). This value is relative to the design units of
the present virtual font, hence it will be scaled when the virtual
font is magnified or reduced.  It represents the value that will
effectively replace the design size of the font being referred to,
so that all characters will be scaled appropriately.

\yskip\hang\.{FONTDSIZE} (numeric value, default is 10). This value is
absolute, in units of printer's points. It should equal the \.{DESIGNSIZE}
parameter in the font being referred to.

\yskip\noindent
If any of the
string values contain parentheses, the parentheses must be balanced. Leading
blanks are removed from the strings, but trailing blanks are not.

@ Finally, the elements of a \.{MAP} property list are an ordered sequence
of typesetting commands chosen from among the following:

\yskip\hang\.{SELECTFONT} (four-byte integer value). The value must be the
number of a previously defined \.{MAPFONT}. This font (or more precisely, the
final font that is mapped to that code number, if two \.{MAPFONT} properties
happen to specify the same code) will be used in subsequent \.{SETCHAR}
instructions until overridden by another \.{SELECTFONT}. The first-specified
\.{MAPFONT} is implicitly selected before the first \.{SELECTFONT} in every
character's map.

\yskip\hang\.{SETCHAR} (one-byte integer value). There must be a character of
this number in the currently selected font. (\.{VPtoVF} doesn't check that
the character is valid, but \.{VFtoVP} does.) That character is typeset at the
current position, and the typesetter moves right by the \.{CHARWD} in
that character's \.{TFM} file.

\yskip\hang\.{SETRULE} (two real values). The first value specifies height,
the second specifies width, in design units. If both height and width are
positive, a rule is typeset at the current position. Then the typesetter
moves right, by the specified width.

\yskip\hang\.{MOVERIGHT}, \.{MOVELEFT}, \.{MOVEUP}, \.{MOVEDOWN} (real
value). The typesetter moves its current position
by the number of design units specified.

\yskip\hang\.{PUSH}. The current typesetter position is remembered, to
be restored on a subsequent \.{POP}.

\yskip\hang\.{POP}. The current typesetter position is reset to where it
was on the most recent unmatched \.{PUSH}. The \.{PUSH} and \.{POP}
commands in any \.{MAP} must be properly nested like balanced parentheses.

\yskip\hang\.{SPECIAL} (string value). The subsequent characters, starting
with the first nonblank and ending just before the first `\.)' that has no
matching `\.(', are interpreted according to local conventions with the
same system-dependent meaning as a `special' (\\{xxx}) command
in a \.{DVI} file.

\yskip\hang\.{SPECIALHEX} (hexadecimal string value). The subsequent
nonblank characters before the next `\.)' must consist entirely of
hexadecimal digits, and they must contain an even number of such digits.
Each pair of hex digits specifies a byte, and this string of bytes is
treated just as the value of a \.{SPECIAL}. (This convention permits
arbitrary byte strings to be represented in an ordinary text file.)

@ Virtual font mapping is a recursive process, like macro expansion.
Thus, a \.{MAPFONT} might
specify another virtual font, whose characters are themselves mapped to
other fonts. As an example of this possibility, consider the
following curious file called \.{recurse.vpl}, which defines a
virtual font that is self-contained and self-referential:
$$\vbox{\halign{\.{#}\cr
(VTITLE Example of recursion)\cr
(MAPFONT D 0 (FONTNAME recurse)(FONTAT D 2))\cr
(CHARACTER C A (CHARWD D 1)(CHARHT D 1)(MAP (SETRULE D 1 D 1)))\cr
(CHARACTER C B (CHARWD D 2)(CHARHT D 2)(MAP (SETCHAR C A)))\cr
(CHARACTER C C (CHARWD D 4)(CHARHT D 4)(MAP (SETCHAR C B)))\cr
}}$$
The design size is 10 points (the default), hence the character \.A
in font \.{recurse} is a $10\times10$ point black square. Character \.B
is typeset as character \.A in \.{recurse} {scaled} {2000}, hence it
is a $20\times20$ point black square. And character \.C is typeset as
character \.{B} in \.{recurse} {scaled} {2000}, hence its size is
$40\times40$.

Users are responsible for making sure that infinite recursion doesn't happen.

@ So that is what \.{VPL} files hold. From these rules,
you can guess (correctly) that \.{VPtoVF} operates in four main stages.
First it assigns the default values to all properties; then it scans
through the \.{VPL} file, changing property values as new ones are seen; then
it checks the information and corrects any problems; and finally it outputs
the \.{VF} and \.{TFM} files.

@ The next question is, ``What are \.{VF} and
\.{TFM} files?'' A complete answer to that question appears in the
documentation of the companion programs, \.{VFtoVP} and
\.{TFtoPL}, so the details will not
be repeated here. Suffice it to say that a \.{VF} or
\.{TFM} file stores all of the
relevant font information in a sequence of 8-bit bytes. The number of
bytes is always a multiple of 4, so we could regard the files
as sequences of 32-bit words; but \TeX\ uses the byte interpretation,
and so does \.{VPtoVF}. Note that the bytes are considered to be unsigned
numbers.

@<Glob...@>=
@!vf_file:packed file of 0..255;
@!tfm_file:packed file of 0..255;

@ On some systems you may have to do something special to write a
packed file of bytes. For example, the following code didn't work
when it was first tried at Stanford, because packed files have to be
opened with a special switch setting on the \PASCAL\ that was used.
@^system dependencies@>

@<Set init...@>=
rewrite(vf_file); rewrite(tfm_file);

@* Basic input routines.
For the purposes of this program, a |byte| is an unsigned eight-bit quantity,
and an |ASCII_code| is an integer between @'40 and @'177. Such ASCII codes
correspond to one-character constants like \.{"A"} in \.{WEB} language.

@<Types...@>=
@!byte=0..255; {unsigned eight-bit quantity}
@!ASCII_code=@'40..@'177; {standard ASCII code numbers}

@ One of the things \.{VPtoVF} has to do is convert characters of strings
to ASCII form, since that is the code used for the family name and the
coding scheme in a \.{TFM} file. An array |xord| is used to do the
conversion from |char|; the method below should work with little or no change
on most \PASCAL\ systems.
@^system dependencies@>

@d first_ord=0 {ordinal number of the smallest element of |char|}
@d last_ord=127 {ordinal number of the largest element of |char|}

@<Global...@>=
@!xord:array[char] of ASCII_code; {conversion table}

@ @<Local variables for init...@>=
@!k:integer; {all-purpose initialization index}

@ Characters that should not appear in \.{VPL} files (except in comments)
are mapped into @'177.

@d invalid_code=@'177 {code deserving an error message}

@<Set init...@>=
for k:=first_ord to last_ord do xord[chr(k)]:=invalid_code;
xord[' ']:=" "; xord['!']:="!"; xord['"']:=""""; xord['#']:="#";
xord['$']:="$"; xord['%']:="%"; xord['&']:="&"; xord['''']:="'";
xord['(']:="("; xord[')']:=")"; xord['*']:="*"; xord['+']:="+"; xord[',']:=",";
xord['-']:="-"; xord['.']:="."; xord['/']:="/"; xord['0']:="0"; xord['1']:="1";
xord['2']:="2"; xord['3']:="3"; xord['4']:="4"; xord['5']:="5"; xord['6']:="6";
xord['7']:="7"; xord['8']:="8"; xord['9']:="9"; xord[':']:=":"; xord[';']:=";";
xord['<']:="<"; xord['=']:="="; xord['>']:=">"; xord['?']:="?";
xord['@@']:="@@"; xord['A']:="A"; xord['B']:="B"; xord['C']:="C";
xord['D']:="D"; xord['E']:="E"; xord['F']:="F"; xord['G']:="G"; xord['H']:="H";
xord['I']:="I"; xord['J']:="J"; xord['K']:="K"; xord['L']:="L"; xord['M']:="M";
xord['N']:="N"; xord['O']:="O"; xord['P']:="P"; xord['Q']:="Q"; xord['R']:="R";
xord['S']:="S"; xord['T']:="T"; xord['U']:="U"; xord['V']:="V"; xord['W']:="W";
xord['X']:="X"; xord['Y']:="Y"; xord['Z']:="Z"; xord['[']:="["; xord['\']:="\";
xord[']']:="]"; xord['^']:="^"; xord['_']:="_"; xord['`']:="`"; xord['a']:="a";
xord['b']:="b"; xord['c']:="c"; xord['d']:="d"; xord['e']:="e"; xord['f']:="f";
xord['g']:="g"; xord['h']:="h"; xord['i']:="i"; xord['j']:="j"; xord['k']:="k";
xord['l']:="l"; xord['m']:="m"; xord['n']:="n"; xord['o']:="o"; xord['p']:="p";
xord['q']:="q"; xord['r']:="r"; xord['s']:="s"; xord['t']:="t"; xord['u']:="u";
xord['v']:="v"; xord['w']:="w"; xord['x']:="x"; xord['y']:="y"; xord['z']:="z";
xord['{']:="{"; xord['|']:="|"; xord['}']:="}"; xord['~']:="~";

@ In order to help catch errors of badly nested parentheses, \.{VPtoVF}
assumes that the user will begin each line with a number of blank spaces equal
to some constant times the number of open parentheses at the beginning of
that line. However, the program doesn't know in advance what the constant
is, nor does it want to print an error message on every line for a user
who has followed no consistent pattern of indentation.

Therefore the following strategy is adopted: If the user has been consistent
with indentation for ten or more lines, an indentation error will be
reported. The constant of indentation is reset on every line that should
have nonzero indentation.

@<Glob...@>=
@!line:integer; {the number of the current line}
@!good_indent:integer; {the number of lines since the last bad indentation}
@!indent: integer; {the number of spaces per open parenthesis, zero if unknown}
@!level: integer; {the current number of open parentheses}

@ @<Set init...@>=
line:=0; good_indent:=0; indent:=0; level:=0;

@ The input need not really be broken into lines of any maximum length, and
we could read it character by character without any buffering. But we shall
place it into a small buffer so that offending lines can be displayed in error
messages.

@<Glob...@>=
@!left_ln,@!right_ln:boolean; {are the left and right ends of the buffer
  at end-of-line marks?}
@!limit:0..buf_size; {position of the last character present in the buffer}
@!loc:0..buf_size; {position of the last character read in the buffer}
@!buffer:array[1..buf_size] of char;
@!input_has_ended:boolean; {there is no more input to read}

@ @<Set init...@>=
limit:=0; loc:=0; left_ln:=true; right_ln:=true; input_has_ended:=false;

@ Just before each  \.{CHARACTER} property list is evaluated, the character
code is printed in octal notation. Up to eight such codes appear on a line;
so we have a variable to keep track of how many are currently there.

@<Glob...@>=
@!chars_on_line:0..8; {the number of characters printed on the current line}

@ @<Set init...@>=
chars_on_line:=0;

@ The following routine prints an error message and an indication of
where the error was detected. The error message should not include any
final punctuation, since this procedure supplies its own.

@d err_print(#)==begin if chars_on_line>0 then print_ln(' ');
  print(#); show_error_context;
  end

@p procedure show_error_context; {prints the current scanner location}
var k:0..buf_size; {an index into |buffer|}
begin print_ln(' (line ',line:1,').');
if not left_ln then print('...');
for k:=1 to loc do print(buffer[k]); {print the characters already scanned}
print_ln(' ');
if not left_ln then print('   ');
for k:=1 to loc do print(' '); {space out the second line}
for k:=loc+1 to limit do print(buffer[k]); {print the characters yet unseen}
if right_ln then print_ln(' ')@+else print_ln('...');
chars_on_line:=0;
end;

@ Here is a procedure that does the right thing when we are done
reading the present contents of the buffer. It keeps |buffer[buf_size]|
empty, in order to avoid range errors on certain \PASCAL\ compilers.

An infinite sequence of right parentheses is placed at the end of the
file, so that the program is sure to get out of whatever level of nesting
it is in.

On some systems it is desirable to modify this code so that tab marks
in the buffer are replaced by blank spaces. (Simply setting
|xord[chr(@'11)]:=" "| would not work; for example, two-line
error messages would not come out properly aligned.)
@^system dependencies@>

@p procedure fill_buffer;
begin left_ln:=right_ln; limit:=0; loc:=0;
if left_ln then
  begin if line>0 then read_ln(vpl_file);
  incr(line);
  end;
if eof(vpl_file) then
  begin limit:=1; buffer[1]:=')'; right_ln:=false; input_has_ended:=true;
  end
else  begin while (limit<buf_size-2)and(not eoln(vpl_file)) do
    begin incr(limit); read(vpl_file,buffer[limit]);
    end;
  buffer[limit+1]:=' '; right_ln:=eoln(vpl_file);
  if right_ln then begin incr(limit); buffer[limit+1]:=' ';
    end;
  if left_ln then @<Set |loc| to the number of leading blanks in
    the buffer, and check the indentation@>;
  end;
end;

@ The interesting part about |fill_buffer| is the part that learns what
indentation conventions the user is following, if any.

@d bad_indent(#)==begin if good_indent>=10 then err_print(#);
  good_indent:=0; indent:=0;
  end

@<Set |loc|...@>=
begin while (loc<limit)and(buffer[loc+1]=' ') do incr(loc);
if loc<limit then
  begin if level=0 then
    if loc=0 then incr(good_indent)
    else bad_indent('Warning: Indented line occurred at level zero')
@.Warning: Indented line...@>
  else if indent=0 then
    if loc mod level=0 then
      begin indent:=loc div level; good_indent:=1;
      end
    else good_indent:=0
  else if indent*level=loc then incr(good_indent)
  else bad_indent('Warning: Inconsistent indentation; ',
@.Warning: Inconsistent indentation...@>
    'you are at parenthesis level ',level:1);
  end;
end

@* Basic scanning routines.
The global variable |cur_char| holds the ASCII code corresponding to the
character most recently read from the input buffer, or to a character that
has been substituted for the real one.

@<Global...@>=
@!cur_char:ASCII_code; {we have just read this}

@ Here is a procedure that sets |cur_char| to an ASCII code for the
next character of input, if that character is a letter or digit or slash
or \.>. Otherwise
it sets |cur_char:=" "|, and the input system will be poised to reread the
character that was rejected, whether or not it was a space.
Lower case letters are converted to upper case.

@p procedure get_keyword_char;
begin while (loc=limit)and(not right_ln) do fill_buffer;
if loc=limit then cur_char:=" " {end-of-line counts as a delimiter}
else  begin cur_char:=xord[buffer[loc+1]];
  if cur_char>="a" then cur_char:=cur_char-@'40;
  if ((cur_char>="0")and(cur_char<="9")) then incr(loc)
  else if ((cur_char>="A")and(cur_char<="Z")) then incr(loc)
  else if cur_char="/" then incr(loc)
  else if cur_char=">" then incr(loc)
  else cur_char:=" ";
  end;
end;

@ The following procedure sets |cur_char| to the next character code,
and converts lower case to upper case. If the character is a left or
right parenthesis, it will not be ``digested''; the character will
be read again and again, until the calling routine does something
like `|incr(loc)|' to get past it. Such special treatment of parentheses
insures that the structural information they contain won't be lost in
the midst of other error recovery operations.

@d backup==begin if (cur_char>")")or(cur_char<"(") then decr(loc);
  end {undoes the effect of |get_next|}

@p procedure get_next; {sets |cur_char| to next, balks at parentheses}
begin while loc=limit do fill_buffer;
incr(loc); cur_char:=xord[buffer[loc]];
if cur_char>="a" then
  if cur_char<="z" then cur_char:=cur_char-@'40 {uppercasify}
  else  begin if cur_char=invalid_code then
      begin err_print('Illegal character in the file');
@.Illegal character...@>
      cur_char:="?";
      end;
    end
else if (cur_char<=")")and(cur_char>="(") then decr(loc);
end;

@ Here's a procedure that scans a hexadecimal digit or a right parenthesis.

@p function get_hex:byte;
var @!a:integer; {partial result}
begin repeat get_next;
until cur_char<>" ";
a:=cur_char-")";
if a>0 then
  begin a:=cur_char-"0";
  if cur_char>"9" then
    if cur_char<"A" then a:=-1 else a:=cur_char-"A"+10;
  end;
if (a<0)or(a>15) then
  begin err_print('Illegal hexadecimal digit'); get_hex:=0;
@.Illegal hexadecimal digit@>
  end
else get_hex:=a;
end;

@ The next procedure is used to ignore the text of a comment, or to pass over
erroneous material. As such, it has the privilege of passing parentheses.
It stops after the first right parenthesis that drops the level below
the level in force when the procedure was called.

@p procedure skip_to_end_of_item;
var l:integer; {initial value of |level|}
begin l:=level;
while level>=l do
  begin while loc=limit do fill_buffer;
  incr(loc);
  if buffer[loc]=')' then decr(level)
  else if buffer[loc]='(' then incr(level);
  end;
if input_has_ended then err_print('File ended unexpectedly: No closing ")"');
@.File ended unexpectedly...@>
cur_char:=" "; {now the right parenthesis has been read and digested}
end;

@ A similar procedure copies the bytes remaining in an item. The copied bytes
go into an array |vf| that we'll declare later. Leading blanks are ignored.

@d vf_store(#)==
    begin vf[vf_ptr]:=#;
    if vf_ptr=vf_size then err_print('I''m out of memory---increase my vfsize!')
@.I'm out of memory...@>
    else incr(vf_ptr);
    end

@p procedure copy_to_end_of_item;
label 30;
var l:integer; {initial value of |level|}
@!nonblank_found:boolean; {have we seen a nonblank character yet?}
begin l:=level; nonblank_found:=false;
while true do
  begin while loc=limit do fill_buffer;
  if buffer[loc+1]=')' then
    if level=l then goto 30@+else decr(level);
  incr(loc);
  if buffer[loc]='(' then incr(level);
  if buffer[loc]<>' ' then nonblank_found:=true;
  if nonblank_found then
    if xord[buffer[loc]]=invalid_code then
      begin err_print('Illegal character in the file');
@.Illegal character...@>
      vf_store("?");
      end
    else vf_store(xord[buffer[loc]]);
  end;
30:end;

@ Sometimes we merely want to skip past characters in the input until we
reach a left or a right parenthesis. For example, we do this whenever we
have finished scanning a property value and we hope that a right parenthesis
is next (except for possible blank spaces).

@d skip_to_paren==repeat get_next@;@+ until (cur_char="(")or(cur_char=")")
@d skip_error(#)==begin err_print(#); skip_to_paren;
  end {this gets to the right parenthesis if something goes wrong}
@d flush_error(#)==begin err_print(#); skip_to_end_of_item;
  end {this gets past the right parenthesis if something goes wrong}

@ After a property value has been scanned, we want to move just past the
right parenthesis that should come next in the input (except for possible
blank spaces).

@p procedure finish_the_property; {do this when the value has been scanned}
begin while cur_char=" " do get_next;
if cur_char<>")" then err_print('Junk after property value will be ignored');
@.Junk after property value...@>
skip_to_end_of_item;
end;

@* Scanning property names.
We have to figure out the meaning of names that appear in the \.{VPL} file,
by looking them up in a dictionary of known keywords. Keyword number $n$
appears in locations |start[n]| through |start[n+1]-1| of an array called
|dictionary|.

@d max_name_index=100 {upper bound on the number of keywords}
@d max_letters=666 {upper bound on the total length of all keywords}

@<Global...@>=
@!start:array[1..max_name_index] of 0..max_letters;
@!dictionary:array[0..max_letters] of ASCII_code;
@!start_ptr:0..max_name_index; {the first available place in |start|}
@!dict_ptr:0..max_letters; {the first available place in |dictionary|}

@ @<Set init...@>=
start_ptr:=1; start[1]:=0; dict_ptr:=0;

@ When we are looking for a name, we put it into the |cur_name| array.
When we have found it, the corresponding |start| index will go into
the global variable |name_ptr|.

@d longest_name=20 {length of \.{DEFAULTRULETHICKNESS}}

@<Glob...@>=
@!cur_name:array[1..longest_name] of ASCII_code; {a name to look up}
@!name_length:0..longest_name; {its length}
@!name_ptr:0..max_name_index; {its ordinal number in the dictionary}

@ A conventional hash table with linear probing (cf.\ Algorithm 6.4L
in {\sl The Art of Computer Pro\-gram\-ming\/}) is used for the dictionary
operations. If |nhash[h]=0|, the table position is empty, otherwise |nhash[h]|
points into the |start| array.

@d hash_prime=141 {size of the hash table}

@<Glob...@>=
@!nhash:array[0..hash_prime-1] of 0..max_name_index;
@!cur_hash:0..hash_prime-1; {current position in the hash table}

@ @<Local...@>=
@!h:0..hash_prime-1; {runs through the hash table}

@ @<Set init...@>=
for h:=0 to hash_prime-1 do nhash[h]:=0;

@ Since there is no chance of the hash table overflowing, the procedure
is very simple. After |lookup| has done its work, |cur_hash| will point
to the place where the given name was found, or where it should be inserted.

@p procedure lookup; {finds |cur_name| in the dictionary}
var k:0..longest_name; {index into |cur_name|}
@!j:0..max_letters; {index into |dictionary|}
@!not_found:boolean; {clumsy thing necessary to avoid |goto| statement}
begin @<Compute the hash code, |cur_hash|, for |cur_name|@>;
not_found:=true;
while not_found do
  begin if cur_hash=0 then cur_hash:=hash_prime-1@+else decr(cur_hash);
  if nhash[cur_hash]=0 then not_found:=false
  else  begin j:=start[nhash[cur_hash]];
    if start[nhash[cur_hash]+1]=j+name_length then
      begin not_found:=false;
      for k:=1 to name_length do
      if dictionary[j+k-1]<>cur_name[k] then not_found:=true;
      end;
    end;
  end;
name_ptr:=nhash[cur_hash];
end;

@ @<Compute the hash...@>=
cur_hash:=cur_name[1];
for k:=2 to name_length do
  cur_hash:=(cur_hash+cur_hash+cur_name[k]) mod hash_prime

@ The ``meaning'' of the keyword that begins at |start[k]| in the
dictionary is kept in |equiv[k]|. The numeric |equiv| codes are given
symbolic meanings by the following definitions.

@d comment_code=0
@d check_sum_code=1
@d design_size_code=2
@d design_units_code=3
@d coding_scheme_code=4
@d family_code=5
@d face_code=6
@d seven_bit_safe_flag_code=7
@d header_code= 8
@d font_dimen_code=9
@d lig_table_code=10
@d boundary_char_code=11
@d virtual_title_code=12
@d map_font_code=13
@d character_code=14
@d font_name_code=20
@d font_area_code=21
@d font_checksum_code=22
@d font_at_code=23
@d font_dsize_code=24
@d parameter_code=30
@d char_info_code=60
@d width=1
@d height=2
@d depth=3
@d italic=4
@d char_wd_code=char_info_code+width
@d char_ht_code=char_info_code+height
@d char_dp_code=char_info_code+depth
@d char_ic_code=char_info_code+italic
@d next_larger_code=65
@d map_code=66
@d var_char_code=67
@d select_font_code=80
@d set_char_code=81
@d set_rule_code=82
@d move_right_code=83
@d move_down_code=85
@d push_code=87
@d pop_code=88
@d special_code=89
@d special_hex_code=90
@d label_code=100
@d stop_code=101
@d skip_code=102
@d krn_code=103
@d lig_code=104

@<Glo...@>=
@!equiv:array[0..max_name_index] of byte;
@!cur_code:byte; {equivalent most recently found in |equiv|}

@ We have to get the keywords into the hash table and into the dictionary in
the first place (sigh). The procedure that does this has the desired
|equiv| code as a parameter. In order to facilitate \.{WEB} macro writing
for the initialization, the keyword being initialized is placed into the
last positions of |cur_name|, instead of the first positions.

@p procedure enter_name(v:byte); {|cur_name| goes into the dictionary}
var k:0..longest_name;
begin for k:=1 to name_length do
  cur_name[k]:=cur_name[k+longest_name-name_length];
{now the name has been shifted into the correct position}
lookup; {this sets |cur_hash| to the proper insertion place}
nhash[cur_hash]:=start_ptr; equiv[start_ptr]:=v;
for k:=1 to name_length do
  begin dictionary[dict_ptr]:=cur_name[k]; incr(dict_ptr);
  end;
incr(start_ptr); start[start_ptr]:=dict_ptr;
end;

@ Here are the macros to load a name of up to 20 letters into the
dictionary. For example, the macro |load5| is used for five-letter keywords.

@d tail(#)==enter_name(#)
@d t20(#)==cur_name[20]:=#;tail
@d t19(#)==cur_name[19]:=#;t20
@d t18(#)==cur_name[18]:=#;t19
@d t17(#)==cur_name[17]:=#;t18
@d t16(#)==cur_name[16]:=#;t17
@d t15(#)==cur_name[15]:=#;t16
@d t14(#)==cur_name[14]:=#;t15
@d t13(#)==cur_name[13]:=#;t14
@d t12(#)==cur_name[12]:=#;t13
@d t11(#)==cur_name[11]:=#;t12
@d t10(#)==cur_name[10]:=#;t11
@d t9(#)==cur_name[9]:=#;t10
@d t8(#)==cur_name[8]:=#;t9
@d t7(#)==cur_name[7]:=#;t8
@d t6(#)==cur_name[6]:=#;t7
@d t5(#)==cur_name[5]:=#;t6
@d t4(#)==cur_name[4]:=#;t5
@d t3(#)==cur_name[3]:=#;t4
@d t2(#)==cur_name[2]:=#;t3
@d t1(#)==cur_name[1]:=#;t2
@d load3==name_length:=3;t18
@d load4==name_length:=4;t17
@d load5==name_length:=5;t16
@d load6==name_length:=6;t15
@d load7==name_length:=7;t14
@d load8==name_length:=8;t13
@d load9==name_length:=9;t12
@d load10==name_length:=10;t11
@d load11==name_length:=11;t10
@d load12==name_length:=12;t9
@d load13==name_length:=13;t8
@d load14==name_length:=14;t7
@d load15==name_length:=15;t6
@d load16==name_length:=16;t5
@d load17==name_length:=17;t4
@d load18==name_length:=18;t3
@d load19==name_length:=19;t2
@d load20==name_length:=20;t1

@ (Thank goodness for keyboard macros in the text editor used to create this
\.{WEB} file.)

@<Enter all the \.{PL} names and their equivalents,
 except the parameter names@>=
equiv[0]:=comment_code; {this is used after unknown keywords}
load8("C")("H")("E")("C")("K")("S")("U")("M")(check_sum_code);@/
load10("D")("E")("S")("I")("G")("N")("S")("I")("Z")("E")(design_size_code);@/
load11("D")("E")("S")("I")("G")("N")
  ("U")("N")("I")("T")("S")(design_units_code);@/
load12("C")("O")("D")("I")("N")("G")
  ("S")("C")("H")("E")("M")("E")(coding_scheme_code);@/
load6("F")("A")("M")("I")("L")("Y")(family_code);@/
load4("F")("A")("C")("E")(face_code);@/
load16("S")("E")("V")("E")("N")("B")("I")("T")@/@t\hskip2em@>
  ("S")("A")("F")("E")("F")("L")("A")("G")(seven_bit_safe_flag_code);@/
load6("H")("E")("A")("D")("E")("R")(header_code);@/
load9("F")("O")("N")("T")("D")("I")("M")("E")("N")(font_dimen_code);@/
load8("L")("I")("G")("T")("A")("B")("L")("E")(lig_table_code);@/
load12("B")("O")("U")("N")("D")("A")("R")("Y")("C")("H")("A")("R")
  (boundary_char_code);@/
load9("C")("H")("A")("R")("A")("C")("T")("E")("R")(character_code);@/
load9("P")("A")("R")("A")("M")("E")("T")("E")("R")(parameter_code);@/
load6("C")("H")("A")("R")("W")("D")(char_wd_code);@/
load6("C")("H")("A")("R")("H")("T")(char_ht_code);@/
load6("C")("H")("A")("R")("D")("P")(char_dp_code);@/
load6("C")("H")("A")("R")("I")("C")(char_ic_code);@/
load10("N")("E")("X")("T")("L")("A")("R")("G")("E")("R")(next_larger_code);@/
load7("V")("A")("R")("C")("H")("A")("R")(var_char_code);@/
load3("T")("O")("P")(var_char_code+1);@/
load3("M")("I")("D")(var_char_code+2);@/
load3("B")("O")("T")(var_char_code+3);@/
load3("R")("E")("P")(var_char_code+4);@/
load3("E")("X")("T")(var_char_code+4); {compatibility with older \.{PL} format}
load7("C")("O")("M")("M")("E")("N")("T")(comment_code);@/
load5("L")("A")("B")("E")("L")(label_code);@/
load4("S")("T")("O")("P")(stop_code);@/
load4("S")("K")("I")("P")(skip_code);@/
load3("K")("R")("N")(krn_code);@/
load3("L")("I")("G")(lig_code);@/
load4("/")("L")("I")("G")(lig_code+2);@/
load5("/")("L")("I")("G")(">")(lig_code+6);@/
load4("L")("I")("G")("/")(lig_code+1);@/
load5("L")("I")("G")("/")(">")(lig_code+5);@/
load5("/")("L")("I")("G")("/")(lig_code+3);@/
load6("/")("L")("I")("G")("/")(">")(lig_code+7);@/
load7("/")("L")("I")("G")("/")(">")(">")(lig_code+11);@/

@ \.{VPL} files may contain the following in addition to the \.{PL} names.

@<Enter all the \.{VPL} names@>=
load6("V")("T")("I")("T")("L")("E")(virtual_title_code);@/
load7("M")("A")("P")("F")("O")("N")("T")(map_font_code);@/
load3("M")("A")("P")(map_code);@/
load8("F")("O")("N")("T")("N")("A")("M")("E")(font_name_code);@/
load8("F")("O")("N")("T")("A")("R")("E")("A")(font_area_code);@/
load12("F")("O")("N")("T")
 ("C")("H")("E")("C")("K")("S")("U")("M")(font_checksum_code);@/
load6("F")("O")("N")("T")("A")("T")(font_at_code);@/
load9("F")("O")("N")("T")("D")("S")("I")("Z")("E")(font_dsize_code);@/
load10("S")("E")("L")("E")("C")("T")("F")("O")("N")("T")(select_font_code);@/
load7("S")("E")("T")("C")("H")("A")("R")(set_char_code);@/
load7("S")("E")("T")("R")("U")("L")("E")(set_rule_code);@/
load9("M")("O")("V")("E")("R")("I")("G")("H")("T")(move_right_code);@/
load8("M")("O")("V")("E")("L")("E")("F")("T")(move_right_code+1);@/
load8("M")("O")("V")("E")("D")("O")("W")("N")(move_down_code);@/
load6("M")("O")("V")("E")("U")("P")(move_down_code+1);@/
load4("P")("U")("S")("H")(push_code);@/
load3("P")("O")("P")(pop_code);@/
load7("S")("P")("E")("C")("I")("A")("L")(special_code);@/
load10("S")("P")("E")("C")("I")("A")("L")("H")("E")("X")(special_hex_code);@/

@ @<Enter the parameter names@>=
load5("S")("L")("A")("N")("T")(parameter_code+1);@/
load5("S")("P")("A")("C")("E")(parameter_code+2);@/
load7("S")("T")("R")("E")("T")("C")("H")(parameter_code+3);@/
load6("S")("H")("R")("I")("N")("K")(parameter_code+4);@/
load7("X")("H")("E")("I")("G")("H")("T")(parameter_code+5);@/
load4("Q")("U")("A")("D")(parameter_code+6);@/
load10("E")("X")("T")("R")("A")("S")("P")("A")("C")("E")(parameter_code+7);@/
load4("N")("U")("M")("1")(parameter_code+8);@/
load4("N")("U")("M")("2")(parameter_code+9);@/
load4("N")("U")("M")("3")(parameter_code+10);@/
load6("D")("E")("N")("O")("M")("1")(parameter_code+11);@/
load6("D")("E")("N")("O")("M")("2")(parameter_code+12);@/
load4("S")("U")("P")("1")(parameter_code+13);@/
load4("S")("U")("P")("2")(parameter_code+14);@/
load4("S")("U")("P")("3")(parameter_code+15);@/
load4("S")("U")("B")("1")(parameter_code+16);@/
load4("S")("U")("B")("2")(parameter_code+17);@/
load7("S")("U")("P")("D")("R")("O")("P")(parameter_code+18);@/
load7("S")("U")("B")("D")("R")("O")("P")(parameter_code+19);@/
load6("D")("E")("L")("I")("M")("1")(parameter_code+20);@/
load6("D")("E")("L")("I")("M")("2")(parameter_code+21);@/
load10("A")("X")("I")("S")("H")("E")("I")("G")("H")("T")(parameter_code+22);@/
load20("D")("E")("F")("A")("U")("L")("T")("R")("U")("L")("E")@/@t\hskip2em@>
  ("T")("H")("I")("C")("K")("N")("E")("S")("S")(parameter_code+8);@/
load13("B")("I")("G")("O")("P")
  ("S")("P")("A")("C")("I")("N")("G")("1")(parameter_code+9);@/
load13("B")("I")("G")("O")("P")
  ("S")("P")("A")("C")("I")("N")("G")("2")(parameter_code+10);@/
load13("B")("I")("G")("O")("P")
  ("S")("P")("A")("C")("I")("N")("G")("3")(parameter_code+11);@/
load13("B")("I")("G")("O")("P")
  ("S")("P")("A")("C")("I")("N")("G")("4")(parameter_code+12);@/
load13("B")("I")("G")("O")("P")
  ("S")("P")("A")("C")("I")("N")("G")("5")(parameter_code+13);@/

@ When a left parenthesis has been scanned, the following routine
is used to interpret the keyword that follows, and to store the
equivalent value in |cur_code|.

@p procedure get_name;
begin incr(loc); incr(level); {pass the left parenthesis}
cur_char:=" ";
while cur_char=" " do get_next;
if (cur_char>")")or(cur_char<"(") then decr(loc); {back up one character}
name_length:=0; get_keyword_char; {prepare to scan the name}
while cur_char<>" " do
  begin if name_length=longest_name then cur_name[1]:="X" {force error}
  else incr(name_length);
  cur_name[name_length]:=cur_char;
  get_keyword_char;
  end;
lookup;
if name_ptr=0 then err_print('Sorry, I don''t know that property name');
@.Sorry, I don't know...@>
cur_code:=equiv[name_ptr];
end;

@* Scanning numeric data.
The next thing we need is a trio of subroutines to read the one-byte,
four-byte, and real numbers that may appear as property values.
These subroutines are careful to stick to numbers between $-2^{31}$
and $2^{31}-1$, inclusive, so that a computer with two's complement
32-bit arithmetic will not be interrupted by overflow.

@ The first number scanner, which returns a one-byte value, surely has
no problems of arithmetic overflow.

@p function get_byte:byte; {scans a one-byte property value}
var acc:integer; {an accumulator}
@!t:ASCII_code; {the type of value to be scanned}
begin repeat get_next;
until cur_char<>" "; {skip the blanks before the type code}
t:=cur_char; acc:=0;
repeat get_next;
until cur_char<>" "; {skip the blanks after the type code}
if t="C" then @<Scan an ASCII character code@>
else if t="D" then @<Scan a small decimal number@>
else if t="O" then @<Scan a small octal number@>
else if t="H" then @<Scan a small hexadecimal number@>
else if t="F" then @<Scan a face code@>
else skip_error('You need "C" or "D" or "O" or "H" or "F" here');
@.You need "C" or "D" ...here@>
cur_char:=" "; get_byte:=acc;
end;

@ The |get_next| routine converts lower case to upper case, but it leaves
the character in the buffer, so we can unconvert it.

@<Scan an ASCII...@>=
if (cur_char>=@'41)and(cur_char<=@'176)and
 ((cur_char<"(")or(cur_char>")")) then
  acc:=xord[buffer[loc]]
else skip_error('"C" value must be standard ASCII and not a paren')
@:C value}\.{"C" value must be...@>

@ @<Scan a small dec...@>=
begin while (cur_char>="0")and(cur_char<="9") do
  begin acc:=acc*10+cur_char-"0";
  if acc>255 then
    begin skip_error('This value shouldn''t exceed 255');
@.This value shouldn't...@>
    acc:=0; cur_char:=" ";
    end
  else get_next;
  end;
backup;
end

@ @<Scan a small oct...@>=
begin while (cur_char>="0")and(cur_char<="7") do
  begin acc:=acc*8+cur_char-"0";
  if acc>255 then
    begin skip_error('This value shouldn''t exceed ''377');
@.This value shouldn't...@>
    acc:=0; cur_char:=" ";
    end
  else get_next;
  end;
backup;
end

@ @<Scan a small hex...@>=
begin while ((cur_char>="0")and(cur_char<="9"))or
   ((cur_char>="A")and(cur_char<="F")) do
  begin if cur_char>="A" then cur_char:=cur_char+"0"+10-"A";
  acc:=acc*16+cur_char-"0";
  if acc>255 then
    begin skip_error('This value shouldn''t exceed "FF');
@.This value shouldn't...@>
    acc:=0; cur_char:=" ";
    end
  else get_next;
  end;
backup;
end

@ @<Scan a face...@>=
begin if cur_char="B" then acc:=2
else if cur_char="L" then acc:=4
else if cur_char<>"M" then acc:=18;
get_next;
if cur_char="I" then incr(acc)
else if cur_char<>"R" then acc:=18;
get_next;
if cur_char="C" then acc:=acc+6
else if cur_char="E" then acc:=acc+12
else if cur_char<>"R" then acc:=18;
if acc>=18 then
  begin skip_error('Illegal face code, I changed it to MRR');
@.Illegal face code...@>
  acc:=0;
  end;
end

@ The routine that scans a four-byte value puts its output into |cur_bytes|,
which is a record containing (yes, you guessed it) four bytes.

@<Types...@>=
@!four_bytes=record @!b0:byte;@+@!b1:byte;@+@!b2:byte;@+@!b3:byte;@+end;

@ @d c0==cur_bytes.b0
@d c1==cur_bytes.b1
@d c2==cur_bytes.b2
@d c3==cur_bytes.b3

@<Glob...@>=
@!cur_bytes:four_bytes; {a four-byte accumulator}
@!zero_bytes:four_bytes; {four bytes all zero}

@ @<Set init...@>=
zero_bytes.b0:=0; zero_bytes.b1:=0; zero_bytes.b2:=0; zero_bytes.b3:=0;

@ Since the |get_four_bytes| routine is used very infrequently, no attempt
has been made to make it fast; we only want it to work.

@p procedure get_four_bytes; {scans an unsigned constant and sets |four_bytes|}
var c:integer; {local two-byte accumulator}
@!r:integer; {radix}
begin repeat get_next;
until cur_char<>" "; {skip the blanks before the type code}
r:=0; cur_bytes:=zero_bytes; {start with the accumulator zero}
if cur_char="H" then r:=16
else if cur_char="O" then r:=8
else if cur_char="D" then r:=10
else skip_error('Decimal ("D"), octal ("O"), or hex ("H") value needed here');
@.Decimal ("D"), octal ("O"), or hex...@>
if r>0 then
  begin repeat get_next;
  until cur_char<>" "; {skip the blanks after the type code}
  while ((cur_char>="0")and(cur_char<="9"))or@|
      ((cur_char>="A")and(cur_char<="F")) do
    @<Multiply by |r|, add |cur_char-"0"|, and |get_next|@>;
  end;
end;

@ @<Multiply by |r|...@>=
begin if cur_char>="A" then cur_char:=cur_char+"0"+10-"A";
if cur_char>="0"+r then skip_error('Illegal digit')
@.Illegal digit@>
else  begin c:=c3*r+cur_char-"0"; c3:=c mod 256;@/
  c:=c2*r+c div 256; c2:=c mod 256;@/
  c:=c1*r+c div 256; c1:=c mod 256;@/
  c:=c0*r+c div 256;
  if c<256 then c0:=c
  else begin cur_bytes:=zero_bytes;
    if r=8 then
      skip_error('Sorry, the maximum octal value is O 37777777777')
@.Sorry, the maximum...@>
    else if r=10 then
      skip_error('Sorry, the maximum decimal value is D 4294967295')
    else skip_error('Sorry, the maximum hex value is H FFFFFFFF');
    end;
  get_next;
  end;
end

@ The remaining scanning routine is the most interesting. It scans a real
constant and returns the nearest |fix_word| approximation to that constant.
A |fix_word| is a 32-bit integer that represents a real value that
has been multiplied by $2^{20}$. Since \.{VPtoVF} restricts the magnitude
of reals to 2048, the |fix_word| will have a magnitude less than $2^{31}$.

@d unity==@'4000000 {$2^{20}$, the |fix_word| 1.0}

@<Types...@>=
@!fix_word=integer; {a scaled real value with 20 bits of fraction}

@ When a real value is desired, we might as well treat `\.D' and `\.R'
formats as if they were identical.

@p function get_fix:fix_word; {scans a real property value}
var negative:boolean; {was there a minus sign?}
@!acc:integer; {an accumulator}
@!int_part:integer; {the integer part}
@!j:0..7; {the number of decimal places stored}
begin repeat get_next;
until cur_char<>" "; {skip the blanks before the type code}
negative:=false; acc:=0; {start with the accumulators zero}
if (cur_char<>"R")and(cur_char<>"D") then
  skip_error('An "R" or "D" value is needed here')
@.An "R" or "D" ... needed here@>
else  begin @<Scan the blanks and/or signs after the type code@>;
  while (cur_char>="0") and (cur_char<="9") do
    @<Multiply by 10, add |cur_char-"0"|, and |get_next|@>;
  int_part:=acc; acc:=0;
  if cur_char="." then @<Scan the fraction part and put it in |acc|@>;
  if (acc>=unity)and(int_part=2047) then
    skip_error('Real constants must be less than 2048')
@.Real constants must be...@>
  else acc:=int_part*unity+acc;
  end;
if negative then get_fix:=-acc@+else get_fix:=acc;
end;

@ @<Scan the blanks...@>=
repeat get_next;
if cur_char="-" then
  begin cur_char:=" "; negative:=not negative;
  end
else if cur_char="+" then cur_char:=" ";
until cur_char<>" "

@ @<Multiply by 10...@>=
begin acc:=acc*10+cur_char-"0";
if acc>=2048 then
  begin skip_error('Real constants must be less than 2048');
@.Real constants must be...@>
  acc:=0; cur_char:=" ";
  end
else get_next;
end

@ To scan the fraction $.d_1d_2\ldots\,$, we keep track of up to seven
of the digits $d_j$. A correct result is obtained if we first compute
$f^\prime=\lfloor 2^{21}(d_1\ldots d_j)/10^j\rfloor$, after which
$f=\lfloor(f^\prime+1)/2\rfloor$. It is possible to have $f=1.0$.

@<Glob...@>=
@!fraction_digits:array[1..7] of integer; {$2^{21}$ times $d_j$}

@ @<Scan the frac...@>=
begin j:=0; get_next;
while (cur_char>="0")and(cur_char<="9") do
  begin if j<7 then
    begin incr(j); fraction_digits[j]:=@'10000000*(cur_char-"0");
    end;
  get_next;
  end;
acc:=0;
while j>0 do
  begin acc:=fraction_digits[j]+(acc div 10); decr(j);
  end;
acc:=(acc+10) div 20;
end

@* Storing the property values.
When property values have been found, they are squirreled away in a bunch
of arrays. The header information is unpacked into bytes in an array
called |header_bytes|. The ligature/kerning program is stored in an array
of type |four_bytes|.
Another |four_bytes| array holds the specifications of extensible characters.
The kerns and parameters are stored in separate arrays of |fix_word| values.
Virtual font data goes into an array |vf| of single-byte values.

We maintain information about at most 256 local fonts. (If this is inadequate,
several arrays need to be made longer and we need to output font definitions
that go beyond |fnt1| and |fnt_def1| in the \.{VF} file.)

Instead of storing the design size in the header array, we will keep it
in a |fix_word| variable until the last minute. The number of units in the
design size is also kept in a |fix_word|.

@<Glob...@>=
@!header_bytes:array[header_index] of byte; {the header block}
@!header_ptr:header_index; {the number of header bytes in use}
@!design_size:fix_word; {the design size}
@!design_units:fix_word; {reciprocal of the scaling factor}
@!frozen_du:boolean; {have we used |design_units| irrevocably?}
@!seven_bit_safe_flag:boolean; {does the file claim to be seven-bit-safe?}
@!lig_kern:array[0..max_lig_steps] of four_bytes; {the ligature program}
@!nl:0..32767; {the number of ligature/kern instructions so far}
@!min_nl:0..32767; {the final value of |nl| must be at least this}
@!kern:array[0..max_kerns] of fix_word; {the distinct kerning amounts}
@!nk:0..max_kerns; {the number of entries of |kern|}
@!exten:array[0..255] of four_bytes; {extensible character specs}
@!ne:0..256; {the number of extensible characters}
@!param:array[1..max_param_words] of fix_word; {\.{FONTDIMEN} parameters}
@!np:0..max_param_words; {the largest parameter set nonzero}
@!check_sum_specified:boolean; {did the user name the check sum?}
@!bchar:0..256; {the right boundary character, or 256 if unspecified}
@!vf:array[0..vf_size] of byte; {stored bytes for \.{VF} file}
@!vf_ptr:0..vf_size; {first unused location in |vf|}
@!vtitle_start:0..vf_size; {starting location of \.{VTITLE} string}
@!vtitle_length:byte; {length of \.{VTITLE} string}
@!packet_start:array[byte] of 0..vf_size;
  {beginning location of character packet}
@!packet_length:array[byte] of integer; {length of character packet}
@!font_ptr:0..256; {number of distinct local fonts seen}
@!cur_font:0..256; {number of the current local font}
@!fname_start:array[byte] of 0..vf_size; {beginning of local font name}
@!fname_length:array[byte] of byte; {length of local font name}
@!farea_start:array[byte] of 0..vf_size; {beginning of local font area}
@!farea_length:array[byte] of byte; {length of local font area}
@!font_checksum:array[byte] of four_bytes; {local font checksum}
@!font_number:array[0..256] of four_bytes; {local font id number}
@!font_at:array[byte] of fix_word; {local font ``at size''}
@!font_dsize:array[byte] of fix_word; {local font design size}

@ @<Types...@>=
@!header_index=0..max_header_bytes;
@!indx=0..@'77777;

@ @<Local...@>=
@!d:header_index; {an index into |header_bytes|}

@ We start by setting up the default values.

@d check_sum_loc=0
@d design_size_loc=4
@d coding_scheme_loc=8
@d family_loc=coding_scheme_loc+40
@d seven_flag_loc=family_loc+20
@d face_loc=seven_flag_loc+3

@<Set init...@>=
for d:=0 to 18*4-1 do header_bytes[d]:=0;
header_bytes[8]:=11; header_bytes[9]:="U";
header_bytes[10]:="N";
header_bytes[11]:="S";
header_bytes[12]:="P";
header_bytes[13]:="E";
header_bytes[14]:="C";
header_bytes[15]:="I";
header_bytes[16]:="F";
header_bytes[17]:="I";
header_bytes[18]:="E";
header_bytes[19]:="D";
@.UNSPECIFIED@>
for d:=family_loc to family_loc+11 do header_bytes[d]:=header_bytes[d-40];
design_size:=10*unity; design_units:=unity; frozen_du:=false;
seven_bit_safe_flag:=false;@/
header_ptr:=18*4; nl:=0; min_nl:=0; nk:=0; ne:=0; np:=0;@/
check_sum_specified:=false; bchar:=256;@/
vf_ptr:=0; vtitle_start:=0; vtitle_length:=0; font_ptr:=0;
for k:=0 to 255 do packet_start[k]:=vf_size;
for k:=0 to 127 do packet_length[k]:=1;
for k:=128 to 255 do packet_length[k]:=2;

@ Most of the dimensions, however, go into the |memory| array. There are
at most 257 widths, 257 heights, 257 depths, and 257 italic corrections,
since the value 0 is required but it need not be used. So |memory| has room
for 1028 entries, each of which is a |fix_word|. An auxiliary table called
|link| is used to link these words together in linear lists, so that
sorting and other operations can be done conveniently.

We also add four ``list head'' words to the |memory| and |link| arrays;
these are in locations |width| through |italic|, i.e., 1 through 4.
For example, |link[height]| points to the smallest element in
the sorted list of distinct heights that have appeared so far, and
|memory[height]| is the number of distinct heights.

@d mem_size=1028+4 {number of nonzero memory addresses}

@<Types...@>=
@!pointer=0..mem_size; {an index into memory}

@ The arrays |char_wd|, |char_ht|, |char_dp|, and |char_ic| contain
pointers to the |memory| array entries where the corresponding dimensions
appear. Two other arrays, |char_tag| and |char_remainder|, hold
the other information that \.{TFM} files pack into a |char_info_word|.

@d no_tag=0 {vanilla character}
@d lig_tag=1 {character has a ligature/kerning program}
@d list_tag=2 {character has a successor in a charlist}
@d ext_tag=3 {character is extensible}
@d bchar_label==char_remainder[256]
  {beginning of ligature program for left boundary}

@<Glob...@>=
@!memory:array[pointer] of fix_word; {character dimensions and kerns}
@!mem_ptr:pointer; {largest |memory| word in use}
@!link:array[pointer] of pointer; {to make lists of |memory| items}
@!char_wd:array[byte] of pointer; {pointers to the widths}
@!char_ht:array[byte] of pointer; {pointers to the heights}
@!char_dp:array[byte] of pointer; {pointers to the depths}
@!char_ic:array[byte] of pointer; {pointers to italic corrections}
@!char_tag:array[byte] of no_tag..ext_tag; {character tags}
@!char_remainder:array[0..256] of 0..65535; {pointers to ligature labels,
  next larger characters, or extensible characters}

@ @<Local...@>=
@!c:byte; {runs through all character codes}

@ @<Set init...@>=
bchar_label:=@'77777;
for c:=0 to 255 do
  begin char_wd[c]:=0; char_ht[c]:=0; char_dp[c]:=0; char_ic[c]:=0;@/
  char_tag[c]:=no_tag; char_remainder[c]:=0;
  end;
memory[0]:=@'17777777777; {an ``infinite'' element at the end of the lists}
memory[width]:=0; link[width]:=0; {width list is empty}
memory[height]:=0; link[height]:=0; {height list is empty}
memory[depth]:=0; link[depth]:=0; {depth list is empty}
memory[italic]:=0; link[italic]:=0; {italic list is empty}
mem_ptr:=italic;

@ As an example of these data structures, let us consider the simple
routine that inserts a potentially new element into one of the dimension
lists. The first parameter indicates the list head (i.e., |h=width| for
the width list, etc.); the second parameter is the value that is to be
inserted into the list if it is not already present.  The procedure
returns the value of the location where the dimension appears in |memory|.
The fact that |memory[0]| is larger than any legal dimension makes the
algorithm particularly short.

We do have to handle two somewhat subtle situations. A width of zero must be
put into the list, so that a zero-width character in the font will not appear
to be nonexistent (i.e., so that its |char_wd| index will not be zero), but
this does not need to be done for heights, depths, or italic corrections.
Furthermore, it is necessary to test for memory overflow even though we
have provided room for the maximum number of different dimensions in any
legal font, since the \.{VPL} file might foolishly give any number of
different sizes to the same character.

@p function sort_in(@!h:pointer;@!d:fix_word):pointer; {inserts into list}
var p:pointer; {the current node of interest}
begin if (d=0)and(h<>width) then sort_in:=0
else begin p:=h;
  while d>=memory[link[p]] do p:=link[p];
  if (d=memory[p])and(p<>h) then sort_in:=p
  else if mem_ptr=mem_size then
    begin err_print('Memory overflow: more than 1028 widths, etc');
@.Memory overflow...@>
    print_ln('Congratulations! It''s hard to make this error.');
    sort_in:=p;
    end
  else  begin incr(mem_ptr); memory[mem_ptr]:=d;
    link[mem_ptr]:=link[p]; link[p]:=mem_ptr; incr(memory[h]);
    sort_in:=mem_ptr;
    end;
  end;
end;

@ When these lists of dimensions are eventually written to the \.{TFM}
file, we may have to do some rounding of values, because the \.{TFM} file
allows at most 256 widths, 16 heights, 16 depths, and 64 italic
corrections. The following procedure takes a given list head |h| and a
given dimension |d|, and returns the minimum $m$ such that the elements of
the list can be covered by $m$ intervals of width $d$.  It also sets
|next_d| to the smallest value $d^\prime>d$ such that the covering found
by this procedure would be different.  In particular, if $d=0$ it computes
the number of elements of the list, and sets |next_d| to the smallest
distance between two list elements. (The covering by intervals of width
|next_d| is not guaranteed to have fewer than $m$ elements, but in practice
this seems to happen most of the time.)

@<Glob...@>=
@!next_d:fix_word; {the next larger interval that is worth trying}

@ Once again we can make good use of the fact that |memory[0]| is ``infinite.''

@p function min_cover(@!h:pointer;@!d:fix_word):integer;
var p:pointer; {the current node of interest}
@!l:fix_word; {the least element covered by the current interval}
@!m:integer; {the current size of the cover being generated}
begin m:=0; p:=link[h]; next_d:=memory[0];
while p<>0 do
  begin incr(m); l:=memory[p];
  while memory[link[p]]<=l+d do p:=link[p];
  p:=link[p];
  if memory[p]-l<next_d then next_d:=memory[p]-l;
  end;
min_cover:=m;
end;

@ The following procedure uses |min_cover| to determine the smallest $d$
such that a given list can be covered with at most a given number of
intervals.

@p function shorten(@!h:pointer;m:integer):fix_word; {finds best way to round}
var d:fix_word; {the current trial interval length}
@!k:integer; {the size of a minimum cover}
begin if memory[h]>m then
  begin excess:=memory[h]-m;
  k:=min_cover(h,0); d:=next_d; {now the answer is at least |d|}
  repeat d:=d+d; k:=min_cover(h,d);
  until k<=m; {first we ascend rapidly until finding the range}
  d:=d div 2; k:=min_cover(h,d); {now we run through the feasible steps}
  while k>m do
    begin d:=next_d; k:=min_cover(h,d);
    end;
  shorten:=d;
  end
else shorten:=0;
end;

@ When we are nearly ready to output the \.{TFM} file, we will set
|index[p]:=k| if the dimension in |memory[p]| is being rounded to the
|k|th element of its list.

@<Glob...@>=
@!index:array[pointer] of byte;
@!excess:byte; {number of words to remove, if list is being shortened}

@ Here is the procedure that sets the |index| values. It also shortens
the list so that there is only one element per covering interval;
the remaining elements are the midpoints of their clusters.

@p procedure set_indices(@!h:pointer;@!d:fix_word); {reduces and indexes a list}
var p:pointer; {the current node of interest}
@!q:pointer; {trails one step behind |p|}
@!m:byte; {index number of nodes in the current interval}
@!l:fix_word; {least value in the current interval}
begin q:=h; p:=link[q]; m:=0;
while p<>0 do
  begin incr(m); l:=memory[p]; index[p]:=m;
  while memory[link[p]]<=l+d do
    begin p:=link[p]; index[p]:=m; decr(excess);
    if excess=0 then d:=0;
    end;
  link[q]:=p; memory[p]:=l+(memory[p]-l) div 2; q:=p; p:=link[p];
  end;
memory[h]:=m;
end;

@* The input phase.
We're ready now to read and parse the \.{VPL} file, storing property
values as we go.

@<Glob...@>=
@!c:byte; {the current character or byte being processed}
@!x:fix_word; {current dimension of interest}
@!k:integer; {general-purpose index}

@ @<Read all the input@>=
cur_char:=" ";
repeat while cur_char=" " do get_next;
if cur_char="(" then @<Read a font property value@>
else if (cur_char=")")and not input_has_ended then
  begin err_print('Extra right parenthesis');
  incr(loc); cur_char:=" ";
  end
@.Extra right parenthesis@>
else if not input_has_ended then junk_error;
until input_has_ended

@ The |junk_error| routine just referred to is called when something
appears in the forbidden area between properties of a property list.

@p procedure junk_error; {gets past no man's land}
begin err_print('There''s junk here that is not in parentheses');
@.There's junk here...@>
skip_to_paren;
end;

@ For each font property, we are supposed to read the data from the
left parenthesis that is the current value of |cur_char| to the right
parenthesis that matches it in the input. The main complication is
to recover with reasonable grace from various error conditions that might arise.

@<Read a font property value@>=
begin get_name;
if cur_code=comment_code then skip_to_end_of_item
else if cur_code>character_code then
  flush_error('This property name doesn''t belong on the outer level')
@.This property name doesn't belong...@>
else  begin @<Read the font property value specified by |cur_code|@>;
  finish_the_property;
  end;
end

@ @<Read the font property value spec...@>=
case cur_code of
check_sum_code: begin check_sum_specified:=true; read_four_bytes(check_sum_loc);
  end;
design_size_code: @<Read the design size@>;
design_units_code: @<Read the design units@>;
coding_scheme_code: read_BCPL(coding_scheme_loc,40);
family_code: read_BCPL(family_loc,20);
face_code:header_bytes[face_loc]:=get_byte;
seven_bit_safe_flag_code: @<Read the seven-bit-safe flag@>;
header_code: @<Read an indexed header word@>;
font_dimen_code: @<Read font parameter list@>;
lig_table_code: read_lig_kern;
boundary_char_code: bchar:=get_byte;
virtual_title_code: begin vtitle_start:=vf_ptr; copy_to_end_of_item;
  if vf_ptr>vtitle_start+255 then
    begin err_print('VTITLE clipped to 255 characters'); vtitle_length:=255;
@.VTITLE clipped...@>
    end
  else vtitle_length:=vf_ptr-vtitle_start;
  end;
map_font_code:@<Read a local font list@>;
character_code: read_char_info;
end

@ The |case| statement just given makes use of three subroutines that we
haven't defined yet. The first of these puts a 32-bit octal quantity
into four specified bytes of the header block.

@p procedure read_four_bytes(l:header_index);
begin get_four_bytes;
header_bytes[l]:=c0;
header_bytes[l+1]:=c1;
header_bytes[l+2]:=c2;
header_bytes[l+3]:=c3;
end;

@ The second little procedure is used to scan a string and to store it in
the ``{\mc BCPL} format'' required by \.{TFM} files. The string is supposed
to contain at most |n| bytes, including the first byte (which holds the
length of the rest of the string).

@p procedure read_BCPL(l:header_index;n:byte);
var k:header_index;
begin k:=l;
while cur_char=" " do get_next;
while (cur_char<>"(")and(cur_char<>")") do
  begin if k<l+n then incr(k);
  if k<l+n then header_bytes[k]:=cur_char;
  get_next;
  end;
if k=l+n then
  begin err_print('String is too long; its first ',n-1:1,
@.String is too long...@>
    ' characters will be kept'); decr(k);
  end;
header_bytes[l]:=k-l;
while k<l+n-1 do {tidy up the remaining bytes by setting them to nulls}
  begin incr(k); header_bytes[k]:=0;
  end;
end;

@ @<Read the design size@>=
begin next_d:=get_fix;
if next_d<unity then
  err_print('The design size must be at least 1')
@.The design size must...@>
else design_size:=next_d;
end

@ @<Read the design units@>=
begin next_d:=get_fix;
if next_d<=0 then
  err_print('The number of units per design size must be positive')
@.The number of units...@>
else if frozen_du then
  err_print('Sorry, it''s too late to change the design units')
@.Sorry, it's too late...@>
else design_units:=next_d;
end

@ @<Read the seven-bit-safe...@>=
begin while cur_char=" " do get_next;
if cur_char="T" then seven_bit_safe_flag:=true
else if cur_char="F" then seven_bit_safe_flag:=false
else err_print('The flag value should be "TRUE" or "FALSE"');
@.The flag value should be...@>
skip_to_paren;
end

@ @<Read an indexed header word@>=
begin c:=get_byte;
if c<18 then skip_error('HEADER indices should be 18 or more')
@.HEADER indices...@>
else if 4*c+4>max_header_bytes then
  skip_error('This HEADER index is too big for my present table size')
@.This HEADER index is too big...@>
else  begin while header_ptr<4*c+4 do
    begin header_bytes[header_ptr]:=0; incr(header_ptr);
    end;
  read_four_bytes(4*c);
  end;
end

@ The remaining kinds of font property values that need to be read are
those that involve property lists on higher levels. Each of these has a
loop similar to the one that was used at level zero. Then we put the
right parenthesis back so that `|finish_the_property|' will be happy;
there is probably a more elegant way to do this.

@d finish_inner_property_list==begin decr(loc); incr(level); cur_char:=")";
  end

@<Read font parameter list@>=
begin while level=1 do
  begin while cur_char=" " do get_next;
  if cur_char="(" then @<Read a parameter value@>
  else if cur_char=")" then skip_to_end_of_item
  else junk_error;
  end;
finish_inner_property_list;
end

@ @<Read a parameter value@>=
begin get_name;
if cur_code=comment_code then skip_to_end_of_item
else if (cur_code<parameter_code)or(cur_code>=char_wd_code) then
  flush_error('This property name doesn''t belong in a FONTDIMEN list')
@.This property name doesn't belong...@>
else  begin if cur_code=parameter_code then c:=get_byte
  else c:=cur_code-parameter_code;
  if c=0 then flush_error('PARAMETER index must not be zero')
@.PARAMETER index must not...@>
  else if c>max_param_words then
    flush_error('This PARAMETER index is too big for my present table size')
@.This PARAMETER index is too big...@>
  else  begin while np<c do
      begin incr(np); param[np]:=0;
      end;
    param[c]:=get_fix;
    finish_the_property;
    end;
  end;
end

@ @d numbers_differ==(font_number[cur_font].b3<>font_number[font_ptr].b3)or@|
(font_number[cur_font].b2<>font_number[font_ptr].b2)or@|
(font_number[cur_font].b1<>font_number[font_ptr].b1)or@|
(font_number[cur_font].b0<>font_number[font_ptr].b0)

@<Read a local font list@>=
begin get_four_bytes; font_number[font_ptr]:=cur_bytes; cur_font:=0;
while numbers_differ do incr(cur_font);
if cur_font=font_ptr then {it's a new font number}
  if font_ptr<256 then @<Initialize a new local font@>
  else err_print('I can handle only 256 different mapfonts');
@.I can handle only 256...@>
if cur_font=font_ptr then skip_to_end_of_item
else while level=1 do
  begin while cur_char=" " do get_next;
  if cur_char="(" then @<Read a local font property@>
  else if cur_char=")" then skip_to_end_of_item
  else junk_error;
  end;
finish_inner_property_list;
end

@ @<Initialize a new local font@>=
begin incr(font_ptr);
fname_start[cur_font]:=vf_size; fname_length[cur_font]:=4; {\.{NULL}}
farea_start[cur_font]:=vf_size; farea_length[cur_font]:=0;
font_checksum[cur_font]:=zero_bytes;
font_at[cur_font]:=@'4000000; {denotes design size of this virtual font}
font_dsize[cur_font]:=@'50000000; {the |fix_word| for 10}
end

@ @<Read a local font property@>=
begin get_name;
if cur_code=comment_code then skip_to_end_of_item
else if (cur_code<font_name_code)or(cur_code>font_dsize_code) then
  flush_error('This property name doesn''t belong in a MAPFONT list')
@.This property name doesn't belong...@>
else  begin case cur_code of
  font_name_code:@<Read a local font name@>;
  font_area_code:@<Read a local font area@>;
  font_checksum_code:begin get_four_bytes; font_checksum[cur_font]:=cur_bytes;
    end;
  font_at_code: begin frozen_du:=true;
    if design_units=unity then font_at[cur_font]:=get_fix
    else font_at[cur_font]:=round((get_fix/design_units)*1048576.0);
    end;
  font_dsize_code:font_dsize[cur_font]:=get_fix;
  end; {there are no other cases}
  finish_the_property;
  end;
end

@ @<Read a local font name@>=
begin fname_start[cur_font]:=vf_ptr; copy_to_end_of_item;
if vf_ptr>fname_start[cur_font]+255 then
  begin err_print('FONTNAME clipped to 255 characters');
@.FONTNAME clipped...@>
  fname_length[cur_font]:=255;
  end
else fname_length[cur_font]:=vf_ptr-fname_start[cur_font];
end

@ @<Read a local font area@>=
begin farea_start[cur_font]:=vf_ptr; copy_to_end_of_item;
if vf_ptr>farea_start[cur_font]+255 then
  begin err_print('FONTAREA clipped to 255 characters');
@.FONTAREA clipped...@>
  farea_length[cur_font]:=255;
  end
else farea_length[cur_font]:=vf_ptr-farea_start[cur_font];
end

@ @<Read ligature/kern list@>=
begin lk_step_ended:=false;
while level=1 do
  begin while cur_char=" " do get_next;
  if cur_char="(" then @<Read a ligature/kern command@>
  else if cur_char=")" then skip_to_end_of_item
  else junk_error;
  end;
finish_inner_property_list;
end

@ @<Read a ligature/kern command@>=
begin get_name;
if cur_code=comment_code then skip_to_end_of_item
else if cur_code<label_code then
  flush_error('This property name doesn''t belong in a LIGTABLE list')
@.This property name doesn't belong...@>
else  begin case cur_code of
  label_code:@<Read a label step@>;
  stop_code:@<Read a stop step@>;
  skip_code:@<Read a skip step@>;
  krn_code:@<Read a kerning step@>;
  lig_code,lig_code+1,lig_code+2,lig_code+3,lig_code+5,lig_code+6,lig_code+7,
    lig_code+11:@<Read a ligature step@>;
  end; {there are no other cases |>=label_code|}
  finish_the_property;
  end;
end

@ When a character is about to be tagged, we call the following
procedure so that an error message is given in case of multiple tags.

@p procedure check_tag(c:byte); {print error if |c| already tagged}
begin case char_tag[c] of
no_tag: do_nothing;
lig_tag: err_print('This character already appeared in a LIGTABLE LABEL');
@.This character already...@>
list_tag: err_print('This character already has a NEXTLARGER spec');
ext_tag: err_print('This character already has a VARCHAR spec');
end;
end;

@ @<Read a label step@>=
begin while cur_char=" " do get_next;
if cur_char="B" then
  begin bchar_label:=nl; skip_to_paren; {\.{LABEL BOUNDARYCHAR}}
  end
else begin backup; c:=get_byte;
  check_tag(c); char_tag[c]:=lig_tag; char_remainder[c]:=nl;
  end;
if min_nl<=nl then min_nl:=nl+1;
lk_step_ended:=false;
end

@ @d stop_flag=128 {value indicating `\.{STOP}' in a lig/kern program}
@d kern_flag=128 {op code for a kern step}

@<Globals...@>=
@!lk_step_ended:boolean;
  {was the last \.{LIGTABLE} property \.{LIG} or \.{KRN}?}
@!krn_ptr:0..max_kerns; {an index into |kern|}

@ @<Read a stop step@>=
if not lk_step_ended then
  err_print('STOP must follow LIG or KRN')
@.STOP must follow LIG or KRN@>
else begin lig_kern[nl-1].b0:=stop_flag; lk_step_ended:=false;
  end

@ @<Read a skip step@>=
if not lk_step_ended then
  err_print('SKIP must follow LIG or KRN')
@.SKIP must follow LIG or KRN@>
else begin c:=get_byte;
  if c>=128 then err_print('Maximum SKIP amount is 127')
@.Maximum SKIP amount...@>
  else if nl+c>=max_lig_steps then
    err_print('Sorry, LIGTABLE too long for me to handle')
@.Sorry, LIGTABLE too long...@>
  else begin lig_kern[nl-1].b0:=c;
    if min_nl<=nl+c then min_nl:=nl+c+1;
    end;
  lk_step_ended:=false;
  end

@ @<Read a ligature step@>=
begin lig_kern[nl].b0:=0;
lig_kern[nl].b2:=cur_code-lig_code;
lig_kern[nl].b1:=get_byte;
lig_kern[nl].b3:=get_byte;
if nl>=max_lig_steps-1 then
  err_print('Sorry, LIGTABLE too long for me to handle')
@.Sorry, LIGTABLE too long...@>
else incr(nl);
lk_step_ended:=true;
end

@ @<Read a kerning step@>=
begin lig_kern[nl].b0:=0; lig_kern[nl].b1:=get_byte;
kern[nk]:=get_fix; krn_ptr:=0;
while kern[krn_ptr]<>kern[nk] do incr(krn_ptr);
if krn_ptr=nk then
  begin if nk<max_kerns then incr(nk)
  else  begin err_print('Sorry, too many different kerns for me to handle');
@.Sorry, too many different kerns...@>
    decr(krn_ptr);
    end;
  end;
lig_kern[nl].b2:=kern_flag+(krn_ptr div 256);
lig_kern[nl].b3:=krn_ptr mod 256;
if nl>=max_lig_steps-1 then
  err_print('Sorry, LIGTABLE too long for me to handle')
@.Sorry, LIGTABLE too long...@>
else incr(nl);
lk_step_ended:=true;
end

@ Finally we come to the part of \.{VPtoVF}'s input mechanism
that is used most, the processing of individual character data.

@<Read character info list@>=
begin c:=get_byte; {read the character code that is being specified}
@<Print |c| in octal notation@>;
while level=1 do
  begin while cur_char=" " do get_next;
  if cur_char="(" then @<Read a character property@>
  else if cur_char=")" then skip_to_end_of_item
  else junk_error;
  end;
if char_wd[c]=0 then char_wd[c]:=sort_in(width,0); {legitimatize |c|}
finish_inner_property_list;
end

@ @<Read a character prop...@>=
begin get_name;
if cur_code=comment_code then skip_to_end_of_item
else if (cur_code<char_wd_code)or(cur_code>var_char_code) then
  flush_error('This property name doesn''t belong in a CHARACTER list')
@.This property name doesn't belong...@>
else  begin case cur_code of
  char_wd_code:char_wd[c]:=sort_in(width,get_fix);
  char_ht_code:char_ht[c]:=sort_in(height,get_fix);
  char_dp_code:char_dp[c]:=sort_in(depth,get_fix);
  char_ic_code:char_ic[c]:=sort_in(italic,get_fix);
  next_larger_code:begin check_tag(c); char_tag[c]:=list_tag;
    char_remainder[c]:=get_byte;
    end;
  map_code:read_packet(c);
  var_char_code:@<Read an extensible recipe for |c|@>;
  end;@/
  finish_the_property;
  end;
end

@ @<Read an extensible r...@>=
begin if ne=256 then
  err_print('At most 256 VARCHAR specs are allowed')
@.At most 256 VARCHAR specs...@>
else  begin check_tag(c); char_tag[c]:=ext_tag; char_remainder[c]:=ne;@/
  exten[ne]:=zero_bytes;
  while level=2 do
    begin while cur_char=" " do get_next;
    if cur_char="(" then @<Read an extensible piece@>
    else if cur_char=")" then skip_to_end_of_item
    else junk_error;
    end;
  incr(ne);
  finish_inner_property_list;
  end;
end

@ @<Read an extensible p...@>=
begin get_name;
if cur_code=comment_code then skip_to_end_of_item
else if (cur_code<var_char_code+1)or(cur_code>var_char_code+4) then
  flush_error('This property name doesn''t belong in a VARCHAR list')
@.This property name doesn't belong...@>
else  begin case cur_code-(var_char_code+1) of
  0:exten[ne].b0:=get_byte;
  1:exten[ne].b1:=get_byte;
  2:exten[ne].b2:=get_byte;
  3:exten[ne].b3:=get_byte;
  end;@/
  finish_the_property;
  end;
end

@* Assembling the mappings.
Each \.{MAP} property is a sequence of \.{DVI} instructions, for which
we need to know some of the opcodes.

@d set_char_0=0 {\.{DVI} command to typeset character 0 and move right}
@d set1=128 {typeset a character and move right}
@d set_rule=132 {typeset a rule and move right}
@d push=141 {save the current positions}
@d pop=142 {restore previous positions}
@d right1=143 {move right}
@d w0=147 {move right by |w|}
@d w1=148 {move right and set |w|}
@d x0=152 {move right by |x|}
@d x1=153 {move right and set |x|}
@d down1=157 {move down}
@d y0=161 {move down by |y|}
@d y1=162 {move down and set |y|}
@d z0=166 {move down by |z|}
@d z1=167 {move down and set |z|}
@d fnt_num_0=171 {set current font to 0}
@d fnt1=235 {set current font}
@d xxx1=239 {extension to \.{DVI} primitives}
@d xxx4=242 {potentially long extension to \.{DVI} primitives}
@d fnt_def1=243 {define the meaning of a font number}
@d pre=247 {preamble}
@d post=248 {postamble beginning}

@ We keep stacks of movement values, in order to optimize the \.{DVI} code
in simple cases.

@<Glob...@>=
@!hstack:array[0..max_stack] of 0..2; {number of known horizontal movements}
@!vstack:array[0..max_stack] of 0..2; {number of known vertical movements}
@!wstack,@!xstack,@!ystack,@!zstack:array[0..max_stack] of fix_word;
@!stack_ptr:0..max_stack;

@ The packet is built by straightforward assembly of \.{DVI} instructions.

@p @<Declare the |vf_fix| procedure@>@;@/
procedure read_packet(@!c:byte);
var @!cc:byte; {character being typeset}
@!x:fix_word; {movement}
@!h,@!v:0..2; {top of |hstack| and |vstack|}
@!special_start:0..vf_size; {location of |xxx1| command}
@!k:0..vf_size; {loop index}
begin packet_start[c]:=vf_ptr; stack_ptr:=0; h:=0; v:=0;
cur_font:=0;
while level=2 do
  begin while cur_char=" " do get_next;
  if cur_char="(" then @<Read and assemble a list of \.{DVI} commands@>
  else if cur_char=")" then skip_to_end_of_item
  else junk_error;
  end;
while stack_ptr>0 do
  begin err_print('Missing POP supplied');
@.Missing POP supplied@>
  vf_store(pop); decr(stack_ptr);
  end;
packet_length[c]:=vf_ptr-packet_start[c];
finish_inner_property_list;
end;

@ @<Read and assemble a list of \.{DVI}...@>=
begin get_name;
if cur_code=comment_code then skip_to_end_of_item
else if (cur_code<select_font_code)or(cur_code>special_hex_code) then
  flush_error('This property name doesn''t belong in a MAP list')
@.This property name doesn't belong...@>
else  begin case cur_code of
  select_font_code:@<Assemble a font selection@>;
  set_char_code:@<Assemble a typesetting instruction@>;
  set_rule_code:@<Assemble a rulesetting instruction@>;
  move_right_code,move_right_code+1:@<Assemble a horizontal movement@>;
  move_down_code,move_down_code+1:@<Assemble a vertical movement@>;
  push_code:@<Assemble a stack push@>;
  pop_code:@<Assemble a stack pop@>;
  special_code,special_hex_code:@<Assemble a special command@>;
  end;@/
  finish_the_property;
  end;
end

@ @<Assemble a font selection@>=
begin get_four_bytes; font_number[font_ptr]:=cur_bytes;
cur_font:=0;
while numbers_differ do incr(cur_font);
if cur_font=font_ptr then err_print('Undefined MAPFONT cannot be selected')
@.Undefined MAPFONT...@>
else if cur_font<64 then vf_store(fnt_num_0+cur_font)
else begin vf_store(fnt1); vf_store(cur_font);
  end;
end

@ @<Assemble a typesetting instruction@>=
if cur_font=font_ptr then
 err_print('Character cannot be typeset in undefined font')
@.Character cannot be typeset...@>
else begin cc:=get_byte;
  if cc>=128 then vf_store(set1);
  vf_store(cc);
  end

@ Here's a procedure that converts a |fix_word| to a sequence of
\.{DVI} bytes.

@<Declare the |vf_fix|...@>=
procedure vf_fix(@!opcode:byte;@!x:fix_word);
var negative:boolean;
@!k:0..4; {number of bytes to typeset}
@!t:integer; {threshold}
begin frozen_du:=true;
if design_units<>unity then x:=round((x/design_units)*1048576.0);
if x>=0 then negative:=false
else begin negative:=true; x:=-1-x;@+end;
if opcode=0 then
  begin k:=4; t:=@'100000000;@+end
else begin t:=127; k:=1;
  while x>t do
    begin t:=256*t+255; incr(k);
    end;
  vf_store(opcode+k-1); t:=t div 128 +1;
  end;
repeat if negative then
  begin vf_store(255-(x div t)); negative:=false;
  x:=(x div t)*t+t-1-x;
  end
else vf_store((x div t) mod 256);
decr(k); t:=t div 256;
until k=0;
end;

@ @<Assemble a rulesetting instruction@>=
begin vf_store(set_rule); vf_fix(0,get_fix); vf_fix(0,get_fix);
end

@ @<Assemble a horizontal movement@>=
begin if cur_code=move_right_code then x:=get_fix@+else x:=-get_fix;
if h=0 then
  begin wstack[stack_ptr]:=x; h:=1; vf_fix(w1,x);@+end
else if x=wstack[stack_ptr] then vf_store(w0)
else if h=1 then
  begin xstack[stack_ptr]:=x; h:=2; vf_fix(x1,x);@+end
else if x=xstack[stack_ptr] then vf_store(x0)
else vf_fix(right1,x);
end

@ @<Assemble a vertical movement@>=
begin if cur_code=move_down_code then x:=get_fix@+else x:=-get_fix;
if v=0 then
  begin ystack[stack_ptr]:=x; v:=1; vf_fix(y1,x);@+end
else if x=ystack[stack_ptr] then vf_store(y0)
else if v=1 then
  begin zstack[stack_ptr]:=x; v:=2; vf_fix(z1,x);@+end
else if x=zstack[stack_ptr] then vf_store(z0)
else vf_fix(down1,x);
end

@ @<Assemble a stack push@>=
if stack_ptr=max_stack then {too pushy}
  err_print('Don''t push so much---stack is full!')
@.Don't push so much...@>
else begin vf_store(push); hstack[stack_ptr]:=h; vstack[stack_ptr]:=v;
  incr(stack_ptr); h:=0; v:=0;
  end

@ @<Assemble a stack pop@>=
if stack_ptr=0 then
  err_print('Empty stack cannot be popped')
@.Empty stack...@>
else begin vf_store(pop); decr(stack_ptr);
  h:=hstack[stack_ptr]; v:=vstack[stack_ptr];
  end

@ @<Assemble a special command@>=
begin vf_store(xxx1); vf_store(0); {dummy length}
special_start:=vf_ptr;
if cur_code=special_code then copy_to_end_of_item
else begin repeat x:=get_hex;
   if cur_char>")" then vf_store(x*16+get_hex);
  until cur_char<=")";
  end;
if vf_ptr-special_start>255 then @<Convert |xxx1| command to |xxx4|@>
else vf[special_start-1]:=vf_ptr-special_start;
end

@ @<Convert |xxx1|...@>=
if vf_ptr+3>vf_size then
  begin err_print('Special command being clipped---no room left!');
@.Special command being clipped...@>
  vf_ptr:=special_start+255; vf[special_start-1]:=255;
  end
else begin for k:=vf_ptr downto special_start do vf[k+3]:=vf[k];
  x:=vf_ptr-special_start; vf_ptr:=vf_ptr+3;
  vf[special_start-2]:=xxx4;
  vf[special_start-1]:=x div @'100000000;
  vf[special_start]:=(x div @'200000) mod 256;
  vf[special_start+1]:=(x div @'400) mod 256;
  vf[special_start+2]:=x mod 256;
  end

@ The input routine is now complete except for the following code,
which prints a progress report as the file is being read.

@p procedure print_octal(c:byte); {prints three octal digits}
begin print('''',(c div 64):1,((c div 8) mod 8):1,(c mod 8):1);
end;

@ @<Print |c| in octal...@>=
begin if chars_on_line=8 then
  begin print_ln(' '); chars_on_line:=1;
  end
else  begin if chars_on_line>0 then print(' ');
  incr(chars_on_line);
  end;
print_octal(c); {progress report}
end

@* The checking and massaging phase.
Once the whole \.{VPL} file has been read in, we must check it for consistency
and correct any errors. This process consists mainly of running through
the characters that exist and seeing if they refer to characters that
don't exist. We also compute the true value of |seven_unsafe|; we make sure
that the charlists and ligature programs contain no loops; and we
shorten the lists of widths, heights, depths, and italic corrections,
if necessary, to keep from exceeding the required maximum sizes.

@<Glob...@>=
@!seven_unsafe:boolean; {do seven-bit characters generate eight-bit ones?}

@ @<Correct and check the information@>=
if nl>0 then @<Make sure the ligature/kerning program ends appropriately@>;
seven_unsafe:=false;
for c:=0 to 255 do if char_wd[c]<>0 then
    @<For all characters |g| generated by |c|,
    make sure that |char_wd[g]| is nonzero, and
    set |seven_unsafe| if |c<128<=g|@>;
if bchar_label<@'77777 then
  begin c:=256; @<Check ligature program of |c|@>;
  end;
if seven_bit_safe_flag and seven_unsafe then
  print_ln('The font is not really seven-bit-safe!');
@.The font is not...safe@>
@<Check for infinite ligature loops@>;
@<Doublecheck the lig/kern commands and the extensible recipes@>;
for c:=0 to 255 do
  @<Make sure that |c| is not the largest element of a charlist cycle@>;
@<Put the width, height, depth, and italic lists into final form@>

@ The checking that we need in several places is accomplished by three
macros that are only slightly tricky.

@d existence_tail(#)==begin char_wd[g]:=sort_in(width,0);
    print(#,' '); print_octal(c);
    print_ln(' had no CHARACTER spec.');
    end;
  end
@d check_existence_and_safety(#)==begin g:=#;
  if (g>=128)and(c<128) then seven_unsafe:=true;
  if char_wd[g]=0 then existence_tail
@d check_existence(#)==begin g:=#;
  if char_wd[g]=0 then existence_tail

@<For all characters |g| generated by |c|...@>=
case char_tag[c] of
no_tag: do_nothing;
lig_tag: @<Check ligature program of |c|@>;
list_tag: check_existence_and_safety(char_remainder[c])
  ('The character NEXTLARGER than');
@.The character NEXTLARGER...@>
ext_tag:@<Check the pieces of |exten[c]|@>;
end

@ @<Check the pieces...@>=
begin if exten[char_remainder[c]].b0>0 then
  check_existence_and_safety(exten[char_remainder[c]].b0)
    ('TOP piece of character');
@.TOP piece of character...@>
if exten[char_remainder[c]].b1>0 then
  check_existence_and_safety(exten[char_remainder[c]].b1)
    ('MID piece of character');
@.MID piece of character...@>
if exten[char_remainder[c]].b2>0 then
  check_existence_and_safety(exten[char_remainder[c]].b2)
    ('BOT piece of character');
@.BOT piece of character...@>
check_existence_and_safety(exten[char_remainder[c]].b3)
    ('REP piece of character');
@.REP piece of character...@>
end

@ @<Make sure that |c| is not the largest element of a charlist cycle@>=
if char_tag[c]=list_tag then
  begin g:=char_remainder[c];
  while (g<c)and(char_tag[g]=list_tag) do g:=char_remainder[g];
  if g=c then
    begin char_tag[c]:=no_tag;
    print('A cycle of NEXTLARGER characters has been broken at ');
@.A cycle of NEXTLARGER...@>
    print_octal(c); print_ln('.');
    end;
  end

@ @<Glob...@>=
@!delta:fix_word; {size of the intervals needed for rounding}

@ @d round_message(#)==if delta>0 then print_ln('I had to round some ',
@.I had to round...@>
  #,'s by ',(((delta+1) div 2)/@'4000000):1:7,' units.')

@<Put the width, height, depth, and italic lists into final form@>=
delta:=shorten(width,255); set_indices(width,delta); round_message('width');@/
delta:=shorten(height,15); set_indices(height,delta); round_message('height');@/
delta:=shorten(depth,15); set_indices(depth,delta); round_message('depth');@/
delta:=shorten(italic,63); set_indices(italic,delta);
  round_message('italic correction');

@ @d clear_lig_kern_entry== {make an unconditional \.{STOP}}
  lig_kern[nl].b0:=255; lig_kern[nl].b1:=0;
  lig_kern[nl].b2:=0; lig_kern[nl].b3:=0

@<Make sure the ligature/kerning program ends...@>=
begin if bchar_label<@'77777 then {make room for it}
  begin clear_lig_kern_entry; incr(nl);
  end; {|bchar_label| will be stored later}
while min_nl>nl do
  begin clear_lig_kern_entry; incr(nl);
  end;
if lig_kern[nl-1].b0=0 then lig_kern[nl-1].b0:=stop_flag;
end

@ It's not trivial to check for infinite loops generated by repeated
insertion of ligature characters. But fortunately there is a nice
algorithm for such testing, copied here from the program \.{TFtoPL}
where it is explained further.

@d simple=0 {$f(x,y)=z$}
@d left_z=1 {$f(x,y)=f(z,y)$}
@d right_z=2 {$f(x,y)=f(x,z)$}
@d both_z=3 {$f(x,y)=f(f(x,z),y)$}
@d pending=4 {$f(x,y)$ is being evaluated}


@ @<Glo...@>=
@!lig_ptr:0..max_lig_steps; {an index into |lig_kern|}
@!hash:array[0..hash_size] of 0..66048; {$256x+y+1$ for $x\le257$ and $y\le255$}
@!class:array[0..hash_size] of simple..pending;
@!lig_z:array[0..hash_size] of 0..257;
@!hash_ptr:0..hash_size; {the number of nonzero entries in |hash|}
@!hash_list:array[0..hash_size] of 0..hash_size; {list of those nonzero entries}
@!h,@!hh:0..hash_size; {indices into the hash table}
@!tt:indx; {temporary register}
@!x_lig_cycle,@!y_lig_cycle:0..256; {problematic ligature pair}

@ @<Set init...@>=
hash_ptr:=0; y_lig_cycle:=256;
for k:=0 to hash_size do hash[k]:=0;

@ @d lig_exam==lig_kern[lig_ptr].b1
@d lig_gen==lig_kern[lig_ptr].b3

@<Check lig...@>=
begin lig_ptr:=char_remainder[c];
repeat if hash_input(lig_ptr,c) then
  begin if lig_kern[lig_ptr].b2<kern_flag then
    begin if lig_exam<>bchar then
      check_existence(lig_exam)('LIG character examined by');
@.LIG character examined...@>
    check_existence(lig_gen)('LIG character generated by');
@.LIG character generated...@>
    if lig_gen>=128 then if(c<128)or(c=256) then
      if(lig_exam<128)or(lig_exam=bchar) then seven_unsafe:=true;
    end
  else if lig_exam<>bchar then
    check_existence(lig_exam)('KRN character examined by');
@.KRN character examined...@>
  end;
if lig_kern[lig_ptr].b0>=stop_flag then lig_ptr:=nl
else lig_ptr:=lig_ptr+1+lig_kern[lig_ptr].b0;
until lig_ptr>=nl;
end

@ The |hash_input| procedure is copied from \.{TFtoPL}, but it is made
into a boolean function that returns |false| if the ligature command
was masked by a previous one.

@p function hash_input(@!p,@!c:indx):boolean;
 {enter data for character |c| and command in location |p|, unless it isn't new}
label 30; {go here for a quick exit}
var @!cc:simple..both_z; {class of data being entered}
@!zz:0..255; {function value or ligature character being entered}
@!y:0..255; {the character after the cursor}
@!key:integer; {value to be stored in |hash|}
@!t:integer; {temporary register for swapping}
begin if hash_ptr=hash_size then
  begin hash_input:=false; goto 30;@+end;
@<Compute the command parameters |y|, |cc|, and |zz|@>;
key:=256*c+y+1; h:=(1009*key) mod hash_size;
while hash[h]>0 do
  begin if hash[h]<=key then
    begin if hash[h]=key then
      begin hash_input:=false; goto 30; {unused ligature command}
      end;
    t:=hash[h]; hash[h]:=key; key:=t; {do ordered-hash-table insertion}
    t:=class[h]; class[h]:=cc; cc:=t; {namely, do a swap}
    t:=lig_z[h]; lig_z[h]:=zz; zz:=t;
    end;
  if h>0 then decr(h)@+else h:=hash_size;
  end;
hash[h]:=key; class[h]:=cc; lig_z[h]:=zz;
incr(hash_ptr); hash_list[hash_ptr]:=h;
hash_input:=true;
30:end;

@ @<Compute the command param...@>=
y:=lig_kern[p].b1; t:=lig_kern[p].b2; cc:=simple;
zz:=lig_kern[p].b3;
if t>=kern_flag then zz:=y
else begin case t of
  0,6:do_nothing; {\.{LIG},\.{/LIG>}}
  5,11:zz:=y; {\.{LIG/>}, \.{/LIG/>>}}
  1,7:cc:=left_z; {\.{LIG/}, \.{/LIG/>}}
  2:cc:=right_z; {\.{/LIG}}
  3:cc:=both_z; {\.{/LIG/}}
  end; {there are no other cases}
  end

@ (More good stuff from \.{TFtoPL}.)

@p function f(@!h,@!x,@!y:indx):indx; forward;@t\2@>
  {compute $f$ for arguments known to be in |hash[h]|}
function eval(@!x,@!y:indx):indx; {compute $f(x,y)$ with hashtable lookup}
var @!key:integer; {value sought in hash table}
begin key:=256*x+y+1; h:=(1009*key) mod hash_size;
while hash[h]>key do
  if h>0 then decr(h)@+else h:=hash_size;
if hash[h]<key then eval:=y {not in ordered hash table}
else eval:=f(h,x,y);
end;

@ Pascal's beastly convention for |forward| declarations prevents us from
saying |function f(h,x,y:indx):indx| here.

@p function f;
begin case class[h] of
simple: do_nothing;
left_z: begin class[h]:=pending; lig_z[h]:=eval(lig_z[h],y); class[h]:=simple;
  end;
right_z: begin class[h]:=pending; lig_z[h]:=eval(x,lig_z[h]); class[h]:=simple;
  end;
both_z: begin class[h]:=pending; lig_z[h]:=eval(eval(x,lig_z[h]),y);
  class[h]:=simple;
  end;
pending: begin x_lig_cycle:=x; y_lig_cycle:=y; lig_z[h]:=257; class[h]:=simple;
  end; {the value 257 will break all cycles, since it's not in |hash|}
end; {there are no other cases}
f:=lig_z[h];
end;

@ @<Check for infinite...@>=
if hash_ptr<hash_size then for hh:=1 to hash_ptr do
  begin tt:=hash_list[hh];
  if class[tt]>simple then {make sure $f$ is well defined}
  tt:=f(tt,(hash[tt]-1)div 256,(hash[tt]-1)mod 256);
  end;
if(hash_ptr=hash_size)or(y_lig_cycle<256) then
  begin if hash_ptr<hash_size then
    begin print('Infinite ligature loop starting with ');
@.Infinite ligature loop...@>
    if x_lig_cycle=256 then print('boundary')@+else print_octal(x_lig_cycle);
    print(' and '); print_octal(y_lig_cycle); print_ln('!');
    end
  else print_ln('Sorry, I haven''t room for so many ligature/kern pairs!');
@.Sorry, I haven't room...@>
  print_ln('All ligatures will be cleared.');
  for c:=0 to 255 do if char_tag[c]=lig_tag then
    begin char_tag[c]:=no_tag; char_remainder[c]:=0;
    end;
  nl:=0; bchar:=256; bchar_label:=@'77777;
  end

@ The lig/kern program may still contain references to nonexistent characters,
if parts of that program are never used. Similarly, there may be extensible
characters that are never used, because they were overridden by
\.{NEXTLARGER}, say. This would produce an invalid \.{TFM} file; so we
must fix such errors.

@d double_check_tail(#)==@t\1@>if char_wd[0]=0
      then char_wd[0]:=sort_in(width,0);
    print('Unused ',#,' refers to nonexistent character ');
    print_octal(c); print_ln('!');
    end;
  end
@d double_check_lig(#)==begin c:=lig_kern[lig_ptr].#;
  if char_wd[c]=0 then if c<>bchar then
    begin lig_kern[lig_ptr].#:=0; double_check_tail
@d double_check_ext(#)==begin c:=exten[g].#;
  if c>0 then if char_wd[c]=0 then
    begin exten[g].#:=0; double_check_tail
@d double_check_rep(#)==begin c:=exten[g].#;
  if char_wd[c]=0 then
    begin exten[g].#:=0; double_check_tail

@<Doublecheck...@>=
if nl>0 then for lig_ptr:=0 to nl-1 do
  if lig_kern[lig_ptr].b2<kern_flag then
    begin if lig_kern[lig_ptr].b0<255 then
      begin double_check_lig(b1)('LIG step'); double_check_lig(b3)('LIG step');
      end;
    end
  else double_check_lig(b1)('KRN step');
@.Unused LIG step...@>
@.Unused KRN step...@>
if ne>0 then for g:=0 to ne-1 do
  begin double_check_ext(b0)('VARCHAR TOP');
  double_check_ext(b1)('VARCHAR MID');
  double_check_ext(b2)('VARCHAR BOT');
  double_check_rep(b3)('VARCHAR REP');
@.Unused VARCHAR...@>
  end

@* The TFM output phase.
Now that we know how to get all of the font data correctly stored in
\.{VPtoVF}'s memory, it only remains to write the answers out.

First of all, it is convenient to have an abbreviation for output to the
\.{TFM} file:

@d out(#)==write(tfm_file,#)

@ The general plan for producing \.{TFM} files is long but simple:

@<Do the \.{TFM} output@>=
@<Compute the twelve subfile sizes@>;
@<Output the twelve subfile sizes@>;
@<Output the header block@>;
@<Output the character info@>;
@<Output the dimensions themselves@>;
@<Output the ligature/kern program@>;
@<Output the extensible character recipes@>;
@<Output the parameters@>

@ A \.{TFM} file begins with 12 numbers that tell how big its subfiles are.
We already know most of these numbers; for example, the number of distinct
widths is |memory[width]+1|, where the $+1$ accounts for the zero width that
is always supposed to be present. But we still should compute the beginning
and ending character codes (|bc| and |ec|), the number of header words (|lh|),
and the total number of words in the \.{TFM} file (|lf|).

@<Gl...@>=
@!bc:byte; {the smallest character code in the font}
@!ec:byte; {the largest character code in the font}
@!lh:byte; {the number of words in the header block}
@!lf:0..32767; {the number of words in the entire \.{TFM} file}
@!not_found:boolean; {has a font character been found?}
@!temp_width:fix_word; {width being used to compute a check sum}

@ It might turn out that no characters exist at all. But \.{VPtoVF} keeps
going and writes the \.{TFM} anyway. In this case |ec| will be~0 and |bc|
will be~1.

@<Compute the twelve...@>=
lh:=header_ptr div 4;@/
not_found:=true; bc:=0;
while not_found do
  if (char_wd[bc]>0)or(bc=255) then not_found:=false
  else incr(bc);
not_found:=true; ec:=255;
while not_found do
  if (char_wd[ec]>0)or(ec=0) then not_found:=false
  else decr(ec);
if bc>ec then bc:=1;
incr(memory[width]); incr(memory[height]); incr(memory[depth]);
incr(memory[italic]);@/
@<Compute the ligature/kern program offset@>;
lf:=6+lh+(ec-bc+1)+memory[width]+memory[height]+memory[depth]+
memory[italic]+nl+lk_offset+nk+ne+np;

@ @d out_size(#)==out((#) div 256); out((#) mod 256)

@<Output the twelve subfile sizes@>=
out_size(lf); out_size(lh); out_size(bc); out_size(ec);
out_size(memory[width]); out_size(memory[height]);
out_size(memory[depth]); out_size(memory[italic]);
out_size(nl+lk_offset); out_size(nk); out_size(ne); out_size(np);

@ The routines that follow need a few temporary variables of different types.

@<Gl...@>=
@!j:0..max_header_bytes; {index into |header_bytes|}
@!p:pointer; {index into |memory|}
@!q:width..italic; {runs through the list heads for dimensions}
@!par_ptr:0..max_param_words; {runs through the parameters}

@ The header block follows the subfile sizes. The necessary information all
appears in |header_bytes|, except that the design size and the seven-bit-safe
flag must still be set.

@<Output the header block@>=
if not check_sum_specified then @<Compute the check sum@>;
header_bytes[design_size_loc]:=design_size div @'100000000;
  {this works since |design_size>0|}
header_bytes[design_size_loc+1]:=(design_size div @'200000) mod 256;
header_bytes[design_size_loc+2]:=(design_size div 256) mod 256;
header_bytes[design_size_loc+3]:=design_size  mod 256;
if not seven_unsafe then header_bytes[seven_flag_loc]:=128;
for j:=0 to header_ptr-1 do out(header_bytes[j]);

@ @<Compute the check sum@>=
begin c0:=bc; c1:=ec; c2:=bc; c3:=ec;
for c:=bc to ec do if char_wd[c]>0 then
  begin temp_width:=memory[char_wd[c]];
  if design_units<>unity then
    temp_width:=round((temp_width/design_units)*1048576.0);
  temp_width:=temp_width + (c+4)*@'20000000; {this should be positive}
  c0:=(c0+c0+temp_width) mod 255;
  c1:=(c1+c1+temp_width) mod 253;
  c2:=(c2+c2+temp_width) mod 251;
  c3:=(c3+c3+temp_width) mod 247;
  end;
header_bytes[check_sum_loc]:=c0;
header_bytes[check_sum_loc+1]:=c1;
header_bytes[check_sum_loc+2]:=c2;
header_bytes[check_sum_loc+3]:=c3;
end

@ The next block contains packed |char_info|.

@<Output the character info@>=
index[0]:=0;
for c:=bc to ec do
  begin out(index[char_wd[c]]);
  out(index[char_ht[c]]*16+index[char_dp[c]]);
  out(index[char_ic[c]]*4+char_tag[c]);
  out(char_remainder[c]);
  end

@ When a scaled quantity is output, we may need to divide it by |design_units|.
The following subroutine takes care of this, using floating point arithmetic
only if |design_units<>1.0|.

@p procedure out_scaled(x:fix_word); {outputs a scaled |fix_word|}
var @!n:byte; {the first byte after the sign}
@!m:0..65535; {the two least significant bytes}
begin if abs(x/design_units)>=16.0 then
  begin print_ln('The relative dimension ',x/@'4000000:1:3,
    ' is too large.');
@.The relative dimension...@>
  print('  (Must be less than 16*designsize');
  if design_units<>unity then print(' =',design_units/@'200000:1:3,
      ' designunits');
  print_ln(')'); x:=0;
  end;
if design_units<>unity then x:=round((x/design_units)*1048576.0);
if x<0 then
  begin out(255); x:=x+@'100000000;
  if x<=0 then x:=1;
  end
else begin out(0);
  if x>=@'100000000 then x:=@'77777777;
  end;
n:=x div @'200000; m:=x mod @'200000;
out(n); out(m div 256); out(m mod 256);
end;

@ We have output the packed indices for individual characters.
The scaled widths, heights, depths, and italic corrections are next.

@<Output the dimensions themselves@>=
for q:=width to italic do
  begin out(0); out(0); out(0); out(0); {output the zero word}
  p:=link[q]; {head of list}
  while p>0 do
    begin out_scaled(memory[p]);
    p:=link[p];
    end;
  end;

@ One embarrassing problem remains: The ligature/kern program might be very
long, but the starting addresses in |char_remainder| can be at most~255.
Therefore we need to output some indirect address information; we want to
compute |lk_offset| so that addition of |lk_offset| to all remainders makes
all but |lk_offset| distinct remainders less than~256.

For this we need a sorted table of all relevant remainders.

@<Glob...@>=
@!label_table:array[0..256] of record
  @!rr: -1..@'77777; {sorted label values}
  @!cc: byte; {associated characters}
  end;
@!label_ptr:0..256; {index of highest entry in |label_table|}
@!sort_ptr:0..256; {index into |label_table|}
@!lk_offset:0..256; {smallest offset value that might work}
@!t:0..@'77777; {label value that is being redirected}
@!extra_loc_needed:boolean; {do we need a special word for |bchar|?}

@ @<Compute the ligature/kern program offset@>=
@<Insert all labels into |label_table|@>;
if bchar<256 then
  begin extra_loc_needed:=true; lk_offset:=1;
  end
else begin extra_loc_needed:=false; lk_offset:=0;
  end;
@<Find the minimum |lk_offset| and adjust all remainders@>;
if bchar_label<@'77777 then
  begin lig_kern[nl-1].b2:=(bchar_label+lk_offset)div 256;
  lig_kern[nl-1].b3:=(bchar_label+lk_offset)mod 256;
  end

@ @<Insert all labels...@>=
label_ptr:=0; label_table[0].rr:=-1; {sentinel}
for c:=bc to ec do if char_tag[c]=lig_tag then
  begin sort_ptr:=label_ptr; {there's a hole at position |sort_ptr+1|}
  while label_table[sort_ptr].rr>char_remainder[c] do
    begin label_table[sort_ptr+1]:=label_table[sort_ptr];
    decr(sort_ptr); {move the hole}
    end;
  label_table[sort_ptr+1].cc:=c;
  label_table[sort_ptr+1].rr:=char_remainder[c];
  incr(label_ptr);
  end

@ @<Find the minimum |lk_offset| and adjust all remainders@>=
begin sort_ptr:=label_ptr; {the largest unallocated label}
if label_table[sort_ptr].rr+lk_offset > 255 then
  begin lk_offset:=0; extra_loc_needed:=false; {location 0 can do double duty}
  repeat char_remainder[label_table[sort_ptr].cc]:=lk_offset;
  while label_table[sort_ptr-1].rr=label_table[sort_ptr].rr do
    begin decr(sort_ptr); char_remainder[label_table[sort_ptr].cc]:=lk_offset;
    end;
  incr(lk_offset); decr(sort_ptr);
  until lk_offset+label_table[sort_ptr].rr<256;
    {N.B.: |lk_offset=256| satisfies this when |sort_ptr=0|}
  end;
if lk_offset>0 then while sort_ptr>0 do
  begin char_remainder[label_table[sort_ptr].cc]:=
    char_remainder[label_table[sort_ptr].cc]+lk_offset;
  decr(sort_ptr);
  end;
end

@ @<Output the ligature/kern program@>=
if extra_loc_needed then {|lk_offset=1|}
  begin out(255); out(bchar); out(0); out(0);
  end
else for sort_ptr:=1 to lk_offset do {output the redirection specs}
  begin t:=label_table[label_ptr].rr;
  if bchar<256 then
    begin out(255); out(bchar);
    end
  else begin out(254); out(0);
    end;
  out_size(t+lk_offset);
  repeat decr(label_ptr); until label_table[label_ptr].rr<t;
  end;
if nl>0 then for lig_ptr:=0 to nl-1 do
  begin out(lig_kern[lig_ptr].b0);
  out(lig_kern[lig_ptr].b1);
  out(lig_kern[lig_ptr].b2);
  out(lig_kern[lig_ptr].b3);
  end;
if nk>0 then for krn_ptr:=0 to nk-1 do out_scaled(kern[krn_ptr])

@ @<Output the extensible character recipes@>=
if ne>0 then for c:=0 to ne-1 do
  begin out(exten[c].b0);
  out(exten[c].b1);
  out(exten[c].b2);
  out(exten[c].b3);
  end;

@ For our grand finale, we wind everything up by outputting the parameters.

@<Output the parameters@>=
for par_ptr:=1 to np do
  begin if par_ptr=1 then
    @<Output the slant (|param[1]|) without scaling@>
  else out_scaled(param[par_ptr]);
  end

@ @<Output the slant...@>=
begin if param[1]<0 then
  begin param[1]:=param[1]+@'10000000000;
  out((param[1] div @'100000000)+256-64);
  end
else out(param[1] div @'100000000);
out((param[1] div @'200000) mod 256);
out((param[1] div 256) mod 256);
out(param[1] mod 256);
end

@* The VF output phase.
Output to |vf_file| is considerably simpler.

@d id_byte=202 {current version of \.{VF} format}
@d vout(#)==write(vf_file,#)

@<Glob...@>=
@!vcount:integer; {number of bytes written to |vf_file|}

@ We need a routine to output integers as four bytes. Negative values
will never be less than $-2^{24}$.

@p procedure vout_int(@!x:integer);
begin if x>=0 then vout(x div @'100000000)
else begin vout(255); x:=x+@'100000000;
  end;
vout((x div @'200000) mod 256);
vout((x div @'400) mod 256); vout(x mod 256);
end;

@ @<Do the \.{VF} output@>=
vout(pre); vout(id_byte); vout(vtitle_length);
for k:=0 to vtitle_length-1 do vout(vf[vtitle_start+k]);
for k:=check_sum_loc to design_size_loc+3 do vout(header_bytes[k]);
vcount:=vtitle_length+11;
for cur_font:=0 to font_ptr-1 do @<Output a local font definition@>;
for c:=bc to ec do if char_wd[c]>0 then
  @<Output a packet for character |c|@>;
repeat vout(post); incr(vcount);
until vcount mod 4 = 0

@ @<Output a local font definition@>=
begin vout(fnt_def1); vout(cur_font);@/
vout(font_checksum[cur_font].b0);
vout(font_checksum[cur_font].b1);
vout(font_checksum[cur_font].b2);
vout(font_checksum[cur_font].b3);
vout_int(font_at[cur_font]);
vout_int(font_dsize[cur_font]);
vout(farea_length[cur_font]);
vout(fname_length[cur_font]);
for k:=0 to farea_length[cur_font]-1 do vout(vf[farea_start[cur_font]+k]);
if fname_start[cur_font]=vf_size then
  begin vout("N"); vout("U"); vout("L"); vout("L");
  end
else for k:=0 to fname_length[cur_font]-1 do vout(vf[fname_start[cur_font]+k]);
vcount:=vcount+12+farea_length[cur_font]+fname_length[cur_font];
end

@ @<Output a packet for character |c|@>=
begin x:=memory[char_wd[c]];
if design_units<>unity then x:=round((x/design_units)*1048576.0);
if (packet_length[c]>241)or(x<0)or(x>=@'100000000) then
  begin vout(242); vout_int(packet_length[c]); vout_int(c); vout_int(x);
  vcount:=vcount+13+packet_length[c];
  end
else begin vout(packet_length[c]); vout(c); vout(x div @'200000);
  vout((x div @'400) mod 256); vout(x mod 256);
  vcount:=vcount+5+packet_length[c];
  end;
if packet_start[c]=vf_size then
  begin if c>=128 then vout(set1);
  vout(c);
  end
else for k:=0 to packet_length[c]-1 do vout(vf[packet_start[c]+k]);
end

@* The main program.
The routines sketched out so far need to be packaged into separate procedures,
on some systems, since some \PASCAL\ compilers place a strict limit on the
size of a routine. The packaging is done here in an attempt to avoid some
system-dependent changes.

@p procedure param_enter;
begin @<Enter the parameter names@>;
end;
@#
procedure vpl_enter;
begin @<Enter all the \.{VPL} names@>;
end;
@#
procedure name_enter; {enter all names and their equivalents}
begin @<Enter all the \.{PL} names...@>;
vpl_enter; param_enter;
end;
@#
procedure read_lig_kern;
var @!krn_ptr:0..max_kerns; {an index into |kern|}
@!c:byte; {runs through all character codes}
begin @<Read ligature/kern list@>;
end;
@#
procedure read_char_info;
var @!c:byte; {the char}
begin @<Read character info list@>;
end;
@#
procedure read_input;
var @!c:byte; {header or parameter index}
begin @<Read all the input@>;
end;
@#
procedure corr_and_check;
var @!c:0..256; {runs through all character codes}
@!hh:0..hash_size; {an index into |hash_list|}
@!lig_ptr:0..max_lig_steps; {an index into |lig_kern|}
@!g:byte; {a character generated by the current character |c|}
begin @<Correct and check the information@>
end;
@#
procedure vf_output;
var @!c:byte; {runs through all character codes}
@!cur_font:0..256; {runs through all local fonts}
@!k:integer; {loop index}
begin @<Do the \.{VF} output@>;
end;

@ Here is where \.{VPtoVF} begins and ends.

@p begin initialize;@/
name_enter;@/
read_input; print_ln('.');@/
corr_and_check;@/
@<Do the \.{TFM} output@>;
vf_output;
end.

@* System-dependent changes.
This section should be replaced, if necessary, by changes to the program
that are necessary to make \.{VPtoVF} work at a particular installation.
It is usually best to design your change file so that all changes to
previous sections preserve the section numbering; then everybody's version
will be consistent with the printed program. More extensive changes,
which introduce new sections, can be inserted here; then only the index
itself will get a new section number.
@^system dependencies@>

@* Index.
Pointers to error messages appear here together with the section numbers
where each ident\-i\-fier is used.